


Change Event (ToolBar, Slider Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtChangeC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbevtChange;vbevtChangeX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbevtChangeA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtChangeOS"}

Indicates that the contents of a control have changed. How and when this event occurs varies with 
the control.

Syntax
Private Sub object_Change([index As Integer])
The Change event syntax has these parts:

Part Description
object An object expression that evaluates to a control in 

the Applies To list.
index An integer that uniquely identifies a control if it's in a 

control array.

Remarks
· Slider — generated when the Value property changes, either through code, or when the user 

moves the control's slider.
· Toolbar — generated after the end user customizes a Toolbar control's toolbar using the Customize

Toolbar dialog box.

The Change event procedure can synchronize or coordinate data display among controls. For 
example, you can use a Slider control's Change event procedure to update the control's Value 
property setting in a TextBox control. Or you could use a Change event procedure to display data and 
formulas in a work area and results in another area.

Note      A Change event procedure can sometimes cause a cascading event. This occurs when the 
control's Change event alters the control's contents by setting a property in code that determines the 
control's value, such as the Text property setting for a TextBox control. To prevent a cascading event:
· If possible, avoid writing a Change event procedure for a control that alters that control's contents. 

If you do write such a procedure, be sure to set a flag that prevents further changes while the 
current change is in progress.

· Avoid creating two or more controls whose Change event procedures affect each other, for 
example, two TextBox controls that update each other during their Change events.





Trappable Errors for the Windows Common Controls
{ewc HLP95EN.DLL,DYNALINK,"See Also":"msgWindows95ControlsErrorsC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"msgWindows95ControlsErrorsX":1}

The following tables list the trappable errors and constants for the Windows Common Controls in the 
ComCtl32.OCX and ComCt232.OCX files.

The following are the errors for the Windows Common Controls located in the ComCtl32.OCX file. 
Controls included in this file are: TabStrip, Toolbar, StatusBar, ProgressBar, TreeView, ListView, 
ImageList, and Slider.
Constant Value Description
ccInvalidProcedureCAll 5 Invalid procedure call
ccOutofMemory 7 Out of memory

The operation could not 
allocate enough memory.

ccTypeMismatch 13 Type Mismatch
One of the arguments could 
not be converted to the 
correct data type.

ccInvalidPropertyValue 380 Invalid property value
A value has been assigned to 
a property, that is outside its 
permissible range.

ccSetNotSupportedAtRuntime 382 Property cannot be set at run 
time

ccSetNotSupported 383 Property is read-only
ccSetNotPermitted 387 Property can't be set on this 

control
ccGetNotSupported 394 Property is write-only
ccInvalidClipboardFormat 460 Invalid clipboard format
ccInvalidObjectUse 425 Invalid object use
ccDataObjectLocked 672 DataObject formats list may 

not be cleared or expanded 
outside of the OLEStartDrag 
event

ccExpectedAnArgument 673 Expected at least one 
argument

ccRecursiveOleDrag 674 Illegal recursive invocation of 
OLE drag and drop

ccIndexOutOfBounds 35600 Index out of bounds
ccElemNotFound 35601 Element not found
ccNonUniqueKey 35602 Key is not unique in collection
ccInvalidKey 35603 Invalid key
ccCol1MustBeLeftAligned 35604 When the ListView control's 

View property is set to 3 
(Report), the left-most column
(column 1) can only be left 
aligned. Any attempt to set 
the alignment to another 
value will result in this error.



ccElemNotPartOfCollection 35605 This item's control has been 
deleted

ccCollectionChangedDuringEnu
m

35606 Control's collection has been 
modified

ccMissingRequiredArg 35607 Required argument is missing
ccBadObjectReference 35610 Invalid object
ccReadOnlyIfHasImages 35611 Property is read-only if image 

list contains images
ccImageListMustBeInitialized 35613 ImageList must be initialized 

before it can be used
ccWouldIntroduceCycle 35614 This would introduce a cycle
ccNotSameSize 35615 All images in list must be 

same size
ccMaxPanelsExceeded 35616 Maximum Panels Exceeded
ccImageListLocked 35617 ImageList cannot be modified 

while another control is bound
to it

ccMaxButtonsExceeded 35619 Maximum Buttons Exceeded
ccCircularReference 35700 Circular object referencing is 

not allowed

The following are the errors for the Windows Common Controls located in the ComCt232.OCX file. 
Controls included in this file are: UpDown and Animation.

Constant Value Description
cc2InvalidProcedureCall 5 Invalid procedure call
cc2BadFileNameOrNumber 52 Bad file name or number
cc2FileNotFound 53 File not found
cc2InvalidPropertyValue 380 Invalid property value
cc2SetNotSupportedAtRuntime 382 Property cannot be set at 

runtime
cc2SetNotSupported 383 Property is read-only
cc2InvalidObjectUse 425 Invalid object use
cc2InvalidClipboardFormat 460 Invalid clipboard format
cc2DataObjectLocked 672 DataObject formats list may 

not be cleared or expanded 
outside of the OLEStartDrag 
event

cc2ExpectedAnArgument 673 Expected at least one 
argument.

cc2InconsistentObject 35750 Internal state of the control 
has become corrupted

cc2ErrorDuringSet 35751 Unable to set property
cc2ErrorOpeningVideo 35752 Unable to open AVI file
cc2ErrorPlayingVideo 35753 Unable to play AVI file
cc2NoValidBuddyCtl 35754 BuddyControl property must 

be set first
cc2VideoNotOpen 35755 Must open AVI file first
cc2AutoBuddyNotSet 35756 AutoBuddy not set, no 

potential buddy controls found



cc2ErrorStoppingVideo 35757 Error trying to stop playing 
video file

cc2ErrorClosingVideo 35758 Error closing open video file
cc2CantStopAutoPlay 35759 Stop method does not effect 

AutoPlay property
cc2BuddyNotASibling 35760 BuddyControl must be a 

separate control within the 
same container

cc2NoUpDownAsBuddy 35761 An UpDown control cannot be
buddied with another 
UpDown control.



Error Messages (RichTextBox Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgErrorMessagesRichTextBoxC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgErrorMessagesRichTextBoxS"}

The following are the errors for the RichTextBox control, located in the RichTx32.OCX file:

Constant Value Description
rtfInvalidProcedureCall 5 Invalid procedure call
rtfOutOfMemory 7 Out of memory
rtfPathFileAccessError 75 The specified path/file name 

cannot be accessed or is 
invalid

rtfInvalidFileFormat 321 Invalid file format
rtfInvalidPropertyValue 380 Invalid property value
rtfInvalidPropertyArrayIndex 381 Invalid property array index
rtfSetNotSupported 383 Property is read-only
rtfSetNotPermitted 387 Property cannot be set
rtfGetNotSupported 394 Property is write-only
rtfInvalidObjectUse 425 Invalid object use
rtfDataObjectLocked 672 DataObject formats list may 

not be cleared or expanded 
outside of the OLEStartDrag 
event

rtfExpectedAnArgument 673 Expected at least one 
argument

rtfInvalidCharPosition 32000 Invalid character position
rtfInvalidHdc 32001 Invalid HDC
rtfCannotLoadFile 32002 Unable to load specified file
rtfInvalidKeyName 32005 Invalid or missing key name
rtfInvalidClassName 32006 Invalid or missing OLE class 

name
rtfKeyNotFound 32007 Key does not exist
rtfOLESourceRquired 32008 Required source document or

class name is missing
rtfNonUniqueKey 32009 Key is not unique in collection
rtfInvalidObject 32010 Invalid object
rtfProtected 32011 The operation cannot be 

performed on protected text
rtfOleCreate 32012 Unable to create object
rtfOleServer 32013 Unable to start server 

application



ImageList Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjImageListC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbobjImageListX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Properties":"vbobjImageListP"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Methods":"vbobjImageListM"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Events":"vbobjImageListE"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjImageListS"}

An ImageList control contains a collection of ListImage objects, each of which can be referred to by 
its index or key. The ImageList control is not meant to be used alone, but as a central repository to 
conveniently supply other controls with images.

Syntax
ImageList

Remarks
You can use the ImageList control with any control that assigns a Picture object to a Picture 
property. For example, the following code assigns the first ListImage object in a ListImages 
collection to the Picture property of a newly created StatusBar panel:
Dim pnlX As Panel
Set pnlX = StatusBar1.Panels.Add() ' Add a new Panel object.
Set pnlX.Picture = ImageList1.ListImages(1).Picture ' Set Picture.
Note      You must use the Set statement when assigning an image to a Picture object. 

Images of different sizes can be added to an ImageList control, but it constrains them all to be the 
same size. The size of the ListImage objects is determined by one of the following:

· The setting of ImageWidth and ImageHeight properties before any images are added.
· The dimensions of the first image added. 

You are not limited to any particular image size, but the total number of images that can be loaded is 
limited by the amount of available memory.

At design time, you can add images using the General tab of the ImageList Control Properties dialog 
box. At run time, you can add images using the Add method for the ListImages collection.

Besides storing Picture objects, the ImageList control can also perform graphical operations on 
images before assigning them to other controls. For example, the Overlay method creates a 
composite image from two different images.

Additionally, you can bind one or more ImageList controls to certain other Windows 95 common 
controls to conserve system resources. These include the ListView, ToolBar, TabStrip, and 
TreeView controls. In order to use an ImageList with one of these controls, you must associate a 
particular ImageList with the control through an appropriate property. For the ListView control, you 
must set the Icons and SmallIcons properties to ImageList controls. For the TreeView, TabStrip, 
and Toolbar controls, you must set the ImageList property to an ImageList control.

For these controls, you can specify an ImageList at design time using the Custom Properties dialog 
box. At run time, you can also specify an ImageList which sets a TreeView control's ImageList 
property, as in the following example:
TreeView1.ImageList = ImageList1  ' Specify ImageList
Once you associate an ImageList with a control, you can use the value of either the Index or Key 
property to refer to a ListImage object in a procedure. The following example sets the Image property
of a TreeView control's third Node object to the first ListImage object in an ImageList control:
' Use the value of the Index property of ImageList1.
TreeView1.Nodes(3).Image = 1



' Or use the value of the Key property.
TreeView1.Nodes(3).Image = "image 1"   ' Assuming Key is "image 1."
Distribution Note      The ImageList control is part of a group of ActiveX controls that are found in the
COMCTL32.OCX file. To use the ImageList control in your application, you must add the 
COMCTL32.OCX file to the project. When distributing your application, install the COMCTL32.OCX 
file in the user's Microsoft Windows System or System32 directory. For more information on how to 
add an ActiveX control to a project, see the Programmer's Guide.



ListImage Object, ListImages Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjListImageC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbobjListImageX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Properties":"vamthItem;vbobjListImageP"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Methods":"vbobjListImageM"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Events":"vbobjListImageE"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjListImageS"}

· A ListImage object is a bitmap of any size that can be used in other controls. 
· A ListImages collection is a collection of ListImage objects. 

Syntax
imagelist.ListImages
imagelist.ListImages(index)
The syntax lines above refer to the collection and to individual elements in the collection, respectively,
according to standard collection syntax.

The ListImage Object, ListImages Collection syntaxes have these parts:

Part Description
imagelist Required. An object expression that evaluates to an 

object in the Applies To list.
index An integer or string that uniquely identifies the object 

in the collection. The integer is the value of the Index
property; the string is the value of the Key property.

Remarks
The ListImages collection is a 1-based collection.

You can add and remove a ListImage at design time using the General tab of the ImageList Control 
Properties page, or at run time using the Add method for ListImage objects.

Each item in the collection can be accessed by its index or unique key. For example, to get a 
reference to the third ListImage object in a collection, use the following syntax:
Dim imgX As ListImage

' Reference by index number.
Set imgX = ImageList.ListImages(3) 

' Or reference by unique key.
Set imgX = ImageList1.ListImages("third") ' Assuming Key is "third."

' Or use Item method.
Set imgX = ImageList1.ListImages.Item(3)
Each ListImage object has a corresponding mask that is generated automatically using the 
MaskColor property. This mask is not used directly, but is applied to the original bitmap in graphical 
operations such as the Overlay and Draw methods. 



Add Method (ListImages Collection)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthAddImagesC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthAddListImagesX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbmthAddListImagesA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthAddListImagesS"}

Adds a ListImage object to a ListImages collection. Doesn't support named arguments.

Syntax
object.Add(index, key, picture)
The Add method syntax has these parts:

Part Description
object Required. An object expression that evaluates to an 

object in the Applies To list.
index Optional. An integer specifying the position where 

you want to insert the ListImage. If no index is 
specified, the ListImage is added to the end of the 
ListImages collection. 

key Optional. A unique string that identifies the 
ListImage object. Use this value to retrieve a 
specific ListImage object. An error occurs if the key 
is not unique.

picture Required. Specifies the picture to be added to the 
collection. 

Remarks
The ListImages collection is a 1-based collection.

You can load either bitmaps or icons into a ListImage object. To load a bitmap or icon, you can use 
the LoadPicture function, as follows:
Set imgX = ImageList1.ListImages.Add(,,LoadPicture("file name"))
You can also load a Picture object directly into the ListImage object. For example, this example 
loads a PictureBox control's picture into the ListImage object:
Set imgX = ImageList1.ListImages.Add(,,Picture1.Picture)
If no ListImage objects have been added to a ListImages collection, you can set the ImageHeight 
and ImageWidth properties before adding the first ListImage object. The first ListImage object you 
add to a collection can be any size. However, all subsequent ListImage objects will be forced to be 
the same size as the first ListImage object. Once a ListImage object has been added to the 
collection, the ImageHeight and ImageWidth properties become read-only properties, and any 
image added to the collection must have the same ImageHeight and ImageWidth values. 

You should use the Key property to reference a ListImage object if you expect the value of the Index 
property to change. For example, if you allow users to add and delete their own images to the 
collection, the value of the Index property may change.

When a ListImage object is added to the collection, a reference to the newly created object is 
returned. You can use the reference to set other properties of the ListImage, as follows:
Dim imgX As ListImage
Dim I As Integer

Set imgX = ImageList1.ListImages. _
Add(,,LoadPicture("icons\comm\net01.ico"))
imgX.Key = "net connect" ' Use the new reference to assign Key.





Add Method (ListImages Collection) Example
This example adds several images to a ListImages collection, and then uses the images in a 
TreeView control. To try the example, place ImageList and TreeView controls on a form, and paste 
the code into the form's Declarations section. Run the example to see the TreeView populated with 
pictures from the ImageList.
Private Sub Form_Load()

Dim imgX As ListImage
' Load three icons into the ImageList control's collection.
Set imgX = ImageList1.ListImages. _
Add(,"rocket", LoadPicture("icons\industry\rocket.ico"))
Set imgX = ImageList1.ListImages. _
Add(,"plane",LoadPicture("icons\industry\plane.ico"))
Set imgX = ImageList1.ListImages. _
Add(,"car",LoadPicture("icons\industry\cars.ico"))

' Set TreeView control's ImageList property.
Set TreeView1.ImageList = ImageList1

' Create a Treeview, and use ListImage objects for its images.
Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(,,,"Rocket")
nodX.Image = 1 ' Use the Index property of image 1.
Set nodX = TreeView1.Nodes.Add(,,,"Plane")
nodX.Image = "plane" ' Use the Key property of image 2.
Set nodX = TreeView1.Nodes.Add(,,,"Car")
nodX.Image = "car" ' Use the Key property of image 3.

End Sub



Draw Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthDrawC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthDrawX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbmthDrawA"}   
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthDrawS"}

Draws an image into a destination device context, such as a PictureBox control, after performing a 
graphical operation on the image. Doesn't support named arguments.

Syntax
object.Draw (hDC, x,y, style)
The Draw method syntax has these parts:

Part Description
object Required. An object expression that evaluates to an 

object in the Applies To list.
hDC Required. A value set to the target object's hDC 

property.
x,y Optional. The coordinates used to specify the 

location within the device context where the image 
will be drawn. If you don't specify these, the image is 
drawn at the origin of the device context.

style Optional. Specifies the operation performed on the 
image, as described in Settings.

Settings
The settings for style are:

Constant Value Description
imlNormal 0 (Default) Normal. Draws the image 

with no change.
imlTransparent 1 Transparent. Draws the image using

the MaskColor property to 
determine which color of the image 
will be transparent.

imlSelected 2 Selected. Draws the image dithered 
with the system highlight color.

imlFocus 3 Focus. Draws the image dithered 
and striped with the highlight color 
creating a hatched effect to indicate 
the image has the focus.

Remarks
The hDC property is a handle (a number) that the Windows operating system uses for internal 
reference to an object. You can paint in the internal area of any control that has an hDC property. In 
Visual Basic, these include the Form object, PictureBox control, and Printer object. 

Because an object's hDC can change while an application is running, it is better to specify the hDC 
property rather than an actual value. For example, the following code ensures that the correct hDC 
value is always supplied to the ImageList control:
ImageList1.ListImages(1).Draw Form1.hDC



Draw Method Example
This example loads an image into an ImageList control. When you click the form, the image is drawn 
on the form in four different styles. To try the example, place an ImageList control on a form and 
paste the code into the form's Declarations section. Run the example and click the form.
Private Sub Form_Load()

Dim X As ListImage
'Load one image into the ImageList.
Set X = ImageList1.ListImages. _
Add(, , LoadPicture("bitmaps\assorted\intl_no.bmp"))

End Sub

Private Sub Form_Click()
Dim space, intW As Integer ' Create spacing variables.

' Use the ImageWidth property for spacing.
intW = ImageList1.ImageWidth
space = Form1.Font.Size * 2 ' Use the Font.Size for height spacing.

ScaleMode = vbPoints ' Set ScaleMode to points.
Cls ' Clear the form.

' Draw the image with Normal style.
ImageList1.ListImages(1).Draw Form1.hDC, , space,imlNormal
' Set MaskColor to red, which will become transparent.
ImageList1.MaskColor = vbRed
' Draw the image with red (MaskColor) the transparent color.
ImageList1.ListImages(1).Draw Form1.hDC, intW, space,imlTransparent
' Draw image with the Selected style.
ImageList1.ListImages(1).Draw Form1.hDC, intW * 2,space,imlSelected
' Draw image with Focus style.
ImageList1.ListImages(1).Draw Form1.hDC, intW * 3, space,imlFocus

' Print a caption for the images.
Print _
"Normal              Transparent           Selected         Focus"

End Sub



ExtractIcon Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthExtractIconC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthExtractIconX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbmthExtractIconA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthExtractIconS"}

Creates an icon from a bitmap in a ListImage object of an ImageList control and returns a reference 
to the newly created icon.

Syntax
object.ExtractIcon
The object placeholder represents an object expression that evaluates to an object in the Applies To 
list.

Remarks
You can use the icon created with the ExtractIcon method like any other icon. For example, you can 
use it as a setting for the MouseIcon property, as the following code illustrates:
Set Command1.MouseIcon = ImageList1.ListImages(1).ExtractIcon



ExtractIcon Method Example
This example loads a bitmap into an ImageList control. When the user clicks the form, the 
ExtractIcon method is used to create an icon from the bitmap, and that icon is used as a setting in 
the Form object's MouseIcon property. To try the example, place an ImageList control on a form and
paste the code into the form's Declarations section. Run the example and click the form.
Private Sub Form_Load()

Dim imgX As ListImage
Set imgX = ImageList1.ListImages. _
Add(, , LoadPicture("bitmaps\assorted\balloon.bmp"))

End Sub

Private Sub Form_Click()
Dim picX As Picture
Set picX = ImageList1.ListImages(1).ExtractIcon  ' Make an icon.

With Form1
.MouseIcon =  picX ' Set new icon.
.MousePointer = vbCustom ' Set to custom icon.
End With

End Sub



ImageHeight, ImageWidth Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproImageHeightC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproImageHeightX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproImageHeightA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproImageHeightS"}

· The ImageHeight property returns or sets the height of ListImage objects in an ImageList control.
· The ImageWidth property returns or sets the width of ListImage objects in an ImageList control.

Syntax
object.ImageHeight
object.ImageWidth
The object placeholder represents an object expression that evaluates to an object in the Applies To 
list.

Remarks
Both height and width are measured in pixels. All images in a ListImages collection have the same 
height and width properties.

When an ImageList contains no ListImage objects, you can set both ImageHeight and ImageWidth 
properties. However, once a ListImage object has been added, all subsequent images must be of the
same height and width as the first object. If you try to add an image of a different size, an error is 
returned.



ImageHeight, ImageWidth Properties Example
This example loads an icon into an ImageList control, and uses the image in a ListView control. 
When the user clicks the form, the code uses the ImageHeight property to adjust the height of the 
ListView control to accommodate the ListImage object. To try the example, place ImageList and 
ListView controls on a form and paste the code into the form's Declarations section. Run the example
and click the form.
Private Sub Form_Load()

' Create variables for ImageList and ListView objects.
Dim imgX As ListImage
Dim itmX As ListItem

Form1.ScaleMode = vbPixels ' Make sure ScaleMode is set to pixels.

ListView1.BorderStyle = FixedSingle ' Show border.
' Shorten ListView control so later contrast is more obvious.
ListView1.Height = 50

' Put a large bitmap into the ImageList.
Set imgX = ImageList1.ListImages. _
Add(,, LoadPicture("bitmaps\gauge\vert.bmp"))

ListView1.Icons = ImageList1 ' Set Icons property.

' Add an item to the ListView control.
Set itmX = ListView1.ListItems.Add()
itmX.Icon = 1 ' Set Icon property to ListImage 1 of ImageList.
itmX.Text = "Thermometer" ' Set text of ListView ListItem object.

End Sub

Private Sub Form_Click()
Dim strHW As String

strHW = "Height: " & ImageList1.ImageHeight & _
"   Width: " & ImageList1.ImageWidth
caption = strHW ' Show dimensions.
' Enlarge ListView to accommodate the tallest image.
ListView1.Height = ImageList1.ImageHeight + 50

End Sub



ListImages Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproListImagesC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproListImagesX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproListImagesA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproListImagesS"}

Returns a reference to a collection of ListImage objects in an ImageList control.

Syntax
object.ListImages

The object placeholder represents an object expression that evaluates to an object in the Applies To 
list.

Remarks
You can manipulate ListImage objects using standard collection methods (for example, the Add and 
Clear methods). Each member of the collection can be accessed by its index or unique key. These 
are stored in the Index and Key properties, respectively, when ListImage is added to a collection.



ListImages Property Example
This example adds three ListImage objects to a ListImages collection and uses them in a ListView 
control. The code refers to the ListImage objects using both their Key and Item properties. To try the 
example, place ImageList and ListView controls on a form and paste the code into the form's 
Declarations section. Run the example. 
Private Sub Form_Load()

Dim imgX As ListImage
' Add images to ListImages collection.
Set imgX = ImageList1. _
ListImages.Add(,"rocket",LoadPicture("icons\industry\rocket.ico"))
Set imgX = ImageList1. _
ListImages.Add(,"jet",LoadPicture("icons\industry\plane.ico"))
Set imgX = ImageList1. _
ListImages.Add(,"car",LoadPicture("icons\industry\cars.ico"))

ListView1.Icons = ImageList1 ' Set Icons property.

' Add Item objects to the ListView control.
Dim itmX as ListItem
Set itmX = ListView1.ListItems.Add()
' Reference by index.
itmX.Icon = 1
itmX.Text = "Rocket" ' Set Text string.
Set itmX = ListView1.ListItems.Add()
' Reference by key ("jet").
itmX.Icon = "jet"
itmX.Text = "Jet" ' Set Text string.
Set itmX = ListView1.ListItems.Add()
itmX.Icon = "car"
itmX.Text = "Car" ' Set Text string.

End Sub



MaskColor Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctQBColor;vafctRGB;vbproBooksOnlineJumpTopic;vbproMaskColorC"}                 
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproMaskColorX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproMaskColorA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproMaskColorS"}

Returns or sets the color used to create masks for an ImageList control.

Syntax
object.MaskColor [ = color]
The MaskColor property syntax has these parts:

Part Description
object Required. An object expression that evaluates to an 

object in the Applies To list.
color A value or constant that determines the color used to

create masks. You can specify colors using either 
Visual Basic intrinsic constants, the QBColor 
function, or the RGB function.

Remarks
Every image in a ListImages collection has a corresponding mask associated with it. The mask is a 
monochrome image derived from the image itself, automatically generated using the MaskColor 
property as the specific color of the mask. This mask is not used directly, but is applied to the original 
bitmap in graphical operations such as the Overlay and Draw methods. For example, the MaskColor
property determines which color of an image will be transparent in the Overlay method.



MaskColor Property Example
This example loads several bitmaps into an ImageList control. As you click the form, one ListImage 
object is overlaid on one of the other ListImage objects. To try the example, place an ImageList 
control and a Picture control on a form and paste the code into the form's Declarations section. Run 
the program and click the form.
Private Sub Form_Load()

Dim imgX As ListImage

' Load bitmaps.
Set imgX = ImageList1.ListImages. _
Add(, "No", LoadPicture("bitmaps\assorted\Intl_No.bmp"))
Set imgX = ImageList1.ListImages. _
Add(, , LoadPicture("bitmaps\assorted\smokes.bmp"))
Set imgX = ImageList1.ListImages. _
Add(, , LoadPicture("bitmaps\assorted\beany.bmp"))

ScaleMode = vbPixels
' Set MaskColor property.
ImageList1.MaskColor = vbGreen
' Set the form's BackColor to white.
Form1.BackColor = vbWhite

End Sub

Private Sub Form_Click()
Static intCount As Integer ' Static variable to count images.

' Reset variable to 2 if it is over the ListImages.Count value.
If intCount > ImageList1.ListImages.Count Or intCount < 1 Then

intCount = 2 ' Reset to second image
End If

' Overlay ListImage(1) over ListImages 2-3.
Picture1.Picture = ImageList1.Overlay(intCount, 1)
' Increment count.
intCount = intCount + 1

' Create variable to hold ImageList.ImageWidth value.
Dim intW
intW = ImageList1.ImageWidth

' Draw images onto the form for reference. Use the ImageWidth
' value to space the images.
ImageList1.ListImages(1).Draw Form1.hDC, 0, 0, imlNormal
ImageList1.ListImages(2).Draw Form1.hDC, 0, intW, imlNormal
ImageList1.ListImages(3).Draw Form1.hDC, 0, intW * 2, imlNormal

End Sub



UseMaskColor Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproUseMaskColorPropertyC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproUseMaskColorPropertyX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproUseMaskColorPropertyA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproUseMaskColorPropertyS"}

Returns or sets a value which determines whether the ImageList control will use the MaskColor 
property.

Syntax
object.UseMaskColor [= boolean]
Part Description
object Required. An object expression that evaluates to an 

object in the Applies To list.
boolean A Boolean expression specifying whether the color 

specified in the MaskColor property is to be used for
the control.



Overlay Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthOverlayC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthOverlayX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbmthOverlayA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthOverlayS"}

Draws one image from a ListImages collection over another, and returns the result. Doesn't support 
named arguments.

Syntax
object.Overlay (index1, index2)
The Overlay method syntax has these parts:

Part Description
object Required. An object expression that evaluates to an 

object in the Applies To list.
index1 Required. An integer (Index property) or unique 

string (Key property) that specifies the image to be 
overlaid. 

index2 Required. An integer (Index property) or unique 
string (Key property) that specifies the image to be 
drawn over the object specified in index1. The color 
of the image that matches the MaskColor property is
made transparent. If no color matches, the image is 
drawn opaquely over the other image.

Remarks
Use the Overlay method in conjunction with the MaskColor property to create a single image from 
two disparate images. The Overlay method imposes one bitmap over another to create a third, 
composite image. The MaskColor property determines which color of the overlaying image is 
transparent. 

The index can be either an index or a key. For example, to overlay the first picture in the collection 
with the second:
Set Picture1.Picture = ImageList1.Overlay(1,2) ' Reference by Index.

'Or reference by Key property.
Set Picture1.Picture = ImageList1.Overlay("First", "Second")



Overlay Method Example
This example loads five ListImage objects into an ImageList control and displays any two images in 
two PictureBox controls. For each PictureBox, select an image to display from one of the two 
ComboBox controls. When you click the form, the code uses the Overlay method to create a third 
image that is displayed in a third PictureBox control. To try the example, place an ImageList control, 
two ComboBox controls, and three PictureBox controls on a form and paste the code into the form's
Declarations section. Run the example and click the form.

Private Sub Form_Load()
Dim X As ListImage
' Add 5 images to a ListImages collection.
Set X = ImageList1.ListImages. _
 Add(, , LoadPicture("icons\elements\moon05.ico"))
Set X = ImageList1.ListImages. _
 Add(, , LoadPicture("icons\elements\snow.ico"))
Set X = ImageList1.ListImages. _
 Add(, , LoadPicture("icons\writing\erase02.ico"))
Set X = ImageList1.ListImages. _
 Add(, , LoadPicture("icons\writing\note06.ico"))
Set X = ImageList1.ListImages. _
 Add(, , LoadPicture("icons\flags\flgfran.ico"))

With combo1 ' Populate the first ComboBox.
.AddItem "Moon"
.AddItem "Snowflake"
.AddItem "Pencil"
.AddItem "Note"
.AddItem "Flag"
.ListIndex = 0

End With

With combo2 ' Populate the second ComboBox.
.AddItem "Moon"
.AddItem "Snowflake"
.AddItem "Pencil"
.AddItem "Note"
.AddItem "Flag"
.ListIndex = 2

End With

Picture1.BackColor = vbWhite ' Make BackColor white.
Picture2.BackColor = vbWhite
Picture3.BackColor = vbWhite

End Sub

Private Sub Form_Click()
' Overlay the two images, and display in PictureBox3.
Set Picture3.Picture = ImageList1. _
 Overlay(combo1.ListIndex + 1, combo2.ListIndex + 1)

End Sub

Private Sub combo1_Click()
' Change PictureBox to reflect ComboBox selection.
Set Picture1.Picture = ImageList1. _
 ListImages(combo1.ListIndex + 1).ExtractIcon



End Sub

Private Sub combo2_Click()
' Change PictureBox to reflect ComboBox selection.
Set Picture2.Picture = ImageList1. _
 ListImages(combo2.ListIndex + 1).ExtractIcon

End Sub



ImageList Control Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstImageListC;vbproBooksOnlineJumpTopic"}

Constant Value Description
imlNormal 0 Image is drawn with no change.
imlTransparent 1 Image is drawn transparently.
imlSelected 2 Image is drawn selected.
imlFocus 3 Image is drawn with focus.



hImageList Property (ImageList Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbprohImageListPropertyC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbprohImageListPropertyX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbprohImageListPropertyA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbprohImageListPropertyS"}

Returns a handle to an ImageList control.

Syntax
object.hImageList
The object placeholder represents an object expression that evaluates to an ImageList control.

Remarks
The Microsoft Windows operating environment identifies an ImageList control in an application by 
assigning it a handle, or hImageList. The hImageList property is used with Windows API calls. Many
ImageList-related API functions require the hImageList of the active window as an argument.

Note      Because the value of this property can change while a program is running, never store the 
hImageList value in a variable.



ListView Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjListViewC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbobjListViewX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Properties":"vbobjListviewP"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Methods":"vbobjListViewM"}                  {ewc HLP95EN.DLL,DYNALINK,"Events":"vbobjListViewE"}    
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbobjListViewS"}

The ListView control displays items using one of four different views. You can arrange items into 
columns with or without column headings as well as display accompanying icons and text.

Syntax
ListView

Remarks
With a ListView control, you can organize list entries, called ListItem objects, into one of four 
different views:

· Large (standard) Icons
· Small Icons
· List
· Report

The View property determines which view the control uses to display the items in the list. You can 
also control whether the labels associated with items in the list wrap to more than one line using the 
LabelWrap property. In addition, you can manage how items in the list are sorted and how selected 
items appear.

The ListView control contains ListItem and ColumnHeader objects. A ListItem object defines the 
various characteristics of items in the ListView control, such as:

· A brief description of the item.
· Icons that may appear with the item, supplied by an ImageList control.
· Additional pieces of text, called subitems, associated with a ListItem object that you can display in 

Report view.

You can choose to display column headings in the ListView control using the HideColumnHeaders 
property. They can be added at both design and run time. At design time, you can use the Column 
Headers tab of the ListView Control Properties dialog box. At run time, use the Add method to add a 
ColumnHeader object to the ColumnHeaders collection.

Distribution Note      The ListView control is part of a group of ActiveX controls that are found in the 
COMCTL32.OCX file. To use the ListView control in your application, you must add the 
COMCTL32.OCX file to the project. When distributing your application, install the COMCTL32.OCX 
file in the user's Microsoft Windows System or System32 directory. For more information on how to 
add an ActiveX control to a Visual Basic project, see the Visual Basic Programmer's Guide.



ColumnHeader Object, ColumnHeaders Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjColumnHeaderC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbobjColumnHeaderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Properties":"vamthItem;vbobjColumnHeaderP"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Methods":"vamthClear;vamthRemove;vbobjColumnHeaderM"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Events":"vbobjColumnHeaderE"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjColumnHeaderS"}

· A ColumnHeader object is an item in a ListView control that contains heading text.
· A ColumnHeaders collection contains one or more ColumnHeader objects.

Syntax
listview.ColumnHeaders
listview.ColumnHeaders(index)
The syntax lines above refer to the collection and to individual elements in the collection, respectively,
according to the standard collection syntax.

The ColumnHeader object, ColumnHeaders collection syntax has these parts:

Part Description
listview An object expression that evaluates to a ListView 

control.
index Either an integer or string that uniquely identifies a 

member of an object collection. An integer would be 
the value of the Index property; a string would be the
value of the Key property.

Remarks
You can view ColumnHeader objects in Report view only.

You can add ColumnHeader objects to a ListView control at both design time and run time. 

With a ColumnHeader object, a user can:

· Click it to trigger the ColumnClick event and sort the items based on that data item.
· Grab the object's right border and drag it to adjust the width of the column.
· Hide ColumnHeader objects in Report view.

There is always one column in the ListView control, which is Column 1. This column contains the 
actual ListItem objects; not their subitems. The second column (Column 2) contains subitems. 
Therefore, you always have one more ColumnHeader object than subitems and the ListItem object's
SubItems property is a 1-based array of size ColumnHeaders.Count - 1.
The number of ColumnHeader objects determines the number of subitems each ListItem object in 
the control can have. When you delete a ColumnHeader object, all of the subitems associated with 
the column are also deleted, and each ListItem object's subitem array shifts to update the indices of 
the ColumnHeader, causing the remaining column headers' SubItemIndex properties to change.



Add Method (ColumnHeaders Collection)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthAddColumnHeadersC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthAddColumnHeadersX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbmthAddColumnHeadersA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthAddColumnHeadersS"}

Adds a ColumnHeader object to a ColumnHeaders collection in a ListView control. Doesn't support
named arguments.

Syntax
object.Add(index, key, text, width, alignment)
The Add method syntax has these parts:

Part Description
object Required. An object expression that evaluates to a 

ColumnHeaders collection.
index Optional. An integer that uniquely identifies a 

member of an object collection.
key Optional. A unique string expression that can be 

used to access a member of the collection.
text Optional. A string that appears in the ColumnHeader

object.
width Optional. A numeric expression specifying the width 

of the object using the scale units of the control's 
container.

alignment Optional. An integer that determines the alignment of
text in the ColumnHeader object. For settings, 
choose the Alignment property from the See Also 
list.

Remarks
The Add method returns a reference to the newly inserted ColumnHeader object.

Use the index argument to insert a column header in a specific position in the ColumnHeaders 
collection.

When the members of a ColumnHeaders collection can change dynamically, you may want to 
reference them using the Key property, because the Index property for any ColumnHeader object 
may be changing.



ListItem Object, ListItems Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjListItemC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbobjListItemX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Properties":"vamthItem;vbobjListItemP"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Methods":"vamthClear;vamthRemove;vbobjListItemM"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Events":"vbobjListItemE"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbobjListItemS"}

· A ListItem consists of text, the index of an associated icon (ListImage object), and, in Report view,
an array of strings representing subitems.

· A ListItems collection contains one or more ListItem objects. 

Syntax
listview.ListItems
listview.ListItems(index)
The syntax lines above refer to the collection and to individual elements in the collection, respectively,
according to the standard collection syntax.

The ListItem object, ListItems collection syntax has these parts:

Part Description
listview An object expression that evaluates to a ListView 

control.
index Either an integer or string that uniquely identifies a 

member of a ListItem collection. The integer is the 
value of the Index property; the string is the value of 
the Key property.

Remarks
ListItem objects can contain both text and pictures. However, to use pictures, you must reference an 
ImageList control using the Icons and SmallIcons properties.

You can also change the image by using the Icon or SmallIcon property.

The following example shows how to add ColumnHeaders and several ListItem objects with 
subitems to a ListView control.
Private Sub Form_Load()

Dim clmX As ColumnHeader
Dim itmX As ListItem
Dim i As Integer

For i = 1 To 3
Set clmX = ListView1.ColumnHeaders.Add()
clmX.Text = "Col" & i

Next i

' Add 10 items to list, all with the same icon

For i = 1 To 10
Set itmX = ListView1.ListItems.Add()
itmX.SmallIcon = 1
itmX.Text = "ListItem " & i
itmX.SubItems(1) = "Subitem 1"
itmX.SubItems(2) = "Subitem 2"

Next i
End Sub





Add Method (ListItems Collection)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthAddListItemsC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthAddListItemsX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbmthAddListItemsA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthAddListItemsS"}

Adds a ListItem object to a ListItems collection in a ListView control and returns a reference to the 
newly created object. Doesn't support named arguments.

Syntax
object.Add(index, key, text, icon, smallIcon)
The Add method syntax has these parts:

Part Description
object Required. An object expression that evaluates to a 

ListItems collection.
index Optional. An integer specifying the position where 

you want to insert the ListItem. If no index is 
specified, the ListItem is added to the end of the 
ListItems collection.

key Optional. A unique string expression that can be 
used to access a member of the collection.

text Optional. A string that is associated with the ListItem
object control.

icon Optional. An integer that sets the icon to be 
displayed from an ImageList control, when the 
ListView control is set to Icon view.

smallIcon Optional. An integer that sets the icon to be 
displayed from an ImageList control, when the 
ListView control is set to SmallIcon view.

Remarks
Before setting either the Icons or SmallIcons properties, you must first initialize them. You can do 
this at design time by specifying an ImageList object with the General tab of the ListView Control 
Properties dialog box, or at run time with the following code:
ListView1.Icons = ImageList1   'Assuming the Imagelist is ImageList1.
ListView1.SmallIcons = ImageList2 
If the list is not currently sorted, a ListItem object can be inserted in any position by using the index 
argument. If the list is sorted, the index argument is ignored and the ListItem object is inserted in the 
appropriate position based upon the sort order.

If index is not supplied, the ListItem object is added with an index that is equal to the number of 
ListItem objects in the collection + 1.

Use the Key property to reference a member of the ListItems collection if you expect the value of an 
object's Index property to change, such as by dynamically adding objects to or removing objects from
the collection.



Add Method (ListItems, ColumnHeaders), ListItems Property, 
SubItems Property Example
The following example adds several ListItem objects with images from an ImageList control to a 
ListView control. To try this example, place a ListView control and two ImageList controls on a form 
and paste the code into the Declarations section. 

Note      The example will not run unless you add a reference to the Microsoft DAO 3.0 Object Library 
by using the References command on the Tools menu. Run the example.
Private Sub Form_Load()

' Create an object variable for the ColumnHeader object.
Dim clmX As ColumnHeader
' Add ColumnHeaders. The width of the columns is the width 
' of the control divided by the number of ColumnHeader objects.
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Author", ListView1.Width / 3)
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Author ID", ListView1.Width / 3, lvwColumnCenter)
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Birthdate", ListView1.Width / 3)

ListView1.View = lvwReport ' Set View property to Report.

' Load one image into an ImageList control.
Dim imgX As ListImage
Set imgX = ImageList1.ListImages.Add _
(,,LoadPicture("icons\Writing\Note06.ico"))
Set imgX = ImageList2.ListImages.Add _
(,,LoadPicture("bitmaps\assorted\w.bmp"))
' Set Icons property to ImageList1.
ListView1.Icons = ImageList1
ListView1.SmallIcons = ImageList2

' Create object variables for the Data Access objects.
Dim myDb As Database, myRs As Recordset
' Set the Database to the BIBLIO.MDB database.
Set myDb = DBEngine.Workspaces(0).OpenDatabase("BIBLIO.MDB")
' Set the recordset to the "Authors" table.
Set myRs = myDb.OpenRecordset("Authors", dbOpenDynaset)

' Create a variable to add ListItem objects.
Dim itmX As ListItem

' While the record is not the last record, add a ListItem object.
' Use the author field for the ListItem object's text.
' Use the AuthorID field for the ListItem object's SubItem(1).
' Use the "Year of Birth" field for the ListItem object's SubItem(2).

While Not myRs.EOF
Set itmX = ListView1.ListItems. _
Add(, , CStr(myRs!Author),1) ' Author.

' If the AuthorID field is not null, then set SubItem 1 to it.
If Not IsNull(myRs!Au_id) Then

itmX.SubItems(1) = CStr(myRs!Au_id)   ' Author ID.
End If



' If the birth field is not Null, set the SubItem 2 to it.
If Not IsNull(myRs![Year Born]) Then

itmX.SubItems(2) = myRs![Year Born]
End If
myRs.MoveNext ' Move to next record.

Wend
End Sub



Alignment Property (ColumnHeader Object)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproAlignmentCHC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproAlignmentCHX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproAlignmentCHA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproAlignmentCHS"}

Returns or sets the alignment of text in a ColumnHeader object. 

Syntax
object.Alignment [= integer]
The Alignment Property syntax has these parts:

Part Description
object An object expression that evaluates to a 

ColumnHeader object.
integer An integer that determines the alignment, as 

described in Settings.

Settings
The settings for integer are:

Constant Value Description
lvwColumnLeft 0 (Default) Left. Text is aligned left.
lvwColumnRight 1 Right. Text is aligned right.
lvwColumnCenter 2 Center. Text is centered.



Arrange Property (ListView Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproArrangeC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproArrangeX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproArrangeA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproArrangeS"}

Returns or sets a value that determines how the icons in a ListView control's Icon or SmallIcon view 
are arranged.

Syntax
object.Arrange [= value]
The Arrange property syntax has these parts:

Part Description
object An object expression that evaluates to a ListView 

control.
value An integer or constant that determines how the icons

or small icons are arranged, as described in 
Settings.

Settings
The settings for value are:

Constant Value Description
lvwNoArrange 0 (Default) None.
lvwAutoLeft 1 Left. Items are aligned 

automatically along the left side of 
the control.

lvwAutoTop 2 Top. Items are aligned 
automatically along the top of the 
control.



Arrange Property Example
This example adds several ListItem objects and subitems to a ListView control. When you click on 
an OptionButton control, the Arrange property is set with the Index value of the OptionButton. To 
try the example, place a control array of three OptionButton controls, a ListView control, and two 
ImageList controls on a form and paste the code into the form's Declarations section. Run the 
example and click on an OptionButton to change the Arrange property.
Private Sub Option1_Click(Index as Integer)

' Set Arrange property to Option1.Index.
ListView1.Arrange = Index

End Sub

Private Sub Form_Load()
' Label OptionButton controls with Arrange choices.

Option1(0).Caption = "No Arrange"
Option1(1).Caption = "Align Auto Left"
Option1(2).Caption = "Align Auto Top"

' Declare variables for creating ListView and ImageList objects.
Dim i As Integer
Dim itmX As ListItem ' Object variable for ListItems.
Dim imgX As ListImage ' Object variable for ListImages.

' Add a ListImage object to an ImageList control.
Set imgX = ImageList1.ListImages. _
Add(,,LoadPicture("icons\mail\mail01a.ico"))

ListView1.Icons = ImageList1 ' Associate an ImageList control.

' Add ten ListItem objects, each with an Icon.
For i = 1 To 10

Set itmX = ListView1.ListItems.Add()
itmX.Icon = 1 ' Icon.
itmX.Text = "ListItem " & i

Next i
End Sub



ColumnClick Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtColumnClickC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbevtColumnClickX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbevtColumnClickA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtColumnClickS"}

Occurs when a ColumnHeader object in a ListView control is clicked. Only available in Report view.

Syntax
Private Sub object_ColumnClick(ByVal columnheader As ColumnHeader)
The ColumnClick event syntax has these parts:

Part Description
object An object expression that evaluates to a ListView 

control.
columnheader A reference to the ColumnHeader object that was 

clicked.

Remarks
The Sorted, SortKey, and SortOrder properties are commonly used in code to sort the ListItem 
objects in the clicked column.



ColumnHeaders Property (ListView Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproColumnHeadersC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproColumnHeadersX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproColumnHeadersA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproColumnHeadersS"}

Returns a reference to a collection of ColumnHeader objects.

Syntax
object.ColumnHeaders
The object placeholder represents an object expression that evaluates to a ListView control.

Remarks
You can manipulate ColumnHeader objects using standard collection methods (for example, the 
Remove method). Each ColumnHeader in the collection can be accessed either by its index or by a 
unique key, stored in the Key property.



Ghosted Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproGhostedC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproGhostedX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproGhostedA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproGhostedS"}

Returns or sets a value that determines whether a ListItem object in a ListView control is unavailable
(it appears dimmed).

Syntax
object.Ghosted [= boolean]
The Ghosted property syntax has these parts:

Part Description
object An object expression that evaluates to a ListItem 

object.
boolean A Boolean expression specifying if the icon or small 

icon is ghosted, as described in Settings.

Settings
The settings for boolean are:

Setting Description
True The ListItem object is unavailable to the user.
False (Default) The ListItem is available.

Remarks
The Ghosted property is typically used to show when a ListItem is cut, or disabled for some reason.

When a ghosted ListItem is selected, the label is highlighted but its image is not.



Ghosted, MultiSelect Properties Example
This example populates a ListView control with the contents of the Authors table from the 
BIBLIO.MDB database, and lets you use OptionButton controls to set MultiSelect property options. 
You can select any item, or hold down the SHIFT Key and select multiple items. Clicking on the 
CommandButton sets the Ghosted property of the selected items to True. To try the example, place 
a control array of two OptionButton controls, a ListView control, an ImageList control, and a 
CommandButton control on a form and paste the code into the form's Declarations section. 

Note      The example will not run unless you add a reference to the Microsoft DAO 3.0 Object Library 
by using the References command on the Tools menu. Run the example, select a MultiSelect option 
by clicking an OptionButton, click on items to select them and click the CommandButton to ghost 
them.
Private Sub Command1_Click()

Dim x As Object
Dim i As Integer
' Ghost selected ListItem.

If ListView1.SelectedItem Is Nothing Then Exit Sub
For i = 1 To ListView1.ListItems.Count

If ListView1.ListItems(i).Selected = True Then
ListView1.ListItems(i).Ghosted = True

End If
Next i

End Sub

Private Sub Form_Load()
' Create an object variable for the ColumnHeader object.
Dim clmX As ColumnHeader
' Add ColumnHeaders. The width of the columns is the width
' of the control divided by the number of ColumnHeader objects.
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Company", ListView1.Width / 3)
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Address", ListView1.Width / 3)
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Phone", ListView1.Width / 3)

' Label OptionButton controls with MultiSelect options.
Option1(0).Caption = "No MultiSelect"
Option1(1).Caption = "MultiSelect"
ListView1.MultiSelect = 1 ' Set MultiSelect to True

ListView1.BorderStyle = ccFixedSingle ' Set BorderStyle property.
ListView1.View = lvwReport ' Set View property to Report.
' Add one image to ImageList control.
Dim imgX As ListImage
Set imgX = ImageList1.ListImages. _
Add(, , LoadPicture("icons\mail\mail01a.ico"))
ListView1.Icons = ImageList1

' Create object variables for the Data Access objects.
Dim myDb As Database, myRs As Recordset
' Set the Database to the BIBLIO.MDB database.
Set myDb = DBEngine.Workspaces(0).OpenDatabase("BIBLIO.MDB")
' Set the recordset to the Publishers table.
Set myRs = myDb.OpenRecordset("Publishers", dbOpenDynaset)



' Create a variable to add ListItem objects.
Dim itmX As ListItem

' While the record is not the last record, add a ListItem object.
' Use the Name field for the ListItem object's text.
' Use the Address field for the ListItem object's SubItem(1).
' Use the Phone field for the ListItem object's SubItem(2).

While Not myRs.EOF
Set itmX = ListView1.ListItems.Add(, , CStr(myRs!Name))
itmX.Icon = 1  ' Set icon to the ImageList icon.

' If the Address field is not Null, set SubItem 1 to the field.
If Not IsNull(myRs!Address) Then

itmX.SubItems(1) = CStr(myRs!Address)  ' Address field.
End If

' If the Phone field is not Null, set SubItem 2 to the field.
If Not IsNull(myRs!Telephone) Then

itmX.SubItems(2) = myRs!Telephone  ' Phone field.
End If

myRs.MoveNext  ' Move to next record.
Wend

ListView1.View = lvwIcon  ' Show Icons view.
Command1.Caption = "Cut"  ' Set caption of the CommandButton.
' Add a caption to the form.
Me.Caption = "Select any item(s) and click 'Cut'."

End Sub

Private Sub Option1_Click(Index as Integer)
ListView1.MultiSelect = Index

End Sub



HideColumnHeaders Property (ListView Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproHideColumnHeadersC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproHideColumnHeadersX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproHideColumnHeadersA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproHideColumnHeadersS"}

Returns or sets whether ColumnHeader objects in a ListView control are hidden in Report view.

Syntax
object.HideColumnHeaders [= boolean]
The HideColumnHeaders property syntax has these parts:

Part Description
object An object expression that evaluates to a ListView 

control.
Boolean A Boolean expression that specifies if the column 

headers are visible in Report view, as described in 
Settings.

Settings
The settings for boolean are:

Setting Description
True The column headers are not visible.
False (Default) The column headers are visible. 

Remarks
The ListItem objects and any related subitems remain visible even if the HideColumnHeaders 
property is set to True.



HideColumnHeaders Property Example
This example adds several ListItem objects with subitems to a ListView control. When you click on 
the CommandButton, the HideColumnHeaders property toggles between True (-1) and False (0). 
To try the example, place ListView and CommandButton controls on a form and paste the code into 
the form's Declarations section. Run the example and click the CommandButton to toggle the 
HideColumnHeaders property.
Private Sub Command1_Click()

' Toggle HideColumnHeaders property off and on.
ListView1.HideColumnHeaders = Abs(ListView1.HideColumnHeaders) - 1

End Sub

Private Sub Form_Load()
Dim clmX As ColumnHeader
Dim itmX As ListItem
Dim i As Integer
Command1.Caption = "HideColumnHeaders"

' Add 3 ColumnHeader objects to the control.
For i = 1 To 3

Set clmX = ListView1.ColumnHeaders.Add()
clmX.Text = "Col" & i

Next I

' Set View to Report.
ListView1.View = lvwReport

' Add 10 ListItems to the control.
For i = 1 To 10

Set itmX = ListView1.ListItems.Add()
itmX.Text = "ListItem " & i
itmX.SubItems(1) = "Subitem 1"
itmX.SubItems(2) = "Subitem 2"

Next i
End Sub



Icon, SmallIcon Properties (ListItem Object)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproSmallIconC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproSmallIconsX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproSmallIconA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproSmallIcons"}

Returns or sets the index or key value of an icon or small icon associated with a ListItem object in an 
ImageList control. 

Syntax
object.Icon [= index]
object.SmallIcon [= index]
The Icon, SmallIcon properties syntax has the following parts:

Part Description
object An object expression that evaluates to a ListItem 

object.
index An integer or unique string that identifies an icon or 

small icon in an associated ImageList control. The 
integer is the value of the ListItem object's Index 
property; the string is the value of the Key property.

Remarks
Before you can use an icon in a ListItem object, you must associate an ImageList control with the 
ListView control containing the object. See the Icons, SmallIcons Properties (ListView Control) for 
more information. The example below shows the proper syntax:
ListView1.ListItems(1).SmallIcons=1
The images will appear when the ListView control is in SmallIcons view.



Icons, SmallIcons Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproSmallIconsC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproSmallIconsX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproSmallIconsA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproSmallIconsS"}

Returns or sets the ImageList controls associated with the Icon and SmallIcon views in a ListView 
control.

Syntax
object.Icons [= imagelist]
object.SmallIcons [= imagelist]
The Icons, SmallIcons properties syntax has the following parts:

Part Description
object An object expression that evaluates to the ListView 

control.
imagelist An object expression that evaluates to an ImageList 

control.

Remarks
To associate an ImageList control with a ListView control at run time, set these properties to the 
desired ImageList control. 

Each ListItem object in the ListView control also has Icon and SmallIcon properties, which index 
the ListImage objects and determine which image is displayed.

Once you associate an ImageList with the ListView control, you can use the value of either the 
Index or Key property to refer to a ListImage object in a procedure.



Icon, SmallIcon, Icons, SmallIcons, View Properties Example
This example populates a ListView control with the contents of the Publishers table in the 
BIBLIO.MDB database. Four OptionButton controls are labeled with View property choices. You 
must place two ImageList controls on the form, one to contain images for the Icon property, and a 
second to contain images for the SmallIcon property of each ListItem object. To try the example, 
place a ListView, a control array of four OptionButton controls, and two ImageList controls on a 
form and paste the code into the form's Declarations section.

Note      The example will not run unless you add a reference to the Microsoft DAO 3.0 Object Library 
by using the References command on the Tools menu. Run the example and click on the ComboBox
control to switch views. 
Private Sub Option1_Click(Index as Integer)

' Set the ListView control's View property to the
' Index of Option1
ListView1.View = Index

End Sub

Private Sub Form_Load()
' Create an object variable for the ColumnHeader object.
Dim clmX As ColumnHeader
' Add ColumnHeaders. The width of the columns is the width
' of the control divided by the number of ColumnHeader objects.
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Company", ListView1.Width / 3)
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Address", ListView1.Width / 3)
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Phone", ListView1.Width / 3)

ListView1.BorderStyle = ccFixedSingle ' Set BorderStyle property.
ListView1.View = lvwReport ' Set View property to Report.

' Add one image to ImageList1--the Icons ImageList.
Dim imgX As ListImage
Set imgX = ImageList1.ListImages. _
Add(, , LoadPicture("icons\mail\mail01a.ico"))
' Add an image to ImageList2--the SmallIcons ImageList.
Set imgX = ImageList2.ListImages. _
Add(, , LoadPicture("bitmaps\assorted\w.bmp"))

' To use ImageList controls with the ListView control, you must
' associate a particular ImageList control with the Icons and
' SmallIcons properties.
ListView1.Icons = ImageList1
ListView1.SmallIcons = ImageList2
' Label OptionButton controls with View options.

Option1(0).Caption = "Icon"
Option1(1).Caption = "SmallIcon"
Option1(2).Caption = "List"
Option1(3).Caption = "Report"
ListView1.View = lvwIcon ' Set to Icon view

' Create object variables for the Data Access objects.
Dim myDb As Database, myRs As Recordset
' Set the Database to the BIBLIO.MDB database.



Set myDb = DBEngine.Workspaces(0).OpenDatabase("BIBLIO.MDB")
' Set the recordset to the Publishers table.
Set myRs = myDb.OpenRecordset("Publishers", dbOpenDynaset)

' Create a variable to add ListItem objects.
Dim itmX As ListItem

' While the record is not the last record, add a ListItem object.
' Use the Name field for the ListItem object's text.
' Use the Address field for the ListItem object's SubItem(1)
' Use the Phone field for the ListItem object's SubItem(2)

While Not myRs.EOF

Set itmX = ListView1.ListItems.Add(, , CStr(myRs!Name))
itmX.Icon = 1 ' Set an icon from ImageList1.
itmX.SmallIcon = 1 ' Set an icon from ImageList2.

' If the Address field is not Null, set SubItem 1 to the field.
If Not IsNull(myRs!Address) Then

itmX.SubItems(1) = CStr(myRs!Address) ' Address field.
End If

' If the Phone field is not Null, set SubItem 2 to the field.
If Not IsNull(myRs!Telephone) Then

itmX.SubItems(2) = myRs!Telephone  ' Phone field.
End If

myRs.MoveNext  ' Move to next record.
Wend

End Sub



ListItems Property (ListView Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproListItemsC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproListItemsX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproListItemsA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproListItemsS"}

Returns a reference to a collection of ListItem objects in a ListView control.

Syntax
object.ListItems
The object placeholder represents an object expression that evaluates to a ListView control.

Remarks
ListItem obects can be manipulated using the standard collection methods. Each ListItem in the 
collection can be accessed by its unique key, which you create and store in the Key property.

You can also retrieve ListItem objects by their display position using the Index property.



LabelWrap Property (ListView Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproLabelWrapC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproLabelWrapX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproLabelWrapA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproLabelWrapS"}

Returns or sets a value that determines whether or not labels are wrapped when a ListView control is
in Icon view.

Syntax
object.LabelWrap [= boolean]
The LabelWrap property syntax has these parts:

Part Description
object An object expression that evaluates to a ListView 

control.
boolean A Boolean expression specifying if the labels wrap, 

as described in Settings.

Settings
The settings for boolean are:

Setting Description
True (Default) The labels wrap.
False The labels don't wrap.

Remarks
The length of the label is determined by setting the icon spacing in the Control Panel, Desktop option,
in Windows NT. In Windows 95, use the Appearance tab in the Display control panel.



MultiSelect Property (ListView Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproMultiSelectListViewC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproMultiSelectListViewX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproMultiSelectListViewA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproMultiSelectListViewS"}

Returns or sets a value indicating whether a user can select multiple ListItems in the ListView 
control.

Syntax
object.MultiSelect [= boolean]
The MultiSelect property syntax has these parts:

Part Description
object An object expression that evaluates to a ListView 

control.
boolean A value specifying the type of selection, as described

in Settings.

Settings
The settings for boolean are:

Constant Description
False (Default) Selecting multiple ListItems isn't allowed.
True Multiple selection. Pressing SHIFT and clicking the 

mouse or pressing SHIFT and one of the arrow keys 
(UP ARROW, DOWN ARROW, LEFT ARROW, and 
RIGHT ARROW) extends the selection from the 
previously selected ListItem to the current ListItem. 
Pressing CTRL and clicking the mouse selects or 
deselects a ListItem in the list.



SortKey Property (ListView Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproSortKeyC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproSortKeyX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproSortKeyA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproSortKeyS"}

Returns or sets a value that determines how the ListItem objects in a ListView control are sorted.

Syntax
object.SortKey [= integer]
The SortKey property syntax has these parts:

Part Description
object An object expression that evaluates to a ListView 

control.
integer An integer specifying the sort key, as described in 

Settings.

Settings
The settings for integer are:

Setting Description
0 Sort using the ListItem object's Text property.
> 1 Sort using the subitem whose collection index is 

specified here.

Remarks:
The Sorted property must be set to True before the change takes place.

It is common to sort a list when the column header is clicked. For this reason, the SortKey property is
commonly included in the ColumnClick event to sort the list using the clicked column, as determined 
by the sort key, and demonstrated in the following example:
Private Sub ListView1_ColumnClick (ByVal ColumnHeader as ColumnHeader)

ListView1.SortKey=ColumnHeader.Index-1
End Sub



SortOrder Property (ListView Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproSortOrderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproSortOrderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproSortOrderA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproSortOrderS"}

Returns or sets a value that determines whether ListItem objects in a ListView control are sorted in 
ascending or descending order.

Syntax
object.SortOrder [= integer]
The SortOrder property syntax has these parts:

Part Description
object An object expression that evaluates to a ListView 

control.
integer An integer specifying the type of sort order, as 

described in Settings.

Settings
The settings for integer are:

Constant Value Description
lvwAscending 0 (Default) Ascending order. Sorts 

from the beginning of the 
alphabet (A-Z) or the earliest 
date. Numbers are sorted as 
strings, with the first digit 
determining the initial position in 
the sort, and subsequent digits 
determining sub-sorting.

lvwDescending 1 Descending order. Sorts from the
end of the alphabet (Z-A) or the 
latest date. Numbers are sorted 
as strings, with the first digit 
determining the initial position in 
the sort, and subsequent digits 
determining sub-sorting.

Remarks
The Sorted property must be set to True before a list will be sorted in the order specified by 
SortOrder.



SortKey, SortOrder, Sorted Properties, ColumnClick Event Example
This example adds three ColumnHeader objects to a ListView control and populates the control with
the Publishers records of the BIBLIO.MDB database. An array of two OptionButton controls offers 
the two choices for sorting records. When you click on a ColumnHeader, the ListView control is 
sorted according to the SortOrder property, as determined by the OptionButtons. To try the 
example, place a ListView and a control array of two OptionButton controls on a form and paste the 
code into the form's Declarations section. Run the example and click on the ColumnHeaders to sort, 
and click on the OptionButton to switch the SortOrder property. 

Note      the example will not run unless you add a reference to the Microsoft DAO 3.0 Object Library 
by using the References command on the Tools menu.
Private Sub Option1_Click(Index as Integer)

' These OptionButtons offer two choices: Ascending (Index 0), 
' and Descending (Index 1). Clicking on one of these
' sets the SortOrder for the ListView control.
ListView1.SortOrder = Index
ListView1.Sorted = True ' Sort the List.

End Sub

Private Sub Form_Load()
' Create an object variable for the ColumnHeader object.
Dim clmX As ColumnHeader
' Add ColumnHeaders. The width of the columns is the width
' of the control divided by the number of ColumnHeader objects.
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Company", ListView1.Width / 3)
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Address", ListView1.Width / 3)
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Phone", ListView1.Width / 3)

ListView1.BorderStyle = ccFixedSingle ' Set BorderStyle property.
ListView1.View = lvwReport ' Set View property to Report.

' Label OptionButton controls with SortOrder options.
Option1(0).Caption = "Ascending (A-Z)"
Option1(1).Caption = "Descending (Z-A)"
ListView1.SortOrder = 0 ' Set to Icon view

' Create object variables for the Data Access objects.
Dim myDb As Database, myRs As Recordset
' Set the Database to the BIBLIO.MDB database.
Set myDb = DBEngine.Workspaces(0).OpenDatabase("BIBLIO.MDB")
' Set the recordset to the Publishers table.
Set myRs = myDb.OpenRecordset("Publishers", dbOpenDynaset)

' Create a variable to add ListItem objects.
Dim itmX As ListItem

' While the record is not the last record, add a ListItem object.
' Use the Name field for the ListItem object's text.
' Use the Address field for the ListItem object's subitem(1).
' Use the Phone field for the ListItem object's subitem(2).

While Not myRs.EOF



Set itmX = ListView1.ListItems.Add(, , CStr(myRs!Name))

' If the Address field is not Null, set subitem 1 to the field.
If Not IsNull(myRs!Address) Then

itmX.SubItems(1) = CStr(myRs!Address)  ' Address field.
End If

' If the Phone field is not Null, set subitem 2 to the field.
If Not IsNull(myRs!Telephone) Then

itmX.SubItems(2) = myRs!Telephone  ' Phone field.
End If

myRs.MoveNext ' Move to next record.
Wend

End Sub

Private Sub ListView1_ColumnClick(ByVal ColumnHeader As ColumnHeader)
' When a ColumnHeader object is clicked, the ListView control is
' sorted by the subitems of that column.
' Set the SortKey to the Index of the ColumnHeader - 1
ListView1.SortKey = ColumnHeader.Index - 1
' Set Sorted to True to sort the list.
ListView1.Sorted = True

End Sub



SubItemIndex Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproSubItemIndexC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproSubItemIndexX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproSubItemIndexA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproSubItemIndexS"}

Returns the index of the subitem associated with a ColumnHeader object in a ListView control.

Syntax
object.SubItemIndex [= integer]]

The SubItemIndex property syntax has these parts:

Part Description
object An object expression that evaluates to a 

ColumnHeader object.
integer An integer specifying the index of the subitem 

associated with the ColumnHeader object.

Remarks
Subitems are arrays of strings representing the ListItem object's data when displayed in Report view. 

The first column header always has a SubItemIndex property set to 0 because the small icon and the
ListItem object's text always appear in the first column and are considered ListItem objects rather 
than subitems. 

The number of column headers dictates the number of subitems. There is always exactly one more 
column header than there are subitems.



SubItemIndex Property Example
This example adds three ColumnHeader objects to a ListView control. The code then adds several 
ListItem and Subitems using the SubItemIndex to associate the SubItems string with the correct 
ColumnHeader object. To try the example, place a ListView control on a form and paste the code 
into the form's Declarations section. Run the example.

' Make sure ListView control is in report view.
ListView1.View = lvwReport

' Add three columns.
ListView1.ColumnHeaders.Add , "Name", "Name"
ListView1.ColumnHeaders.Add , "Address", "Address"
ListView1.ColumnHeaders.Add , "Phone", "Phone"

' Add ListItem objects to the control.
Dim itmX As ListItem
' Add names to column 1.
Set itmX= ListView1.ListItems.Add(1, "Mary", "Mary")
' Use the SubItemIndex to associate the SubItem with the correct
' ColumnHeader. Use the key ("Address") to specify the right
' ColumnHeader.
itmX.SubItems(ListView1.ColumnHeaders("Address").SubItemIndex) _
= "212 Grunge Street"
' Use the ColumnHeader key to associate the SubItems string 
' with the correct ColumnHeader. 
itmX.SubItems(ListView1.ColumnHeaders("Phone").SubItemIndex) _
= "555-1212"

Set itmX = ListView1.ListItems.Add(2, "Bill", "Bill")
itmX.SubItems(ListView1.ColumnHeaders("Address").SubItemIndex) _
= "101 Pacific Way"
itmX.SubItems(ListView1.ColumnHeaders("Phone").SubItemIndex) _
= "555-7879"

Set itmX= ListView1.ListItems.Add(3, "Susan", "Susan")
itmX.SubItems(ListView1.ColumnHeaders("Address").SubItemIndex) = _
"800 Chicago Street"
itmX.SubItems(ListView1.ColumnHeaders("Phone").SubItemIndex) = _
"555-4537"

Set itmX= ListView1.ListItems.Add(4, "Tom", "Tom")
itmX.SubItems(ListView1.ColumnHeaders("Address").SubItemIndex) _
= "200 Ocean City"
itmX.SubItems(ListView1.ColumnHeaders("Phone").SubItemIndex) = _
"555-0348"



View Property (ListView Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproViewC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproViewX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproViewA"}       
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproViewS"}

Returns or sets the appearance of the ListItem objects in a ListView control. 

Syntax
object.View [= value]
The View property syntax has these parts:

Part Description
object The object expression that evaluates to a ListView 

control.
value An integer or constant specifying the control's 

appearance, as described in Settings.

Settings
The settings for value are:

Constant Value Description
lvwIcon 0 (Default) Icon. Each ListItem object 

is represented by a full-sized 
(standard) icon and a text label.

lvwSmallIcon 1 SmallIcon. Each ListItem object is 
represented by a small icon and a 
text label that appears to the right of 
the icon. The items appear 
horizontally.

lvwList 2 List. Each ListItem object is 
represented by a small icon and a 
text label that appears to the right of 
the icon. The ListItem objects are 
arranged vertically, each on its own 
line with information arranged in 
columns.

lvwReport 3 Report. Each ListItem object is 
displayed with its small icon and text 
labels. You can provide additional 
information about each ListItem 
object in a subitem. The icons, text 
labels, and information appear in 
columns with the leftmost column 
containing the small icon, followed by
the text label. Additional columns 
display the text for each of the item's 
subitems.

Remarks
In Icon view only, use the LabelWrap property to specify if the ListItem object's labels are wrapped or
not.

In Report view, you can hide the column headers by setting the HideColumnHeaders property to 



True. You can also use the ColumnClick event and the Sorted, SortOrder, and SortKey properties to
sort the ListItem objects or subitems when a user clicks a column header. The user can change the 
size of the column by grabbing the right border of a column header and dragging it to the desired size.



FindItem Method (ListView Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthFindItemC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthFindItemX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbmthFindItemA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthFindItemS"}

Finds and returns a reference to a ListItem object in a ListView control. Doesn't support named 
arguments.

Syntax
object.FindItem (string, value, index, match)
The FindItem method syntax has these parts:

Part Description
object Required. An object expression that evaluates to a 

ListView control.
string Required. A string expression indicating the ListItem

object to be found.
value Optional. An integer or constant specifying whether 

the string will be matched to the ListItem object's 
Text, Subitems, or Tag property, as described in 
Settings.

index Optional. An integer or string that uniquely identifies 
a member of an object collection and specifies the 
location from which to begin the search. The integer 
is the value of the Index property; the string is the 
value of the Key property. If no index is specified, the
default is 1.

match Optional. An integer or constant specifying that a 
match will occur if the item's Text property is the 
same as the string, as described in Settings.

Settings
The settings for value are:

Constant Value Description
lvwText 0 (Default) Matches the string with 

a ListItem object's Text property.
lvwSubitem 1 Matches the string with any string

in a ListItem object's SubItems 
property.

lvwTag 2 Matches the string with any 
ListItem object's Tag property.

The settings for match are:

Constant Value Description
lvwWholeWord 0 (Default) An integer or constant 

specifying that a match will occur
if the item's Text property begins 
with the whole word being 
searched. Ignored if the criteria is
not text.

lvwPartial 1 An integer or constant specifying 



that a match will occur if the 
item's Text property begins with 
the string being searched. 
Ignored if the criteria is not text.

Remarks
If you specify Text as the search criteria, you can use lvwPartial so that a match occurs when the 
ListItem object's Text property begins with the string you are searching for. For example, to find the 
ListItem whose text is "Autoexec.bat", use:
'Create a ListItem variable.
Dim itmX As ListItem
'Set the variable to the found item.
Set itmX = ListView1.FindItem("Auto",,,lvwpartial)



FindItem Method Example
This example populates a ListView control with the contents of the Publishers table of the 
BIBLIO.MDB database. A ComboBox control is also populated with three options for the FindItem 
method. A CommandButton contains the code for the FindItem method; when you click on the 
button, you are prompted to enter the string to search for, and the FindItem method searches the 
ListView control for the string. If the string is found, the control is scrolled using the EnsureVisible 
method to show the found ListItem object. To try the example, place a ListView, ComboBox, and a 
CommandButton control on a form and paste the code into the form's Declarations section. Run the 
example and click on the command button. 

Note      the example will not run unless you add a reference to the Microsoft DAO 3.0 Object Library 
by using the References command from the Tools menu.
Private Sub Form_Load()

' Create an object variable for the ColumnHeader object.
Dim clmX As ColumnHeader
' Add ColumnHeaders. The width of the columns is the width
' of the control divided by the number of ColumnHeader objects.
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Company", ListView1.Width / 3)
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Address", ListView1.Width / 3)
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Phone", ListView1.Width / 3)

ListView1.BorderStyle = ccFixedSingle  ' Set BorderStyle property.
ListView1.View = lvwReport  ' Set View property to Report.
Command1.Caption = "&FindItem"

' Label OptionButton controls with FindItem options.
Option1(0).Caption = "Text"
Option1(1).Caption = "SubItem"
Option1(2).Caption = "Tag"
ListView1.FindItem = 0 ' Set the ListView FindItem property to Text.

End With

' Populate the ListView control with database records.
' Create object variables for the Data Access objects.
Dim myDb As Database, myRs As Recordset
' Set the Database to the BIBLIO.MDB database.
Set myDb = DBEngine.Workspaces(0).OpenDatabase("BIBLIO.MDB")
' Set the recordset to the Publishers table.
Set myRs = myDb.OpenRecordset("Publishers", dbOpenDynaset)

' While the record is not the last record, add a ListItem object.
' Use the reference to the new object to set properties.
' Set the Text property to the Name field (myRS!Name).
' Set SubItem(1) to the Address field (myRS!Address).
' Set SubItem(7) to the Phone field (myRS!Telephone).

While Not myRs.EOF
Dim itmX As ListItem ' A ListItem variable.
Dim intCount As Integer ' A counter variable.
' Use the Add method to add a new ListItem and set an object
' variable to the new reference. Use the reference to set
' properties.



Set itmX = ListView1.ListItems.Add(, , CStr(myRs!Name))
intCount = intCount + 1 ' Increment counter for the Tag property.
itmX.Tag = "ListItem " & intCount  ' Set Tag with counter.

' If the Address field is not Null, set SubItem 1 to Address.
If Not IsNull(myRs!Address) Then

itmX.SubItems(1) = CStr(myRs!Address) ' Address field.
End If

' If the Phone field is not Null, set SubItem 2 to Phone.
If Not IsNull(myRs!Telephone) Then

itmX.SubItems(2) = myRs!Telephone  ' Phone field.
End If

myRs.MoveNext ' Move to next record.
Wend

End Sub

Private Sub Command1_Click()
' FindItem method.
'Create an integer variable called intSelectedOption
' to store the index of the selected button
' Create a string variable called strFindMe. Use the InputBox
' to store the string to be found in the variable. Use the
' FindItem method to find the string. Option1 is used to
' switch the FindItem argument that determines where to look.

Dim intSelectedOption as Integer
Dim strFindMe As String
If Option1(0).Value = True then

strFindMe = InputBox("Find in " & Option1(0).Caption)
intSelectedOption = lvwText

If Option1(1).Value = True then
strFindMe = InputBox("Find in " & Option1(1).Caption)
intSelectedOption = lvwSubItem

If Option1(2).Value = True then
strFindMe = InputBox("Find in " & Option1(2).Caption)
intSelectedOption = lvwTag

' FindItem method returns a reference to the found item, so
' you must create an object variable and set the found item
' to it.
Dim itmFound As ListItem ' FoundItem variable.

Set itmFound = ListView1. _
FindItem(strFindMe, intSelectedOption, , lvwPartial)

' If no ListItem is found, then inform user and exit. If a
' ListItem is found, scroll the control using the EnsureVisible
' method, and select the ListItem.
If itmFound Is Nothing Then  ' If no match, inform user and exit.

MsgBox "No match found" 
Exit Sub

Else
 itmFound.EnsureVisible ' Scroll ListView to show found ListItem.
 itmFound.Selected = True ' Select the ListItem.
' Return focus to the control to see selection.



 ListView1.SetFocus
End If

End Sub

Private Sub ListView1_LostFocus()
' After the control loses focus, reset the Selected property
' of each ListItem to False.
Dim i As Integer
For i = 1 to ListView1.ListItems.Count

ListView1.ListItems.Item(i).Selected = False
Next i

End Sub



GetFirstVisible Method (ListView Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthGetFirstVisibleC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthGetFirstVisibleX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbmthGetFirstVisibleA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthGetFirstVisibleS"}

Returns a reference to the first ListItem object visible in the internal area of a ListView control.

Syntax
object.GetFirstVisible()
The object placeholder represents an object expression that evaluates to a ListView control.

Remarks
A ListView control can contain more ListItem objects than can be seen in the internal area of the 
ListView control. You can use the reference returned by the GetFirstVisible method to determine the
first visible ListItem object in List or Report view.



GetFirstVisible Method Example
This example populates a ListView control with the contents of the Publishers table in the 
BIBLIO.MDB database. When you click on the CommandButton control, the text of the first visible 
item is displayed. Click on the column headers to change the SortKey property and click the 
CommandButton again. To try the example, place a ListView and a CommandButton control on a 
form and paste the code into the form's Declarations section. 

Note      the example will not run unless you add a reference to the Microsoft DAO 3.0 Object Library 
using the References command from the Tools menu. Run the example.
Private Sub Command1_Click()

' Create a ListItem variable and set the variable to the object
' returned by the GetFirstVisible method. Use the reference to
' display the text of the ListItem.
Dim itmX As ListItem
Set itmX = ListView1.GetFirstVisible
MsgBox itmX.Text

End Sub

Private Sub Form_Load()
' Create an object variable for the ColumnHeader object.
Dim clmX As ColumnHeader
' Add ColumnHeaders. The width of the columns is the width
' of the control divided by the number of ColumnHeader objects.
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Company", ListView1.Width / 3)
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Address", ListView1.Width / 3)
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Phone", ListView1.Width / 3)

ListView1.BorderStyle = ccFixedSingle ' Set BorderStyle property.

' Create object variables for the Data Access objects.
Dim myDb As Database, myRs As Recordset
' Set the Database to the BIBLIO.MDB database.
Set myDb = DBEngine.Workspaces(0).OpenDatabase("BIBLIO.MDB")
' Set the recordset to the Publishers table.
Set myRs = myDb.OpenRecordset("Publishers", dbOpenDynaset)

' Create a variable to add ListItem objects.
Dim itmX As ListItem

' While the record is not the last record, add a ListItem object.
' Use the Name field for the ListItem object's text.
' Use the Address field for the ListItem object's subitem(1).
' Use the Phone field for the ListItem object's subitem(2).

While Not myRs.EOF

Set itmX = ListView1.ListItems.Add(, , CStr(myRs!Name))

' If the Address field is not Null, set SubItem 1 to the field.
If Not IsNull(myRs!Address) Then

itmX.SubItems(1) = CStr(myRs!Address) ' Address field.
End If



' If the Phone field is not Null, set the SubItem 2 to the field.
If Not IsNull(myRs!Telephone) Then

itmX.SubItems(2) = myRs!Telephone  ' Phone field.
End If

myRs.MoveNext ' Move to next record.
Wend
ListView1.View = lvwReport ' Set view to Report.

End Sub

Private Sub ListView1_ColumnClick(ByVal ColumnHeader As ColumnHeader)
ListView1.SortKey = ColumnHeader.Index - 1
ListView1.Sorted = True

End Sub



SubItems Property (ListView Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproSubItemsC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproSubitemsX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproSubitemsA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproSubitemsS"}

Returns or sets an array of strings (a subitem) representing the ListItem object's data in a ListView 
control.

Syntax
object.SubItems(index) [= string]

The SubItems property syntax has these parts:

Part Description
object An object expression that evaluates to a ListItem 

object.
index An integer that identifies a subitem for the specified 

ListItem.
string Text that describes the subitem.

Remarks
Subitems are arrays of strings representing the ListItem object's data that are displayed in Report 
view. For example, you could show the file size and the date last modified for a file. 

A ListItem object can have any number of associated item data strings (subitems) but each ListItem 
object must have the same number of subitems.

There are corresponding column headers defined for each subitem.

You cannot add elements directly to the subitems array. Use the Add method of the ColumnHeaders
collection to add subitems.



ListView Control Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstListViewC;vbproBooksOnlineJumpTopic"}

Listview Control Constants
Constant Value Description
lvwIcon 0 (Default) Icon. Each ListItem 

object is represented by a full-
sized (standard) icon and a text 
label.

lvwSmallIcon 1 SmallIcon. Each ListItem is 
represented by a small icon and
a text label that appears to the 
right of the icon. The items 
appear horizontally.

LvwList 2 List. Each ListItem is 
represented by a small icon and
a text label that appears to the 
right of the icon. Each ListItem 
appears vertically and on its 
own line with information 
arranged in columns.

lvwReport 3 Report. Each ListItem is 
displayed with its small icons 
and text labels. You can provide 
additional information about 
each ListItem. The icons, text 
labels, and information appear 
in columns with the leftmost 
column containing the small 
icon, followed by the text label. 
Additional columns display the 
text for each of the item's 
subitems.

ListArrange Constants
Constant Value Description
lvwNoArrange 0 (Default) None.
lvwAutoLeft 1 Left. ListItem objects are 

aligned along the left side of the 
control.

lvwTop 2 Top. ListItem objects are 
aligned along the top of the 
control.

ListColumnAlignment Constants
Constant Value Description
lvwColumnLeft 0 (Default) Left. Text is aligned 

left.
lvwColumnRight 1 Right. Text is aligned right.
lvwColumnCenter 2 Center. Text is centered.



ListLabelEdit Constants
Constant Value Description
lvwAutomatic 0 (Default) Automatic. The 

BeforeLabelEdit event is 
generated when the user clicks 
the label of a selected node.

lvwManual 1 Manual. The BeforeLabelEdit 
event will be generated only 
when the StartLabelEdit 
method is invoked.

ListSortOrder Constants
Constant Value Description
lvwAscending 0 (Default) Ascending order. Sorts

from the beginning of the 
alphabet (A-Z), the earliest date,
or the lowest number.

lvwDescending 1 Descending order. Sorts from 
the end of the alphabet (Z-A), 
the latest date, or the highest 
number.

ListFindItemWhere Constants
Constant Value Description
lvwText 0 (Default) Text. Matches the 

string with a ListItem object's 
Text property.

lvwSubItem 1 SubItem. Matches the string 
with any string in a ListItem 
object's SubItems property.

lvwTag 2 Tag. Matches the string with any
ListItem object's Tag property.

ListFindItemHow Constants
Constant Value Description
lvwWholeWord 0 (Default) Whole word. Sets the 

search so that a match occurs if 
the item's Text property begins 
with the whole word being 
searched for. Ignored if the 
criteria is not text.

lvwPartial 1 Partial. Sets the search so that 
a match occurs if the item's Text
property begins with the string 
being searched for. Ignored if 
the criteria is not text.



Sorted Property (ListView Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproSortedListViewC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproSortedListViewX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproSortedListViewA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproSortedListViewS"}

Returns or sets a value that determines whether the ListItem objects in a ListView control are sorted.

Syntax
object.Sorted [= boolean]

The Sorted property syntax has these parts:

Part Description
object An object expression that evaluates to a ListView 

control.
boolean A Boolean expression specifying whether the 

ListItem objects are sorted, as described in Settings.

Settings
The settings for boolean are:

Setting Description
True The list items are sorted alphabetically, according to 

the SortOrder property.
False The list items are not sorted.

Remarks
The Sorted property must be set to True for the settings in the SortOrder and SortKey properties to 
take effect.

Each time the coordinates of a ListItem change, the Sorted property becomes False.



ItemClick Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtItemclickC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbevtItemclickX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbevtItemclickA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtItemclickS"}

Occurs when a ListItem object in a ListView control is clicked.

Syntax
Private Sub object_ItemClick(ByVal Item As ListItem)
The ItemClick event syntax has these parts:

Part Description
object An object expression that evaluates to a ListView 

control.
listitem The ListItem object that was clicked.

Remarks
Use this event to determine which ListItem was clicked. This event is triggered before the Click 
event. The standard Click event is generated    if the mouse is clicked on any part of the ListView 
control. The ItemClick event is generated only when the mouse is clicked on the text or image of a 
ListItem object.



ItemClick Event Example
This example populates a ListView control with contents of the Publishers table in the BIBLIO.MDB 
database. When a ListItem object is clicked, the code checks the value of the Index property. If the 
value is less than 15, nothing occurs. If the value is greater than 15, the ListItem object is ghosted. To
try the example, place a ListView control on a form and paste the code into the form's Declarations 
section. Run the example and click on one of the items.
Private ListView1_ItemClick(ByVal Item As ListItem)

Select Case Item.Index
Case Is = <15 

Exit Sub
Case Is => 15

' Toggle Ghosted property.
Item.Ghosted = Abs(Item.Ghosted) - 1

End Select
End Sub

Private Sub Form_Load()
' Create an object variable for the ColumnHeader object.
Dim clmX As ColumnHeader
' Add ColumnHeaders. The width of the columns is the width
' of the control divided by the number of ColumnHeader objects.
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Company", ListView1.Width / 3)
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Address", ListView1.Width / 3)
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Phone", ListView1.Width / 3)

ListView1.BorderStyle = ccFixedSingle ' Set BorderStyle property.

' Create object variables for the Data Access objects.
Dim myDb As Database, myRs As Recordset
' Set the Database to the BIBLIO.MDB database.
Set myDb = DBEngine.Workspaces(0).OpenDatabase("BIBLIO.MDB")
' Set the recordset to the Publishers table.
Set myRs = myDb.OpenRecordset("Publishers", dbOpenDynaset)

' Create a variable to add ListItem objects.
Dim itmX As ListItem

' While the record is not the last record, add a ListItem object.
' Use the Name field for the ListItem object's text.
' Use the Address field for the ListItem object's SubItem(1).
' Use the Phone field for the ListItem object's SubItem(2).

While Not myRs.EOF

Set itmX = ListView1.ListItems.Add(, , CStr(myRs!Name))

' If the Address field is not Null, set SubItem 1 to the field.
If Not IsNull(myRs!Address) Then

itmX.SubItems(1) = CStr(myRs!Address) ' Address field.
End If

' If the Phone field is not Null, set the SubItem 2 to the field.



If Not IsNull(myRs!Telephone) Then
itmX.SubItems(2) = myRs!Telephone  ' Phone field.

End If

myRs.MoveNext ' Move to next record.
Wend
ListView1.View = lvwReport ' Set View to Report.

End Sub

Private Sub ListView1_ColumnClick(ByVal ColumnHeader As ColumnHeader)
ListView1.SortKey = ColumnHeader.Index - 1
ListView1.Sorted = True

End Sub



ProgressBar Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjProgressbarC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbobjProgressbarX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Properties":"vbobjProgressbarP"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Methods":"vbobjProgressbarM"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Events":"vbobjProgressbarE"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjProgressbarS"}

The ProgressBar control shows the progress of a lengthy operation by filling a rectangle with chunks 
from left to right.

Syntax
ProgressBar
Remarks
· The ProgressBar control monitors an operation's progress toward completion.
A ProgressBar control has a range and a current position. The range represents the entire duration 
of the operation. The current position represents the progress the application has made toward 
completing the operation. The Max and Min properties set the limits of the range. The Value property 
specifies the current position within that range. Because chunks are used to fill in the control, the 
amount filled in only approximates the Value property's current setting. Based on the control's size, 
the Value property determines when to display the next chunk.

The ProgressBar control's Height and Width properties determine the number and size of the 
chunks that fill the control. The more chunks, the more accurately the control portrays an operation's 
progress. To increase the number of chunks displayed, decrease the control's Height or increase its 
Width. The BorderStyle property setting also affects the number and size of the chunks. To 
accommodate a border, the chunk size becomes smaller.

You can use the Align property with the ProgressBar control to automatically position it at the top or 
bottom of the form.

Tip      To shrink the chunk size until the progress increments most closely match actual progress 
values, make the ProgressBar control at least 12 times wider than its height.

The following example shows how to use the ProgressBar control, named ProgressBar1, to show 
the progress of a lengthy operation of a large array. Put a CommandButton control and a 
ProgressBar control on a form. The Align property in the sample code positions the ProgressBar 
control along the bottom of the form. The ProgressBar control displays no text.
Private Sub Command1_Click()

Dim Counter As Integer
Dim Workarea(250) As String
ProgressBar1.Min = LBound(Workarea)
ProgressBar1.Max = UBound(Workarea)
ProgressBar1.Visible = True

'Set the Progress's Value to Min.
ProgressBar1.Value = ProgressBar1.Min

'Loop through the array.
For Counter = LBound(Workarea) To UBound(Workarea)

'Set initial values for each item in the array.
Workarea(Counter) = "Initial value" & Counter
ProgressBar1.Value = Counter

Next Counter
ProgressBar1.Visible = False
ProgressBar1.Value = ProgressBar1.Min



End Sub

Private Sub Form_Load()
ProgressBar1.Align = vbAlignBottom
ProgressBar1.Visible = False
Command1.Caption = "Initialize array"

End Sub
Distribution Note The ProgressBar control is part of a group of ActiveX controls that are found in 
the COMCTL32.OCX file. To use the ProgressBar control in your application, you must add the 
COMCTL32.OCX file to the project. When distributing your application, install the COMCTL32.OCX 
file in the user's Microsoft Windows System or System32 directory. For more information on how to 
add an ActiveX control to a project, see the Programmer's Guide.



Slider Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjSliderC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbobjSliderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Properties":"vbobjSliderP"}     
{ewc HLP95EN.DLL,DYNALINK,"Methods":"vbobjSliderM"}                  {ewc HLP95EN.DLL,DYNALINK,"Events":"vbobjSliderE"}    
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbobjSliderS"}

A Slider control is a window containing a slider and optional tick marks. You can move the slider by 
dragging it, clicking the mouse to either side of the slider, or using the keyboard. 

Syntax
Slider
Remarks
Slider controls are useful when you want to select a discrete value or a set of consecutive values in a
range. For example, you could use a Slider to set the size of a displayed image by moving the slider 
to a given tick mark rather than by typing a number. To select a range of values, set the SelectRange 
property to True, and program the control to select a range when the SHIFT key is down.

The Slider control can be oriented either horizontally or vertically.

Distribution Note      To use the Slider control in your application, you must add the COMCTL32.OCX
file to the project. When distributing your application, install the COMCTL32.OCX file in the user's 
Microsoft Windows System or System32 directory. For more information on how to add an ActiveX 
control to a project, see the Programmer's Guide.



LargeChange, SmallChange Properties (Slider Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproLargeChangeSliderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproLargeChangeSliderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproLargeChangeSliderA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproLargeChangeSliderS"}

· The LargeChange property sets the number of ticks the slider will move when you press the 
PAGEUP or PAGEDOWN keys, or when you click the mouse to the left or right of the slider.

· The SmallChange property sets the number of ticks the slider will move when you press the left or 
right arrow keys.

Syntax
object.LargeChange = number
object.SmallChange = number
The LargeChange and SmallChange property syntaxes have these parts:

Part Description
object An object expression that evaluates to a Slider control.
number A Long integer specifying how many ticks the slider moves.

Remarks
The default for the LargeChange property is 5. The default for the SmallChange property is 1.



LargeChange, SmallChange Properties Example
This example matches a TextBox control's width to that of a Slider control. While the Slider control's 
Value property is above a certain value, the TextBox control's width matches the Slider control's 
value. The SmallChange and LargeChange properties depend on the value of the Slider control's 
Max property. To try the example, place a Slider control and a TextBox control on a form and paste 
the code into the form's Declarations section. Run the example and press the PAGEDOWN, PAGEUP, 
and LEFT and RIGHT ARROW keys.
Private Sub Form_Load()

Text1.Width = 4500 ' Set a minimum width for the TextBox.
Slider1.Left = Text1.Left ' Align the Slider to the TextBox.
' Match the width of the Slider to the TextBox.
Slider1.Max = Text1.Width
' Place the Slider a little below the Textbox.
Slider1.Top = Text1.Top + Text1.Height + 50
' Set TickFrequency to a fraction of the Max value.
Slider1.TickFrequency = Slider1.Max * 0.1
' Set LargeChange and SmallChange value to a fraction of Max.
Slider1.LargeChange = Slider1.Max * 0.1
Slider1.SmallChange = Slider1.Max * 0.01

End Sub

Private Sub Slider1_Change()
' If the slider is under 1/3 the size of the textbox, no change.
' Else, match the width of the textbox to the Slider's value.
If Slider1.Value > Slider1.Max / 3 Then

Text1.Width = Slider1.Value
End If

End Sub



Orientation Property (Slider Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproOrientationSliderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproOrientationSliderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproOrientationSliderA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproOrientationSliderS"}

Sets a value that determines whether the Slider control is oriented horizontally or vertically.

Syntax
object.Orientation = number

The Orientation property syntax has these parts:

Part Description
object An object expression that evaluates to a Slider 

control.
number A constant or value specifying the orientation, as 

described in Settings.

Settings
The settings for number are:

Constant Value Description
sldHorizontal 0 (Default) Horizontal. The slider moves 

horizontally and tick marks can be placed 
on either the top or bottom, both, or neither.

sldVertical 1 Vertical. The slider moves vertically and tick
marks can be placed on either the left or 
right sides, both, or neither.



Orientation Property Example
This example toggles the orientation of a Slider control on a form. To try the example, place a Slider 
control onto a form and paste the code into the form's Declarations section, and then run the 
example. Click the form to toggle the Slider control's orientation.
Private Sub Form_Click()

If Slider1.Orientation = 0 Then
Slider1.Orientation = 1

Else
Slider1.Orientation = 0

End If
End Sub



Scroll Event (Slider Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctMsgBox;vbevtScrollSliderC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbevtScrollSliderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbevtScrollSliderA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtScrollSliderS"}

Occurs when you move the slider on a Slider control, either by clicking on the control or using 
keyboard commands.

Syntax
Private Sub object_Scroll( )
The object placeholder represents an object expression that evaluates to a Slider control.

Remarks
The Scroll Event occurs before the Click event.

The Scroll Event continuously returns the value of the Value property as the slider is moved. You can 
use this event to perform calculations to manipulate controls that must be coordinated with ongoing 
changes in the Slider control. In contrast, use the Change event when you want an update to occur 
only once, after a Slider control's Value property has changed.

Note      Avoid using a MsgBox statement or function in this event.



SelectRange Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproSelectRangeC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproSelectRangeX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproSelectRangeA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproSelectRangeS"}

Sets a value that determines if a Slider control can have a selected range.

Syntax
object.SelectRange = boolean

The SelectRange property syntax has these parts:

Part Description
object An object expression that evaluates to a Slider control.
boolean A Boolean expression that determines whether or not 

the Slider can have a selected range, as described in 
Settings.

Settings
The settings for boolean are:

Setting Description
True The Slider can have a selected range.
False The Slider can't have a selected range.

Remarks
If SelectRange is set to False, then the SelStart property setting is the same as the Value property 
setting. Setting the SelStart property also changes the Value property, and vice-versa, which will be 
reflected in the position of the slider on the control. Setting SelLength when the SelectRange 
property is False has no effect.



SelectRange Property Example
This example allows the user to select a range when the SHIFT key is held down. To try the example, 
place a Slider control on a form and paste the code into the form's Declarations section. Run the 
example and select a range by holding down the SHIFT key and dragging or clicking the mouse on the
Slider control.
Private Sub Form_Load()

'Set slider control settings
Slider1.Max = 20

End Sub

Private Sub Slider1_MouseDown(Button As Integer, Shift As Integer, x As 
Single, y As Single)

If Shift = 1 Then ' If Shift button is down then
Slider1.SelectRange = True ' turn SelectRange on.
Slider1.SelStart = Slider1.Value  ' Set the SelStart value
Slider1.SelLength = 0 ' Set previous SelLength (if any) to 0.

End If
End Sub

Private Sub Slider1_MouseUp(Button As Integer, Shift As Integer, x As 
Single, y As Single)

If Shift = 1 Then
' If user selects backwards from a point, an error will occur.
On Error Resume Next
' Else set SelLength using SelStart and current value.

Slider1.SelLength = Slider1.Value - Slider1.SelStart
Else

Slider1.SelectRange = False ' If user lifts SHIFT key.
End If

End Sub



SelLength, SelStart Properties (Slider Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproSelLengthC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproSelLengthX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproSelLengthA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproSelLengthS"}

· SelLength returns or sets the length of a selected range in a Slider control.
· SelStart returns or sets the start of a selected range in a Slider control.

Syntax
object.SelLength [= value]
object.SelStart [= value]
The SelLength and SelStart property syntaxes have these parts:

Part Description
object An object expression that evaluates to a Slider control.
value A value that falls within the Min and Max properties. 

Remarks
The SelLength and SelStart properties are used together to select a range of contiguous values on a
Slider control. The Slider control then has the additional advantage of being a visual analog of the 
range of possible values.

The SelLength property can't be less than 0, and the sum of SelLength and SelStart can't be 
greater than the Max property.



SelLength, SelStart Properties Example
This example selects a range on a Slider control. To try this example, place a Slider control onto a 
form with three TextBox controls, named Text1, Text2, and Text3. The Slider control's SelectRange 
property must be set to True. Paste the code below into the form's Declarations section, and run the 
example. While holding down the SHIFT key, you can select a range on the slider, and the various 
values will be displayed in the text boxes. 
Private Sub Form_Load()

' Make sure SelectRange is True so selection can occur.
Slider1.SelectRange = True

End Sub

Private Sub Slider1_MouseDown(Button As Integer, Shift As Integer, x As 
Single, y As Single)

If Shift = 1 Then ' If SHIFT is down, begin the range selection.
Slider1.ClearSel ' Clear any previous selection.
Slider1.SelStart = Slider1.Value
Text2.Text = Slider1.SelStart   ' Show the beginning 

' of the range in the textbox.
Else

Slider1.ClearSel ' Clear any previous selection.
End If

End Sub

Private Sub Slider1_MouseUp(Button As Integer, Shift As Integer, x As 
Single, y As Single)

' When SHIFT is down and SelectRange is True, 
' this event is triggered.
If Shift = 1 And Slider1.SelectRange = True Then

' Make sure the current value is larger than SelStart or
' an error will occur--SelLength can't be negative.
If Slider1.Value >= Slider1.SelStart Then

Slider1.SelLength = Slider1.Value - Slider1.SelStart
Text1.Text = Slider1.Value  ' To see the end of the range.
' Text3 is the difference between the end and start values.
Text3.Text = Slider1.SelLength

End If
End If

End Sub



TickFrequency Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproTickFrequencyC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproTickFrequencyX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproTickFrequencyA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproTickFrequencyS"}

Returns or sets the frequency of tick marks on a Slider control in relation to its range. For example, if 
the range is 100, and the TickFrequency property is set to 2, there will be one tick for every 2 
increments in the range. 

Syntax
object.TickFrequency [= number]
The TickFrequency property syntax has these parts:

Part Description
object An object expression that evaluates to a Slider control.
number A numeric expression specifying the frequency of tick 

marks.



TickFreqency Property Example
This example matches a TextBox control's width to that of a Slider control. While the Slider control's 
Value property is above a certain value, the TextBox control's width matches the Slider control's 
value. The TickFrequency depends on the value of the Slider control's Max property. To try the 
example, place a Slider and a TextBox control on a form and paste the code into the form's 
Declarations section. Run the example and click the slider several times.
Private Sub Form_Load()

Text1.Width = 4500 ' Set a minimum width for the TextBox.
Slider1.Left = Text1.Left ' Align the Slider to the TextBox.
' Match the width of the Slider to the TextBox.
Slider1.Max = Text1.Width
' Place the Slider a little below the Textbox.
Slider1.Top = Text1.Top + Text1.Height + 50
' Set TickFrequency to a fraction of the Max value.
Slider1.TickFrequency = Slider1.Max * 0.1
' Set LargeChange and SmallChange value to a fraction of Max.
Slider1.LargeChange = Slider1.Max * 0.1
Slider1.SmallChange = Slider1.Max * 0.01

End Sub

Private Sub Slider1_Change()
' If the slider is under 1/3 the size of the textbox, no change.
' Else, match the width of the textbox to the Slider's value.
If Slider1.Value > Slider1.Max / 3 Then

Text1.Width = Slider1.Value
End If

End Sub



TickStyle Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproTickStyleC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproTickStyleX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproTickStyleA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproTickStyleS"}

Returns or sets the style (or positioning) of the tick marks displayed on the Slider control.

Syntax
object.TickStyle [= number]
The TickStyle property syntax has these parts:

Part Description
object An object expression that evaluates to a Slider 

control.
number A constant or integer that specifies the TickStyle 

property, as described in Settings.

Settings
The settings for number are:

Constant Value Description
sldBottomRight 0 (Default) Bottom/Right. Tick marks are 

positioned along the bottom of the Slider 
if the control is oriented horizontally, or 
along the right side if it is oriented 
vertically.

sldTopLeft 1 Top/Left. Tick marks are positioned along 
the top of the Slider if the control is 
oriented horizontally, or along the left side
if it is oriented vertically.

sldBoth 2 Both. Tick marks are positioned on both 
sides or top and bottom of the Slider.

sldNoTicks 3 None. No tick marks appear on the 
Slider.



TickStyle Property Example
This example allows you to see the various tick styles available in a drop-down list. To try the 
example, place a Slider control and a ComboBox control on a form. Paste the code into the 
Declarations section of the form, and run the example. Click on the ComboBox to change the 
TickStyle property value.
Private Sub Form_Load()

With combo1
.AddItem "Bottom/Right"
.AddItem "Top/Left"
.AddItem "Both"
.AddItem "None"
.ListIndex = 0 

End With
End Sub

Private Sub combo1_Click()
Slider1.TickStyle = combo1.ListIndex

End Sub



ClearSel Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthClearSelC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthClearSelX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbmthClearSelA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthClearSelS"}

Clears the current selection of a Slider control.

Syntax
object.ClearSel
The object placeholder represents an object expression that evaluates to a Slider control.

Remarks
This method sets the SelStart property to the value of the Value property and sets the SelLength 
property to 0.



GetNumTicks Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthGetNumTicksC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthGetNumTicksX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbmthGetNumTicksA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthGetNumTicksS"}

Returns the number of ticks between the Min and Max properties of the Slider control.

Syntax
object.GetNumTicks
The object placeholder represents an object expression that evaluates to a Slider control.

Remarks
To change the number of ticks, reset the Min or Max properties or the TickFrequency property.



GetNumTicks Method Example
This example displays the current number of ticks on a Slider control, then increments the Max 
property by 10. To try this example, place a Slider control onto a form and paste the code into the 
form's Declarations section. Run the example, and click the Slider control to get the number of ticks. 
Every click on the control increases the ticks.
Private Sub Slider1_Click()

MsgBox Slider1.GetNumTicks
Slider1.Max = Slider1.Max + 10

End Sub



Slider Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstSliderC;vbproBooksOnlineJumpTopic"}

Orientation Constants
Constant Value Description
sldHorizontal 0 Horizontal orientation.
sldVertical 1 Vertical orientation.

Tickstyle Constants
Constant Value Description
sldBottomRight 0 Bottom/Right. Tick marks are 

positioned along the bottom of the 
Slider if the control is oriented 
horizontally, or along the right side 
if it is oriented vertically.

sldTopLeft 1 Top/Left. Tick marks are positioned 
along the top of the Slider if the 
control is oriented horizontally, or 
along the left side if it is oriented 
vertically.

sldBoth 2 Both. Tick marks are positioned on 
both sides or top and bottom of the 
Slider.

sldNoTicks 3 None. No tick marks appear on the 
Slider.





StatusBar Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjStatusC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbobjStatusBarX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Properties":"vbobjStatusP"}                  {ewc HLP95EN.DLL,DYNALINK,"Methods":"vbobjStatusM"}     
{ewc HLP95EN.DLL,DYNALINK,"Events":"vbobjStatusE"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjStatusBarS"}

A StatusBar control provides a window, usually at the bottom of a parent form, through which an 
application can display various kinds of status data. The StatusBar can be divided up into a 
maximum of sixteen Panel objects that are contained in a Panels collection.

Syntax
StatusBar
Remarks
A StatusBar control consists of Panel objects, each of which can contain text and/or a picture. 
Properties to control the appearance of individual panels include Width, Alignment (of text and 
pictures), and Bevel. Additionally, you can use one of seven values of the Style property to 
automatically display common data such as date, time, and keyboard states.

At design time, you can create panels and customize their appearance by setting values in the Panel 
Properties dialog box. At run time, the Panel objects can be reconfigured to reflect different functions, 
depending on the state of the application. For detailed information about the properties, events, and 
methods of Panel objects, see the Panel Object and Panels Collection topics.

A StatusBar control typically displays information about an object being viewed on the form, the 
object's components, or contextual information that relates to that object's operation. The StatusBar, 
along with other controls such as the Toolbar control, gives you the tools to create an interface that is
economical and yet rich in information.

Distribution Note      The StatusBar control is part of a group of custom controls that are found in the 
COMCTL32.OCX file. To use the StatusBar control in your application, you must add the 
COMCTL32.OCX file to the project. When distributing your application, install the COMCTL32.OCX 
file in the user's Microsoft Windows SYSTEM directory. For more information on how to add a custom 
control to a project, see the Programmer's Guide.



StatusBar Control Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstStatusBarC;vbproBooksOnlineJumpTopic"}

StatusBar Style Constants
Constant Value Description
sbrNormal 0 Normal. StatusBar is divided into panels.
sbrSimple 1 Simple. StatusBar has only one large 

panel and SimpleText.

Panel Alignment Constants
Constant Value Description
sbrLeft 0 Text to left.
sbrCenter 1 Text centered.
sbrRight 2 Text to right.

Panel Autosize Constants
Constant Value Description
sbrNoAutoSize 0 No Autosizing.
sbrSpring 1 Extra space divided among panels.
sbrContents 2 Fit to contents.

Panel Bevel Constants
Constant Value Description
sbrNoBevel 0 No bevel.
sbrInset 1 Bevel inset.
sbrRaised 2 Bevel raised.

Panel Style Constants
Constant Value Description
sbrText 0 Text and/or bitmap displayed.
sbrCaps 1 Caps Lock status displayed.
sbrNum 2 Number Lock status displayed.
sbrIns 3 Insert key status displayed.
sbrScrl 4 Scroll Lock status displayed.
sbrTime 5 Time displayed in System format.
sbrDate 6 Date displayed in System format.
sbrKana 7 Kana. displays the letters KANA in bold 

when scroll lock is enabled, and dimmed 
when disabled.

Panels Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcolPanelsCollectionC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbcolPanelsCollectionX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Properties":"vamthItem;vbcolPanelsCollectionP"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Methods":"vamthClear;vamthRemove;vbcolPanelsCollectionM"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Events":"vbcolPanelsCollectionE"}                  {ewc 



HLP95EN.DLL,DYNALINK,"Specifics":"vbcolPanelsCollectionS"}

A Panels collection contains a collection of Panel objects.

Syntax
statusbar.Panels(index)

The Panels collection syntax has these parts.

Part Description
statusbar An object expression that evaluates to a StatusBar control.
Index An integer or string that uniquely identifies the object in the 

collection. The integer is the value of the Index property of 
the desired Panel object; the string is the value of the Key 
property of the desired Panel object.

The Panels collection is a 1-based array of Panel objects. By default, there is one Panel object on a 
StatusBar control. Therefore, if you want three panels to be created, you only need to add two 
objects to the Panels collection.

The Panels property returns a reference to a Panels collection.

To add a Panel object to a collection, use the Add method for Panel objects at run time, or the Panel 
Properties tab on the Status Bar Control Properties dialog box at design time.

Each item in the collection can be accessed by its Index property or its Key property. For example, to 
get a reference to the third Panel object in a collection, use the following syntax:
Dim pnlX As Panel
Set pnlX = StatusBar1.Panels(3) ' Reference by index number.

' or
Set pnlX = StatusBar1.Panels("Third") ' Reference by unique key.

' or
Set pnlX = StatusBar1.Panels.Item(3) ' Use Item method.



Panel Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjPanelC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbobjPanelX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Properties":"vbobjPanelP"}     
{ewc HLP95EN.DLL,DYNALINK,"Methods":"vbobjPanelM"}                  {ewc HLP95EN.DLL,DYNALINK,"Events":"vbobjPanelE"}    
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbobjPanelS"}

A Panel object represents an individual panel in the Panels collection of a StatusBar control.

Remarks
A Panel object can contain text and a bitmap which may be used to reflect the status of an 
application.

Use the Panels collection to retrieve, add, or remove an individual Panel object. 

To change the look of a panel, change the properties of the Panel object. To modify the properties at 
design-time, you can change the properties of the Panel object in the Properties Page. At run-time, 
you can change the Panel object properties in code.



Add Method (Panels Collection)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthAddPanelsC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthAddPanelsX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbmthAddPanelsA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthAddPanelsS"}

Adds a Panel object to a Panels collection and returns a reference to the newly created Panel object.
Doesn't support named arguments.

Syntax
object.Add(index, key, text, style, picture)
The Add method syntax has these parts:

Part Description
object An object expression that evaluates to a Panels 

collection.
index Optional. An integer specifying the position where 

the Panel object is to be inserted. If no index is 
specified, the Panel is added to the end of the 
Panels collection. 

key Optional. A unique string that identifies the Panel. 
Use key to retrieve a specific Panel. This is 
equivalent to setting the Key property of the new 
Panel object after the object has been added.

text Optional. A string that appears in the Panel. This is 
equivalent to setting the Text property of the new 
Panel object after the object has been added.

style Optional. The style of the panel. The available styles 
are detailed in the Style Property (Panel Object). 
This is equivalent to setting the Style property of the 
new Panel object after the object has been added.

picture Optional. Specifies the bitmap displayed in the active
Panel. For more information, see the LoadPicture 
function. This is equivalent to setting the Picture 
property of the new Panel object after the object has 
been added.

Remarks
At run time, the Add method returns a reference to the newly inserted Panel object. With this 
reference, you can set properties for every new Panel in the following manner:
Dim pnlX As Panel
Dim i As Integer
For i = 1 To 6  ' Add six Panel objects.
    ' Create a panel and get a reference to it simultaneously.
    Set pnlX = StatusBar1.Panels.Add(, "Panel" & i) ' Set Key property.
    pnlX.Style = i  ' Set Style property.
    pnlX.AutoSize = sbrContents ' Set AutoSize property.
Next i
The value of the Text property is displayed in a Panel object when the Panel object's Style property 
is set to sbrText.
The Panels collection is a 1-based collection. In order to get a reference to the first (default) Panel in 
a collection, you can use its Index or Key (if there is one) properties, or the Item method. The 
following code references the first Panel object using its index.



Dim pnlX As Panel
' Get a reference to first Panel.
Set pnlX = StatusBar1.Panels(1) ' Use the index
pnlX.Text = "Changed text" ' Alter the Panel object's text.
By default, one Panel already exists on the control. Therefore, after adding panels to a collection, the 
Count will be one more than the number of panels added. For example:
Dim i as Integer
For i = 1 to 4  ' Add four panels.

StatusBar1.Panels.Add   ' Add panels without any properties.
Next i
MsgBox StatusBar1.Panels.Count   ' Returns 5 panels.



Add Method (Panels Collection) Example

This example uses the Add method to add three new Panel objects to a StatusBar control. To use 
the example, place a StatusBar control on a form and paste the code into the form's Declarations 
section. Run the example.
Private Sub Form_Load()
Dim pnlX As Panel
    ' Add blank panel as a spacer
    Set pnlX = StatusBar1.Panels.Add()
    pnlX.AutoSize = sbrSpring
    pnlX.MinWidth = 1
    ' Add a panel with a clock icon and time style.
    Set pnlX = StatusBar1.Panels.Add _
    (, , , sbrTime, LoadPicture("\icons\misc\clock03.ico"))
    ' Add second panel, with bitmap and Date style.
    Set pnlX = StatusBar1.Panels.Add _
    (, , , sbrDate, LoadPicture("\bitmaps\assorted\calendar.bmp"))
    ' Set Bevel property for last Panel object.
    pnlX.Bevel = sbrInset   ' Inset bevel.
    pnlX.Alignment = sbrRight   ' Set Alignment property for last object.
    ' Set Text and AutoSize properties for first (default )Panel object.
    StatusBar1.Panels(1).Text = "Add Panel Example"
    StatusBar1.Panels(1).AutoSize = sbrContents
End Sub



Alignment Property (Panel Object)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproAlignmentPC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproAlignmentPanelX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproAlignmentPanelA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproAlignmentPanelS"}

Returns or sets the alignment of text in the caption of a Panel object in a StatusBar control.

Syntax
object.Alignment [= number]
The Alignment property syntax has these parts:

Part Description
object An object expression that evaluates to a Panel object.
number A constant or value specifying the type of action, as 

described in Settings.

Settings
The settings for number are:

Constant Value Description
sbrLeft 0 (Default). Text appears left-justified and to 

right of bitmap.
sbrCenter 1 Text appears centered and to right of 

bitmap.
sbrRight 2 Text appears right-justified and to left of 

bitmap.

Remarks
As well as positioning the text, the Alignment property specifies the position of the bitmap, as 
described in Settings. There is no way to independently position the bitmap within the panel.



Alignment Property (Panel Object) Example

This example adds two Panel objects to a StatusBar control and aligns the text in each panel using 
one of the three available styles. To try the example, place a StatusBar control on a form and paste 
the code into the Declarations section of the form. Run the example.
Sub Form_Load()
    ' Declare variables.
    Dim pnlX As Panel
    Dim I As Integer
    
    For I = 1 To 2  ' Add two panels.
      StatusBar1.Panels.Add
    Next I
    
    For I = 1 To 3  ' Add pictures to each Panel.
      Set pnlX = StatusBar1.Panels(I)
      Set pnlX.Picture = LoadPicture("\icons\comm\net12.ico")

' Set AutoSize and MinWidth so that panels
' are always in view.

      pnlX.AutoSize = sbrSpring
      pnlX.MinWidth = 1
    Next I
    
    ' Set styles and alignment.
    With StatusBar1.Panels
      .Item(1).Text = "Left"
      .Item(1).Alignment = sbrLeft ' Left alignment.
      .Item(2).Text = "Center"
      .Item(2).Alignment = sbrCenter ' Centered alignment.
      .Item(3).Text = "Right"
      .Item(3).Alignment = sbrRight ' Right alignment.
    End With

End Sub



AutoSize Property (Panel Object)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproAutoSizePC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproAutoSizePX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproAutoSizePA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproAutoSizePS"}

Returns or sets a value that determines the width of a Panel object after the StatusBar control has 
been resized.

Syntax
object.AutoSize [= number]

The AutoSize property syntax has these parts:

Part Description
object An object expression that evaluates to a Panel 

object.
number A constant or value specifying the type of action, as 

described in Settings.

Settings
The settings for number are:

Constant Value Description
sbrNoAutoSize 0 (Default) None. No autosizing occurs. 

The width of the Panel is always and 
exactly that specified by the Width 
property.

sbrSpring 1 Spring. When the parent form resizes 
and there is extra space available, all 
panels with this setting divide the space 
and grow accordingly. However, the 
panels' width never falls below that 
specified by the MinWidth property.

sbrContents 2 Content. The Panel is resized to fit its 
contents, however, the width will never 
fall below the width specified by the 
MinWidth property.

Remarks
Panel objects with the Contents style have precedence over those with the Spring style. This means 
that a Spring-style Panel is shortened if a Panel with the Contents style requires that space.



AutoSize Property (Panel Object) Example

This example adds two Panel objects to a StatusBar control and sets the AutoSize property to 
Content for all panels. As the cursor is moved over the objects on the form, the x and y coordinates 
are displayed as well as the Tag property value for each control. To try the example, place a 
StatusBar, a PictureBox, and a CommandButton on a form, then paste the code into the 
Declarations section. Run the example and move the cursor over the various controls.
Private Sub Form_Load()

Dim pnlX As Panel
' Set long tags for each object.
Form1.Tag = "Project 1 Form"
Command1.Tag = "A command button"
Picture1.Tag = "Picture Box Caption"
StatusBar1.Tag = "Application StatusBar1"
' Set the AutoSize style of the first panel to Contents.
StatusBar1.Panels(1).AutoSize = sbrContents
' Add 2 more panels, and set them to Contents.
Set pnlX = StatusBar1.Panels.Add
pnlX.AutoSize = sbrContents
Set pnlX = StatusBar1.Panels.Add
pnlX.AutoSize = sbrContents

End Sub

Private Sub Form_MouseMove(Button As Integer, Shift As Integer, x As 
Single, y As Single)

' Display the control's tag in panel 1, and x and y
' coordinates in panels 2 and 3. Because AutoSize = Contents,
' the first panel stretches to accommodate the varying text.
StatusBar1.Panels(1).Text = Form1.Tag
StatusBar1.Panels(2).Text = "X = " & x
StatusBar1.Panels(3).Text = "Y = " & y

End Sub

Private Sub Command1_MouseMove(Button As Integer, Shift As Integer, x As 
Single, y As Single)

StatusBar1.Panels(1).Text = Command1.Tag
StatusBar1.Panels(2).Text = "X = " & x
StatusBar1.Panels(3).Text = "Y = " & y

End Sub

Private Sub Picture1_MouseMove(Button As Integer, Shift As Integer, x As 
Single, y As Single)

StatusBar1.Panels(1).Text = Picture1.Tag
StatusBar1.Panels(2).Text = "X = " & x
StatusBar1.Panels(3).Text = "Y = " & y

End Sub

Private Sub StatusBar1_MouseMove(Button As Integer, Shift As Integer, x As 
Single, y As Single)

StatusBar1.Panels(1).Text = StatusBar1.Tag
StatusBar1.Panels(2).Text = "X = " & x
StatusBar1.Panels(3).Text = "Y = " & y

End Sub



Bevel Property (Panel Object)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBevelC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproBevelX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproBevelA"}    
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproBevelS"}

Returns or sets the bevel style of a StatusBar control's Panel object. 

Syntax
object.Bevel [= value]
The Bevel property syntax has these parts:

Part Description
object An object expression that evaluates to a Panel 

object.
value A constant or value which determines the bevel style,

as specified in Settings. 

Settings
The settings for value are:

Constant Value Description
sbrNoBevel 0 None. The Panel displays no bevel, and

text looks like it is displayed right on the 
status bar.

sbrInset 1 (Default). Inset. The Panel appears to 
be sunk into the status bar.

sbrRaised 2 Raised. The Panel appears to be raised 
above the status bar.



Bevel Property (Panel Object) Example

This example adds two Panel objects to a StatusBar control, and gives each Panel a different bevel 
style. To use the example, place a StatusBar control on a form and paste the code into the 
Declarations section. Run the example.
Private Sub Form_Load()

Dim pnlX As Panel
Dim I as Integer

For I = 1 to 2
Set pnlX = StatusBar1.Panels.Add() ' Add 2 panels.

Next I

With StatusBar1.Panels
.Item(1).Style = sbrCaps ' Caps Lock
.Item(1).Bevel = sbrInset ' Inset
.Item(2).Style = sbrNum ' NumLock
.Item(2).Bevel = sbrNoBevel ' No bevel
.Item(3).Style = sbrDate ' Date
.Item(3).Bevel = sbrRaised ' Raised bevel

End With
End Sub



MinWidth Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproMinWidthC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproMinWidthX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproMinWidthA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproMinWidthS"}

Returns or sets the minimum width of a StatusBar control's Panel object.

Syntax
object.MinWidth [= value]

The MinWidth property syntax has these parts:

Part Description
object An object expression that evaluates to a Panel 

object.
value An integer that determines the minimum width of a 

Panel object. The scale mode for this value is 
determined by the container of the control. 

Remarks
The MinWidth property is used when the AutoSize property is set to Contents or Spring, to prevent 
the panel from autosizing to a width that is too small. When the AutoSize property is set to None, the 
MinWidth property is always set to the same value as the Width property.

The default value is the same as the default of the Width property. The value argument uses the 
same scale units as the scale mode of the parent form or container. 



MinWidth Property Example

This example uses the default panel of a StatusBar control to display the current date. The MinWidth
property is set so that when you click on the panel, the date is cleared but the panel remains the 
same size. To use the example, place a StatusBar control on a form, and paste the code into the 
Declarations section. Run the example and click on the Panel object to clear the date.
Private Sub Form_Load()
    StatusBar1.Panels(1).AutoSize = sbrContents
    StatusBar1.Panels(1).Text = "Today's Date is: " & Str(Now)
    ' Set minimum width to the current size of panel
    StatusBar1.Panels(1).MinWidth = StatusBar1.Panels(1).Width
End Sub

Private Sub StatusBar1_PanelClick(ByVal Panel As ComctlLib.Panel)
    ' Clear today’s date but keep size at minimum width.
    Panel.Text = "Today’s Date is: "

End Sub



Panels Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproPanelsC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproPanelsX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproPanelsA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproPanelsS"}

Returns a reference to a collection of Panel objects.

Syntax
object.Panels
The object placeholder is an object expression that evaluates to a StatusBar control.



PanelClick Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtPanelClickC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbevtPanelClickX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbevtPanelClickA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtPanelClickS"}

The PanelClick event is similar to the standard Click event but occurs when a user presses and then 
releases a mouse button over any of the StatusBar control's Panel objects.    

Syntax
Private Sub object_PanelClick(ByVal panel As Panel)
The PanelClick event syntax has these parts:

Part Description
object An object expression that evaluates to a StatusBar 

control.
panel A reference to a Panel object. 

Remarks
The standard Click event also occurs when a Panel object is clicked.

The PanelClick event is only generated when the click occurs over a Panel object. When the 
StatusBar control's Style property is set to Simple style, panels are hidden, and therefore the 
PanelClick event is not generated.

You can use the reference to the Panel object to set properties for that panel. For example, the 
following code resets the Bevel property of a clicked Panel:
Private Sub StatusBar1_PanelClick(ByVal Panel As Panel)

Select Case Panel.Key
Case "DisplayFileName" ' Key="DisplayFileName"
  Panel.Bevel = sbrRaised ' Reset Bevel property
' Add other case statements for other panels
End Select

End Sub



PanelClick Event Example

This example adds two Panel objects to a StatusBar control; when each Panel is clicked, the value 
of the Key and Width properties of the clicked Panel are displayed in the third Panel. To try the 
example, place a StatusBar control on a form and paste the code into the Declarations section. Run 
the example.
Private Sub Form_Load()

Dim I as Integer
For I = 1 to 2

StatusBar1.Panels.Add
Next I

With StatusBar1.Panels
.Item(1).Style = sbrDate
.Item(1).Key = "Date panel"
.Item(1).AutoSize = sbrContents
.Item(1).MinWidth = 2000
.Item(2).Style = sbrTime
.Item(2).Key = "Time panel"
.Item(3).AutoSize = sbrContents ' Content
.Item(3).Text = "Panel 3"
.Item(3).Key = "Panel 3"

End With
End Sub

Private Sub StatusBar1_PanelClick(ByVal Panel As Panel)
' Show clicked panel's key and width in Panel 3.
StatusBar1.Panels("Panel 3").Text = Panel.Key & " Width = " & 

Panel.Width
End Sub



PanelDblClick Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtPanelDblCLickC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbevtPanelDblClickX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbevtPanelDblClickA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtPanelDblClickS"}

The PanelDblClick event is similar to the standard DblClick Event but occurs when a user presses 
and then releases a mouse button twice over a StatusBar control's Panel object. 

Syntax
Sub object_PanelDblClick(ByVal panel As Panel)
The PanelDblClick event syntax has these parts:

Part Description
object An object expression that evaluates to a StatusBar 

control.
panel A reference to the double-clicked Panel.

Remarks
The standard DblClick event also occurs when a Panel is double-clicked.

The PanelDblClick event is only generated when the double-click occurs over a Panel object. When 
the StatusBar control's Style property is set to Simple style, panels are hidden, and therefore the 
PanelDblClick event is not generated.



PanelDblClick Event Example

This example adds two Panel objects to a StatusBar control. When the user double-clicks on the 
control, the text of the clicked Panel object is displayed. To try the example, place a StatusBar 
control on a form and paste the code into the form's Declarations section. Run the example and 
double-click on the control.
Private Sub Form_Load()
Dim I as Integer

For I = 1 to 2
StatusBar1.Panels.Add

Next I

With StatusBar1.Panels 
.Item(1).Text = "A long piece of information."
.Item(1).AutoSize = sbrContents ' Content
.Item(2).Style = sbrDate ' Date style
.Item(2).AutoSize = sbrContents ' Content
.Item(3).Style = sbrTime ' Time style

End With
End Sub

Private Sub StatusBar1_PanelDblClick(ByVal Panel As Panel)
MsgBox "Panel.Style = " & Panel.Style

End Sub



SimpleText Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproSimpleTextC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproSimpleTextX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproSimpleTextA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproSimpleTextS"}

Returns or sets the text displayed when a StatusBar control's Style property is set to Simple. 

Syntax
object.SimpleText [= string]
The SimpleText property syntax has these parts:

Part Description
object An object expression that evaluates to a StatusBar 

control.
string A string that is displayed when the Style property is 

set to Simple.

Remarks
The StatusBar control has a Style property which can be toggled between Simple and Normal styles.
When in Simple style, the status bar displays only one panel. The text displayed in Simple style is 
also different from that displayed in Normal style. This text is set with the SimpleText property.

The SimpleText property can be used in situations where an application's mode of operation 
temporarily switches. For example, when a menu is pulled down, the SimpleText could describe the 
menu's purpose.



SimpleText Property Example

This example adds two Panel objects to a StatusBar control that appear in Normal style, and then 
adds a string (using the SimpleText property) that appears when the Style property is set to Simple. 
The control toggles between the Simple style and the Normal style. To try the example, place a 
StatusBar control on a form and paste the code into the Declarations section of the form. Run the 
example and click on the StatusBar control.
Private Sub Form_Load()

Dim I As Integer
For I = 1 to 2

StatusBar1.Panels.Add ' Add 2 Panel objects.
Next I

With StatusBar1.Panels
.Item(1).Style = sbrNum ' Number lock
.Item(2).Style = sbrCaps ' Caps lock
.Item(3).Style = sbrScrl ' Scroll lock

End With
End Sub

Private Sub StatusBar1_Click()
' Toggle between simple and normal style.
With StatusBar1

If .Style = 0 Then
' This text will be displayed when the StatusBar is in Simple 

style.
.SimpleText = "Date and Time: " & Now
.Style = sbrSimple ' Simple style.

Else
.Style = sbrNormal ' Normal style.

End If
End With

End Sub



Style Property (StatusBar Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproStatusStyleC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproStyleStatusbarX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproStyleStatusbarA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproStyleStatusbarS"}

Returns or sets the style of a StatusBar control. 

Syntax
object.Style [= number]
The Style property syntax has these parts:

Part Description
object An object expression that evaluates to a StatusBar 

control.
number An integer or constant that determines the 

appearance of the StatusBar control, as specified in 
Settings.

Settings
The settings for number are:

Constant Value Description
sbrNormal 0 (Default). Normal. The StatusBar 

control shows all Panel objects.
sbrSimple 1 Simple. The control displays only one 

large panel.

Remarks
The StatusBar can toggle between two modes: Normal and Simple. When in Simple style, the 
StatusBar displays only one panel. The appearance also changes: the bevel style is raised with no 
borders. This allows the control to have two appearances, both of which are maintained separately 
from each other. 

You can display different strings depending on the control's style. Use the SimpleText property to set 
the text of the string to be displayed when the Style property is set to Simple.

Note      When the Style property is set to Simple, the StatusBar control displays a large panel (the 
width of the control) which cannot be controlled through the Panels collection.



Style Property (StatusBar Control) Example

This example adds two Panel objects to a StatusBar control that appear in Normal style, and then 
adds a string (using the SimpleText property) that will appear when the Style property is set to 
Simple. The control toggles between the Simple style and the Normal style to show the SimpleText 
property string. To try the example, place a StatusBar control on a form and paste the code into the 
Declarations section of the form. Run the example and click on the StatusBar control.
Private Sub Form_Load()

Dim I As Integer
For I = 1 to 2

StatusBar1.Panels.Add
Next I
With StatusBar1.Panels

.Item(1).Style = sbrDate ' Date

.Item(2).Style = sbrCaps ' Caps lock

.Item(3).Style = sbrScrl ' Scroll lock
End With

End Sub

Private Sub StatusBar1_Click()
With StatusBar1

If .Style = sbrNormal Then
.SimpleText = Time ' Show the time.
.Style = sbrSimple ' Simple style

Else
.Style = sbrNormal ' Normal style

End If
End With

End Sub



Style Property (Panel Object)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproPanelStyleC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproStylePanelX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproStylePanelA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproStylePanelS"}

Returns or sets the style of a StatusBar control's Panel object.

Syntax
object.Style [= number]

The Style property syntax has these parts:

Part Description
object An object expression that evaluates to a Panel 

object.
number An integer or constant specifying the style of the 

Panel, as described in Settings.

Settings
The settings for number are:

Constant Value Description
sbrText 0 (Default). Text and/or a bitmap. Set text with 

the Text property.
sbrCaps 1 Caps Lock key. Displays the letters CAPS in 

bold when Caps Lock is enabled, and dimmed
when disabled.

sbrNum 2 Number Lock. Displays the letters NUM in bold
when the number lock key is enabled, and 
dimmed when disabled.

sbrIns 3 Insert key. Displays the letters INS in bold 
when the insert key is enabled, and dimmed 
when disabled.

sbrScrl 4 Scroll Lock key. Displays the letters SCRL in 
bold when scroll lock is enabled, and dimmed 
when disabled.

sbrTime 5 Time. Displays the current time in the system 
format.

sbrDate 6 Date. Displays the current date in the system 
format.

sbrKana 7 Kana. displays the letters KANA in bold when 
scroll lock is enabled, and dimmed when 
disabled.

Remarks
If you set the Style property to any style except 0 (text and bitmap), any text set with the Text 
property will not display unless the Style property is set to 0.

The Style property can be set as Panel objects are added to a collection. See the Add method for 
more information.

Note      The StatusBar control also has a Style property. When the StatusBar control's Style is set 
to Simple, the control displays only one large panel and its string (set with the SimpleText property).





Style Property (Panel Object) Example

This example displays data in the various styles on a StatusBar control. To try this example, place a 
StatusBar control on a form and paste the code into the form's Declarations section, and run the 
example.
Private Sub Form_Load()

' Dim variables.
Dim I as Integer
Dim pnlX as Panel

For I = 1 to 5 ' Add 5 panels.
Set pnlX = StatusBar1.Panels.Add( ) 

Next I

' Set the style of each panel.
With StatusBar1.Panels

.Item(1).Style = sbrDate ' Date

.Item(2).Style = sbrTime ' Time

.Item(3).Style = sbrCaps ' Caps lock

.Item(4).Style = sbrNum ' Number lock

.Item(5).Style = sbrIns ' Insert key

.Item(6).Style = sbrScrl ' Scroll lock
End With
Form1.Width = 9140 ' Widen form to show all panels.

End Sub



Width Property (Panel Object)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproPanelWidthC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproPanelWidthX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproPanelWidthA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproPanelWidthS"}

Returns or sets the current width of a StatusBar control's Panel object. 

Syntax
object.Width[= number]
The Width property syntax has these parts:

Part Description
object An object expression that evaluates to a Panel 

object.
number An integer that determines the width of the Panel.

Remarks
The Width property always reflects the actual width of a Panel and can't be smaller than the 
MinWidth property.



Width Property (Panel Object) Example

This example creates three Panel objects and sets their Width property to different values. When you
click on the form, the Width property of the first Panel is reset. To try the example, place a StatusBar
control on a form, and paste the code into the Declarations section. Run the example and click on 
each panel to see its width.
Private Sub Form_Load()

Dim X As Panel
Dim I as Integer
For I = 1 to 2 ' Add 2 panels.

Set X = StatusBar1.Panels.Add()
Next I
With StatusBar1.Panels

.Item(1).Text = "Path = " & App.Path

.Item(1).AutoSize = sbrContents ' Contents

.Item(1).Width = 2000 ' A long panel

.Item(2).Text = "Record Field"

.Item(2).AutoSize = sbrSpring ' Spring

.Item(2).Width = 1000 ' A medium panel

.Item(3).Style = sbrTime ' Time

.Item(3).AutoSize = sbrSpring ' Spring

.Item(3).Width = 500 ' A medium panel
End With

End Sub

Private Sub Form_Click()
' Change Width.
StatusBar1.Panels(1). Width = 800

End Sub





TabStrip Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjTabControlC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbobjTabControlX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Properties":"vbobjTabControlP"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Methods":"vbobjTabControlM"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Events":"vbobjTabControlE"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjTabControlS"}

A TabStrip control is like the dividers in a notebook or the labels on a group of file folders. By using a 
TabStrip control, you can define multiple pages for the same area of a window or dialog box in your 
application.

Syntax
TabStrip

Remarks
The control consists of one or more Tab objects in a Tabs collection. At both design time and run 
time, you can affect the Tab object's appearance by setting properties. You can also add and remove 
tabs in the properties dialog box at design time, or add and remove Tab objects at run time using 
methods.

The Style property determines whether the TabStrip control looks like push buttons (Buttons) or 
notebook tabs (Tabs). At design time when you put a TabStrip control on a form, it has one notebook 
tab. If the Style property is set to tabTabs, then there will be a border around the TabStrip control's 
internal area. When the Style property is set to tabButtons, no border is displayed around the 
internal area of the control, however, that area still exists.

To set the overall size of the TabStrip control, use its drag handles and/or set the Top, Left, Height, 
and Width properties. Based on the control's overall size at run time, Visual Basic automatically 
determines the size and position of the internal area and returns the Client-coordinate properties – 
ClientLeft, ClientTop, ClientHeight, and ClientWidth.    The MultiRow property determines whether
the control can have more than one row of tabs, the TabWidthStyle property determines the 
appearance of each row, and, if TabWidthStyle is set to tabFixed, you can use the TabFixedHeight 
and TabFixedWidth properties to set the same height and width for all tabs in the TabStrip control.

The TabStrip control is not a container. To contain the actual pages and their objects, you must use 
Frame controls or other containers that match the size of the internal area which is shared by all Tab 
objects in the control. If you use a control array for the container, you can associate each item in the 
array with a specific Tab object, as in the following example:
' This code makes the selected tab's frame container
' the topmost in the ZOrder
Frame1(TabStrip1.SelectedItem.Index - 1).ZOrder 0
Tip      Use a Frame control with its BorderStyle set to None as the container instead of a PictureBox
control. A Frame control uses less overhead than a PictureBox control.

The Tabs property of the TabStrip control is the collection of all the Tab objects. Each Tab object has 
properties associated with its current state and appearance. For example, you can associate an 
ImageList control with the TabStrip control, and then use images on individual tabs. You can also 
associate a ToolTip with each Tab object.

Distribution Note      The TabStrip control is part of a group of custom controls that are found in the 
COMCTL32.OCX file. To use the TabStrip control in your application, you must add the 
COMCTL32.OCX file to the project. When distributing your application, install the COMCTL32.OCX 
file in the user's Microsoft Windows SYSTEM directory. For more information on how to add a custom 
control to a project, see the Programmer's Guide.



Tab Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjTabC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbobjTabX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Properties":"vbobjTabP"}             
{ewc HLP95EN.DLL,DYNALINK,"Methods":"vbobjTabM"}                  {ewc HLP95EN.DLL,DYNALINK,"Events":"vbobjTabE"}            
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbobjTabS"}

A Tab object represents an individual tab in the Tabs collection of a TabStrip control.

Remarks
For each Tab object, you can use various properties to specify its appearance, and you can specify its
state with the Selected property.

At design time, use the Insert Tab and Remove Tab buttons on the Tabs tab in the TabStrip Control 
Properties dialog box to insert and remove tabs, and use the text boxes to specify any of these 
properties for a Tab object: Caption, Image, ToolTipText, Tag, Index, and/or Key. You can also 
specify these properties at run time.

Use the Caption and Image properties, separately or together, to label or put an icon on a tab.

· To use the Caption property, in the Caption text box on the Tabs tab in the TabStrip Control 
Properties dialog box, type the text you want to appear on the tab or button at run time.

· To use the Image property, put an ImageList control on the form and fill the ListImages collection 
with ListImage objects, each of which has an index number and an optional key, if you add one. 
On the General tab in the TabStrip Control Properties dialog box, select that ImageList to 
associate it with the TabStrip control. In the Image text box on the Tabs tab, type the index number
or key of the ListImage object that should appear on the Tab object.

Use the ToolTipText property to temporarily display a string of text in a small rectangular box at run 
time when the user's cursor hovers over the tab. To set the ToolTipText property at design time, 
select the ShowTips checkbox on the General tab, and then in the ToolTipText text box on the Tabs 
tab, type the ToolTip string.

To return a reference to a Tab object a user has selected, use the SelectedItem property; to 
determine whether a specific tab is selected, use the Selected property. These properties are useful 
in conjunction with the BeforeClick event to verify or record data associated with the currently-
selected tab before displaying the next tab the user selects.

Each Tab object also has read-only properties you can use to reference a single Tab object in the 
Tabs collection: Left, Top, Height and Width.



Tabs Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcolTabsCollectionC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbcolTabsCollectionX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Properties":"vamthItem;vbcolTabsCollectionP"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Methods":"vamthClear;vamthRemove;vbcolTabsCollectionM"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Events":"vbcolTabsCollectionE"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbcolTabsCollectionS"}

A Tabs collection contains a collection of Tab objects.

Syntax
tabstrip.Tabs(index)
tabstrip.Tabs.Item(index)

The Tabs collection syntax has these parts:

Part Description
tabstrip An object expression that evaluates to a TabStrip 

control.
index An integer or string that uniquely identifies a member

of an object collection. The integer is the value of the
Index property of the desired Tab object; the string is
the value of the Key property of the desired Tab 
object.

At design time, use the Insert Tab and Remove Tab buttons on the Tabs tab in the TabStrip Control 
Properties dialog box to add and remove Tab objects from the Tabs collection.

The Tabs collection uses the Count property to return the number of tabs in the collection. To 
manipulate the Tab objects in the Tabs collection, use these methods at run time:

· Add – adds Tab objects to the TabStrip control.
· Item – retrieves the Tab identified by its Key or Index from the collection.
· Clear – removes all Tab objects from the collection.
· Remove – removes the Tab identified by its Key or Index from the collection.



TabStrip Control Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstTabstripC;vbproBooksOnlineJumpTopic"}

Tab Style Constants
Constant Value Description
tabTabs 0 Tabs appear as notebook tabs, and the 

internal area has a three-dimensional border
enclosing it.

tabButtons 1 Tabs appear as push buttons, and the 
internal area has no border around it.

Tab Width Style Constants
Constant Value Description
tabJustified 0 Each tab is wide enough to accommodate 

its contents, and the width of each tab is 
increased, if needed, so that each row of 
tabs spans the width of the control. If there 
is only a single row of tabs, this style has no 
effect.

tabNonJustified 1 Each tab is just wide enough to 
accommodate its contents. The rows are not
justified, so multiple rows of tabs are jagged.

tabFixed 2 The height and width of all tabs are identical,
and are set by the TabFixedHeight and 
TabFixedWidth properties.



Add Method (Tabs Collection)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthAddTabsC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthAddTabsX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbmthAddTabsA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthAddTabsS"}

Adds a Tab object to a Tabs collection in a TabStrip control. Doesn't support named arguments.

Syntax
object.Add(index, key, caption, image)
The Add method syntax has these parts:

Part Description
object An object expression that evaluates to a Tabs 

collection.
index Optional. An integer specifying the position where 

you want to insert the Tab. If you don't specify an 
index, the Tab is added to the end of the Tabs 
collection.

key Optional. A unique string that identifies the Tab. Use 
key to retrieve a specific Tab. This is equivalent to 
setting the Key property of the new Tab object after 
the object has been added to the Tabs collection.

caption Optional. The string that appears on the Tab. This is 
equivalent to setting the Caption property of the new
Tab object after the object has been added to the 
Tabs collection.

image Optional. The index of an image in an associated 
ImageList control. This image is displayed on the 
tab. This is equivalent to setting the Image property 
of the new Tab object after the object has been 
added to the Tabs collection.

Remarks
To add tabs to the TabStrip control at design time, click the Insert Tab button on the Tab tab in the 
TabStrip Control Properties dialog box, and then fill in the appropriate fields for the new tab.

To add tabs to the TabStrip control at run time, use the Add method, which returns a reference to the 
newly inserted Tab object. For example, the following code adds a tab with the caption, "Howdy!" 
whose key is "MyTab," as the second tab (its index is 2):
Set X = TabStrip1.Tabs.Add(2,"MyTab","Howdy!")



Add Method (Tabs Collection) Example

This example adds three Tab objects, each with captions and images from an ImageList control, to a 
TabStrip control. To try this example, put an ImageList and a TabStrip control on a form. The 
ImageList control supplies the images for the Tab objects, so add three images to the ImageList 
control. Paste the following code into the Load event of the Form object, and run the program.
Private Sub Form_Load()

Dim X As Integer
Set TabStrip1.ImageList = ImageList1
TabStrip1.Tabs(1).Caption = "Time"
TabStrip1.Tabs.Add 2, , "Date"
TabStrip1.Tabs.Add 3, , "Mail"
For X = 1 To TabStrip1.Tabs.Count

TabStrip1.Tabs(X).Image = X
Next X

End Sub



BeforeClick Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctInputBox;vafctMsgBox;vbevtBeforeClickC;vbproBooksOnlineJumpTopic"}         
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbevtBeforeClickX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbevtBeforeClickA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtBeforeClickS"}

Generated when a Tab object in a TabStrip control is clicked, or a Tab object's Selected setting has 
changed.

Syntax
Private Sub object_BeforeClick(cancel As Integer)
The BeforeClick event syntax has these parts:

Part Description
object An object expression that evaluates to a TabStrip 

control.
cancel Evaluates to an integer with values of 0 (False) and -

1 (True). The initial value is 0.

Remarks
Use the BeforeClick event to validate the information on the old Tab object before actually generating 
a Click event that selects the new Tab object. Setting the cancel argument to True allows you to stop 
a change to the new selection. 

Note      Setting the cancel argument to True prevents the focus from switching to another tab but 
doesn't stop the Click event from occurring.
Note      If you use the MsgBox or InputBox functions during the BeforeClick event procedure, the 
TabStrip control will not receive a Click event, regardless of the setting of the cancel argument.



BeforeClick Event Example

This example uses the BeforeClick event to demonstrate how to prevent a user from switching to 
another tab. This is useful when you want to verify information on the current tab before displaying the
newly selected tab.

To try this example, place a TabStrip control and a two-element Frame control array on the form (set 
the BorderStyle properties to None). In the first Frame control, add a CheckBox control and in the 
second, add a TextBox. Paste the following code into the Load event of the Form object, and run the 
program. Click the tab labeled Text after you select/deselect the CheckBox on the tab labeled Check.
Private Sub Form_Load()
Dim i As Integer
Dim Tabx As Object
' Sets the caption of the first tab to "Check."
TabStrip1.Tabs(1).Caption = "Check"
' Adds a second tab with "Text" as its caption.
Set Tabx = TabStrip1.Tabs.Add(2, , "Text")
' Labels the checkbox.
Check1.Caption = "Cancel tab switch"

' Aligns the Frames with the internal area
' of the Tabstrip Control.
For i = 0 To 1

Frame1(i).Left = TabStrip1.ClientLeft
Frame1(i).Top = TabStrip1.ClientTop
Frame1(i).Height = TabStrip1.ClientHeight
Frame1(i).Width = TabStrip1.ClientWidth

Next
' Puts the first tab's Frame container on top.
Frame1(0).ZOrder 0

End Sub

' The BeforeClick event verifies the check box value 
' to determine whether to proceed with the Click event.
Private Sub TabStrip1_BeforeClick(Cancel As Integer)

If TabStrip1.Tabs(1).Selected Then
If Check1.Value = 1 Then Cancel = True

End If
End Sub

Private Sub TabStrip1_Click()
Frame1(TabStrip1.SelectedItem.Index-1).ZOrder 0

End Sub



Caption Property (Tab Object)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproCaptionTabObjC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproCaptionTabObjX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproCaptionTabObjA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctInputBox"}

Returns or sets the caption that appears on the tab or button of a Tab object in a TabStrip control.

Syntax
object.Caption [= string]

The Caption property syntax has these parts:

Part Description
object An object expression that evaluates to a Tab object.
string A string expression that evaluates to the text 

displayed as the caption.

Remarks
You can set the Caption property for a Tab object in the TabStrip control at design time or at run 
time.

· Design time – On the Tab tab in the TabStrip Control properties dialog box, type the caption string 
in the Caption text box.

· Run time – Set the caption as follows:
TabStrip1.Tabs(1).Caption = "First Tab"
      Or
TabStrip1.Tabs.Add 2, , "Second Tab"



Caption Property (Tab Object) Example

This example sets the Caption property for each of three Tab objects it adds to a TabStrip control. 
The caption strings are "Time," "Date," and "Mail."    Each Tab object also displays an image from an 
ImageList control. To try this example, place an ImageList and a TabStrip control on a form. Place 
three sample bitmaps in the ImageList control. The ImageList control supplies the images for the 
Tab objects. Paste the following code into the Load event of the Form object, and run the program. 
Private Sub Form_Load()

Dim X As Integer
' Associate an ImageList with the TabStrip control.
Set TabStrip1.ImageList = ImageList1
' Set the captions.
TabStrip1.Tabs(1).Caption = "Time"
TabStrip1.Tabs.Add 2, , "Date"
TabStrip1.Tabs.Add 3, , "Mail"
For X = 1 To TabStrip1.Tabs.Count

' Associate an image with a tab.
TabStrip1.Tabs(X).Image = X

Next X
End Sub



ClientHeight, ClientWidth, ClientLeft, ClientTop Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproClientHeightC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproClientHeightX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproClientHeightA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproClientHeightS"}

Return the coordinates of the internal area (display area) of the TabStrip control. Read-only at run 
time; not available at design time.

Syntax
object.ClientHeight
object.ClientWidth
object.ClientLeft
object.ClientTop
The object placeholder represents an object expression that evaluates to a TabStrip control.

Remarks
At run time, the client-coordinate properties – ClientLeft, ClientTop, ClientHeight, and ClientWidth 
– automatically store the coordinates of the TabStrip control's internal area, which is shared by all 
Tab objects in the control. So that the controls associated with a specific Tab appear when that Tab 
object is selected, place the Tab object's controls inside a container, such as a Frame control, whose 
size and position match the client-coordinate properties. To associate a container (and its controls) 
with a Tab object, create a control array, such as a Frame control array.

All client-coordinate properties use the scale mode of the parent form. To place a Frame control so it 
fits perfectly in the internal area, use the following code:
Frame1.Left = TabStrip1.ClientLeft
Frame1.Top = TabStrip1.ClientTop
Frame1.Width = TabStrip1.ClientWidth
Frame1.Height = TabStrip1.ClientHeight
To create the effect of placing a new tab and its associated container on top when the tab is selected: 

· Set the size and location of the container in the TabStrip control's internal area to the client-
coordinate properties; and

· Use the ZOrder method to place the selected tab's container control at the front or back of the z-
order.



ClientHeight, ClientWidth, ClientLeft, ClientTop Properties Example

The following example demonstrates using the Client-coordinate properties – ClientLeft, ClientTop, 
ClientWidth, and ClientHeight – along with a Frame control array to display tab – specific objects in 
the internal area of the TabStrip control when switching tabs. The example uses the ZOrder method 
to display the appropriate Frame control and the objects it contains.

To try this example, place a TabStrip control and a three-element Frame control array on the form. In 
one Frame control, place a CheckBox control, in another, place a CommandButton control, and in 
the third, place a TextBox control. Paste the following code into the Load event of the Form object, 
and run the program. Click the various tabs to select them and their contents. 
Private Sub Form_Load()
Dim Tabx As Object
Dim i As Integer

' Sets the caption of the first tab to "Check."
TabStrip1.Tabs(1).Caption = "Check"
' Adds a second tab with "Command" as its caption.
Set Tabx = TabStrip1.Tabs.Add(2, , "Command")
' Adds a third tab with "Text" as its caption.
Set Tabx = TabStrip1.Tabs.Add(3, , "Text")

' Aligns the frame containers with the internal
 ' area of the TabStrip control.

For i = 0 To 2
With TabStrip1

      Frame1(i).Move .ClientLeft, .ClientTop, _
         .ClientWidth, .ClientHeight
   End With

Next
' Puts the first tab's picture box container on top
' at startup.
Frame1(0).ZOrder 0

End Sub

Private Sub TabStrip1_Click()
Frame1(TabStrip1.SelectedItem.Index - 1).ZOrder 0

End Sub



MultiRow Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproMultiRowC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproMultiRowX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproMultiRowA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproMultiRowS"}

Returns or sets a value indicating whether a TabStrip control can display more than one row of tabs.

Syntax
object.MultiRow [= boolean]

The MultiRow property syntax has these parts:

Part Description
object An object expression that evaluates to a TabStrip 

control.
boolean A boolean expression that specifies whether the 

control has more than one row of tabs, as described 
in Settings.

Settings
The settings for boolean are:

Setting Description
True Allows more than one row of tabs.
False Restricts tabs to a single row.

Remarks
The number of rows is automatically set by the width and number of the tabs. The number of rows 
can change if the control is resized, which ensures that the tab wraps to the next row. If MultiRow is 
set to False, and the last tab exceeds the width of the control, a horizontal spin control is added at the
right end of the TabStrip control.

At design time, set the MultiRow property on the General tab in the TabStrip Properties dialog box. At
run time, use code like the following to set the MultiRow property:
'Allows more than one row of tabs in the TabStrip control.
TabStrip1.MultiRow = TRUE



Style Property (TabStrip Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproTabStyleC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproTabStyleX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproTabStyleA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproTabStyleS"}

Returns or sets the appearance – tabs or buttons – of a TabStrip control.

Syntax
object.Style [= value]

The Style property syntax has these parts:

Part Description
object An object expression that evaluates to a TabStrip 

control.
value A constant or integer that determines the 

appearance of the tabbed dialog box, as described in
Settings.

Settings
The settings for value are:

Constant Value Description
tabTabs 0 (Default) Tabs. The tabs appear as 

notebook tabs, and the internal area has
a three-dimensional border around it.

tabButtons 1 Buttons. The tabs appear as regular 
push buttons, and the internal area has 
no border around it.

Remarks
At design time, select the Style property you want – tabs or buttons – from the Style list on the 
General tab of the TabStrip Control Properties dialog box.

At run time, use code like the following to set the Style property:
' Style property set to the Tabs style.
TabStrip1.Style = tabTabs

' Style property set to the Buttons style:
TabStrip1.Style = tabButtons



Tabs Property (TabStrip Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamthItem;vbproBooksOnlineJumpTopic;vbproTabsC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproTabsX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproTabsA"}       
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproTabsS"}

Returns a reference to the collection of Tab objects in a TabStrip control.

Syntax
object.Tabs(index)
The Tabs property syntax has these parts:

Part Description
object An object expression that evaluates to a TabStrip 

control.
index A value that identifies a Tab object in the Tabs 

collection. This may either be the Index property or 
the Key property of the desired Tab object.

Remarks
The Tabs collection can be accessed by using the standard collection methods, such as the Item 
method.



TabFixedHeight, TabFixedWidth Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproTabFixedHeightC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproTabFixedHeightX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproTabFixedHeightA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproTabFixedHeightS"}

Return or set the fixed height and width of all Tab objects in a TabStrip control, but only if the 
TabWidthStyle property is set to tabFixed.

Syntax
object.TabFixedHeight [= integer]
object.TabFixedWidth [= integer]

The TabFixedHeight and TabFixedWidth properties syntax has these parts:

Part Description
object An object expression that evaluates to a TabStrip 

control.
integer The number of pixels or twips of the height or width 

of a TabStrip control. The scale used for integer is 
dependent on the ScaleMode of the container.

Remarks
The TabFixedHeight property applies to all Tab objects in the TabStrip control. It defaults either to 
the height of the font as specified in the Font property, or the height of the ListImage object specified 
by the Image property, whichever is higher, plus a few extra pixels as a border. If the TabWidthStyle 
property is set to tabFixed, and the value of the TabFixedWidth property is set, the width of each 
Tab object remains the same whether you add or delete Tab objects in the control.



TabWidthStyle Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproTabWidthStyleC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproTabWidthStyleX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproTabWidthStyleA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproTabWidthStyleS"}

Returns or sets a value that determines the justification or width of all Tab objects in a TabStrip 
control.

Syntax
object.TabWidthStyle [=value]

The TabWidthStyle property syntax has these parts:

Part Description
object An object expression that evaluates to a TabStrip 

control.
value An integer or constant that determines whether tabs 

are justified or set to a fixed width, as described in 
Settings.

Settings
The settings for value are:

Constant Value Description
tabJustified 0 (Default) Justified. If the MultiRow 

property is set to True, each tab is wide 
enough to accommodate its contents and, 
if needed, the width of each tab is 
increased so that each row of tabs spans 
the width of the control. If the MultiRow 
property is set to False, or if there is only 
a single row of tabs, this setting has no 
effect.

tabNonJustified 1 Nonjustified. Each tab is just wide enough 
to accommodate its contents. The rows 
are not justified, so multiple rows of tabs 
are jagged.

tabFixed 2 Fixed. All tabs have an identical width, 
which is determined by the 
TabFixedWidth property.

Remarks
At design time you can set the TabWidthStyle property on the General tab of the TabStrip Control 
Properties dialog box. The setting of the TabWidthStyle property affects how wide each Tab object 
appears at run time. 

At run time, you can set the TabWidthStyle property as follows:
' Justifies all the tabs in a row to fit the width of the control.
TabStrip1.MultiRow = True
TabStrip1.TabWidthStyle = tabJustified

' Creates ragged rows of tabs.
TabStrip1.MultiRow = True



TabStrip1.TabWidthStyle = tabNonJustified

' Sets the same width for all tabs.
TabStrip1.TabFixedWidth = 500
TabStrip1.TabWidthStyle = tabFixed



Toolbar Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjToolbarC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbobjToolbarX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Properties":"vbobjToolbarP"}                  {ewc HLP95EN.DLL,DYNALINK,"Methods":"vbobjToolbarM"} 
{ewc HLP95EN.DLL,DYNALINK,"Events":"vbobjToolbarE"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjToolbarS"}

A Toolbar control contains a collection of Button objects used to create a toolbar that is associated 
with an application.

Syntax
Toolbar

Remarks
Typically, a toolbar contains buttons that correspond to items in an application's menu, providing a 
graphic interface for the user to access an application's most frequently used functions and 
commands. 

The Toolbar control allows you to create toolbars by adding Button objects to a Buttons collection. 
Each Button object can have optional text or an image, or both, supplied by an associated ImageList
control. You can display an image on a button with the Image property, or display text with the 
Caption property, or both, for each Button object. At design time, you can add Button objects to the 
control with the Toolbar Control Properties dialog box. At run time, you can add or remove buttons 
from the Buttons collection using the Add and Remove methods.

To program the Toolbar, add code to the ButtonClick event to respond to the selected button. You can
also determine the behavior and appearance of each Button object using the Style property. For 
example, if four buttons are assigned the ButtonGroup style, only one button can be pressed at any 
time and at least one button is always pressed.

You can create space for other controls on the toolbar by assigning a Button object the PlaceHolder 
style, then positioning a control over the placeholder. For example, to place a drop-down combo box 
on a toolbar at design time, add a Button object with the PlaceHolder style and size it as wide as a 
ComboBox control. Then place a ComboBox control on the placeholder.

Double clicking a toolbar at run time invokes the Customize Toolbar dialog box, which allows the user 
to hide, display, or rearrange toolbar buttons. To enable or disable the dialog box, use the 
AllowCustomize property. You can also invoke the Customize Toolbar dialog box using the 
Customize method. If you wish to save and restore the state of a toolbar, or allow the user to do so, 
two methods are provided: the SaveToolbar and RestoreToolbar methods. The Change event, 
generated when a toolbar is altered, is typically used to invoke the SaveToolbar method.

Usability is further enhanced by programming ToolTipText descriptions of each Button object. To 
display ToolTips, the ShowTips Property must be set to True. When the user invokes the Customize 
Toolbar dialog box, clicking a button causes a description of the button to be displayed in the dialog 
box; this description can be programmed by setting the Description property.

Distribution Note      The Toolbar control is part of a group of custom controls that are found in the 
COMCTL32.OCX file. To use the Toolbar control in your application, you must add the 
COMCTL32.OCX file to the project. When distributing your application, install the COMCTL32.OCX 
file in the user's Microsoft Windows SYSTEM directory. For more information on how to add a custom 
control to a project, see the Programmer's Guide.



Toolbar Control Example

This example adds Button objects to a Toolbar control using the Add method and assigns images 
supplied by the ImageList control. The behavior of each button is determined by the Style property. 
The code creates buttons that can be used to open and save files and includes a ComboBox control 
that is used to change the backcolor of the form. To try the example, place a Toolbar, ImageList, and
a ComboBox on a form and paste the code into the form's Declarations section. Make sure that you 
insert the ComboBox directly on the Toolbar control. Run the example, click the various buttons and 
select from the combo box.
Private Sub Form_Load()
    ' Create object variable for the ImageList.
    Dim imgX As ListImage

    ' Load pictures into the ImageList control.
    Set imgX = ImageList1.ListImages. _
    Add(, "open", LoadPicture("bitmaps\tlbr_w95\open.bmp"))
    Set imgX = ImageList1.ListImages. _
    Add(, "save", LoadPicture("bitmaps\tlbr_w95\save.bmp"))
    Toolbar1.ImageList = ImageList1

    ' Create object variable for the Toolbar.
    Dim btnX As Button
    ' Add button objects to Buttons collection using 

 ' the
    ' Add method. After creating each button, set both
    ' Description and ToolTipText properties.
    Toolbar1.Buttons.Add , , , tbrSeparator
    Set btnX = Toolbar1.Buttons.Add(, "open", , tbrDefault, "open")
    btnX.ToolTipText = "Open File"
    btnX.Description = btnX.ToolTipText
    Set btnX = Toolbar1.Buttons.Add(, "save", , tbrDefault, "save")
    btnX.ToolTipText = "Save File"
    btnX.Description = btnX.ToolTipText
    Set btnX = Toolbar1.Buttons.Add(, , , tbrSeparator)
 
    ' The next button has the Placeholder style. A 

 ' ComboBox control will be placed on top of this 
 ' button.

    Set btnX = Toolbar1.Buttons.Add(, "combo1", , tbrPlaceholder)
    btnX.Width = 1500 ' Placeholder width to accommodate a combobox.

    Show ' Show form to continue configuring ComboBox.

    ' Configure ComboBox control to be at same location 
 ' as the

    ' Button object with the PlaceHolder style (key = 
  ' "combo1").
    With Combo1
        .Width = Toolbar1.Buttons("combo1").Width
        .Top = Toolbar1.Buttons("combo1").Top
        .Left = Toolbar1.Buttons("combo1").Left
        .AddItem "Black" ' Add colors for text.
        .AddItem "Blue"
        .AddItem "Red"



        .ListIndex = 0
    End With

End Sub

Private Sub Form_Resize()
    ' Configure ComboBox control.
    With Combo1
        .Width = Toolbar1.Buttons("combo1").Width
        .Top = Toolbar1.Buttons("combo1").Top
        .Left = Toolbar1.Buttons("combo1").Left
    End With

End Sub
Private Sub toolbar1_ButtonClick(ByVal Button As Button)
    ' Use the Key property with the SelectCase statement to specify
    ' an action.
    Select Case Button.Key
    Case Is = "open"           ' Open file.
        MsgBox "Add code to open file here!"
    Case Is = "save"              ' Save file.
        MsgBox "Add code to save file here!"
    End Select
End Sub

Private Sub Combo1_Click()
    ' Change backcolor of form using the ComboBox.
    Select Case Combo1.ListIndex
    Case 0
        Form1.BackColor = vbBlack
    Case 1
        Form1.BackColor = vbBlue
    Case 2
        Form1.BackColor = vbRed
    End Select
End Sub



Button Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmSelectCase;vbobjButtonC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbobjButtonX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Properties":"vbobjButtonP"} 
{ewc HLP95EN.DLL,DYNALINK,"Methods":"vbobjButtonM"}                  {ewc HLP95EN.DLL,DYNALINK,"Events":"vbobjButtonE"} 
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbobjButtonS"}

A Button object represents an individual button in the Buttons collection of a Toolbar control.

Remarks
For each Button object, you can add text or a bitmap image, or both, from an ImageList control, and 
set properties to change its state and style.

At design time, use the Insert Button and Remove Button buttons on the Buttons tab in the Toolbar 
Control Properties dialog box to insert and remove Button objects from the Buttons collection. At run
time, you can also add Button objects by using the Add method of the Buttons collection. 

At design time and run time, you can set the Caption, Image, Value, MixedState, and ToolTipText 
properties to change the appearance of each Button object. 

Whenever a button is clicked on the Toolbar control, the ButtonClick event is called with the selected 
Button object passed in as a parameter. To cause some action to occur when a button is clicked, use 
the Index or Key properties in a Select Case statement as in the following code:
Select Case Button.Key
    Case Is = "open" ' Open file.
    ' Add code to Open a file here
    Case Is = "save" ' Save file.
    ' Add code to Save a file here
    Case Else
    ' If any other button is pressed
End Select



Buttons Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcolButtonsCollectionC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbcolButtonsCollectionX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Properties":"vamthItem;vbcolButtonsCollectionP"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Methods":"vamthClear;vamthRemove;vbcolButtonsCollectionM"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Events":"vbcolButtonsCollectionE"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbcolButtonsCollectionS"}

A Buttons collection is a collection of Button objects for a Toolbar control.

Syntax
toolbar.Buttons(index)
toolbar.Buttons.Item(index)

The Buttons collection syntax has these parts:

Part Description
toolbar An object expression that evaluates to a Toolbar 

control.
index An integer or string that uniquely identifies the object 

in the collection. The integer is the value of the Index
property; the string is the value of the Key property.

Remarks
The Buttons collection is a 1-based collection, which means the collection's Index property begins 
with the number 1 (versus 0 in a 0-based collection).

Each item in the collection can be accessed by its index or unique key. For example, to get a 
reference to the third Button object in a collection, use the following syntax:
Dim btnX As Button

' Reference by index number.
Set btnX = Toolbar1.Buttons(3) 

' Or reference by unique key.
Set btnX = Toolbar1.Buttons("third") ' Assuming Key is "third."

' Or use Item method.
Set btnX = Toolbar1.Buttons.Item(3)



Add Method (Buttons Collection)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthAddButtonsC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthAddButtonsX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbmthAddButtonsA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthAddButtonsS"}

Adds a Button object to a Buttons collection and returns a reference to the newly created object. 
Doesn't support named arguments.

Syntax
object.Add(index, key, caption, style, image)
The Add method syntax has these parts:

Part Description
object Required. An object expression that evaluates to a 

Buttons collection.
index Optional. An integer specifying the position where 

you want to insert the Button object. If no index is 
specified, the Button is added to the end of the 
Buttons collection. 

key Optional. A unique string that identifies the Button 
object. Use this value to retrieve a specific Button 
object.

caption Optional. A string that will appear beneath the 
Button object.

style Optional. The style of the Button object. The 
available styles are detailed in the Style Property 
(Button Object).

image Optional. An integer or unique key that specifies a 
ListImage object in an associated ImageList 
control.

Remarks
You can add Button objects at design time using the Buttons tab of the Toolbar Control Properties 
dialog box. At run time, use the Add method to add Button objects as in the following code:
Dim btnButton as Button
Set btnButton = Toolbar1.Buttons.Add(, "open", , tbrDefault, "open")
You associate an ImageList control with the Toolbar through the Toolbar control's ImageList 
property.



AllowCustomize Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproAllowCustomizeC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproAllowCustomizeX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproAllowCustomizeA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproAllowCustomizeS"}

Returns or sets a value determining if a Toolbar control can be customized by the end user with the 
Customize Toolbar dialog box.

Syntax
object.AllowCustomize [= boolean]
The AllowCustomize property syntax has these parts:

Part Description
object An object expression that evaluates to a Toolbar 

control.
boolean A constant or value that determines if the user can 

customize a Toolbar control, as described in 
Settings.

Settings
The settings for boolean are:

Setting Description
True Allows the end user to invoke the Customize Toolbar 

dialog box by double clicking a Toolbar control.
False Customization of the Toolbar control with the 

Customize Toolbar dialog box is not allowed.

Remarks
If the AllowCustomize property is set to True, double-clicking a Toolbar control at run time invokes 
the Customize Toolbar dialog box. 

The Customize Toolbar can also be invoked with the Customize method. 



ButtonClick Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtButtonClickC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbevtButtonClickX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbevtButtonClickA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtButtonClickS"}

Occurs when the user clicks on a Button object in a Toolbar control. 

Syntax
Private Sub object_ButtonClick(ByVal button As Button)
The ButtonClick event syntax has these parts:

Part Description
object An object expression that evaluates to a Toolbar 

control.
button A reference to the clicked Button object.

Remarks
To program an individual Button object's response to the ButtonClick event, use the value of the 
button argument. For example, the following code uses the Key property of the Button object to 
determine the appropriate action.
Private Sub Toolbar1_ButtonClick(ByVal Button As Button)

Select Case Button.Key
Case "Open"

CommonDialog1.ShowOpen
Case "Save"

CommonDialog1.ShowSave
End Select

End Sub
Note      Because the user can rearrange Button objects using the Customize Toolbar dialog box, the 
value of the Index property may not always indicate the position of the button. Therefore, it's 
preferable to use the value of the Key property to retrieve a Button object.



ButtonHeight, ButtonWidth Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproButtonHeightC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproButtonHeightX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproButtonHeightA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproButtonHeightS"}

Return or set the height and width of a Toolbar control's buttons. 

Syntax
object.ButtonHeight [= number]
object.ButtonWidth [= number]
The ButtonHeight, ButtonWidth properties syntax has these parts:

Part Description
object An object expression that evaluates to a Toolbar 

control.
number A numeric expression specifying the dimensions of 

all buttons on the control that have the Button, 
Check, or ButtonGroup style.

Remarks
ButtonHeight and ButtonWidth use the scale unit of the Toolbar control's container. The scale unit is
determined by the ScaleMode property of the container.
By default, the ButtonWidth and ButtonHeight properties are automatically updated to 
accommodate the string in the Caption property or image in the Image property of the Button object.



Buttons Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproButtonsC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproButtonsX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproButtonsA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproButtonsS"}

Returns a reference to a Toolbar control's collection of Button objects.

Syntax
object.Buttons
The object placeholder is an object expression that evaluates to a Toolbar control.

Remarks
You can manipulate Button objects using standard collection methods (for example, the Add and 
Remove methods). Each element in the collection can be accessed by its index, the value of the 
Index property, or by a unique key, the value of the Key property.



Customize Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthCustomizeC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthCustomizeX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbmthCustomizeA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthCustomizeS"}

Invokes the Customize Toolbar dialog box which allows the end user to rearrange or hide Button 
objects on a Toolbar control.

Syntax
object.Customize
The object placeholder is an object expression that evaluates to a Toolbar control.

Remarks
The Toolbar control contains a built-in dialog box that allows the user to hide, display, or rearrange 
buttons on a toolbar. Double-clicking the toolbar calls the Customize method, which invokes the 
dialog box.

Use the Customize method when you wish to restrict the alteration of the toolbar. For example, the 
code below allows the user to customize the toolbar only if a password is given:
Private Sub Command1_Click()

If InputBox("Password:") = "Chorus&Line9" Then
Toolbar1.Customize ' Invoke Customize method.

End If
End Sub
To preserve the state of a Toolbar control, the SaveToolbar method writes to the Windows registry. 
You can restore a Toolbar control to a previous state using the RestoreToolbar method to read the 
information previously saved in the registry.



Description Property (Button Object)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproDescriptionToolbarButtonC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproDescriptionToolbarButtonX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproDescriptionToolbarButtonA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproDescriptionToolbarButtonS"}

Returns or sets the text for a Button object's description, which is displayed in the Customize Toolbar 
dialog box.

Syntax
object.Description [= string]

The Description property syntax has these parts:

Part Description
object An object expression that evaluates to a Button 

object.
string The string displayed in the Customize Toolbar dialog 

box when the button is selected.

Remarks
At run time, the Customize Toolbar dialog box can be invoked either by a user double-clicking the 
Toolbar control or programmatically using the Customize method. In either case, when the user 
selects a button in the dialog box, a description of the button is displayed in the lower-left corner of 
the dialog box. The text for that description is set with the Description property.

You can set the Description text when you add a Button object, as follows:
Dim btnX As Button
' Set Image property to a button with the Key "save."
Set btnX = Toolbar1.Buttons.Add(,"save")
btnX.Description = "Save a file."



MixedState Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproMixedStateC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproMixedStateX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproMixedStateA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproMixedStateS"}

Returns or sets a value that determines if a Button object in a Toolbar control appears in an 
indeterminate state.

Syntax
object.MixedState [= boolean]

The MixedState property syntax has these parts:

Part Description
object An object expression that evaluates to a Button 

object.
boolean A Boolean expression that determines if a Button 

shows the indeterminate state, as specified in 
Settings.

Settings
The settings for boolean are:

Setting Description
True The Button object is in the indeterminate state and 

becomes dimmed.
False The Button object is not in the indeterminate state 

and looks normal.

Remarks
The MixedState property is typically used when a selection contains a variety of attributes. For 
example, if you select text that contains both plain (normal) characters and bold characters, the 
MixedState property is used. The image displayed by the Button object could then be changed to 
indicate its state, which would differ from the Checked and Unchecked value returned by the Value 
property. 



RestoreToolbar Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthRestoreToolbarC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthRestoreToolbarX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbmthRestoreToolbarA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthRestoreToolbarS"}

Restores a toolbar, created with a Toolbar control, to its original state after being customized. Doesn't
support named arguments.

Syntax
object.RestoreToolbar(key As String, subkey As String, value As String)
The RestoreToolbar method syntax has these parts:

Part Description
object Required. An object expression that evaluates to a 

Toolbar control.
key Required. A string expression    that specifies the key 

in the Windows registry where the method retrieves 
the Toolbar information.

subkey Required. A string expression that specifies a subkey
under the key parameter in the registry.

value Required. A string expression that identifies the value
under the subkey where the Toolbar information is 
stored in the registry.

Remarks
To customize the Toolbar control at run time,    use the Customize method in code or if the 
AllowCustomize property is True, the user can customize it by double clicking the control. 

The state of the toolbar can be saved in the registry using the SaveToolbar method. The 
RestoreToolbar method restores the state of a toolbar by reading the registry.

The following code restores the Toolbar control's settings for the current user, assuming they have 
previously been saved with the SaveToolbar method.
Toolbar1.RestoreToolbar "AppName", "User1", "Toolbar1"



SaveToolbar Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthSaveToolbarC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthSaveToolbarX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbmthSaveToolbarA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthSaveToolbarS"}

At run time, saves the state of a toolbar, created with the Toolbar control, in the registry. Doesn't 
support named arguments.

Syntax
object.SaveToolbar(key As String, subkey As String, value As String)
The SaveToolbar method syntax has these parts:

Part Description
object Required. An object expression that evaluates to a 

Toolbar control.
key Required. A string expression specifying the key in 

the registry where the method stores the Toolbar 
information.

subkey Required. A string expression that specifies a 
location in the registry under the key parameter. 

value Required. The Toolbar information to be stored in 
the subkey.

Remarks
To customize the Toolbar control at run time,    use the Customize method in code or if the 
AllowCustomize property is True, the user can customize it by double clicking the control. 

If the key, subkey, or value you specify doesn't exist in the registry, it is created.

To save more than one version of the toolbar, you can change the subkey or value parameter. This 
causes the toolbar to write to a different part of the registry. The following code saves two different 
states of a toolbar after it has been customized.
' Save settings for User1 
Toolbar1.SaveToolbar "AppName", "User1", "Toolbar1"

' Save settings for User2
Toolbar1.SaveToolbar "AppName", "User2", "Toolbar1"
Since the Change event for the Toolbar control occurs after the toolbar has been customized, in most
cases the above code can be placed in the Change event for the toolbar.



Style Property (Button Object)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproStyleButtonC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproStyleButtonX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproStyleButtonA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproStyleButtonS"}

Returns or sets a constant or value that determines the appearance and behavior of a Button object 
in a Toolbar control.

Syntax
object.Style [=value]
The Style property syntax has these parts:

Part Description
object An object expression that evaluates to a Button 

object.
value A constant or integer that determines the 

appearance and behavior of a Button object, as 
specified in Settings.

Settings
The settings for value are:

Constant Value Description
tbrDefault 0 (Default) Button. The button is a regular 

push button.
tbrCheck 1 Check. The button is a check button, 

which can be checked or unchecked.
tbrButtonGroup 2 ButtonGroup. The button remains pressed

until another button in the group is 
pressed. Exactly one button in the group 
can be pressed at any one moment.

tbrSeparator 3 Separator. The button functions as a 
separator with a fixed width of 8 pixels.

tbrPlaceholder 4 Placeholder. The button is like a separator
in appearance and functionality, but has a 
settable width.

Remarks
Buttons that have the ButtonGroup style must be grouped. To distinguish a group, place all Button 
objects with the same style (ButtonGroup) between two Button objects with the Separator style.

You can also place another control on a toolbar by assigning a Button object the PlaceHolder style, 
then drawing a control on to the toolbar. For example, to place a drop-down combo box on a toolbar 
at design time, add a Button object with the PlaceHolder style and size it to the size of a ComboBox 
control. Then place a ComboBox on the placeholder. 

When a Button object is assigned the PlaceHolder style, you can set the value of the Width property 
to accommodate another control placed on the Button. If a Button object has the Button, Check, or 
ButtonGroup style, the height and width are determined by the ButtonHeight and ButtonWidth 
properties. 

If you place a control on a button with the PlaceHolder style, you must use code to align and size the 
control if the form is resized, as shown below:



Private Sub Form_Resize()
' Track a ComboBox by setting its Top, Left, and 
' Width properties
' to the Top, Left, and Width properties of a 
' Button object

With Toolbar1.Buttons("Combo1")
Combo1.Move .Left,.Top,.Width

End With
End Sub



Wrappable Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproWrappableC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproWrappableX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproWrappableA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproWrappableS"}

Returns or sets a value that determines if Toolbar control buttons will automatically wrap when the 
window is resized.

Syntax
object.Wrappable [= boolean]
The Wrappable property syntax has these parts:

Part Description
object An object expression that evaluates to a Toolbar 

control.
boolean A Boolean expression that determines if the Button 

objects on a Toolbar control will wrap, as described 
in Settings.

Settings
The settings for boolean are:

Value Description
True The buttons on the Toolbar control wrap if the form 

is resized.
False The buttons on the Toolbar control won't wrap if the 

form is resized.



Toolbar Control Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"ToolbarConstantsC;vbproBooksOnlineJumpTopic"}

Style Constants
Constant Value Description
tbrDefault 0 The button is a regular push button.
tbrCheck 1 The button is a check button.
tbrButtonGroup 2 The button remains pressed until 

another button in the group is pressed. 
Exactly one button in the group is 
pressed at any time.

tbrSeparator 3 The button functions as a separator 
with a fixed width of 8 pixels.

tbrPlaceholder 4 The button is like a separator in 
appearance and functionality but has a 
settable width.

Value Constants
Constant Value Description
tbrUnpressed 0 The button is not currently pressed or 

checked.
tbrPressed 1 The button is currently pressed or 

checked.



Controls Property (Toolbar Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthControlsCollectionPropertyC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthControlsCollectionPropertyX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthControlsCollectionPropertyA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproControlsCollectionPropertyS"}

Returns a reference to a collection of controls contained on an object.

Syntax
object.Controls(index)
object.Controls.Item(index)

The Controls property syntax has these parts:

Part Description
object An object expression that evaluates to an object in 

the Applies To list.
index A value that identifies a member of a Controls 

collection.

Remarks
The Controls property is similar to the Controls collection on the Form object, and is accessed in a 
similar manner. For example, use the following code to get the Top property of the second control on 
a Toolbar control:
MsgBox Toolbar1.Controls(2).Top
With the Controls property, you can iterate through all the controls on a Tab object or a Toolbar 
control and change the properties of each control as in the following code:
For Each ContainedControl in Toolbar1.Controls

ContainedControl.Width = Toolbar1.Width / Toolbar1.Buttons.Count
Next
Note      The Controls collection refers to controls contained by the Toolbar control, such as a 
ComboBox control, and not the Button objects, which are part of the control itself.





TreeView Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjTreeViewC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbobjTreeViewX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Properties":"vbobjTreeviewP"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Methods":"vbobjTreeviewVbmth"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Events":"vbobjTreeviewE"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbobjTreeViewS"}

A TreeView control displays a hierarchical list of Node objects, each of which consists of a label and 
an optional bitmap. A TreeView is typically used to display the headings in a document, the entries in 
an index, the files and directories on a disk, or any other kind of information that might usefully be 
displayed as a hierarchy.

Syntax
Treeview

Remarks
After creating a TreeView control, you can add, remove, arrange, and otherwise manipulate Node 
objects by setting properties and invoking methods. You can programmatically expand and collapse 
Node objects to display or hide all child nodes. Three events, the Collapse, Expand, and NodeClick 
event, also provide programming functionality.

You can navigate through a tree in code by retrieving a reference to Node objects using Root, 
Parent, Child, FirstSibling, Next, Previous, and LastSibling properties. Users can navigate 
through a tree using the keyboard as well. UP ARROW and DOWN ARROW keys cycle downward 
through all expanded Node objects. Node objects are selected from left to right, and top to bottom. At
the bottom of a tree, the selection jumps back to the top of the tree, scrolling the window if necessary. 
RIGHT ARROW and LEFT ARROW keys also tab through expanded Node objects, but if the RIGHT 
ARROW key is pressed while an unexpanded Node is selected, the Node expands; a second press 
will move the selection to the next Node. Conversely, pressing the LEFT ARROW key while an 
expanded Node has the focus collapses the Node. If a user presses an ANSI key, the focus will jump 
to the nearest Node that begins with that letter. Subsequent pressings of the key will cause the 
selection to cycle downward through all expanded nodes that begin with that letter. 

Several styles are available which alter the appearance of the control. Node objects can appear in 
one of eight combinations of text, bitmaps, lines, and plus/minus signs. 

The TreeView control uses the ImageList control, specified by the ImageList property, to store the 
bitmaps and icons that are displayed in Node objects. A TreeView control can use only one 
ImageList at a time. This means that every item in the TreeView control will have an equal-sized 
image next to it when the TreeView control's Style property is set to a style which displays images.

Distribution Note      The TreeView control is part of a group of ActiveX controls that are found in the 
COMCTL32.OCX file. To use the TreeView control in your application, you must add the 
COMCTL32.OCX file to the project. When distributing your application, install the COMCTL32.OCX 
file in the user's Microsoft Windows System or System32 directory. 



TreeView Control Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"TreeviewConstants;vbproBooksOnlineJumpTopic"}

TreeLine Constants
Constant Value Description
tvwTreeLines 0 Treelines shown.
tvwRootLines 1 Rootlines shown with 

Treelines.

TreeRelationship Constants
Constant Value Description
tvwFirst 0 First Sibling.
tvwLast 1 Last Sibling.
tvwNext 2 Next sibling.
tvwPrevious 3 Previous sibling.
tvwChild 4 Child.

TreeStyle Constants
Constant Value Description
tvwTextOnly 0 Text only.
tvwPictureText 1 Picture and text.
tvwPlusMinusText 2 Plus/minus and text.
tvwPlusPictureText 3 Plus/minus, picture, and

text.
tvwTreelinesText 4 Treelines and text.
tvwTreelinesPictureText 5 Treelines, Picture, and 

Text.
tvwTreelinesPlusMinusText 6 Treelines, Plus/Minus, 

and Text.
tvwTreelinesPlusMinusPictureText 7 Treelines, Plus/Minus, 

Picture, and Text.

LabelEdit Constants
Constant Value Description
tvwAutomatic 0 Label Editing is 

automatic.
tvwManual 1 Label Editing must be 

invoked.



Node Object, Nodes Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjNodeC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbobjNodeX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Properties":"vamthItem;vbobjNodeP"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Methods":"vamthClear;vamthRemove;vbobjNodeM"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Events":"vbobjNodeE"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbobjNodeS"}

· A Node object is an item in a TreeView control that can contain images and text.
· A Nodes collection contains one or more Node objects.

Syntax
treeview.Nodes
treeview.Nodes.Item(index)
The syntax lines above refer to the collection and to individual elements in the collection, respectively,
according to standard collection syntax.

The Node object and Nodes collection syntax have these parts:

Part Description
treeview An object expression that evaluates to a TreeView 

control.
index Either an integer or string that uniquely identifies a 

member of a Nodes collection. The integer is the 
value of the Index property; the string is the value of 
the Key property.

Remarks
Nodes can contain both text and pictures. However, to use pictures, you must associate an 
ImageList control using the ImageList property.

Pictures can change depending on the state of the node; for example, a selected node can have a 
different picture from an unselected node if you set the SelectedImage property to an image from the 
associated ImageList.



Add Method (Nodes Collection)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamthItem;vbmthAddNodeC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthAddNodeX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbmthAddNodeA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthAddNodeS"}

Adds a Node object to a Treeview control's Nodes collection. Doesn't support named arguments.

Syntax
object.Add(relative, relationship, key, text, image, selectedimage)
The Add method syntax has these parts:

Part Description
object Required. An object expression that evaluates to an 

object in the Applies To list.
relative Optional. The index number or key of a pre-existing 

Node object. The relationship between the new node
and this pre-existing node is found in the next 
argument, relationship. 

relationship Optional. Specifies the relative placement of the 
Node object, as described in Settings.

key Optional. A unique string that can be used to retrieve 
the Node with the Item method.

text Required. The string that appears in the Node.
image Optional. The index of an image in an associated 

ImageList control.
selectedimage Optional. The index of an image in an associated 

ImageList control that is shown when the Node is 
selected.

Settings
The settings for relationship are:

Constant Value Description
tvwFirst 0 First. The Node is placed before

all other nodes at the same level
of the node named in relative.

tvwLast 1 Last. The Node is placed after 
all other nodes at the same level
of the node named in relative. 
Any Node added subsequently 
may be placed after one added 
as Last.

tvwNext 2 Next. The Node is placed after 
the node named in relative.

tvwPrevious 3 Previous. The Node is placed 
before the node named in 
relative.

tvwChild 4 (Default) Child. The Node 
becomes a child node of the 
node named in relative.



Note      If no Node object is named in relative, the new node is placed in the last position of the top 
node hierarchy.

Remarks
The Nodes collection is a 1-based collection.

As a Node object is added it is assigned an index number, which is stored in the Node object's Index 
property. This value of the newest member is the value of the Node collection's Count property.

Because the Add method returns a reference to the newly created Node object, it is most convenient 
to set properties of the new Node using this reference. The following example adds several Node 
objects with identical properties:
Dim nodX As Node ' Declare the object variable.
Dim I as Integer ' Declare a counter variable.
For I = 1 to 4

Set nodX = TreeView1.Nodes.Add(,,,"Node " & Cstr(i))
' Use the reference to set other properties, such as Enabled.
nodX.Enabled = True
' Set image property to image 3 in an associated ImageList.
nodX.ExpandedImage = 3

Next I



Add Method Example (Nodes Collection)
The following example adds two Node objects to a TreeView control. To try the example, place a 
TreeView control on a form, and paste the code into the form's Declarations section. Run the 
example, and click the Node object to expand it.
Private Sub Form_Load()

' Set Treeview control properties.
TreeView1.LineStyle = tvwRootLines  ' Linestyle 1

' Add Node objects.
Dim nodX As Node    ' Declare Node variable.
' First node with 'Root' as text.
Set nodX = TreeView1.Nodes.Add(, , "r", "Root")

' This next node is a child of Node 1 ("Root").
Set nodX = TreeView1.Nodes.Add("r", tvwChild, "child1", "Child")

End Sub



Child Property (TreeView Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproChildNodeC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproChildNodeX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproChildNodeA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproChildNodeS"}

Returns a reference to the first child of a Node object in a TreeView control.

Syntax
object.Child
The object placeholder represents an object expression that evaluates to an object in the Applies To 
list. 

Remarks
The Child, FirstSibling, LastSibling, Previous, Parent, Next, and Root properties all return a 
reference to another Node object. Therefore, you can simultaneously reference and perform 
operations on a Node, as follows:
With TreeView1.Nodes(TreeView1.SelectedItem.Index).Child

.Text = "New text"

.Key = "New key"

.SelectedImage = 3
End With
You can also set an object variable to the referenced Node, as follows:
Dim NodChild As Node
' Get a reference to the child of the selected node.
Set NodChild = TreeView1.Nodes(TreeView1.SelectedItem.Index).Child
' Use this reference to perform operations on the child Node.
With nodChild

.Text = "New text" '  Change the text.

.Key = "New key" ' Change key.

.SelectedImage = 3 ' Change SelectedImage.
End With



Child Property Example
This example creates several Node objects. When you click on a Node object, the code first uses the
Children property to determine if the Node has children nodes. If so, the caption of the form displays 
the text of the Child node.
Option Explicit

Private Sub Form_Load()
' This code creates a tree with 3 Node objects.

TreeView1.Style = tvwTreelinesPlusMinusText ' Style 6.
TreeView1.LineStyle = tvwRootLines  'Linestyle 1.

' Add several Node objects.
Dim nodX As Node    ' Create variable.

Set nodX = TreeView1.Nodes.Add(, , "r", "Root")
Set nodX = TreeView1.Nodes.Add("r", tvwChild, "c1", "Child 1")

nodX.EnsureVisible ' Show all nodes.
Set nodX = TreeView1.Nodes.Add("c1", tvwChild, "c2", "Child 2")
Set nodX = TreeView1.Nodes.Add("c1", tvwChild, "c3", "Child 3")
nodX.EnsureVisible ' Show all nodes.

End Sub

Private Sub TreeView1_NodeClick(ByVal Node As Node)
' If the Node does have children, then display the text of
' the child Node.
If Node.Children Then

Caption = Node.Child.Text
End If

End Sub



Children Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproChildrenC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproChildrenX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproChildrenA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproChildrenS"}

Returns the number of child Node objects contained in a Node object.

Syntax
object.Children
The object placeholder represents an object expression that evaluates to an object in the Applies To 
list. 

Remarks
The Children property can be used to check if a Node object has any children before performing an 
operation that affects the children. For example, the following code checks for the presence of child 
nodes before retrieving the Text property of the first Node, using the Child property.
Private Sub TreeView1_NodeClick(ByVal Node As Node)

If Node.Children > 0 Then
MsgBox Node.Child.Text

End If
End Sub



Children Property Example
This example puts several Node objects in a TreeView control. The code checks to see if a Node has
children nodes. If so, then it displays the text of the children nodes. To try the example, place a 
TreeView control on a form and paste the code into the form's Declarations section. Run the 
example, click a Node object to select it, then click the form to see the text of the Node object's 
children.
Option Explicit
Private Sub Form_Click()

Dim strC As String 
Dim N As Integer
If TreeView1.SelectedItem.Children > 0 Then ' There are children.

' Get first child's text, and set N to its index value.
strC = TreeView1.SelectedItem.Child.Text & vbLF 
N = TreeView1.SelectedItem.Child.Index

' While N is not the index of the child node's
' last sibling, get next sibling's text.
While N <> TreeView1.SelectedItem.Child.LastSibling.Index

strC = strC & TreeView1.Nodes(N).Next.Text & vbLF
' Reset N to next sibling's index.
N = TreeView1.Nodes(N).Next.Index

Wend
' Show results.
MsgBox "Children of " & TreeView1.SelectedItem.Text & _
" are: " & vbLF & strC

Else ' There are no children.
MsgBox TreeView1.SelectedItem.Text & " has no children"

End If
End Sub

Private Sub Form_Load()
TreeView1.BorderStyle = 1  ' Ensure border is visible
Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(,,"d","Dates")
Set nodX = TreeView1.Nodes.Add("d",tvwChild,"d89","1989")
Set nodX = TreeView1.Nodes.Add("d",tvwChild,"d90","1990")

' Create children of 1989 node.
Set nodX = TreeView1.Nodes.Add("d89",tvwChild, ,"John")
Set nodX = TreeView1.Nodes.Add("d89",tvwChild, ,"Brent")
Set nodX = TreeView1.Nodes.Add("d89",tvwChild, ,"Eric")
Set nodX = TreeView1.Nodes.Add("d89",tvwChild, ,"Ian")
nodX.EnsureVisible ' Show all nodes.

' Create children of 1990 node.
Set nodX = TreeView1.Nodes.Add("d90",tvwChild, ,"Randy")
Set nodX = TreeView1.Nodes.Add("d90",tvwChild, ,"Ron")
nodX.EnsureVisible ' Show all nodes.

End Sub



Collapse Event (TreeView Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtCollapseC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbevtCollapseX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbevtCollapseA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtCollapseS"}

Generated when any Node object in a TreeView control is collapsed.

Syntax
Private Sub object_Collapse(ByVal node As Node)
The Collapse event syntax has these parts:

Part Description
object An object expression that evaluates to an object in 

the Applies To list.
node A reference to the clicked Node object.

Remarks
The Collapse event occurs before the standard Click event.

There are three methods of collapsing a Node: by setting the Node object's Expanded property to 
False, by double-clicking a Node object, and by clicking a plus/minus image when the TreeView 
control's Style property is set to a style that includes plus/minus images. All of these methods 
generate the Collapse event.

The event passes a reference to the collapsed Node object. The reference can validate an action, as 
in the following example:
Private Sub TreeView1_Collapse(ByVal Node As Node)

If Node.Index = 1 Then
Node.Expanded = True ' Expand the node again.

End If
End Sub



Collapse Event (TreeView Control) Example
This example adds one Node object, with several child nodes, to a TreeView control. When the user 
collapses a Node, the code checks to see how many children the Node has. If it has more than one 
child, the Node is re-expanded. To try the example, place a TreeView control on a form and paste the
code into the form's Declarations section. Run the example, and double-click a Node to collapse it 
and generate the event.
Private Sub Form_Load()

TreeView1.Style = tvwTreelinesPlusMinusText ' Style 6.
Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(,,"DV","Da Vinci")
Set nodX = TreeView1.Nodes.Add("DV",tvwChild,"T","Titian")
Set nodX = TreeView1.Nodes.Add("T",tvwChild,"R","Rembrandt")
Set nodX = TreeView1.Nodes.Add("R",tvwChild,,"Goya")
Set nodX = TreeView1.Nodes.Add("R",tvwChild,,"David")
nodX.EnsureVisible ' Show all nodes.

End Sub

Private Sub TreeView1_Collapse(ByVal Node As Node)
' If the Node has more than one child node,
' keep the node expanded.
Select Case Node.Children 

Case Is > 1
Node.Expanded = True

End Select
End Sub



AfterLabelEdit Event (ListView, TreeView Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtAfterLabelEditC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"svbevtAfterLabelEditX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbevtAfterLabelEditA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtAfterLabelEditS"}

Occurs after a user edits the label of the currently selected Node or ListItem object.

Syntax
Private Sub object_AfterLabelEdit(cancel As Integer, newstring As String)
The AfterLabelEdit event syntax has these parts:

Part Description
object An object expression that evaluates to an object in 

the Applies To list.
cancel An integer that determines if the label editing 

operation is canceled. Any nonzero integer cancels 
the operation. Boolean values are also accepted.

newstring The string the user entered, or Null if the user 
canceled the operation.

Remarks
Both the AfterLabelEdit and the BeforeLabelEdit events are generated only if the LabelEdit property 
is set to 0 (Automatic), or if the StartLabelEdit method is invoked. 

The AfterLabelEdit event is generated after the user finishes the editing operation, which occurs when
the user clicks on another Node or ListItem or presses the ENTER key.

To cancel a label editing operation, set cancel to any nonzero number or to True. If a label editing 
operation is canceled, the previously existing label is restored. 

The newstring argument can be used to test for a condition before canceling an operation. For 
example, the following code cancels the operation if newstring is a number:
Private Sub TreeView1_AfterLabelEdit(Cancel As Integer, NewString As 
String)

If IsNumeric(NewString) Then
MsgBox "No numbers allowed"
Cancel = True

End If
End Sub



AfterLabelEdit Event (ListView, TreeView Controls) Example
This example adds three Node objects to a TreeView control. When you attempt to edit a Node 
object's label, the object's index is checked. If it is 1, the operation is canceled. To try the example, 
place a TreeView control on a form and paste the code into the form's Declarations section. Run the 
example, click twice on the top Node object's label to edit it, type in some text, and press ENTER.

Private Sub Form_Load()
TreeView1.Style = tvwTreelinesText ' Lines and text.
Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(,,,"Parent")
Set nodX = TreeView1.Nodes.Add(1,tvwChild,,"Child1")
Set nodX = TreeView1.Nodes.Add(1,tvwChild,,"Child2")
nodX.EnsureVisible ' Make sure all nodes are visible.

End Sub

Private Sub TreeView1_AfterLabelEdit _
(Cancel As Integer, NewString As String)

' If current node's index is 1, edit is canceled.
If TreeView1.SelectedItem.Index = 1 Then

Cancel = True
MsgBox "Can't replace " & TreeView1.SelectedItem.Text & _
" with " & NewString  

End If
End Sub
This example adds three ListItem objects to a ListView control. When you attempt to edit a ListItem 
object's label, the object's index is checked. If it is 1, the operation is canceled. To try the example, 
place a ListView control on a form and paste the code into the form's Declarations section. Run the 
example, click twice on any ListItem object's label to edit it, type in some text, and press ENTER.
Private Sub Form_Load()

Dim itmX As ListItem
Set itmX = ListView1.ListItems.Add(,,"Item1")
Set itmX = ListView1.ListItems.Add(,,"Item 2")
Set itmX = ListView1.ListItems.Add(,,"Item 3")

End Sub

Private Sub ListView1_AfterLabelEdit _
(Cancel As Integer, NewString As String)

' If current ListItem's index is 1, edit is canceled.
If ListView1.SelectedItem.Index = 1 Then

Cancel = True
MsgBox "Can't replace " & ListView1.SelectedItem.Text & _
" with " & NewString  

End If
End Sub



BeforeLabelEdit Event (ListView, TreeView Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtBeforeLabelEditC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbevtBeforeLabelEditX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbevtBeforeLabelEditA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtBeforeLabelEditS"}

Occurs when a user attempts to edit the label of the currently selected ListItem or Node object.

Syntax
Private Sub object_BeforeLabelEdit(cancel As Integer)
The BeforeLabelEdit event syntax has these parts:

Part Description
object An object expression that evaluates to an object in 

the Applies To list.
cancel An integer that determines if the operation is 

canceled. Any nonzero integer cancels the operation.
The default is 0.

Remarks
Both the AfterLabelEdit and the BeforeLabelEdit events are generated only if the LabelEdit property 
is set to 0 (Automatic), or if the StartLabelEdit method is invoked. 

The BeforeLabelEdit event occurs after the standard Click event.

To begin editing a label, the user must first click the object to select it, and click it a second time to 
begin the operation. The BeforeLabelEdit event occurs after the second click.

To determine which object's label is being edited, use the SelectedItem property. The following 
example checks the index of a selected Node before allowing an edit. If the index is 1, the operation 
is cancelled.
Private Sub TreeView1_BeforeLabelEdit(Cancel As Integer)

If TreeView1.SelectedItem.Index = 1 Then
Cancel = True ' Cancel the operation

End If
End Sub



BeforeLabelEdit Event (ListView, TreeView Controls) Example
This example adds several Node objects to a TreeView control. If you try to edit a label, the Node 
object's index is checked. If it is 1, the edit is prevented. To try the example, place a TreeView control 
on a form and paste the code into the form's Declarations section. Run the example, and try to edit 
the labels.
Private Sub Form_Load()

Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(,,"P1","Parent 1")
Set nodX = TreeView1.Nodes.Add("P1",tvwChild,,"Child 1")
Set nodX = TreeView1.Nodes.Add("P1",tvwChild,,"Child 2")
nodX.EnsureVisible ' Make sure all nodes are visible.

End Sub

Private Sub TreeView1_BeforeLabelEdit(Cancel As Integer)
' Check selected node's index. If it is 1, 
' then cancel the editing operation.
If TreeView1.SelectedItem.Index = 1 Then

MsgBox "Can't edit " + TreeView1.SelectedItem.Text
Cancel = True

End If
End Sub
This example adds several ListItem objects to a ListView control. If you try to edit a label, the 
ListItem object's index is checked. If it is 1, the edit is prevented. To try the example, place a 
ListView control on a form and paste the code into the form's Declarations section. Run the example,
and try to edit the labels.
Private Sub Form_Load()

Dim nodX As ListViewItem
Set nodX = ListView1.ListItems.Add(, , "Item 1")
Set nodX = ListView1.ListItems.Add(, , "Item 2")
Set nodX = ListView1.ListItems.Add(, , "Item 3")

End Sub

Private Sub ListView1_BeforeLabelEdit(Cancel As Integer)
' Check selected item's index. If it is 1,
' then cancel the editing operation.
If ListView1.SelectedItem.Index = 1 Then

MsgBox "Can't edit " + ListView1.SelectedItem.Text
Cancel = True

End If
End Sub



CreateDragImage Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthCreateDragImageC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthCreateDragImageX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbmthCreateDragImageA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthCreateDragImageS"}

Creates a drag image using a dithered version of an object's associated image. This image is typically
used in drag-and-drop operations.

Syntax
object.CreateDragImage
The object placeholder represents an object expression that evaluates to an object in the Applies To 
list.

Remarks
The CreateDragImage method is typically used to assign an image to a DragIcon property at the 
start of a drag-and-drop operation. 



CreateDragImage Method Example
This example adds several Node objects to a TreeView control. After you select a Node object, you 
can drag it to any other Node. To try the example, place TreeView and ImageList controls on a form 
and paste the code into the form's Declaration section. Run the example and drag Node objects 
around to see the result.
' Declare global variables.
Dim indrag As Boolean ' Flag that signals a Drag Drop operation.
Dim nodX As Object ' Item that is being dragged.

Private Sub Form_Load()
' Load a bitmap into an Imagelist control.
Dim imgX As ListImage
Dim BitmapPath As String
BitmapPath = "icons\mail\mail01a.ico"
Set imgX = imagelist1.ListImages.Add(, , LoadPicture(BitmapPath))

' Initialize TreeView control and create several nodes.
TreeView1.ImageList = imagelist1
Dim nodX As Node ' Create a tree.
Set nodX = TreeView1.Nodes.Add(, , , "Parent1", 1)
Set nodX = TreeView1.Nodes.Add(, , , "Parent2", 1)
Set nodX = TreeView1.Nodes.Add(1, tvwChild, , "Child 1", 1)
Set nodX = TreeView1.Nodes.Add(1, tvwChild, , "Child 2", 1)
Set nodX = TreeView1.Nodes.Add(2, tvwChild, , "Child 3", 1)
Set nodX = TreeView1.Nodes.Add(2, tvwChild, , "Child 4", 1)
Set nodX = TreeView1.Nodes.Add(3, tvwChild, , "Child 5", 1)
nodX.EnsureVisible ' Expand tree to show all nodes.

End Sub

Private Sub TreeView1_MouseDown_
(Button As Integer, Shift As Integer, x As Single, y As Single)

Set nodX = TreeView1.SelectedItem ' Set the item being dragged.
End Sub

Private Sub TreeView1_MouseMove _
(Button As Integer, Shift As Integer, x As Single, y As Single)

If Button = vbLeftButton Then ' Signal a Drag operation.
indrag = True ' Set the flag to true.
' Set the drag icon with the CreateDragImage method.
TreeView1.DragIcon = TreeView1.SelectedItem.CreateDragImage
TreeView1.Drag vbBeginDrag ' Drag operation.

End If
End Sub

Private Sub TreeView1_DragDrop_ 
(Source As Control, x As Single, y As Single)

If TreeView1.DropHighlight Is Nothing Then
Set TreeView1.DropHighlight = Nothing
indrag = False
Exit Sub

Else
If nodX = TreeView1.DropHighlight Then Exit Sub
Cls
Print nodX.Text & " dropped on " & TreeView1.DropHighlight.Text
Set TreeView1.DropHighlight = Nothing



indrag = False
End If

End Sub

Private Sub TreeView1_DragOver(Source As Control, x As Single, y As Single,
State As Integer)

If indrag = True Then
' Set DropHighlight to the mouse's coordinates.
Set TreeView1.DropHighlight = TreeView1.HitTest(x, y)

End If
End Sub



DropHighlight Property (ListView, TreeView Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproDropHighlightC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproDropHighlightX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproDropHighlightA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproDropHighlightS"}

Returns or sets a reference to a Node or ListItem object that is highlighted with the system highlight 
color when the cursor moves over it.

Syntax
object.DropHighlight [ =    value]

The DropHighlight property syntax has these parts:

Part Description
object An object expression that evaluates to an object in 

the Applies To list.
value A Node or ListItem object.

Remarks
The DropHighlight property is typically used in combination with the HitTest method in drag-and-
drop operations. As the cursor is dragged over a ListItem or Node object, the HitTest method returns
a reference to any object it is dragged over. In turn, the DropHighlight property is set to the hit 
object, and simultaneously returns a reference to that object. The DropHighlight property then 
highlights the hit object with the system highlight color. The following code sets the DropHighlight 
property to the object hit with the HitTest method.
Private Sub TreeView1_DragOver _
(Source As Control, X As Single, Y As Single, State As Integer)

Set TreeView1.DropHighlight = TreeView1.HitTest(X,Y)
End Sub
Subsequently, you can use the DropHighlight property in the DragDrop event to return a reference to
the last object the source control was dropped over, as shown in the following code:
Private Sub TreeView1_DragDrop _
(Source As Control, x As Single, y As Single)

' DropHighlight returns a reference to object drop occurred over.
Me.Caption = TreeView1.DropHighlight.Text 
' To release the DropHighlight reference, set it to Nothing.
Set TreeView1.DropHighlight = Nothing

End Sub
Note that in the preceding example, the DropHighlight property is set to Nothing after the procedure 
is completed. This must be done to release the highlight effect.



DropHighlight Property Example
This example adds several Node objects to a TreeView control. After you select a Node object, you 
can drag it to any other Node. To try the example, place TreeView and ImageList controls on a form 
and paste the code into the form's Declaration section. Run the example and drag Node objects 
around to see the result.
' Declare global variables.
Dim indrag As Boolean ' Flag that signals a Drag Drop operation.
Dim nodX As Object ' Item that is being dragged.

Private Sub Form_Load()
' Load a bitmap into an Imagelist control.
Dim imgX As ListImage
Dim BitmapPath As String
BitmapPath = "icons\mail\mail01a.ico"
Set imgX = imagelist1.ListImages.Add(, , LoadPicture(BitmapPath))

' Initialize TreeView control and create several nodes.
TreeView1.ImageList = imagelist1
Dim nodX As Node ' Create a tree.
Set nodX = TreeView1.Nodes.Add(, , , "Parent1", 1)
Set nodX = TreeView1.Nodes.Add(, , , "Parent2", 1)
Set nodX = TreeView1.Nodes.Add(1, tvwChild, , "Child 1", 1)
Set nodX = TreeView1.Nodes.Add(1, tvwChild, , "Child 2", 1)
Set nodX = TreeView1.Nodes.Add(2, tvwChild, , "Child 3", 1)
Set nodX = TreeView1.Nodes.Add(2, tvwChild, , "Child 4", 1)
Set nodX = TreeView1.Nodes.Add(3, tvwChild, , "Child 5", 1)
nodX.EnsureVisible ' Expand tree to show all nodes.

End Sub

Private Sub TreeView1_MouseDown_
(Button As Integer, Shift As Integer, x As Single, y As Single)

Set nodX = TreeView1.SelectedItem ' Set the item being dragged.
End Sub

Private Sub TreeView1_MouseMove _
(Button As Integer, Shift As Integer, x As Single, y As Single)

If Button = vbLeftButton Then ' Signal a Drag operation.
indrag = True ' Set the flag to true.
' Set the drag icon with the CreateDragImage method.
TreeView1.DragIcon = TreeView1.SelectedItem.CreateDragImage
TreeView1.Drag vbBeginDrag ' Drag operation.

End If
End Sub

Private Sub TreeView1_DragDrop_ 
(Source As Control, x As Single, y As Single)

If TreeView1.DropHighlight Is Nothing Then
Set TreeView1.DropHighlight = Nothing
indrag = False
Exit Sub

Else
If nodX = TreeView1.DropHighlight Then Exit Sub
Cls
Print nodX.Text & " dropped on " & TreeView1.DropHighlight.Text
Set TreeView1.DropHighlight = Nothing



indrag = False
End If

End Sub

Private Sub TreeView1_DragOver(Source As Control, x As Single, y As Single,
State As Integer)

If indrag = True Then
' Set DropHighlight to the mouse's coordinates.
Set TreeView1.DropHighlight = TreeView1.HitTest(x, y)

End If
End Sub



EnsureVisible Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthEnsureVisibleC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthEnsureVisibleX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbmthEnsureVisibleA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthEnsureVisibleS"}

Ensures that a specified ListItem or Node object is visible. If necessary, this method expands Node 
objects and scrolls the TreeView control. The method only scrolls the ListView control.

Syntax
object.EnsureVisible
The object placeholder represents an object expression that evaluates to an object in the Applies To 
list.

Return Values
Value Description
True The method returns True if the ListView or 

TreeView control must scroll and/or expand to 
expose the object.

False The method returns False if no scrolling and/or 
expansion is required.

Remarks
Use the EnsureVisible method when you want a particular Node or ListItem object, which might be 
hidden deep in a TreeView or ListView control, to be visible.



EnsureVisible Method Example
This example adds many nodes to a TreeView control, and uses the EnsureVisible method to scroll 
and expand the tree. To try the example, place a TreeView control on a form and paste the code into 
the form's Declarations section. Run the example, and click the form to see the TreeView expand.
Private Sub Form_Load()

Dim nodX As Node
Dim i as Integer
TreeView1.BorderStyle = FixedSingle ' Show borders.

Set nodX = TreeView1.Nodes.Add(,,,"Root") ' Add first node.
For i = 1 to 15 ' Add 15 nodes

Set nodX = TreeView1.Nodes.Add(i,,,"Node " & CStr(i))
Next i

Set nodX = TreeView1.Nodes.Add(,,,"Bottom") ' Add one with text.
Set nodX = TreeView1.Nodes.Add(i,,,"Expanded") ' Add child to node.
Set nodX = TreeView1.Nodes.Add(i+1,,,"Show me") ' Add a final child.

End Sub

Private Sub Form_Click()
' Tree will scroll and expand when you click the form.
TreeView1.Nodes(TreeView1.Nodes.Count).EnsureVisible

End Sub



Expand Event (TreeView Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtExpandC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbevtExpandX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbevtExpandTreeviewA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtExpandTreeviewS"}

Occurs when a Node object in a TreeView control is expanded, that is, when its child nodes become 
visible.

Syntax
Private Sub object_Expand(ByVal node As Node)
The Expand event syntax has these parts:

Part Description
object An object expression that evaluates to an object in 

the Applies To list.
node A reference to the expanded Node object.

Remarks
The Expand event occurs after the Click and DblClick events.

The Expand event is generated in three ways: when the user double-clicks a Node object that has 
child nodes; when the Expanded property for a Node object is set to True; and when the plus/minus 
image is clicked. Use the Expand event to validate an object, as in the following example:
Private Sub TreeView1_Expand(ByVal Node As Node)

If Node.Index <> 1 Then
Node.Expanded = False ' Prevent expand.

End If
End Sub



Expand Event Example
This example adds several Node objects to a TreeView control. When a Node is expanded, the 
Expand event is generated, and information about the Node is displayed. To try the example, place a 
TreeView control on a form and paste the code into the form's Declarations section. Run the 
example, and expand the nodes.

Private Sub Form_Load()
Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(, , "RP", "Root Parent")
Set nodX = TreeView1.Nodes.Add("RP", tvwChild, "C1", "Child1")
Set nodX = TreeView1.Nodes.Add("C1", tvwChild, "C2", "Child2")
Set nodX = TreeView1.Nodes.Add("C2", tvwChild, "C3", " Child3")
Set nodX = TreeView1.Nodes.Add("C2", tvwChild, "C4", " Child4")
TreeView1.Style = tvwTreelinesPlusMinusText ' Style 6.
TreeView1.LineStyle = tvwRootLines ' Style 1

End Sub

Private Sub TreeView1_Expand(ByVal Node As Node)
Select Case Node.Key Like "C*"
Case Is = True

MsgBox Node.Text & " is a child node."
End Select

End Sub



Expanded Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproExpandedC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproExpandedX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproExpandedNodeA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproExpandedNodeS"}

Returns or sets a value that determines whether a Node object in a TreeView control is currently 
expanded or collapsed. 

Syntax
object.Expanded[= boolean]

The Expanded property syntax has these parts:

Part Description
object An object expression that evaluates to an object in 

the Applies To list.
boolean A Boolean expression that specifies whether the 

node is expanded or collapsed.

The settings for boolean are:

Setting Description
True The Node is currently expanded.
False The Node is currently collapsed.

Remarks
You can use the Expanded property to programmatically expand a Node object. The following code 
has the same effect as double-clicking the first Node:
TreeView1.Nodes(1).Expanded = True
When a Node object is expanded, the Expand event is generated.

If a Node object has no child nodes, the property value is ignored.



Expanded Property Example
This example adds several Node objects to a TreeView control. When you click the form, the 
Expanded property for each Node is set to True. To try the example, place a TreeView control on a 
form and paste the code into the form's Declarations section. Run the example, and click the form to 
expand all the Node objects.
Private Sub Form_Load()

Dim nodX As Node
Dim i as Integer
TreeView1.BorderStyle = vbFixedSingle ' Show border.

' Create a root node.
Set nodX = TreeView1.Nodes.Add(,,"root","Root")

For i = 1 to 5 ' Add 5 child nodes.
Set nodX = TreeView1.Nodes.Add(i,tvwChild,,"Node " & CStr(i))

Next i
End Sub

Private Sub Form_Click()
Dim I as Integer
For I = 1 to TreeView1.Nodes.Count

' Expand all nodes.
TreeView1.Nodes(i).Expanded = True

Next I
End Sub



ExpandedImage Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproExpandedImageC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproExpandedImageX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproExpandedImageA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproExpandedImageS"}

Returns or sets the index or key value of a ListImage object in an associated ImageList control; the 
ListImage is displayed when a Node object is expanded.

Syntax
object.ExpandedImage[ = number]

The ExpandedImage property syntax has these parts:

Part Description
object An object expression that evaluates to an object in 

the Applies To list.
number A numeric expression or string expression that 

specifies, respectively, the index value or the key 
value of the image to be displayed.

Remarks
This property allows you to change the image associated with a Node object when the user double-
clicks the node or when the Node object's Expanded property is set to True.



FirstSibling Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproFirstSiblingC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproFirstSiblingX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproFirstSiblingA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproFirstSiblingS"}

Returns a reference to the first sibling of a Node object in a TreeView control.

Syntax
object.FirstSibling
The object placeholder represents an object expression that evaluates to an object in the Applies To 
list.

Remarks
The first sibling is the Node that appears in the first position in one level of a hierarchy of nodes. 
Which Node actually appears in the first position depends on whether or not the Node objects at that 
level are sorted, which is determined by the Sorted property.

The Child, FirstSibling, LastSibling, Previous, Parent, Next, and Root properties all return a 
reference to another Node object. Therefore you can simultaneously reference and perform 
operations on a Node, as follows:
With TreeView1.Nodes(x).FirstSibling

.Text = "New text"

.Key = "New key"

.SelectedImage = 3
End With
You can also set an object variable to the referenced Node, as follows:
Dim NodFirstSib As Node
' Get a reference to the first sibling of Node x.
Set NodFirstSib = TreeView1.Nodes(x).FirstSibling
' Use this reference to perform operations on the first sibling Node.
With nodFirstSib

.Text = "New text" '  Change the text.

.Key = "New key" ' Change key.

.SelectedImage = 3 ' Change SelectedImage.
End With



FirstSibling Property Example
This example adds several nodes to a TreeView control. The FirstSibling property, in conjunction 
with the Next property and the LastSibling property, is used to navigate through a clicked Node 
object's hierarchy . To try the example, place a TreeView control on a form and paste the code into 
the form's Declarations section. Run the example and click the various nodes to see what is returned.
Private Sub Form_Load()

Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(,,"dad","Mike") ' A first sibling.
Set nodX = TreeView1.Nodes.Add(,,"mom","Carol")
Set nodX = TreeView1.Nodes.Add(,,,"Alice")

' Marsha is the FirstSibling.
Set nodX = TreeView1.Nodes.Add("mom",tvwChild,,"Marsha")
Set nodX = TreeView1.Nodes.Add("mom",tvwChild,,"Jan")
Set nodX = TreeView1.Nodes.Add("mom",tvwChild,,"Cindy")
nodX.EnsureVisible ' Show all nodes.

' Greg is the FirstSibling.
Set nodX = TreeView1.Nodes.Add("dad",tvwChild,,"Greg") 
Set nodX = TreeView1.Nodes.Add("dad",tvwChild,,"Peter")
Set nodX = TreeView1.Nodes.Add("dad",tvwChild,,"Bobby")
nodX.EnsureVisible ' Show all nodes.

End Sub
Private Sub TreeView1_NodeClick(ByVal Node As Node)

Dim strText As String
Dim n As Integer
' Set n to FirstSibling's index.
n = Node.FirstSibling.Index
' Place FirstSibling's text & linefeed in string variable.
strText = Node.FirstSibling.Text & vbLF
While n <> Node.LastSibling.Index
' While n is not the index of the last sibling, go to the
' next sibling and place its text into the string variable.

strText = strText & TreeView1.Nodes(n).Next.Text & vbLF
' Set n to the next node's index.

n = TreeView1.Nodes(n).Next.Index
Wend
MsgBox strText ' Display results.

End Sub



FullPath Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproFullPathC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproFullPathX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproFullPathA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproFullPathS"}

Returns the fully qualified path of the referenced Node object in a TreeView control. When you assign
this property to a string variable, the string is set to the FullPath of the node with the specified index.

Syntax
object.FullPath
The object placeholder represents an object expression that evaluates to an object in the Applies To 
list.

Remarks
The fully qualified path is the concatenation of the text in the referenced Node object's Text property 
with the Text property values of all its ancestors. The value of the PathSeparator property 
determines the delimiter.



FullPath Property Example
This example adds several Node objects to a TreeView control and displays the fully qualified path of
each when selected. To try the example, place a TreeView control on a form and paste the code into 
the form's Declarations section. Run the example, then select a node and click the form to display the 
Node object's full path.
Private Sub Form_Load()

Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(,,,"Root")
Set nodX = TreeView1.Nodes.Add(1,tvwChild,,"Dir1")
Set nodX = TreeView1.Nodes.Add(2,tvwChild,,"Dir2")
Set nodX = TreeView1.Nodes.Add(3,tvwChild,,"Dir3")
Set nodX = TreeView1.Nodes.Add(4,tvwChild,,"Dir4")
nodX.EnsureVisible ' Show all nodes.
TreeView1.Style = tvwTreelinesText ' Style 4.

End Sub

Private Sub TreeView1_NodeClick(ByVal Node As Node)
MsgBox Node.FullPath

End Sub



GetVisibleCount Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthGetVisibleCountC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthGetVisibleCountX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbmthGetVisibleCountA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthGetVisibleCountS"}

Returns the number of Node objects that fit in the internal area of a TreeView control.

Syntax
object.GetVisibleCount
The object placeholder represents an object expression that evaluates to an object in the Applies To 
list.

Remarks
The number of Node objects is determined by how many lines can fit in a window. The total number 
of lines possible is determined by the height of the control and the Size property of the Font object. 
The count includes the partially visible item at the bottom of the list.

You can use the GetVisibleCount property to make sure that a minimum number of lines are visible 
so the user can accurately assess a hierarchy. If the minimum number of lines is not visible, you can 
reset the size of the TreeView using the Height property.

If a particular Node object must be visible, use the EnsureVisible method to scroll and expand the 
TreeView control.



GetVisibleCount Method Example
This example adds several Node objects to a TreeView control. When you click the form, the code 
uses the GetVisibleCount method to check how many lines are visible, and then enlarges the control
to show all the objects. To try the example, place a TreeView control on a form and paste the code 
into the form's Declarations section. Run the example, and click the form to enlarge the control.
Private Sub Form_Load()

Dim nodX As Node
Dim i as Integer
TreeView1.BorderStyle = 1 ' Show border.
For i = 1 to 20

Set nodX = TreeView1.Nodes.Add(,,,"Node " & CStr(i))
Next I
TreeView1.Height = 1500 ' TreeView is short, for comparison's sake.

End Sub

Private Sub Form_Click()
While Treeview1.GetVisibleCount < 20 

' Make the treeview larger.
TreeView1.Height = TreeView1.Height + TreeView1.Font.Size

Wend
End Sub



HitTest Method (ListView, TreeView Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthHitTestC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthHitTestX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbmthHitTestA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthHitTestS"}

Returns a reference to the ListItem object or Node object located at the coordinates of x and y. Most 
often used with drag-and-drop operations to determine if a drop target item is available at the present 
location.

Syntax
object.HitTest (x As Single, y As Single)
The HitTest method syntax has these parts:

Part Description
object An object expression that evaluates to an object in 

the Applies To list.
x,y Coordinates of a target object, which is either a 

Node object or a ListItem object.

Remarks
If no object exists at the specified coordinates, the HitTest method returns Nothing. 

The HitTest method is most frequently used with the DropHighlight property to highlight an object as
the mouse is dragged over it. The DropHighlight property requires a reference to a specific object 
that is to be highlighted. In order to determine that object, the HitTest method is used in combination 
with an event that returns x and y coordinates, such as the DragOver event, as follows:
Private Sub TreeView1_DragOver _
(Source As Control, X As Single, Y As Single, State As Integer)

Set TreeView1.DropHighlight = TreeView1.HitTest(X,Y)
End Sub
Subsequently, you can use the DropHighlight property in the DragDrop event to return a reference to
the last object the source control was dropped over, as shown in the following code:
Private Sub TreeView1_DragDrop _
(Source As Control, x As Single, y As Single)

' DropHighlight returns a reference to object drop occurred over.
Me.Caption = TreeView1.DropHighlight.Text 
' To release the DropHighlight reference, set it to Nothing.
Set TreeView1.DropHighlight = Nothing

End Sub
Note in the preceding example that the DropHighlight property is set to Nothing after the procedure 
is completed. This must be done to release the highlight effect.



HitTest Method (ListView, TreeView Controls) Example
This example adds several Node objects to a TreeView control. After you select a Node object, you 
can drag it to any other Node. To try the example, place TreeView and ImageList controls on a form 
and paste the code into the form's Declaration section. Run the example and drag Node objects 
around to see the result.
' Declare global variables.
Dim indrag As Boolean ' Flag that signals a Drag Drop operation.
Dim nodX As Object ' Item that is being dragged.

Private Sub Form_Load()
' Load a bitmap into an Imagelist control.
Dim imgX As ListImage
Dim BitmapPath As String
BitmapPath = "icons\mail\mail01a.ico"
Set imgX = imagelist1.ListImages.Add(, , LoadPicture(BitmapPath))

' Initialize TreeView control and create several nodes.
TreeView1.ImageList = imagelist1
Dim nodX As Node ' Create a tree.
Set nodX = TreeView1.Nodes.Add(, , , "Parent1", 1)
Set nodX = TreeView1.Nodes.Add(, , , "Parent2", 1)
Set nodX = TreeView1.Nodes.Add(1, tvwChild, , "Child 1", 1)
Set nodX = TreeView1.Nodes.Add(1, tvwChild, , "Child 2", 1)
Set nodX = TreeView1.Nodes.Add(2, tvwChild, , "Child 3", 1)
Set nodX = TreeView1.Nodes.Add(2, tvwChild, , "Child 4", 1)
Set nodX = TreeView1.Nodes.Add(3, tvwChild, , "Child 5", 1)
nodX.EnsureVisible ' Expand tree to show all nodes.

End Sub

Private Sub TreeView1_MouseDown_
(Button As Integer, Shift As Integer, x As Single, y As Single)

Set nodX = TreeView1.SelectedItem ' Set the item being dragged.
End Sub

Private Sub TreeView1_MouseMove _
(Button As Integer, Shift As Integer, x As Single, y As Single)

If Button = vbLeftButton Then ' Signal a Drag operation.
indrag = True ' Set the flag to true.
' Set the drag icon with the CreateDragImage method.
TreeView1.DragIcon = TreeView1.SelectedItem.CreateDragImage
TreeView1.Drag vbBeginDrag ' Drag operation.

End If
End Sub

Private Sub TreeView1_DragDrop_ 
(Source As Control, x As Single, y As Single)

If TreeView1.DropHighlight Is Nothing Then
Set TreeView1.DropHighlight = Nothing
indrag = False
Exit Sub

Else
If nodX = TreeView1.DropHighlight Then Exit Sub
Cls
Print nodX.Text & " dropped on " & TreeView1.DropHighlight.Text
Set TreeView1.DropHighlight = Nothing



indrag = False
End If

End Sub

Private Sub TreeView1_DragOver(Source As Control, x As Single, y As Single,
State As Integer)

If indrag = True Then
' Set DropHighlight to the mouse's coordinates.
Set TreeView1.DropHighlight = TreeView1.HitTest(x, y)

End If
End Sub



Indentation Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproIndentationC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproIndentationX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproIndentationA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproIndentationS"}

Returns or sets the width of the indentation for a TreeView control. Each new child Node object is 
indented by this amount.

Syntax
object.Indentation[ = number]

The Indentation property syntax has these parts:

Part Description
object An object expression that evaluates to an object in 

the Applies To list.
number An integer specifying the width that each child Node 

is indented. 

Remarks
If you change the Indentation property at run time, the TreeView is redrawn to reflect the new width. 
The property value cannot be negative.



Indentation Property Example
This example adds several Node objects to a TreeView control, while the Indentation property is 
shown in the form's caption. An OptionButton control array provides alternate values for the 
Indentation width. To try the example, place a TreeView control and a control array of three 
OptionButton controls on a form, and paste the code into the form's Declarations section. Run the 
example, and click an OptionButton to change the Indentation property.
Private Sub Form_Load()

' Label OptionButton controls with Indentation choices.
Option1(0).Caption = "250"
Option1(1).Caption = "500"
Option1(2).Caption = "1000"

' Select the first option, and set the indentation to 250 initially
Option1(0).Value = True
Treeview1.Indentation = 250

Dim nodX As Node
Dim i As Integer

Set nodX = TreeView1.Nodes.Add(,,,CStr(1)) ' Add first node.

For i = 1 To 6 ' Add 6 nodes.
Set nodX = TreeView1.Nodes.Add(i,tvwChild,,CStr(i + 1))

Next i

nodX.EnsureVisible ' Makes sure all nodes are visible.
Form1.Caption = "Indentation = " & TreeView1.Indentation

End Sub

Private Sub Option1_Click(Index as Integer) ' Change Indentation with 
OptionButton value.

TreeView1.Indentation = Val(Option1(Index).Caption)
Form1.Caption = "Indentation = " & TreeView1.Indentation

End Sub



LabelEdit Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproLabelEditC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproLabelEditX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproLabelEditA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproLabelEditS"}

Returns or sets a value that determines if a user can edit labels of ListItem or Node objects in a 
ListView or TreeView control.

Syntax
object.LabelEdit [ = integer]

The LabelEdit property syntax has these parts:

Part Description
object An object expression that evaluates to an object in 

the Applies To list.
integer An integer that determines whether the label of a 

Node or ListItem object can be edited, as specified 
in Settings.

Settings
The settings for integer are:

Constant Value Description
ListView:
    lvwAutomatic

TreeView:
    tvwAutomatic

0 (Default) Automatic. The 
BeforeLabelEdit event is 
generated when the user
clicks the label of a 
selected node.

ListView:
    lvwManual

TreeView:
    tvwManual

1 Manual. The 
BeforeLabelEdit event is 
generated only when the 
StartLabelEdit method 
is invoked.

Remarks
Label editing of an object is initiated when a selected object is clicked (if the LabelEdit property is set 
to Automatic). That is, the first click on an object will select it; a second (single) click on the object will 
initiate the label editing operation.

The LabelEdit property, in combination with the StartLabelEdit method, allows you to 
programmatically determine when and which labels can be edited. When the LabelEdit property is 
set to 1, no label can be edited unless the StartLabelEdit method is invoked. For example, the 
following code allows the user to edit a Node object's label by clicking a Command button:
Private Sub Command1_Click()

' Determine if the right Node is selected.
If TreeView1.SelectedItem.Index = 1 Then

TreeView1.StartLabelEdit ' Let user begin editing.
End If

End Sub



LabelEdit Property Example
This example initiates label editing when you click the Command button. It allows a Node object to be
edited unless it is a root Node. The LabelEdit property must be set to Manual. To try the example, 
place a TreeView control and a CommandButton on a form. Paste the code into the form's 
Declarations section. Run the example, select a node to edit, and press the CommandButton.
Private Sub Form_Load()

Dim nodX As Node
Dim i As Integer
TreeView1.LabelEdit = tvwManual ' Set property to manual.
Set nodX = TreeView1.Nodes.Add(,,," Node 1") ' Add first node.

For i = 1 to 5 ' Add 5 nodes.
Set nodX = TreeView1.Nodes.Add(i,tvwChild,,"Node " & CStr(i + 1))

Next I

nodX.EnsureVisible ' Show all nodes.
End Sub

Private Sub Command1_Click()
' Invoke the StartLabelEdit method on the selected node,
' which triggers the BeforeLabelEdit event.
TreeView1.StartLabelEdit 

End Sub

Private Sub TreeView_BeforeLabelEdit (Cancel as Integer)
' If the selected item is the root, then cancel the edit.
If TreeView1.SelectedItem Is TreeView1.SelectedItem.Root Then

Cancel = True
End If

End Sub

Private Sub TreeView_AfterLabelEdit _
(Cancel As Integer, NewString As String)

' Assume user has entered some text and pressed the ENTER key.
' Any nonempty string will be valid.
If Len(NewString) = 0 Then

Cancel = True
End If

End Sub



LastSibling Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproLastSiblingC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproLastSiblingX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproLastSiblingA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproLastSiblingS"}

Returns a reference to the last sibling of a Node object in a TreeView control. 

Syntax
object.LastSibling
The object placeholder represents an object expression that evaluates to an object in the Applies To 
list.

Remarks
The last sibling is the Node that appears in the last position in one level of a hierarchy of nodes. 
Which Node actually appears in the last position depends on whether or not the Node objects at that 
level are sorted, which is determined by the Sorted property. To sort the Node objects at one level, 
set the Sorted property of the Parent node to True. The following code demonstrates this:
Private Sub TreeView1_NodeClick(ByVal Node As Node)

Node.Parent.Sorted = True
End Sub
The Child, FirstSibling, LastSibling, Previous, Parent, Next, and Root properties all return a 
reference to another Node object. Therefore, you can simultaneously reference and perform 
operations on a Node, as follows:
With TreeView1.Nodes(x).LastSibling

.Text = "New text"

.Key = "New key"

.SelectedImage = 3
End With
You can also set an object variable to the referenced Node, as follows:
Dim NodLastSib As Node
' Get a reference to the last sibling of Node x.
Set NodLastSib = TreeView1.Nodes(x).LastSibling
' Use this reference to perform operations on the sibling Node.
With nodLastSib

.Text = "New text" '  Change the text.

.Key = "New key" ' Change key.

.SelectedImage = 3 ' Change SelectedImage.
End With



LastSibling Property Example
This example adds several Node objects to a TreeView control. The LastSibling property, in 
conjunction with the Next property and the FirstSibling property, is used to navigate through a 
clicked Node object's hierarchy level. To try the example, place a TreeView control on a form and 
paste the code into the form's Declarations section. Run the example, and click the various nodes to 
see what is returned.
Private Sub Form_Load()

Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(,,"dad","Mike")
Szet nodX = TreeView1.Nodes.Add(,,"mom","Carol")
' Alice is the LastSibling.
Set nodX = TreeView1.Nodes.Add(,,,"Alice")

Set nodX = TreeView1.Nodes.Add("mom",tvwChild,,"Marsha")
Set nodX = TreeView1.Nodes.Add("mom",tvwChild,,"Jan")
' Cindy is the LastSibling.
Set nodX = TreeView1.Nodes.Add("mom",tvwChild,,"Cindy")
nodX.EnsureVisible ' Show all nodes.

Set nodX = TreeView1.Nodes.Add("dad",tvwChild,,"Greg") 
Set nodX = TreeView1.Nodes.Add("dad",tvwChild,,"Peter")
' Bobby is the LastSibling.
Set nodX = TreeView1.Nodes.Add("dad",tvwChild,,"Bobby")
nodX.EnsureVisible ' Show all nodes.

End Sub
Private Sub TreeView1_NodeClick(ByVal Node As Node)

Dim strText As String
Dim n As Integer
' Set n to FirstSibling's index.
n = Node.FirstSibling.Index
' Place FirstSibling's text & linefeed in string variable.
strText = Node.FirstSibling.Text & vbLF
While n <> Node.LastSibling.Index
' While n is not the index of the last sibling, go to the
' next sibling and place its text into the string variable

strText = strText & TreeView1.Nodes(n).Next.Text & vbLF
' Set n to the next node's index.

n = TreeView1.Nodes(n).Next.Index
Wend
MsgBox strText ' Display results.

End Sub



LineStyle Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproLineStyleC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproLineStyleX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproLineStyleA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproLineStyleS"}

Returns or sets the style of lines displayed between Node objects.

Syntax
object.LineStyle [ = number]

The LineStyle property syntax has these parts:

Part Description
object An object expression that evaluates to an object in 

the Applies To list.
number A value or constant that specifies the line style as 

shown in Settings.

Settings
The settings for number are:

Constant Value Description
tvwTreeLines 0 (Default) Tree lines. Displays 

lines between Node siblings 
and their parent Node.

tvwRootLines 1 Root Lines. In addition to 
displaying lines between 
Node siblings and their parent
Node, also displays lines 
between the root nodes.

Remarks
You must set the Style property to a style that includes tree lines.



LineStyle, Style Properties Example
This example adds several Node objects with images to a TreeView control. You can change the 
LineStyle and Style properties by selecting the alternate styles in two OptionButton control arrays. 
To try the example, place a TreeView control, an ImageList control, and two OptionButton control 
arrays (one with two buttons and one with eight) on a form, and paste the code into the form's 
Declarations section. Run the example, and click any OptionButton to change the LineStyle and 
Style properties.
Private Sub Form_Load()

' Add an image to the ImageList control.
Dim imgX As ListImage
Set imgX = ImageList1.ListImages. _
Add(,,LoadPicture("bitmaps\outline\leaf.bmp"))

TreeView1.ImageList = ImageList1 ' Initialize ImageList.

' Label OptionButton controls with line styles choices.
Option1(0).Caption = "TreeLines"
Option1(1).Caption = "RootLines"

' Select the first option, and set the LineStyle to TreeLines initially
Option1(0).Value = True
Treeview1.LineStyle = tvwTreeLines

' Label OptionButton controls with Style choices.
Option2(0).Caption = "Text only"
Option2(1).Caption = "Image & text"
Option2(2).Caption = "Plus/minus & text"
Option2(3).Caption = "Plus/minus, image & text"
Option2(4).Caption = "Lines & text"
Option2(5).Caption = "Lines, image & Text"
Option2(6).Caption = "Lines, plus/minus & Text"
Option2(7).Caption = "Lines, plus/minus, image & text"

' Select the last option, and set the initial Style
Option2(7).Value = True
Treeview1.Style = tvwTreelinesPlusMinusPictureText

Dim nodX As Node
Dim i as Integer
' Create root node.
Set nodX = TreeView1.Nodes.Add(,,,"Node " & "1",1)

For i = 1 to 5 ' Add 5 nodes.
Set nodX = TreeView1.Nodes. _
Add(i,tvwChild,,"Node " & CStr(i + 1),1)

Next I
nodX.EnsureVisible ' Show all nodes.

End Sub

Private Sub Option1_Click(Index as Integer)
' Change line style from OptionButton.
TreeView1.LineStyle = Index

End Sub

Private Sub Option2_Click(Index as Integer)



' Change Style with OptionButton.
TreeView1.Style = Index
Form1.Caption = "TreeView Style = " & Option2(Index).Caption

End Sub



Next Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproNextC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproNextX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproNextA"}        
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproNextS"}

Returns a reference to the next sibling Node of a TreeView control's Node object. 

Syntax
object.Next
The object placeholder represents an object expression that evaluates to an object in the Applies To 
list.

Remarks
The Child, FirstSibling, LastSibling, Previous, Parent, Next, and Root properties all return a 
reference to another Node object. Therefore you can simultaneously reference and perform 
operations on a Node, as follows:
With TreeView1.Nodes(x).Child

.Text = "New text"

.Key = "New key"

.SelectedImage = 3
End With
You can also set an object variable to the referenced Node, as follows:
Dim NodChild As Node
' Get a reference to the child of Node x.
Set NodChild = TreeView1.Nodes(x).Child
' Use this reference to perform operations on the child Node.
With nodChild

.Text = "New text" '  Change the text.

.Key = "New key" ' Change key.

.SelectedImage = 3 ' Change SelectedImage.
End With



Next Property Example
This example adds several Node objects to a TreeView control. The LastSibling property, in 
conjunction with the Next property and the FirstSibling property, is used to navigate through a 
clicked Node object's hierarchy level. To try the example, place a TreeView control on a form and 
paste the code into the form's Declarations section. Run the example, and click the various nodes to 
see what is returned.

Private Sub Form_Load()
Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(,,"dad","Mike")
Set nodX = TreeView1.Nodes.Add(,,"mom","Carol")
' Alice is the LastSibling.
Set nodX = TreeView1.Nodes.Add(,,,"Alice")

Set nodX = TreeView1.Nodes.Add("mom",tvwChild,,"Marsha")
Set nodX = TreeView1.Nodes.Add("mom",tvwChild,,"Jan")
' Cindy is the LastSibling.
Set nodX = TreeView1.Nodes.Add("mom",tvwChild,,"Cindy")
nodX.EnsureVisible ' Show all nodes.

Set nodX = TreeView1.Nodes.Add("dad",tvwChild,,"Greg") 
Set nodX = TreeView1.Nodes.Add("dad",tvwChild,,"Peter")
' Bobby is the LastSibling.
Set nodX = TreeView1.Nodes.Add("dad",tvwChild,,"Bobby")
nodX.EnsureVisible ' Show all nodes.

End Sub
Private Sub TreeView1_NodeClick(ByVal Node As Node)

Dim strText As String
Dim n As Integer
' Set n to FirstSibling's index.
n = Node.FirstSibling.Index
' Place FirstSibling's text & linefeed in string variable.
strText = Node.FirstSibling.Text & vbLF
' While n is not the index of the last sibling, go to the
' next sibling and place its text into the string variable.
While n <> Node.LastSibling.Index

strText = strText & TreeView1.Nodes(n).Next.Text & vbLF
' Set n to the next node's index.

n = TreeView1.Nodes(n).Next.Index
Wend
MsgBox strText ' Display results.

End Sub



NodeClick Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtNodeClickC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbevtNodeClickX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbevtNodeClickA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtNodeClickS"}

Occurs when a Node object is clicked.

Syntax
Private Sub object_NodeClick(ByVal node As Node)
The NodeClick event syntax has these parts:

Part Description
object An object expression that evaluates to an object in 

the Applies To list.
node A reference to the clicked Node object.

Remarks
The standard Click event is generated when the user clicks any part of the TreeView control outside a
node object. The NodeClick event is generated when the user clicks a particular Node object; the 
NodeClick event also returns a reference to a particular Node object which can be used to validate 
the Node before further action is taken.

The NodeClick event occurs before the standard Click event.



NodeClick Event Example
This example adds several Node objects to a TreeView control. When a Node is clicked, the 
NodeClick event is triggered and is used to get the Node object's index and text. To try the example, 
place a TreeView control on a form and paste the code into the form's Declarations section. Run the 
example, and click any Node.

Private Sub Form_Load()
Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(,,"R","Root")
nodX.Expanded = True
Set nodX = TreeView1.Nodes.Add(,,"P","Parent")
nodX.Expanded = True
Set nodX = TreeView1.Nodes.Add("R",tvwChild,,"Child 1")
Set nodX = TreeView1.Nodes.Add("R",tvwChild,,"Child 2")
Set nodX = TreeView1.Nodes.Add("R",tvwChild,,"Child 3")
Set nodX = TreeView1.Nodes.Add("P",tvwChild,,"Child 4")
Set nodX = TreeView1.Nodes.Add("P",tvwChild,,"Child 5")
Set nodX = TreeView1.Nodes.Add("P",tvwChild,,"Child 6")

End Sub

Private Sub TreeView1_NodeClick(ByVal Node As Node)
Form1.Caption = "Index = " & Node.Index & " Text:" & Node.Text

End Sub



Nodes Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproNodesC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproNodesX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproNodesA"} 
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproNodesS"}

Returns a reference to a collection of TreeView control Node objects.

Syntax
object.Nodes
The object placeholder represents an object expression that evaluates to an object in the Applies To 
list.

Remarks
You can manipulate Node objects using standard collection methods (for example, the Add and 
Remove methods). You can access each element in the collection    by its index, or by a unique key 
that you store in the Key property.



Nodes Property Example
This example adds several Node objects to a TreeView control. When the form is clicked, a reference
to each Node is used to display each Node object's text. To try the example, place a TreeView 
control on a form and paste the code into the form's Declarations section. Run the example, and click 
the form.
Private Sub Form_Load()

Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(,,"R","Root")
Set nodX = TreeView1.Nodes.Add("R", tvwChild,"C1","Child 1")
Set nodX = TreeView1.Nodes.Add("R", tvwChild,"C2","Child 2")
Set nodX = TreeView1.Nodes.Add("R", tvwChild,"C3","Child 3")
Set nodX = TreeView1.Nodes.Add("R", tvwChild,"C4","Child 4")
nodX.EnsureVisible
TreeView1.Style = tvwTreelinesText ' Style 4.
TreeView1.BorderStyle = vbFixedSingle

End Sub

Private Sub Form_Click()
Dim i As Integer
Dim strNodes As String
For i = 1 To TreeView1.Nodes.Count
strNodes = strNodes & TreeView1.Nodes(i).Index & " " & _
"Key: " & TreeView1.Nodes(i).Key & " " & _
"Text: " & TreeView1.Nodes(i).Text & vbLF
Next i
MsgBox strNodes

End Sub



Parent Property (Node Object)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproParentNodeC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproParentNodeX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproParentNodeA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproParentNodeS"}

Returns or sets the parent object of a Node object. Available only at run time.

Syntax
object.Parent[ = node]

The Parent property syntax has these parts:

Part Description
object An object expression that evaluates to an object in 

the Applies To list.
node A Node object that becomes the parent of the object.

Remarks
At run time, an error occurs if you set this property to an object that creates a loop. For example, you 
cannot set any Node to become a child Node of its own descendants.

The Child, FirstSibling, LastSibling, Previous, Parent, Next, and Root properties all return a 
reference to another Node object. Therefore, you can simultaneously reference and perform 
operations on a Node, as follows:
With TreeView1.Nodes(x).Parent

.Text = "New text"

.Key = "New key"

.SelectedImage = 3
End With
You can also set an object variable to the referenced Node, as follows:
Dim NodParent As Node
' Get a reference to the parent of Node x.
Set NodParent = TreeView1.Nodes(x).Parent
' Use this reference to perform operations on the Parent Node.
With nodParent

.Text = "New text" '  Change the text.

.Key = "New key" ' Change key.

.SelectedImage = 3 ' Change SelectedImage.
End With



Parent Property Example (Node Object)
This example adds several Node objects to a TreeView control. After you select a Node object, you 
can then click and drag it to any other Node to make it a child of the target Node. To try the example, 
place TreeView and ImageList controls on a form and paste the code into the form's Declaration 
section. Run the example and drag Node objects onto other Node objects to see the result.
' Declare global variables.
Dim indrag As Boolean ' Flag that signals a Drag Drop operation.
Dim nodX As Object ' Item that is being dragged.

Private Sub Form_Load()
' Load a bitmap into an Imagelist control.
Dim imgX As ListImage
Dim BitmapPath As String
BitmapPath = "icons\mail\mail01a.ico"
Set imgX = ImageList1.ListImages.Add(, , LoadPicture(BitmapPath))

' Initialize TreeView control and create several nodes.
TreeView1.ImageList = ImageList1
Dim nodX As Node ' Create a tree.
Set nodX = TreeView1.Nodes.Add(, , , "Parent1", 1)
Set nodX = TreeView1.Nodes.Add(, , , "Parent2", 1)
Set nodX = TreeView1.Nodes.Add(1, tvwChild, , "Child 1", 1)
Set nodX = TreeView1.Nodes.Add(1, tvwChild, , "Child 2", 1)
Set nodX = TreeView1.Nodes.Add(2, tvwChild, , "Child 3", 1)
Set nodX = TreeView1.Nodes.Add(2, tvwChild, , "Child 4", 1)
Set nodX = TreeView1.Nodes.Add(3, tvwChild, , "Child 5", 1)
nodX.EnsureVisible ' Expand tree to show all nodes.

End Sub

Private Sub TreeView1_MouseDown(Button As Integer, Shift As Integer, x As 
Single, y As Single)

Set nodX = TreeView1.SelectedItem ' Set the item being dragged.
Set TreeView1.DropHighlight = Nothing

End Sub

Private Sub TreeView1_MouseMove _
(Button As Integer, Shift As Integer, x As Single, y As Single)

If Button = vbLeftButton Then ' Signal a Drag operation.
indrag = True ' Set the flag to true.
' Set the drag icon with the CreateDragImage method.
TreeView1.DragIcon = TreeView1.SelectedItem.CreateDragImage
TreeView1.Drag vbBeginDrag ' Drag operation.

End If
End Sub

Private Sub TreeView1_DragDrop(Source As Control, x As Single, y As Single)
' If user didn't move mouse or released it over an invalid area.
If TreeView1.DropHighlight Is Nothing Then

indrag = False
Exit Sub

Else
' Set dragged node's parent property to the target node.
On Error GoTo checkerror ' To prevent circular errors.
Set nodX.Parent = TreeView1.DropHighlight
Cls



Print TreeView1.DropHighlight.Text & _
" is parent of " & nodX.Text
' Release the DropHighlight reference.
Set TreeView1.DropHighlight = Nothing
indrag = False
Exit Sub ' Exit if no errors occured.

End If
 
checkerror:

' Define constants to represent Visual Basic errors code.
Const CircularError = 35614
If Err.Number = CircularError Then

Dim msg As String
msg = "A node can't be made a child of its own children."
' Display the message box with an exclamation mark icon 
' and with OK and Cancel buttons.
If MsgBox(msg, vbExclamation & vbOKCancel) = vbOK Then

' Release the DropHighlight reference.
indrag = False
Set TreeView1.DropHighlight = Nothing
Exit Sub

End If
End If

End Sub

Private Sub TreeView1_DragOver(Source As Control, x As Single, y As Single,
State As Integer)

Set TreeView1.DropHighlight = TreeView1.HitTest(x, y)
End Sub



PathSeparator Property (TreeView Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproPathSeparatorC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproPathSeparatorX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproPathSeparatorA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproPathSeparatorS"}

Returns or sets the delimiter character used for the path returned by the FullPath property.

Syntax
object.PathSeparator [ = string]

The PathSeparator syntax has these parts:

Part Description
object An object expression that evaluates to an object in 

the Applies To list.
string A string that determines the PathSeparator, usually 

a single character.

Remarks
The default character is "\."



PathSeparator Property Example
This example adds several Node objects to a TreeView control, and uses an OptionButton control 
array to change the PathSeparator property. To try the example, place a TreeView control and an 
OptionButton control array on a form, and paste the code into the form's Declarations section. Run 
the example, select a Node, and click the form. Change the PathSeparator property value using the 
OptionButtons.
Private Sub Form_Load

TreeView1.BorderStyle = vbFixedSingle   ' Show border.
' Label OptionButton controls with Style choices.
Option1(0).Caption = "/"
Option1(1).Caption = "-"
Option1(2).Caption = ":"

' Select the last option, and set the initial Style
Option2(1).Value = True
Treeview1.PathSeparator = Option1(1).Caption

Dim nodX As Node
Dim i As Integer
Set nodX = TreeView1.Nodes.Add(,,,CStr(1)) ' Add first node.

For i = 1 to 5 ' Add other nodes.
Set nodX = TreeView1.Nodes.Add(i,tvwChild,,CStr(i + 1))

Next i

nodX.EnsureVisible ' Ensure all are visible.
End Sub

Private Sub Option1_Click(Index as Integer)
' Change the delimiter character.
TreeView1.PathSeparator = Option1(Index).Caption

End Sub

Private Sub TreeView1_NodeClick(ByVal Node As Node)
' Show path in form's caption.
Me.Caption = Node.FullPath

End Sub



Previous Property (Node Object)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproPreviousNodeC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproPreviousNodeX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproPreviousNodeA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproPreviousNodeS"}

Returns a reference to the previous sibling of a Node object.

Syntax
object. Previous
The object placeholder represents an object expression that evaluates to an object in the Applies To 
list. 

Remarks
The Child, FirstSibling, LastSibling, Previous, Parent, Next, and Root properties all return a 
reference to another Node object. Therefore you can simultaneously reference and perform 
operations on a Node, as follows:
With TreeView1.Nodes(x).Previous

.Text = "New text"

.Key = "New key"

.SelectedImage = 3
End With
You can also set an object variable to the referenced Node, as follows:
Dim NodPrevious As Node
' Get a reference to the node previouus to Node x.
Set NodChild = TreeView1.Nodes(x).Previous
' Use this reference to perform operations on the previous Node.
With nodPrevious

.Text = "New text" '  Change the text.

.Key = "New key" ' Change key.

.SelectedImage = 3 ' Change SelectedImage.
End With



Previous Property Example
This example adds several nodes to a TreeView control. The Previous property, in conjunction with 
the LastSibling property and the FirstSibling property, is used to navigate through a clicked Node 
object's hierarchy level. To try the example, place a TreeView control on a form and paste the code 
into the form's Declarations section. Run the example, and click the various nodes to see what is 
returned.

Private Sub Form_Load()
Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(, , "r", "Root")
Set nodX = TreeView1.Nodes.Add(, , "p", "parent")

Set nodX = TreeView1.Nodes.Add("r", tvwChild, , "Child 1")
Set nodX = TreeView1.Nodes.Add("r", tvwChild, , "Child 2")
Set nodX = TreeView1.Nodes.Add("r", tvwChild, , "Child 3")
nodX.EnsureVisible ' Show all nodes.

Set nodX = TreeView1.Nodes.Add("p", tvwChild, , "Child 4")
Set nodX = TreeView1.Nodes.Add("p", tvwChild, , "Child 5")
Set nodX = TreeView1.Nodes.Add("p", tvwChild, , "Child 6")
nodX.EnsureVisible ' Show all nodes.

End Sub

Private Sub TreeView1_NodeClick(ByVal Node As Node)
Dim strText As String
Dim n As Integer
' Set n to LastSibling's index.
n = Node.LastSibling.Index
' Place LastSibling's text & linefeed in string variable.
strText = Node.LastSibling.Text & vbLF
While n <> Node.FirstSibling.Index

' While n is not the index of the FirstSibling, go to the
' previous sibling and place its text into the string variable.
strText = strText & TreeView1.Nodes(n).Previous.Text & vbLF
' Set n to the previous node's index.
n = TreeView1.Nodes(n).Previous.Index

Wend
MsgBox strText ' Display results.

End Sub



Root Property (Node Object)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproRootC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproRootX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproRootA"}       
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproRootS"}

Returns a reference to the root Node object of a selected Node.

Syntax
object.Root
The object placeholder represents an object expression that evaluates to an object in the Applies To 
list. 

Remarks
The Child, FirstSibling, LastSibling, Previous, Parent, Next, and Root properties all return a 
reference to another Node object. Therefore, you can simultaneously reference and perform 
operations on a Node, as follows:
With TreeView1.Nodes(x).Root

.Text = "New text"

.Key = "New key"

.SelectedImage = 3
End With
You can also set an object variable to the referenced Node, as follows:
Dim NodRoot As Node
' Get a reference to the root of Node x.
Set NodRoot = TreeView1.Nodes(x).Root
' Use this reference to perform operations on the root Node.
With nodRoot

.Text = "New text" '  Change the text.

.Key = "New key" ' Change key.

.SelectedImage = 3 ' Change SelectedImage.
End With



Root Property Example
This example adds several Node objects to a TreeView control. When you click a Node, the code 
navigates up the tree to the Root node, and displays the text of each Parent node. To try the 
example, place a TreeView control on a form and paste the code into the form's Declarations section.
Run the example, and click a Node.

Private Sub Form_Load()
Dim nodX As Node ' Create a tree.
Set nodX = TreeView1.Nodes.Add(,,"r", "Root")
Set nodX = TreeView1.Nodes.Add(,,"p", "Parent")
Set nodX = TreeView1.Nodes.Add("p",tvwChild,, "Child 1")
nodX.EnsureVisible ' Show all nodes.
Set nodX = TreeView1.Nodes.Add("r",tvwChild,"C2", "Child 2")
Set nodX = TreeView1.Nodes.Add("C2",tvwChild,"C3", "Child 3")
Set nodX = TreeView1.Nodes.Add("C3",tvwChild,, "Child 4")
Set nodX = TreeView1.Nodes.Add("C3",tvwChild,, "Child 5")
nodX.EnsureVisible ' Show all nodes.

End Sub

Private Sub TreeView1_NodeClick(ByVal Node As Node)
Dim n As Integer
Dim strParents As String ' Variable for information.
n = Node.Index ' Set n to index of clicked node.
strParents = Node.Text & vbLF 
While n <> Node.Root.Index

strParents = strParents & _
TreeView1.Nodes(n).Parent.Text & vbLF
' Set n to index of next parent Node.
n = TreeView1.Nodes(n).Parent.Index

Wend
MsgBox strParents

End Sub



Selected Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmSet;vbproBooksOnlineJumpTopic;vbproSelectedOLEC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproSelectedOLEX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproSelectedOLEA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproSelectedOLES"}

Returns or sets a value that determines if a Node or Tab object is selected. For a ListItem object, the
Selected property does not set the SelectedItem property, and thus does not cause the object to be 
selected. It only returns a value indicating whether the ListItem object has already been selected by 
other means.

Syntax
object.Selected [ = boolean]

The Selected property syntax has these parts:

Part Description
object An object expression that evaluates to an object in 

the Applies To list.
boolean A Boolean expression that determines if an object is 

selected.

Remarks
Use the Selected property to programmatically select a specific Node or Tab object. Once you have 
selected an object in this manner, you can perform various operations on it, such as setting properties
and invoking methods.

To select a specific Node object, you must refer to it by the value of either its Index property or its 
Key property. The following example selects a specific Node object in a TreeView control:
Private Sub Command1_Click()

TreeView1.Nodes(3).Selected = True ' Selects an object.
' Use the SelectedItem property to get a reference to the object.
TreeView1.SelectedItem.Text = "Changed Text"

End Sub
In the ListView control, the SelectedItem property always refers to the first selected item. Therefore, 
if multiple items are selected, you must iterate through all of the items, checking each item's Selected
property.

Note      Instead of using the Selected property to programmatically select a ListItem object, use the 
Set statement with the SelectedItem property, as follows:
Set ListView1.SelectedItem = ListView1.ListItems(1)



Selected Property Example
This example adds several Node objects to a TreeView control. When a Node is selected, a 
reference to the selected Node is used to display its key. To try the example, place a TreeView 
control on a form, and paste the code into the form's Declarations section. Run the example, select a 
Node, and click the form.
Private Sub Form_Load()

Dim nodX As Node ' Create a tree.
Set nodX = TreeView1.Nodes.Add(,,"r","Root")
Set nodX = TreeView1.Nodes.Add(,,"p","Parent")
Set nodX = TreeView1.Nodes.Add("p",tvwChild,,"Child 1")
nodX.EnsureVisible ' Show all nodes.
Set nodX = TreeView1.Nodes.Add("r",tvwChild,"C2","Child 2")
Set nodX = TreeView1.Nodes.Add("C2",tvwChild,"C3","Child 3")
Set nodX = TreeView1.Nodes.Add("C3",tvwChild,,"Child 4")
Set nodX = TreeView1.Nodes.Add("C3",tvwChild,,"Child 5")
nodX.EnsureVisible ' Show all nodes.

End Sub

Private Sub Form_Click()
Dim intX As Integer
On Error Resume Next ' If an integer isn't entered.
intX = InputBox("Check Node",,TreeView1.SelectedItem.Index)
If IsNumeric(intX) Then ' Ensure an integer was entered.

If TreeView1.Nodes(intX).Selected = True Then
MsgBox TreeView1.Nodes(intX).Text & " is selected."

Else
MsgBox "Not selected"

End If
End If

End Sub
The following example adds three ListItem objects to a ListView control. When you click the form, 
the code uses the Selected property to determine if a specific ListItem object is selected. To try the 
example, place a ListView control on a form and paste the code into the form's Declarations section. 
Run the example, select a ListItem, and click the form.
Private Sub Form_Load()

Listview1.BorderStyle = vbFixedSingle  ' Show the border.
Dim itmX As ListViewItem
Set itmX = ListView1.ListItems.Add(,,"Item 1")
Set itmX = ListView1.ListItems.Add(,,"Item 2")
Set itmX = ListView1.ListItems.Add(,,"Item 3")

End Sub

Private Sub Form_Click()
Dim intX As Integer
On Error Resume Next ' If an integer isn't entered.
intX = InputBox("Check Item", , Listview1.SelectedItem.Index)
If IsNumeric(intX) Then ' Ensure an integer was entered.

If ListView1.ListItems(intX).Selected = True Then
MsgBox ListView1.ListItems(intX).Text & " is selected."

Else
MsgBox "Not selected"

End If
End If

End Sub





SelectedImage Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproSelectedImageC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproSelectedImageX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproSelectedImageA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproSelectedImageS"}

Returns or sets the index or key value of a ListImage object in an associated ImageList control; the 
ListImage is displayed when a Node object is selected.

Syntax
object.SelectedImage [ = index]

The SelectedImage property syntax has these parts:

Part Description
object An object expression that evaluates to an object in 

the Applies To list.
index An integer or unique string that identifies a 

ListImage object in an associated ImageList 
control. The integer is the value of the ListImage 
object's Index property; the string is the value of the 
Key property.

Remarks
If this property is set to Null, the mask of the default image specified by the Image property is used.



SelectedItem Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmSet;vbproBooksOnlineJumpTopic;vbproSelectedItemC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproSelectedItemX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproSelecteditemA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproSelecteditemS"}

Returns a reference to a selected ListItem, Node, or Tab object.

Syntax
object.SelectedItem
The object placeholder represents an object expression that evaluates to an object in the Applies To 
list.

Remarks
The SelectedItem property returns a reference to an object that can be used to set properties and 
invoke methods on the selected object. This property is typically used to return a reference to a 
ListItem, Node, or Tab or object that the user has clicked or selected. With this reference, you can 
validate an object before allowing any further action, as demonstrated in the following code:
Command1_Click()

' If the selected object is not the root, then remove the Node.
If TreeView1.SelectedItem.Index <> 1 Then

Treeview1.Nodes.Remove TreeView1.SelectedItem.Index
End If

End Sub
To programmatically select a ListItem object, use the Set statement with the SelectedItem property, 
as follows:
Set ListView1.SelectedItem = ListView1.ListItems(1)



SelectedItem Property Example
This example adds several Node objects to a TreeView control. After you select a Node, click the 
form to see various properties of the Node. To try the example, place a TreeView control on a form 
and paste the code into the form's Declarations section. Run the example, select a Node, and click 
the form.

Private Sub Form_Load()
Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(, , "r", "Root")
Set nodX = TreeView1.Nodes.Add("r", tvwChild, "c1", "Child 1")
Set nodX = TreeView1.Nodes.Add("r", tvwChild, "c2", "Child 2")
Set nodX = TreeView1.Nodes.Add("r", tvwChild, "c3", "Child 3")
Set nodX = TreeView1.Nodes.Add("c3", tvwChild, "c4", "Child 4")
Set nodX = TreeView1.Nodes.Add("c3", tvwChild, "c5", "Child 5")
Set nodX = TreeView1.Nodes.Add("c5", tvwChild, "c6", "Child 6")
Set nodX = TreeView1.Nodes.Add("c5", tvwChild, "c7", "Child 7")
nodX.EnsureVisible
TreeView1.BorderStyle = vbFixedSingle

End Sub

Private Sub Form_Click()
Dim nodX As Node
' Set the variable to the SelectedItem.
Set nodX = TreeView1.SelectedItem
Dim strProps As String
' Retrieve properties of the node.
strProps = "Text: " & nodX.Text & vbLF
strProps = strProps & "Key: " & nodX.Key & vbLF
On Error Resume Next ' Root node doesn't have a parent.
strProps = strProps & "Parent: " & nodX.Parent.Text & vbLF
strProps = strProps & "FirstSibling: " & _
nodX.FirstSibling.Text & vbLF
strProps = strProps & "LastSibling: " & _
nodX.LastSibling.Text & vbLF
strProps = strProps & "Next: " & nodX.Next.Text & vbLF

MsgBox strProps
End Sub



Sorted Property (TreeView Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproSortedNodeC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproSortedNodeX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproSortedNodeA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproSortedNodeS"}

· Returns or sets a value that determines whether the child nodes of a Node object are sorted 
alphabetically.

· Returns or sets a value that determines whether the root level nodes of a TreeView control are 
sorted alphabetically.

Syntax
object.Sorted [ = boolean]

The Sorted property syntax has these parts:

Part Description
object An object expression that evaluates to an object in 

the Applies To list.
boolean A Boolean expression specifying whether the Node 

objects are sorted, as described in Settings.

Settings
The settings for boolean are:

Setting Description
True The Node objects are sorted alphabetically by their 

Text property. Node objects whose Text property 
begins with a number are sorted as strings, with the 
first digit determining the initial position in the sort, 
and subsequent digits determining sub-sorting.

False The Node objects are not sorted.

Remarks
The Sorted property can be used in two ways: first, to sort the Node objects at the root (top) level of 
a TreeView control and, second, to sort the immediate children of any individual Node object. For 
example, the following code sorts the root nodes of a TreeView control:
Private Sub Command1_Click()

TreeView1.Sorted = True ' Top level Node objects are sorted.
End Sub
The next example shows how to set the Sorted property for a Node object as it is created:
Private Sub Form_Load()

Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(,,,"Parent Node")
nodX.Sorted = True

End Sub
Setting the Sorted property to True sorts the current Nodes collection only. When you add new Node
objects to a TreeView control, you must set the Sorted property to True again to sort the added Node
objects. 



Sorted Property (TreeView Control) Example
This example adds several Node objects to a tree. When you click a Node, you are asked if you want
to sort the Node. To try the example, place a TreeView control on a form and paste the code into the 
form's Declarations section. Run the example, and click a Node to sort it.
Private Sub Form_Load()

' Create a tree with several unsorted Node objects.
Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(, , , "Adam")
Set nodX = TreeView1.Nodes.Add(1, tvwChild, "z", "Zachariah")
Set nodX = TreeView1.Nodes.Add(1, tvwChild, , "Noah")
Set nodX = TreeView1.Nodes.Add(1, tvwChild, , "Abraham")
Set nodX = TreeView1.Nodes.Add("z", tvwChild, , "Stan")
Set nodX = TreeView1.Nodes.Add("z", tvwChild, , "Paul")
Set nodX = TreeView1.Nodes.Add("z", tvwChild, "f", "Frances")
Set nodX = TreeView1.Nodes.Add("f", tvwChild, , "Julie")
Set nodX = TreeView1.Nodes.Add("f", tvwChild, "c", "Carol")
Set nodX = TreeView1.Nodes.Add("f", tvwChild, , "Barry")
Set nodX = TreeView1.Nodes.Add("c", tvwChild, , "Yale")
Set nodX = TreeView1.Nodes.Add("c", tvwChild, , "Harvard")
nodX.EnsureVisible

End Sub

Private Sub TreeView1_NodeClick(ByVal Node As Node)
Dim answer As Integer
' Check if there are children nodes.
If Node.Children > 1 Then ' There are more than one children nodes.

answer = MsgBox("Sort this node?", vbYesNo)  ' Prompt user.
If answer = vbYes Then ' User wants to sort.

Node.Sorted = True
End If

End If
End Sub



Style Property (TreeView Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproStyleTreeviewC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproStyleTreeviewX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproStyleTreeviewA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproStyleTreeviewS"}

Returns or sets the type of graphics (images, text, plus/minus, and lines) and text that appear for 
each Node object in a TreeView control.

Syntax
object.Style [ = number]

The Style property syntax has these parts:

Part Description
object An object expression that evaluates to an object in 

the Applies To list.
number An integer specifying the style of the graphics, as 

described in Settings.

Settings
The settings for number are:

Setting Description
0 Text only.
1 Image and text.
2 Plus/minus and text.
3 Plus/minus, image, and text.
4 Lines and text.
5 Lines, image, and text.
6 Lines, plus/minus, and text.
7 (Default) Lines, plus/minus, image, and text.

Remarks
If the Style property is set to a value that includes lines, the LineStyle property determines the 
appearance of the lines. If the Style property is set to a value that does not include lines, the 
LineStyle property will be ignored.



StartLabelEdit Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthStartLabelEditC;vbproBooksOnlineJumpTopic"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthStartLabelEditX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbmthStartLabelEditA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthStartLabelEditS"}

Enables a user to edit a label.

Syntax
object.StartLabelEdit
The object placeholder is an object expression that evaluates to an object in the Applies To list.

Remarks
The StartLabelEdit method must be used to initiate a label editing operation when the LabelEdit 
property is set to 1 (Manual). 

When the StartLabelEdit method is invoked upon an object, the BeforeLabelEdit event is also 
generated.



StartLabelEdit Method Example
This example adds several Node objects to a TreeView control. After a Node is selected, click the 
form to begin editing it. To try the example, place a TreeView control on a form, and paste the code 
into the form's Declarations section. Run the example, select a Node, and click the form.

Private Sub Form_Load
Dim nodX As Node

Set nodX = TreeView1.Nodes.Add(,,,"Da Vinci") ' Root
Set nodX = TreeView1.Nodes.Add(1,tvwChild,,"Titian")
Set nodX = TreeView1.Nodes.Add(1,tvwChild,,"Rembrandt")
Set nodX = TreeView1.Nodes.Add(1,tvwChild,,"Goya")
Set nodX = TreeView1.Nodes.Add(1,tvwChild,,"David")
nodX.EnsureVisible ' Expand tree to see all nodes.

End Sub

Private Sub Form_Click()
' If selected Node isn't the Root node then allow edits.
If TreeView1.SelectedItem.Index <> 1 Then

TreeView1.StartLabelEdit
End If

End Sub



Add
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The Add keyword is used in these contexts:

Add Method (Buttons Collection)
Add Method (ColumnHeaders Collection)
Add Method (ListImages Collection)
Add Method (ListItems Collection)
Add Method (Nodes Collection)
Add Method (Panels Collection)
Add Method (Tabs Collection)



Index
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The Index keyword is used in these contexts:

Index Property (Control Array)
Index Property (Custom Controls)



Sorted
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The Sorted keyword is used in these contexts:

Sorted Property (ListView Control)
Sorted Property (TreeView Control)



Style
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The Style keyword is used in these contexts:

Style Property (Button Object)
Style Property (Panel Object)
Style Property (StatusBar Control)
Style Property (TabStrip Control)
Style Property (TreeView Control)



Width
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The Width keyword is used in these contexts:

Width Property (Panel Object)
Height, Width Properties (Custom Controls)



Alignment
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The Alignment keyword is used in these contexts:

Alignment Property (ColumnHeader Object)
Alignment Property (Panel Object)



AutoSize
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The AutoSize keyword is used in these contexts:

Autosize Property (Custom Controls)
Autosize Property (Panel Object)



Caption
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The Caption keyword is used in these contexts:

Caption Property (Custom Controls)
Caption Property (Tab Object)



Change
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The Change keyword is used in these contexts:

Change Event (Custom Controls)

Change Event (Toolbar Control)



ImageList
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The ImageList keyword is used in these contexts:

ImageList Control
ImageList Property (Custom Controls)



Parent
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The Parent keyword is used in these contexts:

Parent Property (Custom Controls)
Parent Property (Node Object)



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtChangeEventControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbevtChangeEventControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtChangeEventControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtChangeEventControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtClickEventControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbevtClickEventControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtClickEventControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtClickEventControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtDblClickEventControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbevtDblClickEventControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtDblClickEventControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtDblClickEventControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtDragDropEventControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbevtDragDropEventControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtDragDropEventControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtDragDropEventControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtDragOverEventControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbevtDragOverEventControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtDragOverEventControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtDragOverEventControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtKeyDownEventControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbevtKeyDownEventControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtKeyDownEventControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtKeyDownEventControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtKeyPressEventControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbevtKeyPressEventControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtKeyPressEventControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtKeyPressEventControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtKeyUpEventControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbevtKeyUpEventControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtKeyUpEventControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtKeyUpEventControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtMouseDownEventControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbevtMouseDownEventControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtMouseDownEventControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtMouseDownEventControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtMouseMoveEventControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbevtMouseMoveEventControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtMouseMoveEventControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtMouseMoveEventControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtMouseUpEventControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbevtMouseUpEventControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtMouseUpEventControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtMouseUpEventControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtOLECompleteDragEventControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbevtOLECompleteDragEventControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtOLECompleteDragEventControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtOLECompleteDragEventControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtOLEDragDropEventPHolderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbevtOLEDragDropEventPHolderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtOLEDragDropEventPHolderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtOLEDragDropEventPHolderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtOLEDragOverEventControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbevtOLEDragOverEventControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtOLEDragOverEventControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtOLEDragOverEventControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtOLEGiveFeedbackEventControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbevtOLEGiveFeedbackEventControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtOLEGiveFeedbackEventControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtOLEGiveFeedbackEventControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtOLESetDataEventControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbevtOLESetDataEventControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtOLESetDataEventControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtOLESetDataEventControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtOLEStartDragEventControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbevtOLEStartDragEventControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtOLEStartDragEventControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtOLEStartDragEventControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthRefreshMethodControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthRefreshMethodControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthRefreshMethodControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthRefreshMethodControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthOLEDragMethodControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthOLEDragMethodControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthOLEDragMethodControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthOLEDragMethodControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproAppearancePropertyControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproAppearancePropertyControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproAppearancePropertyControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproAppearancePropertyControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBackColorPropertyControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproBackColorPropertyControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproBackColorPropertyControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproBackColorPropertyControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproCaptionPropertyControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproCaptionPropertyControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproCaptionPropertyControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproCaptionPropertyControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproEnabledPropertyControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproEnabledPropertyControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproEnabledPropertyControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproEnabledPropertyControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproFontPropertyControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproFontPropertyControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproFontPropertyControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproFontPropertyControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproForeColorPropertyControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproForeColorPropertyControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproForeColorPropertyControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproForeColorPropertyControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproIntegralHeightPropertyControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproIntegralHeightPropertyControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproIntegralHeightPropertyControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproIntegralHeightPropertyControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproLockedPropertyControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproLockedPropertyControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproLockedPropertyControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproLockedPropertyControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproMouseIconPropertyControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproMouseIconPropertyControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproMouseIconPropertyControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproMouseIconPropertyControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproMousePointerPropertyControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproMousePointerPropertyControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproMousePointerPropertyControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproMousePointerPropertyControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproOLEDragModePropertyControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproOLEDragModePropertyControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproOLEDragModePropertyControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproOLEDragModePropertyControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproOLEDropModePropertyControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproOLEDropModePropertyControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproOLEDropModePropertyControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproOLEDropModePropertyControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproSelLengthPropertyControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproSelLengthPropertyControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproSelLengthPropertyControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproSelLengthPropertyControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproSelStartPropertyControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproSelStartPropertyControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproSelStartPropertyControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproSelStartPropertyControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproSelTextPropertyControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproSelTextPropertyControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproSelTextPropertyControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproSelTextPropertyControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproStylePropertyControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproStylePropertyControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproStylePropertyControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproStylePropertyControlsPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproTextPropertyControlsPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproTextPropertyControlsPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproTextPropertyControlsPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproTextPropertyControlsPlaceholderS"}



Keyword Not Found
{ewc HLP95EN.DLL,DYNALINK,"See Also":""}

The keyword you've selected can't be found in Visual Basic Help. You may have misspelled the 
keyword, selected too much or too little text, or asked for help on a word that is not a valid Visual 
Basic keyword.

The easiest way to get help on a specific keyword is to position the insertion point anywhere within 
the keyword you want help on and press F1. You do not need to select the keyword. In fact, if you 
select only a portion of the keyword, or more than a single word, Help will not find what you're looking 
for.

To use the built-in Help search dialog box, press the "Help Topics" button on the toolbar.



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproLeftTopPropertiesPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproLeftTopPropertiesPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproHeightWidthPropertiesPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproHeightWidthPropertiesPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproTagPropertyPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproTagPropertyPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproToolTipTextPropertyPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproToolTipTextPropertyPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproCountPropertyPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproCountPropertyPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproItemMethodPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproItemMethodPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproHwndPropertyPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproHwndPropertyPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproTabStopPropertyPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproTabStopPropertyPlaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproTabStopPropertyPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproTabStopPropertyPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproVisiblePropertyPlaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproVisiblePropertyPlaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproVisiblePropertyPlaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproVisiblePropertyPlaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproPicturePropertyplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproPicturePropertyplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproPicturePropertyplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproPicturePropertyplaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproMaxMinPropertiesplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproMaxMinPropertiesplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproMaxMinPropertiesplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproMaxMinPropertiesplaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthAddMethodplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthAddMethodplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbmthAddMethodplaceholderA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthAddMethodplaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthClearMethodplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthClearMethodplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbmthClearMethodplaceholderA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthClearMethodplaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproContainerPropertyplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproContainerPropertyplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproContainerPropertyplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproContainerPropertyplaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcolControlsCollectionplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbcolControlsCollectionplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Properties":"vbcolControlsCollectionplaceholderP"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Methods":"vbcolControlsCollectionplaceholderM"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Events":"vbcolControlsCollectionplaceholderE"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbcolControlsCollectionplaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproCopiesPropertyplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproCopiesPropertyplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproCopiesPropertyplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproCopiesPropertyplaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjDataBindingObjectplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbobjDataBindingObjectplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Properties":"vbobjDataBindingObjectplaceholderP"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Methods":"vbobjDataBindingObjectplaceholderM"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Events":"vbobjDataBindingObjectplaceholderE"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjDataBindingObjectplaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcolDataBindingsCollectionplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbcolDataBindingsCollectionplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Properties":"vbcolDataBindingsCollectionplaceholderP"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Methods":"vbcolDataBindingsCollectionplaceholderM"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Events":"vbcolDataBindingsCollectionplaceholderE"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbcolDataBindingsCollectionplaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproFilenamePropertyplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproFilenamePropertyplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproFilenamePropertyplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproFilenamePropertyplaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproFontBoldFontItalicFontStrikeThruPropertiesplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproFontBoldFontItalicFontStrikeThruPropertiesplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproFontBoldFontItalicFontStrikeThruPropertiesplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproFontBoldFontItalicFontStrikeThruPropertiesplaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproFontNamePropertyplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproFontNamePropertyplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproFontNamePropertyplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproFontNamePropertyplaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproFontSizePropertyplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproFontSizePropertyplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproFontSizePropertyplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproFontSizePropertyplaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthGetDataMethodplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthGetDataMethodplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthGetDataMethodplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthGetDataMethodplaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthGetFormatMethodplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthGetFormatMethodplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthGetFormatMethodplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthGetFormatMethodplaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproHelpFilePropertyplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproHelpFilePropertyplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproHelpFilePropertyplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproHelpFilePropertyplaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproItemPropertyplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproItemPropertyplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproItemPropertyplaceholderA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproItemPropertyplaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthRemoveMethodplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthRemoveMethodplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthRemoveMethodplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthRemoveMethodplaceholderS"}



{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthSetDataMethodplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthSetDataMethodplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthSetDataMethodplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthSetDataMethodplaceholderS"}



Align Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproAlignPropertyplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproAlignPropertyplaceholderS"}



DragIcon Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproDragIconPropertyplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproDragIconPropertyplaceholderS"}



DragMode Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproDragModePropertyplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproDragModePropertyplaceholderS"}



HelpContextID Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproHelpContextIDPropertyplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproHelpContextIDPropertyplaceholderS"}



TabIndex Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproTabIndexPropertyplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproTabIndexPropertyplaceholderS"}



Alignment Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstAlignmentConstantsplaceholderC"}



Border Property Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstBorderPropertyConstantsplaceholderC"}



BorderStyle Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstBorderStyleConstantsplaceholderC"}



BorderStyle Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBorderStylePropertyActiveXControlsplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproBorderStylePropertyActiveXControlsplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproBorderStylePropertyActiveXControlsplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproBorderStylePropertyActiveXControlsplaceholderS"}



Clear Method (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthClearMethodActiveXControlsplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthClearMethodActiveXControlsplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthClearMethodActiveXControlsplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthClearMethodActiveXControlsplaceholderS"}



Clipboard Object Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstClipboardObjectConstantsplaceholderC"}



Color Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstColorConstantsplaceholderC"}



CommonDialog Control Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstCommonDialogControlConstantsplaceholderC"}



CommonDialog Error Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstCommonDialogErrorConstantsplaceholderC"}



Control Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstControlConstantsplaceholderC"}



DataBindings Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproDataBindingsPropertyplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproDataBindingsPropertyplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproDataBindingsPropertyplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproDataBindingsPropertyplaceholderS"}



DDE Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstDDEConstantsplaceholderC"}



Drag-and-Drop Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstDragandDropConstantsplaceholderC"}



Drawing Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstDrawingConstantsplaceholderC"}



FetchVerbs Method (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthFetchVerbsMethodC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthFetchVerbsMethodX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbmthFetchVerbsMethodA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthFetchVerbsMethodS"}



Form Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstFormConstantsplaceholderC"}



Graphics Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstGraphicsConstantsplaceholderC"}



Grid Control Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstGridControlConstantsplaceholderC"}



Help Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstHelpConstantsplaceholderC"}



HideSelection Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproHideSelectionPropertyActiveXControlsplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproHideSelectionPropertyActiveXControlsplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproHideSelectionPropertyActiveXControlsplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproHideSelectionPropertyActiveXControlsplaceholderS"}



HideSelection Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproHideSelectionPropertyplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproHideSelectionPropertyplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproHideSelectionPropertyplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproHideSelectionPropertyplaceholderS"}



Image Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproImagePropertyActiveXControlsplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproImagePropertyActiveXControlsplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproImagePropertyActiveXControlsplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproImagePropertyActiveXControlsplaceholderS"}



ImageList Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproImageListPropertyActiveXControlsplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproImageListPropertyActiveXControlsplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproImageListPropertyActiveXControlsplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproImageListPropertyActiveXControlsplaceholderS"}



Index Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproIndexPropertyActiveXControlsplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproIndexPropertyActiveXControlsplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproIndexPropertyActiveXControlsplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproIndexPropertyActiveXControlsplaceholderS"}



Index Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproIndexPropertyplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproIndexPropertyplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproIndexPropertyplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproIndexPropertyplaceholderS"}



Key Code Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstKeyCodeConstantsplaceholderC"}



Key Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproKeyPropertyActiveXControlsplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproKeyPropertyActiveXControlsplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproKeyPropertyActiveXControlsplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproKeyPropertyActiveXControlsplaceholderS"}



Menu Accelerator Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstMenuAcceleratorConstantsplaceholderC"}



Menu Control Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstMenuControlConstantsplaceholderC"}



Miscellaneous Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstMiscellaneousConstantsplaceholderC"}



MousePointer Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstMousePointerConstantsplaceholderC"}



OLE Container Control Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstOLEContainerControlConstantsplaceholderC"}



Picture Object Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstPictureObjectConstantsplaceholderC"}



Printer Object Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstPrinterObjectConstantsplaceholderC"}



RasterOp Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstRasterOpConstantsplaceholderC"}



Remove Method (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthRemoveMethodActiveXControlsplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthRemoveMethodActiveXControlsplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthRemoveMethodActiveXControlsplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthRemoveMethodActiveXControlsplaceholderS"}



ShowInTaskbar Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstShowInTaskbarPropertyplaceholderC"}



ShowTips Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproShowTipsPropertyActiveXControlsplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproShowTipsPropertyActiveXControlsplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproShowTipsPropertyActiveXControlsplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproShowTipsPropertyActiveXControlsplaceholderS"}



ShowWhatsThis Method (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthShowWhatsThisMethodplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthShowWhatsThisMethodplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthShowWhatsThisMethodplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthShowWhatsThisMethodplaceholderS"}



Text Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproTextPropertyActiveXControlsplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproTextPropertyActiveXControlsplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproTextPropertyActiveXControlsplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproTextPropertyActiveXControlsplaceholderS"}



Value Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproValuePropertyActiveXControlsplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproValuePropertyActiveXControlsplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproValuePropertyActiveXControlsplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproValuePropertyActiveXControlsplaceholderS"}



Variant Type Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstVariantTypeConstantsplaceholderC"}



Visual Basic Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstVisualBasicConstantsplaceholderC"}



WhatsThisButton Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproWhatsThisButtonPropertyplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproWhatsThisButtonPropertyplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproWhatsThisButtonPropertyplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproWhatsThisButtonPropertyplaceholderS"}



WhatsThisHelp Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproWhatsThisHelpPropertyplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproWhatsThisHelpPropertyplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproWhatsThisHelpPropertyplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproWhatsThisHelpPropertyplaceholderS"}



WhatsThisHelpID Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproWhatsThisHelpIDPropertyplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproWhatsThisHelpIDPropertyplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproWhatsThisHelpIDPropertyplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproWhatsThisHelpIDPropertyplaceholderS"}



WhatsThisMode Method (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthWhatsThisModeMethodplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthWhatsThisModeMethodplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthWhatsThisModeMethodplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthWhatsThisModeMethodplaceholderS"}



Windows 95 Control Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstWindows95ControlConstantsplaceholderC"}



ColIsVisible Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproColIsVisiblePropertyplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproColIsVisiblePropertyplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproColIsVisiblePropertyplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproColIsVisiblePropertyplaceholderS"}



ColPos Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproColPosPropertyplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproColPosPropertyplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproColPosPropertyplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproColPosPropertyplaceholderS"}



DataObject Object (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproDataObjectObjectplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproDataObjectObjectplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproDataObjectObjectplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproDataObjectObjectplaceholderS"}



DataObjectFiles Collection (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcolDataObjectFilesCollectionplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbcolDataObjectFilesCollectionplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Properties":"vbcolDataObjectFilesCollectionplaceholderP"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Methods":"vbcolDataObjectFilesCollectionplaceholderM"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Events":"vbcolDataObjectFilesCollectionplaceholderE"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbcolDataObjectFilesCollectionplaceholderS"}



DataSource Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproDataSourcePropertyplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproDataSourcePropertyplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproDataSourcePropertyplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproDataSourcePropertyplaceholderS"}



Drag Method (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthDragMethodplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthDragMethodplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbmthDragMethodplaceholderA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthDragMethodplaceholderS"}



DrawMode Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproDrawModePropertyplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproDrawModePropertyplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproDrawModePropertyplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproDrawModePropertyplaceholderS"}



FixedAlignment Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproFixedAlignmentPropertyplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproFixedAlignmentPropertyplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproFixedAlignmentPropertyplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproFixedAlignmentPropertyplaceholderS"}



GotFocus Event (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtGotFocusEventplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbevtGotFocusEventplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtGotFocusEventplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtGotFocusEventplaceholderS"}



GridLineWidth Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproGridLineWidthPropertyplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproGridLineWidthPropertyplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproGridLineWidthPropertyplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproGridLineWidthPropertyplaceholderS"}



Index Property (Control Array) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproIndexPropertyControlArrayplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproIndexPropertyControlArrayplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproIndexPropertyControlArrayplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproIndexPropertyControlArrayplaceholderS"}



LostFocus Event (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtLostFocusEventplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbevtLostFocusEventplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtLostFocusEventplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtLostFocusEventplaceholderS"}



Move Method (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthMoveMethodplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthMoveMethodplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbmthMoveMethodplaceholderA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthMoveMethodplaceholderS"}



Name Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproNamePropertyplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproNamePropertyplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproNamePropertyplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproNamePropertyplaceholderS"}



Object Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproObjectPropertyplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproObjectPropertyplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbproObjectPropertyplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproObjectPropertyplaceholderS"}



Parent Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproParentPropertyplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproParentPropertyplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproParentPropertyplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproParentPropertyplaceholderS"}



RowColChange Event (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtRowColChangeEventplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbevtRowColChangeEventplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtRowColChangeEventplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtRowColChangeEventplaceholderS"}



RowIsVisible Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproRowIsVisiblePropertyplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproRowIsVisiblePropertyplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproRowIsVisiblePropertyplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproRowIsVisiblePropertyplaceholderS"}



RowPos Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproRowPosPropertyplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbproRowPosPropertyplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbproRowPosPropertyplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbproRowPosPropertyplaceholderS"}



SetFocus Method (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthSetFocusMethodplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthSetFocusMethodplaceholderX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthSetFocusMethodplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthSetFocusMethodplaceholderS"}



ZOrder Method (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthZOrderMethodplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthZOrderMethodplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthZOrderMethodplaceholderA"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthZOrderMethodplaceholderS"}



Files Method (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthFilesMethodplaceholderC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"vbmthFilesMethodplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"vbmthFilesMethodplaceholderA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthFilesMethodplaceholderS"}




