
Note: This article previously appeared in the February, 1998 issue of Delphi Informant

What’s in the Package?
Design Time & Run Time Packages in Delphi 3

by Adam Chace

Packages offer Delphi developers a new way to deploy applications with run time
libraries. Forget the hassles of trying to incorporate VCL objects into standard DLLs,
with Delphi 3’s new packages feature, deploying shared libraries of Delphi units and
components is a cinch, and you won’t have to change a single line of code. This article
will provide an overview of what packages are and how you use them.

Like standard DLLs, packages are essentially just bundles of code which are referenced
by a given application, be it an EXE, an ActiveX control, a DLL, or even another
package. Borland has given packages a DPL extension to differentiate them from
common DLLs, but their architecture is almost identical to any implicitly linked DLL.
These libraries are used during design by the IDE and can then be incorporated at run
time by your application. The DPL file isn’t the only file associated with a package
though. There’s also the DCP which is the just a single file collection of all the DCUs
your package contains, and the DPK which is the editor file which specifies which PAS
files a particular package contains and which DPL files a package requires. The DCP file
is only of interest if a package is distributed without source code or the associated DCUs.
In these cases, the DCP file is used when you compile your package. The DPK file is
used any time you edit a package, as we’ll soon see, and is modified every time you add
or remove contents in a packages.

The New Component Palette Model
Although you may not know it, if you’ve developed in Delphi 3, you’re already using
this new feature. That’s because the VCL model has been replaced with a new one based
entirely on design time packages. Design time packages are the new way of installing
and removing components in Delphi. The Delphi 3 component palette is made up
entirely of design time packages, which in turn are collections of Delphi components and
units. To configure the palette, select Project|Options and click on the Packages tab to
display the dialog box shown in Figure 1.

Figure 1: Adding and Removing Design time packages

From this dialog, you can load and unload packages of components without having to
recompile your entire component palette, unlike in previous Delphi versions. This is a
major time saver, especially if you are doing a lot of switching between projects. You
can also get a quick snapshot of what components a particular package contains by
clicking on the Components button. Adding or removing packages is just a matter of
selecting the DPL file you want by checking or unchecking the box and clicking Add or
Remove. Once you add a new package, Delphi pops up the message box shown in
Figure 2 telling you whether the package was successfully installed and if so, what
components were added as a result.

Figure 2: Delphi tells what components the package has installed

We can also edit any packages we have the DPK file for from this dialog. If we
highlight a package and click Edit, we’ll now see a dialog which allows us to specify
which components and units this package contains, as well as any other packages that are
required by it.

Figure 4: Editing a packages contents

This form also gives us access to the package options which allow us to specify whether
this package is a runtime, design time package, or both, the package description,
compiler information about the package, directory information and other pertinent details
about this particular package.

Using Non Package Based Components in Delphi 3
Soon most of your 3rd party components will be distributed in the form of design time
packages. But what about your old components, or newer components that aren’t in
packages? Can you still use these in Delphi 3? The answer is, of course, yes. Borland
has provided us with an empty design time package called DCLUSR30.DPL. Any non
package based component can be placed in it. To place a component into this package,
just select Components|Install and you will see the dialog shown in Figure 3.

Figure 4: Installing ‘loose’ components

From here, all you need to do is select your .PAS or .DCU file and you’re done. As long
as there aren’t any errors in the code, the component will install automatically as the
package is loaded onto the palette. If you are adding DCUs this way you must be sure
they were compiled in Delphi3 since the DCU architecture has changed again. If you
don’t have the source code for a component that wasn’t compiled in Delphi 3 then you
will be unable to install the component into a package.

Running With Packages
That about covers design time packages which, for the most part, were created to make
configuring the palette quicker and easier. Now we get into the more interesting topic of
run time packages. Run time packages are typically the same DPL file as their design
time counterpart but are used in deployment rather than development. With a typical
Delphi application, all the necessary code for components and units used in the app is
compiled directly into the executable. But this can produce a large executable which can
be tedious to update, especially if it is being done via modem or the Internet. Building
your project with run time packages allows you to reduce your update size at the cost of a
larger initial deployment. The initial delivery must include your using application (EXE,
DLL etc.) and all the required run time packages. Once these packages are delivered,
only the using application needs to be updated, as long as no code in the library files is
changed.

Lets see an example of the impact of using run time packages. The application,
PACK.EXE was built as a single form with the a TLabel, TEdit, TDataSource, TTable,
TClientSocket, and a TDBListBox dropped on it. Each of these components is contained
in a design time package and has a corresponding run time package (which again is
usually just the same file). If we were to compile this application conventionally, we
would see it has a file size of 392,192 bytes as shown in Figure 4.

Figure 5: Our application compiled without using packages

Now we want to indicate that we will be distributing this application not as a single
executable, but rather as an executable with run time packages. To do so, we select
Project|Options and click the ‘Build with runtime packages’ checkbox. This enables the
Project Options dialog box shown in Figure 5 and we can now, if desired, add or remove
any run time packages from this list that we choose. Why would we want to remove a
package name from this list at this point? Say for instance that we are using a single
function in a single unit that is included in a very large package. We may want to just
compile the code into the executable rather than deploying a sizable file for just one
function. We may also know that we will be updating a particular component a great
deal for this application. Since we ideally want components and code in packages to be
static, we would avoid having to constantly update this DPL file and the executable by
removing the runtime package it is contained in from this list.

Figure 6: Choosing to build with packages

Once you’ve decided if you want to remove any files from this list, you click OK and
build the application. It’s important to note, even though a runtime package appears in
the list, it will only be required by the executable if it uses code contained in that
package. It isn’t necessary to go through this list and remove those that you don’t think
you need. The compiler takes care of referencing the packages used for you. So once we
click build we see in Figure 6 that the application is now only 13,312 bytes!

Figure 7: The same application compiled with runtime packages

The next step is to determine which run time packages need to be distributed with this
application. We can do this one of several ways.

· Determine which design time packages are used by your application and
create a list of their corresponding run time packages.

· Examine the application with an editor like Windows QuickView and note the
DPL files that are referenced in the file.

· If it is an EXE or a DLL, use a freeware tool like PFinder to obtain the list.

Since we have built a simple Windows executable, we can use Pfinder to create the list,
as shown in Figure 8. This free utility is available from Apogee Information Systems,
Inc. and can be downloaded from www.apogeeis.com/delphi.

Figure 8: Pfinder package listing utility

Now we just need to deploy VCL30.DPL, VCLDB30.DBPL and INET30.DPL with our
executable once. After that, as the project changes, we can just update our 13K
executable. This is especially helpful during the testing phase of a project where you
may be distributing new builds of an application daily. Another benefit of using runtime
packages is, like standard DLL’s, a user machine only needs one copy of any one
package. So if a project will be distributed as a suite of using applications you can save a

lot of space by only deploying the components they share once in a runtime package,
rather than redundantly compiling the component code into each using program.

That’s all there is to it. Runtime packages are an easy way to reduce your deployment
costs and you don’t need to make any coding changes whatsover. In fact, you can decide
to deploy with runtime packages as late as your very last build without having to be
concerned with the issues of conventional DLLs.

Conclusion
As we have seen, packages are an exciting new feature for Delphi programmers to
exploit. While design time packages streamline the use of the component library, run
time packages provide the real power. Delphi programmers can now easily segment and
distribute portions of functionality independent of the .EXE file. This significantly
reduces the amount of effort involved with distributing application updates.

Biography: Adam Chace is an Application Developer with Apogee Information
Systems, an Inprise Premier Partner specializing in multi-tier Delphi solutions. He
presented “Packages in Delphi 3” at the 1997 Borland Conference in Nashville, TN and
is Delphi 3 Client/Server certified. This is his first published article. You can reach him
at achace@apogeeis.com.

	What’s in the Package?
	The New Component Palette Model
	Using Non Package Based Components in Delphi 3
	Running With Packages
	Conclusion

