No Help

There is no help available on this topic.

Top of file F1_Edit

No Help

There is no help available on this object.

This functionality is currently not supported.

Main Windows

Author note: Popup listings were added to the menus topic because of the number. There are too many for the See Also button.

Using the Visual Cafe window

{button Concepts,AL(Visual_Cafe_welcome_overview;Menus_F1;Toolbars_visual_F1;Palette_F1')} {button How
To,AL('Opening_a_Project_howto',0,™,"")}

The Visual Cafe window is the main interface to the Visual Cafe development environment.

The window consists of three main elements:

* menus
e toolbars
e Component Palette

Closing the Visual Cafe window closes the application.

Using Visual Cafe menus

{button Concepts,AL(Visual_Cafe_window_F1')} {button See
Also,AL("Visual_Cafe_Tools_overview;Toolbars_visual_F1',0,",")}

The Visual Cafe menus provide access to all Visual Cafe functionality.

These are the standard menus that are always available:

File Edit View
Search Project Insert
Tools Window Help

{button ,PI("VCAFE.HLP',"Popup_Standard_menu_listing')} Click here for quick access to standard menu help.
The availability of the following menus depends on the tool you are currently using:

Object Run Source
Layout Calls Threads
Breakpoint Variables

{button ,PI(VCAFE.HLP',"Popup_secondary_menu_listing')} Click here for quick access to menu help.
There are also several pop-up menus that are dependent on the active object:
Project window Form Designer

Class Browser Menu Designer
Source window Hierarchy Editor

{button ,PI(VCAFE.HLP',"Popup_popup_menu_listing')} Click here for quick access to popup menu help.

File Menu
Edit Menu
View Menu
Search Menu
Project Menu
Insert Menu
Tools Menu
Window Menu
Help Menu

Object Menu
Run Menu
Source Menu
Layout Menu
Calls Menu
Threads Menu
Breakpoint Menu
Variables Menu

Objects View Pop-up Menu
Packages View Pop-up Menu
Files View Pop-up Menu

Form Designer Pop-up Menu
Menu Designer Pop-up Menu
Class Pane Pop-up Menu
Member Pane Pop-up Menu
Hierarchy Editor Pop-up Menus
Source Window Pop-up Menu

Menus

Author's note: individual command topics were added because the engineers did not have time to fix the software to assign
unique helpid numbers to each command. This caused the wrong menu topic to display for the relative position of the command.
For example, the Cut command is used 4 places in the software and can only be mapped to one helpid string.

Third-party menu item

This menu item was created by a third-party product you have integrated into Visual Cafe. Consult the documentation that
came with this product for more information.

Help menu
{button See Also,AL('Menus_F1',0,",")}

The following options are available from the Visual Cafe Window Help menu:
Help Topics...

Opens the Content listing for the Visual Cafe online help. The online help provides task and context sensitive information.
Java API Reference...
A reference of all Java packages, classes and interfaces for each package. Variables, constructors, and methods are also
included.
Java Language Reference...

Opens the Content listing for the Java Language Reference.
Macro Reference...

Opens the Content listing for the Java Language Reference.
About Visual Cafe

Displays version and copyright information for this release.
LiveUpdate

Helps you update your software across the Internet through a Symantec Web site. Before you can use LiveUpdate, you
must register at the Symantec update center; after registering, you are given a file that enables LiveUpdate.

User's Guide...

Opens the Content listing for the Visual Cafe User's Guide. This document provides conceptual information about Visual
Cafe.

Help Topics...

Opens the Content listing for the Visual Cafe online help. The online help provides task and context sensitive information.

Java API Reference...

A reference of all Java packages, classes and interfaces for each package. Variables, constructors, and methods are also
included.

Java Language Reference...

Opens the Content listing for the Java Language Reference.

Macro Reference...

Opens the Content listing for the Macro Reference.

About Visual Cafe

Displays version and copyright information for this release.

LiveUpdate

Helps you update your software across the Internet through a Symantec Web site. Before you can use LiveUpdate, you
must register at the Symantec update center; after registering, you are given a file that enables LiveUpdate.

File menu

{button
Concepts,AL('"New_Project_dialog_F1;New_File_Dialog_F1;Find_in_Files_dialog_F1;Environment_Options_Dialog_F1',0,™,"")}
{button See Also,AL('Menus_F1',0,",")}

The following options are available from the Visual Cafe Window File menu:
New File

Opens the New File dialog box so you can select the type of file to create.
Open...

Opens the Open File dialog box so you can select and open a Visual Cafe project (.vep), HTML file, or Java source file
(.java).
Close item

Closes the active file, view, or project. The menu option reflects the name of the active object. The default command is
“close project.” When a project closes, all windows associated with that project also close. Visual Cafe prompts you about
any unsaved changes.

New Project...

Opens the New Project dialog box so you can create and open a new project.
Open Project...

Opens the Open File dialog box so you can select and open a Visual Cafe project (.vep).
Close Project...

Closes the active project.
Save item, Save As, Save All

Saves files to disk. Functionality is the same as MS Windows. If no window is open, the default is “Save Project.”
Print Setup, Print...

Configure printing and print active window. Functionality is the same as MS Windows.
Recently Opened Files

Lists recently opened files. Choose a file to open it.
Exit

Closes any open projects and files after prompting to save unsaved changes, then closes Visual Cafe.

New Project...

Opens the New Project dialog box so you can create and open a new project.

New File

Opens the New File dialog box so you can select the type of file to create.

Open...

Opens the Open File dialog box so you can select and open a Visual Cafe project (.vep), HTML file, or Java source file
(.java).

Close item

Closes the active file, view, or project. The menu option may reflect the name of the active object. When a project closes, all
windows associated with that project also close. Visual Cafe prompts you about any unsaved changes.

Save item

Save the selected item. Functionality is the same as MS Windows. If no window is open, the default is “Save Project.”

Save As

Allows you to save the selected item with a new name. Functionality is the same as MS Windows. If no window is open, the
default is “Save Project.”

Save All

Print Setup...

Configure printing. Functionality is the same as MS Windows.

Print...

Print active window. Functionality is the same as MS Windows.

Recently Opened Files

Lists recently opened files. Choose a file to open it.

Activate Project

Makes the selected open project active.

Exit

Closes any open projects and files after prompting to save unsaved changes, then closes Visual Cafe.

Edit menu
{button How To,AL('Using_the_Menu_Editor_F1',0,”,"")} {button See Also,AL('"Menus_F1',0,","")}

The Visual Cafe Window Edit menu provides standard system edit commands such as undo, cut, copy, paste, and delete.

Shortcuts for Edit commands:

Undo CONTROL +Z
Cut CONTROL + X
Copy CONTROL +C
Paste CONTROL +V
Delete DELETE

Select All CONTROL +A

The Select All command has this effect:

If the active window is Selects all
Form Designer components
Source window source in the current method
Breakpoint Window breakpoints in the list
Cut/Copy/Paste

Same functionality as MS Window/NT.

Shortcut:
Cut CONTROL + X
Copy CONTROL +C

Paste CONTROL +V

Undo

Undoes the last edit. Same functionality as MS Window/NT.
Shortcut: CONTROL + Z

Edit »Delete
Breakpoint

» Clear
Deletes the selected text, or clears the selected breakpoint. Same functionality as MS Window/NT.

Shortcut: DELETE

Select All

The Select All command has this effect:

If the active window is Selects all
Form Designer components
Source window source in the current method
Breakpoint Window breakpoints in the list

Shortcut: CONTROL + A

View menu
{button How To,AL('Using_the_Menu_Editor_F1',0,”,"")} {button See Also,AL('"Menus_F1',0,","")}

The View menu lets you change what windows are displayed in the Visual Cafe window.

You can activate the display of these tools:

Property List Component Library
Hierarchy Editor Class Browser

You can activate the display of these debugging windows:

Watch Breakpoint
Messages Threads
Variables Call Stack

You can also toggle the display of the Status Bar and Workbook tabs (for MDI).
Status Bar

Toggle the display of the Status Bar at the bottom of the Visual Cafe main window.
Workbook

Toggle the display of Workbook tabs at the bottom of the workspace area (MDI mode).
Project

Allows you to select an open project as the new active main project. The main project is the one that the Project menu
commands apply to.

Status Bar

Toggle the display of the Status Bar at the bottom of the Visual Cafe main window.

Workbook

Toggle the display of Workbook tabs at the bottom of the workspace area (MDI mode).

Open the selected view
You can activate the display of these views:

Property List Component Library
Hierarchy Editor Class Browser

Open the selected window

You can activate the display of these debugging windows:

Watch Breakpoint
Messages Threads
Variables Call Stack

Project menu

{button Concepts,AL('Debugging Your Program',0,”',”")} {button See
Also,AL("Menus_F1;Project_Options_Dialog_F1;Projects_overview',0,”,"")}

The following options are available from the Visual Cafe Window Project menu:
Execute

Compiles and runs the current project with no debugging. Applets are run in the Symantec Applet viewer by default. You set
the default viewer in the Project tab of the Project Options dialog box.

Run in Debugger
Runs the program in debug mode and stops at the first breakpoint.
Step Into

Begins running the program by stepping into the first line of source code. When used on an applet, this command takes you
the applet void init () method if one is implemented.

Build Applet/Application
Builds the applet or application.
Rebuild All
Builds all files in the active project.
Compile /tem
Compiles the active source file.
Parse All
Parses all files in the project.
JAR
Helps you create a Java Archive (JAR) file from the active project.
Migrate 1.0 to 1.1
Helps you migrate the active source file from the JDK 1.0 event model to the JDK 1.1 event model.
Add /tem
Adds the active file in the Source window to the project.
Create Project Template...

Opens the Create Template dialog box so you can add a template to the Component Library. Once added, the template is
available for the New Project command.

Options...
Opens the Project Options dialog box where you can define debugger, compiler, project, and directory options.

Execute or Compile

Compiles and runs the current project with no debugging. Applets are run in the Symantec Applet viewer by default. You set
the default viewer in the Project tab of the Project Options dialog box.

Project » Run in Debugger
Debug

rContinue
Runs the program in debug mode and stops at the first breakpoint.

Step Into

Begins running the program by stepping into the first line of source code. When used on an applet, this command takes you
the applet void init () method if one is implemented.

Build Applet/Application

Builds the applet or application.

Rebuild All

Builds all files in the active project.

Compile Item

Compiles the active source file.

Parse All

Parses all files in the project.

Parse

Parses the selected file.

JAR

Helps you create a Java Archive (JAR) file from the active project.

Migrate 1.0 to 1.1

Helps you migrate the active source file from the JDK version 1.0 to the JDK version 1.1 event model.

Add Item

Adds the active file in the Source window to the project.

Create Project Template...

Opens the Create Template dialog box so you can add a template to the Component Library. Once added, the template is
available for the New Project command.

Switch Project...

Allows you to select an open project as the new active main project. The main project is the one that the Project menu
commands apply to.

Options...

Opens the Project Options dialog box where you can define debugger, compiler, project, and directory options.

Insert menu

{button How
To,AL("Adding_a_new_file_to_the_project_howto;Class_Browser_using_F1;Adding_Files_to_a_Project_howto',0,”',”")} {button
See
Also,AL("Menus_F1;Insert_form_dialog_F1;New_Project_dialog_F1;Insert_Object_dialog_F1;Insert_class_dialog_F1;Insert_Me
mber_dialog_F1',0,","")}

The following options are available from the Visual Cafe Window Insert menu. This menu allows you to create new project
objects and add forms, files, and objects to the project.

Form...

Opens the Insert Form dialog box so that you can insert a form from the Component Library into the current project.
Applet...
Inserts an applet if there are no saved applet objects, or opens the Insert Applet dialog box where you can select an applet
from a list of applet templates.
Component...
Opens the Insert Object dialog box so you can add one or more objects from the Component Library to the active form or to
the project.
Class

Opens the Insert Class Wizard, where you can add and define a new class or interface for the current project.
Member

Opens the Insert Member dialog box, where you can declare a method to be added to the current class.

Group
Adds a group to the Component Library. Groups can only be inserted at the root level of the Component Library window or
inside other groups.

Files into Project..

(Insert/Remove Files)
Opens a dialog box where you can select one or more files to be added to the project. You can also remove files from the
project with this dialog box.

Component into Library...

Opens a dialog box where you can add an external component to the Component Library.

Insert Form...

Opens the Insert Form dialog box so that you can insert a form from the Component Library into the current project.

Insert Applet...

Inserts an applet if there are no saved applet objects, or opens the Insert Applet dialog box where you can select an applet
from a list of applet templates.

Insert Component...

Opens the Insert Component dialog box so you can add one or more objects from the Component Library to the active form
or to the project.

Insert Class

Opens the Insert Class Wizard, where you can add and define a new class or interface for the current project.

Insert Member

Opens the Insert Member dialog box, where you can declare a method to be added to the current class.

Insert Group

Adds a group to the Component Library. Groups can only be inserted at the root level of the Component Library window or
inside other groups.

Files into Project..

Opens a dialog box where you can select one or more files to be added to the project. You can also remove files from the
project with this dialog box.

Component into Library...

Opens a dialog box where you can add an external component to the Component Library.

Saves all open items. Functionality is the same as MS Windows. If no window is open, the default is “Save Project.”

Tools menu
{button Concepts,AL("Environment_Options_Dialog_F1',0,",”)} {button See Also,AL('Menus_F1',0,™,")}

The following options are available from the Visual Cafe Window Tools menu:
Compare Files...

Opens the Compare Files dialog box, where you can specify two file to compare. The differences are presented in editing
windows, allowing you to view the lines that are different.

Macro...

As you use the Source editor to create and edit program code, you may find yourself performing some tasks again and
again. You can automate the task by turning on the Macro Recorder and having it create a macro for you.

Record macro Choose this command before beginning a task in an editing window. Your keystrokes and mouse
actions are then recorded. After completing the task, choose Stop Recording from the Macro Menu. You can save the
macro for later use.

Play After creating a macro, repeat the task you recorded by playing the macro.
ScriptMaker Use the ScriptMaker dialog box to copy, name, and edit macros.
JAR Viewer...

Choose a version control system to use with the active project.
Version Control...

Choose a version control system to use with the active project.
Environment Options...

Opens the Environment Options dialog box so that you can customize your Visual Cafe development environment. The
options are global and apply to all projects.

Compare Files...

Opens the Compare Files dialog box, where you can specify two file to compare. The differences are presented in editing
windows, allowing you to view the lines that are different.

Macro » Record macro...

As you use the Source editor to create and edit program code, you may find yourself performing some tasks again and
again. You can automate the task by turning on the Macro Recorder and having it create a macro for you.

Record macro Choose this command before beginning a task in an editing window. Your keystrokes and mouse

actions are then recorded. After completing the task, choose Stop Recording from the Macro Menu. You can save the
macro for later use.

Macro » Play...

As you use the Source editor to create and edit program code, you may find yourself performing some tasks again and
again. You can automate the task by turning on the Macro Recorder and having it create a macro for you.

Play After creating a macro, repeat the task you recorded by playing the macro.

Macro » ScriptMaker...

Use the ScriptMaker dialog box to copy, name, and edit macros.

Macros you can choose.

For example:

Macro ¥ Comment block

A built-in macro that inserts a comment code block at the cursor insertion point in the Source window.

Macro ¥ Save/close source windows

A built-in macro that saves the contents of open Source windows and then closes them.

Macro » Comment block

A built-in macro that inserts a comment code block at the cursor insertion point in the Source window.

Macro » Save/close source windows

A built-in macro that saves the contents of open Source windows and then closes them.

JAR Viewer...

Look at the contents of a JAR file.

Environment Options...

Opens the Environment Options dialog box so that you can customize your Visual Cafe development environment. The
options are global and apply to all projects.

Window menu

{button Concepts,AL("Workspace_customization_overview;Visual_Cafe_Tools_overview;Debugging Your Program',0,",™")}
{button How To,AL('Workspaces_AUD_howto',0,”","")} {button See
Also,AL('"Menus_F1;Class_Browser_using_F1;Hierarchy_Editor_F1;Property_Inspector_using_F1;0bject_Library_F1;F1_Break
points_Window;F1_Call_Stack_Window;F1_Messages_Window;F1_Thread_Window;F1_Variables_Window;F1_Watch_Window'
0,7}

The following options are available from the Visual Cafe Window menu:
New Window

Creates a new instance of the active Source window. Each new instance of the same window is incremented to indicate the
number of open windows.

Docking View

Toggles whether a dockable window can be docked. (MDI development environment)
Workspaces...

workspace names
Selecting a workspace from the list saves your current workspace and configures your environment to the new layout.

New... allows you to create a new workspace.
Rename... allows you to rename a workspace.
Delete allows you to delete a workspace.

Next or Previous

Activates the next or previous window in the workspace area. (MDI development environment)
Cascade, Tile Horizontally, Tile Vertically

Arranges the windows in the workspace area in a cascaded or tiled orientation. (MDI development environment)
Windows...

Displays a list of recently used windows.

New Window

Creates a new instance of the active source window. Each new instance of the same window is incremented to indicate the
number of open windows.

Docking View

Toggles whether a dockable window can be docked. (MDI development environment)

Next or Previous

Activate the next or previous window in the workspace area. (MDI development environment)

Cascade, Tile Horizontally, or Tile Vertically

Arrange the windows in the workspace area in a cascaded or tiled orientation. (MDI development environment)

Workspaces...

workspace names
Selecting a workspace from the list saves your current workspace and configures your environment to the new layout.

Edit refers to the development workspace.
Debug refers to the debug workspace.

New... allows you to create a new workspace.
Rename... allows you to rename a workspace.

Delete allows you to delete a workspace.

Recently Used Windows

To display one of the windows that you used recently, you can select the window name from the numbered list on the menu.

Windows...

Displays a list of recently used windows.

Object menu
{button See Also,AL("Menus_F1;Source_Window_F1;Using_the_Interaction_Wizard_F1;Add_to_Library dialog_F1',0,”","")}

The Object menu enables when the active window is the Project window or Form Designer. The following options are available
from the Visual Cafe Window Object menu:
Edit object...

Opens the selected item in its corresponding editor. This command is enabled only when the selected object is a form or
visual object. The menu name changes to reflect the type of object selected.

Edit Source...
Opens the Source window for the selected object. Allows you to view the code associated with an object.
Add Interaction...

Opens the Interaction Wizard where you can create an interaction for objects in your project. This command uses the
selected object as the trigger component.

Add to Library...

Opens the Add to Library dialog box, where you can save the selected object in the Component Library.

Edit object...

Opens the selected item in its corresponding editor. This command is enabled only when the selected object is a form or
visual object. The menu name changes to reflect the type of object selected.

Edit Source or Open

Opens the Source window for the selected object or file. Allows you to view the code associated with an object or file.

Add Interaction...

Opens the Interaction Wizard where you can create an interaction for objects in your project. This command uses the
selected object as the trigger component.

Add to Library...

Opens the Add to Library dialog box, where you can save the selected object in the Component Library.

Layout menu
{button See Also,AL('Menus_F1',0,",™)}

The following options are available from the Visual Cafe Window Layout menu. Alignment commands are available only when
you do not specify a Layout manager for the form.

Align } Right/Left/Bottom/Top Edges

Aligns the selected objects relative to the specified edge. You can use the Form Designer's pop-up menu to align object to
the left and top edges.

Align # To Grid
Aligns the upper left corner of the selected object(s) to the nearest grid point.
Center F Vertically/Horizontally

Centers the selected object in the form vertically or horizontally. If multiple objects are selected, the relative position of the
objects to each other is maintained.

Space Evenly F Vertically/Horizontally
Spaces the selected objects evenly on a vertical or horizontal axis.
Make Same Size F Vertical/Horizontal/Both
Resizes the selected objects' vertical and/or horizontal dimensions based on the first selected object.
Bring to Front
Brings the selected object to the front of other objects on the form.
Send to Back
Puts the selected object behind other objects on the form.
Grid Options...

Opens the Grid Options dialog box, where you can change the display, size of the Form Designer grid, and select or clear
"snap to grid" and "show grid."

Invisibles

Toggles the display of invisible components on a form. The default state for invisible objects is visible.

Align » Right/Left/Bottom/Top Edges

Aligns the selected objects relative to the specified edge. You can use the Form Designer's pop-up menu to align object to
the left and top edges.

Align » To Grid

Aligns the upper left corner of the selected object(s) to the nearest grid point.

Center » Vertically/Horizontally

Centers the selected object in the form vertically or horizontally. If multiple objects are selected, the relative position of the
objects to each other is maintained.

Space Evenly » Vertically/Horizontally

Spaces the selected objects evenly on a vertical or horizontal axis.

Make Same Size ¢ Vertical/Horizontal/Both

Resizes the selected objects' vertical and/or horizontal dimensions based on the first selected object.

Bring to Front

Brings the selected object to the front of other objects on the form.

Send to Back

Puts the selected object behind other objects on the form.

Grid Options...

Opens the Grid Options dialog box, where you can change the display, size of the Form Designer grid, and select or clear
"snap to grid" and "show grid."

Invisibles

Toggles the display of invisible components on a form. The default state for invisible objects is visible.

Search menu

{button See
Also,AL("Menus_F1;Find_dialog_F1;Find_in_Files_dialog_F1;Compare_Files_Dialog_F1;Members_window_F1;Setting_a_Cond
itional_Breakpoint;Goto_Line_Window_F1;Goto_Function_F1;Bookmark_window_F1',0,™,™")}

The following options are available from the Visual Cafe Window Search menu. These commands are useful when trying to find
a string in multiple files, comparing files, and editing code in the Source window and Class Browser edit pane.

Find...

Opens the Find dialog box, where you can enter search criteria for the file in the active editing window.

Find Again
Finds the next occurrence of the text string previously defined with the Find command.

Replace...
Opens the Replace dialog box, where you can specify a search string and replacement text for the file in the active editing
window.

Find in Files...
Opens the Find in Files dialog box, where you can search for text across multiple files. The scope of the file search can be
defined.

Bookmarks...
Opens the Bookmark dialog box, where you can add, remove, or go to a bookmark. You can set and move to as many as
ten different locations in your source files. Bookmarks are saved through the current Visual Cafe session only.

Go to Buffer...

Opens the Go to Buffer dialog box, where you can change the options for the current edit buffer or those of another.

Go to Line...
Opens the Go to Line window where you can specify a line number to move to. The Source pane is scrolled to the
requested line. If any text is currently selected, the selection is extended to include that line.

Go to Function...
Opens the Go to Function window so that you can select an available function from the list. The edit window's focus is
moved to the selected function location.

Go to Definition...
Opens the selected method or data member in the Class Browser. The associated code block displays in the editing pane.
If there are multiple occurrences of the selection in the source file, then the Members window displays for a selection.

Go to Matching Delimiter...
Finds the delimiter that matches the delimiter to the right of the current insertion point. The insertion point is moved to the
front of the matching delimiter. This command can find matching parentheses, square brackets, or braces.

Go to Current Error

Go to First Error

Go to Previous Error

Go to Next Error

The Go to error commands moves the editing window focus to the location of the corresponding error.

Find...

Opens the Find dialog box, where you can enter search criteria for the file in the active editing window.

Find Again

Finds the next occurrence of the text string previously defined with the Find command.

Replace...

Opens the Replace dialog box, where you can specify a search string and replacement text for the file in the active editing
window.

Find in Files...

Opens the Find in Files dialog box, where you can search for text across multiple files. The scope of the file search can be
defined.

Bookmarks...

Opens the Bookmark dialog box, where you can add, remove, or go to a bookmark. You can set and move to as many as
ten different locations in your source files. Bookmarks are saved through the current Visual Cafe session only.

Go to Buffer...

Opens the Go to Buffer dialog box, where you can change the options for the current edit buffer or those of another.

Go to Line...

Opens the Go to Line window where you can specify a line number to move to. The Source pane is scrolled to the
requested line. If any text is currently selected, the selection is extended to include that line.

Go to Function...

Opens the Go to Function window so that you can select an available function from the list. The edit window's focus is
moved to the selected function location.

Go to Definition...

Opens the selected method or data member in the Class Browser. The associated code block displays in the editing pane.
If there are multiple occurrences of the selection in the source file, then the Members window displays for a selection.

Go to Matching Delimiter...

Finds the delimiter that matches the delimiter to the right of the current insertion point. The insertion point is moved to the
front of the matching delimiter. This command can find matching parentheses, square brackets, or braces.

Go to Current Error
Go to First Error

Go to Previous Error
Go to Next Error

The Go to error commands moves the editing window focus to the location of the corresponding error.

Source menu

{button Concepts,AL(Visual_Caf_Tools_for_Working_with_Classes_and_Components',0,"',”)} {button See
Also,AL("Menus_F1;F1_Watch_Window;Setting_a_Conditional_Breakpoint;Goto_Line_Window_F 1;Bookmark_window_F1;Form
at_Options_Dialog_F1',0,™,")}

The following options are enabled when the Source window is the current window. These commands affect the debug setting or
cursor placement in the Source window.

Evaluate Expression
Lets you evaluate variables and expressions from a dialog box, modify their values, and add an entry to the Watch window.
Set Breakpoint

Sets or clears a breakpoint on the current line. The toggling is based on whether or not a breakpoint is set for the current
line of source code.

If no breakpoint is set, a breakpoint is set on the current line and a stop icon appears in the left margin next to the current
line. If there is a breakpoint on the current line, the breakpoint is removed.

Set Conditional Breakpoint
Opens the Conditional Breakpoint dialog box, where you can set a breakpoint that occurs if a particular expression
evaluates to true.

Indent/Unindent
Indents or unindents the selected text block.

Uppercase/Lowercase
Converts the selected text to upper or lower case.

Tabs to Spaces

Changes all tab characters in the selected text to spaces. The number of spaces used to replace each tab character
depends on the current edit buffer's Tab Width value in the Format Options dialog box.

Spaces to Tabs
Changes spaces in the selected text to tab characters. The number of spaces used to create each tab character depends
on the current edit buffer's Tab Width value in the Format Options dialog box.

Format Options...

Opens the Format Options dialog box, where you can set editing options for the current edit buffers.

Evaluate Expression

Lets you evaluate variables and expressions from a dialog box, modify their values, and add an entry to the Watch window.

Add Watch

Adds an entry to the Watch window for the selected variable.

Set Breakpoint

Sets or clears a breakpoint on the current line. The toggling is based on whether or not a breakpoint is set for the current
line of source code.

If no breakpoint is set, a breakpoint is set on the current line and a stop icon appears in the left margin next to the current
line. If there is a breakpoint on the current line, the breakpoint is removed.

Set Conditional Breakpoint

Opens the Conditional Breakpoint dialog box, where you can set a breakpoint that occurs if a particular expression
evaluates to true.

Indent/Unindent

Indents or unindents the selected text block.

Uppercase/Lowercase

Converts the selected text to upper or lower case.

Tabs to Spaces

Changes all tab characters in the selected text to spaces. The number of spaces used to replace each tab character
depends on the current edit buffer's Tab Width value in the Format Options dialog box.

Spaces to Tabs

Changes spaces in the selected text to tab characters. The number of spaces used to create each tab character depends
on the current edit buffer's Tab Width value in the Format Options dialog box.

Format Options...

Opens the Format Options dialog box, where you can set editing options for the current edit buffers.

Debug menu

{button Concepts,AL('Debugging Your Program',0,”',"")} {button See
Also,AL("Menus_F1;Running_a_Project_howto;Stepping_Code_After_a_Breakpoint;Running_to_the_Cursor_Location;Running_
to_Program_End;Project_Options_dialog_F1',0,",")}

The following options are available from the Visual Cafe Window Debug menu. The Debug menu replaces the Project menu
when you start debugging.

Continue

Runs a paused program.
Pause
Temporarily stops the execution of a program while it is running and switches to debug mode. To begin the program again
at the current location, choose Continue.
When an unhandled exception is encountered, Visual Cafe pauses automatically at the line where the error occurred.
Stop

Terminates the program execution.
Restart

Restarts the program. Debugging is restarted from the first line.
Step Into
Steps into the next line of source code. This command steps to the next source code statement even if it is contained within
a method.
Step Over
Steps over the current method and stops when the method returns. Executes the program to the next statement, unless a

breakpoint or exception is encountered before the next statement. If the current statement contains a method call, the entire
method is called before control is returned.

Step Out
Executes the current method until it returns to its caller, unless a breakpoint or exception is encountered before execution
reaches that point.

Continue to Cursor
Continues running a paused program while ignoring any breakpoints prior to the cursor location, then stops at the cursor

location. When the cursor is reached, the program pauses and the debugger is invoked. If the selected line does not get
executed before the end of the program, the program does not break.

Continue to End
Continues running a paused program, ignoring all breakpoints, from the pause point until the normal termination point. If
any type of exception occurs, the program breaks at the point where the exception is called.
Options...
Opens the Project Options dialog box, where you can set debugging options under the Debugger tab.
Update Now
Forces an incremental update and saves all files. (Professional edition only)
Restart Method

Acts like a “Pop” command. It takes you back to the method that called the currently active method. You should not think of
it like an undo command, because it cannot undo some edits, such as variable edits. It does not undo side effects of code
that was run; an example could be if part of a program runs two times and causes an exit. (Professional edition only)

Continue

Runs a paused program.

Pause

Temporarily stops the execution of a program while it is running and switches to debug mode. To begin the program again
at the current location, choose Continue.

When an un-handled exception is encountered, Visual Cafe pauses automatically at the line where the error occurred.

Stop

Terminates the program execution.

Restart

Restarts the program. Debugging is restarted from the first line.

Step Into

Steps into the next line of source code. This command steps to the next source code statement even if it is contained within
a method.

Step Over

Steps over the current method and stops when the method returns. Executes the program to the next statement, unless a
breakpoint or exception is encountered before the next statement. If the current statement contains a method call, the entire
method is called before control is returned.

Step Out

Executes the current method until it returns to its caller, unless a breakpoint or exception is encountered before execution
reaches that point.

Continue to Cursor

Continues running a paused program while ignoring any breakpoints prior to the cursor location, then stops at the cursor
location. When the cursor is reached, the program pauses and the debugger is invoked. If the selected line does not get
executed before the end of the program, the program does not break.

Continue to End

Continues running a paused program, ignoring all breakpoints, from the pause point until the normal termination point. If
any type of exception occurs, the program breaks at the point where the exception is called.

Update Now

Forces an incremental update and saves all files. (Professional edition only)

Restart Method

Acts like a “Pop” command. It takes you back to the method that called the currently active method. You should not think of
it like an undo command, because it cannot undo some edits, such as variable edits. It does not undo side effects of code
that was run; an example could be if part of a program runs two times and causes an exit. (Professional edition only)

Variables menu

{button Concepts,AL('Debugging Your Program',0,”',"")} {button See
Also,AL("Menus_F1;Projects_overview;Goto_Line_Window_F1;Bookmark_window_F1',0,™,"")}
The following option is available from the Visual Cafe Window Variables menu.

Add Watch

Takes the selected item in the source window, or current token is there is no selection and adds an entry to the Watch
window.

Breakpoint menu
{button See Also,AL('"Menus_F1;Projects_overview',0,”,"")}

The breakpoint menu is available when your applet or application is running. These commands are also available from the
Breakpoint Window's pop-up menu.

Clear/Clear all

Clears the selected breakpoint or all breakpoints.
Enable/Enable all

Enables the selected breakpoints or all breakpoints.
Disable/Disable all

Disables the selected breakpoints or all breakpoints.
Go to Source

Opens the Source window with focus on the line of code where the breakpoint is set.

Clear/Clear all

Clears the selected breakpoint or all breakpoints.

Enable/Enable all

Enables the selected breakpoints or all breakpoints.

Disable/Disable all

Disables the selected breakpoints or all breakpoints.

Go to Source

Opens the Source window with focus on the line of code where the breakpoint is set.

Threads menu
{button See Also,AL('"Menus_F1;Projects_overview',0,”,"")}

The following options are available from the Visual Cafe Window Threads menu.
Suspend

Suspend the execution of the selected thread.
Resume

Resumes execution of the selected thread from the previous suspend point.
Suspend others

Suspends all other threads in the debugger except for the selected thread.
Resume others

Resumes all other threads in the debugger except for the currently selected thread.
Set Focus

Sets the focus of the debugger to the selected thread. The Call Stack, Variables, and Source windows are updated.

Suspend thread

Suspend the execution of the selected thread.

Resume thread

Resumes execution of the selected thread from the previous suspend point.

Suspend other threads

Suspends all other threads in the debugger except for the selected thread.

Resume other threads

Resumes all other threads in the debugger except for the currently selected thread.

Set Focus

Sets the focus of the debugger to the selected thread. The Call Stack, Variables, and Source windows are updated.

Calls menu
{button See Also,AL('"Menus_F1;Projects_overview',0,”,"")}

The following options are available from the Visual Cafe Window Call menu.
View parameter values

Toggles the display of parameter values in the Method column of the Calls window.
View parameter types
Toggles the display of parameter types in the Method column.
Go to source...
Opens the Source window for the selected call.
Go to Variables...
Updates and displays the Variables Window with a list of variables in the selected method call.
Set Focus

Set the focus of the debugger to the selected method call. This option also updates the Variables to show the active
variables in the method and Source windows to show the method call so that you can step in if you want.

View parameter values

Toggles the display of parameter values in the Method column of the Calls window.

View parameter types

Toggles the display of parameter types in the Method column.

Go to source...

Opens the Source window for the selected call.

Go to Variables...

Updates and displays the Variables Window with a list of variables in the selected method call.

Set Focus

Set the focus of the debugger to the selected method call. This option also updates the Variables to show the active
variables in the method and Source windows to show the method call so that you can step in if you want.

Hierarchy menu

{button Concepts,AL('Hierarchy_Editor_F1',0,",”")} {button How To,AL('Deleting_a_Class_Inheritance_howto',0,”,”)} {button
See Also,AL("Insert_class_dialog_F1',0,”",™")}

The following commands are available on the Hierarchy menu. Use the Hierarchy Editor's pop-up menu to delete a class's
inheritance.

Edit Class
Opens the Edit Class Wizard, where you can change the definition of a class or interface.
Go to Source
Opens the Source window containing the code for the selected package or class.
View Imports
In addition to the local classes, the Hierarchy Editor displays the classes that are imported into the project.

Edit Class

Opens the Edit Class Wizard, where you can change the definition of a class or interface.

Go to Source

Opens the Source window containing the code for the selected package or class.

View Imports

In addition to the local classes, the Hierarchy Editor displays the classes that are imported into the project.

Classes menu

{button Concepts,AL(Visual_Caf_Tools_for_Working_with_Classes_and_Components',0,"',”)} {button See
Also,AL("Class_Browser_using_F1;Menus_F1;Insert_class_dialog_F1;Insert_class_dialog_F1;WinStyle_Controlling_Class_and
_Member_Display_F1;WinStyle_Grouping_and_Sorting_Class_and_Members_F1',0,",")}

The following options are available from the Visual Cafe Classes menu. This menu is available when the Class Browser is active.
Use the Insert menu or pop-up menus in the Class Browser panes to add new classes and members.

Edit Class...

Opens the Edit Class Wizard, where you can change the definition of a class or interface.

Member Attribute...
Opens the Member Attributes dialog box, where you can change the member's access type for the selected method or data
element.

Delete Member
Deletes the selected member from its class. If the selected member is a variable, like "Button1", this command removes the
associated visual object.

Go to Source

Opens the class' Java file in the Source window.
Options...

Opens the Class Options dialog box, where you can expand or refine the elements in the class listing and define how
classes or members are sorted.

Edit Class...

Opens the Edit Class Wizard, where you can change the definition of a class or interface.

Member Attribute...

Opens the Member Attributes dialog box, where you can change the member's access type for the selected method or data
element.

Delete Member

Deletes the selected member from its class. If the selected member is a variable, like "Button1", this command removes the
associated visual object.

Go to Source

Opens the class' Java file in the Source window.

Options...

Opens the Class Options dialog box, where you can expand or refine the elements in the class listing and define how
classes or members are sorted.

Popup Menus

Using the Form Designer pop-up menu

{button See
Also,AL("Menus_F1;Forms_adding_objects;Arranging_Components_on_a_Form_howto;Connecting_Form_components_howto;
Source_Window_F1;Using_the_lInteraction_Wizard_F1;Add_to_Library_dialog_F1',0,",")}

When you right mouse click a component in the Form Designer, Visual Cafe displays this menu:
Cut/Copy/Paste

These commands perform standard Windows functions.
Align Left Edges
Align Top Edges
Align to Grid
Aligns the selected object(s) as indicated. Use the Form Designer's pop-up menu to align object to their relative right and
bottom edges. See the Layout menu topic for information about aligning to a grid.
These commands are disabled if the selected controls reside inside a container that is using a layout.
Edit Source
Opens the Source window for the component.
Add Interaction

Opens the Interaction Wizard. The selected component is used as the interaction’s trigger component.
Add to Library...

Opens the Add to Library dialog box, where you can add the selected component to the Component Library making it
reusable across projects.

Properties

Opens the Property List for the selected object.

Cut/Copy/Paste

These commands perform standard Windows functions.

Edit Source or Open

Opens the Source window for the component.

Add Interaction

Opens the Interaction Wizard. The selected component is used as the interaction’s trigger component.

Add to Library...

Opens the Add to Library dialog box, where you can add the selected component to the Component Library making it
reusable across projects.

Properties

Opens the Property List for the selected object.

¥
Using the Objects view pop-up menu
{button Concepts,AL("Projects_overview',0,”',”")} {button See
Also,AL("Adding_objects_to_project_howtoMenus_F1;Add_Remove_Files_Dialog_F1;Connecting_Form_components_howto',0,
)
When you right mouse click an object in the Project window, Visual Cafe displays a pop-up menu with the following commands:
Go to Definition

Opens the selected component's parent class in the Class Browser and shows the object declaration in the source pane.
Insert object...

This Insert command reflects the selected object. This is a quick way of creating a new object of the selected type.
Insert Component...

Opens the Insert Component dialog box, where you can select a component from the Component Library for insertion into
the current project.

Edit object
This edit command reflects the selected object. The appropriate editor is opened for the selection.

Edit Source

Opens the selected object's source code in the Source window.
Add Interaction

Starts the Interaction Wizard so that you can define an interaction relationship between components. The selected object is
the trigger component for the new interaction.

Properties

Opens the Property List for the selected object.
Docking View

Enable or disable docking of the window. (MDI development environment)
Hide or Close

Hide or close the window.

Go to Definition

Opens the selected component's parent class in the Class Browser and shows the object declaration in the source pane.

Insert object...

This Insert command reflects the selected object. This is a quick way of creating a new object of the selected type.

Using the Packages view pop-up menu

{button Concepts,AL(Projects_overview;Source_Window_F1',0,","")} {button See
Also,AL("Menus_F1;Add_Remove_Files_Dialog_F1',0,","")}

When you right mouse click an object in the Project window, Visual Cafe displays a pop-up menu with the following commands:
Insert/Remove Files...

Opens the Project Files dialog box, where you can add and remove files to and from the current project.
Edit Source or Open

Opens the selected source file in the Source window.
Docking View

Enable or disable docking of the window. (MDI development environment)
Hide or Close

Hide or close the window.

Using the Files view pop-up menu

{button Concepts,AL(Projects_overview;Source_Window_F1',0,","")} {button See
Also,AL("Menus_F1;Add_Remove_Files_Dialog_F1',0,","")}

When you right mouse click an object in the Project window, Visual Cafe displays a pop-up menu with the following commands:
Compile

Compiles and runs the current project with no debugging. Applets are run in the Symantec Applet viewer by default. You set
the default viewer in the Project tab of the Project Options dialog box.

Parse

Parses the selected file.
Insert/Remove Files...

Opens the Project Files dialog box, where you can add and remove files to and from the current project.
Stop or Start RAD

Disable or enable RAD for a file. The RAD feature makes objects appear in the Objects view, lets you design forms in the
Form Designer, lets you design menus in the Menu Designer, lets you create interactions with the Interaction Wizard, and
generates code according to your form design.

Edit Source or Open

Opens the selected source file in the Source window.
Docking View

Enable or disable docking of the window. (MDI development environment)
Hide or Close

Hide or close the window.

Insert/Remove Files...

Opens the Project Files dialog box, where you can add and remove files to and from the current project.

Hide or Close

Hide or close the window.

Stop or Start RAD

Disable or enable RAD for a file. The RAD feature makes objects appear in the Objects view, lets you design forms in the
Form Designer, and generates code according to your form design.

Using the Project tabs pop-up menu

{button Concepts,AL(Projects_overview;Source_Window_F1',0,","")} {button See
Also,AL("Menus_F1;Add_Remove_Files_Dialog_F1',0,","")}

When you right mouse click a tab in the Project window, Visual Cafe displays a pop-up menu with the following commands:
Objects

Enable or disable the display of the Objects tab.
Packages

Enable or disable the display of the Packages tab.
Files

Enable or disable the display of the Packages tab.
Make Tab Default

Enable or disable the tab as your default tab when a project first displays.

Objects

Enable or disable the display of the Objects tab.

Packages

Enable or disable the display of the Packages tab.

Files

Enable or disable the display of the Packages tab.

Make Tab Default

Enable or disable the tab as your default tab when a project first displays.

Using the Class Pane pop-up menu

{button Concepts,AL(Visual_Caf_Tools_for_Working_with_Classes_and_Components',0,"',”)} {button See
Also,AL("Class_Browser_using_F1;Menus_F1;Insert_class_dialog_F1;Insert_class_dialog_F1;WinStyle_Controlling_Class_and
_Member_Display_F1;WinStyle_Grouping_and_Sorting_Class_and_Members_F1',0,",")}

When you right mouse click an object in the Class Browser's Classes pane, Visual Cafe displays a pop-up menu with these
commands:

Insert Class...

Opens the Insert Class Wizard, where you can add and define a new class or interface for the project.
Edit Class...

Opens the Edit Class Wizard, where you can change the definition of a class or interface.
Go to Source

Opens the selected class Java source file in the Source window.
Options...

Opens the Class Options dialog box, where you can expand or refine the elements in the class listing, and define how
classes or members are sorted.

Insert Class...

Opens the Insert Class Wizard, where you can add and define a new class or interface for the project.

Options...

Opens the Class Options dialog box, where you can expand or refine the elements in the class listing, and define how
classes or members are sorted.

Using the Member Pane pop-up menu

{button Concepts,AL('Class_Browser_using_F1',0,","")} {button How To,AL('Adding_methods_ClassBrowser_howto',0,",™)}
{button See
Also,AL("Menus_F1;Member_Attributes_dialog_F1;Insert_Member_dialog_F1;WinStyle_Controlling_Class_and_Member_Displa
y_F1;WinStyle_Grouping_and_Sorting_Class_and_Members_F1',0,”,"")}

When you right mouse click an object in the Class Browser's Member pane, Visual Cafe displays a pop-up menu with these
commands:
Insert Member...

Opens the Insert Member dialog box, where you can add a new method or variable to the selected class.
Delete Member

Deletes the selected method or data member. The member's declaration is removed from the source files.
Member Attributes...

Opens the Member Attributes dialog box, where you can change a member's access type.
Go to Source

Opens the Source window with focus on the selected member.
Options...

Opens the Class Options dialog box, where you can expand or refine the elements in the member listing, and define how
members and classes are sorted and grouped.

Insert Member...

Opens the Insert Member dialog box, where you can add a new method or variable to the selected class.

Delete Member

Deletes the selected method or data member. The member's declaration is removed from the source files.

Member Attributes...

Opens the Member Attributes dialog box, where you can change a member's access type.

Go to Source

Opens the Source window with focus on the selected member.

Options...

Opens the Class Options dialog box, where you can expand or refine the elements in the member listing, and define how
members and classes are sorted and grouped.

Using the Hierarchy Editor pop-up menu
{button See Also,AL('"Menus_F1;Hierarchy_Editor_F1;Insert_class_dialog_F1',0,”,"")}

When you right mouse click an object in the Project window, Visual Cafe displays a pop-up menu with these commands:
Insert Class...

Opens the Insert Class Wizard, where you can add and define a new class or interface for the project.
Edit Class...

Opens the Edit Class Wizard, where you can change the definition of a class or interface.
Remove Inheritance

This command is enabled when you select the line connecting two classes in the window.

The line represents a connection between two classes. When you delete the connection, the inheritance changes such that
the object now extends java.lang.object.

Go to Source

Opens the Source window with focus on the selected package or class.
View Imports

In addition to the local classes, the Hierarchy Editor displays the classes that are imported into the project.

Remove Inheritance

This command is enabled when you select the line connecting two classes in the window.

The line represents a connection between two classes. When you delete the connection, the inheritance changes such that
the object now extends java.lang.object.

»
Using the Component Library pop-up menu

{button See Also,AL("Menus_F1',0,","")}

When you right mouse click an object in the Component Library, Visual Cafe displays a pop-up menu with these commands:
Insert Group

Creates a new group item.
Add to Palette

Adds the selected object(s) to the active Palette tab at the end of the object list.

Using the Source Window pop-up menu
{button See Also,AL("Menus_F1;Source_Window_F1;Class_Browser_F1;Members_window_F1',0,™,")}

The following commands are available from the pop-up menu when editing source code in the Source window, as well as the
Class Browser's editing pane.

Continue to Cursor

Continues running a paused program until the programmer reaches the selected cursor position.
Cut/Copy/Paste

These edit commands perform standard Windows functions.
Go to Definition

Opens the selected method or data member in the Class Browser. The associated code block displays in the editing pane.
If there are multiple occurrences of the selection in the source file, then the Members window displays for a selection.

Evaluate Expression

Lets you evaluate variables and expressions from a dialog box, modify their values, and add an entry to the Watch window.
Set Breakpoint

Sets a breakpoint at the current cursor location.
Format Options...

Opens the Format Options dialog box, where you can set editing options for the current edit buffers.

Toolbars

Using Visual Cafe toolbars

{button How To,AL("Controlling_Position_and_Visibility_howto',0,",")} {button See
Also,AL("Toolbars_standard_F1;Toolbars_layout_F1;Toolbars_views_F1;Toolbars_debug_F1;Visual_Cafe_window_F1',0,",")}

Visual Cafe provides an extensive set of toolbars. Toolbars can be docked in the Visual Cafe Window or floated on the screen.

These toolbars are available in the Visual Cafe window:

e Standard
e Layout

e Views

¢ Debug

* Workspace

Using the Standard toolbar

{button How To,AL('Adding_a_new_file_to_the_project_howto',0,™,")} {button See
Also,AL("File_menu_F1;Applets_step_overview;Applications_step_overview',0,",”")}

The Standard toolbar provides icons for tasks that you perform when using Visual Cafe. The icons execute standard Windows
tasks.

From the standard toolbar, you can:

e create a new source file

* open an existing document

¢ save the active document

e cut/copy/paste

e print source code

¢ display information about Visual Cafe
¢ activate context sensitive help

Using the Layout toolbar
{button See Also,AL('Form_Designer_F1;Layout Menu_F1',0,","")}

The Layout toolbar provides quick access to the common commands that you use when using the Form Designer.
The icons on the Layout toolbar perform standard Windows graphic object layout tasks.

From the Form Designer, you can:

¢ Align objects by their left/right edges or top/bottom edges
¢ Center objects vertically or horizontally in the form

e Space objects vertically and horizontally

e Size objects equally vertically, horizontally, or both

e Show the grid on or off

¢ Show the display of invisible objects

»
Using the Views toolbar

{button Concepts,AL('Debugging Your Program',0,”',"")} {button See
Also,AL("Projects_overview;Property_Inspector_using_F1;Class_Browser_using_F1;Hierarchy_Editor_F1;Window_Menu_F1',0,”
D)

The Views toolbar gives you quick access to different views into your project and debugging tasks.

From the Views toolbar, you can access these windows:

¢ Class Browser e Watch

¢ Hierarchy Editor e Threads
¢ Property List e Call Stack
¢ Breakpoints * Messages
e Variables

Tasks

Watching a variable or expression
Setting a breakpoint

Debugging threads

Viewing the current variable values
Viewing the call stack

Using the Workspace toolbar
{button Concepts,AL("Workspace_customization_overview',0,™,™")}

The Workspace toolbar allows you to select an existing workspace.

By default, there are two workspaces defined. Your workspaces may display differently than defined below because the
workspace's state is saved as you close Visual Cafe tools.

Edit
Displays the Project window, Form Designer, and Property List windows.
Debug

Displays the Project, Variables, Call Stack, and Breakpoints windows.

Using the Debug toolbar
{button See Also,AL('Debugging Your Program',0,”",™")}

The Debug toolbar provides easy access to the commands that you use most often when debugging your program.

Tasks

Running a program in the Debugger
Pausing a program

Stopping a program

Stepping into a method

Stepping over a method

Stepping out of a Method

Toggling a breakpoint
Watchin variabl

Tools and Window

Dialog Boxes

Using the Add to Library dialog box
{button Concepts,AL('Object_Library_F1')}

Object ¥ Add to Library
The Add to Library dialog box allows you to add objects to the Component Library.
1. Select the group that the object will belong to.
2. Enter a name for the object in the Name field and a Description string.
The Description string is used when the object displays on the Palette or is listed in the Component Library window.

3. Click OK.

Using the Insert/Remove Files dialog box

{button Concepts,AL("Projects_overview',0,”',”")} {button See
Also,AL("Adding_Files_to_a_Project_howto;Adding_Bean_to_Library_howto;Projects_overview',0,”,"")}

Project window, Packages tab F Insert/Remove files

The Insert/Remove dialog box contains a list of files in the project. When a file is added, the file name is highlighted in the Project
window.
To remove a file
1. Select the file to remove from the file pane at the bottom of the dialog box.
2. Click Remove or press the DELETE key.
To add a file
1. Locate and select the files to be added.
2. Click Add to add the selected files or click Add All to add all files in the current directory.
The file is added to the file pane at the bottom of the dialog box.

»
Using the Create Project Template dialog box

{button Concepts,AL("Working_with_Templates_overview',0,","")} {button See Also,AL('Creating_a_Project_howto',0,",™")}
Project k Create Project Template
The Create Project Template dialog box allows you to add a custom project templates to the Component Library.

Tasks

Creating a template
Deleting Templates from the Component Library

Using the Conditional Breakpoint dialog box
{button Concepts,AL(Setting Breakpoints',0,",™)}

Source P Set Conditional Breakpoint

You can set conditional breakpoints in any source window or pane. Breakpoints are marked in the editing window by a red dot in
the left margin.

1. Specify the condition under which the breakpoint will be evaluated.

Option Description

Always break Always stop program execution at this breakpoint.
If expression is Use this option when you want the debugger to
true evaluate the associated expression every time this

breakpoint is hit. A breakpoint is considered to be hit
only if the expression is evaluated to true. This allows
you to insert a statement in your code that you
forgot, or to first test (in the debugger) that a certain
modification does fix the problem before editing and
compiling again.

2. Specify the location of the breakpoint.

Option Description
Method name Name of the method that the breakpoint is set on.
Line number The physical line number in the source code where

the break should occur.
3. Click Ok.

The source editor determines if the breakpoint location is valid and then inserts the breakpoint.

Using the Evaluate Expression dialog box
{button See Also,AL('Watching a Variable or Expression ;Watching Variables and Expressions',0,™,™)}

Source F Evaluate Expression
Use this dialog box to evaluate variables and expressions, and add an entry to the Watch window.

1. If needed, type a variable or expression in the Expression field.

2. To get the value of a variable or expression, click Recalculate or press RETURN. To change a value, type the new value in
the Result list. To add a variable or expression to the Watch window, and close the dialog box, click Add Watch.

Using the Images dialog box
{button See Also,AL("SlideShow component;URL property;',0,™,"")}

Property List ¥ URL property/ImageL.ist property

Use this dialog box to enter a series of .gif and .jpg image files that are to be used with the associated component. The order of
the images in this list is the order in which they display.

Reordering of the images can be done with the up and down arrows.

Using the Insert Applet dialog box

{button Concepts,AL('Applets_step_overview;Projects_overview')} {button See
Also,AL("Creating_a_Template_howto;Deleting_Objects_from_the_Object_Library_howto',0,",”")}

Insert ¥ Applet
The Insert Applet dialog box allows you to create the new applets from an existing template into an existing project.

The current default template is marked with an asterisk. If there are no templates in the default library, then a basic applet project
is created.

To create an applet, select a template to be used as the applet base and click OK.

You can add applets to use as templates by adding an existing applet to the Project Template folder in the Component Library.
Standard view buttons are provided on the dialog box to change the display of the templates:

Shows the templates as large icons.

Shows the templates as small icons.

Shows the templates in a list.

i E 5! E

Shows the templates in a single-column

Using the Insert Form dialog box
{button See Also,AL('Form_Designer_F1',0,”","")}

Insert ® Form
This dialog box lets you to create a new form from one of the templates in the Component Library.
1. Select a template for the new form.

2. Click OK.
The form is added to the project and opened for editing in the Form Designer.

Using the Insert Member dialog box
{button See Also,AL('Class_Browser_using_F1;Member_Attributes_dialog_F1',0,",™)}

Insert ¥ Member
Use this window to add a new member to the selected class.

1. Specify the member declaration.

For data items, enter the type and member name (for example, int nCats). A trailing semicolon is optional. The member
declaration is placed into the class declaration.

Note The Source File field is not editable. It displays the name of the source file into which the member definition will be
placed.

2. Indicate the base class access type.

This dialog box is also available with the Insert Member command on the Class Browser, Members pane pop-up menu.

Using the Insert Object dialog box

{button Components,JI("VCAFE.HLP',"Visual_Components_and_Containers')}

Insert # Component

The Insert Object dialog box allows you to add appropriate objects directly from the Component Library. The object list is filtered
based on the current selection when the dialog box is opened.

Objects are filtered based on the current selection. For example, if a form is selected in the Project window when you open the
Insert Object dialog box, then only the components that are valid within a form display.

You can also access the Insert Object dialog box from the Project window by choosing Insert Component from the pop-up menu.

Tasks

Adding objects to a form
Adding objects to a project
Adding objects to the Palette

Using the New Project dialog box

{button Concepts,AL('Projects_overview')} {button See
Also,AL("Creating_a_Template_howto;Popup_menu_New_Project_ F1',0,”","")}

File ¥ New Project
The New Project dalog allows you to create a new object from an existing template.

The current default template is marked with an asterisk. If there are no templates in the default library, then a basic applet project
is created.

Standard view buttons are provided on the dialog box to change the display of the templates:

o
ﬂ Shows the templates as large icons.

— Shows the templates as small icons.

oy Shows the templates in a list.
E Shows the templates in a single-column
Tasks

reatin new project

Defining a new default template

Removing templates from the Component Librar

Using the Open File dialog box

{button How To,AL("Adding_Files_to_a_Project_howto',0,",")} {button See Also,AL('Source_Window_F1',0,","")}

File ¥ Open

The Open File dialog box allows you to open Visual Cafe project file.

When you select a Visual Cafe project file (.vep), the project opens using the last saved window configuration.
When you select a Java source file (.java) or HTML file (.html), the Source window opens for source code editing.

Note When you open a file, Visual Cafe does not automatically add the file to the current project.

Using the Members window
{button See Also,AL('Source_Window_F1;Search_Menu_F1;Class_Browser_using_F1',0,","")}

Search F Go to Definition
This window displays as a result of a successful search with the Go to Definition command.

1. In the Source window, select the definition that you want to search for within the file.

For example, you can highlight the init keyword.
2. Choose Search P Go to Definition.

The Members window lists all class methods in the source file that have the selected definition.
3. Double-click the appropriate method to open the Class Browser for the selected member's class.

The selected method source code displays in the Class Browser editing pane.

»
Using the ScriptMaker dialog box

Use the ScriptMaker dialog box to copy and rename macros.

Use the File ¥ Macro

P Record macro command to record your editing keystrokes. The file is saved as the <DEFAULT> macro. You can then use this
dialog box to duplicate the macro and name the duplicate for saving.

You cannot rename the default script; you must duplicate it first. If DEFAULT.MAC is deleted from disk, Visual Cafe Basic creates a
stub file when it starts up.

Macros

Lists existing macros that are associated with the current project. ScriptMaker macro files have the extension .MAC and are
stored in \Bin\Macs. The default macro is highlighted by default. Click a macro to select it. Double-click to open a macro in
an editor.

Properties

The display name and file name of the selected macro.
Display in Menu

Select this option if you want the current (highlighted) macro to appear by name at the bottom of the File ¥ Macro menu.
Reorder Commands

Allows you to change the order of the macros which appear in the Macro menu. Click the up arrow to move the selected
macro up in the menu; click the down arrow to move it down in the menu. The default macro always stays at the top of the
list.

Done Button

Click Done to save all changes to the project's macros.
Edit Button

Click Edit to open a macro in an editor.
Rename Button

Click Rename to rename the current macro. The Rename/Duplicate Macro dialog box appears. Rename is not active when
the default macro is highlighted.

Duplicate Button
Click Duplicate to create a copy of the current macro. The Rename/Duplicate Macro dialog box appears.
Delete Button

Click Delete to delete the current macro. Delete is not active when the default macro is highlighted.

»
Using the URL Chooser dialog box

{button See Also,AL("URL_property;ImageURL',0,",")}

Property List ¥ URL property or ImageURL property

Use this dialog box to select a single .gif or .jpg image file to be used by the selected component. The image format must be
compatible with the browser that will be running the component.

Using the Windows dialog box

Window F Windows

Use this dialog box to select a recently access tool or project window. On this dialog box you can activate or close the selected
window.

You can SHIFT-click multiple window names.

Class Options Dialog box

F1 help for standard Win95 windows

All of the help topics in this section use the direct helpid context string.

»
Using the Open File dialog box

Use this dialog box to open the appropriate file for your current task.

»
Using the Save File dialog box

Use this dialog box to save the active file or object.

»
Using the About Visual Cafe dialog box

Provides information about your Visual Cafe release.

Database Edition F1 Help

Author note: They couldn’t figure out a way to get this to work from the database help file, so you have to put it here.

dbNAVIGATOR

Display the dbNAVIGATOR window. After connecting to a dbANYWHERE Server, you can use the dbNAVIGATOR as an
easy way to view a list of dbANYWHERE servers and data sources that are currently connected, and to add database
functionality to a project.

Add Table

Start the Add Table wizard, which helps you add a table to your project. If your project already has a QueryNavigator or
RelationViewPlus, you can create a master/detail relationship. If you are using the JDBC API, you can create joins across
forms. Before choosing this command, in the Project window, select the container that you want to add the table to.

Using the dbNAVIGATOR pop-up menu

When you right-click in the dbNAVIGATOR window, a pop-up menu displays with the following commands:
Insert Server

Opens the dbANYWHERE Server dialog box that lets you connect to a dbANYWHERE Server. This command is available
only if a dbANYWHERE Server is selected.

Delete Server
Deletes the selected dbANYWHERE Server from the dbNAVIGATOR. This command is available only if a dbANYWHERE
Server is selected.

Connect
Opens the Logon dialog box that lets you logon to a data source. This command is available only if a Data Source is
selected.

Disconnect

Disconnects the selected database.
Refresh

Refreshes the selected database's dbNAVIGATOR tables and columns information. This command is useful for multiple
concurrent users. This command is available only if a dbANYWHERE Server or Data Source is selected.

Obsolete

Using the Create Derived Class dialog box

{button Concepts,AL(Visual_Caf_Tools_for_Working_with_Classes_and_Components',0,"",”")}

Class are added to a project a derived class.

1. Select a Base Class for the new class. The base class is the class from which the new class is derived.

2. Enter a name for the new class.

As you enter a class name, the Source File path is generated for you. The default path works best in most conditions.

End of F1 Edit file

Component Date/History Tracking

1/16/97: Added dummy topics for Pro testing -- Date, Time, Timestamp.
2/1 - 3/3 - updated topics, added popups, removed jumps to API, remapped Event button
3/3/97 Sent for engineering review.

4/15/97 Remove DateMask, TimeMask, and DateTimeMask from index/browse string. Components were deleted from the
release.

6/11/97 Modified RadioBox and RadioButton components, added DateTimeStamp Component
8/6/97 Update/check all components for 1.1

12/04/97 - Added JDBC components

=3

Visual Cafe components and containers

{button Component List,PI(*vcafe.hlp',” Components_standard_list_popup')}

Visual Cafe helps you to design Java applets and applications, without writing source code by using a library of pre-written
components.

In Java, the objects you use to create a visual interface are called components. You place your components into objects called
containers, which define a window and determine how each component displays in its window.

For example, a Frame is the parent container used to build a visual interface for an application. To build a Frame in Java, you
extend a Frame class and instantiate and configure that subclassed object, and then instantiate, configure and add components,
like Buttons or TextFields, into your Frame container. This is a complex process.

Visual Cafe simplifies this process. In Visual Cafe, you build an application project using the New Project window, drag
component icons from the Palette to your Form Designer window, and configure the component using its Property List window.
Visual Cafe does the rest for you.

More information: For more information about standard component classes, see the Java API Reference manual. For
information about dbAWARE classes, such as Session, Connectioninfo, and RelationViewPlus, see the dbANYWHERE API
Reference manual. These manuals are available from the Visual Cafe Help menu.

Visual Cafe DDE components

Visual Cafe Database Developer Edition provides two types of database components:

e connection components
* dbAWARE components

Connection components are invisible components that define the database connection, the database view, and how data is
retrieved.

A dbAWARE component is a Visual Cafe component that has additional properties for binding to data in a database. dbAWARE
components are bound to the current row in a single database column and some can be bound to another database column for
component population. Some dbAWARE components provide projection binding, others provide list binding.

dbAWARE components extends classes in package symantec.itools.db.awt.
To define the data binding of a dbAWARE component, use a RelationViewPlus component.
Several of the standard Visual Cafe components have an equivalent dbAWARE component.

Tip: You can quickly add dbAWARE components by using the dbAWARE Project Wizard (File ¥ New Project) and the Add Table
Wizard (Insert

¥ Add Table Wizard, and the Add Table Wizard icon on the Component Palette.)
Additional component information
To access reference information about an individual component, perform a search in the Help system index or select the
component on the Component Palette or in the Component Library and press F1.
Also see

Understanding the Component class
Understanding the Container class

Components

Container objects are found in the Panel and Forms categories.

Components with dbAWARE properties are available with Visual Cafe Database Developer Edition only. Components that are
both general and dbAWARE components are marked with a .

JDBC dbAWARE Additional Multimedia Standard Panels
ConnectionManager Add Table Wizard PComb_oBox Animator Button BorderPanel
nnection 4. Checkbox DaySpinner Emblaze20 Canvas ImagePanel
Mediator PComboBox ’7D7F|rectlotrt18 duTttor:F_ I Firework FCheckbox KeyPressManage
MediatorDS 77C0nne_dlnfo rormaued exitield MmageViewer Choice el
P DateTimeStam HorizontalSlider : Tt Horizontal I _
Navigator . MovingAnimation Horizontal Scrollbar RadioButtonGrou
QueryNavigator PEormattedTexiFiel ImageButton b RadioButlonGrou
_— cormatied lexitield) MNervousText Label el
RecordDefinition Grid ImageHTMLLink Plasma WList el .
MmageViewer ImagelListBox e Panel ScrollingPanel
MLabol InvisibleButton SlideShow —ane litterPanel
Mist InvisbleHTMLLink ~ SeundPlaver oo aon TabPanel
LISt e S LI TextArea labranel
MNervousText LabelBution - MTextField ToolBarPanel
b%déq%mtt 77&22:;‘;'\“““ Vertical Scrollbar ToolBarSpacer
adioButton Label3D
RecordStateLabel ListSpinner
RecordNumberLabel MonthSpinner
pStateCheckBox RollOverButton
FTextArea ScrollingText
PTextField PStateCheckBox
StatusBar
VerticalSlider
WrappinglLabel
Forms Menus & Items Shapes Utility Predefined TextFields
AboutDialog CheckboxMenultem Circle Calendar Intl ongDistPhoneNum
Applet Menu Ellipse ProgressBar ber
AttentionDialo MenuBar HorizontaLine StatusScroller LocalPhoneNumber
Dialog Menultem Line Timer LongZipCode
Frame Rect TreeView PostalCode
Open File Dialog Square Wizard SociallnsuranceNumbe
PasswordDialog VerticalLine r '
ProgressDialog ial rityNumber
ve File Dial tL)JSLongDistPhoneNum
Window g
ZipCode
»

Understanding the component class

{button See Also,AL(’Container_class;Visual_Cafe_components_and_containers',0,”,”")} {button
APLJI(APIRef.hlp',"java.awt.Component.html')}

The Component class is the parent class from which all visual components and containers extend. This class provides a protocol
defining objects that will possess size and position, can be rendered onto the screen, and can respond to events.

The visual components present on the Visual Cafe palette are subclasses of class Components. The Container class is also a
subclass of Component. Specialized containers for applets, pop-up windows, and applications are subclasses of class Container.
Both Component and Container are abstract classes and cannot be instantiated without first subclassing them.

Use a component in one of three ways:

¢ You can write an entirely new component by subclassing the Component class directly. Be sure to override all abstract
members.

¢ You can instantiate one of the standard visual components (like Button or WrappingLabel) directly. Your code can handle that
component’s events by registering a listener with it. See events for more information.

¢ You can subclass one of the standard visual components (like Button or WrappingLabel). Your subclassed component will
inherit all public Component data members and methods, and can directly access the members it needs. Your code can
handle that component’s events by registering a listener with it (preferred), or by using the old event “inheritance” model. See

events for more information.

By default, Visual Cafe provides an Applet component for creating applets and a Frame component for creating applications.

Understanding the container class

{button See Also,AL('Component_class;Visual_Cafe_components_and_containers',0,”,")} {button
APLJI(APIRef.hlp',"java.awt.Container.html')}

A Container is a visual component that can hold other visual components. You build a Java GUI by placing components and
containers into a parent Container extended from this class.

The Container class provides a calling protocol that defines objects that can display on the screen, show or hide themselves and
their contents, receive or surrender focus, provide default responses to user events and hold objects of the type component.

Use a container in one of three ways:

¢ You can write an entirely new container by subclassing the Container class directly. Be sure to override all abstract members.
The Window container typically provides this basic functionality.

¢ You can instantiate one of the standard Containers (like Frame or BorderPanel) directly. Your code can handle that
container’s events by registering a listener with it. See events for more information.

* You can subclass one of the standard Containers (like Frame or BorderPanel). Your subclassed container will inherit all public
Container data members and methods, and can directly access the members it needs. Your code can handle that container’s
events by registering a listener with it (preferred), or by using the old event “inheritance” model. See events for more
information.

In Visual Cafe, applications are built on Frame containers and Applets are built on Applet containers. Double-clicking on one of
these containers in the Project window opens a Form Designer window for visual editing of that container and its components.
Other specialized containers are listed below:

Window A blank modal container that must be set into a Frame.

Frame A top-level window. Extends Window. It supports a title and menu bar, and
can be minimized. It cannot be placed inside other containers.

Panel A basic organizational container. It can be placed inside other containers
including other panels.

Applet A Panel that can be run by another program and supports multimedia
features. Applet containers are parents to applet programs. Applets cannot
be nested.

Tips:

To build a GUI using Visual Cafe, create an application or an applet project using the Project window. Depending on what you
selected, Visual Cafe automatically provides you with either a Frame container or an Applet container as the parent container for
your project. Continue by dragging container and component icons from the Palette or Component Library to the Form Designer
window as necessary.

To build a GUI in project source code, instantiate a Container object and all the Component objects you need. Call the
container’s setLavout method to add a layout manager, if desired. Then call that container’s Add method to place Component
objects into your Container object. Finally, call the container’s setvisible method to make the container and all components
visible.

Standard components with dbAWARE properties

Checkbox component (standard/dbAWARE)

{button Properties,PI(vcafe.hlp',”Checkbox_Properties')} {button Events,PI(*vcafe.hlp',"Events_summary')} {button
Example,JI("vcafe.hlp',"Example_CheckBox')} {button API (standard),JI("APIRef.hlp'," java.awt.Checkbox.html')} {button API
(dbAWARE),JI("APIRef.hlp',"symantec.itools.db.awt.Checkbox.html')}

Description

Alabelled square box that the user toggles to turn on or off an option. To toggle, either click on the Checkbox’s box or label, or
press the spacebar when it has the focus.

Use a Checkbox to
o display a true/false value to the user and optionally allow it to be changed,
¢ display a possible range of options to the user and optionally allow one or more to be chosen.

If a Checkbox is a member of a group (by having a name is specified in the Group property field), it is a RadioButton and is used
to select one of a possible range of options. See RadioButton for more information.

See also: StateCheckBox

See also: RadioButton

dbAWARE features

A dbAWARE version of the Checkbox component is available in Visual Cafe Database Developer Edition.

This component automatically updates the database when certain triggering events occur. See Events Triggering Database
Updates for more information.

One use for a dbAWARE checkbox is to link a check box and list box to the same column, and define True and False string
values for the check box. Then, when your user selects the check box option the true value displays in the list box; when the
check box is cleared, the false value displays.

Although CheckBox components change their appearance to become RadioButton components when they are added to a
RadioBoxGroupPanel component, it is recommended that you use the appropriate component to begin with.

The Data Binding property is used to bind this component with a specific data item in the database.
The Empty Means Null property defines how a component with no value (empty) is saved in the database.
The Triggering Event property specifies which event makes the component commit its value to the database.

Runtime modification

To add a CheckBox to a checkbox group at run time, call setCheckboxGroup to add the component to a particular group. If
you are using a RadioGroupButtonPanel, you can just add the component to the panel.

Properties

To set the default state, either checked (true) or cleared (false), use the State property.

Use the Interaction Wizard to have another component perform some action when the Checkbox value changes and generates
an ItemEvent type event. Actions can be triggered when the Checkbox generates other standard events, too.

To group Checkbox components, use the Group property to specify a common group name. When the Group property is
specified, the Checkbox behaves like a RadioButton. Only one of the components in the Checkbox group can be "on" at a time.
This allows the user to select on of a possible range of options. See RadioButton for more information.

Coding the component

In project source code, use this syntax to create a new CheckboxGroup:

groupl = new CheckboxGroup () ;
Where group1 is the variable name used to identify the Checkbox group in code.

In project source code, use this syntax to create a new Checkbox:

checkboxl = new java.awt.Checkbox (String label, CheckboxGroup group, boolean state);

Part Type Description

checkbox1 Checkbox The variable name used to identify the checkbox in code.

label String The text to display next to the checkbox.

group CheckBoxGroup The CheckboxGroup, or null for no group.

state boolean The initial state of the check box: true is "checked"; false is "unchecked".
Example

The following screen shot shows a single CheckBox component below a TextArea component.

Description Dine on the creations of top chef:;l
and learn their culinary zecrets.

1] | v

[T Set az default

Checkbox Properties

Background
Bounds

Class

Cursor

Data Binding (dbAWARE only)
Empty Means Null (dbAWARE only)
Enabled

False String (dbAWARE only)
Font

Eoreground

Group (standard only)

Inherit Background

Inherit Font

Inherit Foreground

Label

Name

State

Triggering Event (dbAWARE only)
True String (dbAWARE only)
Visible

ComboBox component (standard/dbAWARE)

{button Properties,PI(vcafe.hlp',"ComboBox_Properties')} {button Events,PI("vcafe.hlp',"Events_Summary')} {button
Example,JI("vcafe.hlp',"Example_ComboxBox')} {button API
(standard),JI("APIRef.hlp',"symantec.itools.awt.ComboBox.html')} {button API

(dbAWARE),JI(" APIRef.hlp',"symantec.itools.db.awt. ComboBox.html')}

Description

Atext box with an attached list box. Users can either type the desired value into the text box or select their choice using the list
box.

Use a ComboBox to

e compactly display a list of items,
* manage a list of items longer than the display window size,
¢ change display fonts and colors and add edit and search functions.

When you include a ComboBox in a container, make sure that the attached list box doesn’t cover up other components at run
time.

dbAWARE features
A dbAWARE version of the ComboBox component is available in Visual Cafe Database Developer Edition.

This component automatically updates the database when certain triggering events occur. See Events Triggering Database
Updates for more information.

The Data Binding property is used to bind this component with a specific data item in the database.

The Empty Means Null property defines how a component with no value (empty) is saved in the database.
The Lookup Name property is used to bind the component with an entire column in the database.

The Triggering Event property specifies which event makes the component commit its value to the database.

Properties

To add an item to a ComboBox list box, use List Items property in the Property List window. To include more than one item in the
list, press CTRL+ENTER (on PCs) or RETURN (on Macs) after typing each item.

To create a ComboBox that includes a scroll bar, set the Show Horizontal Scrollbar and/or Show Vertical Scrollbar property to
true. You do not need to associate scroll bars manually. Vertical Scrollbars can be used to scroll through items when a
ComboBox has a larger number of items in the list than can be displayed in the dropdown area.

To use a different font in the ComboBox, set the Font property.

A searchable ComboBox allows the user to enter text into the text field as long as it matches one of the existing list items. This
allows the user to select from a non-editable list by typing instead of dropping-down the list and selecting with the mouse. To
make the ComboBox searchable, set the Searchable property to true.

Use the Text property to set the initial value.

Example

This ComboBox example has the ComboBox Font property set to Times Roman and the Foreground property set to Blue.

ComboBox Properties

Auto Expand (dbAWARE only)
Background

Bounds

Case-sensitive

Class

Cursor

Data Binding (dbAWARE only)
Editable

Empty Means Null (dbAWARE only)
Enabled

Font

Foregroun

Inherit Background

Inherit Font

Inherit Foreground

List Down

List Items

Lookup Name (dbAWARE only)
Name

Searchable

Show Horizontal Scrollbar
how Vertical Scrollbar

Text

Triggering Event (dbAWARE only)
Visible

FormattedTextField component (standard/dbAWARE)

{button Properties,PI(vcafe.hlp',"FormattedTextField_Properties')} {button Events,PI(*vcafe.hlp',"Events_Summary')} {button
Example,JI("vcafe.hlp',"Example_FormattedTextField')} {button API
(standard),JI("APIRef.hlp',"symantec.itools.awt.FormattedTextField.html')} {button API

(dbAWARE),JI(" APIRef.hlp',"symantec.itools.db.awt.FormattedTextField.html')}

Description

A text field which has text formatting logic applied to the user input.

Use a FormattedTextField to

¢ limit the type of text that can be entered in a text field,
o display text captured from the keyboard,

e edit a line of text,

¢ post an event based on text input from the keyboard.

To take action based on FormattedTextField events or text, use the Interaction Wizard.

If the text box already contains text, the user can select the default text and delete or edit it. Note: If the mask is set after the text
is initialized, the text in the edit field vanishes. You need to call the setText method after setMask.

FormattedTextField does not support logical AND, OR or XOR constructs and does not interactively prompt the user to retry input
upon error. You must write project source code to accomplish these tasks.

dbAWARE features
A dbAWARE version of the FormattedTextField component is available in Visual Cafe Database Developer Edition.
The dbAWARE version allows you to control the display of a column value by using a text mask.

This component automatically updates the database when certain triggering events occur. See Events Triggering Database
Updates for more information.

The Data Binding property is used to bind this component with a specific data item in the database.

The Empty Means Null property defines how a component with no value (empty) is saved in the database.
The Triggering Event property specifies which event makes the component commit its value to the database.
Properties

To specify the required format for the text entry, use the Mask property.

To specify a text string to display in the field by default, use Text property.

To make the default text editable, use the Editable property. You do not need to write code or use the Interaction Wizard to
connect the FormattedTextField component with any other component to display text.

To hide the text that displays in the component, use the Echo Char property to specify a character to display in place of the
characters in the string.
Example

This screen shot shows a FormattedTextField with Foreground red, a 14 pt font, and a predefined Text string. The Field's parent
container's background is gray.

I This is the component's text string

FormattedTextField Properties

Background
Bounds

Class

Columns

Cursor

Data Binding (dbAWARE only)
Echo Char

Editable

Empty Means Null (dbAWARE only)
Enabled

Font

Foregroun

Inherit Background

Inherit Font
nherit Foreground

Z

am
X
Triggering Event (dbAWARE only)
Visible

0]

3

ImageViewer component (standard/dbAWARE)

{button Properties,PI(vcafe.hlp'," ImageViewer_Properties')} {button Events,PI('vcafe.hlp',"Events_summary')} {button
Example,JI("vcafe.hlp',"Example_ImageViewer')} {button API
(standard),JI("APIRef.hlp',"symantec.itools.multimedia.ImageViewer.html')} {button API
(dbAWARE),JI("APIRef.hlp',"symantec.itools.db.awt.ImageViewer.html')}

Description

A platform-independent displayable image. An ImageViewer can be initialized from a URL pointing to a GIF or JPEG image, or
through an Image object.

Instantiate an Image object through the get Image or createImage methods. The Image’s getSource method returns an
ImageProducer object that produces the image data. getGraphics returns a Graphics object . getProperty returns the value
of a specified property.

dbAWARE features

A dbAWARE version of this component is available in Visual Cafe Database Developer Edition.

Use this component to

¢ display images that are stored in a database column (projection name) in a Relation View,
¢ |oad an image from a non-database source, display the image, and then store the image.

Currently only JPG format is supported.

The Data Binding property is used to bind this component with a specific data item in the database.

Properties

For non-database applications, use the Image URL property and Image Style property to identify the image and define the
image’s centering. These properties are not supported in the dbAWARE version of the ImageViewer.

Example

This screen shot shows an ImageListBox component (left) and an ImageViewer component (right, under Preview).

E%%Applet Yiewer: Applet]_clazs Ei=]E

Applet

Click a item to dizplay a preview: Preview

i Lic!]ht Bulb -

("Doorbell
#Bullet Hole

r

ImageViewer Properties

Background (dbAWARE only)
Bounds

i

Cursor

Data Binding (dbAWARE only)
Enabled

Font (dbAWARE only)
Foreground (dbAWARE only)

Image Style (standard only)
Image URL (standard only)

Inherit Background (dbAWARE only)

Inherit Font (dbAWARE only)

Inherit Foreground (dbAWARE only)

Label component (standard/dbAWARE)

{button Properties,PI(vcafe.hlp',"Label_Properties')} {button Events,PI(*vcafe.hlp',"Events_Summary')} {button
Example,JI("vcafe.hlp',"Example_Label')} {button API (standard),JI(" APIRef.hlp',"java.awt.Label.html')} {button API
(dbAWARE),JI("APIRef.hlp',"symantec.itools.db.awt.Label.html')}

Description

A text string that is usually attached to another visual component (like a TextField or Button).

Use this component to:

¢ label a TextArea, or any other component that does not have a viewable label,
o display static, explanatory text,
¢ display a simple status area.

An application or applet can change the label text string, but a user cannot edit it.

The following predefined dbAWARE components are provided for your convenience:
RecordNumberl abel RecordStatelLabel

dbAWARE features

A dbAWARE version of the Label component is available in Visual Cafe Database Developer Edition.

The Data Binding property is used to bind this component with a specific data item in the database.

Using a dbAWARE label allows you to provide labels on components that change due to some criteria. dbAWARE labels function
like a TextField, but are not editable. The text string for the label is obtained from the database column at runtime.

One use for a dbAWARE label is to display different labels for form fields based on a prior language type selection. For example,

if your user selects ltalian as the preferred language, you can retrieve your Italian label values and use them when the form
displays.

Properties

To specify the label text, type the text in the Text property .

Coding the component

In code, use this syntax to create a new Label:

labell = new java.awt.Label (label, alignment);

Part Type Description

label1 Label The variable name you can use to identify the component in code.

label String The text to display in the label.

alignment int Positions text within the label bounding box. If no alignment is specified,
the label is automatically left-aligned. Legal values are LEFT, RIGHT,
and CENTER.

Example

This example shows two standard Label components for two TextFields.

E’ih B azic Application

Hame: I

Paszzword: I

Ok |

Label Properties

Alignment

Background

Bounds

Class

Cursor

Data Binding (dbAWARE only)

Foreground

Inherit Background
Inherit Font

nherit Foregroun

EEZ

<
@
i=x
9)

List component (standard/ dbAWARE, dbANYWHERE)

{button Properties,PI(vcafe.hlp',"List_Properties')} {button Events,PI(*vcafe.hlp',"Events_Summary')} {button API
(standard),JI(APIRef.hip'," java.awt.List.html')} {button API (dbAWARE),JI(" APIRef.hlp',”symantec.itools.db.awt.List.html')}

Description

A box containing a scrollable and selectable list of items.

When a List item is selected or deselected, an ltemEvent is generated (see item state changed). When a user double-clicks on
an item, the DbIClicked action performed event is generated (see action performed). Use the Interaction Wizard to perform some
action triggered by these (and other) events.

A List automatically displays with scroll bars when the display area is not large enough to display all the list items.

dbAWARE features

A dbAWARE version of the List component is available in Visual Cafe Database Developer Edition.

Note: For JDBC, use the ListPlus component component instead of the List component. For dbANYWHERE, use this List
component.

Four of the binding subproperties are present: RelView Name, Projection Name, Dynamic Update, and Empty Means Null.
RelView Name is the name of the RelationViewPlus component this component is bound to.

Projection Name is the name of the database column that this component is bound to.

Note: You can also use the column number instead of the column name. The column number is the one-relative index of the
projection in the RelationViewPlus.

Dynamic Update defines when update data is sent to the MultiView. Values in the MultiView are sent to the database when the
RelationViewPlus save method is invoked. (For information on MultiView, see the dbANYWHERE APl HTML online
documentation.)

Empty Means Null defines how a component with no value (empty) is saved in the database.

The List component is bound to a database column (projection) and the component is populated as defined in the Lookup
property.

Scrollbars display on the list box when the selected data fills the display area.
When both the Items property and Lookup properties are defined for a List component, the list of values are combined.
A master view/List component relationship is very much like a master/detail relationship. In a master view/List relationship, the

list changes as a master value changes. In a master/detail view, the detail changes when the master record changes, and the
SQL statement is run.

Properties

To specify the initial items to use to populate the List, use the ltems property. To include more than one item in the list, press
CTRL+ENTER (on PCs) or RETURN (on Macs) after typing each item.

To allow your user to select either one item exclusively, or to select multiple items at once, set the Multiple Mode property.

Use the Interaction Wizard to trigger actions based on user activity.

Runtime modification

To: Use:

Add items to a list addItem(String item)

Add items at a particular addItem(String item, int index). The item is placed before
position the index, for example, inserting an item at position 0 adds the new

item to the very start of the list box. Use an index of -1 to place the
item at the end of the list.

Remove all items from the removeAll ()
list

Delete an item delltem(int position)
Position 0 is the first item in the list.

Get the current selected item getSelectedIndex () or getSelectedIndexes (), for lists with
multiple selection turned on.

Remove all selected items A code sequence like the following:

int[] selectedItems;

selectedItems=1listl.getSelectedIndexes () ;

for (int index=selectedItems.size; index>=0; index--)
listl.delltem(selectedItems[index]);

Coding the component
To create a new List component, use this syntax:
listl = new java.awt.List (rows, mulitpleSelections);

This creates a new scrolling list initialized to display the specified number of rows. If the multipleSelections argument is true,
then the user can select multiple items at a time from the list. If it is false, only one item at a time can be selected.

Part Type Description
list1 List The variable name used to refer to the component in code.
rows int The number of items to display in the list. If this parameter is omitted, the list height is zero,

and therefore not visible.
multipleSelections boolean Whether the list allows multiple selections.

The settings for multipleSelections are:

Value Description

true Multiple selections are allowed.
false (Default) Only one item can be selected at a time.

List Properties

Background
Binding (dbAWARE only)

Foreground

Inherit Background
Inherit Font

Inherit Foreground

ltems

Lookup (dbAWARE only)
Multiple Mode

Name

Visible

Visible Rows

ListPlus component (dlbAWARE, JDBC)

{button Properties,PI(vcafe.hlp',"ListPlus_Properties')} {button Events,PI(’vcafe.hlp',"Events_Summary')} {button API
(dbAWARE),JI('APIRef.hlp',"symantec.itools.db.awt.ListPlus.html')}

Description

A box containing a scrollable and selectable list of items.

When a List item is selected or deselected, an ltemEvent is generated (see item state changed). When a user double-clicks on
an item, the DbIClicked action performed event is generated (see action performed). Use the Interaction Wizard to perform some
action triggered by these (and other) events.

A List automatically displays with scroll bars when the display area is not large enough to display all the list items.

dbAWARE features

A dbAWARE version of the List component is available in Visual Cafe Database Developer Edition.

Note: For dbANYWHERE, use the List component component instead of the ListPlus component. For JDBC, use this ListPlus
component.

This component automatically updates the database when certain triggering events occur. See Events Triggering Database
Updates for more information.

The Data Binding property is used to bind this component with a specific data item in the database.

The Lookup Name property is used to bind the component with an entire column in the database.

The Triggering Event property specifies which event makes the component commit its value to the database.

Scrollbars display on the list box when the selected data fills the display area.

A master view/List component relationship is very much like a master/detail relationship. In a master view/List relationship, the

list changes as a master value changes. In a master/detail view, the detail changes when the master record changes, and the
SQL statement is run.

Properties

To allow your user to select either one item exclusively, or to select multiple items at once, set the Multiple Mode property.

Use the Interaction Wizard to trigger actions based on user activity.

Coding the component
To create a new List component, use this syntax:
listl = new java.db.awt.ListPlus (rows);

This creates a new scrolling list initialized to display the specified number of rows.

Part Type Description
list1 List The variable name used to refer to the component in code.
rows int The number of items to display in the list. If this parameter is omitted, the list height is zero,

and therefore not visible.

ListPlus Properties

Background
Bounds

]

Cursor

Data Binding
Enabled

Eont

Foreground
Inherit Background
Inherit Font
Inherit Foreground

Lookup Name
Multiple M

Name

Triggering Event
Visible

NervousText component (standard/dbAWARE)

{button Properties,PI(" vcafe.hlp',"NervousText_Properties')} {button Events,PI(*vcafe.hlp',"Events_Summary')} {button
Example,JI("vcafe.hlp',"Example_NervousText')} {button API
(standard),JI("APIRef.hlp',"symantec.itools.multimedia.NervousText.html')} {button API
(dbAWARE),JI("APIRef.hlp',"symantec.itools.db.awt.NervousText.html')}

Description

Creates animated text in which each letter moves independently of all other letters. This multimedia component is provided for
novelty and programming convenience.

dbAWARE features

A dbAWARE version of the NervousText component is available in Visual Cafe Database Developer Edition.
The Data Binding property is used to bind this component with a specific data item in the database.

Properties

To add the text that appears within the component, use the Text property (for the standard version), or use the RelView Name
and the Projection Name (for the dbAWARE version).

Example

This is a screen shot of NervousText at runtime.

Eﬁf’,ﬂ'.ﬁ.pplet Yiewer: Applet?_class - O]
Applet

Thi s i S NeryousText

NervousText Properties

Background
Bounds

Class

Cursor

Data Binding (dbAWARE only)
Enabled

Eont

Foreground

Inherit Background

Inherit Font

Inherit Foreground

RadioButton component (standard/dbAWARE)

{button Properties,PI(vcafe.hlp',"RadioButton_Properties')} {button Events,PI(vcafe.hlp',"Events_summary')} {button
Example,JI("vcafe.hlp',"Example_RadioButton')} {button API (standard),JI("APIRef.hlp'," java.awt.Checkbox.html')} {button API
(dbAWARE),JI("APIRef.hlp',"symantec.itools.db.awt.RadioButton.html')}

Description

A round button used to select one choice from several options.

Use A RadioButton to:

* manage a selection-deselection user task,

¢ display a selection choice,

¢ post an event to another component,

¢ determine that only one choice in a set of choices is selected.

Typically, a RadioButton will be a member of a group. In a group of radio buttons, only one can be selected at a time. When the
user selects one radio button, the other radio buttons in the group are automatically deselected.

When you add RadioButtons to your form they are automatically added to group, created as needed. Standard RadioButtons use
a group of class CheckboxGroup. dbAWARE RadioButtons use a group of class RadioBox.

Use the Interaction Wizard to trigger an action when a RadioButton is clicked.

dbAWARE features

The column value is used as the component label value.

When you add the first dbAWARE RadioButton to a project, a RadioBox component is created. This component is used to bind
the RadioButtons to the database.

Properties

To set the default state, checked or cleared, of the RadioButton, use the State property.

Coding the standard component

In project source code, a radio button is identical to a check box, except it belongs to a CheckboxGroup.

To create a radio button, you must first have a CheckBoxGroup to which you add the radio button. The code sample below
shows the syntax required for creating group1 a new Checkbox group.

groupl = new CheckboxGroup () ;

To create the radio button, create a check box and add it to a check box group. Use this syntax to create a radio button:

radioButtonl = new java.awt.Checkbox (label, Groupl, state);
Part Type Description
radioButton1 Checkbox The variable name used in code to refer to the component.
label String The text to display next to the component.
group1 CheckBoxGroup The CheckboxGroup, or null for no group (resulting in a check box, not radio button).
state boolean The initial state: true is "checked"; false is "unchecked".
Example

The following shows RadioButton and TextField components at runtime.

E%%Applet Viewer: degrees____ [lj[u] B3
Applet

* Fahrenheit

" Celcius

RadioButton Properties

Background

Eoreground

Group

Inherit Background
Inherit Font

nherit Foreground

@ |2
:

tat
Visibl

(]

e

TextArea component (standard/dbAWARE)

{button Properties,PI(vcafe.hlp'," TextArea_Properties')} {button Events,PI(*vcafe.hlp',"Events_Summary')} {button
Example,JI("vcafe.hlp',"Example_TextArea')} {button API (standard),JI("APIRef.hlp'," java.awt. TextArea.html')} {button API
(dbAWARE),JI("APIRef.hlp',"symantec.itools.db.awt. TextArea.html')}

Description

An editable multi-line display window with two scroll bars. The display window can scroll through an amount of text that is too
large to display at one time.

You cannot remove the scrollbars.

Use a TextArea to:

o display large sections of text,

e edit a block of text,

¢ scroll through a large block of text,

¢ post an event based on text input from the keyboard.

Use the Interaction Wizard to trigger one or more actions when the TextArea generates events.

The TextArea provides methods to add, delete and select text, but does not support text editing. You must write custom code to
provide new editing functions.

Note: For many purposes, you can use the Interaction Wizard to bind the KeyTyped event in order to receive notification
whenever a user presses any key in the text area. This is often good enough to replace a true change notification.

dbAWARE features
A dbAWARE version of this component is available in Visual Cafe Database Developer Edition.
Use this component to display long database strings or other text data.

This component automatically updates the database when certain triggering events occur. See Events Triggering Database
Updates for more information.

The Data Binding property is used to bind this component with a specific data item in the database.
The Empty Means Null property defines how a component with no value (empty) is saved in the database.
The Triggering Event property specifies which event makes the component commit its value to the database.

Properties

To make the TextArea text read-only, use the_Editable property .

Coding the component

To select text, use TextArea’s select and selectAll methods in your project source code.

To edit text, use TextArea’s append, insert and replaceRange methods.

To use the TextArea as a read-only text area, use the setEditable call.

By default, TextArea behavior accepts keyboard input and displays that input in its display pane. You can use the Interaction
Wizard to change this default behavior.

When the TextArea receives or loses the focus, the Focus Gained or Focus Lost events are triggered.

To create a new TextArea component in project source code, use the following syntax:

textl = new java.awt.TextArea (text, rows, cols);

Part Type Description

text1 TextArea A variable which you use to reference the component in code.

text String The text to display in the text field.

cols int The width (in characters) that the text field can display and accept as input.
rows int The number of rows of text that the text area can display.

Example

This screen shot shows a TextArea component that is populated with data from a database column.
b

TextArea Properties

Background
Bounds
Class
Columns
Data Binding (dbAWARE only)
Cursor
Editable
Empty Means Null (dbAWARE only)
Enabled
Eont
Foreground
Inherit Background
Inherit Font
Inherit Foreground
Name
W!
Text

Triggering Event (dbAWARE only)
Visible

g

TextField component (standard/dbAWARE)

{button Properties,PI(vcafe.hlp'," TextField_Properties')} {button Events,PI('vcafe.hlp',"Events_Summary')} {button
Example,JI("vcafe.hlp',"Example_TextField')} {button API (standard),JI(" APIRef.hlp',"java.awt. TextField.html')} {button API
(dbAWARE),JI("APIRef.hlp',"symantec.itools.db.awt. TextField.html')}

Description

A box in which your user can type text.

Use TextField to:

o dispay text captured from the keyboard,
¢ edit a line of text,
¢ post an event based on text input from the keyboard.

Use the Interaction Wizard to trigger one or more actions when the TextField generates events.
If the text box already contains text, the user can select the default text and delete or edit it.

The TextField provides methods to add, delete and select text, but does not support text editing. You must write custom code to
provide new editing functions.

Visual Cafe Database Developer Edition provides the following additional TextField component subclasses:

FormattedTextField
DBTstamp

dbAWARE features

A dbAWARE version of this component is available in Visual Cafe Database Developer Edition.

Use this component to display database strings. This component can be resized, but does not have horizontal or vertical
scrollbars.

This component automatically updates the database when certain triggering events occur. See Events Triggering Database
Updates for more information.

The Data Binding property is used to bind this component with a specific data item in the database.
The Empty Means Null property defines how a component with no value (empty) is saved in the database.
The Triggering Event property specifies which event makes the component commit its value to the database.

Properties

Use the Editable property to make the default text editable. You do not need to write code or use the Interaction Wizard to
connect the TextField component with any other component to display text.

Note: For convenience, TextField supports several formatted components, which prompt for telephone numbers, zip codes and
other formatted user entry strings. See the component listing under Predefined TextFields in the Component Library.

Coding the component

To select text, use TextField’s select and selectAl1 methods in your project source code.

To use the TextField as a read-only text area, use the setEditable call.
When the TextArea receives or loses the focus, the Focus Gained or Focus Lost events are triggered.

To create a new TextField component in project source code, use the following syntax:

textl = new java.awt.TextField(text, cols);

Part Type Description

text1 TextField A variable which you use to reference the component in code.
text String The text to display in the text field.
cols int The width (in characters) that the text field can display and accept as input.

Example

The following shows RadioButton and TextField components at runtime.

Eﬁf’,ﬂ'hpplet Viewer: degrees . [li[u] B3
Applet

* Fahrenheit
——

" Celciug

TextField Properties

Background
Bounds

Class

Columns

Cursor

Data Binding (dbAWARE only)
Echo Char

Editable

Empty Means Null (dbAWARE only)
Enabled

Font

Foregroun

Inherit Background

Inherit Font

Inherit Foreground
Name

Text

Triggering Event (dbAWARE only)
Visible

DDE-only Components

Add Table Wizard

The Add Table Wizard component starts the corresponding Visual Cafe DDE wizard. Use this wizard to quickly add tables to your
application or form.

This component is available in Visual Cafe Database Developer Edition only.

Connectioninfo component(dbAWARE only)

{button Properties,PI(vcafe.hlp',”Connectioninfo_Properties')} {button Events,PI(vcafe.hlp',"Events_summary')} {button
APLJI("APIRef.hlp',"symantec.itools.db.pro.Connectioninfo.html')}
Description

An invisible component that defines a data source. Connection information includes the name of the data source, user login
name, and user password.

This component is available in Visual Cafe Database Developer Edition only.
At design time, the Connectioninfo component is represented by the following icon:

You can drag the ConnectionIinfo component from the Component Palette or Library onto a form at any location, or into the
Project window. Also, you can use the Project Wizard or the Add Table Wizard. These two wizards create any necessary
Connectioninfo, Session, and RelationViewPlus components that are needed.

A project can contain more than one Connectioninfo component. And, each data source has one Connectioninfo component.
The Connectionlnfo component must have a Session component to connect it to the dbANYWHERE server.

See: For more information on the Session class, see the dbANYWHERE API online HTML manual.
Properties
Note: Do not change Connectionlnfo component properties at runtime.

Use Data Source Name property to indicate the data source to connect to.

The Name property contains the name of the actual Java object that instantiates the Connectioninfo class. This value usually
closely matches the data source name. Characters, such as spaces or punctuation in the data source name, are replaced with
underscores to create a valid Java variable name.

Use the User Password and User Name properties to provide logon requirements.

Connectioninfo Properties

Auto Disconnect
Class

Data Source Name
Name

User Name

User Password

DBTstamp component (dlbAWARE only)

{button Properties,PI(vcafe.hlp',"DBTstamp_Properties')} {button Events,PI(vcafe.hlp',"Events_summary')} {button
APLJI("APIRef.hlp',"symantec.itools.db.awt.DBTstamp.html')}

Description
A component that creates a box in which a date or timestamp can be read or entered using any common date or time format.
This component is available in Visual Cafe Database Developer Edition only.
Use DBTstamp to:
e Edit a date or a timestamp.
¢ Display a date or timestamp in a pre-defined display format.

To add a DBTstamp component to your project, drag the DBTstamp icon from the Palette to your Form Designer window. This
component can be resized, but does not have horizontal or vertical scrollbars.

Properties

The Data Binding property is used to bind this component with a specific data item in the database.

The Empty Means Null property defines how a component with no value (empty) is saved in the database.

DBTstamp controls how the data is entered using the property Format on Entry.

DBTstamp controls how the data is displayed using the property Format on Display.

You can choose among Date, Time and Timestamp. This selection will set the following default formats:
e Date: Friday October 12th, 1973
e Time: 10:34:52 PM

¢ Timestamp: Friday October 12th,1973 10:34:54,000 AM

DBTstamp Properties

Background
Bounds

Foregroun

Eormat on Display
Format on Entry
Inherit Background
Inherit Font
Inherit Foreground
Name

Text

Tstamp

Visible

Grid component (dlbAWARE only)

{button Properties,PI(vcafe.hlp',"Grid_Properties')} {button Events,PI("vcafe.hlp',"Events_summary')} {button
Example,JI("vcafe.hlp',"Example_Grid')} {button API,JI("APIRef.hlp',"symantec.itools.db.awt.Grid.html'")}
Description

A component for displaying multiple data records.
This component is available in Visual Cafe Database Developer Edition only.

Provides an array, or spreadsheet-like display, of specified data. You can also specify predefined buttons that will appear at the
bottom of the grid. These buttons are defined in the Binding property.

You can adjust column widths at runtime.
Column heading text can be customized in code only.
Note: When you drop a Grid on a form, the Grid displays empty. You do not see data populated in the Grid until runtime.

Tip: The easiest way to add a RelationViewPlus component for a Grid component is to simply drag a table name from the
dbNAVIGATOR window onto a form. Visual Cafe DDE creates the RelationViewPlus and fills in its properties. Then, select the
Grid component from the dbAWARE tab on the Component Palette, drag to the Form Designer, and size as needed. Last, set
the Grid's RelationViewPlus element in the Binding property .

See:

Adding a Grid component
Adding a Grid component to a form as a detail view
Changing Grid cell attributes

Protectin ri lumn

Changing Grid column attributes
Defining automatic Grid row numbering
Defining automatic Grid redraw
Modifying the Grid toolbar

Properties

The Data Binding property is used to bind this component with a specific data item in the database.
Example
The screen shot below show the default Grid for the Visual Cafe tutorial's DBA.registration table.

The columns display in the Grid, from left to right, in the same order that they appear in the dbNAVIGATOR window. If query
columns do not fit within the Grid component, a scrollbar is provided.

The Grid component uses the database column names as the Grid column headings. You can narrow the queried columns by
adjusting the SELECT clause in the associated RelationViewPlus component's Select Clause property.

Notice the placement of the Grid buttons.

[25 Applet Viewer: Applet]_class O] =]
Applet
Reqgiztration_ID Package D) Customer_First_Mam | Cul =

1] B a0 | Carl Thi—

1 n

2 ¥ 780 | Cherl Pl

3 a 780 | fjdskidkls fik.d

4 9 782 | aaaaaa bbh

5 10 a2

G 11 a4

7 12 a2

g 13 782 | Bradley k.en

9 14 7ag

10 15 7ag =

IIhdo | Delete I IJndelete ! + | L

Grid Properties

Background
Bounds
Button: Delete
Button: Goto
Button: Insert
Button: Restart
Button: Save
Button: Undo
Class

Cursor

Data Binding
nabl

‘ }O
-]
=3

Foreground

Inherit Background
Inherit Font

Inherit Foreground
Name

Number Of Columns
Number Of Rows

Toolbar Background
Visible

RecordNumberLabel component(dbAWARE only)

{button Properties,PI(vcafe.hlp',"Record_Label_Properties')} {button Events,PI(vcafe.hlp',"Events_summary')} {button
APLJI("APIRef.hlp',"symantec.itools.db.awt.RecordNumberLabel.html')}

Description

At runtime, displays the current record's number in the retrieved record set. This may be a useful addition to your form.
This component is available in Visual Cafe Database Developer Edition only.

Properties

Use the Data Source Alias property to bind this component with a particular data source (QueryNavigator).
Note: The Text property has no effect in this component.

RecordStateLabel component (dlbAWARE only)

{button Properties,PI(vcafe.hlp',"Record_Label_Properties')} {button Events,PI(vcafe.hlp',"Events_summary')} {button
APLJI("APIRef.hlp',"symantec.itools.db.awt.RecordStateLabel.html')}

Description

At runtime, this component displays the state of the current record.
This component is available in Visual Cafe Database Developer Edition only.
Use this component to provide record status information on your form.

Possible record states are:

e Existing

¢ Modified

e New

e Marked for Deletion
e Deleted

* New Modified

e |nvalid

Properties
Use the Data Source Alias property to bind this component with a particular data source (QueryNavigator).
Note: The Text property has no effect in this component.

Record Label Properties

Alignment
Background

E

Class

Cursor

Data Source Alias
Enabled

Font

Foreground

Inherit Background
Inherit Font

nherit Foregroun

EEZ

<
@
i=x
9)

RadioBox component (dbAWARE only)

{button Properties,PI(vcafe.hlp',"RadioBox_Properties')} {button Events,PI('vcafe.hlp',"Events_summary')} {button
APLJI("APIRef.hlp',"symantec.itools.db.awt.RadioBox.html')}

Description

A dbAWARE component with no visual properties that acts like a container to group radio button components. The RadioBox
component allows you to bind RadioButton components to a database column.

This component is available in Visual Cafe Database Developer Edition only.

Important: Only use the dbAWARE version of the RadioButton component in a RadioBox.

Properties

The Data Binding property is used to bind this component with a specific data item in the database.

The Empty Means Null property defines how a component with no value (empty) is saved in the database.

Important: RadioBox properties need to be defined before any dbAWARE RadioButton properties are defined.

RadioBox Properties

Class

Data Binding
Empty Means Null
Name

RelationViewPlus component (dlbAWARE only)

{button Properties,PI(vcafe.hlp',"RelationView_Properties')} {button Events,PI(vcafe.hlp',"Events_summary')} {button
APLJI("APIRef.hlp',"symantec.itools.db.pro.RelationView.html')}

Description

An invisible component that defines a view of a database table and defines how the data is retrieved form the dbANYWHERE
server -- a query against the database.

This component is available in Visual Cafe Database Developer Edition only.
When a RelationViewPlus is defined for a form, you see the following icon on the form at design time:

Note: The RelationViewPlus is must be added after adding the Session and Connectionlnfo component. The easiest way to add
these components is by using the Project Wizard and Add Table Wizard.

¢ Access the Project wizard by selecting the dbAWARE Project Wizard from the File k¥ New Project dialog.
. Access the Add Table Wizard by selecting Insert ¥ Add Table Wizard or selecting the component from the Component
Palette or Library.
A project can contain multiple RelationViews. These views can have a joined relationship, or they can be independent. In the
case of a join, the first RelationViewPlus in a project is used as a master view. When you add a second RealtionView
component, you create a detail view, thereby forming a master/detail relationship . The “join” between the two tables is created
by defining a Parent RelationView and other associated Join properties.

Use the Project Wizard for your first RelationViewPlus (the master view) and then Add Table Wizard for additional views.

When a master/detail relationship is formed, the relationship is considered to be within the same transaction. When the master
view is saved, the detail view is also saved, and the entire transaction gets committed. Similarly, when the detail view is saved,
the master view is also saved.

For details on creating a RelationViewPlus for a Grid component, see Grid component .

Using RelationViewPlus and MultiView classes

MultiView is a container class for the dbANYWHERE database transaction object. A MultiView contains a transaction's
RelationViews. To interact with a dbANYWHERE Server you do not have to interface directly with a MultiView object, the
RelationView class can encapsulate a MultiView object. For example, RelationView.saveMultiView() translates to
MultiView.save() for the RelationView's parent MultiView. However, a MultiView object can be useful to global transactions
that have a handle to a MultiView object. For more information on MultiView, see the dbANYWHERE API online HTML reference.

See: For more information on RelationView, MultiView, and AutoDetail classes, see the dbANYWHERE API online HTML
manual.

Properties
Note: Do not change RelationViewPlus component properties at runtime.

A RelationViewPlus's SQL statement (Select Clause property) defines the view. You can create a view that is a detail view or a
view that is not a detail view.

This screen shot shows the Property List for a RelationViewPlus component that was automatically created when a table name
from the dbNAVIGATOR window was dragged in to the Form Designer.

& Property List - Appletl

I DE&_contact - I

gumantec.itoolz. db. pro. R elation/iew

Connectionlnfo zademo
Iritial Aecord Positio] First
[=]- Jain

----- Parent B elation
----- Join Columng | [emphy]

----- Cardinality Ore to Many
b airnurn B oz 1
MHame DBA_contact
Optiriztic Concurmen Al
FRead Only brue
Select Clauze SELECT * FROM DBA. contact
Seszzion dbpri

Sharable falze

RelationViewPlus Properties

@)

las
Connectionlnfo

nitial Record Position
oin

ame

Optimistic Concurrency
Select Clause

Session

]

(=

z

Session component (dlbAWARE only)

{button Properties,PI(vcafe.hlp',"Session_Properties')} {button Events,PI(*vcafe.hlp',"Events_summary')} {button
APLJI("APIRef.hlp',"symantec.itools.db.pro.Session.html')}
Description

An invisible component that defines the connection to a dbANYWHERE server, via a TCP network connection, and provides
access to the dbANYWHERE classes. At runtime, the Session component generates code that creates a session with the
dbANYWHERE server.

This component is available in Visual Cafe Database Developer Edition only.

Add a Session component prior to adding the RelationViewPlus component. Use the name of this component as the value for
the RelationViewPlus component's Session property. The easiest way to add these components is by using the Project Wizard
and Add Table Wizard.

¢ Access the Project wizard by selecting the dbAWARE Project Wizard from the File ¥ New Project dialog.

. Access the Add Table Wizard by selecting Insert k¥ Add Table Wizard or selecting the component from the Component
Palette or Library.

Note: It is recommended that all connections to a single dbANYWHERE server utilize the same Session component. This helps
to reduce the number of server connections.

Note: A session can only represent one URL, so you can add multiple Session components to show data from different
dbANYWHERE servers.

See: For more information the Session class, see the dbANYWHERE API online HTML manual.
Properties

Note: Do not change Session component properties at runtime.

The URL property defines the dbANYWHERE server's URL (location and port number).
See: About JDBC URLs for more information about the URL format.

The Name property defines the name of the dbANYWHERE server that the project expects to access.

Session Properties

o
)
o
>

Z
(Y]
=)
)

c
—

JDBC Components

ConnectionManager component (JDBC only)

{button Properties,PI(vcafe.hlp',”ConnectionManager_Properties')} {button Events,PI(’vcafe.hlp',"Events_summary')} {button
APLJI("APIRef.hlp',"symantec.itools.db.beans.jdbc.ConnectionManager.html')}

Description

The ConnectionManager manages all the connections (JdbcConnection) of an application. It is a top-level non-visual bean,
meaning that it is not contained within any form.

Dragging a Data Source item from dbNAVIGATOR to a project creates ConnectionManager and JdbcConnection objects, which
manage connections to a data source. You have one ConnectionManager object per project, and one JdbcConnection object per
data source.

This component is available in Visual Cafe Database Developer Edition only.

Properties

Note: Do not change ConnectionManager component properties at runtime.

ConnectionManager Properties

JdbcConnection component (JDBC only)

{button Properties,PI("vcafe.hlp',"JdbcConnection_Properties')} {button Events,PI(*vcafe.hlp',"Events_summary')} {button
APLJI("APIRef.hlp',"symantec.itools.db.beans.jdbc.JdbcConnection.html')}

Description

A JavaBean that wraps a single JDBC Connection. It has properties for establishing connection parameters in accordance with
JDBC. Dragging a Data Source item from dbNAVIGATOR to a project creates JdbcConnection objects. You have one
JdbcConnection object per data source. All of the JdbcConnections in the project are managed by a single ConnectionManager
object.

This component is available in Visual Cafe Database Developer Edition only.

See: For more information on the JDBC Connection interface, see the Java JDBC HTML documentation.

Properties

Note: Do not change JdbcConnection component properties at runtime.

The Connect Failed Listener property defines the class of the object that handles failed attempts to connect with the server.

The JDBC Driver property defines the class of the JDBC driver used.

The Read Only property determines whether the database may be modified through this connection. If true, the database may
not be modified.

The URL property defines the database server's URL.
See: About JDBC URLs for more information about the URL format.
The User Name property is the name used to try to connect with the server.

The User Password property is the password to try to connect with the server.

JdbcConnection Properties

Catalog

Class

Connect Failed Listener
JDBC Driver Class

User Name
User Password

Mediator component (JDBC only)

{button Properties,PI(vcafe.hlp',"Mediator_Properties')} {button Events,PI(*vcafe.hlp',"Events_summary')} {button
APLJI("APIRef.hlp',"symantec.itools.db.beans.binding.Mediator.html')}

Description

A JavaBean that makes any component database-aware. It is a bridge between the component and the database. It can display
single cell values as well as multi-dimensional arrays of cells.

At design time, you can add a Mediator component to a form in a project and set its properties for a particular component on
the form. If you are creating a JavaBeans component or have access to the component Java code, you can add a mediator to
the component code.

This component is available in Visual Cafe Database Developer Edition only.

Properties

Note: Do not change Mediator component properties at runtime.

Mediator Properties

Class

Data Binding
Empty Means Null
Getter Methods

Setter Methods

MediatorDS component (JDBC only)

{button Properties,PI(vcafe.hlp',"MediatorDS_Properties')} {button Events,PI(*vcafe.hlp',"Events_summary')} {button
APLJI("APIRef.hlp',"symantec.itools.db.beans.binding.MediatorDS.html'")}

Description

A JavaBean that makes any component database-aware. It is a bridge between the component and a QueryNavigator or
RelationViiew. It can display single cell values as well as multi-dimensional arrays of cells.

At design time, you can add a MediatorDS component to a form in a project and set its properties for a QueryNavigator or
RelationViewPlus on the form. If you are creating a JavaBeans component or have access to the component Java code, you can
add a MediatorDS to the component code.

This component is available in Visual Cafe Database Developer Edition only.

Properties

Note: Do not change MediatorDS component properties at runtime.

MediatorDS Properties

Empty Means Null
ame

Output

Z

QueryNavigator component (JDBC only)

{button Properties,PI("vcafe.hlp',”QueryNavigator_Properties')} {button Events,PI(vcafe.hlp',"Events_summary')} {button
APLJI("APIRef.hlp',"symantec.itools.db.beans.binding.QueryNavigator.html')}

Description

A JavaBean that manages a set of records using the JDBC API. Dragging a Data Table item from the dbNAVIGATOR to a form in
a project creates a QueryNavigator and a top-level RecordDefinition object. The QueryNavigator supports query-by-example,
including sorting and the SQL WHERE clause.

This component is available in Visual Cafe Database Developer Edition only.

A project can contain multiple QueryNavigators. These views can have a joined relationship, or they can be independent. In the
case of a join, the first QueryNavigator in a project is used as a master view. When you add a second QueryNavigator
component, you create a detail view, thereby forming a master/detail relationship . The “join” between the two QueryNavigators
is created by specifying a Master Alias Name and other associated Join properties.

Properties

The Alias Name property gives this object a name so it may be referenced by others.

The AutoStart property determines whether the QueryNavigator is automatically filled when it is created. You may not want to
Pha;%_this done if, for example, you are creating an order-entry form to put records into the database, not look at the ones already
The Eilter property constrains the data that is displayed in the component.

The Join property is used to specify a master/detail relationship with another QueryNavigator.

The Sort Order property specifies the order in which to sort the displayed data.

Note: Do not change QueryNavigator component properties at runtime.

QueryNavigator Properties

Alias Name
tart

E:D
[R|=%

RecordDefinition component (JDBC only)

{button Properties,PI(vcafe.hlp',"RecordDefinition_Properties’)} {button Events,PI('vcafe.hlp',’Events_summary')} {button
APLJI("APIRef.hlp',"symantec.itools.db.beans.jdbc.RecordDefinition.html')}

Description

This class is used to define and access a row of data in a database table. It is a top-level non-visual bean, meaning that it is not
contained within any form.

This component is available in Visual Cafe Database Developer Edition only.

Properties

Note: Do not change RecordDefinition component properties at runtime.

RecordDefinition Properties

Class

DB nnection

DB onnection Manager
am
Table Name

Z
[0}

Standard Components

»
No Help Available

Help is not currently available for this component.

AboutDialog component

{button Properties,PI(vcafe.hlp',”Common_Dialog_Properties')} {button Events,PI(vcafe.hlp',"Events_Summary')} {button
Example,JI("vcafe.hlp',"Example_AboutDialog')}
Description

A dialog box where you can display general information about your program.
You can insert an AboutDialog component into a Window container, a Frame container or an Applet project.

You can extend this dialog by adding components. This is done by dragging components and containers to the Form Designer
window as necessary.

Tips:

e Use the Interaction Wizard to connect a component to the AboutDialog, so that your user can display the dialog box.
Commonly, the AboutDialog is connected to the About menu item in a menu bar.

When you create a new project with the Basic Application template, a project is created automatically for you that contains a
Frame, an AboutDialog, and QuitDialog (a custom built Dialog component). The frame contains a menu bar that has menu
items preconnected to the dialog boxes.

¢ The easiest way to draw an Interaction Wizard “connection” line from a menu item to a dialog box component is to draw the
line in the Project window.

Properties

To edit the text string that displays in the About dialog box header bar, use the Title property. To change the About dialog title
dynamically at runtime, use the Interaction Wizard to display the About dialog box and create the title based on the parent
frame’s title or the frame’s warning string.

Example

This screen shot is of the default AboutDialog that you can create with Visual Cafe.

E%’,ahhuut | x|

A Basic Java Application

_ox |

Common Dialog Properties

Eoreground
nherit Background
Inherit Font

Inherit Foreground

Animator component

{button Properties,PI(vcafe.hlp',”Animator_Properties')} {button Events,PI(’vcafe.hlp',"Events_Summary')} {button
Example,JI("vcafe.hlp',"Example_Animator')} {button API,JI(" APIRef.hlp',symantec.itools.multimedia.Animator.html')}

Description
An animation that is created by displaying a series of images in sequence. This animation is static (there is no user interaction.)

The sequence of images is drawn within the component using a [0,0] origin. Typically each image in the sequence is the same
size.

To allow the user, or the program, to start and stop the animation, use the Interaction Wizard.

See: MovingAnimation component . The MovingAnimation component moves the image frames from left to right (or right to left)
a predetermined amount each step.

Properties

To specify the animation sequence, double-click on the URL List property to display the URL List dialog box. In the dialog box,
enter a list of JPEG or GIF graphic files. List the files in the order you want them to be displayed.

To run an animated sequence one or more times set the Loop Count property .
Ignore the loop count and run an animated sequence forever by setting the Repeat Mode property to true.
To view your animation at design time, set the Preview Component property to true.

Ensuring the Clear Frame property is set to false prevents flickering caused by repainting the component background before
drawing the component image.

Example

There is a sample application that uses the Animator component in the release's Samples directory, under the subdirectory
Animation. This example uses 37 GIF files to achieve the animation.

Animator Properties

Inherit Background
Inherit Font

Inherit Foregroun
nt

Z =

am

Preview Component
t M

URL List

Visible

0]

YE

Applet component

{button Properties,PI(vcafe.hlp',”Applet_Properties')} {button Events,PI(vcafe.hlp',"Events_Summary')} {button
APLJI("APIRef.hlp',"java.applet.Applet.html')}

Description

An applet is the parent container that holds all components comprising an applet’'s GUI.
Use an Applet container to create an applet program.

Build an applet in Visual Cafe by choosing the Basic Applet icon displayed in the New Project window. Then to create the
applet's GUI interface, drag the visual components you want from the Palette onto the Form Designer window attached to that
applet project.

Applets support the following functionality:

* Applet programs are run by another program.

¢ Applet components include some built-in support for threads. (For simple applets, you do not need to consider how your
applet will handle threads.)

¢ Applets contain methods which manage sounds, pictures, and URL addresses.

¢ Applet programs can write to files only if the applets are located on the host system of the managing Web page. An
applet can not write a file over a network.

Your applet can send and receive events. Use the Interaction Wizard to post predefined events between your Applet container
and the components it contains.

An applet program is a self-contained block of running Java code that a Web browser launches and runs from a Web page.
Applets are called using the HTML </Applet> tag. To display an applet on a Web page, use an HTML file containing a reference
to your applet. In HTML, a simple applet tag looks like this:

<APPLET CODE="Applet1.class" WIDTH=100 HEIGHT=100></APPLET>
Tip: An applet does not have menus, but a Frame component that is invoked from an applet can have menus.

Properties

You can change the layout manager using the Layout property.

Applet Properties

Background

Eoreground
Inherit Background
Inherit Font

nherit Foreground
Layout

H

<

AttentionDialog component

{button Properties,PI(vcafe.hlp',"Common_Dialog_Properties')} {button Events,PI('vcafe.hlp',"Events_Summary')} {button
Example,JI("vcafe.hlp',"Example_AttentionDialog')}

Description

Creates a pop-up window that displays a message. Place an AttentionDialog container into a Window, Frame or Applet container.
Use AttentionDialog to display a program message requiring immediate attention. AttentionDialog windows are modal.
Properties

To set the dialog box window title, use the Title property .

AttentionDialog provides layout managers, which you can choose by using the Layout property.

Example

This example is a slightly customized AttentionDialog. The interaction that was created with the Interaction Wizard to display this
dialog specifies the text string for the label to the left of the OK button. The component was also resized for the label length.

Egﬁ Please verify. __

Do you really want do delete thiz database row? 118 |

BorderPanel component

{button Properties,PI(vcafe.hlp',"BorderPanel_Properties')} {button Events,PI(vcafe.hlp',"Events_Summary')} {button
Example,JI("vcafe.hlp',"Example_BorderPanel')} {button API,JI(" APIRef.hlp',"symantec.itools.awt.BorderPanel.html')}
Description

Creates a container with a border, that holds visual components and other panels.

Use BorderPanel to display a decorative border and specifically to

¢ create a labelled subcontainer that organizes container space within an Applet, Frame or Dialog container. This simplifies
your component layout task.

¢ hold other specialized Panel containers.
Properties

BorderPanel provides layout managers, which you can choose by using the Layout property.
Use the Border Color property to set the color of the panel’s border.

Example

The first example is a BorderPanel with a light gray Background, blue Label Color, Label Alignment of ALIGN_LEFT, a
FlowLayout, and BEVEL_RAISED Style.

The second screen shot is a panel with light gray Background, blue Label Color, Label Alignment ALIGN_CENTER, Padding
Bottom 20, Style of BEVEL_LINE, and magenta Border Color.

Thiz iz a Border Panel

[T checkbox " radiobutton

Eﬁf’,ﬂ'ﬁpplet Yiewer: Applet?.clazs M=l
Applet

— T'hiz 1z the Panel Label

[T checkbox

| checkbox

BorderPanel Properties

Background
rder Color

O (o (oo
=]

las
Cursor

Enabled

Eont

Foreground
Inherit Background
Inherit Font
Inherit Foreground
In P ing B m
Inset P ing Si
Inset Padding Top
Label

Label Alignment
Label Color
Layout

Name

Padding Bottom
Padding Left
Padding Righ
Padding Top
Style

Visible

i

Button component

{button Properties,PI(vcafe.hlp',"Button_Properties')} {button Events,PI(’vcafe.hlp',"Events_summary')} {button
Example,JI("vcafe.hlp',"Example_Button')} {button API,JI("APIRef.hlp'," java.awt.Button.html')}

Description

Creates a simple button that initiates an action. A button usually displays a text label. The Button component is a standard Java
awt component. A LabelButton component is a Symantec component that has additional features, such as a Bevel Style propert
for 3D appearance, and an Alignment Style property for flexible button label alignment.

Use a Button to:

e accept or yield focus. Buttons accept and yield focus automatically by default.

e respond to a user event. Buttons accept clicked events automatically by default.

¢ send an action event to another visual component. To send an action event to another component, use the Interaction
Wizard. Optionally, you can register an event listener with the button in project source code.

A button appears outlined when it possesses input focus. This indicates that it can receive a user event. When the user
presses the button it get redrawn so that it appears depressed. When the user then releases the mouse button while still
over the button component, a click event is generated.

Visual Cafe also provides the specialized button components listed below. These buttons can generate repeated action event
signals as long as they detect a MouseDown event.

DirectionButton
InvisibleButton

ImageButton
LabelButton

RollOverButton
Properties
To specify text for the label, use the Label property .

When a button is disabled, it is ‘grayed out.” This indicates that it can not receive user input. Set the enable state using the
Enabled property .

Example

These are Button components at runtime.

E%-_,%Applet Yiewer: Calculate.class =] B3
Applet

Welcome to the Calculation Applet!

Simple Calculations

Loan Calculahions

Button Properties

Action Command
kgroun

o

Eont

Foreground

Inherit Background
Inherit Font

Inherit Foreground
Label

:

Visible

Calendar component

{button Properties,PI(vcafe.hlp',”Calendar_Properties')} {button Events,PI(*vcafe.hlp',"Events_Summary')} {button
Example,JI("vcafe.hlp',"Example_Calendar')} {button API,JI(" APIRef.hlp',"symantec.itools.awt.util.Calendar.html')}
Description

A calendar that displays a month at a time.

Displays a calendar with text boxes. These text boxes have up and down arrows and contain a list of years (NumericSpinner
component) and a list of the months in the year (MonthSpinner component). At run time, the calendar displays with the selected
date text as grayed out.

The Calendar component sends an action event when the user clicks on a date or changes the date.

You can use the Interaction Wizard to reset Calendar properties and to enable/disable and show/hide the component.

Properties

To specify a start date, use the Date property . The string accepts many date syntaxes; including the IETF standard date
syntax: "Sat, 12 Aug 1995 13:30:00 GMT"

To set the color of the text in the month and year text field, use the Foreground property .
To set the color of the selected/highlighted date on the calendar, use the Selection Color property .

Example

The first screen shot shows the Calendar component with Foreground property set to Blue, Selection Color property set to
Magenta, and Background property set to Yellow. The second screen shot shows the dropdown list for month selection.

Eéf’,i'hpplet Yiewer: Applet]_clazs _ O

Applet

[yuly B [2000

1
2 3 4 6 7 8
3 10 11 12 13 14 15
16 17 18 13 20 21 22
23 24 26 26 27 28 29
3 A

Eéf’,i'hpplet Yiewer: Appletl_class

Applet

[2000

W T F 5

1

5 6 7 8
12 13 14 15
19 20 21 22
268 27 28 29

=] E3

Calendar Properties

Background

Foreground
Inherit Background
Inherit Font

Inherit Foreground

Canvas component

{button Properties,PI(vcafe.hlp',"Canvas_Properties')} {button Events,PI(’vcafe.hlp',’Events_Summary')} {button
APLJI(APIRef.hlp'," java.awt.Canvas.html')}

Description

Canvas provides the visual component interface for a graphics object, so your GUI can size, position, show, hide, draw, and
redraw that object, and respond to user events.

Visual Cafe provides many specialized Canvas components for programming convenience. These specialized components
provide predefined Paint and Events methods and do not have to be subclassed.

Visual Cafe provides the following Canvas subclasses:

Animator
Ellipse
HorizontalSlider
ImageViewer

Label3D
MovingAnimation
ProgressBar

Square
VerticallLine

You must override Canvas methods to receive and send user events, to draw corresponding objects on the Canvas component,
and redraw the Canvas when it changes.

Circle

Firework

Im Button
InvisibleButton

LabelButton
Nervous Text
Rect
StateCheckBox
VerticalSlider

DirectionButton
HorizontallLine

ImageHTMLLink

InvisibleHTMLLin
k

LabelHTMLLink
Plasma
ScrollingText
ToolBarSpacer
WrappinglLabel

To use Canvas in your project, write this project code:

1. Subclass Canvas, and add the subclass to your container.

2. Override the Canvas paint method. Draw your component using the Graphics object parameter.

3. Write and register listeners for the desired events. This can be done by selecting your new Canvas subclass in the Project
window and using the Interaction Wizard.

Canvas Properties

Background
Bounds

Eoreground
Inherit Background
Inherit Font

nherit Foreground
Name

isibl

<

CheckboxMenultem component

{button Properties,PI(vcafe.hlp',”CheckboxMenultem_Properties')} {button Events,PI(’vcafe.hlp',"Events_summary')} {button
Example,JI("vcafe.hlp',"Example_CheckboxMenultem')} {button API,JI("APIRef.hlp'," java.awt.CheckboxMenultem.html')}

Description

Creates a check box that can be included in a menu. Clicking the associated menu item toggles its state between checked
(marked with a check mark) and unchecked.

Use CheckboxMenultem whenever you include a menu item that you want to toggle between on and off.
Use the Interaction Wizard to trigger an action when the CheckBoxMenultem is checked or unchecked.
Properties

Use the Checkbox property to set the initial menu state, either checked or unchecked.

The Label property sets the menu item text.

Coding the component

Use the setState method to check or uncheck a menu item.

The Java language does not require you to create a variable to reference a menu item. Instead, you can refer to the menu item
by its label.

In project source code, use this syntax to create a new CheckboxMenultem:
menulteml = new java.awt.CheckboxMenultem(label) ;
To add a check box menu item to an existing menu, call the menu component's add method:

menul.add(new java.awt.CheckboxMenulItem(label));

Part Type Description

menultem1 CheckboxMenultem The variable name used to refer to the component in code.

label String The label for the check box menu item, or null for an unlabeled menu item.

menu1 Menu The variable name of the menu component to which you are adding the menu item.
Example

This example shows a single CheckboxMenultem that is activated at runtime.

EE’,%A B azic Application

File Edit fzE=
Ahout
v Checkborbdenultem [’\\S

CheckboxMenultem Properties

Checkbox

Menu Shortcut
Name

Separator

Choice component

{button Properties,PI(vcafe.hlp',"Choice_Properties')} {button Events,PI(vcafe.hlp',"Events_Summary')} {button
Example,JI("vcafe.hlp',"Example_Choice')} {button APLJI(" APIRef.hlp',"java.awt.Choice.html')}
Description

A text box with a descriptive label and a button. Clicking on the button displays a drop down list of choices, which are mutually
exclusive.

In Visual Cafe, a Choice is a ComboBox without scrollbars. This component is non-editable. Use a ComboBox component to
provide editable properties.

Use a Choice component to:
¢ specify that your user can select only one choice from a list of choices.
e issue an action event to another component when the user clicks on a choice.

Use the Interaction Wizard to trigger an action when a Choice item is selected.

Properties

Specify the contents of the choice list by using the Items property . To include more than one item in the list, press
CTRL+ENTER (on PCs) or RETURN (on Macs) after typing each item. By default, the first item added to the choice menu
becomes the selected item. To make a different item become the selected item, you can change the Selected Index property .
Coding the component

To create a new Choice containing no text labels in project source code, use this syntax:

choicel = new java.awt.Choice();

Part Type Description

choice1 Choice The variable name used to refer to the component in code.
Example

This example shows a Choice component with three elements.

Sort By Sectiunj
Sort By name

Sort By 5N

Choice Properties

Background
Bounds

Eoreground
Inherit Background
Inherit Font
Inherit Foreground
ltems

m

E

Index
Visible

Circle component

{button Properties,PI(vcafe.hlp',"Shape_Properties’)} {button Events,PI(*vcafe.hlp',"Events_Summary')} {button
Example,JI("vcafe.hlp',"Example_Circle')} {button API,JI("APIRef.hlp',"symantec.itools.awt.shape.Circle.html')}
Description

A simple circle. This component is provided for programming convenience, so that you don’'t have to draw the shape.

Properties

Use the Border Style , Fill Mode , Fill Color , Background , and Foreground properties to achieve the desired component look.

Example

This screen shot shows six predefined Visual Cafe shapes; Rect, Circle , Square , Ellipse , VerticallLine , and HorizontalLine .
The component use a variety of property settings to generate the different effects.

Shape Properties

Background
Border Styl

O @
=]

las
Cursor
Enabled

Fill Color
Fill Mode
Font
Eoreground

Inherit Background
Inherit Font

Inherit Foregroun

i

DaySpinner component

{button Properties,PI(vcafe.hlp',”Spinner2_Properties')} {button Events,PI('vcafe.hlp',"Events_Summary')} {button
Example,JI("vcafe.hlp',"Example_DaySpinner')} {button API,JI("APIRef.hlp',"symantec.itools.awt.util.spinner.DaySpinner.html')}

Description

Atext box that shows one day of the week, and has up and down arrows to the right that allow selecting any day of the week.
Use this component to allow your user to select a day of the week.

At run time, only the selected value is displayed in the text box.
Properties
Use the Value property to set the initial day of the week. 0 corresponds to Sunday, 1 to Monday, etc.

Use the Maximum and Minimum properties to set the maximum and minimum allowed day of the week. 0 corresponds to
Sunday, 1 to Monday, etc.

Example

This screen shot shows the four types of Visual Cafe spinner components. Each component has a label component under it.
Various colors were chosen for the Foreground to display the colored text.

dog E Iu

Ligt5pinner Numeric5 pinner

™
I i I.l anuary

D ayS pinner M onth5 pinner

Dialog component

{button Properties,PI(vcafe.hlp',"Common_Dialog_Properties')} {button Events,PI('vcafe.hlp',"Events_Summary')} {button
Example,JI("vcafe.hlp',"Example_Dialog')} {button API,JI('APIRef.hlp'," java.awt.Dialog.html')}

Description

A dialog box that can be shown and dismissed apart from its parent window. When you add a Dialog component to your project,
a new Form Designer window opens. Add components to the Dialog by dragging components and containers to the Form
Designer as necessary.

Dialog boxes are intended to be temporary window objects. They present specific timely information to your user, or they allow
your user to set options for the current operation. A Dialog can be modal or non-modal. A modal Dialog receives all mouse,
keyboard, and focus events that occur while it is open. The user must interact with a modal Dialog window and dismiss the
window before returning to its parent window.

Use the Interaction Wizard to open a Dialog in response to an action such as a button press or a menu selection. The
Interaction Wizard allows you to open the dialog as modal or non-modal.

Use Dialog to

e prompt the user for information or to make a decision.
¢ interrupt program processing until your user has provided information or read the message.
¢ display status on an activity taking place.

Dialog boxes commonly contain the following GUI elements: CheckBox, ComboBox, Button, Choice, BorderPanel, Label, List,
Horizontal/Vertical Slider, Numeric/etc Spinner, TabPanel, TextField, TextArea, and more.

Dialogs are empty when created. You must add components, set properties and add interactions as necessary, to create
functionality. For programming convenience, Visual Cafe provides the following predefined Dialog containers:

AboutDialog SaveFileDialog
AttentionDiaog PasswordDialog
OpenFileDialog ProgressDialog

Coding the component

To create a Dialog window in project source code, use this syntax:

dialogl = new java.awt.Dialog(parent, title, modal);

Part Type Description

dialog1 Dialog The variable name used to refer to the component in code.

parent Frame The main application window from which the Dialog can be shown.
title String The text to display in the dialog box’s title bar.

modal boolean Whether the dialog is modal or not.

The settings for modal are:

Value Description

true The dialog box blocks input to other windows. While it is visible dialog box retrieves all user input.

false The dialog box is modeless. Other windows can be activated and used while the dialog box is open.
Example

This Dialog component has been customized to act as an Exit verification dialog box. This Quit dialog box is provided for you
automatically when you create a new project using the Basic Application template.

E’ih B azic Application - Quit

Do you really want to quit?

Yes Mo

DirectionButton component

{button Properties,PI(vcafe.hlp',"DirectionButton_Properties')} {button Events,PI('vcafe.hlp',"Events_Summary')} {button
Example,JI("vcafe.hlp',"Example_DirectionButton')} {button API,JI(" APIRef.hlp',’symantec.itools.awt.DirectionButton.html")}

Description

An arrow button. At runtime, the button has a raised look when not pressed and a lowered look when pressed.

This component is usually used in conjunction with a combo or list box to indicate a list that the user can view by clicking the
arrow.

Use the Interaction Wizard to trigger an action when this button is pressed.

Properties

To set the direction of the arrow, use the Direction property.

To define the margin between the arrow and the button sides, use the Arrow Indent property. Type a new value in pixels.

To send a continuous stream of action events when the button is clicked, set the Notify While Pressed property to “true”, and
specify a Notify Delay property value in milliseconds.

Example

In the this screen shot, there are four DirectionButtons. The left and right arrow buttons show the default bevel style and arrow
look. The up and down arrow buttons have a Bevel Height of 3 and an Arrow Indent of 5.

Algy

DirectionButton Properties

Arrow Color
Arrow Indent
Bevel Height
Border Color
Bounds

Button Color

Frame Name

HTML Link URL
Name

Notify Delay

Notify While Pressed
Show Focus

Show Link URL Status
Use Offset

Visible

Ellipse component

{button Properties,PI(vcafe.hlp',”Shape_Properties’)} {button Events,PI('vcafe.hlp',"Events_Summary')} {button
Example,JI("vcafe.hlp',"Example_Ellipse')} {button API,JI(' APIRef.hlp',"symantec.itools.awt.shape.Ellipse.html')}

Description

An ellipse. This component is provided for programming convenience, so that you don’t have to draw the shape.

Properties

Use the Border Style , Fill Mode , Fill Color , Background , and Foreground properties to achieve the desired component look.

Example

This screen shot shows six predefined Visual Cafe shapes; Rect, Circle , Square , Ellipse , VerticallLine , and HorizontalLine .
The component use a variety of property settings to generate the different effects.

Emblaze20 component

{button Properties,PI(vcafe.hlp',"Emblaze20_Properties')} {button Events,PI(‘vcafe.hlp',"Events_Summary')} {button
Example,JI("vcafe.hlp',"Example_Emblaze20')} {button API,JI("APIRef.hlp',"geo.Emblaze20.html’)}

Description
Creates a box that displays a Emblaze animation file (.BLZ.).
To run the animation, create a button and then use the Interaction Wizard to connect the button to the Emblaze20 component.

Select the button trigger action as clicked and the Emblaze action as Start the animation. This connection sends the start method
to the Emblaze component when the button is clicked at runtime.

Properties

To add a Emblaze animation file, double-click on the URL property to open the URL selection dialog box and specify a .BLZ file.

Example

This screen shot shows the Emblaze file that is shipped in the Sample directory running in an applet. The button starts the
animation.

E%-_,%Applet Viewer: Applet]_clazs O] x|
Applet

Start

Emblaze20 Properties

Background

.

i

Cursor
Enabled
Eont
Foreground

nherit Background
Inherit Font

nherit Foreground
Name

i

S‘F
. |8
o I~

Firework component

{button Properties,PI(vcafe.hlp',"Firework_Properties')} {button Events,PI('vcafe.hlp',"Events_Summary')} {button
Example,JI("vcafe.hlp',"Example_Firework')} {button API,JI('APIRef.hlp',"symantec.itools.multimedia.Firework.html')}

Description

An animated fireworks image. This multimedia component is provided for novelty and programming convenience.
Properties
There are no properties to control the speed or display of the Firework image.

Example

The following is a simple example of the Firework component. See the Sample directory for another example.

E%-_,%Applet Viewer: Applet? clazs =]

Applet

Firework component

Firework Properties

Background
Bounds

Eoreground
Inherit Background
Inherit Font

nherit Foreground
Name

isibl

<

Frame component

{button Properties,PI(vcafe.hlp',"Frame_Properties')} {button Events,PI(*vcafe.hlp',"Events_Summary')} {button
APLJI(APIRef.hlp'," java.awt.Frame.html')}

Description

A frame is a top-level window that supports a title bar and menu bar. Visual Cafe uses the frame component to build applications.
Frames cannot be placed inside another component.

Note: You must place a Window component into a Frame. Also, a Dialog component can be placed into a Frame, while an
Applet cannot.

Use a frame whenever you need to:
e build a GUI for an application. Frame is the parent container for application GUIs.
¢ build a container that supports a menu bar.

To create a Frame, select File ¥ New Project and choose Basic Application project. Visual Cafe automatically provides a Frame
and a main method, and updates both Frame methods, and property and event defaults as necessary.

You can also drag a Frame from the Palette to the Form Designer window, or from the Component Library to the Project window.
Adding a Frame from the Palette or the Component Library may require you to provide a main method and override other Frame
methods manually.

To add a MenuBar component to a Frame, drag the MenuBar icon to the Form Designer window.

When a Frame is active, it receives all mouse, keyboard, and focus events that occur over it.

Frame Properties

Background
Bounds

Eoreground
Inherit Background
Inherit Font

Inherit Foreground

HorizontalLine component

{button Properties,PI(vcafe.hlp',”Shape_Properties’)} {button Events,PI('vcafe.hlp',"Events_Summary')} {button
Example,JI("vcafe.hlp',"Example_HorizontalLine')} {button API,JI("APIRef.hlp',"symantec.itools.awt.shape.HorizontalLine.html')}

Description

A horizontal line. This component is provided for programming convenience, so that you don’t have to draw the shape.

Properties

Use the Border Style , Fill Mode , Fill Color , Background , and Foreground properties to achieve the desired component look.

Example

This screen shot shows six predefined Visual Cafe shapes; Rect, Circle , Square , Ellipse , VerticallLine , and HorizontalLine .
The component use a variety of property settings to generate the different effects.

Horizontal and Vertical Scrollbar components

{button Properties,PI(vcafe.hlp',"Scrollbar_Properties')} {button Events,PI(*vcafe.hlp',"Events_Summary')} {button
APLJI("APIRef.hlp'," java.awt.Scrollbar.html')}

Description

Scrollbar components preset to display left-to-right and up-down respectively.

A scrollbar is a component used when the contents of a window or box takes up more space than is allocated to that window or
box. This, for example, commonly occurs when a large amount of text is displayed in a window. The scrollbar indicates three
things. The total length of the contents (corresponding to the length of the scrollbar). The location of the contents shown in the
window (corresponding to the position of the scrollbar thumb). And the amount of the contents shown in the window
(corresponding to the length of the scrollbar thumb). A different part of the contents may be shown in the window by moving the
scrollbar’s thumb. The thumb can be moved by dragging, clicking an arrow button, or by clicking between the thumb and an
arrow.

Use a ScrollBar to:

e scroll through a data buffer that is too large to display in an associated view window.
e respond to a user event.
¢ send an action event to another visual component.

Use the Interaction Wizard to trigger an action when the scrollbar’s value has changed. A typical event might be painting the
appropriate part of the data a window is displaying into that window, thus making the scrollbar “scroll” the data in the window.

Properties

To change the orientation of a ScrollBar, set the Orientation property to VERTICAL or HORIZONTAL. Note: HorizontalScrollbar
and VerticalScrollbar differ only in the default value of this property. They are actually both components of type
java.awt.Scrollbar.

To set the location of the scroll thumb in the scroll bar, set the scroll bar's Value property . The Minimum and Maximum properties
set the range of values the scrollbar may have.

In code, you can move the scroll thumb to it's minimum position by calling the setvalue method for the scrollbar and use the
Minimum property setting as the parameter.

Coding the component

The three examples below instantiate a scrollbar in project source code:

scrollbarl = new java.awt.Scrollbar (orientation, value, visible, minimum, maximum) ;

Part Type Description

scrollbar1 Scrollbar The variable name used to reference the component in code.

orientation int An integer value indicating the orientation of the scroll bar, VERTICAL or HORIZONTAL.

value int The initial value of the scroll bar. This parameter controls the starting location of the scroll thumb.
This number should be between the minimum and maximum values.

visible int The size represented by the thumb of the scrollbar. The scroll bar uses this value when paging up or
down by a page.

minimum int The minimum value of the scrollbar, when the scroll thumb is in the top or leftmost position.

maximum int The maximum value of the scrollbar, when the scroll thumb is in the bottom or rightmost position.

Scrollbar Properties

Background
Block Increment

Eont

Foreground

Inherit Background
Inherit Font
Inherit Foreground
Maximum
Minimum

Name

Orientation

Unit Increment

Visible Amount

HorizontalSlider and VerticalSlider components

{button Properties,PI(vcafe.hlp',"Slider_Properties')} {button Events,PI(*vcafe.hlp',"Events_summary')} {button
Example,JI("vcafe.hlp',"Example_HorizontalSlider")} {button API

(h),JIC APIRef.hlp',symantec.itools.awt.HorizontalSlider.html')} {button API

(v),JIC APIRef.hlp',"symantec.itools.awt. VerticalSlider.html')}

Description

A horizontal or vertical slider component.

A slider is used to select one value from a continuous range of values. It has a movable thumb in front of a gauge with ticks
marks on it.

Properties
To specify the range of values that the slider indicates, change the Min Value property and the Max Value property.
To change the number of tick marks on the slider, set the Tick Frequency property.

Use the Value property to set the initial value of the slider.

Example

This HorizontalSlider component has a Tick Style of Both and a light gray Background.

! ||
—
1 1 1 [1 1 1 1 1 1

Slider Properties

Background
Bounds

Eoreground
Inherit Background
Inherit Font
Inherit Foreground
Max Value

Min Value

Name

Show Border

Tick Frequency
Tick Styl

Value

Visible

ImageButton component

{button Properties,PI(vcafe.hlp'," ImageButton_Properties')} {button Events,PI("vcafe.hlp',"Events_summary')} {button
Example,JI("vcafe.hlp',"Example_ImageButton')} {button API,JI("APIRef.hlp',’symantec.itools.awt.ImageButton.html')}

Description

A button that displays an image on its face instead of a text label.

Use an ImageButton to:

¢ display an image instead of text on a button.
* generate a continuous series of action events when the user clicks the button.

Properties

To select and display an image on the button, use the Image URL property. Specify a file name for the JPEG or GIF image you
want displayed. Then, if desired, scale the image to fit in the button by using the Image Style property.

To send a continuous series of action events when the button is clicked, set the Notify While Pressed property to “true”, and
specify a Notify Delay property value in milliseconds.

Use the Interaction Wizard to trigger some action when the button is pressed.

Example

This ImageButton example has a Bevel Height of 3, Image Style is IMAGE_CENTERED, and Background property is set to light
gray. The button' s container's Background property is also gray.

ImageButton Properties

Bevel Height
Border Color
Bounds
Button Color
Class
Cursor
Enabled

Frame Name
HTML Link URL
Image Style
Image URL
Name

Notify Delay

Notify While Pressed
Show Focus

Show Link URL Status
Use Offset
Visible

ImageHTMLLink component

{button Properties,PI(vcafe.hlp'," ImageHTMLLink_Properties')} {button Events,PI(vcafe.hlp',"Events_Summary')} {button
APLJI("APIRef.hlp',"symantec.itools.awt.ImageHTMLLink.html')}

Description

Creates a rectangular button, with an image label, that calls a URL address when clicked.

Specifically, use ImageHTMLLink to:

¢ go to an HTML page when the button is clicked.
e display an image on a button.
* generate a continuous series of action events when the user clicks the button.

Use the Interaction Wizard to trigger an action when this button is clicked.

Note: This component can only show HTML files if your program is running in a browser.

Properties

To select and display an image on the button:

1. Using the Image URL, specify the file name of the JPEG or GIF image you want displayed.
2. Scale the image to fit in the button, as desired, by using the Image Stryle property.
3. Setthe HTML Link URL to the URL that you want displayed when the button is clicked.

To send a continuous series of action events when the button is clicked, set the Notify While Pressed property to True, and then
specify a Notify Delay property value in milliseconds.

ImageHTMLLink Properties

Bevel Height
Border Color
Bounds
Button Color
Class
Cursor
Enabled

Frame Name
HTML Link URL
Image Style
Image URL
Name

Notify Delay

Notify While Pressed
Show Focus

Show Link URL Status
Use Offset
Visible

ImageListBox component

{button Properties,PI(vcafe.hlp'," ImageListBox_Properties')} {button Events,PI(*vcafe.hlp',"Events_Summary')} {button
Example,JI("vcafe.hlp',"Example_ImageListBox')} {button API,JI(APIRef.hlp',’symantec.itools.awt.ImageListBox.html')}

Description

A box containing a list of images and text.

Use an ImagelListBox to display a set of images and text that the user can select. Text may be added to the ImageListBox using
the Property window or Interaction Wizard. Images and images with text must be added via program code. Use the additem
method of the ImageListBox component to add images.

Properties

Use the ComboBox Mode property to change the hilight action of the ImageListBox. When ComboBox Mode is true list
selections will be hilighted anytime the mouse cursor is over them. When false, the normal ListBox hilight is used.

The Enabled property effects the entire ImageListBox component. Individual list items may be enabled and disabled in program
code using the setEnabled method.

Use the Rows to Display property to determine the minimum number of rows to display when this component is automatically
laid out. This affects the dimensions returned by getPreferredSize and getMinimumSize.

Example

This screen shot shows an ImageListBox component (left) and an ImageViewer component (right, under Preview).

This next picture shows an ImageListBox component with no images (on the left). This component has Display Cell Borders set
to False and Border Style set to BORDER_REGULAR. The ImageListBox component on the right has Display Cell Borders set
to True and Border Style set to BORDER_NONE. Both components have the same set of values in the List ltems property.

- January
Februany . - February

march
April il

ImageListBox Properties

Background
Border Styl

Bounds
lass

Columns to Display
ComboBox Mode

@)

Cursor

Display Cell Borders
Enabled

Eont

Foreground

Inherit Background
Inherit Font

Inherit Foreground
List Items

Multipl lection
Name

Rows to Display
Show Horizontal Scrollbar

Show Vertical Scrollbar
Visible

ImagePanel component

{button Properties,PI(" vcafe.hlp'," ImagePanel_Properties')} {button Events,PI('vcafe.hlp',"Events_Summary')} {button
APLJI("APIRef.hlp',"symantec.itools.awt.ImagePanel.html')}

Description

The ImagePanel component is similar to a regular panel except that it displays an image within the panel. The image to use is
specified with a URL.

Properties
Use the Image URL property to specify the URL of the image to display.

Use the Image Style property to specify how to display the image.

ImagePanel Properties

Eoreground
mage Style
Image URL

Inherit Background
Inherit Font

Inherit Foregroun

IntiLongDistPhoneNumber component

{button Properties,PI(vcafe.hlp',"Predefined_TextField_Properties')} {button Events,PI(’vcafe.hlp','Events_Summary')} {button
APLJI(APIRef.hilp',"symantec.itools.awt.util.edit.IntiLongDistPhoneNumber.html')}

Description

A FormattedTextField in which your user can type text that is limited to an international phone number format (thirteen digit
number). Text formatting logic is applied to the user input. If the text box already contains text, the user can select the default text
and delete or edit it.

Use the Interaction Wizard to trigger an action when the value of this component is changed.
Properties
The mask format is unchangeable, and set to 999/-999/-999/-9999. See: Mask property.

Use the Editable property to prevent the user from being able to edit the number.

InvisibleButton component

{button Properties,PI(vcafe.hlp'," InvisibleButton_Properties')} {button Events,PI(’vcafe.hlp',"Events_Summary')} {button
Example,JI("vcafe.hlp',"Example_InvisibleButton')} {button APIL,JI(" APIRef.hlp',"symantec.itools.awt.InvisibleButton.html')}

Description
An invisible area, usually within an image, that initiates an action when clicked. Specifically, use InvisibleButton to

e create a "hot spot" on an image or on a component
e accept or yield focus

e respond to a user event

¢ send an action event to another component

Button tips:

e Buttons accept and yield focus automatically by default.
¢ Buttons accept clicked events automatically by default.
¢ Use the Interaction Wizard to trigger an action when the button is clicked.

Example

The following screen shot shows the SlideShow component that is used in the Visual Cafe Tutorial that ships with your release.
The SlideShow component displays tour package pictures, and an ImageViewer component displays the art work at the bottom
that is used as the slide show controller. The SlideShow is "activated" by two InvisibleButtons on the slide controller ImageViewer
component. One invisible button overlays the "previous" arrow and the other overlays the "next" arrow. The interactions between
the buttons and SlideShow were created with the Interaction Wizard. The text to the right of SlideShow displays is a
WrappingLabel component. An interaction is defined between the SlideShow and the WrappingLabel so that the text changes as
each slide displays.

Tip: Overlapping components - browsers handle components layered on each other differently. In this SlideShow example,
some browsers display/layer the InvisibleButtons on top of the ImageViewer component, while others displayed them
underneath. Therefore, this example required two sets of InvisibleButtons, one set on top of ImageViewer and the other
underneath.

Hiking through the
rainforest and touring
botanical gardens are
some of the many ways to
explore the Bungbusi
tropical paradise.

T sgp pomne Frighiadty,
inde i lnok i Fhe siide shioiw..

InvisibleButton Properties

Background
Bounds

Eoreground
Inherit Background
Inherit Font

nherit Foreground
Name

isibl

<

InvisibleHTMLLink component

{button Properties,PI(vcafe.hlp',"InvisibleHTMLLink_Properties')} {button Events,PI("vcafe.hlp',"Events_Summary')}
APLJI("APIRef.hlp',"symantec.itools.awt.InvisibleHTMLLink.html')}

Description

An invisible rectangular button, usually within an image, that links to a URL address when clicked. Specifically, use
InvisibleHTMLLink to:

e Show an HTML document when clicked on.
e Accept or yield focus.

¢ Respond to a user event.

e Send an action event to another component.

Button tips:

¢ Buttons accept and yield focus automatically by default.
e Buttons accept clicked events automatically by default.
e Use the Interaction Wizard to trigger an action when the button is clicked.

Note: This component will only access HTML links when it is running within a Java enabled browser.

Properties

Use the HTML Link URL property to specify the address that the browser should access when this link is clicked.

Use the Frame Name property to specify how the linked document will be displayed.

{button

InvisibleHTMLLink Properties

Eoreground
Frame Name

HTML Link URL
Inherit Background
Inherit Font

Inherit Foregroun
Name

Visible

KeyPressManagerPanel component

{button Properties,PI(vcafe.hlp',"KeyPressManagerPanel_Properties')} {button Events,PI('vcafe.hlp',"Events_Summary')}
{button API,JI(" APIRef.hlp',"symantec.itools.awt.KeyPressManagerPanel.html')}

Description

A container which holds visual components and other panels that the user can TAB through to change focus. You can also use
this component to set default buttons (for when the user presses the ENTER key), and to handle OK and CANCEL buttons
automatically.

The tab focus order is based on the order in which the components were added to the KeyPressManagerPanel. Each
component receives focus in turn, but the mouse cursor is not relocated. Look at the Project window to see the tab order of
components within the KeyPressManagerPanel. You can change the tab order by moving the component names in the Project
window list.

Tabbing from the last component in the panel changes focus back to the first component. To make the focus leave the
KeyPressManagerPanel and continue to the next traversable component in the application, use CTRL+TAB.

Components respond to default events when they receive focus. For example, the TextField component dis