The Java Language Specification
Lexical Structure

[# Types and Values
Conversions

Program Structure

[#] Class and Interface Type Declarations
[# Arra

[# Blocks and Statements

Expressions

The Java Language Specification

(=] Lexical Structure
B Lexical Structure
nicode Escape

Input Lines

[# Tokens

[#] comments

[+ Keywords

[identifiers

[Literals

. eparator

[#] Operators

[Types and Values
Conversions
Names and Variables
[# Program Structure

Class and Interface Type Declarations
[# Arrays
[#] Blocks and Statements

Expressions

The Java Language Specification
Lexical Structure
[# Types and Values

Types and Values

[# Primitive Types And Values
Reference Types and Values
[+ Standard Default Values
Conversions

[#] Names and Variables

[Program Structure

Class and Interface Type Declarations
[Arra

[#] Blocks and Statements

Expressions

The Java Language Specification
Lexical Structure
[# Types and Values
Conversions

[#] Conversions on Primitive Values
Conversions on Reference Values
= Assignment Conversion

[l ca ing Conversion

[# Unary Arithmetic Promotion
Binary Arithmetic Promotion
Names and Variables

Program Structure

Class and Interface Type Declarations
Arrays

Blocks and Statements
Expressions

The Java Language Specification
Lexical Structure

[# Types and Values
Conversions

[#] Names and Variables

Names

[# Variables: Values and Reference
Storage Classes

Name Spaces

[#] Name Resolution

[#] External Access

[#] Rules about Names

[#] Program Structure

[#] Class and Interface Type Declarations
[Arra

[#] Blocks and Statements

Expressions

The Java Language Specification
Lexical Structure

[# Types and Values
Conversions

Program Structure
Packages and Directories
ique

g Package

Standard Imports

The Import Statement

Class and Interface Type Declarations
[Arra

[#] Blocks and Statements

Expressions

The Java Language Specification
Lexical Structure
[# Types and Values
Conversions

[#] Names and Variables

Program Structure

[# Class and Interface Type Declarations
[#] Class Declarations
[Field Declarations
Variable Declarations

[#] Method Declarations
[#] Constructor Method Declarations
[# Automatic Storage Management :

[*] Arrays
[#] Blocks and Statements
Expressions

The Java Language Specification
Lexical Structure
[# Types and Values
Conversions

Program Structure

[#] Class and Interface Type Declarations
[Arra

[# Arrays

[Array Types

Declarations of Array-valued Variables
[#] Array Initialization
[Arra v Length

[#] Array Indexing

[Array Allocati

Arrays versus Strings
[#] Blocks and Statements

[#] Expressions

The Java Language Specification
Lexical Structure

[# Types and Values
Conversions

Program Structure

[#] Class and Interface Type Declarations
[# Arra

[# Blocks and Statements

[#] Blocks and Statements
Blocks

[#] Local Variable Declarations
Statements

[#] Empty Statement
Labeled Statements

[#] Expression Statements
[#] Selection Statements
[# Iteration Statements

[#] Jump Statement

[#] Guarding Statements

[#] Unreachable Statements

Expressions

The Java Language Specification
Lexical Structure
[# Types and Values
Conversions

Program Structure

[#] Class and Interface Type Declarations
[# Blocks and Statements

[+ Expression

[#] value of an Expression

[#] Type of an Expression

ne .
Evaluation Order

[#] Primary Expressions
[#] Array Acce
[Field Access

= Method Calls

[#] Allocation Expressions
[#] Postfix Expression

[#] Unary Operators

[#] Multiplicative Operators
[#] Additive Operators
Shift Operators

[#] Relational Operators
[Equality Operators

[Bitwise and Logical Operators
[# Conditional-And Operator &&

Conditional-Or Operator Il
[#] Conditional Operator ? :
[Assi ,
Expression

[Constant Expression

Unassigned Variables

Lexical Structure

Java programs are written using the Unicode character encoding. (For information about Unicode, see The Unicode Standard:
Worldwide Character Encoding, Version 1.0, Volume 1 ISBN 0-201-56788-1 and Volume 2 ISBN 0-201-60845-6, and the
additional information about Unicode 1.1 at ftp://unicode.org.)

This chapter describes the translation of a raw Unicode character stream into a stream of Java tokens, using the following
three translations, which are applied in turn:

1. A translation of the raw stream of Unicode characters, allowing any Unicode character to be input as an ASCII escape
sequence, resulting in an escaped Unicode stream.

2. Atranslation of the escaped Unicode stream into a stream of input characters and line terminators.
3. Atranslation of the stream of Unicode characters and line teminators into a sequence of Java tokens.

In each of these translations the longest possible translation is chosen at each step, even if the result does not ultimately make
a legal Java program, while another translation would. Thus the characters a--b are tokenized as a, --, b, which cannot
become part of a grammatically correct Java program, even though the tokenization a, -, -, b could be part of a grammatically
correct Java program.

On systems that do not support full Unicode, translations between Unicode and the native character encoding must be
provided. For example, Unicode is effectively a superset of ASCII, and Java translation step 1, described just above, provides
a simple way to encode any Unicode character, anywhere in the source code of a progam, as an escape sequence of ASCII
characters. Source code may thus be stored as ASCII files rather than as full Unicode source files. If each ASCII character in
the source code file is simply mapped to the corresponding Unicode character as it fed to the Java compiler, translation step 1
will then reconstruct Unicode characters represented as escape sequences.

Unicode Escapes

All Java implementations first perform a transformation on the raw Unicode character input, translating the characters \u
followed by four hexadecimal digits to the Unicode character whose code point is the indicated hexadecimal value. This
transformation results in a sequence of escaped input characters.

EscapedinputCharacter:
UnicodeEscape
RawinputCharacter

UnicodeEscape:
\ UnicodeMarker HexDigit HexDigit HexDigit HexDigit

UnicodeMarker:
u
UnicodeMarker u

RawlnputCharacter:
any Unicode character

HexDigit: one of
01234567890abcdefABCDEF

Note that \, u, and all the hexadecimal digits are ASCII characters.

A Unicode escape sequence may contain more than one occurrence of the letter u before the hexadecimal digits.
(Programmers writing Java programmers are unlikely to need this feature; it is included to allow a simple automatic translation
of Java source code from full Unicode to an ASCII file representation that is itself a correct Java program if naively mapped
back to Unicode but from which the original Unicode file can be reconstructed exactly.)

If a\ is not followed by u, then it is treated as a RawinputCharacter and remains as part of the escaped Unicode stream. If a \
is followed by u, or more than one u, but the last u is not followed by four hexadecimal digits, then it is a compile-time error.

The character produced by a Unicode escape is not subject to rescanning. For example, the raw input \uOO5cuOO5b results
in the four characters \ u 5 b, not the single character Z (which is Unicode character 005b); while 005c is indeed the Unicode
value for \, the resulting \ is not interpreted as the start of a further Unicode escape sequence.

Java systems should use the \uxxxx notation as an output format to display Unicode characters when full Unicode is not
available or a suitable font is not available.

Input Lines

The second translation step divides the sequence of escaped input characters into lines by recognizing lines as being
terminated by the ASCII characters CR LF or CR or LF. (The idea is that either a carriage return CR or a line feed LF by itself
can serve as a line terminator, but CR immediately followed by LF is counted as one line teminator, not two.) The result is a
sequence of line terminators and input characters, which are the terminal symbols for the tokenization process in the third
step.

LineTerminator:
the ASCII CR character followed by the ASCII LF character
the ASCII CR character
the ASCII LF character

InputCharacter:
EscapedinputCharacter, but not CR and not LF

This definition of what is a line determines any line numbers produced by a Java compiler or other Java system component. It
also specifies the termination of the // form of comment (§ Comments).

Tokens

The input characters resulting from escape processing and input line recognition are further processed by recognizing tokens
and discarding comments and whitespace, thereby reducing the input to a sequence of tokens. This process is described by
the following grammar:

Input:
InputElementsopt

InputElements:
InputElement
InputElements InputElement

InputElement:
Comment
WhiteSpace
Token

WhiteSpace:
the ASCII SP character
the ASCII HT character
the ASCII FF character
Line Terminator

Token:
Keyword
Identifer
Literal
Separator
Operator

As usual, this translation works from left to right and, as usual, the longest possible match is chosen at each step.

Whitespace is defined as the ASCII space, horizontal tab, and form feed characters as well as line separators, previously
recognized as CR, LF, or CR LF. As a special concession for compatibility with certain operating systems, the ASCIl SUB
character (\ula) is also treated as whitespace if it is the last character in the escaped input stream.

Comments and white space serve to separate adjacent tokens that, if adjacent, might be tokenized in another manner. For
example, the characters - and = in the input can form the operator token -= only if there is no intervening white space or
comment.

Comments
A comment in a Java program begins with an occurence of the characters /*, / ** , or //.

Comment:
/ * NotStar TraditionalCommentTail
/ * * DocCommentTail
/ / CharactersinLineopt LineTerminator

Traditional CommentTail:
*/
NotStar TraditionalCommentTail
* NotSlash TraditionalCommentTail

DocCommentTail:
/
* DocCommentTail
NotStarNotSlash TraditionalCommentTail

NotStar:
InputCharacter, but not *
LineTerminator

NotSlash:
InputCharacter but not /
LineTerminator

NotStarNotSlash:
InputCharacter, but not * or /
LineTerminator

CharactersinLine:
InputCharacter
CharactersinLine InputCharacter

These three styles of comments are:

* text * All the text from / * to * / is ignored.

/** text */ The enclosed text is used in automatically generated documentation of the following declaration.
// text All the text from // to the end of the line is ignored.

The grammar implies the following:

. Comments do not nest.

. Comments do not occur within string and character literals.

e /*and */have no special meaning in // comments.

e // has no special meaning in comments that begin with / * or / * *

As a result, the text
/¥ thiscomment /* // /** endshere: */

is a single complete comment.

Keywords

The following character sequences, formed from ASCII letters, constitute special tokens that are reserved for use as keywords.

Keyword: one of

abstract
boolean
break
byte
case
cast
catch
char
class
const
continue
default
do
double
else
extends

int
interface
long
native
new

null
operator
outer
package
private
protected
public
rest
return
short
static

The keywords byvalue, cast, const, future, generic, goto, inner, operator, outer, rest, and var are reserved but not used in Java

1.0.

Note that true and false look like keywords but technically are Boolean literals (§ Boolean Literals).

Identifiers

An identifier is an unlimited length sequence of Unicode letters and digits, the first of which must be a letter. An identifier must
not have the same spelling (code point sequence) as a keyword.

Identifier:
UnicodeLetter
Identifier UnicodelLetter
Identifier UnicodeDigit

A Unicode character is a digit if its Unicode name contains the word 'DIGIT", as listed on pages 391-393 of The Unicode
Standard, Version 1.0, Volume 1 (see §1.1 for the ISBN); this is precisely the characters in the following ranges:

\u0030- \u0039 0-9 ISO-LATIN-1digits
\u0660- \u0669 Arabic-Indic digits
\uO6fO- \u06f9 Eastern Arabic-Indic digits
\u0966- \u096f Devanagari digits
\u09e6- \u09ef Bengali digits
\u0a66- \u0a6f Gurmukhi digits
\uOae6- \uOaef Guijarati digits
\uOb66- \uOb6f Oriya digits
\uObe7- \uObef Tamil digits
\uOc66- \uOc6f Telugu digits
\uOce6- \uOcef Kannada digits
\u0d66-\u0de6f Malayalam digits
\uOe50- \u0e59 Thai digits
\uOed0- \uOed9 Lao digits
\u1040-\u1049 Tibetan digits

A Unicode character is a letter if it falls in one of the following ranges and is not a digit:

\u0024 $ dollar sign (for historical reasons)
\u0041-\uOO5a A-Z Latin capital letters

\uOO5f _ underscore (for historical reasons)
\u0061- \uOO7a a-z Latin small letters

\uOOcO- \uOOd6 various Latin letters with diacritics
\uO0Od8-\uOOf6 various Latin letters with diacritics
\uOOf8-\uOOff various Latin letters with diacritics
\uOIOO-\ulfff other non-CJK alphabets and syrnbols
\u3040-\u318f Hiragana, Katakana, Bopomofo, and Hangul
\u3300-\u337f CJK squared words

\u3400- \u3d2d Korean Hangul Symbols
\u4eOO-\u9fff Han (Chinese, Japanese, Korean)
\uf90O0- \ufaff Han compatibility

Two identifiers are the same only if they are identical, that is, have the same Unicode code point for each letter or digit. This
means, in particular, that the identifiers consisting of the single letters Latin capital A (\u0041), Latin small a (\uOO6l), Greek
capital A (\u0391), and Cyrillic small a (\u0430) are all distinct.

This means that composite characters are distinct from the decomposed characters. For example, a LATIN CAPITALLETTRA
GRAVE WwOO0cO could be considered to be the same as a LATIN CAPITAL LETTER A\u0041 followed by a NON-SPACING-
GRAVE \u0300 when sorting, but these are distinct in Java. See The Unicode Standard, Volume 1, pages 626-627, about
sorting, and pages 412ff about decomposition.

Literals
Literal
A literal is the source representation of a value of a primitive or String type:

Literal:
Integer Literal
Floating-Point Literal
Boolean Literal
Character Literal
String Literal

See Conversions for a description of primitive types.

Literals
Literal
[Integer Literal
Floating-Point Literal
[# Boolean Literal
Character Literal
[#] String Literal

A literal is the source representation of a value of a primitive or String type:

Literal:
Integer Literal
Floating-Point Literal
Boolean Literal
Character Literal
String Literal

See Conversions for a description of primitive types.

Integer Literals

Integer literals may be expressed in decimal (base 10), hexadecimal (base 16), or octal (base 8) notation, using characters
from the ASCII character set portion of Unicode:

IntegerLiteral:
DecimallLiteral IntegerTypeSuffixopt
HexLiteral IntegerTypeSuffixopt
OctallLiteral IntegerTypeSuffixopt

An integer literal is of type long if it is suffixed with an L or | ; otherwise it is of type int.

IntegerTypeSuffix: one of
IL

A decimal literal consists of a digit from 1 to 9, optionally followed by one or more digits from 0 to 9, and represents a positive
integer:

DecimallLiteral:
NonZeroDigit Digitsopt

Digits:
Digit:
Digits Digit
Digit:
0
NonZeroDigit

NonZeroDigit: one of
123456789

A hexadecimal literal consists of a leading Ox or OX followed by one or more hexadecimal digits and can represent a positive,
zero, or negative number. Hexadecimal digits with values 10 through 15 are represented by the letters a through f or A through
F, respectively; each letter used as a hexadecimal digit may be uppercase or lowercase.

HexLiteral:
Ox HexDigit
OX HexDigit
HexLiteral HexDigit

HexDigit: one of
0123456789abcdefABCDEF

An octal literal consists of a digit O optionally followed by zero or more of the digits 0 through 7 and can represent a positive,
zero, or negative number.

OctallLiteral:
0
OctallLiteral OctalDigit

OctalDigit: one of
01234567

The largest decimal literal of type int is 2147483647 (2*3I-I). The largest positive hexadecimal and octal literals of type int are
OxTfffffff and 017777777777 respectively, both representing 2147483647 (2"3I-I). The most negative hexadecimal and octal
literals of type int are 0x80000000 and 020000000000 respectively, each of which represents the decimal value -2147483648
(-273I). The hexadecimal and octal literals OXxffffffff and 037777777777 each represent the decimal value -1.

It is a compile-time error for a decimal literal of type int to be larger than 231-I, or for a hexadecimal or octal int literal to
provide more than 32 bits. This means, in particular, that the largest negative int cannot be represented as a decimal literal,
because "-2147483648" appearing in Java source code would be tokenized as the unary operator

- followed by a putative decimal literal 2147483648, but 2147483648 is not a valid decimal integer literal. Use the hexadecimal
literal 0x80000000 instead.

Examples of int literals are:
0 2 0666 OxDadaCafe

The largest decimal literal of type long is 9223372036854775807L (2263-1). The largest positive octal and hexadecimal literals
of type long are O777777777777777777777L and OXTffffffffffffffL respectively; each represents 9223372036854775807L
(2763-1). The most negative hexadecimal and octal literals of type long are OXfffffffffffffffflL and 01777777777777777777777,
each of which represents the decimal value -9223372036854775808 (-2"63). The most negative hexadecimal and octal literals
of type long are Ox800000000O000OOO0L and 0400000000000000000000L respectively, each of which represents the
decimal value -9223372036854775808 (-2763). The hexadecimal and octal literals OXxfffffffffffffffflL and
01777777777777777777777L each represent the decimal value - 1L.

It is a compile time error for a decimal literal of type int to be larger than 2*63-1 or for a hexadecimal or octal long literal to
provide more than 64 bits. This means, in particular, that the largest negative long cannot be represented as a decimal literal,
because "-9223372036854775808L" appearing in Java source code would be tokenized as the unary operator - followed by a
putative decimal literal 9223372036854775808L, but 9223372036854775808L is not a valid decimal long integer literal. Use
the hexadecimal literal 0x8000000000000000 instead.

Examples of long literals are:

0o 0777L OxIOO000000L 2147483648L

Floating-Point Literals

A floating-point literal has the following parts: a whole-number part, a decimal point, a fractional part, an exponent, and a type
suffix. The exponent, if present, is indicated by a letter e or E followed by an optionally signed integer.

It is required to have at least one digit, in either the whole number or the fraction part, and either a decimal point or an
exponent. All other parts are optional.

A floating-point literal is of type float if it is suffixed with a letter F or f; otherwise its type is double, and can optionally be
suffixed with D or d.

FloatingPointLiteral:
Digits . Digitsopt ExponentPartopt FloatTypeSuffixopt
Digits ExponentPartopt FloatTypeSuffixopt
Digits ExponentPart FloatTypeSuffixopt

ExponentPart:
Exponentindicator Signedintegeropt

Exponentindicator: one of
e E

Signedinteger:
Signopt Digits

Sign: one of
+ -

FloatTypeSuffix: one of
f FdD

It is a compile-time error for a non-zero floating-point literal to be too large, so that on rounded conversion to its internal
representation it becomes an IEEE infinity, or nonzero but too small, so that on rounded conversion to its internal
representation it becomes a zero.

The largest floating-point literal of type float is 3. 40282347e+38f. The smallest floating-point literal of type float is 1.
40239846e-45f.

The largest floating-point literal of type double is 1.79769313486231570e+308. The smallest floating-point literal of type
double is 4. 94065645841246544e-324.

Predefined constants representing the positive and negative infinities and Not-a-Number (NaN) values of both float and double
types are defined in the standard classes Float and Double..

Examples of float literals:
1e1f 2. 3f 3.14f 6. 02e+23f

Examples of double literals:
1e1 2 3 3.14 1e-9d

Boolean Literals
The boolean type has two literal values: true and false.

BooleanlLiteral: one of
true false

Character Literals

A literal of type char is expressed as a character or an escape sequence enclosed in single quotes. The escape sequences
allow for the representation of some non-graphic characters as well as the single quote and the backslash in character and
string literals.

CharacterlLiteral:
" SingleCharacter
" Escape '

SingleCharacter:
InputCharacter, but not ' or \

Escape:
\' b /' \u0008: backspace BS
\ ot /I \u0009: horizontaltab HT
\'n /* \uOOOQa: linefeed LF
\ f /I \uOOOc: formfeed FF r*
\'r /* \WOO0Od: carriage return CR /*
" /I \u0022: double quote "
! /' \0027: singlequote '
AN /I \uOOb5c: backslash \
OctalEscape // \uOOOO to \u0O0ff: from octal value
OctalEscape:
\ OctalDigit
\ OctalDigit OctalDigit

\ ZeroToThree OctalDigit OctalDigit

OctalDigit: one of
01234567

ZeroToThree: one of
0123

Note that the characters CR and LF are never an InputCharacter: they are recognized as constituting a Line Terminator.

It is a compile-time error for the character following the SingleCharacter or Escape to be other than a '; it is a compile-time
error for a line terminator to appear after the first ' and before the closing . Note that, because Unicode escapes are processed
very early, it is not correct to write \uOOOa' for a character literal whose value is linefeed LF; the Unicode escape \uOOOQa is
transformed into an actual linefeed in translation step 1(§1.1), and the linefeed becomes a LineTerminator in step 2(§1.2), and
so the character literal is not valid in step 3. Instead, one should write "\n'. Similarly, it is not correct to write \uOOOQOd' for a
character literal whose value is carriage return CR. Instead, one should write '\r'.

It is a compile-time error if the character following a backslash in an escape is notb, t, n, f,r,",',\, 0,1, 2, 3,4, 5,6, or 7.
(Recall that the Unicode escape \u is processed very early; see §1.1.

Examples of char literals:
‘a' \t! V' \u15e'

String Literals

A string literal is zero or more characters enclosed in double quotes, and may use the escape sequences defined above:

StringLiteral:
" StringCharacters

StringCharacters:
StringCharacter
StringCharacters StringCharacter

StringCharacter:
InputCharacter, but not " or \
Escape

It is a compile-time error for a line separator to appear after the first " and before the closing ". In most situations a long string
constant can be broken up into shorter pieces and written as an expression using the string concatenation operator + (§ String
Concatenation Operator +).

Each string literal is a reference to an instance of class String; such literals cannot be modified.
Examples of string literals:

// the empty string

"\ /I string containing " alone
"This is a string"
"Thisisa" + /I actually a string-valued expression

"two-line string" /I containing two literals

Separators
The following characters are used in Java code as separators:

Separator: one of

c)y &y 01 5

Operators

The following characters and character combinationas are defined as operators.

Operator: one of
= > < :
== <= >= I= && I ++ _—
+ - * / & | A % <<
+= = *= /= &= |= A= %= <<=

>> >>>
>>= >>>=

Types and Values

There are four kinds of data types in Java: class types, interface types, array types, and primitive types. Every variable has an
associated data type, sometimes called its "compile-time type" because its type can always be determined by the compiler,
before the program is executed. There are two kinds of data values that can be stored in variables, passed as arguments,
returned as values, and operated upon: References and primitive values. The value stored in a variable must be compatible
with the compile-time type of the variable.

Type:
Primitive Type
ClassType
IntanceType
ArrayType

References are "pointers" to dynamically allocated objects. There are two kinds of dynamically allocated objects: class
instances and arrays. Every object that is not an array is an instance of some particular class; this class is sometimes called
the "runtime type" of the object. Every array also has a run-time type. If the value of a variable is a reference to an object, then
the run-time type of the object must be compatible with the compile-time type of the variable.

There may be many references to the same object or to the same array. Objects may contain state information in field
variables belonging to the object. If two variables contain references to the same object, it is possible to modify the state
information through one reference to the object and then observe the altered state through another reference.

Primitive values are indivisible and do not share state with other primitive values. A variable whose (compile-time) type is a
primitive type always holds a value of that exact primitive type. Such a value is not shared in any way with any other variable,
so the value of the variable can be changed only by operations using that variable.

Primitive Types and Values

Primitive Types and Values
The primitive types available in every Java program are:

. the arithmetic types:
e theintegral types:

* byte, whose values are 8-bit signed two's-complement integers
* short, whose values are 16-bit signed two's-complement integers
* int, whose values are 32-bit signed two's-complement integers
* long, whose values are 64-bit signed two's-complement integers

. the floating point types

* float, whose values are 32-bit IEEE 754 floating-point numbers
* double, whose values are 64-bit IEEE 754 floating-point numbers

e the character type char, whose values are 16-bit Unicode characters
. the boolean type, whose values are true and false
A primitive type is named by its reserved keyword:

Primitive Type: one of
boolean char byte short int long float

double

Primitive Types and Values
Primitive Types and Values
[# Integral Types and Values
Floating-Point Types and Values
[# Character Types and Values
Boolean Types and Values
The primitive types available in every Java program are:

the arithmetic types:
the integral types:

* byte, whose values are 8-bit signed two's-complement integers
* short, whose values are 16-bit signed two's-complement integers
* int, whose values are 32-bit signed two's-complement integers
* long, whose values are 64-bit signed two's-complement integers

the floating point types

* float, whose values are 32-bit IEEE 754 floating-point numbers
* double, whose values are 64-bit IEEE 754 floating-point numbers

the character type char, whose values are 16-bit Unicode characters
the boolean type, whose values are true and false

A primitive type is named by its reserved keyword:

Primitive Type: one of

boolean char byte short int long float

double

Integral Types and Values

The primitive integral types are byte, short, int, and long, which are respectively 8-bit, 16-bit, 32-bit, and 64- bit signed two's-
complement integers, and char, which is a 16-bit unsigned integer representing a Unicode code point.

The values of type byte are integers ranging from -256 to 255, inclusive.

The values of type short are integers ranging from -32768 to 32767, inclusive.

The values of type int are integers ranging from -2147483648 to 2147483647, inclusive.

The values of type long are integers ranging from -9223372036854775808 to 9223372036854775807, inclusive.
Any value of any integral type may be cast to any other arithmetic type.

Any value of any integral type may be cast to type char, and any character may be cast to any integer type.
There are no casts between integer types and the type boolean.

Java provides a number of operators that act on integer values:

. the basic equality operators = and !=

. the relational operators <, <=, >, and >=

. the unary operators + and -

. the additive and multiplicative operators +, -, *, /, and %

. the prefix and postfix increment/decrement operators ++ and --
. the signed and unsigned shift operators <<,>>, and >>>

. the unary bitwise logical negation operator ~

e the binary bitwise logical operators &, I, and *

If both operands are of integral type, the operation is considered an integer operation. If at least one of the operands is of type
long, then the operation is carried out using 64-bit precision (any other operand that is not long is first widened, as if by a cast,
to type long) and the result, if not boolean, is of type long. Otherwise, the operation is carried out using 32-bit precision (any
other operand that is not int is first widened, as if by a cast, to type int) and the result, if not boolean, is of type int.

Note that while the built-in operators listed above always widen their operands so as to operate at 32-bit or 64-bit precision,
values of integral type are not automatically widened when used as arguments in method calls. Individual defined methods
may be coded so as to perform such widening, but the calling process itself does not do automatic widening.

The built-in integer operators produce only the low 32 bits or 64 bits of their two's-complement arithmetic result and do not
indicate an overflow or underflow in any way.

Java throws an ArithmeticException if the right-hand operand to an integer divide operator / or integer remainder operator % is
zero; this is the only case where an exception is generated by an operator on integral types.

Floating-Point Types and Values

The floating-point types are float and double, representing single-precision 32-bit and double-precision 64-bit format IEEE 754
values and operations as specified in [EEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std. 754-1985 (IEEE,
New York).

The floating-point value of type float, arranged from smallest to largest, are: negative infinity, negative finite values, negative
zero, positive zero, positive finite values and positive infinity. There is also a special value Not-a-Number (NaN), which is used
to represent the result of certain operations such as dividing zero by zero; most operations with NaN as an operand produce
NaN as a result.

The finite nonzero values of type float are of the form s-m-2e, where s is +1 or -1, m is a positive integer less than 2/24, and e
is an integer between -149 and 104, inclusive.

The finite nonzero values of type double are of the forms s:m- 2e, where s is +1 or -1, m is a positive integer less than 253,
and e is an integer between -1045 and 1000, inclusive.

Positive zero and negative zero compare equal (0.0 == -0.0 produces the result true) but there are other operations that can
distinguish them; for example, 1.0/0.0 produces positive infinity but 1.01/-0.0 produces negative infinity.

Any value of any floating-point type may be cast to any other arithmetic type.
Any value of any floating-point type may be cast to type char, and any character may be cast to any floating-point type.

There are no casts between floating-point types and the type boolean. Java provides a number of operators that act on
floating-point values:

. the basic equality operators =and ! =
. the relational operators <, <=, >, and >=
. the unary operators + and -

*

. the additive and multiplicative operators +, -, *, /, and %
. the prefix and postfix increment/decrement operators ++ and --

If both operands are of floating-point type, or if one operand is of floating-point type and the other is of integral type, the
operation is considered a floating-point operation. If at least one of the operands is of type double, then the operation is carried
out using 64-bit floating-point arithmetic (any other operand that is not double is first cast to type double) and the result, if not
boolean, is of type double. Otherwise, the operation is carried out using 32-bit floating-point arithmetic (any other operand that
is not float is first cast to type float) and the result, if not boolean, is of type float.

Operators on floating-point numbers behave exactly as specified by IEEE 754. Java requires full support of IEEE 754
denormalized floating-point numbers.

Java requires that floating-point arithmetic behave as if every floating-point operator rounds its floating-point result to the result
precision. Inexact results must be rounded to the nearest representable value; if two representable values are equally distant
from the true mathematical result of the operation, the result is the value whose least-significant bit is 0. (This is the IEEE 754
"round to nearest"'mode.) Note, however, that Java rounds towards zero when casting a floating value to an integer.

Java floating-point arithmetic produces no exceptions. An operation that overflows produce a signed infinity, an operation that
underflows produce s a signed zero, and an operation that has no mathematically definite result produces NaN. Java uses
gradual underfiow.

While the usual relational operations apply to IEEE floating-point numbers, the presence of NaN can produce some surprises.
NaN is unordered, so that the result of a <, <=, >, >= or == comparison between a NaN and another value is always false; in
particular, == produces false when both operands are NaN. The result of a | = comparison with a NaN is always true, even if
the both operands are NaN.

Character Types and Values
Currently no documentation available from Sun Microsystems on this topic

Boolean Types and Values

The boolean type represents a 1-bit logical quantity with two possible values, indicated by the literals true and false.

There are no casts defined to or from boolean. (Note, however, that an integer x can be converted to a boolean, following the
convention of the C programming language that treats 0 as false and every nonzero value as true, by the expression x! = 0.
Similarly, a boolean value b can be converted to a zero/one integer value by the expression b?1 :0.)

Operations defined on boolean include the relational operators == and ! =, the logical operators !, &, I, and #, and the short-
circuit logical operators && and | I. The control flow in the if, while, do, and for statements, and which subexpression is to be
chosen in the conditional? : operator, are controlled only by boolean truth values. For arithmetic types, an explicit comparison
to zero is needed to turn a zero/non-zero condition of the value into a truth value; similarly, object references must be explicitly
compared to null to produce usable truth values for use in these places.

Reference Types and Values

Reference Types and Values

A variable of reference type can hold a reference to any object whose run-time type can be converted to the variable's
compile-time type by assignment conversion.

ClassType:
Name

InterfaceType:
Name

ArrayType:
Type []

Reference Types and Values
Reference Types and Values
. Class Instances
| Arrays
[# Class Types
Array Types
[# Interface Types

A variable of reference type can hold a reference to any object whose run-time type can be converted to the variable's
compile-time type by assignment conversion.

ClassType:
Name

InterfaceType:
Name

ArrayType:
Type []

Class Instances
Created by new, have fields (variables and methods)

Arrays

Created by new, have components, which are variables; can have arrays of arrays; ultimate non-array components are
elements; elements are variables whose type must be a class type, interface type, or primitive type.

Class Types

Variables of class type can hold references to subclasses. Object can refer to arrays.

Interface Types

Variables of interface type can hold references to objects that implement the interface.

Standard Default Values

No variable in a Java program ever has an undefined value.

When a variable (such as an instance variable or an array component) is first created and no initial value is explicitly specified
in the program, the variable is given the standard default value for its type:

o For type byte, the standard default value is zero, that is, the value of (byte) 0.

o For type short, the standard default value is zero, that is, the value of (short) 0.
. For type int, the standard default value is zero, that is, 0.

. For type long, the standard default value is zero, that is, OL.

. For type float, the standard default value is positive zero, that is, 0. Of.

. For type double, the standard default value is positive zero, that is, 0. Od

. For type char, the standard default value is the null character, that is, \uOOOO'.
. For type boolean, the standard default value is false.

. For all reference types, the standard default value is null.

Note, however, that the Java compiler goes to some trouble to detect prograrns that use variables before they have been
explicitly Initialized or assigned. The automatic initialization of variables to standard default values is required to guarantee
portability of Java code, but good Java programming style does not rely on it.

Conversions on Primitive Values
A value of any primitive type may be "converted" to that same type. Of course, this results in no change to the value or its type.

The following type conversions are called widening conversions:

. byte to short, int, long, float, or double
. short to int, long, float, or double

. char to int, long, float, or double

. int to long, float, or double

. long to float or double

. float to double

Widening conversions do not lose information about the overall magnitude of a numeric value. Indeed, integer-to-integer and
float-to-float widening conversions do not lose any information at all; the numeric value is preserved exactly. Conversion of an
int or a long value to float, or of a long value to double, may lose precision, that is, may lose some of the least significant bits of
the value; the resulting floating-point value will be a correctly rounded version of the integer value, using IEEE 754 round-to-
nearest mode.

According to this rule, a widening conversion of a signed integer to an integral type T simply sign-extends the twos-
complement representation of the integer value to fill the wider format. A widening conversion of a character to an integral type
T zero-extends the representation of the character value to fill the wider format.

The following type conversions are called narrowing conversions

. byte to char

. short to byte or chart

. char to byte or shor

. int to byte, short, or char

. long to byte, short, char, or int

. float to byte, short, char, int, or long

. double to byte, short, char, int, long or float

Narrowing conversions may lose information about the overall magnitude of a numeric value.; they may also lose precision.

A narrowing conversion of a signed integer to an integral type T simply discards all but the N lowest-order bits, where N is the
number of bits used to represent type T. This may cause the resulting value not to have the same sign as the input value.

A narrowing conversion of a character to an integral typeT likewise simply discards all but the N lowest-order bits, where N is
the number of bits used to represent type T. This may cause the resulting value not to have the same sign as the input value.

A narowing conversion of a floating-point number to an integral type T first truncates the floating-point value to an integer value
(rounding toward zero). If this integer value can be represented as a value of type T, then that is the result of the conversion.
Otherwise the value must be too small (a negative value of large magnitude) or too large (a positive value of large magnitude).
If it is too small, the result of the conversion is the smallest representable value of type T, if it is too large, the result of the
conversion is the largest representable value of type T. If the floating-point number if NaN, the result of the conversion is 0.

A narrowing conversion from double to float behaves in accordance with IEEE 754. The result is correctly rounded using IEEE
754 round-to-nearest mode. A value of small magnitude may be converted to zero (positive or negative); a value of large
magnitude may be converted to infinity (positive or negative); NaN is always converted to NaN.

A narrowing conversion of an integer to a floating-point type results in the closest possible value in the target format. The result
is correctly rounded using IEEE 754 round-to-nearest mode.

Despite the fact that overflow, underflow, or loss of precision may occur, conversion among primitive types never results in a
run-time exception.

Conversions on Reference Values
An object reference whose run-time type is R can be converted to a class type C if and only if R is C or a subclass of C.

An object reference whose run-time type is R can be converted to an interface type | if and only if R implements I.
(Remember that if a class implements an interface, all its subclasses also automatically implement the interface, even if the
subclass declarations do not mention the interface explicitly.)

An array reference can be converted to a class type C if and only if C is the class Object.

An array reference whose run-time type is R[] (an array whose components have type R) can be converted to an array typeT []

(an array whose components have type T) if and only if either R and T are the same primitive type or T is a reference type and
R can be converted to T.

Assignment Conversion

Assignment conversion, when applied to a variable and a value, converts the value to the type of the variable. Assignment
permits only certain conversions to take place, namely those that require no run-time validity check and cannot lose
information about numeric magnitude.

If the value of an expression of some compile-time type can be converted to the type of some variable, we say the expression
(or its value) is assignable to the variable. If a type S can be converted to type T by assignment conversion, we say that S is
assignable to T.

A value of any compile-time type can always be assigned to a variable of that same type. No conversion action need occur at
run time, of course.

Consider this sequence of primitive types:
byte short int long float double

Assignment conversion can convert any type in this series to any type that appears to its right. Furthermore, the same is true
of this series:

char int long float double
Such conversions are performed at run time as described in
The type boolean cannot be assigned to any other type.

A value of primitive type must not be assigned to a variable of reference type; similarly, a value of reference type must not be
assigned to a variable of primitive type.

Assignment of a value of reference type to a variable of reference type requires no conversion action at run time. The basic
principle is that the compiler must be able to prove from the compile-time type of the value that it can always be converted to

the type of the variable. The detailed rules for assignment conversion of reference types are shown in Table 1.

Sis aclass thatis
not final

Sis a class that is
final

S is an interface

S=A[], an array
with components of
type A

Table 1: Rules for permitted assignment conversion when assigning a reference value of type T to a variable of type S

T is a class that is
not final

T must be a
subclass of S

T must be the
same class as S

T must implement
interface S

compile-time error

T is a class that is
final

T must be a
subclass of S

T must be the
same class as S

T must implement
interface S

compile-time error

T is an interface

compile-time error
compile-time error
T must be a

subinterface of S
compile-time error

T=B][], an array
with components of
type B

S must be Object
compile-time error
compile-time error

either Aand B are
the same primitive
type, orAis a
reference type and
B can be assigned
toA

Casting Conversion
Casting conversions are more general than assignment conversions. If a conversion is possible at all, a cast can do it.

A value of any compile-time type can always be cast to that same type. Such a cast has no run-time effect, of course, and
serves only to indicate explicitly that the resulting value will be of the indicated type.

Casting can convert a value of any arithmetic type to any other arithmetic type. The type boolean cannot be cast to any other
type.

A value of primitive type cannot be cast to a reference type; similarly, a value of reference type cannot be cast to a primitive
type.

Casting of a value of reference type to a variable of reference type may require a run-time validity check. The basic principle is
that if the compiler is able to prove from the compile-time type of the value that it can always be converted to the type of the
variable (that is, that assignment conversion applies), then no run-time check is required; otherwise, execution of the cast
operator must verify at run time that the run-time type is compatible with the type of the variable (and if it is not compatible, an
exception is thrown).

Some casts can be proven incorrect at compile time; such casts result in a compile-time error. The detailed rules for compile-
time correctness of casting conversions on reference types are shown in Table 2.

T is a class that is T is a class that is T is an interface T=B][], an array
not final final with components of
type B
Sis a class that is T must be a T must be a always correct at S must be Object
not final subclass of S, or S subclass of S compile-time
of T
Sis a class that is S must be a T must be the S must implement compile-time error
final ubclass of T same class as S interface T
S is an interface always correct at T must implement always correct at compile-time error
compile-time interface S compile-time
S=A[], an array T must be Object compile-time error compile-time error either Aand B are
with components of the same primitive
type A type, orAis a

reference type and
B can be castto A

Table 2. Rules for permitted casting conversion when casting a reference value of type T to type S

Unary Arithmetic Promotion

When an operator applies unary arithmetic promotion to a single operand, the following rules apply, in order:

. If the operand is of type byte or short, it is converted to int.
. Otherwise it remains as is and is not converted

Binary Arithmetic Promotion
When an operator applies binary arithmetic promotion to a pair of operands, the following rules apply, in order:

. If either operand is of type double, the other is converted to double

. Otherwise, if either operand is of type float, the other is converted to float.
. Otherwise, if either operand is of type long, the other is converted to long.
. Otherwise, both operands are converted to type int.

Names
A name is an identifier that has been given meaning in a program by a declaration. A name denotes either:

a package, which is introduced by a package statement (§ Packages and Directories),

a type, which is introduced by a class or interface declaration (§ Class and Interface Tye Declarations),
a field, which is a variable in a class or interface type (§ Field Declarations),

a group of methods of a class or interface type (§ Method Declarations),

a variable that is a formal parameter of a method,

a variable that is local to a block (§ Local Variable Declarations), or

a statement label (§ Labeled Statements).

An expression is also said to have a denotation (§ Value of an Expression), and can denote everything a name can denote as
well as:

a directory that is part of a package name,
an array type,

a value of a primitive type,

a variable that is an element of an array,
a reference to an object, or

null, which is a reference to no object.

If a name or expression denotes a variable or a value of a primitive type, then the type of that variable or primitive value is
called the type of the name or the expression.

Variables, Values and References

A variable is a typed storage location. A variable contains either a value of a primitive type (8§ Literals), (§ Conversions), or a
reference to an object. An object is an instance of a class type (§ Class and Interface Type Declarations) or an instance of an
array type (§ Arrays).

Variables have two main attributes: their type and their storage class (§ Storage Classes).

A variable's type is either a primitive type or an object type. An object type may be a class type, an interface type, or an array
type.

A variable must always contain a value consistent with its type; in fact, Java is so designed that it is impossible for a variable to
take on a value inconsistent with its type.

Storage Classes
The storage class determines the lifetime of a variable.

Local variables are declared and allocated within a block and are discarded on exit from the block. Method parameters are
considered local variables.

Static variables are local to a class; they are allocated when the class is loaded and discarded when the class is unloaded.

Dynamic objects are instances of classes and arrays. They are allocated by the new expression (§ Allocation Expressions)
and may be referenced by more than one variable. Automatic storage management techniques, such as garbage collection,
are used to reclaim the storage used by dynamic objects. A class may declare a finalize method (§ Automatic Storage
Management and Finalization) that will be called just before an instance of that class is discarded.

Name Spaces

Each name declared in a program is defined at a lexical level, and becomes part of a name space at that level. The name
spaces in a Java program lexically nest as follows:

0. Host system's package name space
1. A compilation unit's name space
2. Atype's name space
3. A method's parameter name space
4. A local block's name space
5. A nested localblock or for's name space

The name spaces thus differ in the kinds of declarations they contain:

. a compilation unit's name space contains the type names declared in all compilation units of the package it belongs to
and any package names or type names that are imported (§ Compilation Units),

. a type's name space contains its declared fields as well as any field names inherited from superclasses and interfaces
(X.X),

. a method's parameter name space contains the formal parameters of the method (§ Method Declarations),
. a local block's name space contains local variables and labels declared in the block, and
e afor statement's name space contains any local variables declared in the initialization part of the for statement (§ The for

Statement).

Names introduced by import statements and local variable declarations must be declared before they are used. All other
names are known throughout the name space in which they appear.

The host system package name space consists of the first component of the names of all of the packages that are available on
the host system. It:

. always contains the java package name, used internally by the Java system,

. usually contain several all-upper-case ISO-LATIN-1 package names such as COM, EDU and FR; such names are
reserved to be the first component of global package names, and should not otherwise be used,

. usually contains local packages whose initial names are not all upper-case ISO-LATIN-1 letters, which represent locally
developed packages, and any other packages that have not been given globally unique names.

Name Resolution

When a name occurs in a Java program it is resolved by looking successively in the namespaces of each lexical level, looking
from the highest nesting level to the lowest. Only the first match is considered.

Let F be the class or interface whose definition contains the declaration of a field variable. Access to the field is controlled as
follows:

. If F is the same as the class or interface in whose body the field access expression appears, then the access is allowed.

. Otherwise, if F is a class (not an interface) that is a superclass of the class in whose body the field access expression
appears, then access is allowed only if the field is declared to be protected or public.

o Otherwise, if F is defined in the same package as the class or interface in whose body the field access expression
appears, then the field access is allowed unless the field is declared private.

. Otherwise, the field access is allowed only if the field is declared public.
If a field access is not allowed, a compile-time error results.

External Access
Name may be used from outside the scope of their declaration as follows:

. for package names: if the host system permits access.

. for type names declared in a different package: if the host system permits access to the package and the type is declared
public (§ Class Modifiers), (§ Field Access).

. or field names in the same package: if the field is not declared private

. for field names in a different package: if the host system permits access to the package, the type is declared public (§
Class Modifiers), and either

* the field is declared public (§ Field Access), or
* the field is declared protected and the use is from within the declaration of a subclass of the said type.

Access control is determined by the compile-time (static) types of objects. A subclass may not be declared public, yet may be
available outside the package where it is declared if it has a public superclass, since it can, for example, be assigned to a
variable of this public type. Invocation of a public method of this variable's declared (compile-time) type may invoke a method
of the (non-public) subclass if this method overrode a method of the public superclass(§ Method Calls).

Rules about Names
If it denotes a declared entity the entity is either:

a package,

a type (which is either a class or an interface),

a field variable, which is either final or not and static or not,

a set of fields which are a group of one or more methods with the same name,
a variable which is an argument of a method,

a local variable which is either final or not, or a

statement label.

If it denotes an undeclared entity it is either:

a directory which are part of a package name, and which may contain further directories and/or a package,

a value of a primitive type, either a integer value of type byte, short, int, or long, a floating-point value of type float or
double, where the integer and floating-point type are collectively called arithmetic types, a boolean value of true or false,
or a char value which is a Unicode character (note that char is not an arithmetic type),

an assignable variable including elements of arrays,
a reference to an object, which is known to be an instance of a specific class. or of one of this classes subclasses,

a reference to an object, which is known to be an instance of some class
supporting a specific interface,

a reference to an object which is known to be an array of some type T,
null, which is a reference to no object, or
void, which is the result of a method which returns no value.

Packages and Directories
Java source code is organized into packages that have hierarchical names.

Each component of a package name is an identifier. In a typical Java implementation, package name components may be
identified with directory names in a hierarchical file system, wherein each directory can contain zero or more subdirectories
and/or the compilation units of a single package.

PackageName:
PackageNameComponent
PackageName . PackageNameComponent

PackageNameComponent:
Identifier

Globally Unique Package Names

Java packages that are to be widely used should be given globally unique package names. This will allow them to be easily
installed and catalogued. Java specifies a convention for generating globally unique package names.

You form a globally unique name by first having (or belonging to an organization that has) an Internet Domain Name, such as
Sun.COM. You then reverse this name, component by component, to obtain, in this example, COM.Sun, and use this as a
prefix for your package names, using a convention developed within your organization to further administer package names.
Such a convention might specify that certain directory name components be division, department, project, machine, or login
names. Some possible examples::

COM.Sun.sunsoft.DOE
COM.Sun.java.jag.scrabble
COM.Apple.quicktime.v2
EDU.cmu.cs.bovik.cheese
GOV.whitehouse.socks.mousefinder

The first component of a unique name is always written in all-uppercase ASCI| letters and should be COM, EDU, GOV, MIL,
NET, ORG, or one of the English two-letter codes identifying countries as specified in ISO Standard 3166, 1981. For more
information, refer to the documents stored at ftp:/ /rs.internic.net/rfc, for example rfc920 .txt and rfclO32 .txt.

Package names whose first component does not consist entirely of uppercase ASCII letters are reserved for local use, with the
sole exception of the predefined portions of the Java language and system, which use the name java.

If you need to get a new Internet Domain Name, you can get an application form from ftp:// ftp.internic.net and submit the
complete forms to domreg@internic.net. If you want to check what the currently registered domain names are, you can telnet
to rs .internic.net and use the whois facility.

Locating Packages on a Host System

In a typical hosted implementation of Java package names are transformed into a pathname, by concatenating the
components of the package name, placing a file name separator between them.

Thus on UNIX Systems, where the file name separator is /, the package name:
jag. fun.scrabble
is transformed to the directory name:

jag/fun/scrabble
and
COM. Sun.sunsoft.DOE

is mapped to the directory name:
COM/Sun/sunsoft/DOE

On UNIX, the CLASSPATH environment variable then provides a list of directories that provide roots for a search for a
directory with this name.

If a package name component or class name contains a character which may not appear in a host file system's ordinary
directory name, for example a Unicode character on a svstem which has only ASCII file names, then the character should be
escaped by using a @ character followed by one to four hexadecimal digits giving the Unicode code point of the escaped
character, as in the \uxxxx escape (§ Unicode Escapes), so that:

COM. Sun. java. java2\u23b
is mapped to the directory name:

COM/Sun/ java/java2@23b

Compilation Unit Name Space

A compilation unit creates a name space which contains imported type names, imported package names, and all the type
names declared in all the compilation units of the package. The imported and declared names must all be distinct.

Standard Imports

Each compilation unit automatically imports each of the type names defined in the predefined package java.lang, such as Int,
Float, Object, String, and NullPointerException.

The Import Statement

An import statement causes an name to denote a package or type which is declared elsewhere:

ImportStatement:
PackagelmportStatement
TypelmportStatement
TypelmportOnDemandStatement

PackagelmportStatement:
import PackageName

TypelmportStatement:
import PackageName . Identifier ;

TypelmportonDemandStatement:
import PackageName . *;

A package import statement causes the named package to be known by the name of its last component. So after:
import java.io;

the types in java.io are known both as io.name and as java.io.name.

Atype import statement causes the single public type from the named package to be available, thus

import java.util.Vector;

causes the name Vector to be interchangeable with the full name java. util Vector.

It is a compile-time error for either a package or a type import to attempt to declare a name which is already declared by
another import or as a type name in this package.

Atype import on demand statement causes public types declared in the named package to be made ready to be imported as

needed. Whenever Java is looking up a name in a package name space and the name is not found Java will look to see if the
name is declared and public in a type imported by a type import on demand statement, and automatically import the name to

the compilation unit's name space if it is found there.

It is a compile-time error for an undefined type name to be used and then found to be declared public in two or more packages
which are being imported on demand.

The Java compiler and run-time keep track of packages and types within packages by their true names and are not fooled by
having multiple ways of naming packages as introduced by import.

Class and Interface Type Declarations

A class declaration introduces a new reference type with an implementation that is derived from the implementation of another
class called its immediate superclass; we say that a class extends its immediate superclass because it may provide additional
implementation details. The single implementation inheritance Java provides for classes supports code reuse. Every object is

an instance of some class.

The superclass relationship is the reflexive transitive closure of the immediate superclass relationship. Thus class Ais a
superclass of class C if and only if at least one of the following is true:

e AisthesameasC.

. Ais the immediate superclass of C.

. There is some class B such that A is a superclass of B and B is a superclass of C.
Class A is a proper superclass of class B if and only if A is a superclass of B but is not B.

Class B is an immediate subclass of class A if and only if class A is the immediate superclass of class B. Class B is a subclass
of class Aif and only if class A is a superclass of class B. Class B is a proper subclass of class A if and only if class Ais a
proper superclass of class B.

A variable whose declared type is a class type C may have as its value a reference to an object that is an instance of C or of
any subclass of C.

An interface declaration introduces a new reference type that specifies a set of method signatures and some associated
named constants, but does not specify an implementation. An interface may be declared to be an immediate extension of one
or more other interfaces, meaning that it implicitly specifies all the method signatures and named constants of the interfaces it
extends, perhaps adding method signatures or named constants of its own.

The extension relationship is the reflexive transitive closure of the immediate extension relationship. Thus interface K is an
extension of interface | if and only if at least one of the following is true:

o K'is the same as |

. K'is an immediate extension of |.

. There is some class J such that K is an extension of J and J is an extension of I.
Interface K is a proper extension of interface | if and only if K is a extension of | but is not I.

A class may be declared to implement one or more interfaces, meaning that any instance of the class implements all the
method signatures specified by the interface. This (multiple) interface inheritance allows objects to support (multiple) common
behaviors without sharing any implementation. If a class is declared to implement an interface, then all its subclasses
(including the class itself) are implicitly considered to be declared to implement all interfaces (including the interface itself) of
which that interface is an extension

A variable whose declared type is an interface type may have as its value a reference to an object that is an instance of any
class that is declared to implement the specified interface. (It is not sufficient that the class happen to implement all the
method signatures specified by the interface; the class or one of its superclasses must actually be declared to implement the
interface.)

Class Declarations

Class Declarations
A class declaration introduces a new reference type and specifies part or all of its implementation.

ClassDeclaration:
ClassModifiersopt class Identifier Superopt Interfacesopt ClassBody

The Identifier is the name of the class; the fully qualified name of the class is P. Identifier where P is the fully qualified name of
the package of the compilation unit in which the class is declared. The class declaration has a body that may contain field
definitions. A class declaration may optionally have modifiers, specify its immediate superclass, and specify interfaces that it
implements.

Class Declarations
Class Declarations

[#] Class Modifiers
Superclass Specification
[# Implemented Interfaces
Class Body

Class Name Space
Multiple Declarations of a Single Name

Visibility of Field and Class Nmes
A class declaration introduces a new reference type and specifies part or all of its implementation.

ClassDeclaration:
ClassModifiersopt class Identifier Superopt Interfacesopt ClassBody

The Identifier is the name of the class; the fully qualified name of the class is P. Identifier where P is the fully qualified name of
the package of the compilation unit in which the class is declared. The class declaration has a body that may contain field

definitions. A class declaration may optionally have modifiers, specify its immediate superclass, and specify interfaces that it
implements.

Class Modifiers
ClassModifiers:

ClassModifier

ClassModifiers ClassModifier

ClassModifier: one of
abstract final public

A class that is declared abstract may have abstract methods. It is a compile-time error for a class containing an abstract
method not to be declared abstract.

It is impossible to create an instance of an abstract class: you cannot create an instance of an abstract class with new (§
Allocation Expressions) or with the newlnstance method of class Class.

A class that is declared final can have no immediate subclasses, and therefore no proper subclasses, because it may not
appear in the extends clause of another class declaration.

A class that is declared public can be accessed from other packages, either directly (§ External Access) or in an import
statement (§ The Import Statement). If a class lacks the public modifier, use of the class is limited to the package in which it is
declared. At most one public class may be declared in each compilation unit (§ Compilation Units). A compilation unit may not
contain both a public class and a public interface.

It is a compile-time error for a class to be declared both final and abstract.

Superclass Specification
The optional extends clause specifies the immediate superclass of the class being declared.

Super:
extends TypeName

The TypeName must name an accessible class that is not final. If the extends clause is omitted from a class declaration, then

the class has the class Object (§ Class and Interface Type Declarations) as its immediate superclass. (Thus all classes are
ultimately derived from this single root class, Object, forming a class hierarchy.)

It is a compile-time error for there to be a circularity that causes a class to directly or indirectly extend itself. For example, it is
not permitted for A to be the immediate superclass of B and for B also to be a superclass of A.

Implemented Interfaces
The optional implements clause lists interfaces implemented by the class being declared.

Interfaces:
implements TypeNameList

If the class C being declared is not abstract, every method signature that is declared in any of these interfaces must be defined
by some superclass of C (possibly C itself).

Class Body

The class body consists of a (possibly empty) list of field declarations:

ClassBody:
{ FieldDeclarationsopt }

FieldDeclarations:
FieldDeclaration
FieldDeclarations FieldDeclaration

Field declarations introduce new variables and methods to the class; some special methods are called constructors.

Class Name Space

A class introduces a new name space, built from inherited and declared field names.

The class inherits from its immediate superclass all the field declarations in the name space of the superclass, except that:

. Fields that are declared private are not inherited.

. Constructors are not inherited.

o If a name is declared as a field variable in the class being declared,no field variable of the same name is inherited from
the superclass; a field variable declaration is said to shadow any field variable declaration in a superclass. This means
the scoping rules for variables are different from the scoping rules for methods, because variables are shadowed rather

than overridden (§ Method Overriding).

To these inherited fields are added the newly declared field declarations of the class itself.

Multiple Declarations of a Single Name

A variable may have the same name as a variable in the name space of its superclass, in which case the variable in the
namespace of the superclass is not inherited but is said to be shadowed. (The shadowed variable can be accessed using the
keyword super (§ Using this, super and Superclass Type Names), (§ Primary Expressions) or the superclass's type name in a
field access expression (§ Field Access).)

It is a compile-time error for a class to declare a method with the same name as a declared or inherited variable.
It is a compile-time error for a class to declare a variable to have the same name as a declared or inherited method.
It is a compile-time error for a class to declare two or more variables with the same name.

It is a compile-time error to declare two methods with the same name that take the same number of arguments and take the
same declared type of argument in each argument position. More than one method with the same name may be declared,
provided that, for any two methods of the same name, they either accept different numbers of arguments or take arguments of
different declared type in at least one argument position. (Such polymorphism is called method overloading and is described in

(§ Method Overloading).)

It is a compile-time error to declare two constructors that take the same number of arguments and take the same declared

type of argument in each argument position. More than one constructor may be declared, provided that, for any two of the

constructors, they either accept different numbers of arguments or take arguments of different declared type in at least one
argument position. (Such polymorphism is called constructor overloading and is described in (§ Method Overloading).)

Visibility of Field and Class Names

Every field name is visible throughout the body of the class C in which the field is declared. It is also visible throughout the
body of every subclass of C that inherits the name of the field (§ Class Name Space).

Every class type name is visible throughout the compilation unit in which the class is declared.

As an example, the following code is all correct:

class A{
voida () {
f.set(42) ; /I forward reference to f is okay
}
B f; /I forward reference to B is okay
!
class B
void set (long n) {
this.n=n; /I See text below
}
long n;
}

In the assignment this .n = n; the first occurrence of n (after this.) is, in effect, a
forward reference to the field named n declared two lines later; the second occurrence of n refers to the method parameter
declared one line before the assignment.

Field Declarations
Field Declarations

Fields are variables and methods. Constructors are methods of a special kind. Static initializers are used along with the
initializers in the declarators of static field variables to define an implicit static class initialization method.

FieldDeclaration =
FieldVariableDeclaration
MethodDeclaration
ConstructorDeclaration
Staticlnitializer

Field Declarations
Field Declarations
[Field Access

Fields are variables and methods. Constructors are methods of a special kind. Static initializers are used along with the
initializers in the declarators of static field variables to define an implicit static class initialization method.

FieldDeclaration =
FieldVariableDeclaration
MethodDeclaration
ConstructorDeclaration
Staticlnitializer

Field Access

Every field other than a static initializer may be declared to be public, protected, or private to control access to the declared
entity. (This control allows the programmer to hide details of the implementation of an abstraction from the users of the
abstraction.)

A public field is accessible anywhere the class name is accessible.

A protected field is throughout the package that contains the class in which the field is declared, and is also also accessible
(unless shadowed) within the body of any subclass of that class.

A private field is accessible only within the class body in which the field is declared.

If none of the keywords public, protected, or private is specified, the field is throughout the package that contains the class in
which the field is declared but is not accessible within the body of any subclass of that class if the subclass is declared in
another package.

It is a compile-time error to mention more than one of public, protected, or private in a single field declaration. It is a compile-
time error to mention the same modifier more than once in a single field declaration.

Variable Declarations

Variable Declarations
FieldVariableDeclaration:
VariableModzfiersopt Type VariableDeclarators

More than one field variable may be declared in a single field variable declaration by writing more than one declarator. The
specified Type (§ Types and Values) and modifiers apply to all the declarators in the declaration.

Variable Declarations
Variable Declarations
[# variable Modifiers
Variable Declarators
Variable Initializers
FieldVariableDeclaration:
VariableModzfiersopt Type VariableDeclarators

More than one field variable may be declared in a single field variable declaration by writing more than one declarator. The
specified Type (§ Types and Values) and modifiers apply to all the declarators in the declaration.

Variable Modifiers

VariableModifiers:
VariableModifier
VariableModifiers VariableModifier

VariableModifier: one of
public protected private
static final transient volatile

The field access modifiers public, protected, and private are discussed in (§ Field Access).

A field variable that is not declared static is called an instance variable; there is actually a distinct variable known by that name
associated with every instance of the class or its subclasses. Whenever a new instance of a class is allocated, a new variable
associated with that instance is created for every field variable declared in that class or any of its superclasses. (Note that this
is true even of shadowed field variables; a new variable is created and can be accessed, though not simply by its name alone.)

If a field variable is declared static, there is exactly one variable of that name, no matter how many instances (possibly zero) of
the class are created. A static field variable is sometimes called a class variable because it is regarded as belonging to the
class itself rather than to instances of the class.

A variable declared final must be assigned a value by including a variable initializer in its declarator. Any other attempt to
assign to the variable results in a compile-time error.

Variables may be marked transient to indicate to low-level parts of the Java virtual machine that they are not part of the
persistent state of an object. The transient attribute will to be used to implement some functions in later versions of the Java
system. It is a compile-time error if a transient variable is also declared final or static.

A variable declared volatile is known to be modified asynchronously. The compiler arranges to use such variables carefully so
that unsynchronized accesses to volatile variables are observed in some global total order. This means that variables which
are declared volatile are reloaded from and stored to memory at each use, in a way that is coherent throughout a
multiprocessor.

Variable Declarators

VariableDeclarator:
DeclaratorName
DeclaratorName = Variablelnitializer

DeclaratorName:
Identifier
DeclaratorName []

Variable Initializers
Variablelnitializer:

Expression
{ Arrayinitializersopt 'opt}

Arraylinitializers:
Variablelnitializer
Arraylnitializers ,

If a variable declarator contains a variable initializer, then it behaves exactly as if it were an assignment (§ Assignment
Operators) to the declared variable. See also § Array Initialization, which describes the treatment of array initializers.

If the declarator is for a static field variable, the variable initializer is computed and the assignment performed once, when the

class is loaded (§ Class Loading and Initialization).

If the declarator is for an instance variable, the variable initializer is computed and the assignment performed as part of the
execution of certain constructors for the class in which the instance variable is declared (§ The Body of a Constructor).

If the declarator is for a local variable, the variable initializer is computed and the assignment performed as part of the
execution of the variable declaration statement.

Examples of variable declarations:

intx,y;

floatz = 1.0;

java.lang.String foo = "foo";

Object 0 = foo;

Exception e = new Exception () ;
double trouble [] = new double [27];

Method Declarations

Method Declarations
A method is a chunk of executable code that can be invoked, possibly passing it certain values as arguments. Every method
definition belongs to some class and must appear within the body of the class definition.

MethodDeclaration:
MethodModifiersopt ResultType MethodDeclarator Throwsopt MethodBody

Method Declarations

Method Declarations
[#] Method Modifiers

Result Type

[#] Parameter List
Throws

[#] The Body of a Method
ing this, super and ,
Using Superclass Names

[#] Method Overloading

Method Overriding

A method is a chunk of executable code that can be invoked, possibly passing it certain values as arguments. Every method
definition belongs to some class and must appear within the body of the class definition.

MethodDeclaration:
MethodModifiersopt ResultType MethodDeclarator Throwsopt MethodBody

Method Modifiers

MethodModifiers:
MethodModifier
MethodModifiers MethodModifier

MethodModifier: one of
public protected private
static
abstract final native synchronized

The field access modifiers public, protected, and private are discussed in (§ Field Access).

A method that is not declared static is called an instance method. Such a method can be invoked only relative to some
particular object that is an instance of the method's class or one of its subclasses.

A method that is declared static is sometimes called a class method because it is regarded as belonging to the class itself
rather than operating within instances of the class. A static method may refer to other fields and methods of the class by name
only if they are also static.

Every static method is implicitly final. It is permitted but not required for the modifier final to appear redundantly along with the
modifier static in a method declaration. Note that because every static method is implicitly final, it is not possible to override a
static method.

Methods which are static are called class methods. Restrictions on static methods:

. Static methods can refer to other fields and methods of the class only if they are also static.
. A static method is implicitly final, so no overriding occurs on static methods.

A method can be declared abstract, in which case no implementation is provided for the method. The method declaration
contains no body (a semicolon appears instead of a block). The declarration of an abstract method (call it m) must appear
within an abstract class (call it A); otherwise a compile-time error results. Such a declaration merely defines the calling
signature and return type for m. Every subclass of A that is not abstract must provide an implementation for m. To be precse,
for every subclass C of the abstract class A, if C is not abstract then there must be some class B such that

(1) B is a superclass of C (possibly C itself);

(2) B is a subclass of A;

(3) B is not abstract; and

(4) B overrides m, thereby providing an implementation for rn visible to C.

A private method cannot also be declared abstract (it is impossible to override a private method, so such a method could never
be used).

A static method cannot also be declared abstract (a static method is implicitly final, so it is impossible to override a private
method, so such a method could never be used).

A method that is declared final cannot be overridden; it is a compile-time error to attempt to override a final method. A private
method is effectively final, even if not explicitly declared final, as are all methods declared in a final class, even if the methods
are not explicitly declared final. In both these cases, it's permitted but not required for the modifier final to appear redundantly
in such a method declaration. Note that if a method is final or effectively final, an optimizing compiler may be able to "inline"
the method, that is, replace a call to the method with the code in its body.

A method can be declared native, in which case the method is implemented in a platform-dependent way, for example, in C or
assembly language. Because the implimentation is not provided by Java Language code, the method declaration contains no
body (a semicolon appears instead of a block). Native methods are otherwise like normal Java methods; they are inherited,
may be static or not, may be final or not, may override or be overridden by non-native methods, and so on.

A synchronized method will acquire a monitor lock before it executes; the lock is per class if the method is static, per object
otherwise.

Result Type

A method declaration either specifies the type of value that the method returns or uses the keyword void to indicate that the
method does not return a value.

A method that returns an array may be declared with the empty bracket pairs preceding the method name (as part of the result
type) or following the argument list (as would be expected by a programmer accustomed to the declarator syntax of the C

programming language), or with some bracket pairs in each place (§ Declarations of Array-valued Variables).

ResultType:

Type
void

MethodDeclarator:
DeclaratorName (ParameterListopt)
MethodDeclarator []

Parameter List

The formal parameters of a method, if any, are specified by a list of comma-separated parameter specifiers. Each parameter
specifier consists of a type and a name; as in other places in the Java Language, if the the type of the parameter is to be an

array type, the empty bracket pairs may appear preceding the name (as part of the type specifier) or following the parameter
name (as would be expected by a programmer accustomed to the declarator syntax of the C programming language), or with

some bracket pairs in each place (§ Declarations of Array-valued Variables).

If a method has no parameters, only an empty pair of parentheses appears in the method declaration.

ParameterList:
Parameter
ParameterList , Parameter

Parameter:
Type DeclaratorName

DeclaratorName:
Identifler
DeclaratorName []

The parameters are local variables of the method, in the method name space, but declared outside the method's body.When
the method is called, these local variables are freshly instantiated for the call; the values of the acrual argument expressions
are assigned to the fresh parameter variables before execution of the body of the method.

The parameter list for a constructor is identical in structure and behavior to the parameter list for an ordinary method

Throws
A method must declare any normal exceptions that can result from its execution:

Throws:
throws TypeNameList

TypeNamelist:
TypeName
TypeNamelList, TypeName

If a method declaration contains a throws clause, it is a compile-time error if an exception can be thrown from the body of the
method whose compile-time type is not assignable (§ Assignment Conversion) to either Error, RunTimeException, or one of
the types mentioned in the throws clause. It is a compile-time error if any name in the throws clause does not name an
accessible type that is a assignable to the type Throwable (perhaps Throwable itself).

If a method declaration does not contain a throws clause, it is a compile-time error if a normal exception can be thrown from
the body of the method.

A method that overrides another method may not be declared to throw more exceptions than the overridden method. More
precisely, if B is a subclass of A, a method declaration in B overrides a method declaration in A, and B has a throws clause,
then

The throws clause for a constructor is identical in structure and behavior to the throws clause list for an ordinary method

The Body of a Method

MethodBody:
Block

)

If a method is abstract or native, then its MethodBody must be a semicolon.

In all other cases, the MethodBody must be a block. If the method that is not abstract or native needs no executable code,
then an empty block (') should be used.

Using this, super and Superclass Type Names

Within the definition of an instance method, (one that is not static), the keyword this represents the current object. For
example, an object may need to pass itself as an argument to another object's method:

class Myclass extends {
void aMethod (Otherclass obj) {

obj. Method (this) ;

The this keyword is a reference to the current object; its type is the class containing the currently executing method.
Anytime a method refers to its own instance variables or methods, an implicit "this." is in front of each reference:

class Foo {
int a;

class Bar extends Foo {
inta, b, c;

void myp'ri'nt (){

print (a + "\n"); /I a=="this.a"
print (super.a); /I Foo's a
print (Foo.a); /I also Foo's a

The super keyword is a reference to the superclass, i.e. equivalent to ((Foo) this) in the example above.

A superclass's name may be used in a field access expression (§ Field Access) to access the superclass's fields and methods,
usually because they are hidden or overridden.

Using Superclass Names
The names of the superclasses of the current type may also be used to access instance (non-static) methods and variables:

classA {
Object x;

}
class B extends A {
float x;

class C extends B {

char x;
voidm () {
charcx = x; /I C's x is a char
float bx = B.x; /I B's x is a float
/I ... super.x would also work here
Object ax = Ax; /I A's x is a object
}

Method Overloading

Java allows overloading (polymorphic) method declarations: there can be more than one method with the same name visible
within a class provided the methods differ in the number of parameters or in the types of the parameters.

When a method is to be called, the number of actual arguments and the compile-time types of the actual arguments are used
at compile time to determine which method definition will actually be invoked. If there is a possibllity that the method may be
overridden, a dynamic method dispatch may also be used at run time. See § Method Calls for a complete description of
compile-time method selection and run-time dispatch.

Method Overriding

Java allows overriding method declarations: a class may inherit from one of its superclasses a method with a certain name
and a certain number of parameters with certain types and yet also declare a method of the same name with the same number
of parameters, with corresponding parameters having the same type.

The access modifier of the overriding method must provide at least as much access as the overridden method:

. If the declaration of the overridden method does not contain any of the modifiers public, protected, or private, then the
overriding method must not be private.

. If the overridden method is protected, then the overriding method must be public or protected
. If the overridden method is public, then the overriding method must be public.

The return type of an overriding method must be assignable (§ Assignment Conversion) to the return type of the overridden
method.

An overridden method can be invoked within a class containing the overriding method by using the super keyword in a method
call:

setThermostat(...) /I refers to the overriding method

super. setThermostat (...)// refers to the overridden method

A private method is not inherited and hence is not available to be overridden. It is permitted for a proper subclass of a class
contaning a private method to declare a method of the same name with the same number of parameters, with corresponding
parameters having the same type; but this is not considered to be a case of overriding, so the method in the proper subclass
need obey the restrictions imposed by overriding; for example, the return type of the method in the subclass need not bear any
relation to the return type of the private method.

It is not permitted for two method declarations within the same class to have the same name, the same number of parameters,
and corresponding parameters of the same type; this situation is a compile-time error.

Constructor Method Declarations
Constructor Method Declarations

A constructor is a special kind of method that is used to initialize a newly created object. Constructors have a special
declaration syntax and a special invocation syntax.

ConstructorDeclaration:
ConstructorModifieropt ~ ConstructorDeclarator Throwsopt ConstructorBody

ConstructorDeclarator:
Typename (ParameterListopt)

The TypeName in the ConstructorDeclarator must name the class that contains the constructor declaration. A constructor has
no separate name of its own. (At the level of the Java Virtual Machine, every constructor has the special name <init>. This
name is supplied by the Java compiler. Because it is not a valid identifier, this name cannot be used directly by a Java
programmer.)

A constructor has no separately declared result type. For the purpose of using return statements, the return type of a
constructor is implicitly void.

If a class contains no constructor declarations, then a default constructor is implicitly and automatically provided. The default
constructor takes no arguments; it simply calls the superclass constructor super () with no arguments and then performs
instance variable initialization. (As a special case, the default constructor for class Object does not invoke super () because
Object has no superclass.) It is a compile-time error if the superclass does not have a constructor that takes no arguments.

Unlike ordinary methods, constructors are not inherited by subclasses (§ Class Name Space).

Constructor Method Declarations
Constructor Method Declarations
Constructor Modifiers
Parameter List
Throws

The Body of a Constructor

[#] Object Creation
A constructor is a special kind of method that is used to initialize a newly created object. Constructors have a special
declaration syntax and a special invocation syntax.

ConstructorDeclaration:
ConstructorModifieropt ~ ConstructorDeclarator Throwsopt ConstructorBody

ConstructorDeclarator:
Typename (ParameterListopt)

The TypeName in the ConstructorDeclarator must name the class that contains the constructor declaration. A constructor has
no separate name of its own. (At the level of the Java Virtual Machine, every constructor has the special name <init>. This

name is supplied by the Java compiler. Because it is not a valid identifier, this name cannot be used directly by a Java
programmer.)

A constructor has no separately declared result type. For the purpose of using return statements, the return type of a
constructor is implicitly void.

If a class contains no constructor declarations, then a default constructor is implicitly and automatically provided. The default
constructor takes no arguments; it simply calls the superclass constructor super () with no arguments and then performs
instance variable initialization. (As a special case, the default constructor for class Object does not invoke super () because
Object has no superclass.) It is a compile-time error if the superclass does not have a constructor that takes no arguments.

Unlike ordinary methods, constructors are not inherited by subclasses (§ Class Name Space).

Constructor Modifiers

ConstructorModifier: one of
public protected private

The field access modifiers public, protected, and private are discussed in (§ Field Access). Note that constructors are not
referenced directly by name, but through the use of allocation expressions (§ Allocation Expressions) or the newlnstance
method of class Class; the access restrictions indicated by field access maodifiers (or their absence) apply to these indirect
means of reference.

Note that a class can be designed to prevent code outside the class definition from creating instances of the class by declaring
at least one constructor (to prevent the creation of an implicit constructor) and declaring all constructors to be private.

The Body of a Constructor

ConstructorBody:
{ ExplicitConstructorCallStatementopt BlockBody }

ExplicitConstructorCallStatement:
this (ArgumentListopt) ;
super (ArgumentListopt) ;

The first statement of a constructor may be an explicit call to another constructor of the same class, written as this followed by
a parenthesized argument list, or an explicit call to a constructor of the immediate superclass, written as super followed by a
parenthesized argument list (this is one of the two places in the Java language where the keyword super has a special
meaning and cannot be replaced by a cast of this to the type of the immediate superclass; see also Method Calls). Note that
an explicit constructor call statement may appear only as the first statement of a constructor body and nowhere else.

If an explicit constructor call is not present and the constructor begin defined is not for class Object, then the constructor body
is implicitly assumed to begin with the statement "super () ; " that is, a call to the superclass constructor without arguments.
Therefore every constructor for every class except Object effectively begins with a call to some other constructor, either for the
same class or for its immediate superclass.

An explicit constructor call statement may not contain references to instance variables of the object being created.

A call super (...); to a superclass constructor, whether it actually appears as an explicit constructor call statement or is
implicitly assumed, performs an additional implicit action after a normal return of control from the superclass constructor: all
the instance variables that have initializers are initialized at that time. More precisely:

for every instance variable declared in the class containing the call,

taken in the order in which the instance variables appear in the class declaration:

if that variable has an initializer and

either the initialization expression is not a constant expression or its value is not the standard default value for the variable,
then the initialization expression is executed and its value is assigned to the instance variable.

A call this(...); to another constructor in the same class does not perform this additional implicit action.

Taking all these rules into account, a simple inductive argument shows that when an object of any given class type is created,
constructors for all the superclasses of that class will be called; the body of the constructor for Object will be executed first,
and in general each constructor will be executed only after the constructors for its superclasses have been executed. All the
instance variables of the object will be initialized; each initializer will be executed exactly once per object creation; when an
initialization expression is executed, all instance variables declared in superclasses and all instance variables preceding it in
the same class declaration will already have been initialized.

class ColoredPoint {
double x, y;
Color C = blue;
Point new (f loat xVal, float yVal) {
/l'implicit super (') call here.
implicit assignment of blue to ¢ here.
X = xVal; y = yVal;

Pointnew () { 1 default Constructor
this (0.0, 1.0); 1 default value

It is a compile-time error for instance variable initializations to have a forward dependency. For example, the following code:

classZ {
inti=j+2;
intj=4;

}

results in a compile-time error.

Object Creation
An object can be created by an allocation expression (§ Allocation Expressions), which performs these steps:

. A new object is created of the specified type. As the new object is created, all its instance variables are initialized to their
standard default values (§ Standard Default Values).

. The appropriate constructor for the newly created object is invoked on whatever actual arguments appear in the
allocation expression. For a use of the newlInstance method, the constructor that takes no arguments is invoked.

. After the constructor has returned, a reference to the newly created and initialized object is the value of the allocation
expression.

An object can also be created by a call to the newlnstance method of class Class, which performs these steps:

e Anew object is created of the type represented by the class object for which the newInstance method was invoked. As
the new object is created, all its instance variables are initialized to their standard default values (§ Standard Default
Values).

. The constructor for the newly created object is invoked with no actual arguments.

. After the constructor has returned, a reference to the newly created and initialized object is returned as the value of the
call to the newInstance method. The compile-time type of this reference will be Object, which is the declared return type
of the newlnstance method, but its run-time type will be the type represented by the class object for which the
newlinstance method was invoked.

Automatic Storage Management and Finalization

When an object is no longer referenced, this may be detected by the automatic storage management of the Java system.
Automatic storage management typically makes use of so-called "garbage collector" algorithms. Once it has been determined
that an object is no longer referenced, the storage it occupies may be reclaimed immediately and recycled for other use -
unless the dynamic object has a finalizer.

A class may request finalization of its instances by implementing a non-static method named finalize that takes no arguments
and returns no value:

void finalize();
Such a method is called a finalizer. This method must not be declared with any method modifiers (§ Method Declarations).

When an object is no longer referenced, but has a finalizer, the Java system will (eventually) call the finalizer before reclaiming
the storage occupied by the object.

After an object has been finalized, no further reclamation action is taken until the automatic storage management determines
again that it is no longer referenced. This is necessary because the finalizer may have resurrected the object by making it
accessible once again, perhaps by storing a reference to the object into some accessible variable. The finalizer is never called
more than once for each object, so an object can be resurrected at most once.

When an object is no longer referenced, but has a finalizer, but the finalizer has already been called for that object, the storage
occupied by the object may be reclaimed immediately and recycled for other use.

If an uncaught exception occurs during the finalization, the exception is ignored. The finalizer will not be called again for that
object.

The Java language makes no guarantees about when or in what order objects will be finalized.

The Java language makes no guarantees about which thread will invoke the finalizer for any given object. It is guaranteed,
however, that the thread that invokes the finalizer will not be holding any user-visible synchronization locks when the finalizer
is called.

The purpose of finalizers is to provide a chance free up resources (such as file descriptors or operating system graphics
contexts) that are owned by objects but cannot be accessed directly and cannot be freed automatically by the automatic
storage management. Simply reclaiming an object's memory by garbage collection would not guarantee that these resources
would be reclaimed.

Class Loading and Initialization
Class Loading and Initialization

Class Loading and Initialization

Class Loading and Initialization
[#] Class Loading

Static Variable Initialization

Class Loading

A class is loaded when it is needed, either because it is implicitly needed by another class, or because its is explicitly
requested to be loaded using a ClassLoader or the Class. forName method of the class Class. This is sometimes called
dynamic loading.

When a class is loaded, storage is allocated for its static variables. A class object (an instance of the class Class) is also
allocated to represent the class. The class is then initialized.

(At the level of the Java Virtual Machine, a class is initialized by invoking its class initialization method with no arguments. The
class initialization method has the special name <clinit>. This name is supplied by the Java compiler. Because it is not a valid
identifier, this name cannot be used directly by a Java programmer.)

Static Variable Initialization
The static variables of a class may be initialized by initializers in their declarations or by one or more static initializers, or both.

Static Initializer:
static Block

A static initializer is simply some code that is executed when the class containing it is loaded. Static initializers and variable
initializers are executed in the order in which they appear in the class declaration. For example, when the class

classZ {
staticinta = 1;
static double b;
static {
a++;
c=7;

static intc = 2;
static Window d = new Window ();
static { b = Math.cos (Math.P1/4.0);

}

is loaded, the following initialization steps occur in the order shown:

e The variable ais setto 1.

. The first static initializer is executed, incrementing a to 2 and setting c to 7.

e The variable c is then set to 2 (the value 7 is lost).

. A new Window is allocated and assigned to variable d

. The variable b is set to the value of the expression Math. cos (Math. P1 /4.0).

It is a compile-time error for static variable initializations to have a forward dependency. For example, the following code:

classZ {
staticinti=j + 2;
static intj = 4;

results in a compile-time error.

It is a compile-time error for static initializers or initializers for static variables to contain references to instance variables of the
class in whose declaration they appear.

The static initializer code may call static methods of the class being loaded and use other classes that have already been
loaded, but it is a run-time error for there to be a circularity, i.e. a situation where a class A needs class B to have been loaded
to run its static initializer and vice-versa. If this mutual dependency is detected at compile-time a compile-time error results, if it
is detected at run-time a ClassCircularityException is thrown.

Interface Declarations
Interface Declarations
An interface declares a type consisting of a set of methods and constants without specifying its implementation.

Java programs can use interfaces to make it unnecessary for related classes to share a common abstract superclass or to add

methods to Object. This provides the power of multiple interface inheritance to classes without the messiness of multiple
implementation inheritance.

InterfaceDeclaration:
InterfaceModifiersopt interface Identifier Extendsinterfacesopt InterfaceBody

Interface Declarations
Interface Declarations
[# Interface Modifiers
Subinterfaces and the extends Clause
Body of an Interface
Variable Declarations in Interfaces

[#] Method Declarations in Interfaces

An interface declares a type consisting of a set of methods and constants without specifying its implementation.

Java programs can use interfaces to make it unnecessary for related classes to share a common abstract superclass or to add
methods to Object. This provides the power of multiple interface inheritance to classes without the messiness of multiple
implementation inheritance.

InterfaceDeclaration:
InterfaceModifiersopt interface Identifier Extendsinterfacesopt InterfaceBody

Interface Modifiers

InterfaceModifiers:
InterfaceModifier
InterfaceModifiers InterfaceModifier

InterfaceModifier: one of
public abstract

An interface that is declared public can be accessed from other packages, either directly (§ External Access) or in an import
statement (§ The Import Statement). If an interface lacks the public modifier, use of the interface is limited to the package in
which it is declared. At most one public interface may be declared in each compilation unit (§ Compilation Units). A compilation
unit may not contain both a public interface and a public class.

Every interface is implicitly abstract. It is permitted but not required to specify the abstract modifier.

Subinterfaces and the extends Clause

If an extends clause is provided then the interface being declared extends each of the other named interfaces and therefore
implicitly includes the methods and constants (unless shadowed) of each of the other named interfaces. Any class that
implements the declared interface is also considered to implement all the interfaces that this interface extends.

Extendsinterfaces:
extends TypeName
Extendsinterfaces , TypeName

Each TypeName in the extends clause of an interface declaration must name an interface.
It is a compile-time error for there to be a circularity that causes an interface to directly or indirectly extend itself.

Note that there is no analogue of the class Object for interfaces; that is, while every class is an extension of class Object, there
is no single interface of which all interfaces are extensions.

Body of an Interface
The body of an interface is much like the body (§ Class Body) of an abstract class (§ Class Maodifiers).

InterfaceBody:
{ FieldDeclarations }

However, the body of an interface may not contain constructor declarations (§ Constructor Method Declarations) or static
initializers (§ Static Variable Initialization).

Variable Declarations in Interfaces

Every field variable in the body of an interface is implicitly static and final. It is permitted but not required to specify the static
modifier, the final modifier, or both static and final for such variables. Every field variable in the body of an interface must have
an initializer and the initialization expression must be a constant expression (§ Constant Expression).

Every variable declaration in the body of a public interface is implicitly public. It is permitted but not required to specify the
public modifier for such methods.

A variable declaration in an interface body may not include any of the modifiers synchronized, transient, or volatile.

Method Declarations in Interfaces

Every method declaration in the body of an interface is implicitly abstract. Its body must be represented by a semicolon, not a
block. It is permitted but not required to specify the abstract modifier for such methods.

Every method declaration in the body of a public interface is implicitly public. It is permitted but not required to specify the
public modifier for such methods.

A method declaration in an interface body may not include any of the modifiers final, native, static, or synchronized.

A class and interface Example

interface Storing {
void freezeDry (Stream s);
void reconstitute (Stream s);

class Image implements Storing {

;/.("Jid freezeDry(Stream S)
/I JPEG compress image before storing

void reconstitute (Stream's) {
/I JPEG decompress image before reading

}

class StorageManager {
Stream stream;

}}.Storing is the interface name
void pickle (Storing obj) {

obj . freezeDry (stream);
}

The StorageManager class requires that the argument to pickle implement the Storing interface but can make no other
assumption about how obj is implemented.

Arrays

Java arrays are objects, are dynamically allocated, and may be assigned to variables of type Object. All methods of class
Object may be invoked on an array.

Java arrays are single-dimensional. An array is an object that contains a number of variables. (This number may be zero.)
These variables have no names; instead they are referenced using nonnegative integer values. These variables are called the
components of the array. If an array has n components, we say n is the length of the array; the components of the array are
referenced using integers from 0 to n-1, inclusive.

All the components of an array have the same type, called the component type of the array. If the component type of an array
is T, then the type of the array itself is written T[].

There are no multi-dimensional arrays as such. However, the component type of an array may itself be an array type. The
subarrays themselves have components, of course, and so on. If, starting from any array type, one considers its component
type, and then (if that is also an array type) the component type of that type, and so on, eventually one must reach a
component type that is not an array type; this is called the element type of the original array, and the components at this level
of the data structure are called the elements of the original array. Note that there is one situation in which an element of an
array can be an array: if the element type is Object, then some or all of the elements may be arrays, because every array can
be cast to class Object.)

Like all objects in Java, arrays must be explicitly allocated. However, there are two different ways to allocate an array. The new
operator may be used in the usual way to allocate a fresh array. In addition, a special "array initializer" syntax may be used on
the right-hand side of the = in a declaration of an array variable.

Array Types

An array type is notated (§ Array Types) by writing the name of the element type followed by some number of empty pairs of
square brackets [].The number of bracket pairs indicates the depth of array nesting.

Array types may be used in declarations and in casts.

Declarations of Array valued Variables

Declaring a variable of array type does not allocate an array object and therefore does not allocate any space for array
components. It creates only the variable itself, which can contain a reference to an array. However, the initializer part of a
declarator may allocate an array, a reference to which then becomes the initial value of the variable.

Here are some examples of declarations of array variables that do not allocate an array:

int[] ai; /I array of integer
short[]1[] as; /[array of array short
Object [] ao; /[array of object
otherao; /I array of object
short s, /I scalar short
as[], /I array of short
aas[][]; /I array of array of short

Here are some examples of declarations of array variables that allocate array objects:

Exception ae [] = new Exception [3];

Object aao [][] = new Exception [2] [3];

int[] factorial = {1,1,2,6,24,120,720,5040};

char ac[]={'n"'o"'t,"", &, "', 'S, 't 'n\'g}L
String aas = {array", "of", "String", };

Note that [] may appear as part of the type at the beginning of the declaration, or as part of the declarator for a particular
variable, or both, as in example:

byte [] rowvector, colvector, matrix [];

Programmers may prefer to avoid putting some brackets in the decalaration type and some in the declarator as a matter of
style.

Array Initialization

An array may be allocated by using an array initializer in place of an initialization expression in a declarator. This is written as a
pair of braces (" { }") enclosing a comma-separated list of expressions. The length of the constructed array will equal the
number of expressions. Each expression specifies a value for one array component. Each expression must be assignment-
compatible with the array's component type. If the component type is itself an array type, then the expression specifying a
component may itself be an array initializer; that is, array initializers may be nested.

Arraylnitializer:

{ Elementinitializersopt , opt }
Elementinitializers:

Element

Elementinitializers , Element
Element:

Expr

Arraylnitializer

A redundant trailing comma may appear after the last expression in an array initializer.

Array Length

An array's length is not part of its type. As a consequence, over the course of time a single variable of array type may contain
references to arrays of different lengths.

Every array has a . length field, which is a final variable; it may be examined but may not be changed by assignment. Once an
array object is allocated, its length never changes. If it it desired to make an array variable refer to an array of different length,
it is necessary to allocate or otherwise identify another array of the desired size and then assign a reference to that other array
to the variable.

All array accesses are checked at run-time; an attempt to use an index that is less than zero or not less than the length of the
array causes an ArraylndexOutOfBoundsException to be thrown (§Array Access).

Array Indexing

Arrays may be indexed by int values (§ Array Access); short, byte, or char values may also be used as they are subjected to
unary arithmetic promotion (§ Unary Arithmetic Promotion) and become int values. Arrays may not be indexed by long values.

Array Allocation and Reclamation
Array Use example:

/ *
* Method to return an n-by-m array of bytes with a
* given initial value.
*/
byte [] [| makeByteArray (int n, int m, byte initialvalue)
{

byte [] [] newArray = new byte [n] [m]
for (inti=O ; i<newArraylength ;i++)
for(int j=O j<newArray[i]. length ; j++)
newArray [i] [j] = initialValue;
return newArray;

Array use example:

/*

* Method to return a triangular array of bytes with a

* given initial value. Element [i] [j] exists only if j < i.

*/

byte [] [] makeTriangularByteArray (int n, byte initialValue)

byte [] [] newArray = new byte [n] [];
for (inti=0 i<newArraylength ;i++)
newArray [i] = new byte [i];
for (int j=0O;j<newArray [i]l.length ; j++)
newArray [i] [j] = initialValue;
return newArray;

Array use example:
/ *
* Method to return a triangular array of integers filled
with Pascal's triangle. Element [i] [j] exists only if j <=

* and equals i !/ (j! (i-j)!).
*/
int [] [] makePascalTriangle (intn)

*

byte [] [] result = new byte [n] [];

for (inti=0;i<resultlength;i++)
resulti] = new byte [i+1];
resulti] (O] = 1;
for (intj=l;j<i; j++

result [i] [j] = result [i -1][j-1] + resultf [i-1] [i] ;
result [ij [i] =1;
return result;

Arrays versus Strings
An array of char is not a String. Note that a String does not have assignable components, whereas the character components
of an array of characters can be assigned to.

Neither Strings nor arrays of char are automaticallvy terminated by \uOOOO' (the NUL character). In this respect Java differs
from C.

Blocks and Statements
Except as described, statements are executed in sequence. Statements are executed for their effect, and do not have values.

Java requires that variables be clearly initialized before use. We (will soon) give, in this section and in the next section on
Expressions, the algorithm which a Java compiler is required to use to determine if a variable has been clearly initialized. A
compiler may not vary from this algorithm, because that would affect what Java programs are legal.

Blocks

The body of a method and the body of a static initializer are both blocks, which are a sequence of local variable declarations
and statements.

Block:

{ LocalVariableDeclarationsAndStatements }
LocalVariableDeclarationsAndStatements:

LocalVariableDeclarationOrStatement

LocalVariableDeclarationsAndStatements LocalVariableDeclarationOrStatement
LocalVariableDeclarationOrStatement:

LocalVariableDeclarationStatement
Statement

Local Variable Declarations
A local variable declaration statement introduces a new identifier into a block; it has the form:

LocalVariableDeclarationStatement:
TypeSpecifier VariableDeclarators

The identifier is not allowed to already be declared as a local variable or label, or as a variable which is a formal argument to a
method or constructor.

If the identifier declared by this statement was previously declared as a field (variable or method) or type name, then the other
declaration is hidden for the remainder of the block, after which it resumes its force. The keyword this can be used to access a
hidden field x, in an expression of the form this .

The inltializations of the declared variables are done each time the local variable declaration statement is executed. It is a
compile-time error if a variable is used when the compiler cannot determine whether the variable will be dynamically initialized
before use, using the standard algorithm.

Statements
Statements fall into several groups:

Statement:
EmptyStatement
LabeledStatement
ExpressionStatement ;
SelectionStatement
IterationStatement
JumpStatement
SynchronizationStatement
ExceptionStatements

Empty Statement

An empty statement does nothing.

EmptyStatement:

3

Labeled Statements
Statements may carry label prefixes.

LabeledStatement:
Identifier : Statement
case ConstantExpression : Statement
default : Statement

The first form declares the identifier as the label of the statement, and has as its scope the curent block. Labels used with the
continue statement must be on iterations statements.

The identifier is not allowed to already be declared as a local variable or label, or as a variable which is a formal argument to a
method or constructor.

If the identifier declared by this statement was previously declared as a field (variable or method) or type name, then the other
declaration is hidden for the remainder of the block, after which it resumes its force.

Statement labels can be used only in labeled break and continue statements within this block.

The case labels and default labels may occur only in switch statements (§ Selection Statements).

Expression Statements
Most statements are expression statements, which have one of the forms:

ExpressionStatement:
Assignment
Preincrement
PreDecrement ;
Postincrement ;
PostDecrement ;
MethodCall ;
Allocation Expression ;

All side effects from the expression are completed before the next statement is executed.

Unlike C and C++ Java restricts the forms of expressions which are valid statements to catch errors. The programmer can
assign the value of any other expression to a variable to make such an expression into a statement.

It is legal for a result of a method which is not declared void to be ignored. Java forbids the expression statement to begin with
a cast.

Selection Statements

Selection Statements
Selection statements choose one of several flows of control:

SelectionStatement:
if (Expression) Statement
if (Expression) Statement else Statement
switch (Expression) Block

Selection Statements
Selection Statements
[#] The if Statement
The switch Statement
Selection statements choose one of several flows of control:

SelectionStatement:
if (Expression) Statement
if (Expression) Statement else Statement
switch (Expression) Block

The if Statement

In both forms of the if statement, the expression, which must have a boolean type, is evaluated, including all side effects. If it
evaluates to true then the first substatement is executed. In the second form the second substatement is executed if the
expression evaluates to false. The else ambiguity is resolved by connecting an else with the last encountered else-less if in the

same block.

The switch Statement

The switch statement causes control to be transferred to one of several statements depending on the value of an expression.
The type of the expression must be char, byte, short or int.

The substatement controlled by a switch is a block. Any top-level statement within the block may be labeled with one or more
case labels, and at most one top-level statement may be labeled with a default label.

The controlling expression and the case constants are converted to int.

No two of the (promoted) case constants associated with the same switch may have the same value; this applies whether the
case is on char or an integral type.

When the switch statement is executed, its expression is evaluated, including all side effects, and compared with each case
constant. If one of the case constants is equal to the value of the expression, control passes to the statement of the matched
case label. If no case matches, and there is a default label, control passes to the labeled statement. If no case matches, and
there is no default, then none of the substatements of the switch is executed.

The case or default labels in themselves do not alter the flow of control, which continues unimpeded across such labels. To
exit from a switch, a break or other jump statement is typically used.

Jump Statements

Jump Statements
Jump statements transfer control unconditionally:

JumpStatement:
break Identifieropt ;
continue Identifieropt
return Expressionopt ;
throw Expression ;

In any case where a jump statement causes control to bypass a finally part of a try statement, the non-local control transfer
pauses while the finally part is executed, and continues if the finally part finishes normally (§ The try Statement).

Jump Statements
Jump Statements
[#] The break Statement
The continue Statement

The throw Statement
Jump statements transfer control unconditionally:

JumpStatement:
break Identifieropt ;
continue Identifieropt
return Expressionopt ;
throw Expression ;

In any case where a jump statement causes control to bypass a finally part of a try statement, the non-local control transfer
pauses while the finally part is executed, and continues if the finally part finishes normally (§ The try Statement).

The break Statement

An unlabeled break statement transfers control to the end of the enclosing iteration (for, do, while), or switch statement. If an
identifier is provided, it must be the label of an arbitrary enclosing statement. Control passes to the statement following the
terminated statement, after executing any required finally clauses, provided the finally clauses all complete normally.

The continue Statement

The continue statement may occur only in an iteration statement and causes control to pass to the loop-continuation point of
an iteration statement, breaking out of the statement governed by the iteration but not out of the iteration itself. If the optional
identifier is provided, then it must be a label of an enclosing iteration statement, otherwise, the nearest enclosing looping
statement is continued.

If control passes any finally clauses they are executed before continuing at the continuation point, and control ultimately
reaches the continuation point only if all such finally clauses complete normally.

More precisely, in each of the statements:

outer:
while (foo) {
[/
/lcontinue here
}
outer:
do {
...
//continue here
) while (foo);
outer:
for (;;) |
InNo..
/[continue here
}

a continue not contained in an enclosing iteration statement continues at the continue here point. A continue giving the label
outer would continue at the continue here point (and specifically not fall in at the top of the iteration as a goto statement would
in C or C++.)

The return Statement

A method, constructor, or static initializer returns to its caller by the return statement. If this causes control to pass any finally
clauses they are executed before the return occurs, and the return continues to operate only as long as all of the finally
clauses complete normally.

A return statement with an expression can be used only in methods that are declared to return a value, that is methods which
are not declared void. If required, the expression is converted, as in an assignment to a variable which has as its type the
return type of the function.

A return statement without an expression can be used in methods that are declared to not have a result type, constructors and
static initializers.

The throw Statement
A throw statement signals a run-time exception. Its argument must be an object type, and is conventionally a subclass of

Exception.

Normal execution is suspended while a suitable exception handler is sought for the exception. Each enclosing statement
which is not a try is terminated, and any finally clauses that are passed by are executed. The exception propagation continues
until a catch clause is found whose formal argument has a type which is a superclass of the type of the argument expression.

Processing then continues as described in § The try Statement.

Guarding Statements
Guarding Statements

Guarding statements establish conditions or contexts during the execution of a substatement:

GuardingStatement:
synchronized (Expression) Statement
try Block Finally
try Block Catches
try Block Catches Finally

Catches:

Catch
Catches Catch

Catch:
catch (Argument) Block

Finally:
finally Block

Guarding Statements
Guarding Statements
The synchronized Statement
The try Statement
Guarding statements establish conditions or contexts during the execution of a substatement:

GuardingStatement:
synchronized (Expression) Statement
try Block Finally
try Block Catches
try Block Catches Finally

Catches:

Catch
Catches Catch

Catch:
catch (Argument) Block

Finally:

finally Block

The synchronized Statement

A synchronized statement establishes a critical expression. The value of the expression must be a reference to an object
(which may be an array).

The synchronized statement acquires the (single) lock associated with the object, waits for the lock to be free if necessary,
executes the governed statement, and then releases the lock.

The try Statement

A try statement executes the block in the try part, which is the scope of the exception handlers established by any catch
clauses.

If an exception occurs during execution of the statement in the try part which is not handled by a nested handier, then the
exception will cause termination of the execution of the try part.

Any catch clauses associated with the try will then be examined. Each catch clause has a single formal argument of class or
interface type, and will handle any exception which can legally be assigned to this argument. This allows subclasses of type
Exception to define categories of exceptions in a natural way.

Exception handler types are compared in order: the first catch clause supporting a legal assignment accepts the exception,
receiving the object which is associated with the exception in the actual variable which is its argument. This variable has as its
scope the block of the catch. When the catch block completes execution, execution continues with the finally part, if any, or
with the next statement in order after the try

Afinally clause is used to ensure that the block governed by finally is executed after the statement governed by try and catch,
no matter how control leaves the try or catch part.

After the finally code is executed, control transfers out of the try statement. Normally, the control transfer destination is that
determined bv the event which caused the try statement to be terminated: fall-through, the execution of a break, continue, or
return, or the propagation of an exception. But if the finally code executes a jump statement causing another unconditional
control transfer outside of its block or causes another uncaught exception to be thrown, then the original jump statement is
abandoned, and the new unconditional control transfer or exception is processed.

Unreachable Statements

It is a compile-time error if a statement cannot be executed because it is unreachable. The precise meaning of this remark will
be explained in a future version of this document.

Value of an Expression

Expressions are used in Java to indicate variables and to compute values. The execution of an expression produces one of
three results:

e avalue
. a variable (in C this would be called an Ivalue)
. nothing (the expression is void)

An expression produces nothing if and only if it is a method call that invokes a method whose return type is void. Such an
expression can be used only as an expression statement, because every other context in which an expression can appear
requires the expression to produce a value or a variable. An expression statement that is a method call may also call a method
whose return type is not void; the value returned by the method is quietly discarded.

An expression that produces a value may not appear as the left-hand operand of any assignment operator (§ Assignment

Operators) or as the operand of a ++ or --operator (§ Postfix Increment Operator). These contexts require an expression that
produces a variable.

All other contexts where an expression may appear require a value, but the expression may produce either a variable or a
value; if the expression produces a variable, then the value of that variable is used, and we simply speak of the value of the
expression.

The execution of an expression can also produce side effects, because expressions may contain embedded method calls as
well as embedded assignment, ++, and -- operators.

Each expression occurs in the declaration of some type which is being declared, either in its static initializer, in a constructor
declaration, or in the code for a method.

Type of an Expression

Every expression has a compile-time type. The rules for determining the type of an expression are explained separately below
for each kind of expression. The value of an expression will always be compatible with the compile-time type of the
expression, just as the value stored in a variable will always be compatible with the compile-time type of the variable.

If the compile-time type of an expression is a classtype C, then the value of the expression will be either null or a reference to
an instance of some subclass R of C (which may be C itself). If the compile-time type of an expression is an interface type |,
then the value of the expression will be either null or a reference to an instance of some class R that implements the interface
I. If C is Object, then the value of the expression may also be an array of some array type R. In any of these cases, if value of
the expression is not null then we say that R is the run-time type of the value. If the compile-time type of an expression is a
primitive type, then the run-time type of the value is the same as the compile-time type of the expression.

Note that an expression whose compile-time type is a class type F that was declared final is guaranteed to produce a value
whose run-time type is F, because final types have no subclasses.

These are the only places in the Java language where the run-time type of a value affects the course of execution in a manner
that cannot be deduced from the compile-time type:

. In a method or constructor call (§Method Calls). The particular method is used for a call 0.m (...) is chosen based on the
methods which are part of the class or interface which is the static type of 0. The run-time type of o participates because
a subclass may override (§ Method Overriding) a specific method already defined in a parent class so that this overriding
method is called first; this method may or may not choose to further call the original overridden m method.

. In a narrowing cast (§ Postfix Decrement Operator). The value of an expression may be cast to a type that is narrower
than the compile-time type of the expression; this requires a run-time check that throws an error if the run-time type of the
value is not compatible with the narrower type

e With instanceof (§ Relational Operators). An expression whose compile-time type is a class, interface, or array type may
be tested using instanceof to find out whether the run-time type of its value is compatible with some narrower type.

. Assigning to an array component of reference type. Such an assignment may require a narrowing conversion at run time
and so may require a run-time check

. In a catch clause, where an exception is caught only if the run-time type of the exception is instanceof the formal
argument type (§ The try Statement).

Thus a Java run-time type error can occur only in these situations:

. In a narrowing cast, the value's run-time type is not compatible with the cast type.

. In an assignment to an array component of reference type, the run-time type of the value to be assigned is not
compatible with the array component type

. An exception is not caught

Evaluation Order
Java guarantees that the operands to operators appear to be evaluated from left-to-right. Specifically:

. The left-hand operand of a binary operator appears to be fully executed before any part of the right-hand operand is
executed. For example, if the left-hand operand contains an assignment to a variable and the right-hand operand
contains a reference to that same variable, then the value produced by the reference will reflect the fact that the
assignment occurred first.

. In an array reference, the expression to the left of the brackets appears to be fully executed before any part of the
expression within the brackets is executed. For example, in the (admittedly monstrous) expression a ((a=b) [3]], the
expression a is fully executed before the expression (a=b) [3]; this means that the original value of a is fetched and
remembered while the expression (a=b) [3] is executed. This old array is then subscripted by a value that is element 3 of
another array copied from b into a.

. In a method call for an object, there is an expression whose value is an object; this expression appears to the left of the
dot, method name, and left parenthesis of the method call. This expression appears to be fully executed before any part
of any argument expression within the parentheses is executed.

. In a method call or allocation expression, there may be one or more argument expressions within the parentheses,
separated by commas. Each argument expression appears to be fully executed before any part of any argument
expression to its right.

. In an allocation expression, there may be one or more dimension expressions, each within brackets. Each dimension
expression appears to be fully executed before any part of any dimension expression to its right.

It is not necesssarily recommended that Java code rely crucially on this specification; code is usually clearer when each
expression contains at most one side effect, as its outermost operation. These rules are imposed principally to promote
portability of Java prograrns, no matter how they are coded.

Java also guarantees that every operand of an operator appears to be fully executed before any part of the operation itself is
performed. In particular, the operands of an increment, decrement, or compound assignment operator appear to have been
fully executed before the compound assignment operator fetches the value of the variable to be updated. For example, in the
compound assignment operation a+ = (a=3), the resulting value of a is guaranteed to be 6, because the assignment of 3 to a
occurs before the + = operation fetches a in order to add its right-hand operand to it. Note that this example therefore behaves
slightly differently from a=a+ (a=3), where the old value of a--the value of the left-hand operand of the + operation---must be
fetched and remembered before the assignment of 3 to a occurs. Note also that both these examples have undefined behavior
in C, according to the ANSI/ISO standard.)

Java implementations therefore must respect the order of execution as indicated explicitly by parentheses and implicitly by
operator precedence. An implementation may not take advantage of algebraic identities such as the associative law to rewrite
expressions into a more convenient computational order unless it can be proven that the replacement expression is equivalent
in value and in its observable side effects, even in the presence of multiple threads of execution, for all possible computational
values that might be involved. In the case of floating-point calculations, this rule applies also for infinity and not-a-number
(NaN) values. For example, ! (x<y) may not be rewritten as x>=y, because these expressions have different values if either x
ory is NaN. Note also that floating-point calculations that appear to be mathematically associative are unlikely to be
computationally associative. Such computations must not be naively reordered. For example, it is not correct for a Java
compiler to rewrite 4.0*x*0 .5 as 2. O*x; while roundoff happens not to be an issue here, there are certain large values of x for
which the first expression will produce infinity (because of overflow) but the second expression will produce a finite result.

In contrast, integer addition and multiplication are provably associative in Java; for example a+b+c will always produce the
same answer whether evaluated as (a+b) +c or a+ (b+c); if the expression b+c occurs nearby in the code, a smart compiler
may be able to use this common subexpression.

Primary Expressions

Primary expressions include names, literals, expressions in parentheses, allocation expressions, array references, field
references, and method calls.

PrimaryExpression:
Name
NotjustName

NotjustName:
AllocationExpression
ComplexPrimary

ComplexPrimary:
Literal
(Expression)
ArrayAccess
FieldAccess
MethodCall

Name:
QualifiedName
this
super
null

QualifiedName:
Identifier
QualifiedName Identifier

A name may be a simple identifier or a qualified identifier. When used as an expression, such a name must be the name of a
variable.

If a simple name refers to a local variable or method parameter, then if the variable is final, the result of the expression is the
value of the specified variable; but if the variable is not final, the result of the expression is the variable itself. This distinction
matters because it implies that only non-final variables may appear as the left-hand operand of an assignment operator (§
Assignment Operators). In either case, the compile-time type of the expression is the declared type of the variable.

If a simple name does not refer to a local variable or method parameter, it may indicate a field access (§ Field Access through
a Simple Name). A qualified name cannot refer to a local variable or method parameter, but may indicate a field access (§

Field Access through a Qualified Name).

Aliteral (§ Literals) denotes either a primitive value or a reference to an object that is an instance of class String.

A parenthesized expression is a primary expression that has the same value and compile-time type as the contained
expression.

Array Access

ArrayAccess:
Name [Expression]
ComplexPrimary [Expression] r

A primary expression followed by an index expression in square brackets is an array access. The compile-time type of the
primary expression must be an array type (call it T [], an array whose components are of type T); its value will then be either
null or a reference to an array. The index expression undergoes unary arithmetic promotion (§Unary Arithmetic Promotion); the
promoted type must be int.

If, at run-time, the value of the primary expression is null, a NullPointerException is thrown.

If, at run-time, the value of the primary expression is not null, but the value of the index expression is less than zero, or greater
than or equal to the length of the array, an ArraylndexOutOfBoundsException is thrown.

The result of an array reference is a variable of type T, namely the variable within the array selected by the value of the index
expression. This resulting variable, which is a component of the array, is never considered final, even if the array reference
was obtained from a final variable.

Note that, for syntactic reasons, the primary expression in an array access cannot be an unparenthesized allocation
expression.

Field Access

Fields of an object, array, class, or interface may be accessed in several ways.

In all cases, if the field is final, the result of the field access is the value of the specified field; if the field is not final, the result of
the field access is a variable, namely the specified field itself. The compile-time type of the result is the declared type of the
field.

Method Calls

MethodCall:
MethodAccess (ArgumentListopt)

MethodAccess:
Name
PrimaryExpression . Identifier

ArgumentList:
Expression
ArgumentList , Expression

A method call is a method access followed by parentheses that surround a possibly empty, comma-separated list of
expressions, called the arguments. A method access has the same form as a field access but must refer to a field that is a
method rather than a variable. Resolving a method name at compile time is more complicated than resolving a field variable
because of the possibility of method overloading. Invoking a method at run time is also more complicated than accessing a
field variable because of the possibility of method overriding.

For a method call to be correct and unambiguous there must be a method definition at compile time that is both applicable and
most specific.

A method definition is applicable to a method call if all these requirements are satisfied::

. The declared name of the method is the same as the field name in the method call.
. The method definition is accessible from the method call by the rules of name resolution (§ Name Resolution).
. The number of parameters in the method definition equals the number of arguments in the method call, and

. Each actual argument in the method call is assignable (§ Assignment Conversion) to the corresponding parameter as
declared in the method definition.

A method m, declared in class T with n parameters having types T 1, ..., Tn is more specific than another method, also named
m but declared in class U with n parameters having types U1, ..., Un, if and only if T is assignable to U and Tj is assignable to
Uj for all j from 1 to n. This implies, by the way, that if we declare variables

Tt T1t1; .. Tn tn;
then for any values of these variables, the code
((U) t).m(t, ..., tn)

could invoke the second method without type errors. Of course, within the body of the first method, this has the typeT and its
parameters have types T1, ..., Tn. This leads to the simple and intuitive notion that a method defined in class T is more
specific than a method of the same name defined in class U if it can call the second method simply by casting this to type U
and passing all its parameters as arguments.

At compile time, there is some set of methods applicable to a method call. If this set is empty (there is no applicable method),
a compile-time error results. Otherwise, there must be a single method definition in the set that is more specific than all others;
if not, the method call is considered ambiguous, and a compile-time error results.

If there is a single most specific method definition, it is called the compile-time definition for the method call; its name and the
compile-time types of the parameters in the definition constitute the signature for the method call. The declared return type for
this method definition is used as the compile-time type of the method call.

At run time, the method invocation proceeds as follows. If the method access requires computing a reference value (which
may be an implicit occurrence of this), that subexpression is executed first; if the method is not static, the resulting value is
called the target object and will be available within the called method as the value of this and of super. Then the argument
expressions are evaluated in order, from left to right, and their values are assigned to the parameters of the method (in a new
activation frame). Finally, a method definition is located and actually invoked.

If the method is static, then it cannot be overridden (because every static method is implicitly final). The method definition that
was determined to be most specific at compile time is the definition invoked at run time.

If the method is private, then it cannot be overridden. The method definition that was determined to be most specific at compile
time is the definition invoked at run time.

If the MethodAccess appearing before the parenthesized argument list is of exactly the form super MethodName, this is
considered a request to run the method named MethodName that is visible in the narnespace of the immediate superclass of
the class within whose body the method call appears. Any overriding methods are bypassed; the method definition that was
determined to be most specific at compile time is the definition invoked at run time. (This is the one of the two situations in the
Java language where super is not equivalent to a cast of this to the type of its immediate superclass; (§ The Body of a

Constructor).

If the method is neither static nor private and the MethodAccess is not of the form super MethodName, then dynamic method
lookup occurs. The lookup process starts from the class that is the run-time type of the target object and from there works its
way up the chain of superdasses (if the target object is an array, the lookup process starts, and ends, at the class Object). As
soon as a class is found with a method definition that matches the signature for the method call determined at compile time,
that method definition is invoked. The lookup process must succeed, because the definition located at compile time will be
found if no overriding definition is found in some subclass.

The result of a method call is the value returned by the invoked method. If the declared return type of the method is void, then
there is no result; a method call to such a method may appear only as a top-level expression (as an expression statement or in
the header of a for statement).

Allocation Expressions

Allocation Expressions
The new operator attempts to create an object or array of a specified type:

Allocation Expression:
new TypeName (ArgumentlList opt)
new TypeName DimExprs Dimsopt

TypeName:
TypeKeyword
QualifiedName

TypeKeyword: one of
boolean char byte short int float long double

ArgumentList:
Expression
ArgumentList , Expression

DimExprs:
DimExpr
DimExprs DimExpr

DimExpr:
[Expression]

A new operator will raise an OutOfMerroryException if there is insufficient memory available.

Allocation Expressions
Allocation Expressions
[#] Allocating New Objects
Allocating New Arrays
The new operator attempts to create an object or array of a specified type:

Allocation Expression:
new TypeName (ArgumentlList opt)
new TypeName DimExprs Dimsopt

TypeName:
TypeKeyword
QualifiedName

TypeKeyword: one of
boolean char byte short int float long double

ArgumentList:
Expression
ArgumentList , Expression

DimExprs:
DimExpr
DimExprs DimExpr

DimExpr:
[Expression]

A new operator will raise an OutOfMerroryException if there is insufficient memory available.

Allocating New Objects

In the first form of allocation expression, the TypeName must name a class type that is not abstract. This class type is the
compile-time type of the allocation expression.

The types of the arguments in the argument list, if any, are used to match against all the constructor methods, declared in the
class type or any of its superclasses, using the matching rules for method calls (§Method Calls). As in method calls, a compile-
time method matching error results if there is not a single constructor that is both applicable and most specific.

The value of the first form of new is a newly created object of the specified class type that has been initialized by first
initializing every instance variable of the object to its standard default value (§Standard Default Values) and then invoking the
constructor method for that object on the arguments.

Allocating New Arrays

The second form of new allocates a new array whose elements are of the type specified by the TypeName; in this case the
TypeName may name any type, even an abstract type or primitive type. The compile-time type of the allocation expression is
an array type that can be described by deleting the new keyword and every DimExpr expression from the allocation
expression; for example, the compile-time type of the allocation expression

new double[3] [3][]
is
double [][][]

The expression in each DimExpr undergoes unary arithmetic promotion (§ Unary Arithmetic Promotion); the promoted type
must be int. If, at run-time, the value of any DimExpr expression is less than zero, ArrayNegativeSizeException is thrown.

If a single DimExpr appears, a single-dimensional array is allocated of the specified length. Each component of the array is
initialized to its standard default value (§ Standard Default Values).

Multidimensional arrays are implemented as arrays of arrays. If Ais an N-dimensional array whose elements are of type T,
then A[i] is a reference to an (N-1)-dimensional array whose elements are of type T.

If an array allocation expression contains N DimExpr expressions, then it effectively executes a set of nested loops of depth N-
1 to allocate the implied arrays of arrays. For example, the allocation:

float [] [] matrix = new float [3] [3];
is roughly equivalent to:

float [][] matrix = new float [3] [];
for (inti = 0; i < matrix.length; ++i)
matrix [i] = new float [3];

And
String [1[1[1[1[] fivedims = new String [6] [8] [10] [12] [];
is equivalent to:

String [1[1[]1[][]fivedims new String [6] [1[1[1[];
for (intd1 = 0; d1 < fivedims.length; d1++) {
fivedims [d1] = new String [8] [1[]1[];
for (d2 = 0; d2 < fivedims [d1].length; d2++) {
fivedims [d1] [d2] = new String [10] [] [];
for (d3 = 0; d3 < fivedims [d1] [d2].length; d3++) {
fivedims [d1] [d2] [s3] = new String [12] [];

leaving the fifth dimension, which would be arrays containing the actual references to String objects, initialized only to null.
A multidimensional array need not have the same length arrays at each level; thus a triangular matrix may be allocated by:

floattriang [][] = new float [IOQ] [];
for (inti = 0; i < triang.length; i++)
triang [i] = new float [i+1];

There is, however, no way to get this effect with a single allocation expression.

Postfix Expressions

PostfixExpression:
PrimaryExpression
Postincrement
PostDecrement

Postincrement:
PrimaryExpression ++

PostDecrement:
PrimaryExpression - -

Unary Operators

Expressions with unary operators group right-to-left:

UnaryExpression:
Prelncrement
PreDecrement
'+' UnaryExpression
" UnaryExpression

UnaryExpressionNotPlusMinus

Prelncrement:
++ PrimaryExpression

PreDecrement:
-- PrimaryExpression

UnaryExpressionNotPlusMinus:
PostfixExpression
'~" UnaryExpression
'I" UnaryExpression
CastExpression

CastExpression:
(TypeKeyword) UnaryExpr
(TypeExpression) UnaryExpressionNotPlusMinus

The grammar is a bit more complicated than one might expect in order to avoid syntactic problems with expressions such as
(p)-gand (p) --q.

In the case of (p) - q it is not evident whether this is a binary subtraction of q from p or a cast of a unary negation of g. It
depends on whether or not p names a type or a variable.

Because the Java built-in unary negation operation can return only values of primitive type, and because values of primitive
type can be cast only to other values of primitve type, the java language treats p)-q as a cast of a unary negation if and only if
p is the name of a primitive type. This permits such familiar constructions as (short) - 3 without requiring additional
parentheses.

As for (p) --q, the difficulty for a simple grammar is that it is not clear whether (p) is a cast operator or an expression without
looking two tokens to the right, to the token after the --operator. Because most automatic parser generators support only one-
token lookahead, the Java language forbids this construction. One can always write (P) (--q) instead.

Multiplicative Operators
The so-called "multiplicative operators" ~, /, and % have the same precedence and are syntactically left-associative (they
group left-to-right).

MuiltiplicativeExpression:
UnaryExpression
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression % UnaryExpression

Each operand of the multiplicative operators must be a value of primitive arithmetic type. Binary arithmetic promotion is
performed on the operands (§ Binary Arithmetic Promotion); the compile-time type of the multiplicative expression is the
promoted type of the operands. If this promoted type is int or long, then integer arithmetic is performed,; if this promoted type is
float or double, then floating-point arithmetic is performed.

Additive Operators

The so-called "additive operators" + and - have the same precedence and are syntactically left-associative (they group left-to-
right).

AdditiveExpression:
MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

If either operand, or both, of a + operator has type String, the operation is string concatenation if exactly one operand is of type
String, the other is converted to type String before the concatenation is performed.

Otherwise, each operand of the additive operators must be a value of primitive arithmetic type. Binary arithmetic promotion is
performed on the operands (§ Binary Arithmetic Promotion); the compile-time type of the additive expression is the promoted
type of the operands. If this promoted type is int or long, then integer arithmetic is performed; if this promoted type is float or
double, then floating-point arithmetic is performed.

Relational Operators

The relational operators are syntactically left-associative (they group left-to-right), but this fact is not useful; for example, a<b<c
parses as (a<b) <c, which is always a compile-time error, because the type of a<b is always boolean and < is not an operator
on boolean values.

RelationalExpression:
ShiftExpression
RelationalExpression < ShiftExpression
RelationalExpression > Shifl[Expression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression
RelationalExpression instanceof TypeSpecifier Dimsopt

Equality Operators

The relational operators are syntactically left-associative (they group left-to-right), but this fact is only slightly useful; for
example, a==b==c parses as (a==b) ==c, and because the type of a==b is always boolean, ¢ must therefore be of type
boolean.

EqualityExpression:
RelationalExpression
EqualityExpression == RelationalExpression
EqualityExpression ! = RelationalExpression

The == (equal to) and the != (not equal to) operators are analogous to the relational operators except for their lower
precedence. (Thus a<b==c<d is true whenever a<b and c<d have the same truth-value.)

The equality operators may be used to compare two operands of arithmetic type, or two operands of boolean type, or two
operands of reference type. In all cases, al =b has the same result as ! (a==b).

Bitwise and Logical Operators

The bitwise and logical operators include the AND operator &, exclusive OR operator A, and inclusive OR operator |.These
operators have different precedence, with & having the highest precedence and | the lowest precedence. Each operator is
syntactically left-associative (each groups left-to-right). Each operator is both commutative and associative.

AndExpression:

EqualityExpression

AndExpression & EqualityExpression
ExclusiveOrExprrssion:

AndExpression

ExclusiveOrExpression » AndExpression
InclusiveOrExpression:

ExclusiveOr

InclusiveOrExpression | Exclusive OrExpression

The equality operators may be used to combine two operands of integral type or two operands of boolean type.

Conditional And Operator

The && operator is syntactically left-associative (it groups left-to-right). It is associative with respect to both side effects and
result value. It is commutative with respect to result value but not with respect to whether side effects in its operand
expressions will occur.

ConditionalAndExpression:
InclusiveOrExpression
ConditionalAndExpression && Inclusive OrExpression

Each operand of && must be of type boolean. The compile-time type of the result is boolean. The left-hand operand
expression is executed first; if its value is false, the value of the conditional-and expression is false and the right-hand operand
expression is not executed. If the value of the left-hand operand is true, then the right-hand expression is executed and its
value becomes the value of the conditional-and expression. Thus && computes the same result as & on boolean operands; it
differs only in that the right-hand operand expression is executed conditionally rather than always.

Conditional Or Operator

The operator is syntactically left-associative (it groups left-to-right). It is associative with respect to both side effects and
result value. It is commutative with respect to result value but not with respect to whether side effects in its operand
expressions will occur.

ConditionalOrExpression:
ConditionalAndExpression
ConditionalOrExpression | | ConditionalAndExpression

Each operand of Il must be of type boolean. The compile-time type of the result is boolean. The left-hand operand expression
is executed first; if its value is true, the value of the conditional-or expression is true and the right-hand operand expression is
not executed. If the value of the left-hand operand is false, then the right-hand expression is executed and its value becomes
the value of the conditional-or expression. Thus computes the same result as on boolean operands; it differs only in that the
right-hand operand expression is executed conditionally rather than always.

Assignment Operator

There are many assignment operators; all are syntactically right-associative (they group right-to-left). Thus a=b=c means a
(b=c), which assigns the value of c to b and then assigns the value of b to a.

AssignmentExpression:
ConditionalExpression
Assignment

Assignment:
UnaryExpression AssignmentOperator AssignmentExpression

AssignmentQOperator: one of
= *= [= += = <<= >>= >>>= &= A= =

The first operand of an assignment operator must be a variable, which may be a named variable (such as a local variable or a
field variable) or a computed variable (such as an array component). The compile-time type of the assignment expression is
the type of the variable. The result of the assignment expression is the value of the variable after the assignment has occurred
(but this result is not itself a variable - in this respect the Java language is like C but unlike C++).

Note that it is not possible to assign to a variable that has been declared final, because mentioning the name of the variable,
on the left-hand side of an assignment operator or anywhere else, produces its value rather than the variable itself (§ Primary
Expressions, § Field Access).

Expression
An expression is an assignment-expression:

Expression:
AssignmentExpression

(Unlike C and C++, the Java language has no comma operator.)

Constant Expression

A constant expression is an expression of primitive type that is formed from literals of primitive type; final variables whose
initialization values are constant expressions; casts to primitive types; the unary operators +, -, -, and !; the binary operators
~ 1, %, +1-l <~ <=, > >= == 1=~ A | &&, and | |; and the ternary conditional operator? :.

+1~

Constant expressions are used in interface declarations and case labels in switch statements.

Unassigned Variables

It is a compile-time error if a variable might be referenced before it has definitely been assigned or initialized. The precise
meaning of this remark will be explained in a future version of this document.

Addition and Subtraction Operators for Arithmetic Types80

The binary + operator performs addition when applied to two operands of arithmetic type, producing the sum of its operands.
Addition is a commutative operation. Integer addition is associative, but floating-point addition is not always associative.

If an integer addition overflows, then the result is the low-order bits of the mathematical sum as represented in some
sufficiently large two's-complement format. If overflow occurs, then the sign of the result will not be the same as the sign of the
mathematical sum of the two operand values.

The result of a floating-point addition is governed by the rules of IEEE arithmetic

. If either operand is NaN, the result is NaN.

. The sum of two infinities of opposite sign is NaN.

. The sum of two infinities of the same sign is the infinity of that sign.

e The sum of an infjnity and a finite value is equal to the infinite operand.

. The sum of two zeros of opposite sign is positive zero.

e The sum of two zeros of the same sign is the zero of that sign.

. The sum of a zero and a nonzero finite value is equal to the nonzero operand

. The sum of two nonzero finite values of the same magnitude and opposite sign is positive zero.

. In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, and the operands have the saem sign
or have different magnitudes, the sum is computed and rounded to the nearest representable value using IEEE 754
round-to-nearest mode. If the magnitude is too large to represent, we say the operation overflows; the result is then an
infinity of appropriate sign. If the magnitude is too small to represent, we say the operation underflows; the result is then a
zero of appropriate sign. Note that the Java language requires support of gradual underfiow as defined by IEEE 754.

The binary - operator performs subtraction when applied to two operands of arithmetic type, producing the difference of its
operands; the left-hand operand is the minuend and the right-hand operand is the subtrahend. For both integer and floating-
point subtraction, it is always the case that a-b produces the same result as 8+ (-b). Note, however, that for floating-point
operands, subtraction from zero is not the same as negation, because if x is +0.0, then 0. 0-x equals +0.0, but -x equals -0.0.
For integer values, subtraction from zero is the same as negation.)

Despite the fact that overflow, underfiow, or loss of precision may occur, execution of an arithmetic additive operator never
throws a run-time exception.

Bitwise Complement Operator

The value of the operand of the unary - operator must be a primitive value of an integral type. The operand undergoes unary
arithmetic promotion. The compile-time type of a unary bitwise-complement expression is the promoted type of the operand.
The result is the bitwise complement of the promoted value of the operand. Note that for all integer values x,-x equals (-x) -1.

Boolean Equality Operators

If one operand of an equality operator is a value of type boolean, the other operand must also be a value of type boolean. The
compile-time type of the equality expression is boolean. The boolean equality operators are commutative and associative.

The result of == is true if the operands are both true or both false; otherwise the result is false.

The result of !=is false if the operands are both true or both false; otherwise the result is true. (Thus = behaves the same as A

(§ Boolean Logical Operators) when applied to boolean operands.)

Boolean Logical Operators

If one operand of a &, A, or operator is of type boolean, the other operand must also be of type boolean. The compile-time type
of the entire expression is then boolean.

For &, the result is true if both operand values are true; otherwise the result is false.
For A, the result is true if the operand values are different; otherwise the result is false.

For , the result is false if both operand values are false; otherwise the result is true.

Casts

A unary expression that does not begin with +, -, ++, or -- and that is preceded by a cast operator (parentheses enclosing the
name of a type) is called a cast, and causes conversion of the value of the expresion to the named type. The compile-time
type of the cast expression is the type named in the cast operator. The value of the cast expression is the value of the unary
expression after conversion to the specified type.

Not all casts are permitted by the Java language; (see Casting Conversion). Some casts result in an error at compile time; for
example, it is not permitted to cast a primitive value to a reference type. Some casts can be proven at compile time always to
be correct at run time; for example, it is always correct to convert a value of a class type to the type of its superclass. Yet other
casts cannot be proven always correct or always incorrect at compile time; such casts require a test at run time.

Compilation Units

Each package consists of a number of compilation units.

Compilation Unit:
PackageStatementopt ImportStatementsopt TypeDeclarationsopt

PackageStatement:
package PackageName ;

TypeDeclarations:
TypeDeclaration
TypeDeclarations TypeDeclaration

TypeDeclaration:
ClassDeclaration
InterfaceDeclaration

If a compilation unit has no package statement, the unit is placed in a default package, which has no name. This is used on
many systems to easily write fragments of Java code in the current directory in the file system.

A compilation unit declares zero or more types, at most one of which is declared public. This restriction makes it easy for the
compiler and runtime system to find a named class within a package: if a type is public, its source code for its type bar would
typically be found in a file bar. java, and the object code for the Java Virtual Machine in the file bar. class.

Compound Assignment Operators

All compound assignment operators require both operands to be of primitive type.

An expression of the form of the form El op= E2 is equivalent to El = El op (E2) except that El is evaluated only once.

Conditional Operator

The conditional operator is syntactically right-associative (they group right-to-left) so that a?b:c?d:e?f.g means the same as a?
b: (c?d: (e?f:9)).

ConditionalExpression:
ConditionalOrExpression
ConditionalOrExpression ? Expression : ConditionalExpression

The conditional operator has three operand expressions; ? appears between the first and second expressions, and : appears
between the second and third expresssions. The first expression must be of type boolean. The compile-time types of the
second and third expressions must both be primitive arithmetic types, or must both be boolean, or must both be reference
types. (It is not permitted for either the second or the third operand expression to have type void).

. If the second and third operands have arithmetic type, then there are several cases:
. If the operands have the same type, then that is the compile-time type of the conditional expression.

. If one of the operands is of type byte and the other type short, then the compile-time type of the conditional expression is
short. (Here the Java language differs from C and C++.)

. If one of the operands is of type T where T is byte, short, or char, and the other operand is an integer constant expression
whose value is representable in type T, then the compile-time type of the conditional expression is T. (Here the Java
language differs from C and C++.)

. Otherwise, binary arithmetic promotion (§ Binary Arithmetic Promotion) is applied to their types to determine a common
promoted type, which is the compile-time type of the conditional expression.

. If the second and third operands are of type boolean, then the compile-time type of the conditional expression is boolean.
. If the second and third operands are both null, then the result of the conditional expression is null.

. If one of the second and third operands is null and the type of the other is a
reference type, then the compile-time type of the conditional expression is that reference type.

o If the compile-time types of the second and third operands are (possibly different) reference types, then it must be
possible to convert one of the types to the other type (call this type T) by assignment conversion (§ Assignment
Conversion); the compile-time type of the conditional expression is then T. It is a compile-time error if neither type can be
assigned to the other type.

At run time, for each execution of the conditional expression, the first operand expression is executed first; its value is then
used to choose one of the second and third operand expressions for execution.

. If the value of the first operand is true, the second operand expression is chosen.
. If the value of the first operand is false, the third operand expression is chosen.

The chosen operand expression is then executed and the resulting value is converted to the compile-time type of the
conditional expression as determined by the rules stated above. The operand expression not chosen is not executed for that
particular execution of the conditional expression.

Conversions

In Java, there are four contexts for conversion: casting, assignment, method call, and arithmetic promotion. Casting is the
most general context; if a conversion is permitted at all within Java, it can be achieved by casting. Assignment and method call
allow only certain conversions; however, assignment and method call allow the same subset of the possible conversions, so it
is convenient to speak of "assignment conversion" with the understanding that it applies also to method calls.

Arithmetic promotion is not a general feature of Java, but is a property of the specific definitions of the built-in arithmetic
operations; there are two kinds of arithmetic promotion: unary arithmetic promotion and binary arithmetic promotion. (The
analogous conversions in C are called "the usual unary conversions" and "the usual binary conversions".) Please note that not
all binary operators perform the binary arithmetic promotion.

Conversions never convert from a primitive value to a reference value or from a reference value to a primitive value.

Division Operator

The binary l/operator performs division, producing the quotient of its operands. The left-hand operand is the dividend and the
right-hand operand is the divisor.

Integer division rounds toward 0; that is, the quotient produced for integer operands n and d is an integer value q that is
negative if and only if exactly one of n and d is negative and whose magnitude is as large as possible while satisfying Id - gl
Inl . There is one special case that does not satisfy this rule: if the dividend is the negative integer of largest possible
magnitude for its type, and the divisor is -1, then integer overflow occurs and the result is equal to the dividend; despite the
overflow, no exception is thrown in this case.

On the other hand, if the value of the divisor in an integer division is 0, then an ArithmeticException is thrown.

The result of a floating-point division is governed by the rules of IEEE arithmetic:

. If either operand is NaN, the result is NaN.

. If neither operand is NaN, the sign of the result is positive if both operands have the same sign, negative if the operands
have different signs.

. Division of an infinity by an infinity results in NaN.
. Division of an infinity by a finite value results in a signed infinity, with the sign producing rule just given.
. Division of a finite value by an infinity results in a signed zero, with the sign producing rule just given.

. Division of a zero by a zero results in NaN; division of zero by any other finite value by a zero results in a signed zero,
with the sign producing rule just given.

. Division of a non-zero finite value by a zero results in a signed infinity, with the sign producing rule just given.

. In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the quotient is computed and rounded
to the nearest representable value using IEEE 754 round to the nearest mode. If the magnitude is too large to represent,
we say the operation overflows; the result is then an infinitv of appropriate sign. If the magnitude is too small to represent,
we say the operation underfiows; the result is then a zero of apptopriate sign. Note that the Java language requires
support of gradual underfiow as defined by IEEE 754.

Despite the fact that overflow, underfiow, division by zero, or loss of precision may occur, execution of a floating-point division
operator / never throws a run-time exception.

Field Access through a Qualified Name

If a primary expression is a qualified name of the form
TypeName . Identifier

where the TypeName is itself a simple or qualified name that names a class or interface, then it the Identifier is resolved as a
field variable (§ Name Resolution) within the specified class or interface.

If the field is static, the field access refers to a field associated with the class or interface whose definition contains the
declaration of the field. If the field is not static, the field access must occur within the definition of a method that is not static,
and the indicated tvpe must be the class in whose body the field access appears, or one of its superclasses; the field access
refers to a field within the current object; in this case, the qualified name TypeName . Identifier is treated as if it had been
written ((TypeName) this) . Identifier.

Field Access through a Simple Name

If a primary expression is an identifier that does not name a local variable, then it is resolved as a field variable (§ Name
Resolution) within the class whose definition contains the primary expression. In effect, a simple name xxx is treated as if it
has been written this. xxx.

If the field is static, the field access refers to a field associated with the class or interface whose definition contains the
declaration of the field. If the field is not static, the field access must occur within the definition of a method that is not static,
and it refers to a field within the current object (as declared in the class whose definition contains the primary expression or
one of its superclasses).

Field Access through an Object or Array Reference

FieldAccess:
PrimaryExpression . Identifier

A primary expression followed by a dot followed by an identifier indicates field access.

The compile-time type of the primary expression must be a reference type T. The identifier is resolved as a field variable (§
Name Resolution) within type T, and must be the name of a field variable of the class, interface, or array type, or a compile-
time error results. (Note that an array type has exactly one named field variable: length (§ Array Length).)

If the field is static, the field access refers to a field variable associated with the class or interface whose definition contains the
declaration of the field. If the field is not static, the field access must occur within the definition of a method that is not static,
and it refers to a field variable within the current object (as declared in some class that is necessarily T or one of its
superclasses).

Integer Bitwise Operators

If one operand of a &, A, or | operator is a value of primitive integral type, the other operand must also be a value of (possibly
some other) primitive integral type. Binary arithmetic promotion is performed on the operands (§ Binary Arithmetic Promotion);
the compile-time type of the entire expression the promoted type of the operands.

If the operator is &, the result is the bitwise AND function of the operands.
If the operator is A, the result is the bitwise exclusive OR function of the operands.

If the operator is , the result is the bitwise inclusive OR function of the operands.

Iteration Statements

Iteration Statements
Iteration statements specify looping:

Iteration Statements

Iteration Statements
The do Statement

Iteration statements specify looping:

The while Statement

In the while statement the substatement is executed repeatedly until the value of the expression, which must be of type
boolean, becomes false. The test, including all side effect from evaluation of the expression, takes place before each
execution of the substatement. The substatement may be executed zero times.

The do Statement

In the do statement the substatement is executed repeatedly until the value of the expression, which must be of type boolean,
becomes false. The test, including all side effect from evaluation of the expression, takes place after each execution of the
substatement. The substatement is executed at least once.

The for Statement
The for statement

for (Forlnit Expressionopt ; Forincropt) Statement

is equivalent to

Forlnit

while (Expressionopt,) {
Statement
Forincr ;

except that a continue in Statement will execute Forlncr before re-evaluating Expression. Thus the first statement specifies
initialization for the loop; the first expression specifies a test, made before each iteration, such that the loop is exited when the
expression becomes false; the second expression often specifies incrementing that is done after each iteration.

Either or both of the expressions may be omitted. A missing Expression makes the implied while equivalent to while (true).

Logical Complement Operator

The value of the operand of the ! operator must be a primitive value of type boolean. The result is a value of type boolean. The
result is true if the operand value is false and false if the operand value is true.

Multiplication Operator

The binary * operator performs multiplication, producing the product of its operands. Multiplication is a commutative operation.
Integer multiplacation is associative, but floating-point multiplication is not always associative.

If an integer multiplication overflows, then the result is the low-order bits of the mathematical product as represented in some
sufficiently large two's-complement format. If overflow occurs, then the sign of the result may not be the same as the sign of
the mathematical product of the two operand values.

The result of a floating-point multiplication is governed by the rules of IEEE arithmetic:

. If either operand is NaN, the result is NaN.

. If neither operand is NaN, the sign of the result is positive if both operands have the same sign, negative if the operands
have different signs.

o Multiplication of an infinity by a zero results in NAN.

. Multiplication of an inftnity by a finite value results in a signed infnity, with the sign producing rule just given.

. In the remaining cases, where neither an infinity or NaN is involved, the product is computed and rounded to the nearest
representable value using IEEE 754 round-to-nearest mode. If the magnitude is too large to represent, we say the
operation overflows; the result is then an infinity of appropriate sign. If the magnitude is too small to represent, we say the
operation underflows; the result is then a zero of appropriate sign. Note that the Java language requires support of
gradual underflow as defined by IEEE 754.

Despite the fact that overflow, underflow, or loss of precision may occur, execution of a multiplication operator * never throws a
run-time exception.

null

The keyword null denotes a privileged polymorphic value representing the absence of a reference. Its compile-time type is, in
effect, a subtype of every reference type.

Numerical Comparison Operators

Each operand of a numerical comparison operator must be a value of primitive arithmetic type. Binary arithmetic promotion is

performed on the operands (§ Binary Arithmetic Promotion); the compile-time type of the comparison expression is boolean. If
the promoted type of the operands is int or long, then signed integer comparison is performed; if this promoted type is float or

double, then floating-point comparison is performed.

Floating-point comparison is performed in accordance with IEEE 754:

If either operand is NaN, the result is false.

All values other than NaN are ordered, with negative infinity less than all finite values, and positive infinity greater than all
finite values.

Positive zero and negative zero are considered equal. Therefore -0.0<0 - O is false, for example, but -0. 0<=0 .0 is true.

Subject to these considerations for floating-point numbers, the following rules then hold for integer operands or for floating-
point operands other than NaN:

The value produced by the <operator for is true if the value of the left-hand operand is less than the value of the right-
hand operand, and otherwise is false.

The value produced by the <= operator is true if the value of the left-hand operand is less than or equal to the value of the
right-hand operand, and otherwise is false.

The value produced by the > operator is true if the value of the left-hand operand is greater than the value of the right-
hand operand, and otherwise is false.

The value produced by the >= operator is true if the value of the left-hand operand is greater than or equal to the value of
the right-hand operand, and otherwise is false.

Numerical Equality Operators

If one operand of an equality operator is a value of primitive arithmetic type, the other operand must also be a value of
(possibly some other) primitive arithmetic type. Binary arithmetic promotion is performed on the operands (§ Binary Arithmetic
Promotion); the compile-time type of the equality expression is boolean. If the promoted type of the operands is int or long,
then an integer equality test is performed; if this promoted type is float or double, then a floating-point equality test is
performed. The numeric equality operators are commutative.

Floating-point equality testing is performed in accordance with IEEE 754:

o If either operand is NaN, the result of == is false but the result of ! = is true. (Indeed, the test x! =x is true if and only if the
value of x is NaN.)

. Positive zero and negative zero are considered equal. Therefore -0. 0==0 .0 is true, for example.

. Otherwise, two distinct floating-point values are considered unequal. In particular, There is one value representing
positive infinity and one value representing negative infity; each compares equal only to itself, and each compares
unequal to all other values.

Subject to these considerations for floating-point numbers, the following rules then hold for integer operands or for floating-
point operands other than NaN:

. The value produced by the == operator is true if the value of the left-hand operand is equal to the value of the right-hand
operand, and otherwise is false.

. The value produced by the = operator is true if the value of the left-hand operand is not equal to the value of the right-
hand operand, and otherwise is false

All other cases, including any equality comparisons involving boolean variables or values, result in compile-time errors.

Object Equality Operators

If one operand of an equality operator is a value of a reference type, the other operand must also be a value of a reference
type. The compile-time type of the equality expression is boolean. The object equality operators are commutative.

It is a compile-time error if it is impossible to convert the compile-time type of one operand to the compile-time type of the other
by a casting conversion (§ Casting Conversion). (The run-time values of the two operands would necessarily be unequal.)

The result of == is true if the operands are both null or both refer to the exact same object or array; otherwise the result is
false.

The result of != is false if the operands are both null or both refer to the exact same object or array; otherwise the result is true.

Note that while == may be used to compare references of type String, the equality test determines whether or not the two
operands refer to the same exact String object. The result will be false if the operands are distinct String objects, even if they
contain the same sequence of characters. The contents of two strings s and t can be tested for equality by the method call
s.equals (t).

Postfix Decrement Operator

A primary expression followed by a -- operator is a postfix decrement expression. The primary expression must denote a
variable of an arithmetic type. The compile-time type of the postfix decrement expression is the type of the variable. The value
1, converted to the type of the variable, is subtracted from the value of the variable and stored back into the variable. The
value of the postfix decrement expression is the value of the variable before the new value is stored.

Postfix Increment Operator

A primary expression followed by a ++ operator is a postfix increment expression. The primary expression must denote a
variable of an arithmetic type. The compile-time type of the postfix increment expression is the type of the variable. The value
1, converted to the type of the variable, is added to the value of the variable and stored back into the variable. The value of the
postfix increment expression is the value of the variable before the new value is stored.

Prefix Decrement Operator

A primary expression preceded by a -- operator is a prefix decrement expression. The primary expression must denote a
variable of an arithmetic type. The cornpile-time type of the prefix decrement expression is the type of the variable. The value
1, converted to the type of the variable, is subtracted from the value of the variable and stored back into the variable. The
value of the prefix decrement expression is the value of the variable after the new value is stored.

Prefix Increment Operator

A primary expression preceded by a ++ operator is a prefix increment expression. The primary expression must denote a
variable of an arithmetic type. The compile-time type of the prefix increment expression is the type of the variable. The value 1,
converted to the type of the variable, is added to the value of the variable and stored back into the variable. The value of the
prefix incement expression is the value of the variable after the new value is stored.

Array Types

Variables of array type can hold references to arrays

Remainder

The binary % operator is said to yield the remainder of its operands from an (implied) division; the left-hand operand is the
dividend and the right-hand operand is the divisor.

Integer remainder produces a result value such that (a/b) *b+ (a%b) is equal to a. Note that this identity holds even in the
special case that the dividend is the negative integer of largest possible magnitude for its type and the divisor is -1 (the
remainder is 0). It follows from this rule is that the result of the remainder operation can be negative only if the dividend is
negative, and can be positive only if the dividend is positive; moreover, the magnitude of the result is always less than the
magnitude of the divisor. If the value of the divisor for an integer remainder operator is 0, then an ArithmeticException is
thrown.

The result of a floating-point remainder operation as computed by the % operator is not the same as the so-called "remainder
operation defined by IEEE 754. (The IEEE 754 "remainder" operation computes the remainder from a rounding division, not a
truncating division, and so its behavior is not analogous to that of the usual integer remainder operator. The Java language
defines 0/0 on floating-point operations to behave in a manner analogous to that of the Java integer remainder operator; this
may be compared with the C library function fmod. The IEEE 754 remainder operation may be computed by the Java library
routine Math. IEEEremainder.

The result of a Java floating-point remainder operation is governed by these rules:

. If either operand is NaN, the result is NaN.

. If neither operand is NaN, the sign of the result equals the sign of the dividend.

. If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.

o If the dividend is finite and the divisor is an infinity, the result equals the dividend.
. If the dividend is a zero and the divisor is finite, the result equals the dividend

. In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r from a
dividend n and a divisor d is defined by the mathematical relation r = n - (d. q) where q is an integer that is negative only if
n/d is negative and positive only if n/d is positive, and whose magnitude is as large as possible without exceeding the
magnitude of the true mathematical quotient of n and d.

Despite the fact that division by zero may occur, execution of a floating-point remainder operator % never throws a run-time
exception. Note that overflow, underflow, or loss of precision cannot occur.

Shift Operators

The shift operators include the left shift «, the signed right shift », and the unsigned right shift »>; they are syntactically left-
associative (they group left-to-right). The left-hand operand of a shift operator is the value to be shifted; the right-hand operand
specifies the shift distance.

ShiftExpression:
AdditiveExpression
Shift Expression « AdditiveExpression
ShiftExpression » AdditiveExpression
ShiftExpression »> AdditiveExpression

Each operand of a shift operator must be a value of primitive integral type. Binary arithmetic promotion (§ Binary Arithmetic
Promotion) is not performed on the operands; rather, unary arithmetic promotion (§ Unary Arithmetic Promotion) is performed
on each operand separately, and the compile-time type of the shift expression is the promoted type of the left-hand operand.

If the promoted type of the left-hand operand is int, only the five lowest-order bits of the right-hand operand are used as the
shift distance. It is as if the right-hand operand were subjected to a bitwise logical and operator & (§ Conditional-And Operator)
with the mask value Ox1f. The shift distance actually used is therefore always in the range 0 to 31, inclusive.

If the promoted type of the left-hand operand is long, only the six lowest-order bits of the right-hand operand are used as the
shift distance. It is as if the right-hand operand were subjected to a bitwise logical and operator & (§ Conditional-And Operator)
with the mask value 0x3 f. The shift distance actually used is therefore always in the range 0 to 63, inclusive.

The value of n«s is n left-shifted s bit positions; this is equivalent (even if overflow occurs) to multiplication by two to the power
s).

The value of n»s is n right-shifted s bit positions with sign-extension. The resulting value is L n/2] (For non-negative value of n,
this is equivalent to truncating integer division, as computed by the integer division operator /, by two to the power s.)

The value of n»>s is n right-shifted s bit positions with zero-extension. If n is positive, the result is the same as that of n»s; if n
is negative, the result is equal to that of the expression (n»s) + (2« (k-s-i)), where k is 32 if the type of the left-hand operand is
int and 64 if its type is long.

Simple Assignment Operator
The simple assignment operator converts the value of its right-hand operand to the type of the left-hand variable and stores
this converted value into the variable. It is a compile-time error if the right-hand operand cannot be converted to the type of the

variable by assignment conversion (§3.3).

String Concatenation Operator

If the value of either operand of + is a reference to an object of type String, then the + operator behaves as if it converts the
other operand to a reference to a String object (if it is not already a reference to a String object), and returns a reference to an
object of type String that is the concatenation of the two operand strings.(The qualification "as if," is present because an
implementation may choose to perform the conversion and concatenation in one step so as to avoid allocating and then
discarding an intermediate String object.)

A operand that is not a reference to a String is converted to a String according to the compile-time type of the operand:

. If String, but the value is null, then the literal string "null" is the result.
. If a reference type other than String:
. If the value is null, then the literal string null is the result.

. Otherwise, the toString method of the object is invoked with no arguments; this method returns a reference value of type
String, which is used as the result of the conversion unless it is the null value, in which case the literal string "null" is the
result. (The class Object defines such a toString method, sothis method is always available.)

. If a primitive integral type, the value is converted to a string representing the value in decimal notation, preceded by a -
sign if the value is negative. If the value is nonzero, the first digit is nonzero; if the value is zero, a single digit 0 is
produced.

. If a primitive floating-point type, has floating-point type then this value is converted.

. If type char, then the operand value is converted to a String of length one containing the operand value as its single
character.

. If type boolean, then the result is either the literal string "true" or the literal string "false".

this and super

The keywords this and super may be used only within the body of a non-static method. They have the same value, which is a
reference to the object for which the method was invoked; but they have different compile-time types.

The compile-time type of this is the class (call it C) within which the method body appears. The compile-time type of super is
the immediate superclass of C, as indicated in the extends clause of the definition of C. The keyword super may not appear
within the class Object, which has no superclass. The run-time type of the value, of course, maybe C or any subclass of C,
unless the class C is final (and therefore has no proper subclasses), in which case the run-time type is necessarily C.

There are two situations, involving method invocation (§ Method Calls) and constructor invocation (§ The Body of a
Constructor), in which the keyword super plays a special role. In all other situations, the keyword super is entirely equivalent to
a cast (§ Casts) of the keyword this to the type of the immediate superclass.

Type Comparison Operator instanceof

The compile-time type of the left-hand operand of the instanceof operator must be a class or interface type; otherwise a
compile-time error occurs.

The second operand of the instanceof operator is not really an expression, but instead must specify a reference type.

The instanceof operator returns false if the first operand denotes null. (The rationale is that while null can be assigned to a
variable of any reference type, it is not an object and therefore not an "instance" of a type.)

The instanceof operator returns true if the run-time type of the first operand allows it to represent an object of the second
operand's type, and false otherwise. Equivalently, if the (run-time type of the) first operand can be cast to the second type
without raising a ClassCastException then instanceof is true else false. The prototypical use of instanceof is:

if (thermostat instanceof MeasuringDevice)
(MeasuringDevice dev = (MesursuringDevice) thermostat;

Here we may know that thermostat is a device (a superclass of MeasuringDevice), but may not know if it is, more specifically,
a MeasuringDevice. The instanceof operator protects us from the ClassCastException which would result if the thermostat
could not represent a MeasuringDevice, i.e. could not be assigned to dev.

If there is no possibility that the instanceof can return true then a compile-time error results. This can occur, for example, in:

class A extends Object;
class B extends Object;
A g

if'ia instanceof B) 1 impossible and illegal
Bb (B)a; /I always an exception

Given

Tt
if (t instanceof U) {
Uu= ()t

with T and U distinct, then

. if U is a class type, then instanceof is checking that the run-time type of t is a subclass of U, which can be true only when
T is a superclass of U

. if U is an interface type, then instanceof is checking that U is implemented by the run-time type of t or by a superclass of
the run-time type of T. If this is known to be true and the check unnecessary, then this is a compile-time error. Since any
class can implement an interface this can never be proven false until run-time.

Unary Minus Operator

The value of the operand of the unary - operator must be a primitive value of an arithmetic type. The operand undergoes unary
arithmetic promotion . The compile-time type of a unary plus expression is the promoted type of the operand. The result is the
arithmetic negation of the promoted value of the operand.

For integer values, negation is the same as subtraction from zero. Because Java uses two's-complement representation for
integers, and the range of two's-complement values is not symmetric, the negation of the maximum negative int or long results
in that same maximum negative number. Despite the fact that overflow has occurred, no exception is thrown. Note that, for all
integer values X, -xequals (-x) +1.

For floating-point values, negation is not the same as subtraction from zero, because if x is +0.0, then 0. 0-xequals +0.0, but -
xequals -0.0. Unary minus merely inverts the sign of a floating-point number. Special cases of interest:

. If the operand is Nan, the result is NaN (recall that NaN has no Sign).
. If the operand is an infinity, the result is the infinity of opposite sign.
. If the operand is a zero, the result is the zero of opposite sign.

Unary Plus Operator

The value of the operand of the unary + operator must be a primitive value of an arithmetic type. The operand undergoes
unary arithmetic promotion. The compile-time type of a unary plus expression is the promoted type of the operand. The result
is the promoted value of the operand.

(§ Using this

0,<Using this super and Superclass Type Names>

JDK Documentation Available with Visual Cafe

In addition to the documentation for Visual Cafe, Documentation for the JDK is provided on the
following document topics and methods:

Topic File Type
Changes text
Specifications of new features for JDK 1.1 HTML
Tools documentation HTML
Complete class list HTML
How to update 1.0 source files to 1.1 HTML

Changes is located in the JAVA directory created during installation.
To access any HTML files, use Index.HTML located in the JAVA\DOC directory on your CD.
All HTML files are duplicates of JDK 1.1 documentation provided by Sun Microsystems.

New Features in JDK 1.1

AWT Enhancements

|0 Enhancement

Inner Classes
Internationalization

JAR File Format

JDBC - Java Database Connectivity
Java Native Interface
JavaBeans

Math Package
Miscellaneous

Networking Enhancements
Object Serialization
Performance Enhancements
Reflection

Remote Method Invocation

Security and Signed Applets

AWT Enhancements

Enhancements are aimed at solving some major AWT (Abstract Window Toolkit) deficiencies with a strong focus on quality and
performance. The AWT enhancements will include the beginnings of a richer infrastructure for larger-scale GUI development,
including APIs for printing, easier/faster scrolling, popup menus, clipboard (copy/paste), cursors per component, a delegation-
based event model, imaging and graphics enhancements, and more flexible font support for internationalization. Additionally, the

Windows (Win32) version of AWT has been completely re-written for improved speed, quality, and consistency with the other
platforms.

10 Enhancements

The 1/0 package has been extended with character streams, which are like byte streams except that they contain 16-bit Unicode
characters rather than eight-bit bytes. Character streams make it easy to write programs that are not dependent upon a specific
character encoding, and are therefore easy to internationalize. Nearly all of the functionality available for byte streams is also
available for character streams.

Inner Classes

Provides a simpler syntax for the creation of adapter classes. An adapter class is a class that implements an interface (or class)
required by an API, and delegates the flow of control back to an enclosing "main" object. The new language features apply to
Java the concepts of lexical scoping and block structure found in many languages.

Internationalization

Allows the development of localizable applets. Enhancements include the display of UNICODE characters, a locale mechanism,
localized message support, locale-sensitive date, time, time zone and number handling, collation services, character set
converters, parameter formatting, and support for finding character/word/sentence boundaries.

JAR File Format

JAR (Java Archive) is a platform-independent file format that aggregates many files into one. Multiple Java applets and their
requisite components (.class files, images and sounds) can be bundled in a JAR file and subsequently downloaded to a browser
in a single HTTP transaction, greatly improving the download speed. The JAR format also supports compression, which reduces
the file size, further improving the download time. In addition, the applet author can digitally sign individual entries in a JAR file to
authenticate their origin. It is fully backward-compatible with existing applet code and is fully extensible, being written in Java.

JDBC - Java Database Connectivity

Java Database Connectivity is a standard SQL database access interface, providing uniform access to a wide range of relational
databases. It also provides a common base on which higher level tools and interfaces can be built. This comes with an "ODBC
Bridge" (except on Mac 68K). The Bridge is a library which implements JDBC in terms of the ODBC standard C API.

Java Native Interface

A standard programming interface for writing Java native methods and embedding the Java virtual machine into native
applications. The primary goal is binary compatibility of native method libraries across all Java virtual machine implementations
on a given platform.

JavaBeans

The JavaBeans APIs define a software component model for Java allowing third party ISVs to create and ship Java components
that can be composed together into applications by end users.

Math Package

The math package provides two new classes: BigInteger and BigDecimal. Biginteger numbers are immutable arbitrary-precision
integers, which provide analogs to all of Java's primitive integer operators, and all relevant static methods from java.lang.Math.
Additionally, Biginteger numbers provide operations for modular arithmetic, GCD calculation, primality testing, prime generation,
single-bit manipulation, and a few other odds and ends. BigDecimal numbers are immutable, arbitrary-precision signed decimal
numbers, suitable for monetary calculations. BigDecimal numbers provide operations for basic arithmetic, scale manipulation,
comparison, format conversion and hashing.

Miscellaneous

The @deprecated tag

Accessing Resource Files
Additions to APPLET Tag (HTML)
Byte, Short and Void Classes

Networking Enhancements

Support for selected BSD-style socket options in the java.net base classes. With JDK 1.1, Socket and ServerSocket are non-
final, extendable classes. New subclasses of SocketException have been added for finer granularity in reporting and handling
network errors. The class MulticastSocket moves from sun.net to java.net. Also includes general performance improvements and
bug fixes.

Object Serialization

Object Serialization extends the core Java Input/Output classes with support for objects. Object Serialization supports the
encoding of objects and the objects reachable from them into a stream of bytes and the complementary reconstruction of the
object graph from the stream. Serialization is used for lightweight persistence and for communication via sockets or Remote
Method Invocation (RMI). The default encoding of objects protects private and transient data, and supports the evolution of the
classes. A class may implement its own external encoding and is then solely responsible for the external format.

Performance Enhancements

Interpreter loop in assembly code on Win32 and Solaris/Sparc.
Non-contiguous heap support on Mac.

Monitor speed-ups.

Garbage collection of classes.

AWT peer class re-write for Win32.

JAR (Java Archive) bundling of resources for a single HTTP transaction

Reflection

Enables Java code to discover information about the fields, methods and constructors of loaded classes, and to use reflected
fields, methods, and constructors to operate on their underlying counterparts on objects, within security restrictions. The API
accommodates applications that need access to either the public members of a target object (based on its runtime class) or the
members declared by a given class.

Remote Method Invocation

RMI enables the programmer to create distributed Java-to-Java applications, in which the methods of remote Java objects can
be invoked from other Java virtual machines, possibly on different hosts. A Java program can make a call on a remote object
once it obtains a reference to the remote object, either by looking up the remote object in the bootstrap naming service provided
by RMI or by receiving the reference as an argument or a return value. A client can call a remote object in a server, and that
server can also be a client of other remote objects. RMI uses Object Serialization to marshal and unmarshal parameters and
does not truncate types, supporting true object-oriented polymorphism.

Security and Signed Applets

The Java Security API is designed to allow developers to incorporate both low-level and high-level security functionality into their
Java applications. The first release of Java Security in JDK 1.1 contains a subset of this functionality, including APIs for digital
signatures and message digests. In addition, there are abstract interfaces for key management, certificate management and
access control. Specific APIs to support X.509 v3 certificates and other certificate formats, and richer functionality in the area of
access control, will follow in subsequent JDK releases.

JDK 1.1 also provides a tool that can sign Java ARchive (JAR) files, which can contain classes and other data (such as images
and sounds). The appletviewer allows any downloaded applets in JAR files signed (using the tool) by a trusted entity to runwith
the same full rights as local applications. That is, such applets are not subject to the "sandbox" restrictions of the original Java
security model. Later releases will provide more sophisticated security policies, including greater granularity in the allowable trust
levels.

The @deprecated tag

Used in documentation comments for unambiguously marking classes, methods and fields that have

been superseded by new APIs. The compiler issues a warning when it processes source code that
uses a deprecated API feature.

Accessing Resource Files

APIs that provide a mechanism for locating resource files in a way that is independent of the location of the resources.
For example, this mechanism can locate a resource file whether it is an applet loaded from the net using multiple HTTP
connects, an applet loaded using JAR files, or a "library" installed in the CLASSPATH.

Additions to APPLET Tag (HTML)
Enhancements of the <APPLET> tag used in HTML.

Byte, Short and Void Classes

Bytes and shorts are accommodated as wrapped numbers by adding new classes Byte and Short.
The abstract class Number gets two new concrete methods: byteValue and shortValue; the default
implementations of these use intValue method. Also includes a new class Void that is an
uninstantiable placeholder class.

