
Jato Getting Started
VERSION 97.02.05

Copyright Ó 1997 Sybase, Inc. and its subsidiaries. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc. and its subsidiaries.

PowerBuilder, Powersoft, S-Designor, SQL Smart, and Sybase are registered trademarks of Sybase,
Inc. and its subsidiaries. AppModeler, InfoMaker, the Column Design, ComponentPack, DataArchitect,
DataExpress, Data Pipeline, DataWindow, MetaWorks, ObjectCycle, Optima++, PowerBuilder
Foundation Class Library, PowerScript, PowerTips, Powersoft Portfolio, Powersoft Professional,
ProcessAnalyst, SDP, StarDesignor, Sybase SQL Anywhere, Watcom, Watcom SQL, Watcom SQL
Server, and web.works are trademarks of Sybase, Inc. and its subsidiaries. Certified PowerBuilder
Developer and CPD are service marks of Sybase, Inc. and its subsidiaries. DataWindow is a
proprietary technology of Sybase, Inc. (U.S. patent pending).

All other company and product names used herein may be the trademarks or registered trademarks of
their respective companies.

Information in this manual may change without notice and does not represent a commitment on the
part of Sybase, Inc. and its subsidiaries.

 About this guide
 Part I. Fundamentals

 Jato Getting Started
 About this guide

This guide describes the Java development environment which Powersoft is currently referring to using
the code name Jato. The guide assumes that you are familiar with the basic principles of using
Windows, including how to:

· Start a Windows program.

· Reposition, resize, and close windows.

· Create, open, copy, and delete files and folders.

· Point, click, double-click and drag with a mouse or other pointing device.

If you are not familiar with such features, consult the Windows documentation (for example, Introducing
Microsoft Windows 95).

This guide also assumes that you are familiar with the Java programming language.

 Jato Getting Started
 Part I. Fundamentals

This part introduces you to programming with Jato.

 Chapter 1. Introduction
 Chapter 2. A first application
 Chapter 3. A simple database application
 Chapter 4. Tools and concepts

 Jato Getting Started

 Part I. Fundamentals
 Chapter 1. Introduction

This chapter tells you about Jato, how to install it, and how to use the documentation.

 Description
 Installing Jato
 Documentation overview
 Getting help while you work
 Sample projects
 Document conventions

 Jato Getting Started

 Part I. Fundamentals

 Chapter 1. Introduction
 Description

Powersoft Jato is a tool for creating applications rapidly and easily:

1. You design a user interface by creating a number of forms. For each form, you create objects like
buttons and text boxes from a standard palette of components, then arrange the objects to produce
what the user will see when the program runs.

2. You set up the properties of the objects you have placed on each form. Properties control the
behavior and appearance of the objects. For example, properties let you set the color of an object,
the text used to label an object, and so on.

3. You write Java code to handle the possible events that may occur during program execution. For
example, you might write a routine to specify what happens when the user clicks a particular button
or types text into a text box. You can produce Jato code with a minimum of typing by using drag-
and-drop code generation.

4. At any point during design and coding, you can run your program to test the interface and debug
the code.

With Jato, you develop programs using components and objects:

· Components are classes in the Jato component library. Components may be things the user can
see (such as check boxes, list boxes and buttons), or things that are internal to the program (such
as timers and database queries).

· An object is an actual instance of a component.

For example, text boxes on the Component palette are represented by the TextBox component. The
actual text boxes on a form are all objects.

Every object can respond to a number of events. Writing Jato programs is a matter of writing
appropriate event handler routines for objects.

Jato and Java
You can use Jato to write sophisticated programs, even if you are not an experienced Java
programmer. The reason is the Jato component library: a collection of Java class definitions that make
it easy to work with the Windows environment.

· You don’t need to understand the low-level workings of the Java library.

· You don’t have to be able to define a Java class.

· You just have to learn a few simple techniques for using the library components that Jato provides.

At the same time, experienced Java programmers can use the full facilities of Java whenever
necessary. The Jato version of Java is not a “toy” or an artificial language that can only be used with
one product—it is a fully standardized implementation of Java. Code written for another Java
implementation can be ported to Jato, just as you would to any version of Java.

Jato provides the best of both worlds: a simple way to produce application programs using a
comprehensive component library; and the full power of a standardized programming language for
those with more far-reaching requirements.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 1. Introduction
 Installing Jato

When you install Jato, the setup program asks you to specify installation options, then creates folders,
copies files and updates your Windows configuration.

¨ To install Jato:
1. Insert the Powersoft Jato CD into your CD-ROM drive.

2. If the Jato installation program does not start automatically, start the Setup application on the
Powersoft Jato CD-ROM.

3. Follow the instructions in the installation program.

Once the installation program has finished setting up Jato, you should read the important last-minute
information in the ReadMe help file.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 1. Introduction
 Documentation overview

Jato Professional includes the following printed manuals:

· Getting Started: This manual—installing Jato, writing simple applications, and learning the basics
of Java.

· Programmer’s Guide: An explanation of how to use Jato to perform common and advanced
programming tasks.

These manuals are also available online, to make it easy for you to look up information quickly.

Important: The online documentation contains the most up-to-date information about Jato. Therefore it
is more authoritative than the printed version of any manual.

, Jato includes an extensive library of online documentation. This includes:

· Jato Component Library Reference, providing full details on every class in the Jato component
library including the standard Java library that is provided with Jato.

· Documentation on all other parts of the Jato package.

The Jato program group and the Jato Master Help contents tab list the online documentation that is
included in the Jato package.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 1. Introduction
 Getting help while you work

In addition to online and printed manuals, Jato provides context sensitive help that explains how to use
the software.

You can invoke context sensitive help in a variety of ways:

· Click the question mark button at the top right of a dialog box, then click part of the dialog box. Jato
provides information about the part that you clicked on.

· Use the right mouse button to click on an item on the screen. If the context menu has a What's
This? menu item, click it. Jato provides information about the part that you clicked on.

· Select something on the screen and press F1. This provides a description of the purpose and use
of the selected item.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 1. Introduction
 Sample projects

Jato comes with a number of sample projects that you may like to examine or experiment with. For
information about the supplied samples, look for Jato Samples in the Powersoft Jato folder on your
desktop or under the Windows Start menu.

Note: You will only be able to find samples under your Jato folder if you installed the samples. If you
did not install samples originally and decide that you want to add them, run the Jato installation
process again.

¨ To load a sample project:
1. In the File menu of the main Jato menu bar, click Open Project. This displays the Open Project

dialog box that lets you choose the project you want to open.

2. Use the dialog box to find the main Jato folder.

3. Double-click the folder icon for Samples. This displays a new list of folders, corresponding to
various sample programs.

4. Double-click one of the folder icons, making sure you double-click the icon, not the folder name.
This displays the contents of the associated folder.

5. Double-click the file in this folder. (The name of this file should be the same as the name of the
folder, with the extension .WXP added.)

When you finally double-click this project file, Jato loads the associated sample project. You can run
this program in the usual way to see how it works. You can also examine the properties of each object
on the program’s forms and examine the event handlers for these objects.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 1. Introduction
 Document conventions

This Getting Started guide uses the following typographic conventions.

Typeface or
symbol

Meaning

Monospace
type

A monospaced font is used for code or for
anything you must type. It is also used for
the names of files and folders.

Bold face Bold face is used for menus and other
interface elements such as buttons and
labels. It is also used for the names of
components, Java classes, methods and
events.

Italics Italicized text is used to emphasize words
such as new terms, the names of object
properties and for text that is acting as a
placeholder.

SMALL CAPITALS Small capitals are used for the names of
keys and combinations of keys, such as
ENTER or SHIFT.

¨ This symbol denotes the beginning of a
procedure for performing a task.

%%% This symbol is used in beta documentation
to indicate areas that are still under
development. Either the appropriate
documentation has not been written, or it
is subject to change before the product is
finalized.

Important: A paragraph placed in a box often describes an exception to general principles given in the
main body of the text.

You and the user
When the documentation contains a phrase like “you click the OK button”, the word “you” refers to the
person using Jato to develop a program. When the documentation contains a phrase like “the user
clicks the OK button”, “the user” refers to the person who will use the programs you develop using
Jato.

Using the mouse
Unless specified otherwise, you use the left button in all actions with the mouse. For example, if the
guide tells you to click or double-click an object on the screen, you use the left mouse button. Similarly,
you use the left mouse button for all drag-and-drop operations, unless the documentation explicitly
says to use a different button.

 Jato Getting Started

 Part I. Fundamentals
 Chapter 2. A first application

This chapter guides you through the creation of a simple application in Jato, showing you how to use
the Jato design environment and drag-and-drop programming.

 Steps to creating an application
 Starting Jato
 Designing the user interface
 Specifying object properties
 Adding code
 Running the application
 Saving your project
 Enhancing the program
 Debugging the application

 Jato Getting Started

 Part I. Fundamentals

 Chapter 2. A first application
 Steps to creating an application

With Jato, you create an application in three fundamental steps:

1. Design the interface.

2. Specify the properties of the objects you have designed.

3. Add code to deal with user actions.

The rest of this section guides you through this process by creating a simple Java applet, then
enhancing it in several ways. The sample applet consists of a list box, a text box, and a command
button. When you run the applet, you will see a form similar to the following:

When the program is running, you can type a line of text into the text box, then add that line to the list box
by pushing the command button.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 2. A first application
 Starting Jato

You can start Jato in the same way as any other application.

¨ Start Jato:
1. In the Windows desktop, click Start, then point to Programs.

2. Point to the Powersoft Jato folder.

3. Click the Jato program.

Jato displays an identification screen, then its initial design environment.

%%%
The top toolbar is the main Jato toolbar. Beneath that is the Java component palette. Beneath that is the
form design window.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 2. A first application
 Designing the user interface

To design the user interface, you lay out one or more objects on the given form. The first step is to click
on a type of object in the Java component palette.

Then you move the cursor to the form design area, press and hold down the left mouse button. Continue
to hold down the mouse button and drag the cursor diagonally to specify the object’s position and size. If
you just click on the form instead of dragging, Jato adds a standard sized component.

Tooltips: Each button in the Java component palette has a picture that represents the type of object
associated with the button. If you point to one of the buttons for a second or so, Jato displays the name
of the component. Popup descriptions of this type are called tooltips.

In the following steps, you use three components from the Standard page of the Java component
palette:

List box

Text box

Command button

 Step 1. Adding the list box
 Step 2. Adding the text box
 Step 3. Adding the command button
 Step 4. Testing

 Jato Getting Started

 Part I. Fundamentals

 Chapter 2. A first application

 Designing the user interface
 Step 1. Adding the list box

The first step in the design is to add a list box at the top of the form.

¨ Add a list box:
1. Click the list box button (indicated by the ListBox tooltip) on the Standard page of the Java

component palette.

2. Move the cursor to the form design window, pointing anywhere in the upper left quarter of the
window. The cursor changes from an arrow to a crosshair.

3. Hold down the left mouse button and drag the cursor diagonally across the form. While you are
dragging, a rectangular outline shows you the size that the list box will be.

4. Release the mouse button.

This creates a list box on the form.

You can move the list box by dragging it. Jato displays the outline of the box as you drag.
You can also change the list box’s size. If the list box is not selected, click the list box to select it and
display resizing handles on the box’s corners and edges. Then drag one of these handles to adjust the
size of the list box.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 2. A first application

 Designing the user interface
 Step 2. Adding the text box

The next step in designing the form is to add a text box.

¨ Add a text box:
1. Click the text box button (TextBox) on the Standard page of the Java component palette.

2. In the form design window, drag diagonally below the list box to create a text box.

The form now has a list box and text box.

You can change the size and position of the text box in the same way as the list box. The form design
window’s grid of dots makes it easier to line up objects on the form.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 2. A first application

 Designing the user interface
 Step 3. Adding the command button
¨ Add a command button:
1. Click the command button icon (CommandButton) on the Standard page of the Java component

palette.

2. In the form design window, drag diagonally under the text box to create a command button.

This creates a command button on the form.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 2. A first application

 Designing the user interface
 Step 4. Testing

You can now run the applet to see the default behavior of the controls that you have added.

¨ Test the interface:
1. In the Run menu of the main Jato menu bar, click Run. This tells Jato to prepare the program for

execution.

2. Wait for the applet to be compiled and executed. A new window appears containing the objects you
placed on the form. This is the program that you have created.

3. Experiment with the new program. Notice that you can edit text in the text box and press the
command button, but the list box does not change.

4. Close the new program by clicking the close button on the right of the title bar.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 2. A first application
 Specifying object properties

The next step in creating a program is to adjust the properties of the objects you placed on the form.
The properties affect the appearance and behavior of the objects.

To begin with, you should put a title on the form. You do this by assigning a value to the Text property
of the form.

¨ Add a title to the form:
1. Use the right mouse button to click a blank area of the form and click Properties to display the

property sheet for the form.

2. On the General page, click in the Text box, then type

Sample program
3. Click OK.

Next, you should put text on the command button to explain what the button does.

¨ Add text to the command button:
1. Use the right mouse button to click the command button and click Properties to display the

property sheet for the command button.

2. On the General page, click in the Text box, then type

Add Text
3. Click OK.

The command button is now labeled.

You can use similar steps to change the properties of any object on the form. For example, you could
experiment with property sheets by changing the colors used to display the list box.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 2. A first application
 Adding code

The last step in creating this program is to write code that responds to user actions. For this program,
you need to add the code that will be invoked when a user clicks the command button. When this
happens, the program should:

· Retrieve the text from the text box.

· Add the text to the list box.

You can use the Jato drag-and-drop programming feature to create this code with minimal typing.

¨ Create code to be invoked when the user clicks the command button:
1. Use the right mouse button to click the command button and point to Events.

2. Click the Click menu item. This opens a code editor window for the Click event handler.

3. Move the code editor window to the bottom right of the screen so that you can see at least part of
each object in the form design window.

You can now create the code that responds to a user clicking on the command button.

Note: By default, Jato starts off in “big editor” mode, which lets you edit all the source code associated
with a form in a single window. Jato also has a “small editor” mode, where each code editor window
shows a single event handler function. For a description of how to switch from “big editor” to “small
editor”, see The big editor vs. the small editor. However, the difference between the two modes will
have no effect on the work you do in this tutorial.

 Drag-and-drop programming

 Jato Getting Started

 Part I. Fundamentals

 Chapter 2. A first application

 Adding code
 Drag-and-drop programming

With the drag-and-drop programming feature of Jato, you follow these steps:

· Drag the object that you want to act on, from the form design window to the code editor window
where you want to specify an action. This opens the Reference Card which lists all the actions you
can perform on that object.

When dragging over the code editor, the insertion point will move as you drag to show you where
code will be added.

· Choose an action from the Reference Card to open the Parameter Wizard, which helps you
express that action in Java code.

· The Parameter Wizard then pastes appropriate code into the code editor window.

Once the Reference Card is open, you can drag from it to the code editor, instead of starting with
objects on the form. If you want to keep the Reference Card open, open it from the Help menu.

The rest of this section shows how to create the necessary Java code, using drag-and-drop
programming to construct every function call. In practice, you will probably use a combination of normal
typing and drag-and-drop: typing the code you find easy to type, and using drag-and-drop from the
Reference Card for more complicated or unfamiliar constructs. You can also use drag-and-drop actions
within the code editor to copy and move selected code.

Here is the final code that you should produce:

public boolean cb_1_Click(powersoft.jcm.event.ClickEvent event)
{
 java.lang.String text;
 text = textb_1.getText();
 lb_1.add(text);

 return false;
}
You can use drag-and-drop to create this code with very little typing. Before you start, you should have
a code editor window open to the Click event handler for cb_1. The code editor window should be
positioned so that it doesn’t completely cover up the form design window.

¨ Retrieve the text from the text box:
1. Drag from the text box in the form design window to the blank line before the return statement of

the Click event handler in the code editor window. Release the mouse button. This opens the
Reference Card and displays a number of categories related to text boxes.

2. Expand the Properties category for TextBox, and click the Text property.

3. Click on the line java.lang.String getText(), then click Parameters to open the Parameter Wizard.

4. Make sure the Store in variable check box is checked. Type text in the blank area under the
check box.

5. Click Finish to generate code in the editor.

The Click event handler now has an additional variable, which is assigned a copy of the string in the
text box.

¨ Copy the text to the list box:

1. Drag from the list box on the form design window to the blank line before the return statement of
the Click event handler in the code editor window.

2. In the Reference Card for ListBox, click the Find tab.

3. In step 2 of the Find page, type add and wait a moment for list to show only the entries containing
“add”.

4. In step 3 of the Find page, click add.

5. In step 4 of the Find page, click the shortest version of add (the first one shown).

6. Click Parameters to open the Parameter Wizard.

7. Use the right mouse button to click in the java.lang.String item text box, then click Variables on
the context menu.

8. Click text (the variable holding the string) in the Variables dialog box, then click OK.

9. Make sure the Store in variable check box is clear, then click Finish to generate code in the
editor.

The code is now complete and should look like this:

public boolean cb_1_Click(powersoft.jcm.event.ClickEvent event)
{
 java.lang.String text;
 text = textb_1.getText();
 lb_1.add(text);

 return false;
}
If there are any differences, change your code to match the above sample.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 2. A first application
 Running the application

Now you should test the code that you have created.

¨ Run the program:
1. In the Run menu of the code editor window, click Run to start the program.

2. Wait for the applet to be compiled and started.

3. Type text in the text box, then click the command button. Notice that the text is added to the list
box.

4. Modify the text in the text box, then click the command button. The modified text is added to the list
box.

5. Experiment further. Close the program when you are finished.

You have now created a simple Java applet using Jato.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 2. A first application
 Saving your project

Every Jato project is a group of files which go together to make a software application. This includes
one or more targets, and the source files used to create each target.

A target may be a Java applet, a web application, a standalone Java application, a Java library, or a
DLL that can be used with a web browser (Internet Explorer or Netscape Navigator). Source files can
be Java source code files, HTML files, and library files. For more information on the kinds of files that
may be associated with a project, see Using targets and projects.

You can save the project you have just created so that you can run it again or modify it sometime in the
future. The rest of this section tells you how.

Important: Since there are many files associated with a single Jato target, you must keep each target
in a separate folder. This prevents the files for one target from overwriting the files for another.

Every project has an associated project file which lists information about the project. Jato project files
use the extension .WXP.

When you save a project, you must first name a folder for the project and then name the project file.

¨ Save your project:
1. On the File menu of the main Jato menu bar, click Save Project. This displays the contents of the

Projects folder in your Jato folder.

2. Under Folder name, type the name Test1 and click Save. This creates a folder, called Test1, for
the project.

3. Under File name, leave Test1.wxp as the project file name.

4. Click Save.

Jato creates a project file named Test1.wxp, in the new folder named Test1, along with other files
and folders of the project.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 2. A first application
 Enhancing the program

This section shows how to improve your simple program in several ways. In particular, the new version
of the program will clear the text box after adding a new line to the list box. It will also check to see if
the text box actually contains text; if it does not, the program does not try to add the blank line to the list
box.

The new source code that will do this work will be added to the existing Click event handler for the
command button. Here is the final code that you should produce:

public boolean cb_1_Click(powersoft.jcm.event.ClickEvent event)
{
 java.lang.String text;
 int textLength;
 textLength = textb_1.getTextLength(0);
 if (textLength > 0) {
 text = textb_1.getText();
 lb_1.add(text);
 textb_1.setText("");
 textb_1.setFocus(true);
 };

 return false;
}

 Adding the enhancements

 Jato Getting Started

 Part I. Fundamentals

 Chapter 2. A first application

 Enhancing the program
 Adding the enhancements

In the code editor window, press ENTER at least once after the existing declaration for text, so that you
have room to add new source code.

¨ Generate code to determine if there is text in the text box:
1. Drag from the text box on the design form to the line in the code editor window after the declaration

of text. This opens the Reference Card for TextBox objects.

2. In step 2 of the Find page, type text.

3. In step 3 of the Find page, click TextLength.

4. In step 4, click int getTextLength(int), then click Parameters.

5. Type 0 (zero) under int line. This stands for the first line in the text box.

6. Make sure the Store in variable check box is checked and that textLength is entered in the
blank area under the check box.

7. Click Finish to generate code in the editor.

The editor window now contains a declaration for textLength and assigns the result of
getTextLength to textLength.

To avoid adding empty lines to the list, the next lines of the code should be conditional on having a
string of at least one character in the text box.

¨ Check for a non-zero string length
1. After the getTextLength line, start a new line and type:

if (textLength > 0) {
2. Select the next two lines (containing getText and add). On the Edit menu, click Indent to indent

the lines.

The code in the editor window should look like this:

public boolean cb_1_Click(powersoft.jcm.event.ClickEvent event)
{
 int textLength;
 java.lang.String text;
 textLength = textb_1.getTextLength(0);
 if (textLength > 0) {
 text = textb_1.getText();
 lb_1.add(text);

 return false;
}
The if statement checks whether the length is greater than zero. If it is, your code can obtain the text
that the user typed.

¨ Clear the text box:
1. Drag from the text box to the blank line after the add statement in the code editor window. This

opens the Reference Card for TextBox.

2. In step 2 of the Find page for TextBox, type text (if it is not already there) and click Text for step

3.

3. In step 4, click void setText(java.lang.String), then click Parameters to open the Parameter
Wizard.

4. Type two double quotes ("") in java.lang.String text to specify an empty string.

5. Click Finish to generate code in the editor.

The editor now has code to clear the text box. Note that it is at the same level of indentation as the
preceding code.

¨ Return the focus to the text box:
1. In the Help menu, click Reference Card. In step 2 of the Find page for TextBox, type focus. In

step 3, click Focus and then double-click void setFocus(boolean) in step 4.

2. Click the arrow of the ObjectPrefix dropdown list, then click textb_1.

3. Under boolean focus, type true.

4. Click Finish to generate code in the editor.

The editor now has code to set the focus to the text box.

¨ Complete the code:
1. In the code editor, type a closing curly brace (}), then start a new line.

Here is the final code:

public boolean cb_1_Click(powersoft.jcm.event.ClickEvent event)
{
 int textLength;
 java.lang.String text;
 textLength = textb_1.getTextLength(0);
 if (textLength > 0) {
 text = textb_1.getText();
 lb_1.add(text);
 textb_1.setText("");
 textb_1.setFocus(true);
 }

 return false;
}
Run the program. Notice the change in input focus after you click the command button. Click the
command button when the text box is empty to see that the program does not try to add the blank line
to the list box.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 2. A first application
 Debugging the application

This section examines how to use the debugging features of Jato with the application you have just
created. In particular, the section demonstrates the use of breakpoints. If you set a breakpoint on a
statement in your program’s source code, program execution stops when it reaches that statement.
While the program is stopped at the breakpoint, you can perform a variety of operations to examine the
current state of your program.

 Set a breakpoint
 Set run options
 Run the program to the breakpoint
 See the Locals view
 Step through the code
 Return to normal execution

 Jato Getting Started

 Part I. Fundamentals

 Chapter 2. A first application

 Debugging the application
 Set a breakpoint
¨ Set a breakpoint in your code:
1. Use the right mouse button to click on the command button, then click Events and click Click. This

opens a code editor window showing the Click event handler.

2. Use the right mouse button to click on the line

 textLength = textb_1.getTextLength(0);

and then click Toggle Breakpoint.
The Toggle Breakpoint action sets a breakpoint on a line if there isn’t a breakpoint there already. If
there is a breakpoint there already, Toggle Breakpoint removes the breakpoint.

When you set a breakpoint on a statement, Jato marks the statement with a red stop sign on the left
side of the window.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 2. A first application

 Debugging the application
 Set run options

Once you have a breakpoint in your code, you are ready to run your applet again. The breakpoint will
only work if you are running the applet with a virtual machine that supports the debugging facilities
needed by Jato. For example, you can use Microsoft’s Internet Explorer to run the applet (provided you
have turned on the option that allows Internet Explorer to run Java programs).

Note: At present, debugging does not work if you are using the Sun implementation of the Java virtual
machine.

By default, Jato runs your applet using the Applet viewer and Microsoft’s implementation of the Java
virtual machine. This configuration supports Jato debugging. If you have Internet Explorer installed on
your system, you can run your applet under Internet Explorer instead of the Applet viewer.

¨ To run your applet under Internet Explorer:
1. From the View menu of the main Jato menu bar, click Targets. This opens the Targets window.

2. In the Targets window, use the right mouse button to click on the name of your target (Test1) and
then click Run Options. This opens the Run options dialog.

3. On the General page of the Run options dialog, click Use a web browser.
4. Click the Browse button and use the resulting file dialog menu to locate Internet Explorer on your

system (Iexplore.exe).

5. Click OK.

Jato automatically fills in the name of the HTML file requested by the Run options dialog.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 2. A first application

 Debugging the application
 Run the program to the breakpoint

Whether you are running the program under Internet Explorer or the Applet viewer, you can now run
the program to see what happens when execution reaches the breakpoint.

¨ Run the program up to the breakpoint:
1. From the Run menu, click Run.

2. When the form appears, click the command button.

Jato builds the program and runs it under whatever viewer you specified. When you click the command
button, the program executes the Click event handler and runs into the breakpoint that you set.
Program execution then “freezes” so that you can examine the current state of your program.

Jato opens a code editor window showing the Click event handler. You will see a yellow arrow in the
left margin, pointing to the statement where you placed the breakpoint. This shows that execution has
frozen at the breakpoint.

Note: When you set a breakpoint, execution stops just before executing the statement where the
breakpoint is set.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 2. A first application

 Debugging the application
 See the Locals view

When you are stopped at a breakpoint, you can examine the local variables of your program using the
Locals view.

¨ Open the Locals view:
1. From the Debug menu of the code editor window, click Locals.

This displays the following window:

This shows two local variables defined at this point in the program: event referring to the argument of the
Click event handler, and this referring to the form itself. If you click on the + sign to expand this, you
see the objects on the form:

By expanding other items in the Locals view, you can examine the contents of all the objects on the form.
For example, you can see the text that is stored in the text box.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 2. A first application

 Debugging the application
 Step through the code

After stopping at a breakpoint, you can continue executing your program one statement at a time.

¨ Step through the code:
1. On the toolbar of the code editor window, click

You will see the yellow arrow move to the next statement in your program. This means that Jato has
executed the statement at the breakpoint and has moved on to the next statement. If you click the
same button again, execution moves on to the next statement. By repeatedly clicking the button, you
can execute your program one statement at a time.

As you execute your statement, the Locals view changes to display changing values. For example,
when a new value is assigned to textLength, the Locals view displays the new value.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 2. A first application

 Debugging the application
 Return to normal execution

You can step through your program as far as you want. When you are ready to resume normal
execution again, the process is simple.

¨ Return to normal execution:
1. On the Run menu of the code editor window, click Run.

This starts your program running normally again, instead of the statement-by-statement operation used
in the previous section.

The next time you click the button, your program executes the Click event handler and runs into the
breakpoint again. The program will stop as before, giving you a chance to examine local data again.

Many other debugging features are available while you are stopped at a breakpoint. These are
available through the Debug and Run menus of the code editor window. For more information, see
Debugging.

 Jato Getting Started

 Part I. Fundamentals
 Chapter 3. A simple database application

Important: You cannot perform this tutorial with the preview version of Jato. See the ReadMe for
more information on creating database applications with the preview version.

This chapter guides you through the creation of a simple database application in Jato, showing you
how to use the Jato Form Wizard and Query Editor.

You will start a new project and create an application to view employee identifiers, first names, last
names and departments from a sample employee database.

To use this tutorial, you must have Sybase SQL Anywhere 5.0 (or 5.5) and its sample database
installed. This is installed when you install Jato, unless you choose to not install it.

 Before you begin
 Overview of creating a database application
 Choose the type of form
 Enter connection information
 Create a query
 Select a layout for the bound objects
 Run the program

 Jato Getting Started

 Part I. Fundamentals

 Chapter 3. A simple database application
 Before you begin

Important: You cannot perform this tutorial with the preview version of Jato. See the ReadMe for
more information on creating database applications with the preview version.

· Verify that Sybase SQL Anywhere 5.0 or 5.5 is installed, and that it includes the sample database.
To check this, click ODBC Administrator in the PowerSoft Jato folder on your desktop. Make
sure that “SQL Anywhere 5.0 Sample (Sybase SQL Anywhere 5.0)” is listed as a data source.
Click the close button to terminate the ODBC Administrator program.

· Start Jato; if it is already running, start a new project.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 3. A simple database application
 Overview of creating a database application

Important: You cannot perform this tutorial with the preview version of Jato. See the ReadMe for
more information on creating database applications with the preview version.

In order to create this application, you use the Jato Form Wizard to create a database form. The Form
Wizard automatically sets up objects on the form that will connect to a database, obtains information
from that database, and displays that information. To do this, the Form Wizard asks you to enter
various types of information: parameters for connecting to the database, the values you want to obtain
from the database, and so on.

When you finish using the Form Wizard, you will have a form containing objects which the Form Wizard
has created. Some of these objects will be visible to the user when the program runs:

· Text boxes used to display information obtained from the database.

· Labels for those text boxes.

· A data navigator which lets you move through the information that your program gets from the
database.

Some of the objects will not be seen by the user:

· A transaction object providing information for connecting to the database.

· A query object specifying the SQL statement for fetching data from the database.

You could create your own database program by placing the same objects on a form and setting their
properties appropriately. However, it is much easier to let the Form Wizard do this work for you.

The fundamental steps to creating a form connected to a database are:

1. Choose the type of form.

2. Specify the connection to the database.

3. Create a database query.

4. Choose the layout for the bound objects on the form.

The rest of this chapter guides you through this process.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 3. A simple database application
 Choose the type of form

Important: You cannot perform this tutorial with the preview version of Jato. See the ReadMe for
more information on creating database applications with the preview version.

You use the Form Wizard to create a new database form and specify the connection, query and layout
of the form.

For this example, you must start with a new project.

¨ Create a new form
1. Click the Form button on the main Jato toolbar. The Form button has the icon:

Note: If you have just created a new project or started Jato, and you have not changed the original
form, that form is deleted when you create a new form.

The Form Wizard opens and displays a gallery of forms that you can create:

¨ Create a database dialog form:
1. Click Database Dialog in the Form Gallery.

2. Click Next.
This advances the Form Wizard to the next page.

The Form Wizard suggests defaults for the name of the form and the source file that will be created for it.
¨ Name the form and its file:
1. Click Next to accept the default names, or type in names of your choice.

For projects with multiple forms, use descriptive names for forms to help keep track of them.

 Choosing the type of database dialog

 Jato Getting Started

 Part I. Fundamentals

 Chapter 3. A simple database application

 Choose the type of form
 Choosing the type of database dialog

Important: You cannot perform this tutorial with the preview version of Jato. See the ReadMe for
more information on creating database applications with the preview version.

The Form Wizard now displays its next page:

This offers you two types of database dialog:
· Master detail view: This type of form uses two queries: a master query and a detail query. For

example, the master query might obtain information about a company department, and the detail
query might obtain information about employees in that department. For more information, see
Master detail views.

· Single query: This type of form makes use of a single query to obtain information from the
database.

For simplicity, use a single query here.

¨ Select the query type:
1. Click Single query.

2. Click Next.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 3. A simple database application
 Enter connection information

Important: You cannot perform this tutorial with the preview version of Jato. See the ReadMe for
more information on creating database applications with the preview version.

On this page of the Form Wizard, you provide information about connecting to the database:

This information is used to specify properties for the transaction object that will appear on the final form.
¨ Enter connection information:
1. Click on SQL Anywhere 5.0 Sample in the Data Sources list.

2. Type DBA for the UserID.

3. Type SQL for the Password. The Form Wizard displays * characters instead of the password itself,
so that the password cannot be read by others.

4. Click Next.
If you do not specify user information at design time, you may supply this information during execution
by setting the appropriate properties. If your program attempts to connect to the database without
specifying a userid or password, the database may prompt the user for this information (depending on
the properties you set up for the transaction and the default behavior of the database).

 Jato Getting Started

 Part I. Fundamentals

 Chapter 3. A simple database application
 Create a query

Important: You cannot perform this tutorial with the preview version of Jato. See the ReadMe for
more information on creating database applications with the preview version.

On this page you enter your SQL statement to obtain information from the database:

The Form Wizard lets you type the SQL statement directly, but you can also use the query editing facilities
of Jato to create the statement.
¨ Start creating the query:
1. Click Edit to open the Query Editor.

In the process of starting the Query Editor, Jato connects to the database and examines its contents.
Therefore, you may have to wait a while after clicking Edit before Jato is ready to proceed.

Tip: You can reduce delays if you start the database before editing your query and leave the database
running while you are using Jato. To start the SQL Anywhere 5.0 Sample, click on Standalone Sample
Database in the Powersoft Jato folder under the Programs folder of the Windows Start menu.

 Select the tables you want to examine
 Specify the joins
 Specify the columns
 Specify the sorting order
 Test the query

 Jato Getting Started

 Part I. Fundamentals

 Chapter 3. A simple database application

 Create a query
 Select the tables you want to examine

Important: You cannot perform this tutorial with the preview version of Jato. See the ReadMe for
more information on creating database applications with the preview version.

The Query Editor has different pages for creating and editing a SQL statement.

In order to retrieve the employee identifier, first name, last name and department name for each
employee, you need to obtain data from the employee table and department table.
¨ Select the tables:
1. If the Tables page is not already displayed, click the Tables tab.

2. In the Matching Tables list, click department, then click Add. This adds department to the
Selected Tables.

3. In the Matching Tables list, double-click employee. This adds employee to the Selected Tables.

Note: This demonstrates two different ways performing the same kind of action: selecting a table.
Many of the sections that follow take the same approach, giving several ways of performing the same
operation.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 3. A simple database application

 Create a query
 Specify the joins

Important: You cannot perform this tutorial with the preview version of Jato. See the ReadMe for
more information on creating database applications with the preview version.

The Joins page of the Query Editor controls how to combine the information from the tables you just
selected:

You need to join the information for an employee to information about the employee’s department.
¨ Specify the joins:
1. Click the Joins tab.

2. In Table 1 of the Joins page, click DBA.employee.

3. In the Type list, click Natural inner join.

4. In Table 2, click DBA.department.
5. Click Add.

A natural inner join merges the two tables. This joins two tables based on common column names, and
only includes rows where both tables have values in the matching columns. In this case, both tables
have a column called dept_id, so all rows with a value for this column will be merged.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 3. A simple database application

 Create a query
 Specify the columns

Important: You cannot perform this tutorial with the preview version of Jato. See the ReadMe for
more information on creating database applications with the preview version.

The Columns page of the Query Editor controls which data values will actually be obtained from the
database:

For each employee, the sample program needs an ID number, first name, last name, and department
name.
¨ Specify the columns:
1. Click the Columns tab.

2. Expand DBA.employee, click emp_id, and then click Add. This creates an entry in the Selected
Columns list.

3. Double-click emp_fname and emp_lname.

4. Expand DBA.department, and drag dept_name to the Selected Columns list.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 3. A simple database application

 Create a query
 Specify the sorting order

Important: You cannot perform this tutorial with the preview version of Jato. See the ReadMe for
more information on creating database applications with the preview version.

The Sort page of the Query Editor controls how the results of the query are sorted:

The sample program will sort by employee last name, and by first name when last names are the same.
¨ Specify the sorting order:
1. Click the Sort tab.

2. Expand DBA.employee, and double-click emp_lname. This creates an entry in the “Sort by” list.

3. Click emp_fname, then click Add.

Tip: To change the sorting order for a column, double click on the arrow icon next to the column name.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 3. A simple database application

 Create a query
 Test the query

Important: You cannot perform this tutorial with the preview version of Jato. See the ReadMe for
more information on creating database applications with the preview version.

The Test page of the Query Editor lets you test the query you have constructed:

¨ Test the query:
1. Click the Test tab.

2. Click the Test button. This executes the query to make sure it is valid. If you want to retrieve more
rows, you can click More rows.

3. Click OK to return to the Form Wizard.

¨ Finish the query:
1. Click Next.
This advances you to the next Form Wizard page.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 3. A simple database application
 Select a layout for the bound objects

Important: You cannot perform this tutorial with the preview version of Jato. See the ReadMe for
more information on creating database applications with the preview version.

The last step in creating the database is choosing how to display the information you retrieve from the
database:

Bound objects are objects (for example, text boxes) which display information from the database. The
Form Wizard asks you to select a layout for the bound objects it creates. You can choose any format that
appeals to you, but for the sake of example, we will choose a vertical arrangement, with labels above text
boxes.
¨ Select a layout for the bound objects:
1. Click Vertical, labels above text boxes.

2. Click Finish.

The Form Wizard produces a form based on the information you have provided.

The object in the top left corner is a data navigator, used for moving forward and backward in the list of
entries obtained from the database. Beside the data navigator is a transaction object containing
information for connecting to the database. Beside the transaction object is a query object, specifying the
SQL statement that will obtain information from the database. Below those objects are labeled text boxes
that will display the information.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 3. A simple database application
 Run the program

Important: You cannot perform this tutorial with the preview version of Jato. See the ReadMe for
more information on creating database applications with the preview version.

At this point, you could modify the form to make it more useful to the user. For example, you could
change the label emp_fname into Employee’s First Name to make it easier to understand. You could
turn off any unneeded data navigator buttons by using the property sheet for the data navigator. You
could also add a title to the form, rearrange the layout, adjust the size or position of the text boxes, and
so on. However, the program is ready to run as it is.

¨ Run the program:
1. On the Run menu, click Run. The program displays its database form:

You can use the arrow buttons of the data navigator to move from one result row to the next. Click the
close button on the caption bar to end the program.

 Jato Getting Started

 Part I. Fundamentals
 Chapter 4. Tools and concepts

This chapter introduces you to the Jato programming environment and provides an overview of how
Jato operates.

Note: There are keyboard shortcuts which provide quick access to many of the features of Jato. For a
complete list, see “Keyboard shortcuts” in the online help for Jato.

 Parts of the screen
 View windows
 Coding tools
 Basic concepts of Jato

 Jato Getting Started

 Part I. Fundamentals

 Chapter 4. Tools and concepts
 Parts of the screen

When Jato starts, it displays a number of windows which help you design a user interface for your
application.

 Form design window
 Main menu bar
 Toolbar
 Java component palette
 Status bar

 Jato Getting Started

 Part I. Fundamentals

 Chapter 4. Tools and concepts

 Parts of the screen
 Form design window

A form is a window which contains objects like command buttons and text boxes. You use forms to create
your program’s main window, secondary windows, dialog boxes, and so on. A form design window lets
you arrange objects on the form and adjust the form’s size, as you design the appearance of your
program.
The grid of dots on the form design window help you judge the size and position of objects on the form.
The dots do not appear when you run your program.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 4. Tools and concepts

 Parts of the screen
 Main menu bar

The menu bar of the main Jato window offers menus whose commands help you create and test your
application. When you point to a menu item, the status bar at the bottom of the Jato window offers a
brief explanation of the item.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 4. Tools and concepts

 Parts of the screen
 Toolbar

The toolbar appears below the main Jato menu bar. It offers quick mouse access to many Jato
commands and features. You can use the Toolbars item of the View menu to control whether the
toolbar is displayed or not, and to control the size of the toolbar buttons.

You can see the name of any toolbar button by pointing to the button and waiting a moment. The name
of the corresponding button will appear in a small box called a tooltip.

You can customize the toolbar by adding or deleting buttons. Click Toolbars in the View menu, then
click the Customize button. A dialog box appears to let you choose what buttons appear on the toolbar.
If you make changes, you will see the changes in all future Jato sessions.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 4. Tools and concepts

 Parts of the screen
 Java component palette

The Java component palette is a set of buttons which correspond to the objects you can place on a form.
When you first start using Jato, the Java component palette appears below the Jato toolbar.
You can see the name of any component by pointing to the button on the palette. After a moment, the
name of the component will appear in a tooltip.
To add an object to a form, click a component button, then click on the form design window. This places
an object of the selected type on the form.

When you place an object on a form in this way, the object is given a default size. For an explanation of
how to change the object to a different size, see Sizing an object.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 4. Tools and concepts

 Parts of the screen
 Status bar

The status bar appears at the bottom of the main Jato window.

When the mouse points to the form design window, the left part of this bar shows:

· The current position of the cursor in dialog units.

· The name of the object that the cursor is over.

· The class of the object that the cursor is over.

The right part of the status bar displays information about other actions that Jato performs. For
example, it tells you when Jato initializes files for a new project.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 4. Tools and concepts
 View windows

Jato offers a number of view windows to display information about your current project. For example,
the Files window shows the files associated with your project, while the Objects window shows the
forms, buttons, boxes, and other objects that make up your project.

You can display a view window by selecting the window’s name from the main Jato View menu. When
you quit your Jato session, Jato remembers which view windows you have active. The next time you
return to the project, Jato opens the same view windows in the same positions so you can pick up
where you left off.

Note: This chapter only provides an introduction to the view windows, explaining in general terms what
the windows can do. The Jato Programmer’s Guide provides specific instructions for performing the
actions mentioned in these overviews.

In most view windows, if you use the right mouse button to click on an item, a menu appears giving
actions that can be performed on that item. The exception to this is the Object Inspector.

 Object Inspector
 Classes window
 Objects window
 Files window
 Targets window

 Jato Getting Started

 Part I. Fundamentals

 Chapter 4. Tools and concepts

 View windows
 Object Inspector

The Object Inspector lets you view and change properties and events.
When you are viewing the Properties page of the Object Inspector, it shows all properties for that object.
You can change the value of a property by clicking on it and then changing the value in the right pane.
The Events page of the Object Inspector lists all events applicable to the selected object. You can
double-click an event to edit the code that will be invoked when that event occurs. If there is no event
handling code for an event, the right pane for that event is blank. If there is already an event handler
defined for a particular event, the Object Inspector does not let you specify a different function to be the
event handler.

You can change the size of the columns in the Object Inspector by dragging the column separator.
Double-clicking the column separator gets a default size for the left column, just big enough to show all
the names.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 4. Tools and concepts

 View windows
 Classes window

The Classes window lists the contents of each class that defines a form and each class that you have
specifically asked to control through the Classes window. The window displays all the member functions,
as well as any data objects you have defined for the form and any import statements required by the
form’s source code. For some classes, the window also displays files used in building the class. If you
double-click any name in the list, Jato displays a code editor window where you can edit the selected
function or data declarations.

The Classes window lets you add new member functions to a class, and change or delete existing
functions. For more information, see Working with classes.

If you use the Classes window to create new Java classes for your target, you can examine and edit
them in the same ways as for the generated form classes. Classes that you create and maintain in this
way are called managed classes. For more information, see Adding classes to a target.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 4. Tools and concepts

 View windows
 Objects window

The Objects window lists the objects on each form of your project, using a hierarchical display format.
Targets are shown at the top of the hierarchy. You can expand the tree at a form icon to show all the
objects that belong to the form.
Clicking an object with the right mouse button opens a context menu for manipulating the object. For
example, this menu lets you delete an object from a form.
The Objects window has a second format, obtained by turning on Show Property Sheet in the Objects
window View menu.

This displays a property sheet for the currently selected object. This property sheet is one way to examine
or change the object’s properties. For a description of other ways to work with an object’s properties, see
Changing an object ’ s properties .

 Jato Getting Started

 Part I. Fundamentals

 Chapter 4. Tools and concepts

 View windows
 Files window

The Files window lists the files associated with your project. The window’s format is similar to the
Windows Explorer.
The File menu of this window lets you add items to your project or delete them. For example, you can
import files of source code that were written for other projects.
The View menu changes the way that information is displayed in the window.
When you are working with a project that has many source files, you will likely use the Files window
extensively. For example, you can use the Files window to add library files to your project. You can add
new files to the Files window by dragging them from the Windows Explorer.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 4. Tools and concepts

 View windows
 Targets window

A target is an application, applet, or library that you create with Jato. The Targets window displays the
target files and the files that Jato will use to create them. For more about targets, see Targets.
The main purpose of the Targets window is to let you specify options for preparing Jato targets (for
example, controlling where Jato searches for libraries to link with your code).

 Jato Getting Started

 Part I. Fundamentals

 Chapter 4. Tools and concepts
 Coding tools

Jato includes several elements that let you create and edit Java code:

· The Code Editor is primarily a text editor, with automatic indenting and syntax coloring to make
Java code easier to write and understand.

· The Reference Card provides quick information on the most important Jato classes and member
functions.

· The Parameter Wizard guides you through the construction of function calls. This is particularly
useful for complicated functions or for functions with which you are unfamiliar.

Drag-and-drop code generation
One of the most powerful features of Jato is drag-and-drop code generation: simply drag the cursor
from an object on the form or the Objects Window to the code editor window. This opens the Reference
Card, which lists all the actions you can perform on that object. If you choose an action, the Parameter
Wizard helps you set the parameters for the operation. The actions provided through the Reference
Card can set properties, retrieve their values, or execute member functions associated with an object.

For a step-by-step introduction to drag-and-drop programming, see Drag-and-drop programming. For a
more detailed description, see Using drag-and-drop programming.

In many cases, setting up an operation with the Parameter Wizard only takes one step. Then, the
wizard inserts the generated code in the code editor window, including declarations of any local
variables required for the action.

When the Reference Card is already open, you can generate code by dragging the cursor directly from
the Reference Card to the code editor.

 Code editor
 Reference Card
 Parameter Wizard

 Jato Getting Started

 Part I. Fundamentals

 Chapter 4. Tools and concepts

 Coding tools
 Code editor

The Jato code editor is a full-featured editor that can edit the Java code for your Jato project. The code
editor window is often used in drag-and-drop code editing. It also provides access to powerful facilities for
debugging your program.
The code editor includes powerful features such as color syntax highlighting, auto indenting, unlimited
undo, find and replace using pattern-matching, and debugging control. For more information about the
code editor, see The Jato code editor.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 4. Tools and concepts

 Coding tools
 Reference Card

During your Jato session, you may use the Reference Card to select an action that you want to perform.
You can search through a hierarchy of actions or perform a powerful text search to locate the desired
action, then open the Parameter Wizard to create the Java code required to perform that action.
The Reference Card also provides help on all the items listed¾click Help to obtain the Jato Component
Library Reference entry for a selected item.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 4. Tools and concepts

 Coding tools
 Parameter Wizard

The Parameter Wizard helps you construct a function call by showing what argument values are required.
The Parameter Wizard can also store function results in a specified variable.
The text boxes in the wizard window let you enter variable names, constants, or expressions. You can use
the right mouse button to click the text box and get a list of variables that may be entered. Click on a
name from this list to place that name into the text box. You can also type in entries directly.

When you click Finish, the wizard pastes the constructed function call into the code editor window. The
wizard also inserts declarations for any local variables that the method requires.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 4. Tools and concepts
 Basic concepts of Jato

The rest of this chapter discusses how Jato uses objects and forms to create an application.

The following sections provide an overview of how Jato works. The Jato Programmer’s Guide provides
step-by-step instructions for performing the operations described here.

 Forms
 Forms in Java
 Objects
 Events
 Event handler calling sequence
 Jato and AWT

 Jato Getting Started

 Part I. Fundamentals

 Chapter 4. Tools and concepts

 Basic concepts of Jato
 Forms

A form is a window that can be displayed on the user’s system. When you use Jato to build a Java
project, you usually create one or more forms. To create a form, you:

· Design the form by laying out objects (buttons, boxes, and so on).

· Specify properties for each object.

· Write Java source code to handle the events that might happen to each object (for example, when
the user clicks a button or types text into a text box).

One form can open another form. For example, if the user clicks a button on one form, the associated
source code may open a second form to obtain additional information from the user. There is no limit to
the number of forms that may be associated with a project.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 4. Tools and concepts

 Basic concepts of Jato
 Forms in Java

In Jato, each form is defined as a Java class. This has several consequences:

1. A form is a data type, not a data object. In order to make a form appear on the user’s screen, you
must create an object of the form type.

One of your form types is designated the main form. Your program automatically creates an object
of this type when it starts up, to serve as the initial window that the user sees.

2. You can have multiple objects of the same form type. For example, suppose you design a form that
displays the contents of a document. Your program can create multiple copies of this form, letting
the user examine several documents at once.

3. Each form class has associated properties. Some properties affect the appearance of the form (for
example, its color and its size). Other properties affect the behavior of the form (for example,
whether the size of the form can be changed).

When you design a form, you may specify initial values for the form’s properties. These initial
values are used whenever your program creates an object of the form class; however, you can
change many of these properties later in program execution.

4. Each form class has a set of associated methods. A method is a function that lets you perform an
action using the form. For example, a form has methods to examine or change the form’s
properties.

5. Using the Classes window, you can add your own methods to a form class. This is useful when you
want to define a routine that can be used by other functions within the class, or when you want to
provide controlled access to the class for objects outside the class.

The name given to a form is the name of the associated Java class. For example, if you name a form
Form1, the associated Java class will also be called Form1.

Note: Jato lets you create many different types of forms. For example, a dialog box is a type of form
which typically is opened to obtain information from the user and is closed once the user has filled in
that information. When you create a new form, we suggest that you create a modeless dialog unless
you have a reason for choosing some other form type. A modeless dialog supports more operations
than the plain “form” type.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 4. Tools and concepts

 Basic concepts of Jato
 Objects

The first stage of using Jato is to place objects on a form. To do this, you select a component type from
the Java component palette, then click on the form design window to specify the position of the object.
In this way, you place buttons, text boxes, etc. on the form to design what the user will see when the
form appears.

Object names
Jato associates a name with each object on the form. For example, Jato chooses names like cb_1,
lb_2, and Menu_1. It is often a good idea to change these into more descriptive names: cb_OK,
fileList, menuSave, and so on.

The name associated with an object is used as a variable name for referring to the object in Java code.
For example, when you place a command button on a form, Jato might create the following declaration
in the form class’s source code:
 CommandButton cb_1 = new CommandButton();
This indicates that cb_1 refers to a CommandButton object. Jato also generates code in the form class
to initialize the CommandButton object. For example, this code sets various properties controlling the
button’s size and position. The variable cb_1 is declared as a private member of the class for the form.

Since objects on the form are referenced by private variables within the form class, they cannot be
referenced directly by entities outside the form. If Form1 needs to affect an object on Form2, Form1
must communicate with Form2 and have Form2 do the actual work.

Notation: Other parts of this guide use the notation name_N to describe the format of default object
names. The N stands for an integer value, with values beginning at 1. For example, label objects are
given names of the form label_N. This means that the first label on the form is named label_1, the
next is label_2, and so on.

Object methods
Each type of object has a set of associated methods. For example, a list box object has functions for
adding new items to the list, deleting existing items, and so on.
 lb_1.delete(3);
This uses the delete method of a list box object to delete item 3 from lb_1. (The “.” is the standard
Java operator for invoking a method of an object.)

Some methods return a status value indicating whether they succeeded or failed. In many cases, this is
a boolean value: true means the method succeeded and false means it failed. When the purpose of
a method is to return a value, the function may return a special value to indicate failure. For example, if
the purpose of a particular method is to return a string, the function will return a null string if the proper
value cannot be determined.

Object properties
The properties of an object control the object’s appearance and behavior. Jato lets you set the
properties of an object while you are designing the form. Some properties can also be changed as your
program executes. For example, you might disable the use of a command button at times when
clicking that button is not appropriate.

Properties can be changed at run time using appropriate function calls. For example:
 cb_1->setText("New text");

This changes the text of cb_1 to the given string. Methods that change the value of a property have
names beginning with set; methods that return the current value of a property have names beginning
with get. Every property has a corresponding get method and every property that can be changed at
run time has a corresponding set method.

The Jato Component Library Reference documents the get and set functions for a property in the
entry for the property. For example, getText and setText are explained in the entry for the Text
property.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 4. Tools and concepts

 Basic concepts of Jato
 Events

An event is a message received by a form or an object on a form. Events may be generated directly by
the user; for example, when the user clicks on a button, a Click event is triggered for that button.
Events may also be triggered by the code of your program; for example, if Form1 creates a Form2
window, the action generates a Create event for the Form2 object.

There may be many ways to cause the same event. For example, the Select event means that an item
has been selected in a list box. This may happen because the user clicked a specific item, or because
the user is using the arrow keys to walk through the existing list of items.

Writing Jato programs is mainly a matter of writing Java routines to handle events. For example, you
do not have to write a mainline for the program; that is handled automatically by Jato. Instead you write
a routine for what happens when the user clicks on one button, what happens when the user double-
clicks an item in a list box, and so on. These routines are called event handlers.

A typical event handler has a name like
 cb_1_Click
This incorporates the name of the object that receives the event (cb_1) and the name of the event
itself (Click).

An event handler is a method belonging to the form class that contains the object receiving the event.
This means that the handler has access to all the private members of the form object. In particular, it
can work with all the objects defined on the form. For example, the Click event handler for cb_1 can
change the contents of a list box elsewhere on the form.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 4. Tools and concepts

 Basic concepts of Jato
 Event handler calling sequence

Every event handler is called with one argument: a block of information describing the event. Often,
your event handlers will ignore this argument; the information is not necessary. In some cases, your
event handler must place data in the information block to return a response to the caller.

Event handlers return true to indicate they handled the event completely or false if the default event
handling of Jato should finish dealing with the event.

See Standard events for details about the way information is passed to an event handler, and how
event handlers use their return values.

 Jato Getting Started

 Part I. Fundamentals

 Chapter 4. Tools and concepts

 Basic concepts of Jato
 Jato and AWT

The Abstract Windows Toolkit (AWT) is a standard library of Java class definitions which define the
common elements of graphical user interfaces: push buttons, list boxes, scroll bars, and so on. AWT
was designed by Sun Microsystems to provide the basic building blocks for creating applets and other
Java applications. For example, AWT specifies operations that can be performed on elements (for
example, adding or deleting items in a list box) and events that can happen (for example, the user
clicking a command button or entering text in a text box). AWT also defines other useful data classes
(such as a String class for character strings and an Image class for “pictures”).

The Jato component library is built on top of AWT. For example, one of the data members of a Jato
CommandButton object is an AWT Button object. Similarly, many of the methods that can be performed
on a CommandButton object correspond to AWT Button methods.

Most events that can be received by a CommandButton object correspond one-to-one with the events
that can be received by an AWT Button. On the other hand, some events recognized for Jato objects
do not correspond directly to AWT events, and vice versa.

All of this means that the component library is a Java wrapper around the basic data structures and
operations of AWT. The components of the library parallel the facilities of AWT itself.

However, the library provides more than a simple wrapping: it gives you a complete structure for
creating programs quickly and easily. Complex operations can be performed in a single instruction,
avoiding tiresome set-up and tear-down operations. At the same time, the library gives you full access
to low-level AWT features, for those rare occasions when you need to program directly with AWT
classes.

Learning to create programs with Jato is primarily a matter of learning to use the design
environment and the Jato library.
The rest of this guide outlines the major features of the library and presents simple examples using the
library functions. The goal is to introduce the most common classes and methods within the library, to
help you get results fast. For full details, however, you should consult the Jato Component Library
Reference.

Important: With Jato, you do not have to use sophisticated features of Java. The Jato library helps
you create efficient and effective programs, even if you do not have extensive knowledge of Java or
AWT. Most of the user interface code that you write will consist of simple calls to library functions.

