
Jato Programmer’s Guide
VERSION 97.02.05

Copyright Ó 1997 Sybase, Inc. and its subsidiaries. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc. and its subsidiaries.

PowerBuilder, Powersoft, S-Designor, SQL Smart, and Sybase are registered trademarks of Sybase,
Inc. and its subsidiaries. AppModeler, InfoMaker, the Column Design, ComponentPack, DataArchitect,
DataExpress, Data Pipeline, DataWindow, MetaWorks, ObjectCycle, Optima++, PowerBuilder
Foundation Class Library, PowerScript, PowerTips, Powersoft Portfolio, Powersoft Professional,
ProcessAnalyst, SDP, StarDesignor, Sybase SQL Anywhere, Watcom, Watcom SQL, Watcom SQL
Server, and web.works are trademarks of Sybase, Inc. and its subsidiaries. Certified PowerBuilder
Developer and CPD are service marks of Sybase, Inc. and its subsidiaries. DataWindow is a
proprietary technology of Sybase, Inc. (U.S. patent pending).

All other company and product names used herein may be the trademarks or registered trademarks of
their respective companies.

Information in this manual may change without notice and does not represent a commitment on the
part of Sybase, Inc. and its subsidiaries.

 About this guide
 Ways to use this guide
 Getting help while you work
 Document conventions
 Part I. Fundamentals
 Part II. Advanced topics
 Appendices

 Jato Programmer ’ s Guide
 About this guide

This guide describes the Java development environment which Powersoft is currently referring to using
the code name Jato. The guide assumes that you are familiar with the material in Jato Getting Started,
supplied as part of your Jato package. The guide also assumes that you are familiar with the basic
principles of using Windows, including how to:

· Start a Windows program.

· Reposition, resize, and close windows.

· Create, open, copy, and delete files and folders.

· Point, click, double-click and drag with a mouse or other pointing device.

If you are not familiar with such features, consult the Windows documentation (for example, Introducing
Microsoft Windows 95).

 Jato Programmer ’ s Guide
 Ways to use this guide

If you have used other rapid application development tools for Windows:
Two important differences between Jato and other RAD tools are drag-and-drop programming and
using views. See the Getting Started guide for information on drag-and-drop programming using
the Reference Card and Parameter Wizard, and for a description of views in Jato.

If you are a Windows API programmer and would like to plunge right in:
You should scan the Getting Started guide for information on drag-and-drop programming using
the Reference Card and Parameter Wizard, and for a description of views in Jato. Then you should
read Chapter 1, Basic concepts of Jato. Chapters 2 and 3 describe the mechanical aspects of
using Jato (how to save projects, how to edit source code, and so on). The specific details needed
for writing Jato code begin with Standard types and events.

The chapters in Part I discuss the most common aspects of writing Jato programs: working with objects
on forms, creating your own menus, using predefined dialog boxes, and debugging your code.

The chapters in Part II address advanced topics, including:

· Database and Internet applications.

· JavaBeans components.

· ActiveX controls and ActiveX server components.

· Multithreaded applications.

· Applications that involve graphics and printing.

· Advanced interactions with the Windows operating system.

Since these topics are advanced, most readers will only look at these chapters when they need the
specific functionality provided by these features.

 Jato Programmer ’ s Guide
 Getting help while you work

In addition to online and printed manuals, Jato provides extensive online help facilities which explain
how to use the software.

At any point during an Jato session, you can obtain help in a variety of ways:

· Point the cursor at anything on the screen and press F1. This provides a description of the purpose
and use of the item indicated by the cursor.

· Click the question mark button, then click anything on the screen. Jato provides information about
anything you click. When you have finished obtaining information, click off the question mark
button.

 Jato Programmer ’ s Guide
 Document conventions

The printed manuals for Jato use the following typographic conventions.

Typeface or
symbol

Meaning

Monospace
type

A monospaced font is used for code or for
anything you must type. It is also used for
the names of files and folders.

Bold face Bold face is used for menus and other
interface elements such as buttons and
labels. It is also used for the names of
components, C++ classes, methods and
events.

Italics Italicized text is used to emphasize words
such as new terms, the names of object
properties and for text that is acting as a
placeholder.

SMALL CAPITALS Small capitals are used for the names of
keys and combinations of keys, such as
ENTER or SHIFT.

¨ This symbol denotes the beginning of a
procedure for performing a task.

%%% This symbol is used in this beta
documentation to mark areas of Jato that
are subject to change before the final
version of the product.

Important: A paragraph placed in a box often describes an exception to general rules given in the main
body of the text.

You and the user
When the documentation contains a phrase like “you click the OK button”, the word “you” refers to the
person using Jato to develop a program. When the documentation contains a phrase like “the user
clicks the OK button”, “the user” refers to the person who will use the programs you develop using
Jato.

Programs
This guide loosely uses the word “program” to refer to many sorts of applications. This may include
applets, standalone executables, libraries, and so on.

Using the mouse
Unless specified otherwise, you use the left button in all actions with the mouse. For example, if the
guide tells you to click or double-click an object on the screen, you use the left mouse button. Similarly,
you use the left mouse button for all drag-and-drop operations, unless the documentation explicitly
says to use a different button.

 Jato Programmer ’ s Guide
 Part I. Fundamentals

This part describes fundamental aspects of programming with Jato.

 Chapter 1. Basic concepts of Jato
 Chapter 2. Using targets and projects
 Chapter 3. Using Jato
 Chapter 4. Standard types and events
 Chapter 5. Programming standard objects
 Chapter 6. Using and programming menus
 Chapter 7. Debugging

 Jato Programmer ’ s Guide

 Part I. Fundamentals
 Chapter 1. Basic concepts of Jato

This chapter presents basic information about Jato. Later chapters provide step-by-step instructions for
performing the operations described here.

 Java
 Java and the web
 Forms
 Objects
 Events
 Jato and AWT

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 1. Basic concepts of Jato
 Java

Java is a programming language developed by Sun Microsystems. The syntax of Java source code
has strong similarities with C++, with one important exception: Java does not support pointer types.

The original implementation of Java compiled Java source code into an executable code format
designed to run on a virtual machine. Virtual machine code does not match any actual hardware. In
order to run the virtual machine code, you need an interpreter program which reads the code and
executes appropriate instructions which perform the operations described in the virtual machine code.
Roughly speaking, the interpreter translates Java’s abstract instructions into real instructions that can
be executed by your computer hardware.

At present, there are two popular implementations of the Java virtual machine: one from Microsoft and
one from Sun’s JavaSoft. Jato code can run on either version. %%% However, the beta version of the
Jato debugger only works with the Microsoft virtual machine.

Standard file name extensions
A file containing Java souce code typically has a name ending with .java. A file containing virtual
machine code typically has a name ending with .class. For example, the Java source file abc.java
might be compiled into the virtual machine code file abc.class.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 1. Basic concepts of Jato
 Java and the web

Since Java’s virtual machine code is not specific to any hardware or operating system, you can run a
Java program on any computing platform, provided that you have an appropriate interpreter. This
aspect of Java makes it ideal for use with the World Wide Web. If you make a compiled Java program
available on the web, the program can be used by people on many different types of computing
platforms.

Furthermore, Java was designed to be safe for users to execute. Ideally, you should be able to run
Java programs obtained from any source and be confident that the programs cannot damage your
system or access private information. In practice, some early implementations of Java had security
holes that could be exploited by malicious programmers. However, these holes are quickly closed
whenever they are found, because security is a primary requirement for all Java users.

 Web pages
 Java applets
 Sending information to the server
 Other uses of Java
 JavaScript

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 1. Basic concepts of Jato

 Java and the web
 Web pages

People using the World Wide Web typically use a web browser program to display web pages obtained
from other sites. Throughout this guide, we will use the following definitions:

· The user system is the computer where a user reads a web page. The web browser runs on the
user system. The user system is also called the client system.

· The server system is the computer that actually supplies the web page. The server system has a
program called a web server which finds web pages requested by users and delivers the contents
of those pages to the user system. The server system is also called the host system.

URLs
Web browsers refer to web pages using Universal Resource Locators (URLs). Here is a typical URL:

http://www.powersoft.com/products/psnews.html
This URL specifies the name of a computer system on the Internet (powersoft.com) and the name of
a file on that system (products/psnews.html). When you ask your web browser to open this URL,
the browser contacts the given system and passes the URL to the web server running on that system.
The web server then transmits the contents of the appropriate file back to your web browser, and your
web browser displays the file.

URLs can do more than just specify the name of a file. For example, they may ask the web server to
execute a program. In this case, the web server collects the output of that program, then sends that
output to your web browser in response to the URL.

URLs may also contain various kinds of information specified by the user. For example, when you
search for information using Yahoo, Alta Vista, or some other search engine, the strings that you’re
searching for are sent to the search engine as part of a URL. The search engine obtains these strings
from the URL and performs the search you’ve requested.

For more information about URLs, see Writing Internet applications.

HTML
Web pages are written in a text-based language called HTML (HyperText Mark-up Language). HTML
has commands for simple text formatting (for example, breaking the text into paragraphs, creating
section titles, putting strings of characters in special fonts, and so on). HTML also makes it easy to
specify links to other web pages. When the user clicks on one of these links, the web browser
automatically loads the web page associated with the link. This facility lets the user navigate through a
sequence of web pages that may be spread over different machines on different continents.

HTML formatting directives are enclosed in angle brackets. For example, the directive for starting a
new paragraph is <P>. Many directives come in pairs: an opening directive and a closing directive, as
in

The following <I>word</I> is in italics.
The <I> directive tells the browser to start displaying text in italics, and the </I> tells the browser to
return to the previous font.

Static vs. dynamic web pages
A static web page has fixed contents. You can picture this type of web page as a normal computer file.
Whenever a user asks to see that web page, the web server sends the contents of the web page file to
the user.

A dynamic web page is one whose contents can change. Dynamic web pages typically have a static
“skeleton”, plus various placeholders which are filled in at the time a user accesses the page. For
example, consider a web page that offers a price list for various products. The static part of the web
page might consist of a heading, product descriptions, and so on. However, the actual prices of the
products are represented by placeholders which are filled in dynamically at the time the page is
accessed. This ensures that the prices are always up to date.

The static “skeleton” of a dynamic web page is called a template. The placeholders in a template can
come in various forms, but typically they specify instructions for obtaining the information needed to “fill
in the blanks”, plus layout instructions to indicate how to display the result.

The placeholder instructions in a template are executed by software on the server system: either the
web server itself or software invoked by the web server. The placeholders are filled in with HTML code
which is then transmitted to the user as part of the web page. This process is transparent to the user—
by the time the user’s web browser sees the page, all the placeholders have been filled in and the
whole thing just looks like normal HTML.

One of the most important functions of Jato is to help you create dynamic web pages. In particular,
Jato makes it easy to create web pages that obtain information from a database, which is then
transmitted to the user in an appropriate format. For more information on how to do this, see
NetImpact Dynamo server applications.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 1. Basic concepts of Jato

 Java and the web
 Java applets

HTML also makes it possible for a web page to execute a Java program. A Java program executed
through a web browser is called a Java applet. Executing an applet works like this:

1. Your web browser program begins loading a web page written in HTML.

2. The HTML for the web page may contain an <APPLET> directive. This directive specifies the
location of the Java applet you want to execute (usually a file containing virtual machine code on
the same system that contains the web page).

3. The web browser loads the applet from the specified file and invokes an interpreter to execute the
applet on your system.

Typically, the applet will create a form that may have push buttons, list boxes, and so on. The web
browser displays this form as part of the web page that contained the <APPLET> directive. For
example, the web page may begin with some paragraphs of text describing how to fill out the form.
Then the web page contains an <APPLET> instruction which produces the actual form. When you look
at this kind of web page with a browser, you will see the text instructions at the top of the page,
followed by the form itself.

It is important to note that the user doesn’t have to know anything about Java to use this kind of form.
The user just clicks buttons, types text into text boxes, and so on. The user may not even realize that
Java code is being executed—everything is handled transparently by the browser program.

Note: Before a Java applet can be executed on the user’s system, the applet’s virtual machine code
must be transferred from the server system to the user system. The larger the program, the longer this
transfer takes. Therefore, simple applets will load much faster on the user’s system than complicated
ones.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 1. Basic concepts of Jato

 Java and the web
 Sending information to the server

The usual purpose of a Java applet is to create a form that obtains information from the user. For
example, a company that sells products over the web may create a web page that makes it possible for
customers to submit a purchase order. A Java applet invoked through this web page could create a
form where customers can enter their names, addresses, what they want to buy, and so on.

When a customer has filled in the information required by the Java applet’s form, the information must
be sent back to the company so that it can process the purchase order. In other words, the applet
program must deliver the information from the user system to the server system. This can be done in a
variety of ways, all of which are described in Writing Internet applications.

Once the server system has received information from the user, the information must be processed.
The processing is done by an application on the server system. This application may be the server
itself, a set of specialized routines attached to the server, or a completely separate program. Again,
these different possibilities are discussed in Writing Internet applications.

The software that processes user information often needs to send a response to the user. The
response is sent as another web page. This web page may be simple (a confirmation that the
information was received) or it may be complicated, invoking another applet, which produces another
form to obtain more information.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 1. Basic concepts of Jato

 Java and the web
 Other uses of Java

Java can be used for more than just writing applets. For example, it is possible to write a Java
application: a standalone program running on a single system, without using the Internet. This kind of
application looks like an application written in Optima++ or a standard programming language—it
interacts with the user in the same way as other Windows programs.

Servlets
A servlet is a type of program intended to run on the server system. Servlet code is invoked by the web
server in response to requests sent by the user system. For example, suppose that the user calls up a
web page that invokes a Java applet. The applet displays a form and obtains information from the user,
then transmits that information to the server system. The web server on the server system can process
the information received by executing a Java servlet.

For more information about servlets and other types of Java applications, see Writing Internet
applications.

This type of servlet is also known as a web server extension.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 1. Basic concepts of Jato

 Java and the web
 JavaScript

JavaScript is a language designed to complement Java. An application written in JavaScript is simply a
sequence of text instructions that are executed one after another. If a Java program is similar to an
executable file (.exe), a JavaScript application is similar to a DOS batch file (.bat).

A web page may invoke JavaScript code in much the same way that it invokes a Java applet:

1. The HTML code specifies the location of the JavaScript code you want to execute.

2. The web browser loads the JavaScript code and executes it with a JavaScript interpreter.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 1. Basic concepts of Jato
 Forms

A form is a window that can be displayed on the user’s system. When you use Jato to build a Java
project, you usually create one or more forms. To create a form, you:

· Design the form by laying out objects (buttons, boxes, and so on).

· Specify properties for each object.

· Write Java source code to handle the events that might happen to each object (for example, when
the user clicks a button or types text into a text box).

Note: Do not confuse Jato forms with HTML forms. A Jato form is part of a graphic interface, used in
creating various types of programs. An HTML form is typically built with textual HTML instructions, and
is contained by a larger HTML file.

One form can open another form. For example, if the user clicks a button on one form, the associated
source code may open a second form to obtain additional information from the user. There is no limit to
the number of forms that may be associated with a project.

 Forms in Java

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 1. Basic concepts of Jato

 Forms
 Forms in Java

In Jato, each form is implemented as a Java class. This has several consequences:

1. A form is a data type, not a data object. In order to make a form appear on the user’s screen, you
must create an object of the form type.

One of your form types is designated the main form. Your program automatically creates an object
of this type when it starts up, to serve as the initial window that the user sees.

2. You can have multiple objects of the same form type. For example, suppose you design a form that
displays the contents of a document. Your program can create multiple copies of this form, letting
the user examine several documents at once.

3. Each form class has associated properties. Some properties affect the appearance of the form (for
example, its color and its size). Other properties affect the behavior of the form (for example,
whether the size of the form can be changed).

When you design a form, you may specify initial values for the form’s properties. These initial
values are used whenever your program creates an object of the form class; however, you can
change many of these properties later in program execution.

4. Each form class has a set of associated methods. A method is a function that lets you perform an
action using the form. For example, a form has methods to examine or change the form’s
properties.

5. Using the Classes window, you can add your own methods to a form class. This is useful when you
want to define a routine that can be used by other functions within the class, or when you want to
provide controlled access to the class for objects outside the class.

The name given to a form is the name of the associated Java class. For example, if you name a form
Form1, the associated Java class will also be called Form1 and its source file is named Form1.java.

Note: Jato lets you create many different types of forms. For example, a dialog box is a type of form
which typically is opened to obtain information from the user and is closed once the user has filled in
that information. When you create a new form, we suggest that you create a modeless dialog unless
you have a reason for choosing some other form type. A modeless dialog supports more operations
than the plain “form” type.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 1. Basic concepts of Jato
 Objects

The first stage of creating a program with Jato is placing objects on a form. To do this, you select a
component type from the Java component palette, then click on the form design window to specify the
position of the object. In this way, you place buttons, text boxes, etc. on the form to design what the
user will see when the form appears.

 Object names
 Object methods
 Object properties

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 1. Basic concepts of Jato

 Objects
 Object names

Jato associates a name with each object on the form. For example, Jato chooses names like cb_1,
lb_2, and Menu_1. It is often a good idea to change these into more descriptive names: cb_OK,
fileList, menuSave, and so on.

The name associated with an object is used as a variable name for referring to the object in Java code.
For example, when you place a command button on a form, Jato might create the following declaration
in the form class’s source code:
 CommandButton cb_1 = new CommandButton();
This indicates that cb_1 refers to a CommandButton object. Jato also generates code in the form class
to initialize the CommandButton object. For example, this code sets various properties controlling the
button’s size and position. The variable cb_1 is declared as a private member of the class for the form.

Since objects on the form are referenced by private variables within the form class, they cannot be
referenced directly by entities outside the form. If Form1 needs to affect an object on Form2, Form1
must communicate with Form2 and have Form2 do the actual work.

Notation: Other parts of this guide use the notation name_N to describe the format of default object
names. The N stands for an integer value, with values beginning at 1. For example, label objects are
given names of the form label_N. This means that the first label on the form is named label_1, the
next is label_2, and so on.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 1. Basic concepts of Jato

 Objects
 Object methods

Each type of object has a set of associated methods. For example, a list box object has functions for
adding new items to the list, deleting existing items, and so on.
 lb_1.delete(3);
uses the delete method of a list box object to delete item 3 from lb_1. (The “.” is the standard Java
operator for invoking a method of an object.)

Some methods return a status value indicating whether they succeeded or failed. In many cases, this is
a boolean value: true means the method succeeded and false means it failed. When the purpose of
a method is to return a value, the function may return a special value to indicate failure. For example, if
the purpose of a particular method is to return a string, the function will return a null string if the proper
value cannot be determined.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 1. Basic concepts of Jato

 Objects
 Object properties

The properties of an object control the object’s appearance and behavior. Jato lets you set the
properties of an object while you are designing the form. Some properties can also be changed as your
program executes. For example, you might disable the use of a command button at times when
clicking that button is not appropriate.

Properties can be changed at run time using appropriate function calls. For example,
 cb_1->setText("New text");
changes the text of cb_1 to the given string. Methods that change the value of a property have names
beginning with set; methods that return the current value of a property have names beginning with get.
Every property has a corresponding get method and every property that can be changed at run time
has a corresponding set method.

The Jato Component Library Reference documents the get and set functions for a property in the
entry for the property. For example, getText and setText are explained in the entry for the Text
property.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 1. Basic concepts of Jato
 Events

An event is a message received by a form or an object on a form. Events may be generated directly by
the user; for example, when the user clicks on a button, a Click event is triggered for that button.
Events may also be triggered by the code of your program; for example, if Form1 creates a Form2
window, the action generates a Create event for the Form2 object.

There may be many ways to cause the same event. For example, the Select event means that an item
has been selected in a list box. This may happen because the user clicked an item, or because the
user is running through the list of items by pressing the arrow keys.

Writing Jato programs is mainly a matter of writing Java routines to handle events. For example, you
do not have to write a mainline for the program; that is handled automatically by Jato. Instead you write
a routine for what happens when the user clicks on one button, what happens when the user double-
clicks an item in a list box, and so on. These routines are called event handlers.

An event handler is a method belonging to the form class that contains the object receiving the event.
This means that the handler has access to all the private members of the form object. In particular, it
can work with all the objects defined on the form. For example, the Click event handler for cb_1 can
change the contents of a list box elsewhere on the form.

A typical event handler has a name like
 cb_1_Click
This incorporates the name of the object that receives the event (cb_1) and the name of the event
itself (Click).

 Event handler calling sequence

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 1. Basic concepts of Jato

 Events
 Event handler calling sequence

Every event handler is called with one argument: a block of information describing the event. Often,
your event handlers will ignore this argument; the information is not necessary. In some cases, your
event handler must place data in the information block to return a response to the caller.

Event handlers return true to indicate they handled the event completely or false if the default event
handling of Jato should finish dealing with the event.

See Standard events for details about the way information is passed to an event handler, and how
event handlers use their return values.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 1. Basic concepts of Jato
 Jato and AWT

The Abstract Windows Toolkit (AWT) is a standard library of Java class definitions which define the
common elements of graphical user interfaces: push buttons, list boxes, scroll bars, and so on. AWT
was designed by Sun Microsystems to provide the basic building blocks for creating applets and other
Java applications. AWT specifies operations that can be performed on elements (for example, adding
or deleting items in a list box) and events that can happen (for example, the user clicking a command
button or entering text in a text box). AWT also defines other useful data classes (such as a String
class for character strings and an Image class for “pictures”).

The Jato component library is built on top of AWT. For example, one of the data members of a Jato
CommandButton object is an AWT Button object. Similarly, many of the methods that can be performed
on a CommandButton object correspond to AWT Button methods.

Most events that can be received by a CommandButton object correspond one-to-one with the events
that can be received by an AWT Button. On the other hand, some events recognized for Jato objects
do not correspond directly to AWT events, and vice versa.

All of this means that the component library is a Java wrapper around the basic data structures and
operations of AWT. The components of the library parallel the facilities of AWT itself.

However, the library provides more than a simple wrapping: it gives you a complete structure for
creating programs quickly and easily. Complex operations can be performed in a single instruction,
avoiding tiresome set-up and tear-down operations. At the same time, the library gives you full access
to low-level AWT features, for those rare occasions when you need to program directly with AWT
classes.

Learning to create programs with Jato is primarily a matter of learning to use the design
environment and the Jato library.
The rest of this guide outlines the major features of the library and presents simple examples using the
library functions. The goal is to introduce the most common classes and methods within the library, to
help you get results fast. For full details, however, you should consult the Jato Component Library
Reference.

Important: With Jato, you do not have to use sophisticated features of Java. The Jato library helps
you create efficient and effective programs, even if you do not have extensive knowledge of Java or
AWT. Most of the user interface code that you write will consist of simple calls to library functions.

 Jato Programmer ’ s Guide

 Part I. Fundamentals
 Chapter 2. Using targets and projects

This chapter explains the basic principles of working with Jato targets and projects.

 Targets
 Projects
 New projects
 Opening an existing project
 Closing a project
 Running a target
 Target folder contents
 Managing project and targets
 Options for building targets
 Target types
 Build macros
 Using libraries
 Source code control in Jato
 Summary of targets and projects

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects
 Targets

A target is an applet, a web application, a standalone Java application, a Java library, or a DLL that can
be used with a web browser (Internet Explorer or Netscape Navigator).

Jato builds targets from source files. The following are all considered source files:

· Files containing Java source code (.java extension)

· Files containing HTML source code (.html extension)

· Compiled Java class files (.class extension)

· Java libraries

· Files that contain images that are used by an application (for example, .gif or .jpeg files)

· Files that contain form definitions (.wxf extension).

· Managed class files (.wxc extension); for an explanation of managed classes, see Adding classes
to a target.

Notice that the source files of a target do not necessarily contain Java source code. Files like libraries
and image files may be considered source files for the target because they are used in building the
target.

 Target folders

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Targets
 Target folders

Each Jato target is kept in its own separate folder. This is necessary because different targets often
have source files that have the same name. To keep the source files from overwriting each other, by
default all the files associated with a particular target are kept in the target folder.

By default, Jato creates target folders in the Projects folder under the main Jato folder. However, you
can create target folders elsewhere if you wish.

The default name for a target folder is based on the name of the target itself. For example, if your
target is named targ.exe, the default name for the target folder is targ. Jato gives you the chance to
specify a different name for the target folder when you first create the target or when you use Save
Project As to save the project.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects
 Projects

A project is a collection of one or more targets. A project may consist of several programs which
perform related tasks.

Some Jato operations apply to single targets, while others apply to the project as a whole. For
example, the Run command runs a single target. On the other hand, the Save Project command
saves all the source files for all the targets in the current project.

 The project file

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Projects
 The project file

Jato creates a project file for each project. This is a text file listing all the targets that belong to the
project. The project file can be regarded as a summary of the entire project.

Project files have the file extension .WXP. By default, Jato places the project file in the same folder as
the first target created for the project, but you can save the project file in a different folder if you wish.

You will never have to edit a project file directly; Jato maintains the file for you.

Tip: If you double-click on a project file, the system will open the project in Jato.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects
 New projects

When you begin using Jato, Jato automatically sets up a new project. This is called an untitled project
since you haven’t assigned a name to it yet.

You can work with the untitled project in the same way as any other project: you can design forms, set
properties, write code, and even run the resulting program. In order to do some of this work, however,
Jato has to create a number of files and store these files on your system. Therefore, Jato stores the
untitled project under the temporary folder that you specified when you installed the Jato package.

At any time, you can save the untitled project with a name of your choosing. Many people find it
convenient to do this before doing any work on the project. When you save an untitled project (or move
an existing project to a new folder), Jato must rebuild the files associated with the project. Therefore, if
you save an untitled project before you start doing any work on it, you can avoid rebuilding some files
twice.

Once you have named and saved the project, Jato deletes any files that were created for the project in
the temporary folder.

 Starting a new project

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 New projects
 Starting a new project

As the previous section described, Jato automatically starts a new project for you when you start your
Jato session. You can also start a new project in the middle of your Jato session.

¨ To start a new project in the middle of your Jato session:
1. From the File menu of the main Jato menu bar, click New Project.
The new project will automatically be an untitled project.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects
 Opening an existing project

When you start your Jato session, you will often want to start work on a project that you saved in an
earlier session. To do this, you must open the project.

¨ To open an existing project:
1. From the File menu of the main Jato menu bar, click Open Project. By default, Jato shows the last

folder where you opened a project.

2. Locate the folder with the project file. By default, this is the folder of the first target in the project.

3. Click the name of the project file in this folder (with the extension .WXP), then click Open.

Note: You can only work on one project at a time in a single Jato session. If you are working on one
project and then open a different one, Jato closes the first project before opening the next one. If you
want to work on more than one project at a time, you need to start a separate Jato session for each
project.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects
 Closing a project

When you terminate your Jato session, Jato automatically closes the project before quitting. Similarly, if
you start a new project or open an existing project, Jato automatically closes the project that you
previously had open.

¨ To close a project explicitly:
1. From the File menu of the main Jato menu bar, click Close Project.
When Jato closes a project, it first checks to see if the project has unsaved changes. If so, Jato asks
whether you want to save the changes before closing. If you do not save the changes, they are
discarded.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects
 Running a target

You can run a target program at any time during your Jato session.

¨ To run your project:
1. From the Run menu, click Run.

2. You can also click the Run button on the Jato toolbar:

 Before your program starts executing
 Compilation and link errors
 Running different types of targets
 Debugging facilities
 Running with multiple targets
 Run options

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Running a target
 Before your program starts executing

When you run a target, Jato compiles your source code and links the result into an executable
program. Compilation can be a lengthy process if you have a lot of code; however, Jato tries to compile
most of your code in the background, as you work on other parts of the project. This reduces the delay
when you finally ask to run the target. Even so, it may take a little while before your program actually
starts execution.

While compiling and linking your program, Jato displays a dialog box with a progress bar showing how
far Jato has got in preparing your program. If you click the minimize button on this dialog box, it
minimizes your entire Jato session. This can be useful if you want to do something else while Jato is
building your program.

Program execution starts when you see the target’s initial form displayed on your screen. You can then
interact with your program as a user would.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Running a target
 Compilation and link errors

If Jato encounters errors compiling your target, it opens a code editor window showing the code where
the first error was found. One or more error messages will be displayed immediately before the line
where the error occurred. The error messages are marked with a red X in the left margin.

If the compiler found more errors than can be shown in one code editor window, you can jump from one
error to the next using the Search menu of the code editor. Clicking Next Error on this menu moves to
the next error found by the compiler. Clicking Previous Error on this menu moves back to the previous
error.

Jato can also display the Error Log window showing the errors. This window describes each error, plus
the file and event handler that contained the error. If a particular error message is too long to fit in the
window, resize the window so that you can see the whole message.

The icons indicate the severity of the error; an exclamation mark indicates an error that prevented

completion of the building of the target, and an “i” indicates a warning of possible problems that do not
prevent building. An error may be followed by a notes that further explains the problem.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Running a target
 Running different types of targets

Jato runs different types of targets in different ways. For example, if a target is an applet, the default
behavior is to run that applet using the Applet Viewer program. Applet Viewer can run a compiled
applet, without needing the applet to be invoked by an <applet> command in a web page. On the
other hand, if the target is a standalone Java application, the default behavior is to open a Java
console, then run the program under control of that console.

You can change the default behavior for running a program by specifying appropriate run options. For
example, you can specify your own command line for invoking the program. Different types of targets
allow different types of run options. For further information, see Run options.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Running a target
 Debugging facilities

Jato offers a number of facilities for debugging your programs. These facilities let you examine the
program throughout the course of execution, making it easier to investigate what happens as the
program runs.

For a complete description of Jato debugging facilities, see Debugging.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Running a target
 Running with multiple targets

Even if your project contains more than one target, Jato only runs one target at a time. If you run a
project with several targets that could be run, Jato asks which target you want to run. DLL and library
targets can not be run.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Running a target
 Run options

The run options for a target control the way that Jato runs the target. By specifying run options, you can
override the default method of running the target.

¨ To specify run options for a target:
1. Open the Targets window by clicking Targets in any Jato View menu.

2. In the Targets window, use the right mouse button to click on the target whose run options you
want to set, then click Run Options.

3. Set the run options as desired, then click OK.

Different types of targets have different types of run options. For more information, see the individual
target descriptions in Target types.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects
 Target folder contents

You will seldom need to know how Jato organizes your project into files and folders; Jato is designed
so you can ignore the underlying mechanics. This section is supplied for the rare occasions when you
must refer to source or intermediate files directly.

Intermediate files are files that may be produced when a target is built (in addition to the target itself).
For example, Jato may compile Java source code files to produce class files (with the extension
.class).

Jato creates a target file for each target in a project. Target files have the file extension .WXT. This is a
text file in the target folder listing information about the target, including all the files that are needed to
build the target. The target file can be regarded as a summary of the entire target.

%%% The following list is subject to change.

Suppose that you have saved an applet target called target in a folder named targ. The following
list shows the files that you may see in this target folder. (Some types of targets do not have all the files
shown in the list.)

target.html
An HTML file which can form the basis for a web page containing the applet. This file contains the
minimal HTML for setting up the applet, including an appropriate <applet> directive for invoking
the applet. You can add extra HTML code to this file to make a more suitable web page; for
example, you might add instructions for using the applet form before the <applet> directive that
actually displays the form.

You can edit this file using any appropriate software on your system. This can be anything from a
simple text editor to an HTML authoring system like Microsoft Front Page.

target.wxp
The project file.

target.wxt
The target file containing information about the target. This information controls the steps that Jato
takes when it builds an executable file for the target.

target.wxu
Contains user settings for the project. It holds information on the state of Jato when you last edited
this project (for example, the size of the main Jato window, the view windows you had open, the
size of any debugger windows, and so on). This lets Jato restore all those windows to the same
positions, the next time you start working on the project.

*.wxc
Managed class files containing a complete description of managed classes in your program. The
description stored in a class file includes all the Java source code related to the class.

*.wxf
Form files containing a complete description of each form in your program; for example, you may
see form1.wxf, form2.wxf, and so on. The description stored in a form file includes the
properties of the form and its objects, the position of each object on the form, and all the Java
source code related to the form.

Debug
A folder used when you create a debugging version of your target. The folder may contain
compiled Java class files (.class extension), files containing Java linked targets (.jlt
extension), and other files created in the process of building your program.

Release

A folder containing files for a version of the target suitable for release to end users. Error!
Reference source not found. explains how to prepare this version.

The Release folder also holds a number of intermediate files generated in the course of building
any version of the target, whether the debug version or the end-release. This includes Java source
code files generated from the WXF and WXC files for every form in the target. Don't edit these
files, since any changes will be lost when they are regenerated.

If you want to save disk space, you may delete all the contents of the Debug and the Release folders
by clicking Clean in the Run menu. These files are all built from other source files, so they can be
rebuilt if you delete them. (Of course, you then have to wait for Jato to rebuild all these files the next
time you run the target.)

The source files necessary for building a target are all stored directly in the target folder (except for any
outside libraries that are used by these source files). Therefore, if you want to archive a target in such a
way that it can be completely restored later, you only have to keep the files that are directly under the
target folder.

Changing names
The name of a WXF form file matches the name of the form at the time that the file was first saved. For
example, if you save the project when the form’s name is Form1, the name of the file will be
Form1.wxf. However, if you change the name of the form later, the name of the associated form file
does not change automatically. If you want to change the name of the form file as well as the form
itself, follow these steps:

1. Change the name of the form first.

2. Open the Classes window and use the right mouse button to click on the form whose form file you
want to rename.

3. Click Properties in the resulting menu.

4. Enter a new name for the form file under File Name, then click OK.

Jato automatically changes the name of the form file associated with the form.

The same principle applies to changing the name of managed classes. If you change the name of the
class, the name of the WXC file for the class does not change unless you change it manually.

Important: When you use the right mouse button to click on an object in the Classes window, the
resulting menu has a Rename item. Using this item renames the object in the Classes window, but
does not make any other changes. In particular, it does not change the name of any files associated
with the object or change names used in source code. If you want to change the file name, you must
go through Properties, not through Rename.

 Backup files

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Target folder contents
 Backup files

Jato creates backup files in various situations. For example, suppose you run a target but have made
changes since the last time you saved the project. Jato overwrites your saved files with the new
(modified) contents of the target, but keeps backup files of the original versions to use if you close the
project without saving changes.

Backup files are identified by having a tilde (~) character in the middle of the file name extension. For
example, the backup file for Form1.wxf is named Form1.w~f.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects
 Managing project and targets

Jato can do more than just prepare single programs; it can help you create a complete software
application containing multiple executables and libraries. This section explains how to add targets to
projects and how to add files to targets.

Jato lets you add new or existing source files to a target. Source files may be of several types:

· Java source code files.

· Java class files

· Files containing images (for example, .GIF files).

· Library and DLL files.

· Managed class definitions (either new ones or ones created for other targets).

· Forms (either new ones or ones created for other targets).

· Existing targets.

You can also delete targets and source files from projects and targets.

 Adding a target to a project
 Adding source files to a target
 Adding classes to a target
 Adding forms to a target
 Targets that depend on each other
 Deleting targets and source files
 Read only folders

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Managing project and targets
 Adding a target to a project

There are two types of targets that can be added to a project:

· A new target.

· An existing target (obtained from another Jato project).

¨ To add a new target to a project:
1. From the File menu of the main Jato menu bar, point to New and click Target. This opens the

Target Wizard which takes you step-by-step through the creation of the new target.

2. The Target Wizard displays a list of targets that Jato can create. This includes several types of
libraries and executables. Click the type of target you want to create.

3. Type in a name for the new target, then click Next.
4. Specify where to store the files associated with the new target. By default, this is a new folder

under the Jato Projects folder, using the name you just chose for the new target. Accept this
default, or specify another location. Then click Next.

5. Depending on the type of target you have chosen, the Target Wizard may ask you to choose what
type of form should be used for the new target’s initial form. You will also be asked to type in a
name for this form.

When you have finished entering this information, Jato creates the new target and all the necessary
source files. When you ask to run this target, Jato will run that target and any others that it depends on.

Note: Whenever you start your Jato session, Jato creates a default target: an executable program
named untitled. If you create a new target, and the existing target is an unmodified version of the
default target, Jato automatically deletes the original (default) target.

¨ To add an existing target to a project:
1. From the File menu of the Files window, click Add File.

2. Jato starts an Open File dialog. Use this dialog to locate the WXT file for the target you want to
add. Click Open.

3. You will be asked if you want the current target to depend on the new target. Click Yes if you want
the current target to be rebuilt any time the new target changes; click No if changes in the new
target will not affect the current target.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Managing project and targets
 Adding source files to a target

You can add files using the Files window, the Targets window or the File menu on the main Jato menu
bar. This section describes procedures for the following types of source files:

· Java source code files.

· Java class files.

· Files containing images (for example, .GIF files).

You can use the following procedure to add new Java source code and include files.

¨ To add a new code file to a target:
1. In the Files window, click the target to which you want to add the source file.

2. From the File menu of the Files window, point to New and click File.

3. Jato prompts you to type in a name for the new file. This should not be the name of an existing file,
because Jato will overwrite the file if it already exists. Jato uses the extension of the file name that
you type to determine the file type.

4. Click OK when you have typed the file name.

Jato adds the file to the target and opens a code editor for it.

¨ To add an existing file to a target:
1. In the Files window, click the target to which you want to add the source file.

2. From the File menu of the Files window, click Add File. Jato opens a file dialog window that lets
you specify the file you want to add.

3. At the bottom of the file dialog window, click the arrow for Files of type. From the resulting list,
select the type of file you want to add.

4. Use the file dialog to find the file you want to add. Click Open when you have specified the file.

Jato adds the file to the target. For example, if you add a class file, the file will be added to the set of
class files used in linking/loading your program. If you add any Jato form file, the form and all its
associated code will be added to the current target. Jato determines the type of file by looking at the file
extension; for example, if the file has the extension .WXF, the file is assumed to be a form file.

With target files, Jato adds a reference to the original file in the list of files associated with the current
target; in this case, the reference is a pathname relative to the target folder. With other types of files,
Jato makes a copy of the original file and stores a copy in the target folder. From this point on, Jato
builds your target from the copy, not from the original file; therefore, if you make changes to the original
file, they are not automatically inherited by your project.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Managing project and targets
 Adding classes to a target

You can add a new class to a target by using the File menu of the main Jato menu bar, or the Classes
window, to open the Class Wizard. The Class Wizard guides you through the steps of adding a class to
a target.

Classes created through the Class Wizard are called managed classes because Jato has records of
what function(s) the classes contain. Managed classes are stored in files with the extension .WXC.

There are several types of managed classes:

Visual class
A class that is seen at design time but not at run time. For further information, see Visual classes.

Standard Java
Any type of class that is not covered by the other choices.

¨ To define a new managed class:
1. From the File menu of the Classes window, click New and then Class. This opens the Class

Wizard.

2. If your project contains more than one target, the Class Wizard asks which target should contain
the new class. Click a target, then click Next.

3. Click the type of class you want to create, then click Next.
4. Under Package Name, type a name for the Java package that will contain this class.

5. Under Class name, type a name for the new class.

6. If you do not want this class to inherit from Object, type the name of a different class under Inherits
from.

7. If this class implements an interface, type the name of the interface under Implements.

8. If you do not want to use the default file name for this class, type a different name under File
name.

9. If this will be a public class, make sure Public is checked.

10. If this will be an abstract class, make sure Abstract is checked.

11. If this will be an interface, make sure Interface is checked.

12. Click Finish.

Once you have followed the above steps, you can use the Classes window to further define the class.
Click on the name of the new class in the left pane of the Classes window, then define the contents of
the class by double-clicking items in the right part of the window. See Error! Reference source not
found. for instructions on adding member functions.

Jato automatically creates a constructor and destructor for any managed class; however, you can
delete either of these if it is not needed.

To add a class that is defined in an existing file, add the file itself to the target (see Adding source files
to a target).

You can rename a managed class from the Classes window. Use the right button to click the class
name, then click Rename. You can then enter a new name for the class. When you change a class
name, Jato automatically changes all occurrences of the old name to the new name (except for
occurrences in string constants and comments).

For more information on using classes, see Working with classes.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Managing project and targets
 Adding forms to a target

If you are adding a new form to a target, the Form Wizard helps you to create the new form. For further
information, see Error! Reference source not found..
To add a form that is defined in an existing file, add the form’s WXF file to the target. The steps for
adding an existing file to a target are outlined in Adding source files to a target.

If a target has forms associated with it, one of the forms is designated the main form. The main form is
created automatically when the target begins running; it is the first form that the user sees. In the
Classes window, the main form is marked with a green running figure:

In the above example, Form1 is the main form.
¨ To designate a different form as the main form:
1. In the Classes window, use the right mouse button to click on the name of the form that you want to

designate as the main form, then click Main Class.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Managing project and targets
 Targets that depend on each other

A project may contain one target that depends on another. For example, the project may contain a
library target and a program that uses that library. In this case, you have to tell Jato about the
dependency, so that Jato will remake the program whenever the library changes.

¨ To establish that target A depends on target B:
1. Create each target separately.

2. Save both targets.

3. In the Targets window, click target A so that it is selected.

4. From the File menu of the Targets window, click Add Target Dependency. This displays a list of
targets on which A may depend.

5. Click target B in the Available Targets list, then click Add.

6. Click OK.

From this point onward, if you make a change in target B, Jato will update both B and A.

¨ To remove an existing target dependency:
1. In the Targets window, click the target from which you want to remove the dependency.

2. From the File menu of the Targets window, click Add Target Dependency.

3. In the Selected Targets list, click the name of the target whose dependency you want to remove,
then click Delete.

4. Click OK.

Target dependencies are recorded in the project file (.WXP extension), not in the target file (.WXT
extension). Therefore, if you add an existing target to a new project, the target dependencies of the
target are not recorded in the new project. This is why the dependency must be set up manually.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Managing project and targets
 Deleting targets and source files

You can delete targets and source files from a project, using the Files window. Deleting a target or
source file from a project does not remove the file from the disk; it simply tells Jato that the file is no
longer needed by this project.

¨ To delete a file from the current project:
1. In the Files window, use the right mouse button to click the name of the file you want to delete, then

click Delete. Before deleting the file, Jato verifies that you really want to go ahead with the deletion.

Note: The same source file may be used as input for more than one target. For example, several
targets may use the same library as a source file. If you delete a file from the source file list of one
target, it has no effect on the source file lists of other targets.

You can also delete forms and managed classes from the Classes window, and delete files from the
Targets window. The process is the same as deleting items from Files window.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Managing project and targets
 Read only folders

Some source files “never” change. For example, one of the source files for a target may be a standard
AWT class library that only changes with new releases of AWT. Similarly, the standard class files that
come with Jato itself will only change if you install a new version of Jato.

If you believe that all the source files in a particular folder will not change during the course of
developing a project, you can designate that folder as a read only folder. When rebuilding the project,
Jato will not check the change dates of files in any read only folder; by skipping this date check, Jato
can make the rebuilding process faster.

¨ To designate a folder as a read only folder:
1. From the Tools menu on the main Jato menu bar, click Options, then click the Read Only Folders

tab.

2. Type the name of the folder at the bottom of the current Folder list.
3. Click OK.

If you change the list of read only folders, all targets are built from scratch the next time you build them.

If any of the files in a read only folder actually do change, you should explicitly build any other files that
depend on the changed files.

¨ To force a file to be built:
1. Open the Targets window.

2. Use the right mouse button to click on the file you want to rebuild, then click Properties.

3. On the General page of the resulting property sheet, click Build now.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects
 Options for building targets

The Jato Targets window provides access to the facilities that control how targets are built from their
source files.

In the Targets window, you may use the right mouse button to click any of the file names displayed and
obtain a property sheet for the file.

 Target properties
 Source file properties
 Debug and release versions of a target
 Default options

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Options for building targets
 Target properties

For a target, the property sheet controls the way in which Jato attempts to build the target. This
includes:

· Any specific options for building and linking the target

· What folders will be searched for .CLASS files needed to link the target

For information on any of the options on the property sheet, use the online help facilities.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Options for building targets
 Source file properties

For a source file, the property sheet controls the actions that Jato takes when processing the file. This
includes:

· %%% Any specific options for processing the source file

For information on any of the options on the property sheet, use the online help facilities.

If you change the default properties associated with a source file, the file’s name is marked with an
asterisk in the Targets window. For example, if you define some special macros for compiling Form1,
the Targets window prefixes form1.wxf with an asterisk:

Any file that is not marked with an asterisk is using the default options for source files of that type.
If you want to change a source file back to default option, use the right mouse button to click on it and
click Use Default Build Options.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Options for building targets
 Debug and release versions of a target

When you are debugging a target, Jato prepares a test version of the target under the Debug folder in
the target folder. Debug versions of a target are larger and slower than release versions, since
debugging information is stored in them and compiler optimizations are turned off. When you are ready
to create a version of the target for end users, you should build a release version.

Release versions do not contain any of the debugging information that is provided with debug versions
of the program. They are also optimized in various ways, making the executable file smaller and
suitable for distribution to end users.

¨ To build a release version of your target:
1. From the View menu of the main Jato menu bar, click Targets. This displays the Targets window.

2. Click the Target Type drop down list, then click Release.

From this point on, Jato prepares release versions of your target. These are placed in the Release
folder in the target folder.

If you later need to do more debugging on the target, you can use the Targets window to change back
to the debug target type.

Note: If you need to, you can debug a release target if the Targets window is set to the release target
type.

For more information on deploying an application, see Error! Reference source not found..

Build options for Debug and Release versions
The Debug and Release versions of a target may have different build options. Therefore, if you change
the build options for one version of the target, you usually have to change the build options for the
other version too. To do this, you set the build options, change the target type, then set the build
options again. This applies to build options for source files as well as targets.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Options for building targets
 Default options

The Targets window shows an entry called Default Options under every target. Expanding this entry
shows various types of files associated with the target (Java source files, Java class files, and so on).
To see the default options for a given type of file, look at the property sheet associated with the
appropriate entry under Default Options. For example, the property sheet for Java Target shows the
default options used for JLT files.

If you change the default options for a target, Jato asks what you want to do with source files that are
not currently using the defaults.

If you have changed the options for a target or source file, then decide to change back to the defaults,
you use the Targets window.

¨ To change a source file or target back to the default build options:
1. Open the Targets window.

2. Use the right mouse button to click on the target or source file whose options you want to change,
then click Use Default Build Options.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects
 Target types

This section looks at types of targets that can be created with Jato. In particular, it looks at the
properties that control the nature of each type of target. To examine and change these properties, open
the Targets window and click Show Property Sheet in the Targets window View menu.

The types of targets include:

· Java applet

· Java application

· Java library

· Web application

· Java Web server application (servlet)

· Java Dynamo Server application (servlet)

· User-defined targets (using target templates)

The following sections describes the run options available for running each type of target and the
properties available to control how these targets are built.

For a description of how to set the run options for a target, see Run options. For a description of how
to set properties for a target, see Options for building targets.

 Java applets
 Java applications
 Java libraries
 Web applications
 Java web server applications
 Dynamo server applications

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Target types
 Java applets

A Java applet target initially has the following source files:

· A basic HTML file which contains an appropriate <applet> directive to invoke the applet

· A managed class file (.WXC) defining global information for the applet

· A form file (.WXF) for the applet’s initial form

When you run a Java applet, the default is to invoke the Applet Viewer program to execute the applet.
Another way to execute the applet is to open the target’s HTML file with a web browser (for example,
Internet Explorer or Netscape Navigator). This lets you see how these browsers will handle the applet.

In theory, an applet should have the same behavior no matter which browser you use to run it. In
practice, however, there are small differences between browsers which may lead to different applet
behaviors.

Run options for Java applets
The following run options apply to Java applets:

Use Microsoft Java interpreter [General page]
Run the applet under control of the Applet Viewer program, using the Microsoft implementation of
the Java virtual machine. This is the default.

Use Sun’s Java interpreter [General page]
Run the applet under control of the Applet Viewer program, using the JavaSoft implementation of
the Java virtual machine.

Use a web browser [General page]
Runs the applet under the control of a specified web browser. In this case, you must specify how to
invoke the web browser. This is either the name of the EXE file containing the web browser or a
RUN command to run the browser program.

HTML File [General page]
Specifies the HTML file that the web browser or Applet Viewer should open. By default, the HTML
file is the basic HTML file created as one of the source files for the Java applet target.

Don’t use the debugger [Debug page]
Prevents the use of the debugger while running the applet. %%% In this beta release, this is
necessary if you are using the Sun virtual machine.

Run with the debugger [Debug page]
Runs the program under control of the Jato debugger. In this case, you must specify the class that
you want to debug. Typically, you specify the main form for the applet.

Select an initial breakpoint [Debug page]
Specifies an initial breakpoint to be used when debugging the applet under control of the Jato
debugger. For more information, see Breakpoints.

Messages page
Specifies how you want to display error messages that come from the Java interpreter. This can be
a fixed size console window or a resizable window.

Properties for Java applet targets
%%% Not yet finalized

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Target types
 Java applications

A Java application is simply a standalone program written in Java. A Java application target initially has
the following source files:

· A managed class file (.WXC) defining global information for the application

· A form file (.WXF) for the applet’s initial form

When you run a Java application, the default is to open a Java console and then run the application.
The console reports on certain actions of the Java application; for example, if the application attempts
to open a URL, the request is displayed on the console.

Run options for Java applications
The following run options apply to Java applications:

Use Microsoft Java interpreter [General page]
Run the applet under control of the Applet Viewer program, using the Microsoft implementation of
the Java virtual machine. This is the default.

Use Sun’s Java interpreter [General page]
Run the applet under control of the Applet Viewer program, using the JavaSoft implementation of
the Java virtual machine.

Don’t use the debugger [Debug page]
Prevents the use of the debugger while running the applet. %%% In this beta release, this is
necessary if you are using the Sun virtual machine.

Run with the debugger [Debug page]
Runs the program under control of the Jato debugger. In this case, you must specify the class that
you want to debug. Typically, you specify the main form for the applet.

Select an initial breakpoint [Debug page]
Specifies an initial breakpoint to be used when debugging the applet under control of the Jato
debugger. For more information, see Breakpoints.

Messages page
Specifies how you want to display error messages that come from the Java interpreter. This can be
a fixed size console window or a resizable window.

Properties for Java application targets
%%% Not yet finalized

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Target types
 Java libraries

%%% Information about this type of target has not yet been finalized

Run options for Java libraries
%%% Not yet finalized

Properties for Java library targets
%%% Not yet finalized

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Target types
 Web applications

A web application target brings together a Java applet and a web server extension. For further
information, see Web application targets.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Target types
 Java web server applications

A Java web server application is sometimes called a servlet. Specifically, this type of target creates an
ISAPI servlet; this is implemented as a DLL which attaches to the Microsoft ISAPI web server when
invoked by a User application. For further information, see ISAPI web server applications.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Target types
 Dynamo server applications

A Dynamo server application makes use of NetImpact Dynamo running in conjunction with a web
server. The most important use of NetImpact Dynamo is accessing databases on the Server system.
For more information, see NetImpact Dynamo server applications.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects
 Build macros

Jato makes it possible to define macros to be used as part of file path names. For example, suppose
that a target depends on a number of class files from C:\MyProject\Class. You could define a
macro named classfolder to refer to this folder. Then you could specify library search paths similar
to the following:

$(classfolder)
$(classfolder)\sub1
$(classfolder)\sub2

Defining path names in this form contributes to the portability of targets and projects. When you define
a build macro, it is saved in a file called Optima.mac, in your Jato System folder. It thus applies to all
projects on your computer, and must be set on any other computer that is used to build a project that
uses the macro. If you move the target to a computer that contains the libraries in a different folder, all
you have to do is redefine the classfolder macro to the new folder and Jato can find all the libraries
again.

Tip: The Optima.mac file can be edited with a text editor. If you want to move a set of build macros to
a new computer, you can copy the file and then edit the paths in it.

Macro names follow the usual rules for Java symbols: they can consist of alphanumeric characters and
the underscore character.

¨ To define a macro for use in path names:
1. From the Tools menu of the main Jato menu bar, click Options and then Build Macros.

2. Click New. This produces a dialog box to take information about the new macro.

3. Type a macro name into Name.

4. Type the associated pathname into Value.

5. Click OK in the Build Macro Details dialog box, then click OK in the main dialog box.

Once you have defined the macro, you can use it in path names. As shown above, you use a macro in
the form

$(macroname)
When Jato comes across such an expression in the property pages for a target or source file, Jato
replaces the expression with the value of the macro.

¨ To change an existing macro:
1. From the Tools menu of the main Jato menu bar, click Options and then Build Macros.

2. In the list of macros, double-click the name of the macro you want to change.

3. Type a new value under Value.

4. Click OK in the Build Macro Details dialog box, then click OK in the main dialog box.

You can delete an existing macro by clicking the macro name and then clicking Remove.

On the Build Macros page of the Options dialog box, you can click Show system-defined macros to
see the build macros automatically defined by Jato.

 Referring to environment variables

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Build macros
 Referring to environment variables

In the property pages for a source file or target, you can refer to environment variables using the syntax
$(%envnam)

For example,
$(%TMPDIR)

stands for the value of the environment variable TMPDIR.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects
 Using libraries

%%% Library control has not yet been implemented in Jato.

Many targets may need to obtain code from libraries. For example, a target may call a routine from a
library of utility routines shared between several projects. The property sheets for a target file specify
which libraries should be used in preparing that target.

¨ To view the property sheet for a target file:
1. In the Targets window, use the right mouse button to click the target file, then click Properties.

The Libraries page of the property sheet specifies the libraries that are needed for building the file.
You can add one or more libraries to the list using the Libraries page:

¨ To add a library to the list:
1. Type the name of the library in Library Name.

2. To add the name to the list, click Add.

Alternatively, you can drag the name of a library file from the Windows Explorer and drop it into the
Files window.

When Jato is looking for a function or variable, it searches through the libraries in the order given in the
list. This means that you may have to arrange the libraries in an order that ensures Jato finds the
correct versions of each required function.

¨ To change the position of a library in the library list:
1. Click on the library whose position you want to change.

2. Use the arrow buttons underneath the list to move the library up or down the list.

The Library Path page of the property sheet tells the folders where Jato should look for the library files
specified on the Library page. For further information, consult the online help.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects
 Source code control in Jato

This section explains the Jato facilities for performing source control in cooperation with various source
management systems.

 Source control support
 Supported source control systems
 Configuring Jato for ObjectCycle
 Configuring Jato for PVCS
 Configuring Jato for Visual SourceSafe
 Configuring Jato for RCS
 Configuring Jato for Source Integrity
 Configuring Jato for a generic system
 Local files
 Checking in a project for the first time
 Checking in files
 Checking out files
 Undoing a check out operation
 Getting the latest revision of a file
 Opening a new source control project
 Source control options

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Source code control in Jato
 Source control support

Source code control systems are programs that help you manage your source files. They let you make
sure that files are accessed in an orderly manner in a group environment, and also store old versions
of files.

Within the Jato design environment, you can do the following:

Check files in

Check files out

Get the latest revisions of files

Undo checkout operations

See the checked-in/checked-out state of files

Open a new source control project

Set source control options

For other source control operations and for configuration of your source control system, use the tools
that came with your system.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Source code control in Jato
 Supported source control systems

Jato can work with the source control systems listed below:

· Powersoft ObjectCycle (version 1.0 and later)

· INTERSOLV PVCS (version 5.1 and later)

· MKS RCS (version 6.2 and later)

· MKS Source Integrity (version 3.2 and later)

· Any system that supports the Microsoft Source Code Control (SCC) interface. These include
Microsoft Visual SourceSafe (version 4.0 or later), MKS Source Integrity (version 7.2 or later) and
Powersoft ObjectCycle (version 1.5 or later).

If you don’t have any of these source control systems, you can configure Jato to use a generic source
control system in which you specify the commands Jato should execute to check files in or out.

You should be familiar with your source control system before configuring Jato to use it. The rest of this
discussion assumes your source control system is already installed.

Registered systems
When you begin configuring Jato to use a source control system, Jato attempts to determine which
systems are currently installed on your computer. For example, Jato may check the registry on your
machine and see that both Visual SourceSafe and ObjectCycle are currently installed. Jato will
therefore ask which of these two packages you want to use to control your Jato projects.

In some situations, Jato may not be able to detect that you have a particular source control package
installed on your machine. If this happens, make sure that the package has been installed correctly. In
the case of Visual SourceSafe, you should make sure that the software was installed to include Visual
Basic support.

Important: Many operations related to source control are disabled until you have configured Jato to
use a particular source control package. For example, menu items related to checking files in or out
are disabled if you have not configured Jato to use a source control system.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Source code control in Jato
 Configuring Jato for ObjectCycle

ObjectCycle stores files in collections called projects. Files within a project are stored hierarchically.
Each Jato target has its own node in the ObjectCycle project. Target files are stored under the target’s
node.

You are free to store Jato files under any ObjectCycle project you like. You could create one
ObjectCycle project for every Jato project, or you could create a single ObjectCycle project to hold all
Jato projects in your organization.

Once you have created an ObjectCycle project for Jato, you do not have to worry about creating nodes
in ObjectCycle; Jato takes care of that for you.

Note: You will need to know which version of ObjectCycle you are using.

¨ To set up Jato to use ObjectCycle:
1. Using the ObjectCycle Manager program, create a new ObjectCycle project to hold your Jato

projects.

2. Start Jato.

3. On the Tools menu, click Options and then click the Source Control tab. Under Source control
system, click either ObjectCycle 1.0.00 (native) for ObjectCycle version 1.0, or ObjectCycle for
ObjectCycle version 1.5.

4. Click OK.

The next time you open a project, you will be prompted to log in to your ObjectCycle server.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Source code control in Jato
 Configuring Jato for PVCS
¨ To set up Jato to use PVCS:
1. Start Jato.

2. On the Tools menu, click Options and then click the Source Control tab. Under Source control
system, click PVCS.

3. Make sure Show commands as they are executed is checked.

4. If you want Jato to pause after executing each command, make sure Pause after each command
is checked.

5. Click OK.

Note: If you do not check Show commands as they are executed, PVCS may wait indefinitely for
input from you when you perform a source control command. If this happens, it will appear as if Jato
has stopped executing.

By default, PVCS creates archive files that have the same name as the original checked-in file, except
that the last character of the extension is replaced with the letter v. Since some file extensions used by
Jato differ only in the last letter, PVCS will not be able to check in two files with the same name but
different extensions if they are in the same folder. For example, PVCS would try to store both
TEST.WXP and TEST.WXT in a single archive called TEST.WXV. As a result, one of the files would be
lost.

There are two ways to resolve this problem:

1. Move the project file out of the target folder.

2. Edit your PVCS configuration file to change the template that PVCS uses when forming the file
extensions for archives. For an explanation of how to do this, see the ArchiveSuffix directive in
your PVCS Reference Guide.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Source code control in Jato
 Configuring Jato for Visual SourceSafe

Visual SourceSafe stores files in collections called projects. It is up to you to create Visual SourceSafe
projects using the Visual SourceSafe Explorer program.

Jato uses the read-only file attribute to determine whether a file needs to be checked out or not. There
is a Visual SourceSafe option that makes local files read-only if they are not checked out. Make sure
this option is turned on before using Jato with Visual SourceSafe.

Jato assumes the following Visual SourceSafe settings:

· Remove local copy after Add or Check In should be off.

· Use read-only flag for files that are not checked out should be on.

¨ To set up Jato to use Visual SourceSafe:
1. Start Jato.

2. On the Tools menu, click Options and then click the Source Control tab. Under Source control
system, click Microsoft Visual SourceSafe.

3. Click OK.

The next time you open a project, you will be prompted to log on to Visual SourceSafe.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Source code control in Jato
 Configuring Jato for RCS
¨ To set up Jato to use RCS:
1. Start Jato.

2. On the Tools menu, click Options and then click the Source Control tab. Under Source control
system, click RCS.

3. Jato can display RCS commands as they are executed. If you want to see the commands, make
sure Show commands as they are executed is checked.

4. If you want Jato to pause after executing each command, make sure Pause after each command
is checked.

5. Click OK.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Source code control in Jato
 Configuring Jato for Source Integrity

Source Integrity stores files in collections called projects. Jato assumes that strict locking is used for all
archive files. This means that files which are under Source Integrity’s control must be read-only when
not checked out.

Note: You will need to know which version of Source Integrity you are using. For version 7.2 and
above, make sure that you installed the optional Visual Basic interface when you installed Source
Integrity.

¨ To set up Jato to use Source Integrity:
1. Start Jato.

2. On the Tools menu, click Options and then click the Source Control tab. Under Source control
system, click either Source Integrity for Source Integrity version 7.1c or earlier, or MKS Source
Integrity SCC extensions for Source Integrity version 7.2 (with the Visual Basic interface
installed).

3. Click OK.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Source code control in Jato
 Configuring Jato for a generic system

If you do not have any of the above source control systems, you can tell Jato what command(s) to
execute in order to check a file in or out. When you tell Jato to use a generic source control system, it
calls an external batch file to perform source control operations. It passes the type of operation and the
full name of the source file as command line arguments to the batch file. You just add whatever
commands your source control system needs to the batch file.

¨ To set up Jato to use a generic source control system:
1. Using a text editor such as Notepad, open the file OPT_GEN.BAT in the system subfolder of your

main Jato folder.

2. Look for the :doCheckIn label in OPT_GEN.BAT. After this line, add command line directives to
check in a file. For example, if your source control system uses a program called checkin.exe to
check in files, your copy of OPT_GEN.BAT should read:

:doCheckIn
 c:\bin\myrcs\checkin %1
 goto :done

When the batch file runs, the %1 will be replaced by the name of the file you want to check in. If
your checkin program is already in your search path, you do not have to specify the full pathname.

3. Look for the :doCheckOut label in OPT_GEN.BAT. After this line, add command line directives to
check out a file. For example, if your source control system uses a program called checkout.exe
to check out files, your copy of OPT_GEN.BAT should read:

:doCheckOut
 c:\bin\myrcs\checkout %1
 goto :done

4. Look for the :doRefresh label in OPT_GEN.BAT. After this line, add command line directives to
get the current version of a file. For example, if your source control system uses a program called
get.exe to retrieve files (without locking them), your copy of OPT_GEN.BAT should read:

:doCheckOut
 c:\bin\myrcs\get %1
 goto :done

5. Save the batch file.

6. Start Jato.

7. On the Tools menu, click Options and then click the Source Control tab. Under Source control
system, click Generic.

8. Click OK.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Source code control in Jato
 Local files

Jato needs to work with a local copy of a project; it cannot load files directly from the source control
system’s archive.

In addition, the local files that are under source control must be read-only. Most source control systems
have an option to make local files read-only; you should turn on this option for your project.

Jato does not create the initial local copy of a project’s folders and files. You must do this by using the
tools that come with your source control system. Once you have created your local copies, you can use
the facilities of Jato to check out files, check in modifications, and refresh files from the source control
archive.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Source code control in Jato
 Checking in a project for the first time

If you are using ObjectCycle or Source Integrity, and you’re checking in files for a new target, you may
have to create a new source control project. This section describes how and when you have to do this.
If you are not using a system that requires special setup for new source control projects, you can skip
this section.

Some source control systems store files in a hierarchical database. The top level is usually referred to
as a project. Don’t confuse source control projects with the projects you create with Jato. Source
control projects are an abstraction used by your source control system to help organize checked in
files. Jato projects are collections of Jato targets.

Jato does not create source control projects; you must do that yourself using the tools that came with
your source control system. The following sections gives some tips for creating source control projects.

Creating an ObjectCycle project
You can use a single ObjectCycle project to hold files for all of your Jato targets. If you have already
created an ObjectCycle project, you can skip the following steps. To create a new ObjectCycle project
to hold your Jato files, do the following:

1. Start the ObjectCycle Manager program. Log in to ObjectCycle as an administrator.

2. On the ObjectCycle Manager’s File menu, click New, then Project. The ObjectCycle Manager will
prompt for a project name. Type a name, then press OK.

Once you have created the ObjectCycle project, you are ready to run Jato. Note that you do not need
the ObjectCycle Manager to check in or check out files; you should do that from within Jato itself.

Creating a Source Integrity project
To check in a project for the first time, follow the steps below. (These steps assume you are using
version Source Integrity version 7.2.)

1. Start the MKS Source Integrity program.

2. On the File menu, click Create Project.
3. You will be prompted for a project location. You are free to put the project (.PJ) file wherever you

want.

4. Source Integrity will open a Create Project dialog. Enter the location of the sandbox (where you
want your local files) and select the Jato files to add to Source Integrity. Then press OK.

Source Integrity will create local copies of the selected files in your sandbox folder. From now on, when
you open the project in Jato, you should open the project file (.WXP) in the sandbox folder.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Source code control in Jato
 Checking in files

What to check in
In general, you should check in all of the source files for each target that you want to keep under
source code control. If your project has a single target, all of these files are in the target folder and are
visible from the Jato Files window. A list of the files extensions is given below:

Extensi
on

File Type

wxf Form file

wxc Class file

wxr Resource file

wxt Target file

wxp Project file

java Java source
file

c C source file

h C header file

htm,
html

HTML file

gif GIF graphic
file

jpg,
jpeg

JPEG graphic
file

ico Icon file

bmp Bitmap file

cur Cursor file

rc Resource
script file

If you keep other types of files in your target folders, such as documentation or text files, you are free to
check them in too.

Some source control systems are restricted to handling text files—they cannot check in non-text files
such as ICO, BMP, or CUR files. All of the files listed above are text files except for BMP, ICO, and
CUR. Check the documentation for your source control system to see if it can handle non-text files.

What not to check in
You don’t need to check in any of the following:

· WXU (user setting files). These files hold information unique to you and your computer. They are
not designed to be shared between developers.

· Jato backup files. When Jato is running, it makes a backup copy of the files you’re working with.
Backup files have the same name as the original except that the second character of the file

extension is replaced with a tilde. For example, the backup file for FORM1.WXF is FORM1.W~F.

· Anything in the Release or Debug folders. Although you can find RC, CPP, and HPP files here,
they are all generated from other files found directly under the target folder. If you check out files in
the Release or Debug folders, Jato may not be able to keep these generated files in sync with the
real source files.

How to check in files
Normally you will want to check in all files that you have checked out, to ensure a consistent version of
the project in the repository, but you can also check select which files to check in.

¨ To check in all the files that you have checked out:
1. In the main Jato File menu, click Check In Project.
This checks in all of the files that you have checked out. Jato then scans the target folders for files that
are not currently under source control. If it finds any, it will display the list of file names and ask if you
want to check in the files.

A picture of a closed padlock appears to the left of all files that are checked in.

¨ To check in a file or a number of files:
1. Open the Files window

2. Click the file or files you want to check in

3. Use the right mouse button to click one of the files you have just selected, then click Check In.

Note: Jato lets you check in any file that appears in the Files window. However, not all source control
systems can handle all types of files. For example, some systems let you check in binary files, while
others do not. Check your source control system manual for details.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Source code control in Jato
 Checking out files

Jato has an auto-checkout feature which simplifies the checkout process. If you do something in the
design environment that would change the contents of a read-only file, Jato asks if you want to check
out the file.

Suppose you are working on a target which contains a checked-in form file called MYFORM.WXF. The
first time you change a property of this form or add a control to it, Jato asks if you want to check the file
out. If you don’t check out the file, any changes you make will be lost when you close the project.

You can also check out files from the Files window.

¨ To check out a file or a number of files:
1. Open the Files window.

2. Click the file or files you want to check out.

3. Use the right mouse button to click one of the files you have just selected, then click Check Out.
A picture of an open padlock appears to the left of all files that are checked out.

If the latest copy of a file is different from your current local copy, Jato automatically reloads the file in
the design environment (if possible).

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Source code control in Jato
 Undoing a check out operation

After checking out files and changing them, you may decide to throw away the changes you have
made. Jato can discard your changes if you have not checked them in. Jato can also unlock the files
and get the latest versions of the files.

¨ To undo a check out:
1. Open the Files window.

2. Click the checked-out files that you want to unlock.

3. Use the right mouse button to click one of the files you have just selected, then click Undo Check
Out.

The open padlock turns back to a closed padlock, indicating that the file is no longer checked out.

If the latest copy of a file is different from your current local copy, Jato automatically reloads the file in
the design environment (if possible).

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Source code control in Jato
 Getting the latest revision of a file
¨ To replace your local copy of a file with the latest revision of that file:
1. Open the Files window.

2. Click the files you want to get.

3. Use the right mouse button to click one of the files you have selected, then click Get Latest
Version. Jato replaces your local copies of the selected files with the latest versions.

If the latest version of a file differs from your current local copy, Jato automatically reloads the file in the
design environment (if possible).

The Refresh Project item of the main Jato File menu refreshes each file in each target of the current
project with the most recent version of the file. However, Refresh Project does not overwrite any files
that you currently have checked out.

Some source control systems (for example, ObjectCycle) support the ability to get the latest copies of
all checked in files, regardless of whether you currently have local copies of the files. If you are using
such a system, the Files windows File menu will contain the item Refresh Target. As with Refresh
Project, Refresh Target does not overwrite any files that you currently have checked out.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Source code control in Jato
 Opening a new source control project

When a new programmer is added to an existing development project, the programmer can download
all the files of the existing project to the local system in order to begin development.

This feature is only supported for source control packages which are SCC-compliant.

On the File menu of the main Jato menu bar, Open New Source Control Project performs the
following actions:

· Closes the current project.

· Prompts you to enter the name of a source control archive.

· Downloads files from that archive to your local disk.

· Opens the project

In other words, Jato does everything needed to bring the project to your system and set things up so
you can begin development on the project.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects

 Source code control in Jato
 Source control options

Jato makes it possible for you to control various options provided by your source control package.
These options are only supported for source control systems that are SCC compliant (for example,
Visual SourceSafe, ObjectCycle 1.5, or MKS Source Integrity).

¨ To set source control options:
1. On the Tools menu of the main Jato menu bar, click Source Control Options.

The Source Control Options item is disabled until you have configured Jato to use a particular
source control package.

The options are different for each source control package. With some source control packages, you
can only set source control options if the current project is controlled by the specified package.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 2. Using targets and projects
 Summary of targets and projects

Targets and projects
A target is an applet, library or application built with Jato. Targets are built from source files. Each target
must be kept in its own folder.

A project is a collection of one or more targets. The project file lists all the targets associated with a
project.

When you start your Jato session, you typically begin with an untitled project that has one untitled
target (an executable program named Untitled.exe). You can design forms for this project and run
the untitled program to test it. When you save the project, Jato asks you to specify a name for each
target folder and the target file.

Running a target
When you run a target, Jato checks to see if you have changed any of the target’s source files since
the last time you built the target. If so, Jato builds the target again, then runs the program.

During the build process, Jato may detect compilation errors or linkage errors. All errors are reported in
the error log. In addition, compilation errors are reported in code editor windows, showing the point
where each error was detected.

The target folder
The folder associated with a target contains a number of files and folders associated with the target. In
particular, the Debug folder contains files associated with running the program in debugging mode and
the Release folder contains files required for an end-user release of the target. To switch from Debug
to Release, use the Targets window.

The Targets window
The Targets window displays the targets of your project, the source files that are used to build each
target, and the default options used in processing the targets and source files. The menus of the
Targets window let you add new targets and source files to the project, and also make it possible to
specify dependencies between targets.

You can also use the Targets window to get a property sheet for each target and source file. Each
property sheet shows the options that will be used in processing the associated file. For example, the
property sheet for a source file containing Java code shows the options for compiling that file.

Types of targets
With Jato, you can build applets, standalone Java applications, Java libraries, web server applications,
and NetImpact Dynamo applications.

Source control
Jato can coordinate its actions with a variety of source control systems. You use the Source Control
Options item of the Options dialog to specify which source control package you are using. You can
then open the Files window and use the right mouse button to click on a particular file to check that file
in or out.

 Jato Programmer ’ s Guide

 Part I. Fundamentals
 Chapter 3. Using Jato

This chapter explains the mechanics of using Jato: placing objects on forms, setting the initial
properties of design objects, and editing the source code associated with various events.

This chapter assumes that you have read Basic concepts of Jato.

 General usage notes
 Using the form design window
 Changing a form ’ s properties
 Adding objects to a form
 Visual classes
 Templates
 Startup options
 File type options
 Changing an object ’ s properties
 Adding and modifying event handlers
 Working with classes
 Using drag-and-drop programming
 Jato command line options
 Summary of basic Jato operations

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato
 General usage notes

Jato often offers several different ways to perform the same task. For example, if you want to see an
object’s property sheet, you can do any of the following:

· Double-click the object.

· Use the right mouse button to click the object, then click Properties.

· Go to the Objects window, and click Show Property Sheet in the View menu.

This chapter does not attempt to list all the possible ways to perform tasks.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato
 Using the form design window

The form design window is the design time representation of a form. You can lay out the form by
resizing it, changing its properties and adding components to it. When you run your program, the form
will have the size, properties and controls that you have designed.

By default, the form is marked with a grid of dots to help you position objects. When you run your
program, these dots will not appear.
You can change the size of the form design window by dragging the window frame. The size that you set
for the form will be its initial size when you run the program.

If your application has several forms, each form has its own form design window. To save on screen
space, you can close form design windows that you don’t currently need.

¨ To close a form design window:
1. If the form has a close button (upper right corner), you can click the button.

2. If the form has a system menu (upper left corner), click Close in that menu.

3. If the form has neither a close button nor a system menu, press ALT+F4.

The Window menu of the main Jato menu bar contains a list of all form design windows, open or
closed.

¨ To open a closed form design window:
1. Click the name of the form in the Window menu of the main Jato menu bar.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato
 Changing a form’s properties

Every form has a set of associated properties. These control the appearance and behavior of the form
when it is displayed during program execution. Some properties, such as grid options, only apply to the
form at design time.

When you create a form, Jato sets the form’s properties to default values. You can assign different
properties to the values using the form’s property sheet.

¨ To set properties for a form:
1. In the form design window, use the right mouse button to click a blank area of the form (one that

does not have any buttons, boxes, or other objects). This displays a menu of possible actions.

2. Click Properties on this menu. This displays the form’s property sheet.

3. Use the property sheet to set values for any properties you want to change. Click the tabs at the
top of the main area of the property sheet to see different types of properties.

4. Click OK when you have assigned values to the properties you want to change.

The changes you have made may or may not be visible in the form design window.

The Jato Component Library Reference provides more information on form properties.

Tip: You can also change properties through the Object Inspector. Since the Object Inspector displays
properties in alphabetical order, it may be easier to find a specific property through the inspector rather

than going through the form’s property sheet.

 The form grid

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato

 Changing a form ’ s properties
 The form grid

The Grid page of a form’s property sheet lets you control the grid of dots that appears in the form
design window. The Grid page contains the following items:

Display the grid
If this box is blank, the form will not have a grid of dots when it is displayed in the form design
window.

Grid Size
The Width and Height boxes specify the distance between dots in the grid. Distances are
specified in dialog units, a measure of screen distance that is less device-dependent than pixels.
For a discussion of the difference between dialog units and pixels, see Pixels vs. dialog units.

Align objects to the grid
If this box is marked, all objects on the form have their size and position adjusted to coincide with
the grid. For example, suppose that the dots appear every 10 dialog units; then every object on the
form has its size and position adjusted so that its corners exactly coincide with grid dots.

If this box is blank, Jato does not adjust the size and position of objects on the form. For example,
you can drag the edge of an object so that it falls between dots.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato
 Adding objects to a form

The first step in creating a program with Jato is to design one or more forms. When you start a new
project, Jato displays a blank form where you can design the first form for that project. The design
process is simply a matter of adding objects to the blank form.

 The Java Component palette
 Positioning an object
 Sizing an object
 Deleting an object
 Copying an object
 Aligning objects
 Matching object sizes
 Selecting multiple objects

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato

 Adding objects to a form
 The Java Component palette

The Java Component palette is a tabbed toolbar that has buttons with icons representing the
components that you can add to your form. The leftmost button for each tab is for the selection tool and
the rest are for components.

To see the name of a component on the palette, move the cursor to the button and wait a second or two.
After a few moments, Jato displays a tooltip telling what the button means.

For an explanation of how to use each item in the Component palette, see Programming standard
objects.

¨ To add an object to your form from the Component palette:
1. On the Component palette, click the button for the type of component you want to add to the form.

2. Move the cursor to the form design window and click the location where you want to place the
component. Jato adds a component of default size, with its top left corner at the location you
clicked.

3. Resize the component if necessary, by dragging the component’s sizing handles.

Once you have added a component to your form, the result is called an object. This terminology helps
distinguish between “components” (which are abstract buttons on the Component palette) and
“objects” (which are real items on a form).

Tip: You can combine steps 2 and 3 above by moving the cursor to the form design window, holding
the button down, and dragging across the form until the object reaches the desired size.

Adding several objects of the same type
If you click a button on the Component palette, Jato lets you place a single object of that type onto the
form design window. After you have placed one object, the button on the Component palette turns itself
off; you need to click another component button before you can place another object.

In some cases, you may want to place several objects of the same type on a form. For example, you
might want to place several option buttons on the form.

¨ To place several objects of the same type on a form:
1. Hold down the SHIFT key and click the appropriate button on the Component palette.

2. Move the cursor to the form design window and click the location where you want to place the first
component. Jato adds a component of default size, with its top left corner at the location you
clicked.

3. Repeat the above step to place other objects on the form.

4. Resize the objects if necessary, by dragging their sizing handles.

In other words, if you SHIFT-click a Component palette button, the button stays clicked until you click a
different button.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato

 Adding objects to a form
 Positioning an object

If you place an object in one position on a form, then decide to put it somewhere else, you can move it.

¨ To change the position of an object on a form:
1. Click the object in the form design window, then drag the object to its desired position.

Tip: If you hold down the SHIFT key and press an arrow key, Jato moves the active object in the
direction of the arrow.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato

 Adding objects to a form
 Sizing an object

Jato makes it easy for you to change the size of an object that you have already placed on the form.

¨ To change the size of an object:
1. Click the object in the form design window. You will see sizing handles appear on the edges of the

object.

2. Drag a sizing handle. You will see the outline of the object grow or shrink as you move the handle.

The true size of the object may or may not be apparent to the user during program execution. For
example, the size of a text box is obvious, but the size of a label doesn’t make much difference, as
long as it is big enough to hold the text of the label.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato

 Adding objects to a form
 Deleting an object

If you decide to get rid of an object, you can easily delete it from the form design window.

¨ To delete an object from a form:
1. Use the right mouse button to click on the object you want to delete. This displays a menu of

actions you can perform on the object.

2. Click Delete in this menu. The object will disappear from the form design window.

Deleting an object also deletes any event handlers you may have associated with the object.

Tip: You can also delete objects by selecting them, then pressing the DEL key.

Deleting forms
The previous section showed how to delete an object from a form. To delete the form itself, you use the
Objects window:

¨ To delete a form:
1. In the Objects window, click the name of the form you want to delete. (The name should appear as

a source file for one of the targets.)

2. Use the right mouse button to click the name, then click Delete.

Deleting the form in this way states that the form will not be used in the target. If the form is used for
other executables, it will be removed from the selected target but its source files will not be deleted.
However, if the form is not needed by any other target, Jato deletes the form. In the process, Jato
deletes all objects and member functions associated with the form, as well as any files associated with
the form.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato

 Adding objects to a form
 Copying an object

There are many situations where you want the form to contain a set of similar objects. For example,
you may want several option buttons lined up with each other in a vertical list. You can save yourself
some typing by creating the first such object from scratch, then creating the other objects by copying
the first.

¨ To copy an object:
1. Click the right mouse button on the object you want to copy, then click Copy. This writes a copy of

the object into the Windows clipboard.

2. Click the right mouse button anywhere on the form, then click Paste. This places a new copy of the
object onto the form.

The copy is slightly offset from the original so that you can see it more clearly. The copy is given an
appropriate symbolic name, based on its type. For example, if the original is named cb_1, the copy
may be named cb_2.

The copied object has the same properties and event handlers as the original, except that event
handler names are changed appropriately. For example, if you have defined a Click event handler for
the original object, the copied object has an identical Click event handler, except that it is named
cb_2_Click instead of cb_1_Click. After the copy operation has taken place, it’s a good idea to
review the properties and the event handlers of the copied object, just to make sure that they’re what
you want.

Cut operations
When you use the right mouse button to click an object, the resulting menu has a Cut command. Cut
copies the object to the clipboard, then deletes it from the form. You can then paste the copied object
elsewhere in the form design window. You can use cut and paste operations to move an object from
one form to another.

Copy, cut, and paste shortcuts
You can use the following standard keyboard shortcuts for copy, cut, and paste operations:

CTRL+C Copies the selected object(s).
CTRL+X Cuts the selected object(s).
CTRL+V Pastes onto the selected form.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato

 Adding objects to a form
 Aligning objects

Jato makes it easy for you to align one object with another in the form design window.

¨ To align one object with another:
1. Drag the mouse until the framing rectangle surrounds all the objects you want to align. When you

release the mouse, Jato places hollow sizing handles on all the objects.

2. Click an object whose alignment you want to match. Jato places solid sizing handles on this object.

3. Use the right mouse button to click the solid-handled object, then click Align. This produces
another menu of possible alignments, shown as pictures.

4. Click the type of alignment you want. The objects with hollow handles move to match the object
with solid handles.

In any alignment operation, the hollow-handled objects are moved to match the one solid-handled
object.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato

 Adding objects to a form
 Matching object sizes

Jato also lets you change the size of one object to match another.

¨ To change the size of one object to match another:
1. Drag the mouse until the framing rectangle surrounds all the objects whose sizes should match.

When you release the mouse, Jato places hollow sizing handles on all the objects.

2. Click an object whose size you want to match. Jato places solid sizing handles on this object.

3. Use the right mouse button to click the solid-handled object, then click Same Size. This produces
another menu of possible operations to match sizes in various ways (height, width, or both). This
menu shows possible operations with pictures.

4. Click the type of adjustment you want. The objects with hollow handles change size to match the
object with solid handles.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato

 Adding objects to a form
 Selecting multiple objects

You can select several objects at once by holding down the SHIFT key and clicking each object you want
to select. The first time you SHIFT+click an object, it receives solid sizing handles. When you SHIFT+click
a new object, the new object receives solid sizing handles and previously clicked objects receive
hollow sizing handles.

Once you have selected a set of objects, you can align or resize them using the techniques mentioned
in previous sections.

When several objects are selected, the object with solid sizing handles is the primary object. For
example, if you select several objects, then use Align to give all the objects the same alignment, the
objects with hollow handles move to match the alignment of the object with solid handles.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato
 Visual classes

A visual class can be thought of as a form that is never displayed. You can also think of a visual class
as a class that is:

· Visible at design time

· Not visible at run time

In other words, visual classes let you visualize objects that are not displayed during execution.

For example, suppose you are making a web server servlet: one that doesn’t display forms. However,
you want the program to access a database. The easiest way to do this is to use transaction and query
objects (as discussed in Working with databases). Therefore, you could create a visual class object,
then place transaction and query objects on this object in the same way that you’d place them on a
form.

· During design time, you can work with the objects on the visual class as if they were objects on a
normal form.

· At run time, the visual class is not displayed. However, when you create a visual class object, Jato
automatically creates all the objects that you have placed on the visual class “form”. This saves
you the trouble of creating such objects explicitly.

All visual classes must inherit from some standard Jato class. By default, they inherit from Object,
which is the most general class in Java.

¨ To create a visual class:
1. From the Files menu of the main Jato menu bar, click New and then click Class. This opens the

Class wizard.

2. If your project has more than one target, the Class Wizard asks where you want to define the new
class. Click the target where you want to define the new class, then click Next.

3. Under What type of class do you want? click Visual Class, then click Next.
4. Under Package Name, type a name for the Java package that will contain this class.

5. Under Class name, type a name for the new class.

6. If you do not want this class to inherit from Object, type the name of a different class under Inherits
from.

7. If this class implements an interface, type the name of the interface under Implements.

8. If you do not want to use the default file name for this class, type a different name under File
name.

9. If this will be a public class, make sure Public is checked.

10. If this will be an abstract class, make sure Abstract is checked.

11. If this will be an interface, make sure Interface is checked.

12. Click Finish.

Jato displays a design window for the visual class similar to a form design window. You can create data
members within the visual class by placing non-visual Jato objects (for example, timers, transaction, or
query objects) onto the visual class’s design window.

When Jato creates an object of the visual class type, it automatically creates all the member objects
that have been placed on the visual class. In the process it triggers Create events for those objects.
Similarly, when Jato destroys the object, it triggers Destroy events for all the objects on the visual

class.

 Visual class properties

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato

 Visual classes
 Visual class properties

The design-time property sheet for a visual class has the following entry on the General page:

Scope of Controls
This combo box lets you choose the scope of the controls that you place on the visual class. For
example, if you choose Public, all controls placed on the visual class will be public.

The Grid page of the design-time property sheet controls the grid of dots displayed on the visual class
design window. The options on this sheet are similar to the options for the grid on a true form.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato
 Templates

A template is a saved copy of one or more objects, including their event handlers. Form design
templates provide a sophisticated form of copy and paste facility, letting you create shortcuts for
handling component combinations that you use frequently.

For example, you might create a template containing a button labeled OK and a button labeled Cancel
(including Click event handlers for the two buttons). If you place that template onto a form, Jato places
the two buttons onto the form. If necessary, you can then change the position of the buttons or the
code in their Click event handlers.

¨ To create a template:
1. In the form design window, drag the mouse to surround the objects that will make up the template.

When you release the mouse, Jato marks the objects with hollow sizing handles.

2. Use the right mouse button to click on one of the objects, then click Copy to template.

3. Jato prompts you for a name you want to assign to this template. Type in a name.

4. You may also type in a description of the template (to be used when someone requests help
information about the template).

5. If you click Edit Icon, Jato calls up the Image Editor to create an icon for this template.

6. Click OK.

Jato adds your chosen icon to the Templates page of the Component palette. From this point on, you
can place the template onto a form in the usual way: click the icon in the Template page, then drag
across the form design window.

Once you place a template onto the Component palette, it remains there for all future Jato sessions.

¨ To delete a template from the Component palette:
1. Use the right mouse button to click on the template you want to delete, then click Delete. Jato

checks to make sure you really want to delete the template.

 Form templates
 Target templates
 The templates folder

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato

 Templates
 Form templates

You can create a template form in much the same way that you create a template made up of individual
components. For example, you could create a template form that had a standard set of menus or a
predefined set of buttons.

¨ To create a template form:
1. Design the form in the form design window.

2. Use the right mouse button to click a blank area of the form, then click Copy to Template.

3. Jato prompts you for a name you want to assign to this template. Type in a name.

4. You may also type in a description of the template (to be used when someone requests help
information about the template).

5. If you click Edit Icon, Jato calls up the Image Editor to create an icon for this template.

6. Click OK.

Jato records the template form you have just defined. The next time you use the Form Wizard to make
a new form (for example, by clicking the New Form button in the Jato toolbar), you will see the
template form as one of the possible choices. Click on the template and follow the usual steps to create
a new form. When the form is created, it will start with the properties, objects, and event handlers you
specified in the template form.

Note: It is important to recognize the difference between the name of the template and the name of a
form defined by that template. The template name is displayed by the Form Wizard to identify the
template. The form name is used in the definition for the form class.

If you create a new form from a form template, and the form name associated with that template
matches an existing form name, you will be asked to specify a new name for the form being created.
For example, suppose you create a form template specifying a form named TempForm. If you use this
template to create a new form for a target that already has a form named TempForm, you will be asked
to specify a different name for the new form.

¨ To delete a template form:
1. In the Form Wizard, use the right mouse button to click the template you want to delete, then click

Delete. Jato checks to make sure you really want to delete the template.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato

 Templates
 Target templates

A target template is a user-defined target type, containing predefined forms, objects, and code for a
target. For example, you might make a target template containing three types of forms you use
frequently. When you want to make a new application that uses some or all of those forms, you would
create the application using your target template.

Before you can create a target template, you must create the target that you will use as the template.
This means defining the forms, objects, event handlers, and other codes that will make up the
template. Once you have done this, you are ready to create the target template.

¨ To create a target template:
1. Open the Targets window by clicking Targets in the View menu.

2. In the Targets window, click the target that you want to use as a template.

3. From the File menu of the Targets window, click Save As Template.

4. Type a short name for the target under Template Name.

5. Type a description of the target under Description.

6. If you want to specify a different palette image for the target, click Edit (to edit the existing icon with
the Image Editor) or click Browse to select a palette image from some other file.

7. Click OK.

This creates a target template based on the selected target. The next time you create a target with the
Target Wizard, your template will appear as one of the possible target types.

¨ To delete a target template:
1. In the Target Wizard, use the right mouse button to click the template you want to delete, then click

Delete. Jato checks to make sure you really want to delete the template.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato

 Templates
 The templates folder

By default, the templates you create are stored in a folder named Template under the main Jato
folder. In some situations, you may want to specify a different folder. For example, if you have a team
of programmers working on a project, you may wish to store templates under a common folder on your
local network.

¨ To change the location where templates are stored:
1. From the Tools menu on the main Jato menu bar, click Options.

2. On the Folders page, click Let me specify a folder, then type the name of the folder under
Folder.

3. Click OK.

From this point on, Jato will search for templates in the specified folder and will also store new
templates in that folder.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato
 Startup options

The startup options for Jato specify what Jato does when it first starts up.

¨ To see the current startup options:
1. From the Tools menu on the main Jato menu bar, click Options and then Startup.

This displays the following:

The default selection is Create an untitled project. If this is marked, Jato creates an untitled project
every time it begins execution. If No action is marked, Jato does not create such a project; you must
explicitly load an existing project or create a new one. Finally, if Open most recently used project is
marked, Jato opens the project you were working on at the end of your last session.
The Default Target list lets you specify a target to be created by default in any newly created project.
When you click the target type in the Target list, the Form list changes to reflect the types of form that
may be created in such a target.

Once you choose a target and a form, Jato will use those as the initial target and form for any new
project.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato
 File type options

The file type options for Jato dictate how Jato opens various types of files. Jato determines the type of
a file by examining the file name extension of the file. For example, files whose names end in .WXC are
taken to be managed class definitions; when Jato opens such a file, it uses a code editor to display the
results.

By default, Jato identifies files using information taken from the system registry. The registry lists a
number of file name extensions and the programs that should be used to open them. File type option
settings let you override the defaults given in the registry, creating Jato-specific options.

¨ To see the current file type options:
1. From the Tools menu on the main Jato menu bar, click Options and then File Types.

This displays the following:

If you want to create a new file type definition, click New Type. This displays the following dialog:

This dialog box lets you specify a file extension and the technique used to display the contents of files
with that extension. Possibilities include:

Default Jato editor
Use whatever editor Jato uses by default.

Jato text editor
Forces the use of the Jato text editor itself.

Open using Windows configured editor
Use the editor given by the system registry.

Edit with the following program
Gives a specific program that should be used when opening such files.

The Description box is supplied so that you can give a brief description of what the given file
extension means.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato
 Changing an object’s properties

Every form and component has a set of associated properties. These properties affect the appearance
and the behavior of the object. Different types of objects have different properties.

When you place an object on a form, Jato assigns default values to the object’s properties. You can
assign new values to these properties using the object’s property sheet. For example, here is a typical
property sheet for a command button:

¨ To change the values of an object’s properties:
1. In the form design window, use the right mouse button to click the object whose properties you

want to change, then click Properties. This displays the object’s property sheet.

2. Use the property sheet to set values for any properties you want to change. You can click the tabs
at the top of the main area of the property sheet to see different types of properties.

3. Click OK when you have assigned values to the properties you want to change.

The changes you have made may or may not be shown in the form design window. For example, if you
turn off an object’s Visible property, the object remains visible in the form design window, so you can
see that it is still part of the form. However, when you run the program, the object will be invisible, as
specified.

 Changing an object ’ s name

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato

 Changing an object ’ s properties
 Changing an object’s name

Jato automatically assigns a name to each object that you place on the form. You can give the object a
different name if you want. For example, you may choose to change a command button’s name from
cb_1 to okButton so that the name provides a description of what the button does.

If you change the name of an object, Jato changes the corresponding names of all associated event
handlers. For example, if you change the command button’s name from cb_1 to okButton, Jato
automatically changes the button’s Click handler from cb_1_Click to okButton_Click.

Jato also changes references to the object in your code. For example, Jato automatically changes
cb_1->setText("Hello");
into
 okButton->setText("Hello");
However, Jato does not make any changes to:

· Comments

· Quoted strings.

· Compiler directives (e.g. import)

· User-defined structures that contain elements with the same name as the object.

For example, if you have the comment
 // change the caption on cb_1
Jato will not change the text of the comment to use the new name. Similarly, Jato will not change code
like
 System.out.println("This used to be called cb_1");
Jato only changes the code for the form that contains the object. It does not check for occurrences of
the old name in the code for other forms or in resources.

If you want to change the items that Jato doesn’t touch, you must make the changes yourself. For
example, you can use the Find/Replace item of the code editor’s Search menu to make a global
replacement.

If you intend to change the name of an object, it is best to change the name as soon as you place it on
the form. If you change the name later, you may have to do extra work revising your existing code to
use the new name.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato
 Adding and modifying event handlers

Every object may have a number of associated event handlers. An event handler contains Java code
that is executed when a specific event occurs. For example, a command button should have an
associated routine specifying what happens when the user clicks the button. This is called the button’s
Click event handler.

Once you have placed an object on a form, you must write routines to handle events that may happen
to that object.

¨ To create an event handler routine for an object:
1. Use the right mouse button to click an object in the form design window, then click Events. This

displays a short menu of events that may occur on the selected object. The menu also contains an
entry named More.

2. If you click a specific event in the list of events, Jato displays a code editor which you can use to
write a routine to handle that event.

3. If you click More, Jato opens the Object Inspector on the Events page. This lists all the events that
can be triggered on the selected object. Double-clicking any of these events opens a code editor to
edit an existing event handler or create a new one.

The list of events has check marks beside events which already have event handlers. Some types of
objects have event handlers predefined by Jato.

The Object Inspector lists all the possible events that can be triggered on an object. In most cases, you
will ignore the majority of these events. For example, there are a large number of events that may be
associated with a command button. In most programs, however, the only event you care about is when
the user clicks on the button. You only need to write a Click event handler for the button, and ignore all
the other possibilities.

 The Jato code editor

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato

 Adding and modifying event handlers
 The Jato code editor

The Jato code editor helps you write Java source code. Jato opens a code editor window whenever
you ask to examine or modify an event handler. The same editor is used to edit many other parts of
your project, including managed classes and header files.

When you begin writing a new event handler, the code editor displays the skeleton of the routine. For
example, the initial code for a Click event handler for a command button object, the initial code is:.
public boolean cb_1_Click(ClickEvent event)
{
 return false;
}
The most important part of this skeleton is the prototype for the handler. This is a standard Java
function prototype giving several pieces of information:

· A function name constructed from the name of the object (cb_1) and the name of the event
(Click).

· An argument to the function—this argument is explained in Standard events.

· The type of value returned by the function: a boolean value. This value can be true, indicating that
the function completely handled the event on its own, or false, indicating that the function wants
to let the default event handler finish handling the event.

The code editor places the cursor on the blank line after the opening brace ({) so that you can begin
typing source code for this routine. It also places
 return false;
at the end of the routine. This is the normal way to end an event handler, letting the default event
handlers take care of any clean-up and other technical details associated with the event.

Color coding
As you type in your source code, the editor uses color to indicate various elements in your code. For
example, if you begin to type a character string, as in
 "Hello
the editor displays the partial string in bright red. When you add the closing quote, as in
 "Hello"
the editor changes the string to a different color. This use of color helps you to remember the closing
quote.

For similar reasons, the editor displays comments in bright blue. Reserved words (such as if and
while) are shown in green.

If you prefer a different color coding scheme, the Options menu of the code editor window lets you
change the colors for various program elements. Once you have chosen your colors, they remain the
same for all projects.

The Options menu also lets you change the tab stops and character font used in displaying code. For
more information, see the Options menu and press F1 to obtain a complete description of these
facilities.

Saving source code

The usual method of saving source code is to click the Save Project button on the main Jato toolbar,
or to click Save Project on the File menu of the main Jato menu bar. This saves your entire project,
including the source code you have just been editing.

The code editor can also export the current function to a text file. This saves a copy of the function in a
specified file. For example, if you wanted to export a single function from one project to another, you
could use this feature to create a file that contains a copy of the function.

Undo and Redo
The Edit menu contains an Undo command (CTRL+Z) for undoing the most recent editing action. Using
this several times in a row undoes the same number of editing actions. There is no fixed limit on the
number of steps you may undo; the number is only restricted by the amount of memory available.

The Edit menu also contains a Redo command which repeats the last step that you undid. If you use
Undo several times and then the use Redo the same number of times, you get back to where you
started.

Bookmarks
The code editor automatically places bookmarks into your code. For example, it puts bookmarks at the
beginning of each event handler routine. This makes it easier to move about your code: if you want to
edit a particular routine, go to the appropriate bookmark.

¨ To go to a bookmark:
1. Click the arrow beside Bookmark at the top of the code editor window, then click the name of the

bookmark.

You can also define your own bookmarks, if there are lines of code that you may want to find quickly
later.

¨ To define your own bookmark:
1. From the Search menu of the code editor, click New Bookmark.

2. Enter a name for your bookmark, then click OK.

The big editor vs. the small editor
The editor can work in two different modes:

· Small editor mode in which each code editor window shows the code for a single event handler.

· Big editor mode in which a code editor window can show all the code associated with a form.

By default, Jato starts off in big editor mode. Big editor mode makes it easier to do global operations.
For example, if you want to change the name of a variable, you can go into big editor mode and do a
global replace operation, changing the variable’s name wherever it appears. On the other hand, small
editor mode helps you concentrate on a single routine.

¨ To change to small editor mode:
1. From the Tools menu of the main Jato menu bar, click Options and then click Editor.
2. Click Edit each Event with a new editor.
3. Click OK.

When you switch from one mode to another, Jato may close code editor windows that you currently
have open.

Read-only code
If you are in Big editor mode, you may see code generated by Jato as well as code that you wrote
yourself. Code that is generated by Jato is read-only; you cannot change it with the editor. Read-only
code is displayed in gray to distinguish it from normal code.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato
 Working with classes

This section describes how to add member functions to classes, how to modify existing functions, how
to define new data members, and how to import source files that are needed by the code in a class.

 Adding new member functions
 Renaming a member function
 Changing the prototype for a member function
 Adding data members to a form definition
 Deleting items
 Importing source files

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato

 Working with classes
 Adding new member functions

Until now, this guide has concentrated on writing functions that are directly related to handling events
on objects. However, you may need to define other functions within a form class or a managed class.

For example, if several event handlers have to perform the same set of actions, it makes sense to
create a separate function which performs those actions. Then all the event handlers can call that
function to perform the appropriate work.

You may also need to define an event handler for an object that doesn’t exist at design time. For
example, if you add a new object to the form during execution, you can’t create event handlers for that
object in the normal way. Instead, you create a special member function within the form; then when you
create the object during execution, you can register the member function as an event handler for the
new object.

¨ To create a new member function for a form:
1. From the File menu of the Classes window, click Create User Function.

2. Choose the scope of the new function (private, protected, or public).

3. Type the prototype for the function in Function Prototype.

4. Click OK.

Jato opens a code editor window so that you can begin typing the definition of the new class.

The Create User Function menu item is also available through the File menu of the code editor.

Important: You cannot define an inline function this way; the technique only works for normal (non-
inline) functions. If you want to define an inline function, use the Classes window to open the Class
Declarations for the form, and add the inline function definition in the class declarations.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato

 Working with classes
 Renaming a member function

If you add a member function to a form class, you can change the name of the function through the
Classes window.

¨ To rename a member function previously added:
1. In the Classes window, use the right button to click on the name of the function you want to

change, then click Rename.

2. Edit the existing function name to change it to the new name.

3. Press ENTER when you have changed the name.

This technique only works for member functions that you have created explicitly with Create User
Function. For example, you cannot rename event handler functions (although the name of an event
handler will change automatically if you change the name of the associated object).

When you change the name of a member function, the change is not made in any of your program’s
source code (except for the heading of the function definition). For example, if you change a function
name from myfunc to yourfunc, any existing calls to myfunc do not change. You must change the
code explicitly, typically with Find/Replace from the Search menu of the code editor. Another way to
find references to the old name is just to compile the project, then check for error messages resulting
from uses of the old name.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato

 Working with classes
 Changing the prototype for a member function

If you add a member function to a form class, you can change the prototype for the function through
the Classes window.

¨ To change the prototype of a member function previously added:
1. In the Classes window, use the right button to click on the name of the function you want to

rename, then click Open Prototype. Jato opens a code editor window showing the prototype
declaration in the public, private, or protected declarations at the beginning of the form
class.

2. Change the prototype declaration as desired.

3. Using the same code editor window, search for the function definition, then change the prototype
that begins the function definition.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato

 Working with classes
 Adding data members to a form definition

The Classes window lets you declare new data members inside a form class or a managed class. If
you look at the window, you will see an entry named Class Declarations. To declare a new data
member for the current form, double-click the Class Declarations entry. Jato displays a window where
you can type an appropriate declaration for the new data object. For example, you might type
 private:
 int i;
 public:
 double x;
to declare extra data members of the form class.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato

 Working with classes
 Deleting items

Jato uses the same approach for deleting all items used in your session: use the right mouse button to
click the item, then click Delete in the resulting menu. The following list shows examples:

· To delete an existing user function or event handler from a form definition, use the Classes window
to display the items defined in the form class. Use the right mouse button to click the user function
you want to delete, then click Delete in the resulting menu.

· To delete an object from the current form, use the right mouse button to click on the object in the
form design window, then click Delete in the resulting menu. You can also delete the object using a
similar technique in the Objects window.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato

 Working with classes
 Importing source files

The Classes window lets you specify definition files that should be imported when you compile a class.

¨ To import a file for a form definition:
1. In the Classes window, click the name of the item that needs to import a file, then double-click

Imports for that item.

2. In the resulting window, enter an appropriate import directive to import the file.

For example, if you want to include the header file for Form2, type:
 import form2;
(This assumes that Form2 is in the same Java package as the class that is importing Form2.)

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato
 Using drag-and-drop programming

Drag-and-drop programming makes it easy to construct expressions that refer to objects on a form. For
an example of drag-and-drop programming in action, see the Getting Started guide.

 Principles of drag-and-drop programming
 Methods that return values
 The object prefix

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato

 Using drag-and-drop programming
 Principles of drag-and-drop programming

In drag-and-drop programming, you can start the drag operation from a form design window or the
Objects window.

¨ To use drag-and-drop programming:
1. Position your windows so that you can see the code editor window and the form design window or

Objects window.

2. Drag the cursor from an object on the form (or in the Objects window) into the code editor window.
This opens the Reference Card, positioned at the methods for the appropriate type of object.

3. Examine the various categories for the object in the Reference Card. Expand a category to list the
methods and properties in that category.

4. Click the method or property you want to use.

5. If there are several overloaded versions of the same function, click the version you want from the
list at the bottom of the Reference Card.

6. Click the Parameters button. This opens the Parameter Wizard.

7. Fill in the blank entries displayed by the Parameter Wizard. Click Finish when you’re done.

This places an appropriate expression or statement into your source code at the position indicated by
the cursor.

Note: If you do not have a code editor window open, you cannot open the Parameter Wizard. When
you select an entry from the Reference Card, the Parameters button is grayed out so that you cannot
press it. There is no point in calling the Parameter Wizard if it has nowhere to place the code that it
constructs.

Dragging from the Objects window is often more practical than dragging from a form design window,
especially if you are running short of space on your monitor screen: these windows often take up less
space than a form design window. Furthermore, you can’t drag from the form itself to a code editor
window. Therefore, if you want to use a method on the form as a whole, the only way to use drag-and-
drop programming is to drag from the Objects window.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato

 Using drag-and-drop programming
 Methods that return values

If the method you select returns a result value, the Parameter Wizard asks if you want this result
assigned to a variable. If you click Store in a variable, the Parameter Wizard creates a suitable
variable declaration as well as a statement that assigns the method result to that variable. For
example, suppose you use getChecked to determine if an option button is checked. The Parameter
Wizard displays the following:

When you click Finish, the Parameter Wizard generates the following:
 boolean checked;
 checked = optb_1.getChecked();
This calls getChecked method to determine if the button is checked and returns the result to a boolean
variable named checked.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato

 Using drag-and-drop programming
 The object prefix

The Parameter Wizard always has an area where you can enter an object prefix. This specifies the
object to which you want to apply the method.

When you are using drag-and-drop programming, Jato fills in the object prefix with the name of the
object where the drag-and-drop operation started.

If you use the Reference Card to generate code directly, without using a drag-and-drop operation from
the form design window, you can select the object prefix by clicking the arrow under Object Prefix and
choosing an object name from the resulting list.

You can also type an object name directly into Object Prefix. The Parameter Wizard generates a
function call of the form

object.function()

Note: If you are performing a method on the form itself, the object prefix will be blank. This is because
methods are assumed to act on the form if you do not specify an object explicitly. For example,

textb_1.setBackColor(Color.blue);

sets the background color of the specified text box, but

setBackColor(Color.blue);

sets the background color of the form itself.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato
 Jato command line options

When you start Jato, there are several options that can be specified on the command line:

-bt "Debug" -b file.wxp
Immediately builds a Debug version of the project specified by the .WXP file.

-bt "Release" -b file.wxp
Immediately builds a Release version of the project specified by the .WXP file.

-b file.wxp
Immediately builds the project specified by the WXP file. Each target will either be a Debug or
Release version: whichever type was selected the last time each target was built.

-c file.wxp
Deletes all the generated files associated with the project specified by the WXP file. This option is a
good way of cleaning out target folders in preparation for a complete rebuild.

For example, the following command line starts Jato and immediately builds a Release version of a
project:
optima -bt "Release" -b c:\optima\projects\myproj\myproj.wxp
If you are invoking Jato from a console, you should add start at the beginning of the command line to
avoid leaving the console busy and to allow Jato to be found if it’s not in the path:
start optima -c c:\optima\projects\myproj\myproj.wxp

Note: In the -bt options, you must type either "Release" or "Debug" as shown; for example, you
cannot use all lowercase letters.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 3. Using Jato
 Summary of basic Jato operations

Jato often provides several ways of performing the same operation. This guide makes no effort to list
all the possibilities; for complete information, see the online help.

Creating a form
To add an object to a form, click on the appropriate button in the Java component palette, then click on
the form shown in the form design window. After you have placed an object on the form, you can
change its position by dragging it to a new location on the form. You can change its size by clicking on
the object, then using the drag handles to drag the object to the desired size.

To set the properties for the form or any object on the form, use the right mouse button to click on the
form or object, then click Properties.

To define an event handler for the form or any object on the form, use the right mouse button to click on
the form or object and click Events. Choose the appropriate event from the short list of possibilities, or
click More to call the Object Inspector, then double-click the event name on the Events page. Jato
opens a code editor window where you can type Java code.

If you change an object’s name, the change is propagated throughout the form that contains the object.

The Classes window lets you add new member functions to a form as well as data object declarations
and import directives.

Templates
A template consists of one or more objects which already have their properties set and/or event
handler routines defined. You can save yourself work by defining templates for objects or object
combinations that you use frequently. Object templates are available on the Templates page of the
Java component palette.

You can also define form templates. For example, you could define a template for dialog operations
that you perform frequently. This makes it easy to incorporate such a form into any program you write.
Form templates are available through the Form Wizard.

Drag-and-drop programming
Drag-and-drop programming simplifies the creation of Java source code. Drag from an object on the
form to an open code editor. Jato displays the Reference Card to show the methods available for the
chosen object. When you have chosen a method, the Parameter Wizard helps you construct a call to
that function.

Command line options
When you start Jato, you can specify command line options that tell Jato which project you want to
work with. You can also specify whether you want a Debug or Release version of a target. Finally, you
can tell Jato to clean out all files which are built from other files.

 Jato Programmer ’ s Guide

 Part I. Fundamentals
 Chapter 4. Standard types and events

This chapter examines a number of basic classes used by the Jato component library. Many of these
come from the AWT library, while others are unique to Jato. The chapter also explains the principles of
dealing with Jato events.

 Frequently used types
 The Object class
 The String class
 StringBuffer
 The Point class
 The Dimension class
 The Rectangle class
 The Color class
 The Font class
 The Toolkit class
 The URL class
 The Applet class
 The Range class
 Standard events
 Summary of standard types and events

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events
 Frequently used types

The Jato component library provides a class for every kind of object that can appear on a form. For
example, text boxes are represented by the TextBox class and command buttons are represented by
the CommandButton class.

The Jato library also defines a number of general purpose data types which are used in a variety of
contexts. This section examines the types which you are most likely to see when you begin
programming with Jato. This includes some standard Java library classes as well as Jato classes.

For complete details on all Jato classes, see the Jato Component Library Reference.

 Fully qualified Java names

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 Frequently used types
 Fully qualified Java names

The code you write in Jato draws on many different libraries (for example, the standard Jato library and
AWT). In some cases, there are conflicts between names used in these libraries. For example, both the
AWT and the Jato library have a Label class.

Java lets you resolve these conflicts by specifying fully qualified names for various items. A fully
qualified name specifies where the name is defined. For example, the two Label classes have the
following fully qualified names:

java.awt.Label
powersoft.jcm.ui.Label

As shown, the first name specifies that it comes from the AWT, while the second from Powersoft Jato.

All fully qualified names in the Jato library start with powersoft.jcm (where jcm stands for Java
Component Module). Within this library are several subsets:

db Database-related classes
event Event-related classes
net Internet components
ui User interface components
util Utility classes

To identify where a class is defined, look in
java\Lib\powersoft\jcm

in your main Jato folder. Each group of classes (db, event, etc.) appears as a subfolder under this
folder. You can check these subfolders to find exactly where a particular class is defined.

Fully qualified names are also important when placing import statements in your source code. For
example,

import powersoft.jcm.util.*
imports information about all the utility classes defined for Jato. (Remember that names used in
import statements are case-sensitive.)

You will see fully qualified names in much of the code generated by Jato and in many of the examples
in this guide.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events
 The Object class

The Object class (java.lang.Object) is the base class for all other AWT classes in Java and Jato.
This means that Object can serve as a “generic” class in many contexts. For example, you can declare
a function to take an Object argument if you want the function to accept several different kinds of
objects.

Since all other classes are derived from Object, the methods defined for Object can be applied to an
object of any standard Java or Jato class.

The standard constructor for an Object is
Object obj = new Object();

This creates an object with no contents.

Note: C and C++ programmers should note that Java typically uses the Object class in situations
where C/C++ would use void *.

 Comparing Object values

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 The Object class
 Comparing Object values

The equals method compares two Object values to determine if they refer to the same object. This is
not the same as referring to identical objects. For example, in

Object oldObj = new Object();
Object newObj = oldObj;

oldObj equals newObj because they both refer to the same object (the same instantiation). However,
in

Object oldObj = new Object();
Object newObj = new Object();

the two are not equal because they refer to different objects.

The standard form for using equals is
boolean result = object1.equals(object2);

The result is true if both values refer to the same object and false otherwise.

No object is equal to the special null object.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events
 The String class

The String class (java.lang.String) represents a string of characters. All string constants (for
example, "Hello") are created as objects of the String class.

The String class is a standard Java class, defined fully in the Java SDK. String is derived from Object,
so all String values are also Object values.

All String objects are constant; their values cannot be changed once they are created. However, you
can change the value of a String variable by assigning it a new String object value. If you want to work
with strings whose contents can be changed, use the StringBuffer class (described in StringBuffer).

Note to C and C++ programmers: The text stored in a String object normally does not end in '\0'.
Of course, there may be a '\0' present if you created the String from C or C++ string data.

 Creating a string
 Simple String methods
 Comparing strings
 Obtaining substrings of strings
 Comparing substrings
 Searching strings
 Converting an object to a string
 Converting data into strings

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 The String class
 Creating a string

The simplest constructor for a String object is simply
String str1 = new String();

This creates a string that contains no characters.

Another simple constructor is
String str2 = new String("abc");

which creates a String object containing the given character string.

You can create String objects from char arrays, as in
char arr1[] = { 'a', 'b', 'c' } ;
String str3 = new String(arr1);

You can also create String objects using substrings of char arrays:
char arr2[] = { 'H', 'e', 'l', 'l', 'o' } ;
String str4 = new String(arr2, offset, count);

In this example, offset gives the character position where the substring starts (the first character in
the string has a position of zero) and count gives the number of characters in the substring.

There is also a copy constructor that creates a new String with the same contents as an existing String:
String str5 = new String(str4);

This is actually the format used when you specify a string constant as the argument for the constructor.

Finally, you can create a String with the same contents as an existing StringBuffer:
StringBuffer strBuf = new StringBuffer();
String str6 = new String(strBuf);

There are several other constructors defined for String but the ones just listed are the most commonly
used forms. For more information about String constructors, see the Java SDK.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 The String class
 Simple String methods

The length method returns the length of a string:
int len = str.length();

This means the number of characters in the text of the String.

The concat method creates a String object consisting of one string concatenated on the end of
another:

String str1 = "abc";
String str2 = "def";
String str3 = str1.concat(str2); //abcdef

It’s important to note that concat does not change the contents of the String object. Instead, it creates
a third String that is the concatenation of the original two.

The methods toUpperCase and toLowerCase return new strings which match the original string
converted to upper or lower case:

String str = "String Sample";
String upr = str.toUpperCase(); //STRING SAMPLE
String lwr = str.toLowerCase(); //string sample

The trim method returns a new string which matches the original string with white space removed from
the beginning and the end:

String str = " Hi! ";
String trm = str.trim(); // "Hi!"

For the purposes of trim, a character is considered white space if its ASCII value is less than or equal
to \u0020 (the space character).

The replace method replaces all the occurrences of one character with a new character:
String old = "Robin" ;
String new = old.replace('i', 'y');

produces "Robyn".

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 The String class
 Comparing strings

The String class has a number of methods for comparing strings. The equals method compares two
strings for equality:

boolean result = str1.equals(str2);
returns true if the two strings represent the same sequence of characters. Note that this is not the
same as the version of equals in Object. For two Object values to be equal, they must refer to the
same object; for two String values to be equal, they only have to refer to the same sequence of
characters.

The equalsIgnoreCase method is similar to equals but ignores the case of characters that have upper
or lower case:

String str1 = "Hello!" ;
String str2 = "HELLO!" ;
boolean result = str1.equalsIgnoreCase(str2); // true

In the above example, result is true because the two strings are identical except for the case of the
letters.

The compareTo method determines the “sorting order” of two strings:
int i = str1.compareTo(str2);

returns a positive value if str1 is lexicographically greater than str2, returns zero if the two strings
are equal, and returns a negative value if str1 is lexicographically less than str2:

String str1 = "abc" ;
String str2 = "def" ;
int i = str1.compareTo(str2); // i < 0

The endsWith method determines whether a string ends with a specified sequence of characters. For
example,

boolean result = str.endsWith("xyz");
returns true if the string ends with the given characters and false otherwise. Similarly, the
startsWith method

boolean result = str.startsWith("abc");
returns true if the string begins with the given characters and false otherwise.

There is a second form of startsWith that specifies an integer offset value:
boolean result = str1.startsWith(str2, offset);

This returns true if str1 contains the string str2 beginning at the given offset. The beginning of
the string has an offset of zero, the next character has an offset of 1, and so on. Therefore,

String str = "Smile!"
boolean result = str.startsWith("il", 2) ;

returns true.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 The String class
 Obtaining substrings of strings

The substring method returns a new String object containing a substring of the original String. There
are two forms:

String sub1 = str.substring(offset);
returns the substring beginning at the given offset and extending to the end of the string. The offset of
the beginning of the string is zero, the next character is 1, and so on.

String sub2 = str.substring(start, end);
returns the substring beginning at the given start offset and ending at the end offset minus one. The
following code shows an example:

String str = "Hi there!";
String sub = str.substring(3,8); // "there"

Notice that the start and end arguments are specified so that
start - end

is the length of the substring.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 The String class
 Comparing substrings

The regionMatches method of String compares selected substrings of two strings. The simplest form
of regionMatches is
boolean result =

str1.regionMatches(offset1, str2, offset2, len);
where offset1 is the integer offset of a region in str1, offset2 is the integer offset of a region in
str2, and len is an integer giving the number of characters to be compared. For example,
boolean result = str1.regionMatches(0, str2, 0, 10);
compares the first 10 characters in both strings.

Another form of regionMatches is
boolean result =
 str1.regionMatches(ignoreCase, offset1, str2, offset2, len);
ignoreCase is a boolean argument. If it is true, regionMatches ignores the case of letters when
comparing the two substrings.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 The String class
 Searching strings

The indexOf method searches for the first occurrence of a character or substring in a String. The
simplest form is

int pos = str.indexOf(ch);
where ch is a char value. The result is the position of the first matching character in str. The position
of the beginning character of the string is zero, the next character is 1, and so on.

You may also use the form
int pos = str.indexOf(ch , start);

where start is an integer value giving the position where the search should start.

There are two similar forms for searching for substrings:
// String sub;
int pos1 = str.indexOf(sub);
int pos2 = str.indexOf(sub, start);

These find the position of the first matching substring in str.

In all cases, indexOf returns -1 if there is no matching character or substring.

The lastIndexOf method is similar to indexOf, but looks for the last matching character or substring in
the string. This method has the same four forms:

int pos1 = str.lastIndexOf(ch);
int pos2 = str.lastIndexOf(ch, start);
int pos3 = str.lastIndexOf(sub);
int pos4 = str.lastIndexOf(sub, start);

Again, lastIndexOf returns -1 if there is no matching character or substring.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 The String class
 Converting an object to a string

The toString method of the Object class creates a String object whose contents represent an Object:
// Object obj;
String str = obj.toString();

The string that results from toString includes the name of the class to which the object belongs. There
is one exception: when you apply toString to a String object, you get the string object itself. For
example,

String str1 = "abc";
String str2 = str1.toString();

assigns str1 itself to str2.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 The String class
 Converting data into strings

The valueOf method of the String class produces a string that provides a textual representation of
another type of data value. For example, this lets you “convert” a number into a string containing the
number in text form. There are several forms of valueOf, and all of them are static methods within the
String class. Therefore, the methods are commonly used in the form

String str = String.valueOf(value);
As shown, you use the name of the class as a whole (String) rather than the name of a specific String
object.

The value argument of valueOf can have any of the following types:

boolean
The resulting string is either "true" or "false".

char
The resulting string contains a single character equal to the argument character.

char []
The resulting string contains the same sequence of characters as in the character array.

double
The resulting string contains a textual representation of the value. This may be normal decimal
notation or scientific notation, depending on the size of the value. For more information, see the
Java SDK.

float
The resulting string contains a textual representation of the value. This may be normal decimal
notation or scientific notation, depending on the size of the value. For more information, see the
Java SDK.

int
The resulting string contains a textual representation of the value as a decimal integer.

long
The resulting string contains a textual representation of the value as a decimal integer.

Object
The resulting string is "null" if the object is null. Otherwise, the string is the same as the result of
toString on the object.

Here are some examples:
String.valueOf(3); // "3"
String.valueOf(3.14159); // "3.14159"
String.valueOf('x'); // "x"
String.valueOf(1 < 2); // "true"

The valueOf method can also take the form
// char charArr[];
String.valueOf(charArr, index, count);

where index is the index of a character in the character array and count is an integer. This creates a
String consisting of count characters beginning at charArr[index].

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events
 StringBuffer

The StringBuffer class (java.lang.StringBuffer) supports character strings whose contents can
be changed. String buffers are safe for use by multiple threads, since the support library prevents two
different threads from modifying the same StringBuffer simultaneously.

Every string buffer has a capacity. This is the number of characters that the buffer can contain at its
current size. If you perform an operation for which the buffer is too small, the library automatically
reallocates new internal storage big enough to hold the desired amount of text.

Many StringBuffer methods change the contents of the buffer, then return the changed StringBuffer
object as the method’s result. For example, the reverse method reverses the order of characters in a
string buffer. In the code,

StringBuffer buf1 = new StringBuffer("abc");
StringBuffer buf2 = buf1.reverse();

both buf1 and buf2 end up with the contents "cba". The reverse method changes buf1 in place,
then returns the result.

String buffers are used as intermediate data objects in string concatenation. For example, in the
expression

"Hello " + "world"
the compiler creates a temporary StringBuffer object containing "Hello ", appends "world", then
converts the result to String.

 Creating a string buffer
 Converting a string buffer to a string
 Simple string buffer methods
 Appending text to a string buffer
 Inserting text into a buffer

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 StringBuffer
 Creating a string buffer

The simplest constructor is
StringBuffer buf1 = new StringBuffer();

This creates an empty string buffer with an initial capacity of 16 characters.

You can specify the initial capacity explicitly with
StringBuffer buf2 = new StringBuffer(cap);

where cap is an integer giving the initial capacity.

One way to convert a String to a StringBuffer is to use the constructor
// String str;
StringBuffer buf3 = new StringBuffer(str);

This creates a string buffer whose initial contents are equal to the characters in str. The initial
capacity of the buffer is 16 plus the number of characters in str. Since string constants are String
values in Java, the following code is valid:

StringBuffer buf4 = new StringBuffer("abc");

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 StringBuffer
 Converting a string buffer to a string

The toString method produces a String value whose contents match the string in a string buffer:
StringBuffer buf = new StringBuffer("abc");
String str = buf.toString(); // "abc"

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 StringBuffer
 Simple string buffer methods

This section lists a number of simple methods supported by StringBuffer.

The capacity method returns the current capacity of a string buffer:
int cap = buf.capacity();

The ensureCapacity method makes sure that the buffer can hold a specified number of characters.
The method takes a single integer argument giving the minimum number of characters desired:

buf.ensureCapacity(min);
If the current capacity is less than min, the library allocates a new internal buffer for the StringBuffer
object. The capacity of the new buffer is min, or twice the old capacity plus 2, whichever is larger. For
example,

buf.ensureCapacity(50);
makes sure that the buffer can hold at least 50 characters. The new capacity of the buffer may be
considerably larger than 50, depending on the buffer’s original size.

The length method returns the current length of the string in the string buffer:
int len = buf.length();

Note that length will always be less than or equal to the capacity. The capacity is the maximum number
of characters that the buffer can currently hold, while the length is the number of characters that the
buffer actually holds.

The setLength method sets a new length for the buffer:
buf.setLength(newLength);

The newLength argument must be an integer greater than or equal to zero. If the new length is less
than the current length, the string in the buffer is truncated to contain the specified number of
characters. If the new length is greater than the current length, null characters ('\u0000') are added
to the end of the string until the string has the desired length.

The charAt method returns the character at the given offset position in the buffer. For example,
StringBuffer buf = new StringBuffer("Cat");
char ch = buf.charAt(0);

returns the character 'C'. The setCharAt function changes a specific character:
buf.setCharAt(0, 'B');

changes "Cat" to "Bat".

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 StringBuffer
 Appending text to a string buffer

The append method appends text to the end of the current contents of a string buffer. Different
versions of append take different types of arguments; append converts these arguments to text before
appending them to the string. Therefore, you can use successive append calls to build up a string, as
in

// double X;
// int J;
StringBuffer buf = new StringBuffer();
buf.append("The value of J is ");
buf.append(J);
buf.append(", and the value of X is ");
buf.append(X);
buf.append('.');

The result of append is the StringBuffer object after it has been changed. Because of this, calls to
append can be chained as in
 buf.append("The value of J is ").append(J).append('.');
The text conversions performed by append are similar to those performed by the valueOf method of
String. For more information, see Converting data into strings.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 StringBuffer
 Inserting text into a buffer

The insert method inserts text into an existing string buffer. The insert method is similar to append,
but takes an argument specifying the offset position where the text is to be inserted. For example,

buf.insert(0, 'X');
inserts the character 'X' at the beginning of the string buffer (offset zero). Similarly,

buf.insert(1, 3.14159);
inserts the text string "3.14159" after the first character in the string buffer.

If the given offset value is equal to the current length of the string buffer, the text is inserted after the
last character of the current string.

The result of insert is the modified StringBuffer object. Therefore, calls to insert may be chained as
with append. For more information, see Appending text to a string buffer.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events
 The Point class

Positions on a window are represented by Point objects (java.awt.Point). Point values represent
positions using X and Y coordinates, with (0,0) indicating the upper left corner of the window. X values
increase as you move right, and Y values increase as you move down. Sizes are given in pixels.

The coordinates of a Point object are publicly accessible int values named x and y. The code below
shows some common operations with Point objects:

 Point p = new Point(200,300); // creates an object
 int Xval = p.x; // obtains X coordinate
 int Yval = p.y; // obtains Y coordinate
 p.x = 100; // sets X coordinate
 p.y = 200; // sets Y coordinate
 p.move(50,50); // moves point to (50,50)
 p.translate(50, 100); // adds 50 to X, 100 to Y

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events
 The Dimension class

The Dimension class (java.awt.Dimension) represents rectangular dimensions: width and height.
Dimension contains two public members describing the dimensions:

int width;
A width in pixels.

int height;
A height in pixels.

The most commonly used constructor is
Dimension dim = new Dimension(width, height);

which creates a Dimension object with the given width and height.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events
 The Rectangle class

The Rectangle class (java.awt.Rectangle) represents rectangles. For example, you could use a
Rectangle object to specify a frame around a graphic or to describe the size of a rectangular region in a
window. Sizes in a Rectangle object are always given in pixels.

Rectangle contains several public members describing the rectangle:

int x;
The X coordinate of the upper left corner of the rectangle, relative to the window itself. The leftmost
edge of the window has an X coordinate of zero and values increase going to the right across the
window. The X coordinate is measured in pixels.

int y;
The Y coordinate of the upper left corner of the rectangle, relative to the window itself. The upper
edge of the window has a Y coordinate of zero, and values increase going down the window. The Y
coordinate is measured in pixels.

int width;
The width of the rectangle in pixels.

int height;
The height of the rectangle in pixels.

The equals method determines whether two rectangles specify the same size and position:
boolean result = rec1.equals(rec2);

The result is true if the two rectangles have equal x, y, width, and height values. The result is
false otherwise.

 Constructing rectangles
 Changing a rectangle ’ s size and position
 Points and rectangles
 Unions and intersections of rectangles

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 The Rectangle class
 Constructing rectangles

One common constructor for a Rectangle object is
 Rectangle r1 = new Rectangle(x, y, width, height);
which defines a rectangle at the specified position with the given width and height. If you omit the
position arguments, as in
 Rectangle r2 = new Rectangle(width, height);
the rectangle uses the position (0,0).

There are two constructors that use Dimension arguments:
 // Dimension dim;
 // Point p;
 Rectangle r3 = new Rectangle(p, dim);
creates a rectangle at the given point with the given dimensions, and
 Rectangle r4 = new Rectangle(dim);
creates a rectangle with the given dimensions at the point (0,0).

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 The Rectangle class
 Changing a rectangle’s size and position

The Rectangle class supports a number of methods that change the rectangle’s size and/or position.

The reshape method
rec.reshape(x, y, width, height);

changes the rectangle rec to have the new dimensions.

The move method
rec.move(x, y);

changes the position of the rectangle to the given (x,y) coordinates, without changing the rectangle’s
size.

The translate method changes the position of the rectangle by adding given increment values to the x
and y coordinates:

rec.translate(incrX, incrY);
If the original rectangle has a position of (x,y), the translated rectangle has a position of (x+incrX,
y+incrY). The increment values may be negative.

The resize method
rec.resize(width, height);

changes the size of a rectangle to the specified width and height.

The grow method has the format
rec.grow(incrHorz, incrVert);

This changes the size of the rectangle by pushing each side outward by incrHorz pixels, and pushing
both the top and bottom out by incrVert pixels. The center of the rectangle remains in the same
position. For example, suppose a rectangle is initialized with

Rectangle rec = new Rectangle(150, 150, 100, 100);
This is a 100x100 rectangle centered on (200,200). The borders are:

left: x = 150
right: x = 250
top: y = 150
bottom: y = 250

If you use grow with
rec.grow(20, 50);

the result is still a rectangle centered on (200,200). The borders become:
left: x = 130
right: x = 270
top: y = 100
bottom: y = 300

The width of the rectangle is now 140, and the height is now 200.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 The Rectangle class
 Points and rectangles

The inside method of Rectangle determines whether the rectangle contains a specified point:
boolean result = rec.inside(x, y);

The result is true if the point (x,y) is inside the rectangle and false otherwise. Points on the
boundary of the rectangle are considered inside for the purposes of this function.

The add method of Rectangle determines the smallest rectangle that contains both the original
rectangle and a given point:

Rectangle newRec = rec.add(x, y);
This gives the smallest rectangle that contains both rec and the point (x,y). You can also specify the
point as a Point value:

//Point pt;
Rectangle newRec = rec.add(pt);

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 The Rectangle class
 Unions and intersections of rectangles

The intersects method determines whether two rectangles intersect:
boolean result = rec1.intersects(rec2);

The result is true if they intersect and false otherwise. The rectangles intersect if they have any
point(s) in common, even if the intersection is a single corner point.

The intersection method determines the rectangle that lies at the intersection of two other rectangles:
Rectangle interRec = rec1.intersection(rec2);

The result is only valid if the rectangles actually intersect. If the rectangles do not intersect,
intersection still returns a value but the value does not represent a valid rectangle (at least one of the
dimensions will be negative).

The union method determines the smallest rectangle that contains both rectangles:
Rectangle unionRec = rec1.union(rec2);

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events
 The Color class

The Color class (java.awt.Color) represents colors. The standard way of specifying a color is the
RGB format: a combination of red, green, and blue component values. Each of these component
values is represented by an integer in the range from 0 through 255.

This method of representing colors is called the RGB color model. It is the default color model for the
Java component library.

An entire color can be represented as a single 32-bit integer with the form:
0xffRRGGBB

where RR, GG, and BB are hexadecimal values representing the red, green, and blue component
values. For example, solid blue is the hexadecimal number

0xff0000ff
The equals method determines whether two Color values specify the same combination of red, green,
and blue:

boolean result = color1.equals(color2);
The result is true if the two colors have equal red, green, and blue component values; the result is
false otherwise.

Note: The color white has a value of zero for the red, green, and blue components. The color black
has a value of 255 for the red, green, and blue components.

 Constructing colors
 Color components
 Darker and brighter colors
 The HSB color model
 Color names

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 The Color class
 Constructing colors

The simplest constructor for a color is
Color c1 = new Color(red, green, blue);

where red, green, or blue are integers in the range 0 through 255. There is also a form that uses
float values:

// float fRed, fGreen, fBlue ;
Color c2 = new Color(fRed, fGreen, fBlue);

In this case, the three argument values should be float numbers in the range 0.0 through 1.0.

The final constructor is
Color c3 = new Color(intColor);

where intColor is an integer of the form
0xRRGGBB

where RR, GG, and BB are hexadecimal values representing the red, green, and blue component
values. The constructor creates a Color integer that can be represented by the value

0xffRRGGBB
In other words, the specified argument intColor is used for the bottom 24 bits of the final Color
integer.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 The Color class
 Color components

The following methods determine the component colors in an existing Color value:
// Color col;
int red = col.getRed();
int green = col.getGreen();
int blue = col.getBlue();

There are no corresponding set methods.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 The Color class
 Darker and brighter colors

The darker method returns a darker version of a given color:
// Color original;
Color darkCol = original.darker();

This method returns a new Color object with increased values for each of the red, green, and blue
components; darker does not change values in the original color object. Repeated applications of
darker eventually approach the color black.

The brighter method returns a brighter version of a given color:
// Color original;
Color brightCol = original.brighter();

This method returns a new Color object with decreased values for each of the red, green, and blue
components; brighter does not change values in the original color object. Repeated applications of
brighter eventually approach the color white.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 The Color class
 The HSB color model

Although the RGB color model is the default model for the Java component library, the library also
supports a second model: the HSB color model standing for hue, saturation, and brightness. If you
have software that uses the HSB model, you can use the methods HSBtoRGB and RGBtoHSB to
convert between one color model and the other. Both of these methods are static methods.

The usual way of converting from HSB to RGB is
 int rgbColor = Color.HSBtoRGB(hue, saturation, brightness);
(Notice that Color is used in the call to HSBtoRGB instead of naming a specific Color object; this is
the usual form for invoking static methods.) The hue, saturation, and brightness arguments are
all float values in the range 0 to 1.0. The result is a color integer in the form

0xffRRGGBB
where RR, GG, and BB are hexadecimal values representing the red, green, and blue component
values.

You can create a Color object directly from HSB values with
 Color col = Color.getHSBColor(hue, saturation, brightness);
Again, hue, saturation, and brightness are all float values in the range 0 to 1.0.

The usual way of converting from RGB to HSB is
 // float hsbVals[];
 float hsb[] = Color.RGBtoHSB(red, green, blue, hsbVals);
The red, green, and blue arguments are integers in the range 0 through 255. The hsbVals
argument is a float array where RGBtoHSB can store appropriate float values from 0.0 to 1.0,
representing the hue, saturation, and brightness of the color.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 The Color class
 Color names

The Color class defines a number of named Color values that can be used in Java code. For example,
Color.white

is a Color object that represents the color white. This is a static object within the Color class. The
following list gives all the named Color values:

Color.white
Color.lightGray
Color.gray
Color.darkGray
Color.black
Color.red
Color.pink
Color.orange
Color.yellow
Color.green
Color.magenta
Color.cyan
Color.blue

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events
 The Font class

The Font class (java.awt.font) represents a character font. Fonts are specified using the following
values:

Name
The name of a font (for example, "Courier"). This is expressed as a String.

Style
Can be one of the following static constants:

Font.PLAIN
Font.BOLD
Font.ITALIC

These can be added together to make mixed styles (for example, Font.BOLD+Font.ITALIC).

Size
The point size.

The equals method determines whether two Font values specify the same fonts:
boolean result = font1.equals(font2);

The result is true if the two fonts have the same name, style, and size; the result is false otherwise.

 Font name and family
 Constructing fonts
 Simple font methods
 The FontMetrics class

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 The Font class
 Font name and family

The name of a font is intended to be system-independent; it is sometimes called the logical name of
the font. There is a corresponding platform-specific name which is called the family of the font.

For example, if you are creating a Java application to run on another system, you would create the font
by specifying the logical name. When the application actually runs, the user’s system will choose an
appropriate native font corresponding to the specified logical font. Your program can use

String family = font.getFamily();
to determine the name of the specific font chosen on the user’s system.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 The Font class
 Constructing fonts

There is only one constructor for fonts:
 Font f = new Font(name, style, size);
where name is a String, and style and size are integers. For example,
 Font f = new Font("Dialog", Font.BOLD+Font.ITALIC, 14);
represents a 14-point bold italic font with the logical name Dialog.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 The Font class
 Simple font methods

The following list shows a number of simple methods defined in the Font class:

String family = font.getFamily();
String logical = font.getName();
int style = font.getStyle();

// PLAIN, BOLD, ITALIC or sum
int pointSize = font.getSize();
boolean plain = font.isPlain();
boolean ital = font.isItalic();
boolean bold = font.isBold();

The boolean functions return true if the font has the given style and false otherwise.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 The Font class
 The FontMetrics class

The FontMetrics class is used to provide information about how a particular font is rendered on a
particular monitor screen. For example, a FontMetrics object can tell the maximum width of any
character in the font, the maximum height of any character above the baseline, the maximum descent
of any character below the baseline, and so on. FontMetrics is a standard Java AWT class; for further
information, see the Java SDK.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events
 The Toolkit class

The Toolkit class (java.awt.Toolkit) provides methods for a variety of purposes (for example,
loading graphic images from GIF or JPEG files). Loosely speaking, Toolkit is a grab-bag of general
purpose methods that have all been grouped together in a single class.

In order to execute a Toolkit method, you need a toolkit object. The standard way to create one is
Toolkit tk = Toolkit.getDefaultToolkit();

This executes a static method within the Toolkit class to obtain a “default” toolkit object. You can then
use this object to execute other Toolkit methods, as in

Image img = tk.getImage("file.gif");

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events
 The URL class

The URL class (java.net.URL) represents a Uniform Resource Locator (URL): a reference to an
object available through the Internet. A simple URL has the form

protocol://host:port/file
where:

protocol
Specifies a protocol for transferring information over the net. Possible protocols include http, ftp,
nntp, and many others.

host
Specifies the system to which you want to connect in order to obtain information.

port
Specifies a protocol entry point on that system.

file
Specifies a file on the system.

URLs may contain more information than the parts discussed above, but the ones listed are the most
basic.

A URL object cannot be changed once it is created. For example, you cannot change the file part of a
URL once the URL object has been constructed. Instead, you may create a new URL object with the
same protocol, host, and port but a different file name.

This section describes a number of simple methods associated with URLs. For more detailed
information about working with URLs, see Writing Internet applications.

 Constructing a URL
 Obtaining information from a URL
 Converting a URL to a string

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 The URL class
 Constructing a URL

The standard constructors for a URL object are:
 // String protocol, host, file;
 // int port;
 URL u1 = new URL(protocol, host, file);
 URL u2 = new URL(protocol, host, port, file);
You can also create a URL object from a single absolute URL string, as in
 URL u3 = new URL("http://www.abc.com/info/file1.html");

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 The URL class
 Obtaining information from a URL

The following methods obtain information from a URL object:

// URL u;
String pclName = u.getProtocol();
String hostName = u.getHost();
int portNum = u.getPort();
String fileName = u.getFile();

There are no comparable set methods. URL objects cannot be changed once they have been
constructed.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 The URL class
 Converting a URL to a string

The toString method of URL returns a human-readable string representing the URL:
// URL u;
String urlString = u.toString();

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events
 The Applet class

The Applet class of Jato (powersoft.jcm.ui.Applet) provides information that pertains to the
applet as a whole. For example,

// Applet app;
URL docURL = app.getDocumentBase();

returns the URL of the HTML document where the applet is embedded. Similarly,
URL appURL = app.getCodeBase();

returns the URL of the applet itself.

The resize method lets the applet request a new size for the current form. There are two versions:
// Dimension d;
app.resize(d);
app.resize(newWidth, newHeight);

The first expresses the desired size as a Dimension value, while the second specifies a separate width
and height. The size change request is passed on to the web browser which is displaying the applet
form. The browser may reject the request if the size change is not appropriate (for example, too big for
the user’s monitor screen).

The Applet class supports a number of other methods directly related to the Applet class of Java itself.
For more information, see the Jato Component Library Reference.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events
 The Range class

The Range class (powersoft.jcm.ui.Range) is defined by Jato to represent ranges of integers. A
Range object has the following public members:

int start;
The starting value of the range.

int end;
The ending value of the range.

The range reaches from the start value to the end value, inclusive.

The Range class has two constructors. The simplest is
Range r = new Range();

where start and end are both set to zero. The other constructor is
Range r = new Range(s, e);

where the arguments s and e specify the start and end values for the Range object.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events
 Standard events

When you create a program using Jato, you write source code based on the events that can happen to
objects.

Jato makes it possible to associate many different events with the same object, but in most cases,
there are only a few events that you really care about. For example, consider a simple command
button (also called a push button). There are actually a number of events that can be triggered on a
command button, but in a normal program, the only event you care about is the user clicking the
button. Therefore, your program will respond to the Click event and ignore everything else.

If you do not respond to a particular event on an object, the event will receive default handling from the
Jato run-time environment. In most cases, the default handling simply cleans up after the event,
making it look like the event was ignored.

Note: The event model of Jato is based on the JavaBeans model. This release of Jato only handles
selected JavaBeans events, but future releases may supply greater support for JavaBeans events.

 The EventData class and its derivations
 Event handlers
 Default handling
 Underlying mechanisms
 Chaining event handlers
 Adding a new event handler

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 Standard events
 The EventData class and its derivations

EventData objects (powersoft.jcm.event.EventData) contain information about events. For
example, when a Click event occurs on a command button, the Jato library creates an object derived
from the EventData class, providing information about the Click event. In particular, the information
would tell which button was clicked.

Different types of events may have different types of information associated with them. For example, if
the user selects an item in a list box, the event information should include which item was selected. In
order to provide this kind of extra information, Jato uses various classes derived from the basic
EventData class. For example, the event information associated with a Select event is stored in a
SelectEvent object; the SelectEvent class is derived from EventData but contains extra information
specific to Select events.

Since all event information blocks are based on EventData, all these classes have certain features in
common. The rest of this section examines those common features.

The Source property
The Source property of EventData specifies the object that originally received the event. For example,
suppose that

EventData event;
contains event information for the user clicking a command button. Then

Object source = event.getSource();
returns the CommandButton object corresponding to the command button that was clicked.

The RawEvent property
Many (but not all) of the events triggered in Jato result from an AWT event. If a Jato event results from
an AWT event,

Object awtEvent = event.getRawEvent();
obtains the event information associated with the AWT event. If the Jato event did not result from an
AWT event, getRawEvent returns null.

Using getRawEvent is only necessary if you are doing low level programming that interacts directly
with the AWT library. Most Jato programmers will never have to worry about this, because Jato
automatically handles the low level details for you.

The Handled property
The Handled property indicates whether an event has been completely handled by an event handler.
In most cases, your code will never set Handled explicitly. However, if you define multiple event
handlers for an event, you should use setHandled to specify whether an event has been handled, or
getHandled to determine if the event has been previously handled by another event handler. For more
information, see Adding a new event handler.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 Standard events
 Event handlers

The code that responds to a particular event is called an event handler. Event handlers are usually
method functions defined in the class that represents a form.

All event handler routines have similar function prototypes:
public boolean object_eventName(EventData event)

object is the name of the object and eventName is the name of the event that the function handles. For
example, an event handler that responds to a Click event on a button named cb_1 would normally
have the prototype
public boolean

cb_1_Click(powersoft.jcm.event.ClickEvent event)
The event argument always has a class type derived from EventData. In the above example, this type
is called ClickEvent. Different types of events use different types of event arguments, but all such
arguments have types based on EventData.

Many event handlers do not need any of the information stored in the event object. However, the
information is available if necessary.

As the prototype shows, the event handler is expected to return a boolean result. A result of false
indicates that Jato can proceed with normal default handling; true indicates that the handler
completely handled the event, and no further handling is necessary.

In most cases, your event handlers should return false. This makes sure that default handling takes
place after any specialized event handling you might want to do yourself. For example, the default
handling does some simple clean-up after certain types of events; if your own event handler returns
true, Jato assumes that you have already done all the clean-up necessary. Returning false lets you
ignore underlying technical details, so that you can concentrate on matters which are directly relevant
to your program.

If your event handler returns true, the run-time environment uses setHandled to indicate that your
event handler has handled the event. You do not have to call setHandled in your own code.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 Standard events
 Default handling

Jato and the run-time environment provide default handling for all events. In the majority of cases, the
default handling just does simple clean-up; for example, the default handling tells the run-time
environment that the event has been handled properly.

Certain events may have specialized default handling. For example, if the event is serious enough, the
default handling may issue an error message and terminate your program. The default handling may
also transfer the event from the object that originally received the event to the parent of that object.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 Standard events
 Underlying mechanisms

The Jato event interface is analogous to the JavaBeans interface based on
java.util.EventListener. This model lets you define an object as an implementation of an event
listener. An event listener object must define a method named after the event; this method is invoked if
the particular event is triggered on the event listener object.

For example, suppose that a particular type of object wants to receive Click events. In Jato, the
declaration of the object must state that it implements the ClickListener class
(powersoft.jcm.event.ClickListener). This indicates that the object intends to listen for Click
events. The object must also include a method named click. This function is invoked when a Click
event is received by the object. The argument to the click function is a ClickEvent object providing
information about the click action.

Similarly, if an object wants to receive Select events, it implements a class called SelectListener and
must contain a method named select. The select method accepts a SelectEvent object as its
argument. A similar pattern holds for all other recognized events.

It is important to understand that an event listener is an object, not a function. The event listener object
contains a function which is invoked when the event listener is notified of that type of event.

Jato supports two possible ways of implementing this model: the form-based model and the relay
model. These models are described in the sections that follow.

The form-based model
When you define an event handler for an object in this model, Jato automatically declares the form
containing that object to be a listener for that event. For example, if you define a Click event handler
for command button cb_1, Jato declares that the form containing this button implements ClickListener.
Jato also creates a click method in the form class that will invoke cb_1_Click when the user clicks
cb_1.

Now consider what happens if the form contains more than one command button. When a click action
occurs anywhere on the form, the form’s click method is invoked. The click method must then decide
which button was clicked and invoke the appropriate event handler associated with that button.

While the form-based model is simple, it may be inefficient for a single click method to handle click
actions anywhere on the form. If the form contains lots of buttons, the click method may have to
perform a number of if statements to determine which button was clicked and which event handler
should be invoked.

The relay model
The relay model associates an event listener with each individual object that can receive the event. For
example, suppose a form contains command buttons cb_1 and cb_2. Then the relay model creates
new classes named cb_1_Relay and cb_2_Relay, each of which implements ClickListener. Each of
these classes contains its own click method. Each of these click methods invokes the appropriate
event handler for the associated command button. For example, the click method in cb_1_Relay
invokes cb_1_Click.

The advantage of the relay model is that it avoids a single click method that serves the whole form and
has to figure out which button has been clicked. The disadvantage of the relay model is that it requires
the definition of more Java classes. This may increase the file space needed to store your project and
possibly the amount of memory used by your program during execution.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 Standard events
 Chaining event handlers

It is possible to specify more than one event handler for the same event. For example, consider the
Select event for list box lb_1:

· You may start out with a single general event handler lb_1_Select which handles Select events
in a simple way.

· During execution, the user selects an option that makes it necessary to handle the Select event for
lb_1 in a more comprehensive way. Therefore you specify a new event handler
lb_1_SelectSpecial to deal with the Select event. This handler is placed before
lb_1_Select in the event handler chain. Therefore, when the Select event is triggered,
lb_1_SelectSpecial is invoked. This routine can handle the event as appropriate; however,
lb_1_SelectSpecial can also decide not to handle the event, in which case the next handler in
the chain (lb_1_Select) is invoked.

· Later in execution, you may decide to specify yet another event handler, one that is specially tuned
for quick performance in a single special circumstance. Call this one lb_1_SelectFast. You add
this handler to the chain too. Now, when the Select event is triggered on lb_1, the first routine
invoked is lb_1_SelectFast. If this routine doesn’t handle the event, control passes to
lb_1_SelectSpecial and then lb_1_Select, as necessary.

If the last user-defined handler in the chain (lb_1_Select) does not handle the event either, control
passes to the default handling supplied by Jato itself. Therefore, the default handling can be regarded
as the end of the event handler chain. (The default handling may or may not be implemented as an
actual event handler function. Instead of being a separate function, the default handling may be part of
the routine that walks through the chain of event handlers.)

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events

 Standard events
 Adding a new event handler

The process of adding a new event handler has several steps:

· Defining a new event listener class

· Adding an event listener object to the current list of event listeners

In order to understand this process, it may be useful to examine the code that Jato generates in order
to create the first event handler for any event.

Defining a new event listener class
To add a new event handler for an object, you first create a new event listener for that object. The
normal process of creating event handlers at design time only lets you specify a single event listener
for each object. Therefore, you must define a new event listener for the object involved.

The following example shows a format for defining a new Click listener class. Listeners for other
events follow a similar format. For the sake of example, this Click listener is intended to invoke a
method named cb_1_NewClick defined for a command button on Form1:
class MyClickListener

implements powersoft.jcm.event.ClickListener
{
 public MyClickListener(Form1 form)
 {
 _form = form;
 };
 public void click(powersoft.jcm.event.ClickEvent ev)
 {
 if (_form.cb_1_NewClick(ev))
 ev.setHandled(true);
 };
 private Form1 _form;
};

In order to use standard JavaBeans tools (for example, “introspection”), the name of the class should
end in the string Listener.

The constructor for MyClickListener receives Form1 argument indicating the form that contains the
command button. The constructor saves a copy of this argument so that this MyClickListener can refer
to the form later.

The click method invokes cb_1_NewClick for the specified form. It passes the ClickEvent data as an
argument to cb_1_NewClick. If cb_1_NewClick returns true, the click method uses setHandled
to indicate that the event has been handled.

Adding an event listener to the list
Every Jato component object may have a list of event listeners which listen for events on that object.
For example, a command button may have a list of click listener objects listening for Click events on
that button.

When an object can receive an event, the object has a method for adding a new event listener to the
list of objects listening for that event. For example, a command button has a method named
addClickListener while a list box has a method named addSelectListener.
The following example shows how to add a new Click listener for a command button named cb_1:

cb_1.addClickListener(new MyClickListener(this));
Notice that this function call specifies an argument of this when creating the new MyClickListener
object. This creates a Click listener which refers to the current form. Once the MyClickListener object
has been added to the list of Click listeners for cb_1, it waits for a Click event to happen. If the event
happens, the run-time environment invokes the click method in the Click listener which in turn invokes
cb_1_NewClick for the current form. Presumably this method handles the Click event in the context
of the current form.

Objects also have “remove listener” functions to remove an existing event listener. For example,
command buttons have a removeClickListener method while list boxes have a
removeSelectListener method. For more information, see the Jato Component Library Reference.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 4. Standard types and events
 Summary of standard types and events

Standard types
This chapter discussed the following standard types:

Object
A generic type underlying all AWT classes.

String
String constants and strings whose contents cannot be changed.

StringBuffer
Strings whose contents can be changed.

Point
Points on a form.

Dimension
The dimensions of a rectangular area (width and height).

Rectangle
The size and position of a rectangle on a form.

Color
Screen colors.

Font
Type fonts.

Toolkit
Provides access to general-purpose methods.

Applet
Stands for the applet as a whole, and provides a way to access various types of application-wide
data.

Range
A range of integer values.

Events
An event is triggered to inform the program that the user has performed some action (such as clicking
a button) or that some other piece of software has a message to communicate. When an event is
triggered, the Jato run-time environment calls an event handler written to handle that event.

An event handler has the prototype
public boolean object_event(EventData event);

where event is a block of information about the event. The event argument has a type derived from the
EventData class. The derived classes have names like ClickEvent, SelectEvent, and so on. These
derived classes may provide specific data unique to the event; for example, SelectEvent has a method
that tells which item was selected.

There may be several event handlers associated with a given event. The event handlers form a “chain”
of functions which are executed in reverse order of registration: the most recently registered event
handler is executed first, then the next most recent, and so on.

The return value of an event handler should be true if the event has been completely handled and
false otherwise. If the return value is false, execution continues with the next event handler in the
chain; if the return value is true, the event is considered to be completely handled and no further
event handlers are called.

Jato provides default handling for every event. If you do not define an event handler for a particular
event, or if every event handler in the chain returns false, Jato performs the default handling.
Typically, the default handling simply ignores the event; however, some types of events require more
elaborate default handling.

Most of the event handlers you write should return false. In this way, control passes from your event
handler to the default event handling provided by Jato (which performs any clean-up required after the
event).

 Jato Programmer ’ s Guide

 Part I. Fundamentals
 Chapter 5. Programming standard objects

This chapter examines the standard components that can be placed on Jato forms. This includes all
the components that appear on the Standard and Utilities pages of the Java component palette. The
chapter assumes you have read Standard types and events.

 Base classes in Jato
 Object properties
 Notes on writing Jato code
 Labels
 Command Buttons
 Picture buttons
 Check boxes
 Option buttons
 Picture boxes
 List boxes
 Combo boxes
 Text boxes
 Group boxes
 Scroll bars
 Timers
 Summary of standard objects

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects
 Base classes in Jato

The Component class is the root class underlying all Jato components. Classes like CommandButton,
ListBox, and so on are all derived from Component.

The Container class is based on Component. Container is the root class for all objects that can contain
other objects; this includes forms, frames, and so on.

The Panel class is based on Container, and is the root class for all containers that can be contained by
other containers.

The PopupWindow class is the root class for all objects that can be windows on their own (for example,
forms but not panels that must be contained by other containers).

You will almost never have to create objects of these classes. However, you may see these classes
used in various methods that need to refer to “lowest common denominator” classes. For example, the
getParent method determines the object that contains a particular object; the result of getParent is a
Container value, since Container is the lowest common denominator class for objects that contain
other objects.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects
 Object properties

The properties of an object determine its appearance and behavior. Some properties are unique to a
particular type of object, while other properties are associated with many different types of objects. This
section examines a few properties that apply to most objects. For information on the mechanics of
setting object properties at design time, see Error! Reference source not found..

Properties at run time
Objects have separate get and set methods for each property. For example, to manipulate the Text
property, there are separate getText and setText methods. To manipulate the Checked property, there
are separate getChecked and getChecked methods. A read-only property will only have a get
method.

In Jato, get and set are written in lower case letters. Contrast this with Powersoft Optima++ (the C++
version) where the corresponding functions begin with upper case letters (Get and Set).

This guide does not explain all the properties associated with objects. For full details, see the Jato
Component Library Reference.

Note: The Jato Component Library Reference documents the get and set methods for a property in
the entry for the property itself. For example, getText and setText are documented in the reference
manual entry for the Text property.

 Text
 Font
 Visible
 Enabled
 Color
 Parent
 Size and position properties
 ResizePercentages properties
 Database properties

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Object properties
 Text

The Text property is a string of text used to label a visual object. Different objects are labeled in
different ways. For example, the text of a button is displayed on the button itself, while the text of a text
box is displayed inside the text box.

With some types of objects, the text is not displayed at all. You can still assign these objects a Text
value, but it has no effect on what the user sees.

An object’s initial Text can be set in the General page of the object’s property sheet. The property
sheet also lets you choose the font in which the text is displayed: click the Browse button to choose a
font.

Changing Text at run time
During execution, the setText method changes the Text property of an object. For example, suppose
that cb_1 refers to a command button; then
 cb_1.setText("New text");
changes the text on the command button to the given string.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Object properties
 Font

The Font property specifies the font of text displayed in an object. For example, the following code
increases the point size of the font for text in text box textb_1:
Font oldF = textb_1.getFont();
Font newF =
 new Font(oldF.getName(), oldF.getStyle(), oldF.getSize()+2);
textb_1.setFont(newF);
Notice that this code creates a new Font object that is the same as the old font except that the size is 2
points bigger. For more information about fonts, see The Font class.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Object properties
 Visible

The Visible property controls whether the user can actually see an object. For example, you may wish
to make a set of check boxes disappear in contexts where the associated options are irrelevant.

When you place an object on a form, Jato makes it visible by default. During program execution, your
code can use the setVisible method to make the object appear or disappear:
 object.setVisible(true); // now you see it
 object.setVisible(false); // now you don't

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Object properties
 Enabled

Enabled controls whether the user can actually perform actions on an object. For example, if you turn
off the Enabled property for a command button, the button still appears on the form, but nothing
happens if the user clicks on it. This means that the button will not respond to being clicked, even if you
have written a Click event handler for the button.

When an object is disabled, its appearance is changed to show that it is unavailable. For example, a
command button typically has its Text string grayed out to show that it is disabled. The actual effect
depends on the behavior of the user’s implementation of Java.

When you place an object on a form, Jato turns on Enabled by default. During program execution,
your code can use the setEnabled method to enable or disable the object:
 object.setEnabled(true); // now it’s enabled
 object.setEnabled(false); // now it’s disabled

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Object properties
 Color

Most objects have two associated colors: a foreground color and a background color. In a text box, for
example, the box’s interior is filled with the background color, and text is displayed in the foreground
color.

The Color page of an object’s property sheet contains a Preview box at the top, showing the current
foreground color on top of the current background color.

¨ To change a color:
1. Click the arrow button of ForeColor or BackColor. This displays a list of possible colors.

2. Click any color in this list.

The sample at the top of the Color page changes to show you the new color combination.

You can also change colors by clicking the Browse button beside ForeColor or BackColor. This
displays a color selection dialog that lets you choose a color from a palette or create a custom color of
your own.

At run time, you can change colors using setForeColor and setBackColor, as in
textb_1.setForeColor(Color.blue);
textb_1.setBackColor(Color.white);

For further information about these properties, see the Jato Component Library Reference.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Object properties
 Parent

Objects may contain other objects. For example, a form contains all the buttons, text boxes, and so on
which have been placed on the form. In this situation, the form is called the parent of all the objects that
the form contains.

The Parent property specifies the parent of a particular object. For example,
Container par = textb_1.getParent();

determines the parent of textb_1 as a Container object. Usually you would cast this to a form object,
as in

Form1 par = (Form1) textb_1.getParent();
You can also use setParent to change the parent of an object. setParent removes the object from its
current parent (if necessary), then adds the object to the specified parent. This process is rarely
necessary.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Object properties
 Size and position properties

Pixels vs. dialog units
Distances on the monitor screen can be measured in pixels or in dialog units.

· Pixels are dependent on size and resolution; for example, a line two pixels wide will be much
thinner on a screen with high resolution than on a screen with low resolution, even if the screen
has the same physical size.

· Dialog units are semi-independent of the size and resolution of the screen. If two screens have the
same physical size, a line that is two dialog units wide will be close to the same width on both
screens, even if the screens have different resolutions.

At design time, Jato measures all screen distances in dialog units. For example, the Size page of an
object’s property sheet shows the object’s size and screen position in dialog units. Similarly, the status
bar of the form design window shows the current cursor position in dialog units. This lets you design
forms in a manner that is relatively independent of screen resolution on the system where the program
finally runs.

At run time, however, Jato measures screen distances in pixels. This gives you finer control over what
is actually displayed on the screen. You can, for example, change the size or position of an object by a
single pixel, making it possible to exploit the precision of a high-resolution monitor, if the user has one.

Since Jato uses pixels to measure the screen at run time, run-time data objects like Point and
Rectangle always express measurements in pixels.

When writing code, you should take into consideration that design-time units are different from run-time
ones. For example, suppose that at design time you specify that a particular object is 100 units high by
100 units wide. Since this is design time, the units you use are dialog units. At run time, you cannot
assume that the object will still measure 100 units by 100 units. Since run-time measurements are
given in pixels, the run-time numbers will not be the same as the design-time numbers; in fact, the run-
time numbers may be different on different systems. To determine the size of an object at run time, you
must use a method like getRectangle (described later in this section). You cannot just assume that the
numbers will be the ones you set at design time.

Note: Jato automatically converts dialog units to pixels when it runs your program. Some round-off
may occur in this conversion.

Setting size and position at design time
At design time, the size and position of an object are given on the Size page of the object’s property
sheet. By adjusting these values, you can change the size and position of the object.

You can also change the object’s size and position by clicking the object, then dragging the object’s
sizing handles. In this case, the values on the Size page are automatically updated to show the
object’s new size and position.

Setting size and position at run time
The Rectangle property specifies size and position as a single Rectangle value. For example,
 Rectangle r = cb_1.getRectangle(abs);
returns a rectangle value showing the object’s size and position in pixels. The abs argument is a
boolean value. If it is true, the position is given relative to the user’s screen as a whole; if it is false,
the position is given relative to the window containing the object in question. Therefore,
 Rectangle r = cb_1.getRectangle(false);

determines the size and position of cb_1 relative to the form that contains the object. If you omit the
argument, as in
 Rectangle r = cb_1.getRectangle();
the default is to give position relative to the containing window (which is like specifying false as the
argument).

The setRectangle method changes the size and position of an object on the form. For example,
 Rectangle r = cb_1.getRectangle();
 r.translate(10, 0);
 cb_1.setRectangle(r);
shifts the position of the command button cb_1 ten pixels to the right. This happens because the
translate method of Rectangle moves the rectangle’s position by the given number of pixels. By
repeating this sequence of instructions, you can eventually make the button walk off the edge of the
form.

Individual settings for size and position
The Rectangle property specifies the size and position of an object as a single Rectangle object. You
can also specify size and position components separately, using the following properties:

Left
The X coordinate of the left side of the object (in pixels).

Top
The Y coordinate of the top of the object (in pixels).

Width
The width of the object (in pixels).

Height
The height of the object (in pixels).

There are set and get methods for each of these properties. For example, the following code
determines the height of text box textb_1 and sets the height of text box textb_2 to the same size:

int h = textb_1.getHeight();
textb_2.setHeight(h);

Dialog unit measurements
The following methods convert measurements in dialog units into pixels:

// int duWidth, duHeight, x, y, width, height;
// Rectangle duRect;
int pixelWidth = DUWidth(duWidth);
int pixelHeight = DUHeight(duHeight);
int pixelRect1 = DURectangle(duRect);
int pixelRect2 = DURectangle(x, y, width, height);

These methods make it possible for you to specify heights and widths in dialog units at run time. For
example, suppose you want the height of a text box to be 100 dialog units. You could write

textb_1.setHeight(DUHeight(100));
to convert 100 dialog units into pixels and then to set the height of the text box to that number of pixels.

DUWidth, DUHeight, and DURectangle are methods defined in the Jato Component class. In
particular, they are defined as methods in every form class, so they can be used as shown above in
any code with a form definition (including event handler code). If you need to use the methods in code
that does not belong to any class based on Component, you may need to specify a component
explicitly, as in

int pixelWidth = form1.DUWidth(duWidth);
The DURectangle property gives the original dialog unit dimensions that you set for the object at
design time:

Rectangle duRect = textb_1.getDURectangle();
In this one case, the values returned to the duRect Rectangle specify measurements in dialog units
rather than pixels.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Object properties
 ResizePercentages properties

The ResizePercentages properties control how objects on a form behave when the size of the form
changes. These properties are specified on the Size page of each object’s property sheet. The
property sheet lists four resize percentages:

Left Percentage
Controls how far the left edge of the object moves when the form’s size changes.

Top Percentage
Controls how far the top of the object moves when the form’s size changes.

Width Percentage
Controls how much the width of the object changes when the form’s size changes.

Height Percentage
Controls how much the height of the object changes when the form’s size changes.

Each of these properties is expressed as a percentage. To see what effect these percentages have,
suppose that the Width Percentage of a text box is 30 and that the user increases the width of the
form by 100 pixels. Then the width of the text box automatically increases by 30% of 100 pixels, or 30
pixels. Similarly, if the user decreases the width of the form by 50 pixels, the width of the text box
decreases by 30% of 50 pixels, or 15 pixels. In mathematical terms,
 newWidth = oldWidth + widthPercentage*formWidthChange;
The same relationship holds for all the other ResizePercentages.

At run time, you can use getResizePercentages to determine the current resize percentages and
setResizePercentages to change the values. ResizePercentages are expressed as a Rectangle
value, as in

Rectangle r = textb_1.getResizePercentages();
The x and y values of this rectangle correspond to the left and top resize percentages, and the width
and height values of this rectangle correspond to the width and height resize percentages.

An example
As an example of how this works in practice, the following picture shows a sample form with resize
percentages displayed in bold face (in the order, Left, Top, Width, Height):

Notice, for example, that the label Available Columns has percentages (0,0,0,0); this means that the
size of the label does not change, and the position of the label does not change (so that it remains close
to the left side of the form). On the other hand, the label Selected Columns has percentages
(50,0,0,0): the value of 50 for Left Percentage means that if the form width increases or decreases,
the label moves left or right by half the amount of the increase (so that the label remains approximately in
the middle of the form).

The main area of the sample form is occupied by a tree view on the left and a list box on the right. The
tree view under the Available Columns label has percentages (0,0,50,100): if, for example, the
height and width of the form both double, the width of this tree view increases by half (50%) of the total
width increase, while the height of the tree view increases by all (100%) of the total height increase.
Similarly, the list box under the Selected Columns label also has its width increase by 50% of the total
width increase, while the height of the list box increases by 100% of the total height increase. As a
result, any change in width is split half-and-half by the tree view and the list box, and any change in
height makes the same change in the height of the tree view and the list box. The other objects on the
form do not change size.

The following picture shows the result of an increase in size for the original form:

Notice that the size of the labels, the command buttons, and the checkbox have not changed. Only the
tree view and the list box increase in size.

Proportional resizing
If you set any of the ResizePercentages properties to -1, the corresponding dimension changes in
strict proportion to the size of the form. For example, suppose you set the Width Percentage of a text
box to -1. If the width of the form doubles, the width of the text box will also double.

Obviously, the easiest way to deal with resizing is to set every object’s ResizePercentages properties
to -1. However, this may not serve the user as well as setting different percentages for different
objects. As mentioned earlier, changing the size of command buttons, labels, and similar objects
usually doesn’t give the user any benefit; it is often better to keep such items the same size, no matter
how the form changes.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Object properties
 Database properties

The Database properties of an object come into play when the object is used as a bound control for a
database. For further information, see Bound controls.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects
 Notes on writing Jato code

This section offers a few hints on writing code for Jato programs.

 Object names
 Object initialization
 Referring to the form
 Focus
 Opening a new form

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Notes on writing Jato code
 Object names

Jato automatically associates names like cb_1 or label_2 with the objects that you place on a form.
These are the names of objects created from Jato components. You therefore use the . notation to
refer to properties and methods associated with the objects, as in:
 cb_1.setText("OK"); // change text
By default, the objects are private variables defined in the form class. This means that other forms
cannot use these variables. If you want other forms to have access to these variables, you must make
them public.

¨ To make form variables public:
1. Open the property sheet for the form where the pointer variables are defined.

2. Under Scope of Controls on the General page, click Public.

3. Click OK.

This specifies that the pointer variables associated with the objects on the form should all be public.

Note: Many experts on object-oriented programming disapprove of using public data members
within an object. The experts contend that an object’s data members should only be directly accessed
by the object itself; the data members should be hidden from other objects, for the sake of data
abstraction.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Notes on writing Jato code
 Object initialization

Some objects require initialization while the program is executing. For example, some properties can
be set at run time but not design time. Therefore, if you want to set such a property for an object, you
must do so during execution.

There are two common approaches for initializing objects during execution:

1. You can initialize an object in the Create event handler for the object. The Create event takes
place just before the object is displayed to the user. For example, the Create event for a list box
takes place just before the list box is displayed. Therefore, you might write a Create event handler
to initialize the list box (for example, to set up the initial items displayed).

2. You can initialize an object in the Create event handler for the form that contains the object. Again,
this event takes place before the form is displayed.

You should not depend on the Create events for separate objects taking place in any particular order.
For example, you cannot be sure that the Create handler for one object is executed before the Create
handler for another object on the same form. Therefore:

· If the initialization process for a particular object is independent of all other objects, it makes sense
to put the initialization instructions in the Create handler for the object itself.

· If it is important to initialize a set of objects in a specific order, it makes sense to put the
initialization instructions for those objects into the Create handler for the form. That way you can
write the initialization instructions in the required order.

The Create event for a form takes place after the Create events for each object on the form. Usually,
these Create events take place before any other events for the form. This ensures that the objects on
the form are properly created and initialized before other user code is executed. However, certain
events related to databases may take place before Create events; for more information, see Event
timing.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Notes on writing Jato code
 Referring to the form

In the code for an event handler routine, the C++ keyword this stands for a pointer to the form. For
example,
 textb_1.setParent(this);
makes the current form the parent of textb_1. Similarly,
 this.setText("My Pretty Form");
sets the title for the form. The preceding function call could also be written
 setText("My Pretty Form");
If a method function call isn’t explicitly associated with an object, it is assumed to be applied to the
current object. Since all event handlers are member functions within a form class, all methods used in
event handlers are assumed to refer to the current form unless they are explicitly associated with some
other object. Therefore,
 textb_1.setBackColor(Color.blue);
sets the background color of the given text box, but
 setBackColor(Color.blue);
sets the background color of the whole form.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Notes on writing Jato code
 Focus

Focus is the ability to receive input from the keyboard or from the mouse. Only one object on a form
can have focus at any time. For example, if a form contains three text boxes, only one of them can
have the focus. When the user types input from the keyboard, the resulting text appears in the text box
that has the focus. In order to type into another text box, the user must move the focus from the old box
to the new one.

The most common way for the user to move the focus is to click an object. This moves the focus to the
clicked object. Your program can explicitly set the focus for an object using the setFocus method. For
example, the following code changes the focus for a text box named textb_1:

textb_1.setFocus(true); // gives box the focus
textb_1.setFocus(false); // removes the focus

Many versions of Java mark the object that currently has focus by making the object’s outline slightly
different from other objects. When the focus shifts to a different object, the special outline is moved to
the new object.

Objects that may receive the focus can recognize an event named GotFocus. This event is triggered
when the object gets the focus. Such objects also recognize an event named LostFocus. This event is
triggered when the object loses the focus. The object that is losing the focus receives the LostFocus
event first; then the object that is getting the focus receives the GotFocus event.

Note: If the user moves from your program to another application, the active form in your program
receives a LostFocus event. Similarly, if the user moves back to your program from another
application, the active window in your program receives a GotFocus event.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Notes on writing Jato code
 Opening a new form

The usual way of opening a new form is to create an object of the form type, and then apply the create
method to it. For example, an object of the type Form1 could open one of the type Form2 with

Form2 f2 = new Form2();
f2.create();

%%% At present, there is no way for forms to share data except by assigning values to public data
members within each other. The final version of Jato will support the FDX data exchange mechanisms.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects
 Labels

A label object is typically used to label some part of a form. For example, you might place a label
immediately above a text box to describe its contents or to suggest how to use the text box.
Labels are represented by Label objects (powersoft.jcm.ui.Label). Jato gives command buttons
names of the form label_N. On the Java component palette, labels are represented by the following
button:

A label may be a bound control for a database. For more information, see Bound controls.

 Label properties
 Labels at run time

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Labels
 Label properties

The following list discusses commonly used label properties. Each list item tells the page of the
property sheet where the property appears:

Text [General page]
The text that is displayed in the label.

Alignment [General page]
Specifies how the text is aligned within the label object.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Labels
 Labels at run time

You will almost never write an event handler routine for a label; labels are simply passive descriptions.
However, there are still some operations you may want to perform on a label during program execution.
For example,
 label_1.setText("New label");
changes the label to the given string. As another example, you might use
 label_1.setVisible(false);
to make a label disappear at times when the label is unwanted.

If you want to change the alignment of a label’s text, you can use one of the following:
 label_1.setAlignment(Label.LEFT);
 label_1.setAlignment(Label.RIGHT);
 label_1.setAlignment(Label.CENTER);

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects
 Command Buttons

Command buttons are also called “push buttons”. When the user clicks a command button, the picture on
the screen changes slightly to make it look like the button has been pressed.
Command buttons are represented by CommandButton objects
(powersoft.jcm.ui.CommandButton). Jato gives command buttons names of the form cb_N. On the
Java component palette, command buttons are represented by the following button:

Command buttons support the usual properties of components (for example, ForeColor and BackColor).
The Text property specifies the text that appears on the button.

The Click event is triggered on a command button when the user clicks the button.

 A typical command button application

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Command Buttons
 A typical command button application

The following example assumes that Form1 has a button with the name colorButton. When the
user clicks repeatedly on this button, the background color of the form cycles through a set of three
colors:

int count = 0;
public boolean cb_1_Click(powersoft.jcm.event.ClickEvent event)
{
 count = (count + 1) % 3;
 switch (count)
 {
 case 1:
 setBackColor(Color.red);
 break;
 case 2:
 setBackColor(Color.green);
 break;
 default:
 setBackColor(Color.blue);
 }
 return true;
}
Note that this routine is part of the Form1 class. Therefore, the instruction

setBackColor(Color.blue);
changes the background color of the current form.

Also notice that the count variable is declared outside the event handler routine and therefore retains
its value from one invocation of the routine to the next. The variable is only initialized once, not every
time the function is called.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects
 Picture buttons

A picture button is similar to a command button; however, it combines both a picture and a text caption.

Picture buttons are represented by PictureButton objects (powersoft.jcm.ui.PictureButton).
Jato gives picture buttons names of the form pictbttn_N. On the Java component palette, picture
buttons are represented by the following button:

The Click event is triggered on a picture button when the user clicks the button.

 Picture button properties

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Picture buttons
 Picture button properties

Picture buttons support all the properties of command buttons. They have the following additional
properties:

TextPosition [General page]
Where the text should appear in relation to the picture on the button.

Insets [Picture page]
The amount of space between the picture and the edges of the button (expressed in DLUs).

URL [Picture page]
A URL telling where the program should obtain the picture to place on the button. For example, this
might specify a GIF or JPEG file.

Type [Picture page]
The type of picture on the button. Possibilities are Absolute, CodeBased and DocumentBased.
CodeBased and DocumentBased are only supported for applet targets.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects
 Check boxes

Check boxes can be checked or unchecked to show whether an option is turned on or off. Typically, check
boxes are used for options which are independent of other options. When you have a set of options that
are mutually exclusive, it is common to use option buttons instead.
Check boxes are represented by CheckBox objects (powersoft.jcm.ui.CheckBox). Jato gives check
boxes names of the form checkbox_N. On the Java component palette, check boxes are represented by
the following button:

A check box may be a bound control for a database. For more information, see Bound controls.
The Click event is triggered on a check box when the user clicks on the box.

 Check box properties
 Using check boxes
 The Toggle function

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Check boxes
 Check box properties

The following list discusses commonly used check box properties:

Text [General page]
Specifies the text that appears to label the check box.

Checked [General page]
Determines whether the check box is checked or left blank. If you turn on Checked at design time,
the check box is checked when the form is first displayed; if Checked is turned off, the check box
is left blank.

You can determine whether a check box is currently checked or unchecked using getChecked. For
example,

checkbox_1.getChecked()
is true if the check box is currently checked and false if the box is blank.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Check boxes
 Using check boxes

When the user clicks a check box, the box automatically toggles itself: if it is turned on, it turns itself off,
and vice versa. The action also triggers a Click event on the check box.

Since the box automatically toggles itself, your Click event handler does not need to set the state of
the check box. However, the Click event handler may need to change the state of other check boxes,
especially if the check boxes represent options that are mutually exclusive with the check box that was
actually clicked.

When you change the state of another check box with setChecked, it does not trigger a Click event on
the check box being changed.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Check boxes
 The Toggle function

The function
checkbox_1.Toggle();

turns the check box off if it is currently on, and vice versa.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects
 Option buttons

Option buttons are typically used for groups of options which are mutually exclusive—when one button in
the group is clicked, that option should be turned on and all the other options turned off.
Option buttons are represented by OptionButton objects (powersoft.jcm.ui.OptionButton). Jato
gives option buttons names of the form optb_N. On the Java component palette, option buttons are
represented by the following button:

An option button may be a bound control for a database. For more information, see Bound controls.

The Click event is triggered on an option button when the user clicks on the button.

 Option button properties
 Using option buttons

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Option buttons
 Option button properties

The following list discusses commonly used option button properties:

Text [General page]
Specifies the text that appears to label the option button.

Checked [General page]
Determines whether the option button is checked or left blank. If you turn on Checked at design
time, the button is checked when the form is first displayed; if Checked is turned off, the button is
left blank.

Group [General page]
Specifies which option button group this button belongs to. All of the buttons in a given group are
considered mutually exclusive: when the user clicks on one, your program automatically marks that
option button and clears all the others in the group.

When you place the first option button on a form, Jato creates an option button group for that form
named group_1. You can create new option button groups by clicking the New button beside
Group on any option button’s property sheet. You will be asked to type a name for the new group.

To set the Group for an option button, click on an existing group name or create a new one.

You can determine whether an option button is currently marked or clear using getChecked. For
example,

optb_1.getChecked()
is true if the option button is currently marked and false if the button is blank.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Option buttons
 Using option buttons

When the user clicks an option button, the button is automatically marked and all the other buttons in
the same group are cleared.

Since the buttons in the option button group automatically turn themselves on or off appropriately, your
Click event handler does not need to set the state of the option buttons. The Click event handler
simply responds to the user turning on the selected option. For example, suppose a group of option
buttons control the background color of the form. When the user clicks the option button for a particular
color, the Click event handler for that button should set the background color appropriately.

When you change the state of an option button with setChecked, it does not trigger a Click event on
the button being changed.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects
 Picture boxes

A picture box displays a graphic image. The image is specified using a URL (for example, referencing a
GIF or JPEG file).

Picture boxes are represented by PictureBox objects (powersoft.jcm.ui.PictureBox). Jato gives
picture boxes names of the form pictb_N. On the Java component palette, picture boxes are
represented by the following button:

Typically, you do not define event handlers for picture boxes.

 Picture box properties

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Picture boxes
 Picture box properties

The following properties may be set in a picture box’s property sheet:

AutoSize [General page]
If this is turned on, the size of the picture box is automatically changed to match the size of the
picture.

ScaleImage [General page]
If this is turned on, the size of the picture is automatically scaled so that it will fit inside the picture
box.

ImageCentered [General page]
If this is turned on, the picture is centered within the picture box. Otherwise, it is drawn in the upper
left corner of the picture box.

Insets [Picture page]
Specifies the distance between the area available to draw the picture and the edges of the picture
box (in DLUs).

URL [Picture page]
Gives a URL where the picture can be found.

Type [Picture page]
The type of picture. Possibilities are Absolute, CodeBased and DocumentBased. CodeBased
and DocumentBased are only supported for applet targets.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects
 List boxes

A list box presents the user with a list of choices. If the list has too many items to show in the area
provided, scroll bars appear on the side of the list box to let the user scroll through the available items.
Each line in a list box has an associated integer index. The top line has an index of 0 (zero), the next line
has an index of 1, and so on.
Jato supports the following types of list boxes:
· Single selection list boxes, which only allow the user to select a single item from the list.

· Multiple selection list boxes, which let the user select more than one item (if desired).

A list box may be a bound control for a database. For more information, see Bound controls.

List boxes are represented by ListBox objects (powersoft.jcm.ui.ListBox). Jato gives list boxes
names of the form lb_N. On the Java component palette, list boxes are represented by the following
button:

Note: Jato list boxes are based on the list box components defined in the Java AWT. AWT list boxes
automatically resize themselves, depending on the data they contain. Therefore, list boxes may
change their size at run time; this cannot be controlled.

 Simple list box properties
 Adding items to list boxes
 User data
 Changing the contents of a list box
 TopIndex and VisibleCount
 Determining selections
 Multiple selections
 The Select event for list boxes

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 List boxes
 Simple list box properties

The Count property determines the number of items currently in a list box, as in
int numItems = lb_1.getCount();

The Sort property determines whether the items in a list box are sorted (in alphabetical order) or
unsorted. To specify that the list box should be sorted, use

lb_1.setSort(true);
To have an unsorted list box, use

lb_1.setSort(false);
The MultipleSelection property determines whether this is a single selection or multiple selection list
box. The property can be set at design time using the property sheet for the list box, or at run time by
using
 lb_1.setMultipleSelection(true); // multi select
 lb_1.setMultipleSelection(false); // single select
You can also use
 boolean multi = lb_1.getMultipleSelection();
to determine whether the list box is single selection or multiple selection.

The getText method determines the text associated with a particular item. For example,
String str = lb_1.getText(index);

obtains the text of the item that has the given index.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 List boxes
 Adding items to list boxes

At design time, items can be specified for the list box on the Items page of the property sheet. Each
line you type on that page will be a separate item in the list box. The Save button lets you save a list of
items in a file, and the Load button lets you load a list from a file.

During execution, the add method adds a new entry to the list box. For example,
 int pos = lb_1.add("New line");
adds the specified string to the list box. If the Sort property of the list box is turned on, the new item is
added in its correctly sorted position; if Sort is turned off, the new item is added at the end of the list.
The return value of add is the index assigned to the newly added item; if an error occurs, add returns -
1.

Another form of add lets you place an item into the list at a specific location. For example,
 int pos = lb_1.add("New line", index);
inserts the given line into the list so that the new line has the specified index. In this case, the Sort
property is ignored. If you want to add the line at the end of the list, specify an index of -1.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 List boxes
 User data

Each item in a list box can have an associated block of data. For example, if each item in a list has an
action associated with it, each item might have a block of data which provides information for
performing the relevant action. The data associated with a list box item is called user data. The user
data for a list box item is stored as an object of the Object class.

You can specify the user data for a list box item when you call add to add the item to the list:
 // Object data;
 int pos = lb_1.add("Item 1", -1, data);
The user data object is specified as a third argument for add.

You can determine the user data associated with a list box item using getUserData:
 Object userData = lb_1.getUserData(index);
This obtains the user data object associated with the item that has the given index. Similarly, you can
change the user data associated with an item using
 // Object newData;
 lb_1.setUserData(index, data);

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 List boxes
 Changing the contents of a list box

There are a variety of method functions for changing the contents of a list box. To delete a particular
item from the list box, use

lb_1.delete(index);
To delete all the items in the list box, use either

lb_1.deleteAll();
lb_1.reset();

To change the text displayed for an item, use
// String newString;
lb_1.replace(newString, index);

There is a second form of replace which replaces both the text of the item and its associated user
data:

// Object newUserData;
lb_1.replace(newString, index, newUserData);

With both forms of replace, the function does nothing if the given index is out of range (less than zero
or greater than the index of the last item in the list box).

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 List boxes
 TopIndex and VisibleCount

During execution, you can use setTopIndex to specify which line should be the first one visible at the
top of the list box. For example,
 lb_1.setTopIndex(10);
places item 10 at the top of the list box. This means that items 0 to 9 are scrolled off the top.

Similarly,
 int topItem = lb_1.getTopIndex();
determines which index item is currently shown at the top of the list box.

To determine how many items are currently visible inside the list box, use
 int numberSeen = lb_1.getVisibleCount();

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 List boxes
 Determining selections

If a list box currently has one and only one item selected, the getSelected function returns the index of
that item, as in

int lineIndex = lb_1.getSelected();
This version of getSelected returns -1 if no line has been selected or if there have been several lines
selected (in a multiple selection list box).

Another version of getSelected determines whether a given item is selected. For example,
boolean selected = lb_1.getSelected(index);

returns true if the item is currently selected and false otherwise. If the given index is out of range,
getSelected returns false.

The setSelected function selects a specified item, as in
lb_1.setSelected(index);

In a single selection list box, this selects the item with the given index and unselects everything else.
In a multiple selection list box, this selects the given item in addition to anything that is currently
selected. As a special case, if index is less than zero, setSelected unselects every item in the list
box, both for single selection and multiple selection boxes. For example,

lb_1.setSelected(-1);
clears all current selections.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 List boxes
 Multiple selections

With a multiple selection list box, getSelectedCount returns the number of items that are currently
selected:

int count = lb_1.getSelectedCount();
To get a list of which items are selected, you can use

int list[] = lb_1.getSelectedList();
The list contains the indexes of the items which are currently selected.

Multiple selection list boxes support a special form of setSelected which provides more control over
selecting and unselecting items:

// boolean onOff;
lb_1.setSelected(index, onOff);

selects the given item if onOff is true and unselects the item if onOff is false. For example, the
following code selects every odd-numbered item and unselects every even-numbered item:
int i;
int count = lb_1.getCount();
for (i=0; i < count; i++) lb_1.setSelected(i, (i%2)==1);
As a special case, if index is less than zero, this version of setSelected selects or unselects every
item in the list box. For example,

lb_1.setSelected(-1, true);
selects every item in the box.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 List boxes
 The Select event for list boxes

A list box generates a Select event whenever the user selects an item. Your Select event handler will
have a prototype of the form
public boolean

lb_1_Select(powersoft.jcm.event.SelectEvent event);
The event argument is an object of the SelectEvent class. This class is derived from EventData but
supports an additional method:

int i = event.getIndex();
returns the index of the item that was just selected in the list box.

In a multiple selection list box, there will be a Select event each time the user selects an item.
Therefore, there will be a separate Select event for each item selected. You can use getSelectedList
to determine the complete list of items that have been selected.

Note: In many cases, you should not take immediate action when the user selects a list box item. This
makes it possible for users to change their minds or to correct a mistaken click. For example, you
might have users select an item from a list box, then click a command button to indicate that they have
made their final selection. In this case, you would ignore Select events on the list box and only
respond to the Click event on the button.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects
 Combo boxes

A combo box is similar to a single-selection list box, but takes up less space on a form. In its closed state,
the combo box only shows one list item (the item currently selected). In its open state, the combo box
shows all of the list (unless the list is so long that it requires scroll bars).

Note: Unlike Powersoft Optima++, Jato only supports “read-only” combo boxes. Users can only select
items from the list offered; they cannot type their own text into the area at the top of the combo box.

Combo boxes are represented by ComboBox objects (powersoft.jcm.ui.ComboBox). Jato gives combo
boxes names of the form combo_N. The Text of a combo box is associated with the text box part of the
combo box.

On the Java Component palette, combo boxes are represented by the following button:

When you first place a combo box on a form, it is shown in its closed form (without the list showing).

Note: Jato combo boxes are based on the combo box components defined in the Java AWT. AWT
combo boxes automatically resize themselves, depending on the data they contain. Therefore, combo
boxes may change their size at run time; this cannot be controlled.

 Combo box properties and methods
 The Select event for combo boxes

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Combo boxes
 Combo box properties and methods

Combo boxes support many of the properties and methods supported by list boxes. These include the
following:

// String str;
int num = combo_1.getCount(); // number of items
int item = combo_1.getSelected(); // currently selected item
combo_1.setSelected(index); // select item
String s = combo_1.getText(index); // text of item
combo_1.setUserData(obj); // user data
Object obj = combo_1.getUserData();
combo_1.add(str); // add new item
combo_1.add(str, userData);
combo_1.delete(index); // delete item
combo_1.reset(); // delete all items
combo_1.select(str); // select item by name
In addition, combo boxes support a find method to find the index of an item in the combo box’s list. It
has the prototype

int find(String str, int startAfter, boolean exact);
where:

str
Specifies the string you’re looking for.

startAfter
Is the index of an item in the list. The search begins immediately following the specified item. To
search from the beginning of the list, specify -1 for startAfter. %%% Does the search wrap around?

exact
If this is true, find looks for an item that exactly matches str. If this is false, find looks for an item
that begins with the given string but may contain extra characters. %%% Verify

The result of find is the index of the first item matching the given string. If the list contains no such item,
find returns -1.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Combo boxes
 The Select event for combo boxes

Combo boxes receive the Select event in the same way as list boxes. For more information, see The
Select event for list boxes on The Select event for list boxes.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects
 Text boxes

A text box is an area that displays text. In a text box, the caret serves the same function as a cursor: it
marks the position where text will be inserted if the user starts typing.
Users may select strings of text in a text box. The methods that act on text boxes let you replace this text,
delete it, or perform other simple editing operations.
Text boxes are represented by TextBox objects (powersoft.jcm.ui.TextBox). Jato gives text boxes
names of the form textb_N. On the Java component palette, text boxes are represented by the following
button:

A text box may be a bound control for a database. For more information, see Bound controls.

 Text box properties and styles
 Determining the text in a text box
 MultiLine text boxes
 Deleting from the text box
 Caret position
 Working with selected text
 The Change event

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Text boxes
 Text box properties and styles

The following list discusses design-time text box properties:

MultiLine [General page]
Indicates that the text box can contain more than one line of text. If you do not choose MultiLine,
the text box can only contain a single line.

ReadOnly [Style page]
Specifies that the user cannot type or edit text directly in this box.

PasswordCharacter [General page]
Can mark this text box as a password box. If the user types text into this box, the text itself does
not appear. Instead, the user sees a substitute character for each character typed (so that anyone
looking over the user’s shoulder will not be able to read what has just been typed). To specify a
password character, type the character inside single quotes; for example, '*' sets the password
character to an asterisk. You can also enter the decimal ASCII value of the character instead of the
character itself.

If you do not want this text box to be a password box, the PasswordCharacter should be zero.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Text boxes
 Determining the text in a text box

The getText method returns the current text contained by a text box, as in
String str = textb_1.getText();

Similarly, the setText method changes the contents of the text box, as in
textb_1.setText("New text");

The getTextLength method returns the number of characters in the current text:
int numChars = textb_1.getTextLength();

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Text boxes
 MultiLine text boxes

When the MultiLine property is turned on, the text box can contain more than one line. When setting
text, you use \n characters to separate lines, as in

textb_1.setText("First line\nSecond line");
If you want to specify the Text at design time, you use the same technique to fill in the Text entry of the
text box’s property sheet. For example, you might type in

First line\nSecond line
In the form design window, this text will be shown as a single line, with the \n characters shown in the
middle of the text. However, when the program actually runs, the text will be broken into lines correctly,
as specified by the \n characters.

Note: \n characters are only recognized as line separators when the text box has MultiLine turned
on. If MultiLine is turned off, \n characters are interpreted as unprintable characters and shown as
such in the middle of the Text string. This is true both at design time and at run time.

The getLineCount method determines the number of lines in a MultiLine text box:
int numLines = textb_1.getLineCount();

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Text boxes
 Deleting from the text box

The clear method deletes the current contents of the text box:
textb_1.clear();

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Text boxes
 Caret position

The CaretPosition property specifies the position of the caret. The beginning of the text box is position
0, the position after the first character is 1, and so on. The function

int pos = textb_1.getCaretPosition();
determines the current caret position, and

textb_1.setCaretPosition(pos);
sets the caret to the given position.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Text boxes
 Working with selected text

The user may select all or part of the text in a text box (for example, by dragging the mouse across the
desired portion). When the user has selected some text, the function

String str = textb_1.getSelectedText();
obtains the text that has been selected. If no text is currently selected, getSelectedText returns null.

The getEditSelection method returns a Range value, giving the character positions of the first and last
characters in the selected range:

Range r = textb_1.getEditSelection();
// r.start is start of range
// r.end is end of range

The character position of the first character is 0, the next character is 1, and so on.

The setEditSelection method selects some or all of the current text. As arguments, you specify a
Range value giving the start and end character positions of the range you want to select:

Range r = new Range(start, end);
textb_1.setEditSelection(r);

For example,
textb_1.setEditSelection(new Range(0,2));

selects the first three characters in the text box.

Note: In order to specify a Range value, you may have to place

import powersoft.jcm.ui.Range;

in the declarations at the beginning of your source code.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Text boxes
 The Change event

The Change event is triggered on a text box whenever the user changes the box’s text. For example, if
the user types in a string of text, the Change event is triggered for each character typed. The Change
event is also triggered for deletions, replacements, and so on.

Because the Change event is triggered for every character, applications typically ignore the Change
event. Instead, they provide the user with a button to click to after the full text has been entered.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects
 Group boxes

A group box is a border that can surround a number of other objects. For example, you might put a group
box around a set of check boxes to show that the boxes are logically connected.
Group boxes are represented by GroupBox objects (powersoft.jcm.ui.GroupBox). Jato gives group
boxes names of the form groupb_N. On the Java component palette, group boxes are represented by the
following button:

 Notes for working with group boxes

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Group boxes
 Notes for working with group boxes

When designing a form, place the group box first and then place the objects that lie inside the group
box. In this way, the objects lie “on top of” the group box in the form window. If place objects in the
other order, the group box lies on top of the other objects, and you cannot click on the other objects.

When you move a group box in the form design window, objects inside the group box do not normally
move. If you want to move the group box and all the objects inside it together, follow these steps:

1. Click the form design window just outside one corner of the group box, then drag the cursor to
surround the group box.

2. Release the cursor. This puts empty sizing handles on every object in the selected area.

3. Drag any of the objects in the selected area. This drags the entire selected group.

The Text of a group box appears on the upper border of the group box. It can be changed at run time
with

groupb_1.setText("New text");
Most applications do not define any event routines for group boxes. They are only used for making the
form easier to understand.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects
 Scroll bars

Scroll bars are used for scrolling through information. For example, you might create a scroll bar whose
actions affect an associated text box. When the user moves the scroll bar, the text displayed in the text
box moves appropriately to show different parts of the text.

Note: Many objects automatically create their own scroll bars as needed. For example, a list box
automatically creates its own vertical scroll bar if there are too many items to show in the space
available. You only need to create your own scroll bars if you want to offer scrolling capabilities that
aren’t offered automatically.

Scroll bars can be used in several ways:

· The user can drag the scroll indicator along the bar to a new position.

· The user can click in the part of the bar on either side of the scroll indicator.

· The user can click the arrows at either end of the scroll bar.

Each of these actions has a different effect, as described in The Scroll event.

The Java component palette contains both vertical and horizontal scroll bars. Vertical scroll bars are
represented by VScrollBar objects (powersoft.jcm.ui.VScrollBar), while horizontal scroll bars
are represented by HScrollBar objects (powersoft.jcm.ui.HScrollBar). Both of these object
types are derived from the ScrollBar class (powersoft.jcm.ui.ScrollBar). All of these types have
similar properties and methods.

Jato gives vertical scroll bars names of the form vscroll_N, and horizontal scroll bars names of the form
hscroll_N.

On the Java component palette, vertical scroll bars are represented by the following button:

Horizontal scroll bars are represented by the following button:

Note: The properties and methods discussed in the sections that follow apply to both horizontal and
vertical scroll bars.

 Scroll ranges
 Increment and Step
 The Scroll event

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Scroll bars
 Scroll ranges

A scroll bar represents a range of integer values, from a minimum value to a maximum one. For
example, suppose that the scroll bar will be used to scroll through a document. Here are some possible
approaches to specifying the range for the scroll bar:

· You could let the range correspond to the number of lines in the document. For example, if the
document contains 1000 lines, you could set up the scroll bar to have a range of 1 to 1000.

· If the document is divided into pages, you could let the range correspond to the pages in the
document. For example, if the document contains 20 pages, you could set up the scroll bar to have
a range from 1 to 20.

· The scroll bar could represent percentages. This would mean that the range of the scroll bar goes
from 0 to 100. A value of 50 would correspond to the point 50% of the way through the document.

Other approaches might be reasonable depending on the nature of the document. For example, the
range might be taken from the number of sections in the document or some other useful measure.

The position of the scroll bar’s slider is represented as a value in the scroll bar’s range. For example, if
the range runs from 0 to 100, a value of 50 puts the slider in the middle position of the scroll bar.

The following properties are associated with scroll bar position and range:

ScrollRange
The range of the scroll bar, expressed as a Range value.

ScrollPosition
The integer value corresponding to the slider’s position in the range.

These properties have the usual get and set methods, as in:
Range r = new Range(0, 100);
scroll_1.setRange(r);
scroll_1.setPosition(0);

You can determine the current scroll position using
int val = scroll_1.getPosition();

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Scroll bars
 Increment and Step

Scroll bars may have associated Increment and Step values:

· The Increment is the amount that the ScrollPosition should change if the user clicks one of the
end arrows of the scroll bar.

· The Step is the amount that the ScrollPosition should change if the user clicks in the blank area
above or below the scroll indicator.

You can set these values using appropriate methods, as in:
 scroll_1.setIncrement(1);
 scroll_1.setStep(10);
If you set the increments for a scroll bar, the default event handlers for the scroll bar automatically
change the Position and move the slider the specified amount in response to user actions. This is
much easier than writing your own event handler to deal with scroll actions.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Scroll bars
 The Scroll event

When the user clicks on a scroll bar, it generates a Scroll event. The argument to a Scroll event
handler has the ScrollEvent type. This type is based on the usual EventData type but supports several
additional methods.

The most important method of ScrollEvent is
// ScrollEvent event;
int msg = event.getMessage();

The result of getMessage tells what the user did with the scroll bar. Possible values are:

ScrollEvent.ABSOLUTE
The user dragged the scroll indicator to a new position.

ScrollEvent.LINE_UP
The user clicked the arrow at the top or left of the scroll bar.

ScrollEvent.LINE_DOWN
The user clicked the arrow at the bottom or right of the scroll bar.

ScrollEvent.PAGE_UP
The user clicked in the blank area above or to the left of the scroll indicator.

ScrollEvent.PAGE_DOWN
The user clicked in the blank area below or to the right of the scroll indicator.

If the user has dragged the scroll indicator to a new position,
// ScollEvent event;
int dir = event.getPosition();

tells you the position that the user chose.

Default Scroll handling
Jato supplies default handling for the Scroll event. The default handling responds to messages in the
following ways:

ScrollEvent.ABSOLUTE
Change the ScrollPosition value to reflect the new position of the scroll indicator.

ScrollEvent.LINE_UP
Subtract Increment from the current ScrollPosition.

ScrollEvent.LINE_DOWN
Add Increment to the current ScrollPosition.

ScrollEvent.PAGE_UP
Subtract PageSize from the current ScrollPosition.

ScrollEvent.PAGE_DOWN
Add PageSize to the current ScrollPosition.

The default handling performs appropriate range-checking. For example, if subtracting PageSize from
ScrollPosition would move the position outside the scroll range, ScrollPosition is set to the minimum
value in the valid range.

Setting the ScrollPosition
If you write your own Scroll event handler, it can use setScrollPosition to set a different scroll position

from the one specified in the ScrollEvent block. If you do this, the scroll indicator stays at your specified
scroll position rather than moving to the one usually chosen by the default handling.

You might choose to change the user’s chosen ScrollPosition if you want to prevent the user from
scrolling to a particular region or a particular position value.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects
 Timers

A timer lets you set up events based on elapsed time. For example, when your program starts, you
may want it to display a window of copyright information for five seconds before calling up a window
that lets the user begin working. In this case, you could put a timer on the copyright window, set for five
seconds. The timer starts running when the copyright window is created; when the timer runs out, it
can trigger an event to get rid of the copyright window and open a new window to begin a work
session.

Timers can be set up to go off at repeated intervals. For example, you can create a timer that goes off
every ten seconds. You specify timer intervals in thousandths of a second, but timers do not really
supply this degree of precision; the precision of any interval is never better than 1/18th of a second.
Furthermore, if the system is busy doing other work, the timer may go off considerably later than the
exact time specified.

Timers are represented by Timer objects (powersoft.jcm.util.Timer).

¨ To create a timer at design time:
1. Click the Utilities tab of the Component palette.

2. Click the Timer button:

3. Click any empty space of the current form.
You will see a Timer icon appear on the form. At run time, this icon is not visible to the user; it is simply
a design-time indication that the form has an associated timer. Jato gives timers names of the form
timer_N.

 The HighPriority property
 Setting the timer
 Setting a timer at design time
 Stopping a timer
 The Timer event

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Timers
 The HighPriority property

Timers only have one property: HighPriority. If this property is turned on, the execution thread
containing the timer is given the maximum allowable priority, in an attempt to ensure that the timer
goes off at the time specified. If HighPriority is not turned on, the thread containing the timer may be
shut out by other (higher priority) threads, with the result that the timer does not go off when desired.
Depending on the behavior of the other threads, the timer may go off much later than specified.

Turn on HighPriority if it is crucial for the timer to go off at the given moment. Leave HighPriority off if
the timing is not critical.

For more information about threads, see Using threads.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Timers
 Setting the timer

The start method starts a timer running. It is typically used with a call of the form:
 boolean success = timer_1.start(interval, tickCount);
The parameters are:

long interval
Specifies a length of time in thousandths of a second.

int tickCount
The maximum number of times the timer should go off. For example, if you only want the timer to
go off once, set a tickCount of 1. If you set tickCount to zero, the timer will keep going off at
the set interval until the timer is explicitly stopped.

As an example,
 boolean success = timer_1.start(10000, 3);
sets a timer that goes off every ten seconds. After the timer goes off the third time, it will stop. However,
you can start the timer again with another start call.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Timers
 Setting a timer at design time

You can use the property sheet of a timer to start the timer running as soon as the form is created.

¨ To create a timer that starts running as soon as the form is created:
1. On the General page of the timer’s property sheet, set the Interval and the TickCount values as

you would for the start method.

2. Click the Running check box so that it is checked.

When the form is created, Jato automatically issues a start call that starts the timer running.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Timers
 Stopping a timer

The stop method stops a timer that is currently running. For example, suppose that a timer is set to go
off 300 times, every ten seconds. The function call
 boolean success = timer_1.stop();
stops the timer, even if it hasn’t gone off 300 times. The timer will not run again unless you explicitly
start it with another start call.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects

 Timers
 The Timer event

The Timer event is triggered when the timer goes off. If the timer is set to go off at repeated intervals, it
immediately begins counting down for the next interval; it does not wait for the Timer event to finish
execution. If you don’t want the timer to start until the Timer event is finished, you must stop the timer
at the beginning of the Timer event routine and start the timer again just before the Timer returns.

The Timer event receives a TimerEvent object as its argument. This is based on the usual EventData
class, but contains the following additional method:

// TimerEvent event;
long t = event.getTime();

This returns the current system time in milliseconds (at the time the timer went off). This makes it easy
to determine whether the timer went off later than originally specified.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 5. Programming standard objects
 Summary of standard objects

A property controls the appearance and behavior of an object. A style is similar to a property, but is
represented internally by a bit setting within a group of styles.

The Text of an object typically serves as a caption for the object, although the text is not always visible
when an object is placed on a form.

The Visible and Enabled properties determine whether an object can be seen or used by the user.

Color properties determine the foreground and background colors of an object. Size and position
properties determine where the object appears on a form and how big it is.

At design time, properties are set through the property sheet of an object. At run time, the current value
of a property may be obtained with a get method and the value may be changed through a set method.

For example, the getRectangle method obtains the rectangle which specifies the size and position of
an object. The setRectangle method changes the size and/or position of the object (which means that
setRectangle can be used to make an object move about the screen).

 Jato Programmer ’ s Guide

 Part I. Fundamentals
 Chapter 6. Using and programming menus

This chapter shows how to add menus to a form and how to design such menus using the Jato menu
editor.

 The MenuBar object
 The menu editor
 Menus and menu items
 Menu events
 Menu item methods
 Menu container methods

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 6. Using and programming menus
 The MenuBar object

A menu bar object is a single object representing all the menus displayed on the menu bar of a form.
Menu bar objects belong to the MenuBar class (powersoft.jcm.ui.MenuBar). Jato gives MenuBar
objects default names of the form menu_N. On the Standard page of the Java component palette,
MenuBar objects are represented by the following button:

If you want a form to have menus in its menu bar, you must place a menu bar item somewhere on the
form. The position of the object doesn’t matter—the menu bar always appears below the title bar of the
form.

The menu bar object you place on the form is visible at design time, but not at run time. The menu bar
itself is visible at both design time and run time (provided that it contains at least one menu).

 Menus can only be placed on forms
 The default menu for a form

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 6. Using and programming menus

 The MenuBar object
 Menus can only be placed on forms

A menu bar object can only be placed on a form or a frame, not on a dialog—this is a limitation of AWT.
For example, you cannot place a menu bar on a standard Applet window, since it is not a form. In
general, you must create a Frame with the Form Wizard in order to have an object where you can
place a menu bar.

If you are running an applet and want to make use of menus, open a frame from the original applet.
This frame can have menus on it. For example, if MyFrame is a form based on the Frame class, an
applet could open the form with

MyFrame mf = new MyFrame();
mf.create();

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 6. Using and programming menus

 The MenuBar object
 The default menu for a form

You can associate more than one menu bar object with a form. For example, you might do this if you
wanted to have several different menu structures, depending on the current context. When the context
changes, you can change from one menu bar object to another to obtain a completely different set of
menus.

When you have more than one menu bar object on a form, you should specify which is the default
menu bar object. This is the object that will be used to create the menu bar when the form is first
displayed.

¨ To specify the default menu bar for a form:
1. Open the form’s property sheet by double-clicking a blank area of the form.

2. On the Menu Bars page of the property sheet, open the Menu combo box and click which menu
bar object will serve as the default.

3. Click OK.

At run time, you can change which menu bar is displayed by using the setMenuBar method of the
form. For example,

setMenuBar(menu_2);
specifies that the form’s menu bar should take its menus from the menu_2 object.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 6. Using and programming menus
 The menu editor

Once you have placed a menu bar object on a form, you can specify menus for the menu bar using the
menu editor.

¨ To open the menu editor:
1. Use the right mouse button to click the menu bar object, then click Edit Menu. This displays the

menu editor.

You can use this editor to specify the menus and menu items of the menu bar.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 6. Using and programming menus
 Menus and menu items

A menu bar object may contain any number of menus. Each of these menus appears as a separate
heading on the menu bar.

A menu may contain any number of menu items. The menu items appear when the user clicks the
menu’s heading on the menu bar. The menu that contains the menu items is called the parent menu of
those menu items. Each menu item is called the child of its parent menu.

Some menu items may be menus themselves. Such items are called submenus of the parent menu.
When the user clicks on a submenu, the program displays the menu items belonging to the submenu.
Submenus may have submenus of their own, down to any level of nesting.

Every menu and menu item has the following characteristics:

· A caption. This is the text that the user sees when the menu or menu item is displayed.

· A variable name suffix. This is combined with the name of the menu bar object to create an
identifier for the menu or menu item. For example, suppose that a menu bar object named menu_1
contains an item with the suffix Item1. Then the full identifier for the menu item is menu_1_Item1,
combining the name of the menu bar object with the suffix of the item itself.

All menu items are MenuItem objects. If a menu item is a menu or submenu, it belongs to the Menu
class, which is derived from MenuItem. Therefore, everything belonging to a MenuBar object is a
MenuItem (although some objects may also be Menu objects if they contain children).

The MenuItem, MenuBar, and Menu objects are all based on a common class called MenuComponent.
Therefore, the properties and methods of MenuComponent are available for all menu-related objects.

 Creating a menu or menu item
 Specifying the menu structure
 Menu and menu item properties
 Separators

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 6. Using and programming menus

 Menus and menu items
 Creating a menu or menu item

You create menus and menu items with the menu editor.

¨ To create a new popup menu for the menu bar:
1. Open the menu editor.

2. Click the New Popup button.

When the menu editor creates a new item, it assigns a default caption to that item. Default captions
take the form ItemN, beginning with Item0. The new item is displayed in the menu editor:

As shown in the property sheet on the right side of the menu editor, the default variable name suffix is the
same as the caption.
The process of adding a new menu item to a popup menu is similar:
¨ To add a new menu item:
1. In the menu layout of the menu editor, click the popup menu that should contain the new item.

2. Click New Item.

The new item appears in the menu layout as shown:

¨ To change the caption and suffix for a menu or menu item:
1. In the menu layout on the left side of the menu editor, click the item whose caption and/or suffix

you want to change.

2. Under Caption, type a new caption for the item. The suffix automatically changes to match the
caption.

3. If you want to change the suffix, type a new suffix under Variable name suffix.

When you change the caption on the right side of the menu editor, the caption also changes on the left
side of the editor.

¨ To delete a menu or menu item:
1. Use the right mouse button to click the item you want to delete, then click Delete.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 6. Using and programming menus

 Menus and menu items
 Specifying the menu structure

The arrow buttons at the bottom left of the menu editor let you rearrange the order of items and menus.

For example, suppose you have a popup menu containing two items: Item0 and Item1:

If you click Item1 in the menu layout, then click the button with the arrow pointing up, the item moves up
in the layout:

As the diagram shows, the chosen item moved up in the menu layout. By clicking an item and then using
the arrow buttons, you can move the item around the menu structure.
¨ To move an item from one menu to another:
1. In the menu layout of the menu editor, click on the item you want to move, then drag and drop it on

the popup menu where you want to place the item.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 6. Using and programming menus

 Menus and menu items
 Menu and menu item properties

Menus and menu items may have the following properties (specified by clicking the appropriate check
boxes in the menu editor):

Disabled
If a menu or menu item is disabled, it is visible to the user but cannot be used. Typically, it is shown
“grayed out” rather than in its normal color.

Checkable
If a menu or menu item is checkable, it is possible to display a check mark beside the item, as in:

Checked
This property is only enabled when Checkable is enabled. If a menu or menu item is checked, it is
marked with a check mark when the menu is first displayed. If the item is not checked, it is not
marked with a check mark to begin with; however, you can change the mark during execution using
the setChecked method.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 6. Using and programming menus

 Menus and menu items
 Separators

A separator is a bar across a menu, used to separate menu items into groups. For example, the
following menu has two separators:

¨ To create a separator in a menu:
1. In the menu layout of the menu editor, click the item that comes immediately before the separator.

2. From the Menu menu of the menu editor, click New Separator.
You can change the position of separators using the arrow buttons at the bottom of the menu editor
window.

Separators do not have captions. They are assigned default suffixes which cannot be changed.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 6. Using and programming menus
 Menu events

There is only one event defined for menu and menu items:

Click
The Click event takes place when the user clicks the menu or menu item.

¨ To create a Click event handler for a menu or menu item:
1. In the menu layout of the menu editor, use the right mouse button to click the menu or menu item.

2. Click Events, then powersoft.jcm.event.Click.

This opens a code editor window where you can specify the code for your event handler.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 6. Using and programming menus
 Menu item methods

This section examines various methods that can be executed on MenuItem objects. Since the Menu
class is based on MenuItem, these methods can also be applied to menus and submenus, as well as
simple menu items.

 Checking an item
 Enabling an item
 Changing the caption
 The font of a menu item
 The parent of a menu item
 User data for a menu item

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 6. Using and programming menus

 Menu item methods
 Checking an item

The Checkable property determines whether an item may be marked with a check mark. For example,
 menu_1_Item1.setCheckable(true);
makes the given item checkable.

If an item is checkable, the Checked property determines whether a check mark is currently displayed:
 menu_1_Item1.setChecked(true); // check mark
 menu_1_Item1.setChecked(false); // no check mark
There are corresponding get functions to determine if an item is Checkable and Checked.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 6. Using and programming menus

 Menu item methods
 Enabling an item

The Enabled property determines whether an item is enabled:
 menu_1_Item1.setEnabled(true); // enabled
 menu_1_Item1.setEnabled(false); // disabled
When an item is disabled, it is “grayed out” and cannot be clicked.

There is a corresponding get function to determine if an item is currently enabled.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 6. Using and programming menus

 Menu item methods
 Changing the caption

The Text property specifies the caption for an item. For example,
 menu_1_Item1.setText("New caption");
changes the caption of the item.

There is a corresponding get function to obtain the current caption of the item.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 6. Using and programming menus

 Menu item methods
 The font of a menu item

The Font property can be set at run time to specify the font of the menu item’s caption. For example,
// Font f;
menu_1_Item1.setFont(f);

sets the font of the given menu item.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 6. Using and programming menus

 Menu item methods
 The parent of a menu item

The Parent property specifies the parent of a menu item. For example,
Menu mc = menu_1_Item1.getParent();

determines the parent of the given item. There is also a setParent method that can switch a menu item
from one parent menu to another:

// Menu newMenu;
menu_1_Item1.setParent(newMenu);

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 6. Using and programming menus

 Menu item methods
 User data for a menu item

Each menu item can have user-defined data associated with it. This data is specified as an Object
object in the UserData property:

//Object data;
menu_1_Item1.setUserData(data);
Object ud = menu_1_Item1.getUserData();

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 6. Using and programming menus
 Menu container methods

This section examines methods that can be performed on menu bar, menu and submenu objects
(objects that contain menu item objects).

 Counting children
 Obtaining children by index
 Removing an item from a menu
 Adding an item to a menu

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 6. Using and programming menus

 Menu container methods
 Counting children

The Count property determines the number of children directly contained by the menu object. For
example,

int num = menu_1.getCount();
determines the number of menus that appear on the menu bar. This does not count the number of
items that are included in those menus. Similarly,

int num = menu_1_Submenu.getCount();
counts the number of items in the given submenu, but does not include items in submenus of the
submenu.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 6. Using and programming menus

 Menu container methods
 Obtaining children by index

The Menu property of the MenuBar class obtains a Menu object corresponding to one of the menus on
the menu bar. Menus are numbered from left to right, beginning at zero. For example,

Menu m = menu_1.getMenu(0);
returns a Menu object representing the first menu in the menu bar.

Similarly, the MenuItem property of a Menu object obtains a MenuItem object corresponding to one of
the menu items in the menu. For example,

MenuItem menu_1_Submenu.getMenuItem(0);
returns a MenuItem object representing the first item in the submenu.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 6. Using and programming menus

 Menu container methods
 Removing an item from a menu

The removeMenuComponent method removes a menu or menu item from a Menu or MenuBar object.
You can specify the item to be removed either by an integer index or by specifying the object itself. For
example,
 boolean success = menu_1.removeMenuComponent(0);
removes the first menu from the menu bar, while
 boolean success =
 menu_1_Submenu.removeMenuComponent(menu_1_Item1);
removes the specified component. In both cases, the result is true if the operation succeeds and
false otherwise.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 6. Using and programming menus

 Menu container methods
 Adding an item to a menu

The addMenuComponent method adds a menu or menu item to a Menu or MenuBar object. For
example, suppose you have previously removed the object menu_1_Item1 from a submenu; then
 boolean success =
 menu_1_Submenu.addMenuComponent(menu_1_Item1);
puts the item back on the menu again.

If you want change the contents of a menu during run time by adding or removing items, it is best to
specify all possible items at design time. If you don’t want some of these to appear when the program
begins executing, you can remove the unwanted items in the Create event handler for the form. You
can then add these items back again if they are needed during execution.

If you do not specify a menu item at design time, it is more complicated to “build the item from scratch”
at run time. For example, it is not enough to add the newly created item to a menu; you must also
specify a Click event handler for the item. This is why it is easier to set everything up at design time
(including the Click event handler) and then remove them temporarily than to try building items from
scratch.

 Jato Programmer ’ s Guide

 Part I. Fundamentals
 Chapter 7. Debugging

This chapter discusses the debugging facilities of Jato, and provides several suggestions for improving
general program performance.

 Introduction to debugging
 Specifying your virtual machine
 Breakpoints
 Debug windows
 Stepping through your code
 Breaking program execution
 Resuming normal program execution
 Source code folders
 Remote debugging
 Run options
 Debugging techniques
 Performance tips
 Summary of debugging

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging
 Introduction to debugging

Finding bugs is an art, not a science. However, Jato offers a variety of ways to examine your program
as it runs, making it easier to track down where things are going wrong. Staring at source code in the
hope that you notice a mistake is not nearly as productive as stopping your program in the middle of
execution and looking at data values to make sure they’re correct. Even better is the ability to mark
potential trouble spots in your code and have your program automatically report when something goes
wrong.

This chapter examines the debugging tools of Jato and suggests a few simple ways that you can use
them. However, no book can cover all the possible tricks a programmer might use in tracking down a
particular bug. We strongly recommend that you experiment with the debugging facilities on simple
programs, to see how the tools work and how you can use them productively.

Note: In order to use certain debugging tools effectively, you must be familiar with assembly language
and the way in which programs use the computer hardware.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging
 Specifying your virtual machine

%%% In this beta release, the debugging facilities only work when you run your Java code with the
Microsoft Java interpreter (virtual machine). You specify the interpreter in the run options for the target
you are debugging.

¨ To set run options for a target:
1. Open the Targets window.

2. Use the right mouse button to click the target you want to run. Click Run Options in the resulting
menu.

This opens the run options dialog for the target.

Different types of targets accept different types of run options.

· For Java applications, specify the virtual machine on the General page of the run options dialog.
To use the debugging facilities discussed in this chapter, you must use the Microsoft interpreter.

· For Java applets, specify the virtual machine on the General page of the run options dialog. You
can either choose the Microsoft interpreter, or use a web browser that uses the Microsoft
interpreter (for example, Microsoft’s Internet Explorer).

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging
 Breakpoints

A breakpoint is a point in your executable code where you want to break (interrupt) the normal
execution of your program while you are debugging. For example, you might set a breakpoint at the
start of a function, so that the program temporarily stops executing whenever that function is called.

While your program is stopped at a breakpoint, you can examine data objects used by the program.
Jato also lets you change data values, examine your program as assembler code, and investigate your
program in other ways. You can resume executing the program from the breakpoint by stepping
through the code or letting it run until completion or the next breakpoint.

 Setting a simple breakpoint
 When a breakpoint is encountered
 Breakpoints dialog box
 Advanced breakpoint options

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging

 Breakpoints
 Setting a simple breakpoint

The code editor makes it easy to set a breakpoint on any code instruction. The following rules apply:

· You cannot set a breakpoint on a blank line or a comment line.

· If you set a breakpoint on the prototype that begins a function, the break occurs when the function
is called.

· If you set a breakpoint on the closing brace that marks the end of the function, the break occurs
when the function returns.

· If you set a breakpoint on any other line, the break occurs immediately before the line is executed.

¨ To set or remove a breakpoint for a line of code:
1. In the code editor, use the right mouse button to click on the line.

2. Click Toggle Breakpoint.
You can also toggle a breakpoint on or off for an executable line by double clicking on the icon at the
beginning of the line.

When Jato has a breakpoint on a line, it places a red stop-sign icon at the start of the line. Lines
without breakpoints have small green circle icons, suggesting green traffic lights. A line with a disabled
breakpoint has a gray stop sign icon.

You can control the behavior of a breakpoint by specifying commands in the Breakpoints dialog box.
For further details about the Breakpoints dialog box, see Breakpoints dialog box.

Note: If you set a breakpoint in the middle of a statement that is broken over several lines, the
breakpoint moves to the first line of the statement when you actually run the program. For example, if
you have the statement
 i = j +
 k;
and set the breakpoint on the second line, the breakpoint moves to the first line when you run the
program.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging

 Breakpoints
 When a breakpoint is encountered

If the executing program reaches a breakpoint, the following steps occur:

1. The breakpoint condition is evaluated. If you have set a condition for the breakpoint and it is not
met, the following steps are skipped and program execution is resumed.

2. If you have specified a count (with the After 'n' times option), a counter is increased by one. If it is
then less than the count you specified, the following steps are skipped and program execution
resumes.

If no condition or count is set, or the condition and count are met, the breakpoint action is triggered
by proceeding to the next step.

3. If you have set a code patch, it is executed. If you specified that execution should continue after the
code patch, the following step is skipped and program execution resumes.

4. Program execution is suspended.

For information on breakpoint conditions and code patches see Advanced breakpoint options.

When a breakpoint is encountered that suspends execution, Jato opens a code editor window to show
the source code that contains the breakpoint. The red stop sign icon marking the line with the
breakpoint now has a yellow pointer in it, pointing to the line where the breakpoint is triggered. This
makes it easier to identify where you are if you set several breakpoints in the same region of code.

While execution is suspended at a breakpoint, you can access numerous debugging tools through the
Debug menu of the code editor. Some of these tools are also available through buttons on the toolbar,
either in the main Jato window or in the code editor window.

Repainting at a breakpoint
While a program is paused at a breakpoint, it’s common to place various windows on top of the
program’s forms. For example, you might have a code editor window showing you the program’s
source code, another window showing you a memory dump of the program’s data, and so on. Some or
all of these windows may be placed on top of the program’s forms.

When you move one of these windows off such a form, you may expect the form to restore itself to its
previous appearance. Unfortunately, this can’t be done. When you move an overlapping window, you
trigger a Paint event on the underlying form, telling it to repaint itself. However, your program isn’t
running—it’s paused for a breakpoint. Therefore, the form can’t respond to the Paint event and can’t
restore its usual appearance. The form won’t restore itself until you resume execution of the program.

The same principle applies to other visual effects that might happen when you’re stopped at a
breakpoint. For example, suppose you change the Text of an object on a form. Since the form can’t
repaint itself, it can’t show you the changed text. The change can only become visible on the form
when you resume execution and give the form a chance to revise its appearance.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging

 Breakpoints
 Breakpoints dialog box

The Breakpoints dialog box displays all the breakpoints that are currently set in your program.

¨ To see the Breakpoints dialog box:
1. From the Run menu of the main Jato menu bar, click Breakpoints.

When you use the right button to click the name of an entry in the breakpoint list, Jato opens a menu of
operations that can be performed. For example, clicking Show Code in this menu opens a code editor
which displays the code that contains the breakpoint.

As another example, Disable in this menu disables the breakpoint without removing it. This means that
the breakpoint will not go off if execution ever reaches that point. However, you can enable the
breakpoint just by clicking Breakpoint is Enabled again (so that the check box is checked). Enabling
or disabling breakpoints through the Breakpoints dialog box can be faster than searching for the
corresponding statement in a code window.

Note: Another way to disable a breakpoint is to click on the check mark beside the breakpoint. This
makes the check mark disappear. You can enable the breakpoint again by clicking on the blank area
where the check mark was.

A disabled breakpoint has a gray stop sign icon in the code editor window.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging

 Breakpoints
 Advanced breakpoint options

If you click the Advanced button of the Breakpoints dialog box, Jato expands the dialog box to offer
more options.

When condition TRUE:
If you check this option and type a Java expression in this box, you create a conditional breakpoint.
Whenever execution reaches the given point, Jato evaluates the specified expression. If this
expression is TRUE (non-zero), Jato triggers the breakpoint normally. However, if Jato finds the
expression is FALSE (zero), Jato does not trigger a breakpoint; it resumes normal execution
immediately. This makes it possible to create a breakpoint that only has effect when certain criteria
are met.

After 'n' times:
If you check this option and type a value in this box, you create an occasional breakpoint. Each
time Jato passes through the breakpoint position, it increments a counter by 1. When the counter
finally reaches the value n, Jato triggers the breakpoint. For example, if you type a value of 10 for
n, Jato only triggers the breakpoint after ten passes through the breakpoint position. Typically, you
set this kind of breakpoint inside a loop in your code, making it possible to check on the progress of
the loop without stopping the program for every iteration.

If you specify After 'n' times and Break when condition is TRUE together, the breakpoint only
happens after n executions when the condition is true. For example, suppose you specify

Break when condition is TRUE: p != NULL
After 'n' times: 5

Each time execution passes through the break location, Jato checks whether p is null. If p is null,
this execution does not count toward the count of n=5. The breakpoint only suspends execution on
the fifth time that Jato finds a non-null p.

Run statement at breakpoint
If you check this option and type a Java statement in this box, Jato executes the given statement
when the breakpoint is triggered. For example, you could type a statement that automatically sets a
data object to a certain value if the breakpoint is reached.

Continue execution after running statement (don't break)
If you check this option, the breakpoint doesn’t stop execution when it is triggered. It simply
performs the statement specified in the previous line, then resumes execution. Combining this
selection with the previous one, you can change the value of a variable when the breakpoint is hit,
then resume execution. For example, you might do this to simulate the effects of a function that
you haven’t written yet.

Breaking on an address
As well as setting breakpoints on lines that you can see in the code editor, you can also set breakpoints
on addresses specified by Java expressions. For instance, if your program causes an execution fault
and the details give an address where the problem occurred, you can set a breakpoint at a preceding
address.

In order to set such a breakpoint, Jato must have your program loaded so that it can resolve the
address. You can do this by setting a breakpoint in the editor near the beginning of your program, or by
specifying in the run options that the program should break after starting.

¨ To break at an address:
1. While your program execution is paused, click Breakpoints on the Run menu.

2. Use the right button to click a blank area in the Breakpoints list, then click New.

3. Type in a Java expression that can be evaluated to an address, or click Symbol Lookup to choose
a breakpoint location from a list of symbols.

Note: If you type a symbol name, the address of that symbol will be used. To prevent this, precede the
symbol name with an asterisk.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging
 Debug windows

This section examines a number of the windows of debugging information available under the Debug
menu of the code editor.

Note: These elements are only available while you are running your program under control of the Jato
debugging facilities. Therefore, all the elements are defined relative to a particular point in program
execution. For example, if your program is stopped at a breakpoint, these elements can show you
information about the program relative to that breakpoint.

 Call Stack window and commands
 Locals window
 Watches window
 Assembly window
 The Registers window
 FPU Registers window
 Threads window
 Memory window
 The Stack window
 Drag-and-drop in debugging windows

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging

 Debug windows
 Call Stack window and commands

The Debug menu contains several entries that let you track the sequence of function calls at this point
in execution.

Call Stack
Displays the sequence of function calls leading up to the function that was executing at the time of
the breakpoint.

The last function listed is the function that was executing when the break occurred. The second last
function is the one that called the last function; the third last function called the second last, and so
on up the list. A pointer in the Call Stack list indicates the function you are currently examining.

You can also use items on the Debug menu to examine different functions in the call stack.

Up Call Stack
Displays information about the next function up the Call Stack. For example, if you stop at a
breakpoint inside the function cb_1_Click, Up Call Stack displays information about the function
that called cb_1_Click. If possible, Jato opens a code editor window to display the function;
however, if Jato does not have Java source code for the function, Jato shows an assembly code
version of the function as well as the hardware register values.

Down Call Stack
Displays information about the next function down the Call Stack. For example, if you have used
Up Call Stack to display the function that called cb_1_Click, Down Call Stack moves back
down to cb_1_Click again.

Bottom Call Stack
Returns to the bottom of the call stack. This is the function that was executing at the time the break
occurred (for example, cb_1_Click).

When you change positions in the call stack, all of your debugging windows change to display
information about the new function. For example, the Locals window changes to show the local
variables in the new function. The one exception to this is the Registers window: the ESP, EBP, and
EIP values are displayed correctly relative to the new function, but the other register values may not
reflect the values they had when the function was active.

If you use the right mouse button to click an entry in the Call Stack, Jato displays a menu of actions

you can perform on that entry:

Toggle Breakpoint
Sets a breakpoint immediately at the instruction immediately following the point where the entry
called the next routine on the call stack. Therefore, the breakpoint goes off as soon as execution
returns to that function. This may be in the middle of a Java statement.

If there is already a breakpoint at that location, Toggle Breakpoint turns off the breakpoint.

Run to Cursor
Runs the program up to the instruction immediately following the point where the entry called the
next routine on the call stack. Therefore, execution stops as soon as it returns to the specified
function. This may be in the middle of a Java statement.

Up Call Stack to Cursor
Moves up the call stack to the routine that you have clicked. This has the same effect as a
sequence of Up Call Stack operations, until you reach the selected routine.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging

 Debug windows
 Locals window

The Locals window displays all the local variables defined in the function that is currently executing.

¨ To see the Locals window:
1. From the Debug menu of the code editor, click Locals.

Each line in the Locals window gives the name and value of a local variable. Variables with special
types are marked with appropriate symbols:

· Pointers are marked with arrows.

· Objects are marked with boxes: red for member objects defined in the current class, and blue for
base classes.

· Simple values like integers are marked with dark yellow balls.

The Locals window is organized as a tree view. If you click the + sign beside a pointer, the window
displays the object pointed to by the pointer. If you click the + sign beside an object, the window
displays the contents of the object.

The Locals window shows all the variables declared in the current scope, even if those variables have
not been encountered by the time of the current breakpoint. For example, suppose your code contains
 int i = 1;
 int j = 2;
and suppose that you set a breakpoint on the declaration of i. At this point in the code, you might think
that j doesn’t exist because execution has not reached the declaration of j. However, the Locals
window lists j, because it is declared in the current scope (even if it has not been declared yet). Since
j has not been assigned a specific value at the time of the breakpoint, the value shown in the Locals
window is not meaningful.

The Variables menu
The Variables menu of the Locals window offers a number of operations that can be performed on the
variables shown in the window. Before you can use any of these operations, you must click on a
specific variable name; then you have a number of possible options.

Modify
Prompts you to type a new value for the variable. When you resume program execution, the
variable will have the new value.

Inspect
Opens a new window containing a tree view of the specified variable. The new window is similar to
the Locals window but only displays information about the single variable or data member.

You can also open an Inspect window for a variable by using the right mouse button to click on the
variable in the code editor and choosing Inspect 'variable' from the context menu.

Watch
Opens the Watches List to set up the variable as a watch expression. For further information, see
Watches window.

Show
Displays a section of memory. Possible Show options are:

Pointer Memory displays the memory pointed to by a pointer, using a Memory window (see
Memory window).

Variable Memory displays the memory containing the variable, using a Memory window.

Pointer Code displays the memory that a pointer points to, using a code editor or an Assembly
window (see Assembly window).

Type
Can display the value of the variable in different formats. If you ask to display the value as an array,
Jato pops up a dialog box to ask which array elements you want to see.

Class
Lets you specify what kind of information you want to see when the Locals window displays class
objects. This only applies to objects with the same class as the selected item. For example, if you
select one variable and click Class/Show Functions, the Locals window displays functions
associated with the selected variable and any other variables of the same class.

Field on Top
Specifies the “key” value or values for a data object. When the Locals window displays an
unexpanded version of the object or of pointer to the object, it shows the on-top value as the
“value” of the object. For example, consider a WString object: this object contains a number of
data members, but usually, you’re most interested in the text of the string. Therefore, the data
member containing the text is marked as the Field on Top; when the Locals window displays an
unexpanded version of the string, it shows the text as the string’s value.

Inside any object, you can click any data member and mark it as the Field on Top. The value of
the data member is marked with a dark arrow and is displayed as part of the value of the object
that contains the data member.

When object A contains object B, object A does not inherit the Field on Top settings from object B.
You must set the Field on Top setting for the item in the tree of A which has type B.

The toolbar of the Locals window supplies buttons that perform the same actions as certain items from
the Variable menu.

If you use the right mouse button to click an entry in the Locals window, Jato displays a context menu
offering the same choices as the Variables menu.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging

 Debug windows
 Watches window

A watch expression is a Java expression whose value is displayed by Jato during program execution.
The Watches window displays the current value of all the watch expressions.

¨ To see the Watches window:
1. From the Debug menu of the code editor, click Watches.

When you first begin program execution, the Watches window is empty. You can add watch
expressions to the list by copying them from the Locals window (described previously) or by adding a
new expression directly.

¨ To add a variable to the Watches window:
1. Use the right mouse button to click on the variable in the code editor.

2. From the context menu, click Watch 'variable' where variable is replaced with the text that you
clicked on with the right mouse button.

Jato opens the Watches window and adds the variable to the end of the list. The list also displays the
current value of the variable.

¨ To add a new watch expression to the Watches window:
1. From the Watches menu of the Watches window, click Add. Jato displays a dialog box where you

can type the expression.

2. Type the watch expression. This can be any Java expression; if it is not valid in the current
program context then question marks are shown for the value.

3. Click OK when you have typed the watch expression.

Another way to add a new watch expression is to select an expression in a code editor window, use the
right mouse button to click the expression, and then click Watch.

Jato adds new watch expressions to the end of the Watches window. The list also displays the current
value of each expression.

Other entries in the Watches menu let you modify or delete expressions that are currently in the
Watches window.

The Watches window has a Variable menu and a View menu which duplicate the menus of the Locals
window. In particular, Break when Modified on the Variable menu triggers a breakpoint when the

value of the watch expression changes.

Note: You can only specify Break when Modified for L-value expressions with a size of 1, 2, or 4
bytes. In other words, the expression must refer to a specific location in memory. For example, the
expression could be the name of a variable or a pointer value. The breakpoint occurs when the
specified memory location changes.

If you use the right mouse button to click an entry in the Watches List, Jato displays a context menu
offering the same choices as the Variable menu.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging

 Debug windows
 Assembly window

The Assembly window displays an assembly language version of executable code in your program.

¨ To see the Assembly window:
1. From the Debug menu of the code editor, click Assembly.

If your program is stopped at a breakpoint, the Assembly window marks the breakpoint with a red stop
sign, overlaid by a yellow arrow. The Assembly window begins with the breakpoint at the top of the
instructions shown in the window.

The Assembly window has a vertical scroll bar to let you scan back and forth through your executable
code. The scroll indicator for this scroll bar cannot be dragged directly; you must click the arrows of the
scroll bar or the empty areas on either side of the scroll indicator.

¨ To look at a new code location:
1. From the Assembly menu in the Assembly window, click Show Address. Jato displays a dialog

box, asking the address that you want to look at.

2. Type the new address in this box, using the same format as the addresses shown in the Assembly
window or any Java expression that evaluates to an address.

3. Click OK.

If you use the right mouse button to click a line in the Assembly window, Jato displays a context menu
offering the same choices as the Assembly menu. These are Show Address, Run to Cursor (see
Run to Cursor), Skip to Cursor (see Skip to Cursor) and Toggle Breakpoint.

The Run menu
The Run menu of the Assembly window offers a number of alternative ways for resuming execution of
your program. For further information, see Stepping through your code.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging

 Debug windows
 The Registers window

The Registers window displays the contents of the computer’s hardware registers at the time execution
was suspended.

¨ To see the Registers window:
1. From the Debug menu of the code editor, click Registers.

In some situations, the Registers window is displayed automatically when Jato displays an Assembly
window.

Changing register values
The Registers window lets you change the value of a hardware register.

¨ To set the value of a hardware register:
1. In the Registers window, double-click the name of the register you want to change. (Note that you

double-click the name, not the value.) Jato displays a dialog box for you to type the new value.

2. Type the value you want to store in the register, using the same format as the current value.

3. Click OK.

When you resume execution of the program, the specified register will contain the assigned value.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging

 Debug windows
 FPU Registers window

The FPU Registers window displays information about the 80x87 FPU of your computer.

¨ To see the FPU Registers window:
1. From the Debug menu of the code editor, click FPU Registers.

The FPU Registers window lets you change floating-point register values in the same way as the
Registers window changes normal register values.

If you use the right mouse button to click any register value in the FPU Registers window, Jato displays
a context menu of actions you can perform on that register.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging

 Debug windows
 Threads window

The Threads window displays information on the execution threads of your program.

¨ To see the Threads window:
1. From the Debug menu of the code editor, click Threads.

For more information about the Threads window, see Debugging threads.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging

 Debug windows
 Memory window

The Memory window displays the contents of a region of memory, using a variety of formats.

¨ To see the Memory window:
1. From the Debug menu of the code editor, click Memory. Jato displays a dialog box asking the

address that you want to examine.

2. Type the starting address of the memory area you want to examine. You can specify the address
using the format segment:address (hexadecimal) or with any Java expression referring to a
memory location (for example, &var or the name of a function).

3. Click OK.

The beginning of each line in the Memory window gives a memory address, in the form
segment:address. The remainder of the line shows the contents of 16 bytes, beginning at the specified
address. The Memory window has scroll bars to let you scroll forward and backward in memory.

Data formats
By default, the Memory window displays memory byte by byte. Each line in the window shows 16 bytes
in hexadecimal format, then the same bytes as ANSI characters. If a byte value does not correspond to
a printable character, it is shown as a thick vertical bar in the ANSI display.

The Type menu of the Memory window lets you choose a different format for displaying the contents of
memory. Possible formats are:

Byte
The default, showing bytes in hexadecimal and as ANSI characters.

Word
16-bit words are shown as hexadecimal integers.

DWord
32-bit double-words are shown as hexadecimal integers.

Char
Each byte is shown as a signed decimal integer.

Short

Each 16-bit word is shown as a signed decimal integer.

Long
Each 32-bit double-word is shown as a signed decimal integer.

Unsigned Char
Each byte is shown as an unsigned decimal integer.

Unsigned Short
Each 16-bit word is shown as an unsigned decimal integer.

Unsigned Long
Each 32-bit double-word is shown as an unsigned decimal integer.

0:16 Pointer
Each 16-bit word is shown as a hexadecimal integer (representing a plain pointer).

16:16 Pointer
Each pair of 16-bit words is shown in hexadecimal format, displayed together in the form
segment:address.

0:32 Pointer
Each 32-bit word is shown as a 32-bit pointer value.

16:32 Pointer
Triplets of 16-bit words are shown as segment:address pointers.

Float
Each 4-byte double-word is shown as a floating-point value (using scientific notation).

Double
Each 8-byte quadruple-word is shown as a double precision floating-point value (using scientific
notation).

Extended Float
Each 10-byte quantity is shown as a single extended floating-point value (using scientific notation).

Patching memory
The Memory window lets you change any value shown in the window. This process is called patching
the memory location.

¨ To change a value in memory:
1. In the Memory window, double-click the value you want to change. Jato displays a dialog box that

lets you type a new value for that memory location.

2. Type the value you want to place in that location, using the same format as the original value. Then
click OK.

If you use the right mouse button to click an entry in the Memory window, Jato displays a context menu
containing the same options as the Memory menu. These are:

Modify
Asks you to enter a new value for the selected memory location.

Show Address
Lets you use the Memory window to look at a different area of memory. Enter the address of the
area you want to look at.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging

 Debug windows
 The Stack window

The Stack window is actually a Memory window of the current stack. (The stack is the area of memory
whose address is found in the ESP register.) Jato programs use the stack to store function arguments,
local variables, and function call information (for example, the return address).

¨ To see the Stack window:
1. From the Debug menu of the code editor, click Stack.

If you use the right mouse button to click an entry in the Stack window, Jato displays a context menu
containing the same options as the Memory menu.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging

 Debug windows
 Drag-and-drop in debugging windows

The debugging windows offer extensive drag-and-drop facilities. For example, if you click a variable
name in the Locals window and drag it to an empty area of the Watches List, the variable is added to
the Watches List. Similarly, you can drag variables or expressions from a code editor window into the
Watches List.

You can also perform patching operations with drag-and-drop. For example, if you drag a value from
the Memory window and drop it on a variable in the Locals window, Jato assigns the value to the
variable. Similarly, you can drag a value from one location in the Memory window and drop it on
another location. In this case, Jato asks you to confirm that you want to assign the dragged value to the
new location.

In general, if you drag a value and drop it on some other object, Jato assigns that value to the object.
This works for all relevant debugging windows: the Locals window, Watches window, Assembly
window, Registers window, FPU Registers window, and Memory window. You can also use drag-and-
drop between debugging windows and code editor windows.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging
 Stepping through your code

When a breakpoint is encountered, Jato suspends your program so that you can examine its code and
data. At this point, Jato offers several ways in which you can resume program execution:

· Run: Jato lets the program run normally from the point it was suspended. If the program hits
another breakpoint, it will suspend execution again.

· Restart: Jato starts the program again from the beginning. If you choose this, you will lose any
unsaved data that you may have provided for the program, since the program makes a completely
clean start. Jato confirms that you really want to do this before restarting the program.

· Terminate: Jato kills the program entirely, returning to your original Jato session. If you choose
this, you will lose any unsaved data that you may have provided for the program. Jato confirms that
you really want to do this before the program is killed.

· Stepping: With this facility, you can move through your program one step at a time, pausing after
every action so that you can examine the results of that action. This is an extremely powerful
debugging ability, helping you examine the flow of control within your program and the effects of
your code.

There are several different types of steps. The rest of this section examines these types in detail.

 Run to Cursor
 Skip to Cursor
 Step over
 Step into
 Step out
 Step next

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging

 Stepping through your code
 Run to Cursor

The Run to cursor action is related to the stepping actions. Suppose you are stopped at a breakpoint
and looking at a code editor window or the Assembly window. If you use the right mouse button to click
on a statement, then click Run to cursor, Jato runs the program until it reaches the statement that
contains the cursor. Execution stops just before executing that statement.

¨ To perform a Run to cursor action:
1. Use the right mouse button to click the statement where you want the run to end.

2. From the context menu, click Run to Cursor.
Run to cursor is a quick way to step through several statements at a time.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging

 Stepping through your code
 Skip to Cursor

The Skip to cursor action doesn’t actually run any statements. It simply moves the execution point to
a different source code statement. The statement that you skip to becomes the next statement to be
executed.

¨ To perform a Skip to cursor action:
1. Use the right mouse button to click the statement where you want to skip.

2. From the context menu, click Skip to Cursor.

Important: You should exercise caution when using Skip to cursor, since it skips code that would
normally be executed. For example, if you skip a statement that initializes a local variable, the variable
will not have a meaningful value in subsequent code. If you try to skip to a completely different
function, your program will probably crash.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging

 Stepping through your code
 Step over

The Step Over action steps through your code one source statement at a time. In the code editor or
Assembly window, Jato displays a triangular arrow, showing the statement that will be executed next
(or that is currently being executed).

¨ To perform a Step Over action:
1. Press F10; or

2. From the Run menu, click Step Over; or

3. Click the Step Over button on the code editor’s tool bar.

Step Over was given its name because it “steps over” function calls. For example, suppose the next
source code line contains
 x = func(y);
If you execute a Step Over, Jato executes the entire statement in a single step, even though the
function call may consist of many source code statements in itself. This is the main difference between
Step Over and the next type of stepping action, Step Into.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging

 Stepping through your code
 Step into

Like Step Over, the Step Into action steps through your code one source statement at a time. In the
code editor window or Assembly window, Jato displays a yellow pointer, showing the statement that will
be executed next (or that is currently being executed).

¨ To perform a Step Into action:
1. Press F8; or

2. From the Run menu, click Step Into; or

3. Click the Step Into button on the code editor’s tool bar.

Step Into was given its name because it “steps into” function calls. For example, suppose the next
source code line contains:
 x = func(y);
If you execute a Step Into, Jato does not execute this statement as a single step. Instead, it steps into
the function func: a code editor displays the code of func, with the yellow pointer positioned at the
beginning of the function. Additional Step actions will step through func as displayed in the code editor
window. When func eventually returns to its caller, the code editor window switches back to show the
statement that contained the original function call.

In the code editor, Step Into only steps into functions for which the source code is available. It does not
step into library functions, including methods from the Jato component library, unless you have the
source code for those included in your project. Step Into may step into code that has been
automatically generated by Jato, such as the code that constructs and initializes a new form.

In the Assembly window, Step Into will always step into functions.

If you use Step Into to walk through your program one step at a time, the worst that can happen is that
you step into a function whose contents you don’t want to see. If so, you can quickly step to the end of
the function using Step Out (see Step out). On the other hand, if you get into the habit of using Step
Over, you may accidentally step over a function you really wanted to examine in more detail.

Nested function calls
Suppose a line of code contains a function call of the form
 f(g(x))
This is called a nested function call. To evaluate the expression, Java evaluates g(x) first, places the
result in temporary storage, then calls function f using g’s result as the argument for f. Therefore,
suppose you use Step Into on the line of code shown above:

1. First, you step into g, since the program evaluates g(x) first.

2. When g finishes, you return to the original function: the one containing the code f(g(x)).

3. If you perform another Step Into, you step into f to execute the final result.

In other words, Step Into tracks the line of execution from function to function, showing the order in
which the code is actually executed. This may be surprising the first time you see it, but it corresponds
to the order that the functions have to be called.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging

 Stepping through your code
 Step out

The Step Out action executes the rest of the current function, beginning with the statement indicated
by the yellow pointer and ending when the function returns (either because of a return statement or
because the function reached the end of its code).

¨ To perform a Step Out action:
1. From the Run menu, click Step Out; or

2. Click the Step Out button on the toolbar.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging

 Stepping through your code
 Step next

The Step Next action tells Jato to execute until reaching the next line of source code. It is typically
used when the yellow pointer is at the end of a loop construct. For example, consider
 for (i = 0; i < 100; i++) {
 array[i] = i;
 }
 // other instructions
Suppose you have used Step Over to step through the for loop once. If you use Step Over again, it
will go back to the top of the for loop, since that is the next statement to be executed. However, if you
use Step Next when the yellow pointer is at the end of the for loop, Jato starts executing the program
and keeps going until it reaches the next line of source code after the loop. This is a quick way of
avoiding stepping through the loop a hundred times.

¨ To perform a Step Next action:
1. From the Run menu, click Step Next; or

2. Click the Step Next button on the toolbar.

Warning: Step Next actually works by setting a breakpoint at the beginning of the next line of source
code, then running the program until it hits the breakpoint. This may lead to surprising results in an if-
else construct. For example, suppose the yellow pointer points to the if statement of:
 if (condition) {
 statement1;
 } else {
 statement2;
 }
Jato places a breakpoint on the next line of source code (statement1), then starts the program
running until that breakpoint is encountered. If the condition expression is false, execution skips
statement1 and you may never get back there.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging
 Breaking program execution

Even if you haven’t set any breakpoints, you can break program execution at any time by issuing a
Break command. This temporarily suspends the program in the same way that a breakpoint does.

¨ To break program execution:
1. From the Run menu, click Break; or

2. Click the Break button on the toolbar.

Break is particularly useful if you notice the program behaving incorrectly in a place where you have
not set a breakpoint. However, you have less control over where the program pauses—you can set a
breakpoint at a particular location, whereas with Break, you just have to click and hope the program
will stop at a recognizable point in your code.

When you pause a program, Jato displays the code that was executing at the time of the pause. If the
program was executing user-written code, the code is shown in a code editor window. Often, however,
the program was executing code from a library, so there is no source code available. In this case, Jato
displays an Assembly window showing the assembly code that was being executed.

Note: The Break operation will only work if your program is responding to messages. For example,
you can’t break into your program if it is deadlocked on semaphores.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging
 Resuming normal program execution

After a Break or a breakpoint, you can resume normal program execution with a Run command.

¨ To resume normal program execution:
1. Press F5; or

2. From the Run menu, click Run; or

3. Click the Run button on the toolbar.

Execution begins with the statement marked by the yellow pointer in the code editor (or with the
statement marked in the Assembly window if you paused the program outside recognized source
code).

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging
 Source code folders

The Source Folders page of the Options dialog lets you specify folders where Jato should look for
source code, other than the folders referenced in the OBJ files of your project. For example, if you are
linking your program to a library whose source code is given in some other folder, you can use Source
Folders to specify the pathname of that folder. This lets Jato find the source code, so that you can
debug at the source-code level instead of the assembly-language level.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging
 Remote debugging

Remote debugging lets you use the debugging facilities of Jato on your own computer while running
the program on another computer connected via TCP/IP networking. There are a number of reasons
why you might want to do this. For example, if you are developing your program on a Windows 95
system but want to debug its execution on a Windows 3.1/Win32s system, you must use remote
debugging. In this case, you use the debugging facilities of Jato on your Windows 95 system while the
program itself runs on the remote Win32s system.

Terminology: When you are running a remote debugging session, the system running Jato is called
the local system. The system running the program that you want to debug is called the remote system.

You must have access to the other computer to operate the program running on it. You may find it most
convenient to have the two computers side by side while using remote debugging.

Remote debugging works by setting up a TCP/IP connection between your system and the remote
system. When you tell your system to run an Jato target, the system copies the target program to the
remote system and starts the program executing on that system. The larger the program, the longer it
will take to copy the executable file over the TCP/IP connection.

Once the program begins executing, you can debug it in much the same way that you debug a
program running on your own system, except that you must use the other computer to operate the
other program's user interface. Jato interacts with the remote program through the TCP/IP connection.
It sends any debugging instructions you enter (for example, operations that examine or patch memory
in the remote program). Because data is being sent back and forth, there may be delays in the speed
with which the program responds to input. Apart from this, however, there is no essential difference
between debugging on your own system and debugging a remote program.

 Requirements for remote debugging
 Starting a remote debugging session

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging

 Remote debugging
 Requirements for remote debugging

In order to run a remote debugging session, you must have TCP/IP running on both computers. The
remote system must also have the following files:

tcpserv.exe
std.dll
PView.dll

You should place all these files in the same folder so that tcpserv.exe can locate the DLLs. This
folder does not need to be in your execution search path.

The remote system does not need to have Jato installed on it. However, your system must have the full
Jato package installed.

You must start the tcpserv program on the remote computer before you can begin a remote
debugging session.

When you run a remote debugging session, Jato checks for the presence of a number of DLL libraries
on the remote computer. If the libraries are not there, Jato automatically transfers them to the remote
computer over the TCP/IP connection. This means that it may take some time to start the first remote
debugging session on another system. After the first time, the library files will be present on the remote
system, so they won’t have to be shipped again.

The same process takes place with DLL libraries needed by the program to be debugged. Jato ships
these libraries to the remote computer so that they are available when the program runs. The libraries
are shipped the first time you run a remote debugging session, and whenever the library version on the
remote system is out of date with respect to the version on the local computer.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging

 Remote debugging
 Starting a remote debugging session

If you want to use remote debugging, you must configure the target to use remote debugging. This
setting will be saved for the target between Jato sessions.

¨ To specify remote debugging for a target:
1. On the remote computer, start the tcpserv.exe program. If you want to connect via a particular

socket, you must specify that socket number in the options dialog. (To do this, click Disconnect
and Options, type the socket number, then click Connect).

2. In the Targets window, use the right mouse button to click the name of the target, then click Run
Options and click Remote. Jato displays the Remote Debugging Options box.

3. Click Run on Remote Machine so that it is checked.

4. Under Remote machine name or IP address, type the IP address of the remote computer. This
can be specified as a host name (as in galahad.camelot.com) or a numeric IP address (as in
123.123.123.123).

5. If you want to connect to the remote computer via a particular socket, type the socket number
under TCP/IP socket number.

6. Click OK.

7. From the Run menu, click the Run menu item. This starts executing the program on the remote
computer, under the debugging control of Jato running on your local computer.

When a target is configured to use remote debugging, the target program is copied to the remote
computer and executed there every time you run the program. Although you can control the debugging
on the local computer, you must use the remote computer to use the interface of the program.

When you no longer want to have that target set up to use remote debugging, open the Remote
Debugging Options dialog box and click Run the program locally.

Note: If you change the socket number in Specify Socket, you must specify that socket number in the
remote computer’s tcpserv options dialog box every time you start tcpserv.exe. You can also
specify the socket number as a command line argument when you start tcpserv, as in

tcpserv 1031

In most cases, there is no reason to change sockets. By default, Jato uses socket 3563 (0xDEB)
which is generally unused.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging
 Run options

Run options let you control the way that Jato runs your application. The section Remote debugging
showed one use of these run options: to run a program on a remote system. This section looks at other
ways to use run options.

¨ To see run options for a target:
1. In the Targets window, use the right mouse button to click the name of the target, then click Run

Options.

Jato displays the Run Options dialog box. This box has different forms depending on the type of target.
The sections that follow describe the different forms this box may take.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging
 Debugging techniques

The preceding sections describe the basic debugging tools of Jato. The remainder of this chapter
suggests some approaches to using those tools to find bugs, including a general discussion of where
to look for bugs when programming in the Windows environment.

Important: Always run your program with the debugging facilities until you believe you have removed
all the bugs. To make sure that debugging is active, look at the Targets window. In Target Type, you
should see the word Debug.

 Modular testing
 Searching for bugs

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging

 Debugging techniques
 Modular testing

It is easier to test a small piece of code than a large one. Therefore, you should make an effort to break
down your program into small sections which can be tested independently. For example, it makes
sense to create each form of your program separately and to do as much testing as possible on a
single form before integrating it with other forms.

When necessary, you can create simple stubs to stand in for other forms in the early phases of testing.
For example, suppose that clicking on a button in Form1 is supposed to open Form2. In the early
phases of testing, you can replace the creation of Form2 with code like this:

System.println("Stub!");
Instead of displaying the actual Form2, this replacement code displays the given message. This gives
you feedback that the button is being activated, without introducing the complexity of creating a new
form.

Similarly, if you want to test the creation of Form2, you might create a very simple version of Form1
which only consists of a command button that calls Form2. In this way, you can test the creation
process without having to worry about the complexities of a full Form1.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging

 Debugging techniques
 Searching for bugs

Finding the location of a bug can be a time-consuming activity. It helps if you take a methodical
approach to the job, rather than skipping about hit-or-miss.

The following section discusses several possible approaches. In some situations, one approach may
be more effective than others, but starting out with a sensible plan for finding a bug is better than
leaping in at random.

Start at the beginning...
One approach is simply to set a breakpoint at the beginning of the code you think contains the bug,
then single-step through until something goes wrong. It may help to keep the Watches window or the
Locals window visible on the screen as you single-step, so that you can see the effects of each step.

The binary search
If you have to examine a large section of code, you may find a binary search is faster than starting at
the beginning:

1. Place a breakpoint at the approximate midpoint of the code where you suspect the error may be
occurring, then start the program running. When the break occurs, check your data to see if the
bug has occurred yet.

2. If the bug has already occurred, place a breakpoint halfway between the beginning of the
suspicious code and the current breakpoint. Run the code again.

3. If the bug hasn’t occurred yet, place a breakpoint halfway between the current breakpoint and the
end of the suspicious code. Continue running the program until you reach the next breakpoint.

If you keep placing a breakpoint at the halfway point of the code you think you should examine, you cut
the search area in half with each test run. In this way, you can quickly narrow down the section of code
that you need to examine. When you have reduced the suspicious code to a small number of lines, a
step-by-step search should find the problem much more quickly.

The hypothesis/test approach
Sometimes you suspect what might be causing the problem, but have trouble making that situation
arise in a normal test run. For example, you think that a particular piece of code is misbehaving if it
receives erroneous data, but you have difficulty feeding erroneous data to that piece of code. In such a
case, you might set a breakpoint at the beginning of the code and then set up some erroneous data
directly, using patch operations or assigning values to appropriate variables. Once you have finished
setting up the data, you can run or step through the program to test your suspicions.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging
 Performance tips

This section offers tips for improving performance: the performance of Jato at design time, and the
performance of the generated program at run time.

 The Windows temporary folder

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging

 Performance tips
 The Windows temporary folder

The Windows system creates temporary files for various purposes during program execution.
Temporary files are created in a folder specified by the TEMP environment variable; if you do not define
this environment variable, the system uses a subfolder named Temp under the main windows folder
(for example, C:\Windows\Temp).

Normally, the system deletes temporary files when they are no longer needed. However, files may not
be deleted if the program that is using them crashes during execution. If you have a lot of crashes
during the process of debugging a program, this can lead to a build-up of useless files in the temporary
folder. This has two undesirable effects:

· The files waste disk space.

· Roughly speaking, the more files there are in a folder, the longer it takes to create a new file in that
folder. Therefore, if you already have a lot of files in your temporary folder, the system takes longer
to create a new temporary file. This slows down every program that needs temporary files,
including programs created with Jato, and the Jato program itself.

To avoid these problems, you should regularly check the temporary folder used by the system and
delete any files that may be left over from program crashes. Such files have the extension .TMP.

Make sure that you don’t have other programs running when you go in to clear out the old temporary
files. That way, you don’t have to worry about files that are actively in use by other programs.

 Jato Programmer ’ s Guide

 Part I. Fundamentals

 Chapter 7. Debugging
 Summary of debugging

Debugging Tools
A breakpoint pauses program execution at a particular code location. While the program is paused, you
may examine and manipulate the program using a number of tools:

· The Call Stack window displays what functions were executing at the time of the break.

· The Locals window displays the local variables defined within an executing function.

· The Watches window displays a number of expressions whose value you want to watch.

· The Assembly window displays an assembly code version of executable code.

· The Registers window displays the values of hardware registers.

· The FPU Registers window displays information about the 80x87 FPU of your computer.

· The Threads window displays information about the threads of your program.

· The Memory window displays the contents of memory in a variety of formats.

You can use these windows to modify (patch) values in memory or in the registers of your program.

The debugging tools have extensive drag-and-drop capabilities. For example, you can patch a memory
location by dragging a value from some other window and dropping it in a window showing that
memory location.

Stepping
Jato lets you step through your program in various ways:

· Step Into executes a single instruction. If this instruction contains a function call, Step Into stops
at the first instruction of the function.

· Step Over executes a single instruction. Step Over does not step into functions; in other words, it
executes the current instruction as a whole, including any function calls.

· Step Out executes up to the point where the current function returns to its caller.

· Step Next executes up to the next line of source code. It is typically used at the end of a loop
construct, to run through any remaining iterations of the loop.

· Run to Cursor executes up to the line of code containing the cursor.

· Skip to Cursor begins execution with the line of code containing the cursor, skipping any
intervening code.

If you are paused at a breakpoint, Run resumes normal execution of your program, Restart begins
program execution from the start again, and Terminate terminates the program.

Remote debugging
Remote debugging lets you run Jato on one computer (the local system) in order to debug a program
that is running on another computer (the remote system). For example, the local system might be
running Windows 95 while the remote system is running Win32s.

Remote debugging works by establishing a TCP/IP connection between the local system and the
remote system. In order for this to be possible, the remote system must be running tcpserv and must
have std.dll installed. If Jato needs any other files present on the remote system, it ships the files
via the TCP/IP connection before beginning the debugging session.

 Jato Programmer ’ s Guide
 Part II. Advanced topics

This part describes advanced Jato programming topics.

 Chapter 8. Working with databases
 Chapter 9. Writing Internet applications
 Chapter 10. Using and creating JavaBeans
 Chapter 11. Using ActiveX components and servers
 Chapter 12. Using threads
 Chapter 13. Using graphics and printers

 Jato Programmer ’ s Guide

 Part II. Advanced topics
 Chapter 8. Working with databases

This chapter discusses how you can use Jato to work with JDBC databases, and ODBC databases
accessed by the JDBC-ODBC bridge. This guide only makes no attempt to explain the JDBC or ODBC
standards themselves. It only discusses the features of Jato that let you access JDBC and ODBC
functionality.

Note: For a tutorial example of using databases, see the Getting Started guide.

 Transaction objects
 Query objects
 Bound controls
 Moving through the result set
 Bound list boxes and combo boxes
 Making changes in the database
 Database events
 The data navigator
 The Query Editor
 Bound parameters
 Database dialog forms
 Summary of working with databases

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases
 Transaction objects

A transaction object specifies information for communicating and working with a specific database. The
transaction object has associated properties identifying the database, and giving the password and
user identification that should be used when accessing the database. The transaction object also
manages SQL transactions with the database, either automatically or in explicit commit or rollback
operations.

Transaction objects are represented by the JDBCTransaction class. Jato gives transaction objects
default names of the form transaction_N. On the Database page of the Java component palette,
transaction objects are represented by the following button:

The JDBCTransaction class is derived from a base Transaction class that specifies methods for
dealing with many types of databases. Transaction defines generic database operations while
JDBCTransaction is an implementation of those operations specifically for JDBC. Therefore, this guide
usually discusses transaction objects in terms of the base Transaction class rather than the specific
JDBCTransaction class.

If a form’s code interacts with a database, you must place a transaction object on the form or on a
parent of the form. When you place a transaction object on a form, an icon appears on the form to
show that the object is there; however, this icon will not be visible at run time.

If your program only interacts with one database, you typically need only one transaction object in the
entire program.

 Transaction properties
 Setting up transaction information at run time
 Connecting to the database
 Managing transactions manually
 A hint for setting up transactions

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Transaction objects
 Transaction properties

After you place a transaction object on a form, you should set the properties for the transaction using
the object’s property sheet. The General page of the property sheet contains the following items:

JDBCDriver
The JDBC driver used to interact with your database. Click the arrow in the JDBCDriver combo
box to see which drivers are currently supported.

Note: To access an ODBC database, use the driver named sun.jdbc.odbc.JdbcOdbcDriver.
This driver is often called the JDBC-ODBC bridge because it performs the translations needed to
execute JDBC operations on an ODBC database.

DataSource URL
A URL specifying the location of the database.

UserID
The userid that the program should use to connect to the database. If you do not specify a userid,
the user may be prompted for a userid when your program attempts to connect with the database.

Password
The password that the program should use to connect to the database. For security, Jato displays
an asterisk (*) in place of each character you type. If you do not specify a password, the user may
be prompted for a password when your program attempts to connect with the database.

ConnectParams
Any extra information needed for connecting to the database. The nature of this information
depends on the type of database management system. The information is passed to the database
system in the manner expected by that type of database.

AutoConnect
If this is checked, Jato automatically connects to the database when the form is created. If it is
unchecked, your code must explicitly issue its own instructions to connect to the database (as
explained later in this section).

AutoCommit
If this is checked, each database operation is committed as it is completed.

TraceToLog
If true, the transaction object automatically records important actions in the program’s debug log;
for example, it records when the transaction connects to the database. If false, the actions are
not recorded. The default is false.

TraceToLog only has an effect in Debug mode; it does nothing in Release mode.

Note that this property controls information written to the Jato debug log, not the database’s trace
log.

DataSource (ODBC)
May be filled in if you want to use the query editor to create your queries. The current
implementation of the Jato query editor only works with ODBC databases. Therefore, you can
specify an ODBC database for the query editor to read at design time, even if the application will
use a JDBC database at run time. This means that the ODBC database specified as DataSource
(ODBC) may not be the database that the program actually uses (although it could be, if your
program uses the JDBC-ODBC bridge to access the ODBC database).

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Transaction objects
 Setting up transaction information at run time

You can set transaction properties at run time using appropriate methods on the transaction object. For
example, suppose your program obtains the connection userid and password from the user rather than
hard-coding them at design time. The following code sets the transaction object’s properties with this
information:
 // String userid;
 // String password;
 transaction_1.setUserid(userid);
 transaction_1.setPassword(password);

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Transaction objects
 Connecting to the database

If you mark AutoConnect on the transaction’s property sheet, the program automatically connects to
the database when the program creates the form that contains the transaction object. Otherwise, your
code must explicitly connect to the database at run time, using the connect method of Transaction:
 transaction_1.connect(this);
This connects to the database using the information associated with the transaction object. If you have
not specified a userid and password for the connection, the program prompts the user to enter a
password and userid.

The Connected property tells you whether the transaction object is currently connected to a
database:
 boolean connected = transaction_1.getConnected();
Disconnecting
The disconnect method of Transaction discontinues an existing connection:
 transaction_1.disconnect();

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Transaction objects
 Managing transactions manually

If the transaction’s AutoCommit property is true, changes are automatically committed when they
are made. This is the default. If you turn off AutoCommit using setAutoCommit, you must commit
changes explicitly.

The commit method of Transaction commits changes to the database:
 transaction_1.commit();
The rollback method of Transaction cancels any changes made to the database, provided those
changes have not yet been committed:
 transaction_1.rollback();
The commit and rollback methods have no useful effect if AutoCommit is true.

Note: Some databases close all open cursors when you call commit. One way around this is to close
the query object before you commit.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Transaction objects
 A hint for setting up transactions

When you are developing a program that uses databases, it is tempting to specify the database
administrator’s userid at design time (for example, DBA). However, this may not be a good idea if the
program will be used by non-administrators. Certain queries and other operations are valid for
administrators but not for non-administrators. To develop programs for non-administrators, specify a
non-administrator userid for the transaction object at design time. This lets you test the typical behavior
of the program, not the special case when the user is an administrator.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases
 Query objects

A query object represents a query on a specific database. Most programs that work with databases
make extensive use of query objects. Transaction objects just handle the process of connecting to the
database; after that, all interactions with the database are done through query objects.

Queries are represented by the Query class. Jato gives query objects default names of the form
query_N. On the Database page of the Component palette, query objects are represented by the
following button:

If a form makes a query on a database, you should place a query object on the form. When you place a
query object on a form, an icon appears on the form to show that the object is there; however, this icon
will not be visible at run time.
You can specify SQL queries by typing in the query as a normal text string or by constructing the query
using the Jato Query Editor. For more information, see The Query Editor.

 Associating a query object with a transaction object
 Query properties
 Setting up query information at run time
 Run-time only Query properties
 Opening a query
 The results of a query
 The cursor
 The size of the result set
 Positions in the result set
 Closing a query
 Executing a query

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Query objects
 Associating a query object with a transaction object

Every query object must be associated with a transaction object. The transaction object specifies the
database on which the query will act.

In the simplest case, the query object is placed on the same form as the transaction object. The query
object can also be placed on a “descendant” form of the form containing the transaction object. This
means that the form containing the query must be a child of the form containing the transaction object,
or a child of a child, and so on.

In order to make this possible, all the transaction objects in an application must have different names.
For example, if both Form1 and Form2 contain a transaction object, the transaction objects can’t have
the same name.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Query objects
 Query properties

After you place a query object on a form, you should set the properties for the query using the object’s
property sheet. The property sheet contains the following items:

Transaction [Query page]
The transaction object associated with the database that you want to query. Click the arrow at the
end of this entry to see a list of transaction objects defined on the current form; click one of the
names in this list.

SQL [Query page]
Contains the SQL statement you want to execute on the database. Many programs will leave this
blank at design time, then fill in an appropriate SQL query at run time. At design time, you can use
the query editor to construct the desired statement. For more information, see The Query Editor.

PrimaryKeyColumn [Options page]
Specifies the name of the primary key column in the SQL statement. If this property is not set, the
query object cannot go into Edit mode.

AutoOpen [Options page]
Automatically opens the query when the query object is created, executes the associated SQL
statement, and moves to the first row retrieved. By default, AutoOpen is true.

AutoEdit [Options page]
If true, the query automatically goes into edit mode if the user makes a change in a row. If false,
your code must explicitly put the query into edit mode if you want to modify an existing row. By
default, AutoEdit is false. For further information, see Modifying existing rows.

TraceToLog
If true, the query object automatically records important actions in the program’s debug log; for
example, it records when the query is opened. If false, the actions are not recorded. The default
is false.

TraceToLog only has an effect in Debug mode; it does nothing in Release mode.

Note that this property controls information written to the Jato debug log, not the database’s trace
log.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Query objects
 Setting up query information at run time

You can set query properties at run time using appropriate methods on the query object. For example,
suppose your program obtains SQL statements from the user rather than hard-coding them at design-
time. The setSQL method of Query sets up the query object with this information:
 String userStatement = "select * from dba.employee";
 query_1.setSQL(userStatement);
As another example, setTransactionObject sets the transaction object associated with the query:
 query_1.setTransactionObject(transaction_1);
 query_1.setTransactionObject(transaction_2);
You might change transaction objects if you want to use the same query object to query two different
databases.

Hint: If you are specifying your own SQL statement, make sure table names are fully qualified. For
example, specify dba.employee instead of just employee.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Query objects
 Run-time only Query properties

A number of Query properties can only be set at run time. The following list discusses some of these:

AutoRefresh
Automatically refreshes the contents of all bound objects after any update or delete operation. For
further information, see Refreshing after a change.

Opened
getOpened returns true if the query is open and false otherwise. There is no setOpened
function.

ReadOnly
getReadOnly returns true if the statement is not open or the concurrency level is read-only. It
returns false otherwise. There is no setReadOnly function.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Query objects
 Opening a query

The open method of Query executes a query on a database. For example,
 query_1.open();
executes the SQL statement in query_1 on whatever database is associated with the query object.

If you have turned on the AutoOpen property for the query object, your program automatically
executes open when the query object is being created.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Query objects
 The results of a query

Opening a query executes the query’s SQL statement. Some types of statements obtain information
from the database; for example, the SELECT statement obtains data selected according to specified
criteria. Other types of statements do not obtain data; for example, INSERT and UPDATE both place
information into the database.

If a statement obtains information from the database, the information is called a result set. A result set
contains zero or more rows of information. Each row contains one or more columns, and each column
in a row contains a data value. The current row is the row whose data is currently available to the
Query object.

The first row of the result set is numbered 1 (one), not 0. Similarly, the first column in every row is
numbered 1, not 0.

When you use open to execute a SELECT statement (or some other statement that obtains information
from the database), the information is not delivered to your program immediately. To obtain the
information, you must use methods which explicitly retrieve the data.

Between the open operation and the first data retrieval, you have the opportunity to specify what your
program will do with the data that is retrieved. The easiest way to display the retrieved data is to use
one or more bound controls, as explained in Bound controls.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Query objects
 The cursor

The query object maintains a cursor pointing to the current row in the result set. If a query object has
bound controls, these controls display values from the current row. The Query class offers several
methods which change the cursor from one row to another; for more information, see Moving through
the result set.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Query objects
 The size of the result set

The getColumnCount method returns the number of columns in the result set:
 int cols = query_1.getColumnCount();
If the return value is zero, there are no columns in the result set; this happens, for example, when the
query doesn’t select any columns from the database. A result set with no columns is called a null result
set.

If the return value of getColumnCount is greater than zero, the value is the number of columns in a
row; however, there is no guarantee that the result set actually contains any rows. There may be no
rows which meet the query’s criteria. A result set that has columns but has no rows is called an empty
result set.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Query objects
 Positions in the result set

The Query class offers a number of methods to determine your current position in a result set. The
functions

boolean first = query_1.isFirstRow();
boolean last = query_1.isLastRow();

let you test whether the current row is the first or last row of the result set. The functions return true if
the current row has the specified position.

The functions
boolean start = query_1.getBOF();
boolean end = query_1.getEOF();

let you test whether you are at “beginning of file” (before the first row in the result set) or “end of file”
(after the end of the first row in the result set).

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Query objects
 Closing a query

The close method of Query closes an open query:
 query_1.close();
A number of Query methods automatically close the query if it is currently open. For example, the
setSQL method automatically closes the query before it assigns a new SQL statement to the query
object.

Closing a query frees up the memory used to hold the results of the query. It also unbinds any data that
is stored in bound controls or bound arrays.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Query objects
 Executing a query

The execute method of Query lets you execute a SQL statement directly:
query_1.
 execute("delete from dba.employee where emp_id=12");
The argument of execute is a String value giving the database command you want to execute. This
command must not return a result set.

If the query object is open, Execute automatically closes it before executing the given SQL statement.

If the argument of execute is a null string, execute executes the string given by the query’s SQL
property.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases
 Bound controls

A bound control is an object whose value is automatically updated by query operations. For example,
you can bind a text box to a query object so that the text box always shows the value of a specified
column in the current row. If you move the cursor to point at a different row of data, the text box
automatically changes to show the value in the same column of the new row.

The following objects can serve as bound controls:

· Text boxes

· Labels

· Check boxes

· List boxes

· Combo boxes

If the user changes the value of a bound control, it typically changes the corresponding value in the
database. For example, if a text box displays the value of Column 1, changing the value of the text box
typically changes the value of Column 1 in the current row.

If AutoCommit is turned on for the transaction object, changes are immediately made permanent
(committed) in the database. If AutoCommit is turned off, the changes do not become permanent until
you invoke the commit method of the transaction object; before you call commit, you can cancel
changes using the rollback method of the transaction object.

If updates are not allowed on a database, the user will not be permitted to change the values in bound
controls. For example, if the concurrency level for the query object is read-only, the user will not be
permitted to change the values displayed by the bound controls.

 Setting up bound controls
 Checked and unchecked values
 How controls display values

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Bound controls
 Setting up bound controls

If you intend to use an object as a bound control, you must click the Bound Control checkbox on the
General page object’s property sheet. For example, if you intend to use a text box as a bound control,
you must click the text box’s Bound Control property at design time.

Important: If you do not click the Bound Control property at design time, you cannot use the object
as a bound control at run time.

Before you use an object as a bound control, you must also set the DataSource and DataColumns
properties for the bound control object.

· At design time, you can set these properties on the Database page of the object’s property sheet.

· At run time, you can set these properties with appropriate set methods, as described later in this
section. This is usually done in the Create event handler for the form that contains the bound
control; however, if you have turned on AutoOpen in the query object, you cannot set properties in
the Create event handler for the form, because the query object is opened before the form’s
Create event is triggered.

The DataSource property
The DataSource property specifies the query object to which the control will be bound. For example,
suppose that textb_1 will be a bound control for query_1.

· To specify the DataSource property at design time, fill in the DataSource box on the Database
page of the bound control’s property sheet. This box offers a list of query objects; click the query to
which this object will be bound.

· To specify the DataSource property at run time, use setDataSource, as in
textb_1.setDataSource(query_1);

The DataColumns property
The DataColumns property determines which column’s value should be displayed by the bound
control. You can specify the column using the column’s name or its ordinal number. For example,
suppose that textb_1 will be bound to the column called emp_id.

· To set this up at design time, use the Database page of the property sheet for textb_1. Set
DataColumns to emp_id.

· To set this up at run time, use the setDataColumns of textb_1, as in:
textb_1.setDataColumns("emp_id");

If you specify a column by its number, the number is given as a string value:
textb_2.setDataColumns("2");

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Bound controls
 Checked and unchecked values

The DataValueChecked property is used with check boxes. It specifies that the check box should be
checked when the associated column has the given value. For example,
 checkbox_1.setDataValueChecked("Male");
 checkbox_2.setDataValueChecked("Female");
sets up two check boxes. One will be marked when the associated column value is "Male" and the
other will be marked when the column value is "Female".

The DataValueUnchecked property is also used with check boxes. It specifies that the check box
should be unchecked when the associated column has a particular value. For example,
 checkbox_1.setDataValueChecked("Here");
 checkbox_1.setDataValueUnchecked("There");
specifies that the check box should be checked if the corresponding column value is "Here" and
should be unchecked if the value is "There". A three-state check box will be in its indeterminate state
(grayed where the check mark would appear) if the value is neither "Here" nor "There".

At design time, you can set these properties on the Database page of the check box’s property sheet.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Bound controls
 How controls display values

Each type of bound control shows data values in different ways:

· Text boxes and labels show the value of the associated column in the current row.

· A check box is checked if the value of the associated column equals the value of the check box’s
DataValueChecked property. The check box is unchecked if the value of the associated column
equals the value of the check box’s DataValueUnchecked property. Three-state check boxes are
grayed out if the value does not match either DataValueChecked or DataValueUnchecked.

· List boxes and combo boxes can display values in several different ways. For more information,
see Bound list boxes and combo boxes.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases
 Moving through the result set

The move methods of Query move the cursor to point to a new row in the result set. The data shown in
bound controls will change to reflect the corresponding values in the new row.

All move methods accept a boolean argument named notify. This is explained later in this section.

The move methods are:

move(row, notify)
Moves the cursor to the row specified by the integer row. For example, if row is 10, move
attempts to move to row 10 of the result set.

moveFirst(notify)
Moves the cursor to the first row of the result set. The row argument is ignored.

moveLast(notify)
Moves the cursor to the last row of the result set. The row argument is ignored.

moveNext(notify)
Moves the cursor to the next row of the result set. The row argument is ignored.

movePrevious(notify)
Moves the cursor to the previous row of the result set. The row argument is ignored.

moveRelative(offset, notify)
Moves the cursor forward or backward depending on the integer value of offset. For example, if
offset is +10, move moves 10 rows forward from the current row; if offset is -10, move moves
10 rows backward.

The result of any move method is false if the given motion moves the cursor to “beginning of file” or
“end of file” (before the first row in the result or after the last). For example, this might happen if you
attempt to move to a row that lies outside the actual number of rows in the result set.

The move methods always execute an update action before moving from the current row. If the
notify argument of the move method is true, the update action notifies all bound controls that they
should refresh themselves; otherwise, update does not do this. For more information on the update
method, see Making changes in the database.

 Getting a value from the current row
 Finding the column index
 Column information

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Moving through the result set
 Getting a value from the current row

The getValue method of Query gets a value from the current row. This method is a simple way to
obtain values, without using bound controls.

The getValue method has the form
 // int column;
 DataValue dv = query_1.getValue(column);
where column is the number of the column whose value you want. The result of getValue is a
DataValue object.

DataValue is a type that encapsulates all the data types that can be returned from the database; it has
methods to cast values into other types. For example, suppose dv is a DataValue object; the following
lines show a few ways to interpret the value as various Jato types.
 String s = dv.getCHAR();
 %%% Many more to come
As an example, if you want to display data value from column 2 in a text box, you can write
 textb_1.setText(query_1.getValue(2).getCHAR());
For more information on DataValue and its conversion methods, see the Jato Component Library
Reference.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Moving through the result set
 Finding the column index

The getColumnIndex method determines the column index corresponding to a given name. For
example,
 int i = query_1.getColumnIndex("Employee_ID");
determines the number of the column that is named Employee_ID. This is helpful when used in
conjunction with methods that refer to columns by number instead of name.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Moving through the result set
 Column information

The getColumn method of Query returns an object that provides information about the column and
its contents:
 DataColumn dc1 = query_1.getColumn(1);
determines information about column 1.

The DataColumn class
The result of getColumn is a data object of the DataColumn class. This class offers a number of
methods that obtain information stored in the object. These include:

// DataColumn dc;
int index = dc.getIndex(); // column number
int length = dc.getLength(); // column length
int dSize = dc.getDisplaySize(); // display size
long prec = dc.getPrecision(); // precision
int scale = dc.getScale(); // scale
String label = dc.getLabel(); // column label
String name = dc.getName(); // column name
boolean readOnly = dc.getReadOnly(); // read-only?
boolean uns = dc.getUnsigned(); // unsigned?
For more information on DataColumn, see the Jato Component Library Reference.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases
 Bound list boxes and combo boxes

This section discusses the use of list boxes and combo boxes as bound controls.

There are two different ways to use list boxes:

· To show all the values from a column of the current result set. This contrasts with other bound
controls which can only display values from the current row, not the whole result set. Using a list
box in this way is called list mode.

· To show all the possible values for the bound column. This is called lookup mode. To use a list box
in lookup mode, you can manually set the list of possible values, or obtain them from a second
query object. The bound list box indicates the value of the current row by selecting (highlighting)
that value in the list of possible values.

The mode is controlled by a list box property named DataBindAsLookup. For further information, see
Using list boxes in list mode, and Using list boxes in lookup mode

Note: The contents of a list box are cleared as soon as you set a property related to databases (for
example, DataSource or DataColumns).

 Using list boxes in list mode
 Using list boxes in lookup mode
 Bound combo boxes

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Bound list boxes and combo boxes
 Using list boxes in list mode

In list mode, a list box displays all the values for a specified column in the current result set. Each line
in the list box corresponds to a row in the result set.

For example, suppose that a query obtains information about all the employees in a company and that
the list box is bound to the column giving the last name of an employee; then the list box displays the
last names of all the employees in the company.

Note: Users may have trouble working with a list box that contains a huge number of entries. If you
expect a query to have a large result set, consider using a list view instead of a list box.

To put a list box into list mode, set DataBindAsLookup property to false (leave it blank on the
property sheet). In this mode, the other Database properties of the list box have the following
meanings:

DataSource
The name of the query object to which the list box is bound.

DataColumns
The column(s) to which the list box is bound. Columns are specified by name or by number. You
can specify either one or two columns. If you only specify one column, the list box is bound to that
column and displays values from that column. If you specify two columns, the list box displays
values from the first column; values from the second column are retrieved as DataValue values and
stored as the userdata value for each list box item.

DataTrackRow
If DataTrackRow is true, the selected item in the list box corresponds to the column value for the
current row. Selecting a different value changes to a different row. For example, if the user selects
the first item in the list, the first row in the result set becomes the current row.

If DataTrackRow is false, the selection is not related to the current row. Changing the selection
has no effect on the current row.

You may only set DataTrackRow to true if the list box is in single selection mode.

By default, DataTrackRow is false.

DataLookupSource, DataLookupColumns
Ignored in list mode. If you try to change the values of either of these properties in list mode, the
operation fails.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Bound list boxes and combo boxes
 Using list boxes in lookup mode

In lookup mode, the list box shows a list of all the possible values that might be entered into a particular
column in the result set. The highlighted item in the list shows the current value for that column in the
current row. In lookup mode, a list box represents a single value (a “cell”) in the database.

For example, suppose that a query returns information about employees in a company. You might use
a list box in lookup mode to display all the departments in the company. When you display information
about a particular employee, the name of the employee’s department will be highlighted in the list box.
To transfer an employee to a different department, select the new department from the list box.

To put a list box into lookup mode, set DataBindAsLookup to true.

In order to use a list box in lookup mode, you have to set up the contents of the list box to show all the
possible values. There are two ways to do this:

· Manually setting the list items. To do this, you explicitly add each item to the list using the add or
dataAddLookupItem method of the list box.

· Obtaining the list with a database query. For example, if the list box is suppose to list all the
departments in a company, you could obtain the department names from a database. This is often
done using a foreign key relationship with the bound column.

You can also combine these two approaches. For example, you can obtain a basic list of possibilities
using a database query, then add more items manually. You can also do this in the opposite order: start
off by adding some items manually, then obtain more possibilities using a database query.

Note: For an example of using bound list boxes, see Database Data Lookup List in the Jato
sample programs.

Manually setting up lookup lists
To place a lookup value directly into the list box, use the dataAddLookupItem method. This method
has the prototype:
int dataAddLookupItem(DataValue value,

String string,
int itemNumber,
Object itemUserData,
boolean addInSortedOrder);

The parameters are:

value
An actual value that can appear in the column. Note that this is a DataValue object.

string
The actual string that should appear in the list box item. If this value is null, the list box shows the
given value.

itemNumber
Specifies where this value should be placed in the list box list. An item number of -1 means the
end of the list.

itemUserData
Specifies any user data that should be associated with the item.

addInSortedOrder
true if you want to add the item in alphabetic (or numeric) order, and false otherwise. If this

argument is true, dataAddLookupItem ignores the itemNumber argument.

As an example of the relationship between value and string, suppose that list box is going to list all the
departments in a company. The value might be an ID number used to identify a particular department,
while the string may be the name of the department. The database may refer to departments by ID
number, but it is more helpful to show user’s the department name.

Instead of using dataAddLookupItem, you can also use the normal add method of ListBox to add
items to this list box. In this case, the “value” of an item is its text.

Obtaining lookup lists with a database query
As noted earlier, lookup mode lets you obtain list box entries from a database query. Since this is a
complicated situation, it is useful to start with a concrete example. This example appears as Lookup
Mode List Box in the Jato sample programs. It is based on the following assumptions:

· Suppose that the purpose of a form is to show information about the employees of a company. This
information is obtained by query_1.

· A list box in lookup mode will specify the department to which each employee belongs. This means
that the list box will contain a list of departments. This list is obtained by query_2. There is usually
a foreign key database relationship between the values obtained by query_1 and query_2.

· When the form displays information about a particular employee, that employee’s department will
be highlighted in the complete list of departments that is displayed in the list box.

To set up a list box in this way, you set the Database properties of the list box as described below:
DataSource

The query object to which the list box is bound. In our example, this will be query_1, the query
that obtains information about employees.

DataColumns
The column to which the list box is bound. The column may be specified by name or by number. In

our example, this is the ID number for the employee’s department.

DataBindAsLookup
Is set true to indicate lookup mode.

DataTrackRow
Ignored in lookup mode. If you try to change the value of this property in lookup mode, the
operation fails.

DataLookupSource
The query object that obtains the lookup list. In our example, this will be query_2, the query that
obtains the list of departments.

DataLookupColumns
Specifies one or two columns from query_2.

The first column specified by DataLookupColumns must have the same type as the column
specified by DataColumns; this will usually be a foreign key relationship in the database.

If DataLookupColumns only specifies one column, the list box displays all the values found in the
given column of the query. If DataLookupColumns specifies two columns, the first column gives
the values to be matched against DataColumns and the second column gives the actual names to
be displayed.

To go back to the example, you might set these properties as follows:

DataSource: query_1
DataColumns: dept_id
DataLookupSourc
e:

query_2

DataLookupColum
ns:

dept_id, dept_name

The SQL statement of query_2 obtains the ID number and name of every department in the company.
DataLookupColumns indicates that the value of each item in the list box will be a department ID
number; instead of displaying the ID number, the list box displays the corresponding department name.

The SQL statement of query_1 obtains information about every employee, including the ID number of
the employee’s department. Therefore, when the program displays information about an employee, it
checks the ID number returned as part of query_1 against the list of ID numbers returned by
query_2. The highlighted item in the list box will be the department name associated with the
matching ID number.

Derived lookup lists
You can fill up a lookup list from a query without actually binding the list box. To do this, specify values
for DataLookupSource and DataLookupColumns without specifying values for DataSource and
DataColumns. In this case, the list box displays all the values obtained from the given source in the
given column. The contents of the list box are filled when you open the DataLookupSource query.

You can use this technique if you want the user to select values from a lookup list but are not using
these values directly to reflect another table in the database.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Bound list boxes and combo boxes
 Bound combo boxes

A bound combo box is similar to a bound list box in lookup mode. The text box part of the combo box
shows the value of a column in the current row, and the list box part shows all the possible values for
that column. The difference is that a lookup mode list box only lets you select entries that are already in
the list; a bound combo box lets you select existing entries or enter a new value in the text box part of
the combo box.

A bound combo box has all the properties associated with a list box in lookup mode: DataSource,
DataColumns, DataLookupSource, and DataLookupColumns. As with list boxes, you can add
lookup items to a combo box using the DataAddLookupItem method of the combo box. The method
has the same format as for list boxes.

If you edit the contents of the combo box’s text box directly or by selecting a lookup item, the same
change is made in the associated column value of the current row of the database.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases
 Making changes in the database

There are several ways to make changes in a database:

· Deleting existing rows.

· Adding new rows.

· Modifying the contents of existing rows.

In order to make such changes, the query object must be open; you cannot change the database if the
query is closed. You must also set the appropriate properties for the transaction and query objects to
enable updates. This means you must set an appropriate access mode for the transaction object and
concurrency level for the query object.

Once these properties have been set appropriately, your program can make changes to the database.
The sections that follow describe how this is done.

If AutoCommit is TRUE, any changes you make are committed immediately. If AutoCommit is FALSE,
the database is not permanently changed until you commit your changes using the commit method of
the transaction object.

 Deleting existing rows
 Adding new rows
 Modifying existing rows
 Refreshing after a change
 Canceling changes

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Making changes in the database
 Deleting existing rows

The delete method of the query object deletes the current row:
 // boolean notify;
 boolean success = query_1.delete(notify);
If notify is TRUE, bound objects are updated to show that the row has been deleted. This is done by
triggering a DataAvailable event on each bound object. For more information on the DataAvailable
event, see DataAvailable.

If notify is FALSE, bound objects are not updated.

The delete method fails if you are at EOF or BOF (past the last row in the result set or before the first
row), if the result set is already empty, if you are in the middle of adding or modifying a row, or if you
cannot change the database.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Making changes in the database
 Adding new rows

Adding a new row to the database requires the following steps.

¨ To add a new row to the database:
1. Call the add method of the query object to begin the process.

2. Set values for the new row in the bound controls or using setValue.

3. Call the update method of the query object to add the new row to the database.

For example, suppose the current result set has two columns, both bound to text boxes. The following
code adds a new row to the database:

 query_1.add(false, false, false);
 textb_1.setText("Value 1");
 textb_1.setText("Value 2");
 query_1.update(true);
The add method has the prototype:
boolean add(boolean copyValues,

boolean append,
boolean copyIntoBuffer);

The parameters are:

copyValues
If this is true, add sets initial values for the new row by copying each column from the current row.
If copyValues is false, the initial values for the new row are blank (undefined).

append
If this is true, add puts the new row at the end of the current result set. If append is false, add
places the new row after the current row.

copyIntoBuffer
If this is true, add copies column values from the new row into any arrays bound to those
columns. If copyIntoBuffer is false, add does not copy the values.

The update method has the full prototype:
boolean update(boolean notifyTargets);

where:

notifyTargets
If this is true, update triggers a DataAvailable event on each bound control. For further details,
see DataAvailable.

If the AutoRefresh property is turned on, the columns of the new row will be shown in the position
where they are placed by the database. This position depends on the way that the database is sorted.
For more information, see Refreshing after a change.

The add method puts the query object into add mode. In this mode, you cannot delete rows with
delete. A call to update terminates add mode.

Note: If you open a query with an ORDER BY modifier in the SQL statement, the database creates a
special temporary table when you add a new row to the database. The new row stays in that temporary
table until you close the query; at that point, the row is added to the database in its proper place.
Because of this, you can’t see the any new rows you add to the database until you close and reopen

the query, even if your cursor type is dynamic.

The same thing happens in various other situations: for example, when there is a GROUP BY or
DISTINCT clause that can’t be satisfied by an index, or when you specify UNION but not UNION ALL.
Other database products typically create temporary tables in similar situations.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Making changes in the database
 Modifying existing rows

Modifying an existing row is similar to adding a new row.

¨ To modify an existing row:
1. Use a move function to move to the row you want to modify.

2. Call the edit method of the query object to begin the process.

3. Modify the values of the row in the bound controls or bound arrays.

4. Call the update method of the query object to make the change.

For example, suppose the current result set has two columns, both bound to text boxes. The following
code modifies the current row:

 query_1.edit();
 textb_1.setText("Value 1");
 textb_1.setText("Value 2");
 query_1.update(true);
As shown above, edit takes no arguments. It simply puts the query object into a mode where the
current row may be edited. This is called edit mode.

If the AutoEdit property is true, you do not have to call edit explicitly. Your program automatically
goes into edit mode if the user changes the value in a bound control or uses setValue to change a
value. You still have to call update after making the changes. If AutoEdit is false, you must call edit
explicitly before making changes.

Even if AutoEdit is true, you must call edit if you are changing the row by directly modifying data in
bound columns. In other words, if you use setValue to change a value, setValue calls edit
automatically (when AutoEdit is true); however, if you store values in bound arrays without using
setValue, you must call edit yourself.

If you call move after setting new values, move automatically calls update. In this situation, you do not
have to call update explicitly.

For more information about update, see Adding new rows.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Making changes in the database
 Refreshing after a change

The refresh method of a query object synchronizes the contents of bound objects with the current
contents of the database:
 query_1.refresh();
The effect is similar to closing the query then opening it again, but is more efficient. The refresh
method also attempts to set the current row to the row you were at before calling refresh.

If the AutoRefresh property is turned on for the query object, your program automatically performs a
refresh operation after every update or delete operation. If AutoRefresh is turned off, the query
objects are not refreshed until you call refresh explicitly. In this case, the run-time support environment
makes its best guess at the effects of each operation, without actually checking the real effects against
the database.

A refresh operation can take a good deal of time, especially with large databases or queries that return
a lot of data. If you are performing a series of operations that should have a predictable effect (such as
adding an ordered sequence of rows), you can improve performance by turning off AutoRefresh and
calling refresh explicitly at the end of the operations.

However, if you are performing operations that may change the order of the database rows, it could be
safer to refresh after every change. Otherwise, bound controls like list boxes may get out of synch with
the database, and subsequent operations may not be performed correctly.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Making changes in the database
 Canceling changes

The cancelUpdate method of a query object can cancel any modifications you have made in the
current row. For example, suppose you begin to modify the current row by calling edit and then change
the value of some bound controls. You can cancel the changes with
 query_1.cancelUpdate(true);
This resets the bound controls to their previous values. If you do not need to reset the bound controls,
you can use
 query_1.cancelUpdate(false);
You must call cancelUpdate before calling update; once you call update, you can’t cancel the
changes.

The cancelUpdate method can also cancel the process of adding a new row. For example, if you call
add and start setting up values for a new row, cancelUpdate cancels the operation.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases
 Database events

This section examines events related to working with databases.

 DataAvailable
 AdjustCursor
 Event timing

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Database events
 DataAvailable

The DataAvailable event is triggered on all bound controls whenever the data in the current row
changes: when current row values are modified or the cursor moves.

Most users will never have to write a DataAvailable event handler—the default handlers automatically
update bound objects as desired.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Database events
 AdjustCursor

The AdjustCursor event of Query takes place immediately after a move operation changes the
current row. Most user programs will not respond to this event, but it is used by the data navigator.
(See The data navigator for more details.)

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Database events
 Event timing

If a query has the AutoOpen property turned on, the program attempts to open the query and fill its
bound controls with initial values as soon as the containing form is opened. These operations take
place before the form’s Create event is triggered, since the Create event is not triggered until all the
objects on the form have been properly created and initialized.

This means that bound controls will receive a DataAvailable event (and possibly other database-
related events) before the Create event for the form. By the time the form’s Create event is triggered,
the bound controls will control their first values, as obtained from the database.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases
 The data navigator

A data navigator provides a simple way for the user to move through a database. When you place a
data navigator on a form, it looks like a set of buttons with arrows on them; clicking these buttons
automatically moves back and forth through the database in a manner similar to the move methods of
Query. The data navigator may contain the following buttons:

· Move to the first row of the result set.

· Move to the previous row.

· Move to the next row.

· Move to the last row of the result set.

· Add a new row (go into Add mode, as with the query’s add method).

· Delete the current row.

· Edit the current row (go into Edit mode, as with the query’s edit method).

· Update the current row (by executing update on the query).

· Cancel changes to the current row (by executing cancelUpdate on the query).

· Refresh the result set (by executing refresh on the query).

Data navigators are used as bound controls, bound to the query object which retrieves information from
the database.

Data navigators are represented by DataNavigator objects. Jato gives data navigators default names of
the form dataNavigator_N. On the Database page of the Java component palette, data navigators are
represented by the following button:

If a data navigator is higher than it is wide, the buttons of the navigator are arranged vertically. Otherwise,
the buttons are arranged horizontally.

 Choosing buttons for the navigator
 Binding the data navigator to a query
 Action properties

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 The data navigator
 Choosing buttons for the navigator

By default, all of the available buttons appear on a data navigator. However, you can remove selected
buttons by turning off properties that appear on the General page of the data navigator’s property
sheet. For example, if you turn off ShowRefresh, the Refresh button will not appear on the data
navigator. You can also use

dataNavigator_1.setShowRefresh(false);
to make the Refresh button disappear at run time, or

dataNavigator_1.setShowRefresh(true);
to make the button appear.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 The data navigator
 Binding the data navigator to a query

A data navigator must be bound to a query object.

· At design time, you can bind the data navigator by typing the name of a query object in
DataSource on the navigator’s property sheet.

· At run time, you can bind the data navigator with setDataSource:
 dataNavigator_1.setDataSource(query_1);

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 The data navigator
 Action properties

The EOFAction property controls what happens when the user is already at the last row of the result
set, then clicks the “move to next row” button. Possible values are:

DataNavigator.ACTION_NONE // take no action
DataNavigator.ACTION_MOVE_FIRST // move to first row
DataNavigator.ACTION_MOVE_LAST // move to last row

For example, if you choose ACTION_MOVE_FIRST, the effect is to wrap around to the beginning of the
result set if you move off the end. If you choose ACTION_MOVE_LAST, the effect is to keep going back
to the last row if the user tries to go past the last row. EOFAction may be set at design time in the data
navigator’s property sheet, or at run time with setEOFAction.

Similarly, the BOFAction property controls what happens when the user is at the first row of the result
set, then clicks the “move to previous row” button. Possible values are the same as for EOFAction.
BOFAction may be set at design time in the data navigator’s property sheet, or at run time with
setBOFAction.

In order to handle EOF and BOF actions, the data navigator specifies an AdjustCursor event handler
for the query object. If the cursor is about to be moved off the end of the of result set or before the
beginning, the event handler changes the move operation in accordance with the current EOFAction
or BOFAction value.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases
 The Query Editor

The Query Editor helps you construct the SQL statement that is associated with a Query object. The
Query Editor is opened at design time, once you have placed the Query object on a form and have
bound the object to a valid transaction object. The Query Editor uses the information specified in the
transaction object to connect to the database and examine the database’s contents. In this way, the
Query Editor can obtain information about the database (for example, the names of database columns)
and can perform test queries on the database to make sure that you have constructed your query
properly.

Important: %%% In this beta version of Jato, the query editor must work with an ODBC database—
the query editor does not support JDBC databases. Some applications may be able to construct a
query with the query editor using the ODBC database at design time; then at run time, the applications
can access the ODBC database using the JDBC-ODBC bridge. For more information about the JDBC-
ODBC bridge, see Transaction properties.

¨ To open the Query Editor:
1. On the Query page of the Query object’s property sheet, click Edit.
2. When the Query Editor window opens, click Refresh.

The Query Editor displays a window for constructing SQL statements:

If you click OK, Jato returns to the property sheet for the Query object. You can then test this query by
clicking Test on the Query page of the property sheet, or by using the Test page of the Query Editor.
The sections which follow examine each page of the Query Editor.

 The Tables page
 The Joins page
 The Columns page
 The Sort page
 The Where page

 Using the Criterion Editor
 The Group page
 The Having page
 The Compute page
 The Test page

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 The Query Editor
 The Tables page

The Tables page specifies the database tables that should be included in the query. This generates a
FROM clause in the SQL statement being constructed. All tables listed in the Selected Tables list will be
included.

¨ To select a table:
1. Click on the name of the table in the Matching Tables list, then click Add; or

2. Double-click the name of the table in the Matching Tables list; or

3. Drag the name of the table from the Matching Tables list to the Selected Tables list.

Table type specifies the type of tables listed in the Matching Tables list. By choosing a different table
type, you can get a different list of tables.

The Table pattern and Owner pattern boxes let you restrict the set of tables displayed in the Matching
Tables list. A pattern is a string that may contain the character % standing for any string of zero or more
characters. For example, if you specify emp% for Table pattern, the Matching Tables list displays all
tables whose names begin with the characters emp. Similarly, if you specify %cust%, the Matching
Tables list displays all tables containing cust anywhere in their names.

The Table pattern entry controls which table names are displayed. The Owner pattern text box lets
you restrict entries based on the owner name. If you change Table pattern or Owner pattern, click
Refresh to get the list of tables which match the given pattern(s).

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 The Query Editor
 The Joins page

The Joins page specifies the way that selected tables will be joined. For an explanation of all the types
of joins available, see your SQL manual.

¨ To specify a join:
1. Click a table from the Table 1 list.

2. Click a type of join from the Type list.

3. Click a table from the Table 2 list.

4. Click Add.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 The Query Editor
 The Columns page

The Columns page lets you select the columns that will be included in the result set. This generates a
SELECT clause in the SQL statement.

The Available Columns list displays columns as a tree view, with the top levels of the tree occupied by
the tables selected from the database. Expanding these levels displays the columns defined within
each table. All columns listed in the Selected Columns list are retrieved by the query.

¨ To select a column:
1. Click on the name of the column in the Available Columns list, then click Add; or

2. Double-click the name of the column in the Available Columns list; or

3. Drag the name of the column from the Available Columns list to the Selected Columns list.

You can change the position of an item in the Selected Columns list by clicking on the item and then
clicking Move Up or Move Down.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 The Query Editor
 The Sort page

The Sort page describes how the database should sort the results of the query. This generates an
ORDER BY clause in the SQL statement.

The Sort by column lists the sorting items in order of priority, and whether the sort should be
ascending or descending. For example, the following diagram sorts by the employee’s last name, then
by employee’s first name when employees have the same last name.

¨ To place an item in the Sort by List:
1. Click on the name of the column in the Available Columns list, then click Add; or

2. Double-click the name of the column in the Available Columns list; or

3. Drag the name of the column from the Available Columns list to the Sort by list.

The direction of sorting is shown by the arrow beside the sorting item: an up arrow indicates an
ascending sort, and a down arrow indicates a descending sort. You can change the direction of the sort
by double-clicking the arrow. You can also specify the direction by clicking the item in the Sort by list,
then clicking Ascending or Descending.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 The Query Editor
 The Where page

The Where page lets you specify search criteria for the query. By specifying conditions on this page,
you can restrict the rows that are returned by the query. The criteria given on this page will appear in a
WHERE clause of the final statement.

All the criteria on the Where page are connected with AND or OR operations, as in ((Criterion 1 AND
Criterion 2) OR Criterion 3).
You can specify a criterion in one of two ways. First, you can simply type in the criterion as a string, using
normal SQL format:
¨ To add a new criterion function as a string:
1. Type the new criterion into New Criteria.

2. Click And if the new criterion will be added to existing criteria with an AND operation. Click Or if the
new criterion will be added to existing criteria with an OR operation.

3. Click Add to add the new criterion to the existing list.

Second, you can specify a criterion using the Criterion Editor.

¨ To add a new criterion function using the Criterion Editor:
1. Click Edit. This opens the Criterion Editor.

2. Create your criterion using the editor. For further information, see Using the Criterion Editor. Click
OK when done.

3. Click And if the new criterion will be added to existing criteria with an AND operation. Click Or if the
new criterion will be added to existing criteria with an OR operation.

4. Click Add to add the new criterion to the existing list.

You can modify an existing criterion by clicking on the criterion in the Criteria list, then clicking Modify.
This copies the criterion to New Criteria, where you can edit it as a string or edit it using the Criterion
Editor.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 The Query Editor
 Using the Criterion Editor

The Criterion Editor presents all the information required to construct a criterion expression. The
expression is displayed under Expression. The Columns list shows all the columns that have been
selected for the current query, and the Functions list shows all the functions that can be used in the
criterion expression. The Criterion Editor also supplies buttons for numbers, and various operations
that can be performed in the expression.

To add a column name to the expression, double-click the column name in the Columns list. Similarly,
to add a function call to the expression, double-click the function name in the Functions list.

Items are always added to Expression at the current location of the cursor. When you have
constructed your criterion, click OK to return to the Where page.

As an example of a simple criterion, suppose you are creating a statement to display employees in a
particular department of a company. You might specify

DBA.employee.salary > 50000
so that the statement only returns information about employees whose salary is greater than $50,000.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 The Query Editor
 The Group page

The Group page specifies columns by which rows will be grouped. The columns you select on this
page are given in a GROUP BY clause in the final query. You must select tables using the Tables page
before selecting grouped columns. Furthermore, the columns that you select on the Group page must
appear in the Selected Columns list on the Columns page.

The Available Columns list shows the columns from the selected tables. To specify a grouped column,
you add the column name to the Group by list.
¨ To add a column to the Group by list:
1. Click on the name of the column in the Available Columns list, then click Add; or

2. Double-click the name of the column in the Available Columns list; or

3. Drag the name of the column from the Available Columns list to the Group by list.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 The Query Editor
 The Having page

The Having page sets up group restrictions. You can restrict which groups will be selected based on
the group values and not on the individual row values. The Having page creates a HAVING clause in
the SQL statement.

The Having page looks and works like the Where page. For example, you can create a new condition
by using an editor similar to the Criterion Editor. For more information, see The Where page.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 The Query Editor
 The Compute page

The Compute page lets you add new columns to the result set, using calculations on existing columns.
For example, suppose you have a database describing company personnel and one column gives
each person’s salary. You could use the Compute page to add an expression similar to
 salary * 1.05
to calculate a new column for the result set. This column would show what the new salaries would be if
everyone got a 5% raise.

Columns created through the Compute page are incorporated into the result set that your program
retrieves. However, the calculated values are not actually added to the database itself.

The Compute page looks and works like the Where page. For example, you can enter your
calculations using an editor similar to the Criterion Editor. For more information, see The Where page.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 The Query Editor
 The Test page

The Test page lets you test the results of your query by selecting a limited number of rows from the
database. Click the Test button on this page to initiate the query.

By default, the Query Editor retrieves 20 rows from the database, to show you sample results of the
query. If you want to see more rows to make sure the query worked, click More rows. Each time you
click More rows, the Query Editor retrieves more rows.

You can also test the query by clicking the Test button on the Query page of the Query object’s
property sheet.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases
 Bound parameters

SQL queries may use the question mark (?) as a placeholder in statements like
 SELECT * FROM employee WHERE manager_id = ?
These placeholders are called parameters. The parameters must be filled in with actual values before
the statement can be executed.

Important: When a query contains such parameters, you cannot use the AutoOpen property for the
query (since the parameters must be filled in before the query can be opened). Therefore, you must
turn off AutoOpen and call the open method explicitly in your code, after you have filled in parameter
values.

To specify values for a parameter, you use the setParameter method of the query object. This method
assigns a value to a specified parameter in the query. For example,
 query_1.setParameter(1, DataValue(200));
sets the first parameter in the query to a value of 200.

If you change the value of a bound parameter, you can use the resubmit method of the query object to
submit the query again with the new parameter values. The resubmit method is faster than the usual
open operation.

For more information about setParameter and resubmit, see the Jato Component Library Reference.

Bound parameters are often used to create master/detail views. Typically, you have one query (the
master) which provides a list of items. If the user selects one of these items, the detail query displays
more information about the selected item.

For example, the master query could be:
SELECT customer.id, customer.lname
FROM "DBA"."customer" customer

The detail query could be:

SELECT customer.fname, customer.lname,
 customer."address", customer.city,
 customer.state, customer.zip, customer.phone,
 customer.company_name
FROM "DBA"."customer" customer
WHERE customer.id = ?

You would bind this to a list box with the lname showing and the id in the userdata field. In the
Select event for the list box, you would fetch the id of the selected item and do something to associate
it with the parameter in the detail query. The association is done either by setting the value of a variable
which has been bound to the parameter, or perhaps by setting the parameter value directly using
setParameter. After fetching the id value you would then resubmit the detail query which would fetch
and display the details for the specified id.

Bound parameters are also useful in filling the lookup values in drop-down lists.

Note: At design time, if you use the Query Editor to test a query that contains bound parameters, the
Query Editor prompts you to enter values for the bound parameters.

 Using bound parameters for output
 Stored procedures

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Bound parameters
 Using bound parameters for output

You can also use bound parameters to obtain information from the database. In this case, you use
setParameter to specify information about the parameter before opening the query, then use
getParameter to determine the value of the parameter.

The following statement shows a typical use of setParameter for setting up an output parameter:
query_1.setParameter(3, "input/output", SQL_CHAR,

WQPTInputOutput, 200);
The first argument is the number of the bound parameter in the query’s SQL statement. The next is an
initial value for the parameter (in this case, the string "input/output". The next argument is the type
of value in the data column. The second last argument specifies how the bound parameter is being
used; possible values are:

WQPTInputOutput
WQPTInput
WQPTOutput

The final argument is the maximum size of the value. It only applies to character or binary data, and
only if this bound parameter is going to receive output.

After the query is opened, you can obtain the value returned to the bound parameter using the
getParameter method, as in

DataValue dv = query_1.getParameter(3);
This sample statement gets the value that was assigned to parameter 3.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Bound parameters
 Stored procedures

You can use stored procedures in the SQL statement associated with a query. To do this, you enclose
the procedure call in braces, as in

query_1.setSQL("{call test_output(?,?)}");

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases
 Database dialog forms

%%% Not yet implemented in the beta version of Jato.

The easiest way to set up a form that uses database is to select DatabaseDialog from the Form
Wizard. This creates a form containing a transaction object, a query object, a data navigator, and
bound controls displaying the columns specified by the query.

When setting up a database dialog form, the Form Wizard prompts you for the information like the
userid and password for connecting to the database and the SQL statement(s) to be executed for
obtaining information from the database. For an example of setting up a form that performs a single
query, see the Getting Started guide.

The properties of the objects on the form are set up so that the form can be used as soon as it is
created. In particular, the transaction object has AutoConnect turned on and the query object has
AutoOpen turned on so that the connection is made and the query opened as soon as the form is
created. As a result, the first retrieved values are displayed in the bound text boxes when the form is
opened. The user can then use the data navigator to move through the result set.

 Master detail views

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases

 Database dialog forms
 Master detail views

When you create a Database Dialog with the Form Wizard, you are offered a choice between two
types of dialogs:

· A single query dialog, using only a single query object.

· A master detail view.

A master detail view contains two queries: a master query and a detail query. The information displayed
in connection with the detail query depends on the information chosen in connection with the master
query.

For example, the master query may obtain information about company departments and the detail
query may obtain information about employees in each department. Both queries may have bound
controls displaying information. For example, there might be several text boxes for displaying the
department name and ID number (bound to the master query), and a grid control for displaying
employee information (bound to the detail query). You might create a data navigator for moving through
the list of departments returned by the master query. Whenever you look at a new department, the grid
automatically changes to display information about the employees in that department.

When you create a master detail view with the Form Wizard, you will be asked to enter two SQL
statements: one for the master query and one for the detail query. For example, the master query
statement can select information describing a department and the detail query statement can select
information describing an employee.

Linking master and detail
The key step is to link the two queries to show how the detail query depends on the master query. In
the example we have been discussing, you might link an employee’s department number to the
department’s ID number. Whenever the form changes to show a department with a new ID number
(the master query), the form also changes to show employees whose department number matches the
new ID number.

If you use the Form Wizard to create the master detail view, the Form Wizard asks you to specify the
links, using a page with the following format:

In this example, you would click dept_id under both Master query columns and Columns from detail
table(s), then click Add. This links the detail query to the master query using the value of dept_id.
When the user changes dept_id in the bound controls of the master query, the bound controls of the
detail query automatically change to show employees with the same dept_id.
The Form Wizard only shows explicitly selected columns from the tables in the master query. However, it
shows all the columns from tables in the detail query, whether the columns were selected or not.
Therefore, the link columns must be explicitly selected in the master query, but do not have to be selected
in the detail query; they will still be available for linking in the detail query, whether they are selected or
not.

Note: With many database drivers, the Form Wizard may not be able to obtain the information it needs
to determine whether there are conflicts between names in the master query and names in the detail
query. Therefore, the Form Wizard may issue one or more warning messages to indicate that these
names cannot be determined. In most cases, these conflicts will not cause problems and therefore the
warnings can be ignored.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 8. Working with databases
 Summary of working with databases

Transaction and query objects
Any program that works with a database needs at least one transaction object and one query object:

· The transaction object specifies information for connecting with the database (for example, the
name of the database, the database management system, the userid, and the password).

· The query object specifies the SQL statement used to fetch information from the database. It also
specifies options for processing the query. The easiest way to create the SQL statement in a query
object is to use the Query Editor.

Result sets
The open method opens a query, fetching the requested information from the database. The total
amount of information fetched from database is called the result set. A result set contains a number of
rows, and each row contains a number of columns.

At any one time, one row in the result set is considered the current row. The move methods for the
query object move change the current row from one row to another.

The data navigator object gives the user simple controls to move from one row to another, and to make
simple changes in the database.

Bound controls and arrays
A bound control is an object which displays information obtained by a query. For example, you can bind
a text box to a particular column in the query; once the text box is bound, it always shows the value of
that column in the current row. Various types of data objects can be used as bound controls, and they
display the data in various ways.

A bound list box has two ways to display data:

· In list mode, the list box displays the values of a particular column in all the rows of the result set.

· In lookup mode, the list box displays all the possible values for a particular column, and the
highlighted item of the list box shows the value of that column in the current row. The list box may
be initialized by placing in items manually or by obtaining a list of items with another query into the
database.

A bound combo box displays information in a manner similar to a list box in lookup mode. A bound list
view (in Report mode) can display multiple columns of data from the result set.

Changing the database
If you set appropriate property values for the transaction and query object, you can use the query
object and bound controls to modify the database. For example, if a particular text box is a bound
control showing the value of a column from the current row, changing the value of the text box modifies
the corresponding row in the database.

To add a new row, you put the query object into Add mode using the add method. You can then create
the contents of the new row in the bound controls and bound arrays. Similarly, to change an existing
row, you put the query object into Edit mode using the edit method. You can then modify existing
values in the bound controls and bound arrays. To end either Add mode or Edit mode, you execute
update, which actually delivers the new or modified row to the database.

 Jato Programmer ’ s Guide

 Part II. Advanced topics
 Chapter 9. Writing Internet applications

This chapter explains how to use Jato to write an application that makes use of the Internet, either via
the World Wide Web or with Windows socket facilities. For additional information about many of the
topics discussed in this chapter, see the Internet-related books mentioned in the Bibliography.

 Web server basics
 Support for interface environments
 NetImpact Dynamo server applications
 ISAPI web server applications
 Sockets
 Server sockets
 Web application targets
 Internet components
 The Internet component class
 The HTTP component class
 The FTP component class
 Integrating Jato and Microsoft FrontPage

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications
 Web server basics

When you browse a web site, there are two computer systems involved:

· the User system (also called the client system), where your web browser displays information on
your monitor

· the Server system, which supplies the information that your web browser displays.

The User system requests information from the Server by specifying a URL (Uniform Resource
Locator). You are probably familiar with simple URLs like
 http://www.powersoft.com/products/internet/optima.html
When a URL begins with http:, the web browser obtains information from the web server using a
protocol named HTTP. If the URL does not explicitly specify a protocol, many web browsers
automatically insert http: at the beginning of the URL. For example, if you try to connect to
www.powersoft.com, many web browsers will automatically convert this to the URL
http://www.powersoft.com. On the Server side, incoming requests using the HTTP protocol are
handled by programs called web servers.

URLs usually refer to files on the Server machine. In the URL given above, the host system is
www.powersoft.com. The web server locates the file products/internet/optima.html on the
Server system and sends it to the web browser on the user’s system. Typically, the file contains text
data in the form of HTML code. (HTML is a language that makes it easy to break text into paragraphs,
specify headings, make links to other URLs, and so on.)

A URL may correspond to a command or service to be executed on the Server machine. A command
URL may also post data to that command. For example, the user may fill in the fields of a form and
then the browser sends the filled-in information to the server. Software that is invoked in response to a
URL is called a web service.

The web server determines how to handle every URL corresponding to a file or a web service. If the
URL specifies a service, the web server invokes that service, passing any data from the user’s form.
When the service produces output, the web server sends that output back to the user’s web browser.
Usually this output is HTML, although it can be some other type of data instead (for example, a JPEG
graphic).

 Forms
 CGI
 NSAPI and ISAPI

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 Web server basics
 Forms

HTML makes it possible to create forms on the user’s machine. These are not the same as Jato Form
objects, but they serve a similar purpose—they obtain information from the user using text boxes,
check boxes, and so on.

Every HTML form specifies a web service in its URL. This service is called the form’s action. When the
user clicks the Submit button for a form, the web browser sends the form data to the action URL. The
web service named by the action URL handles the data that the user has entered on the form.

The HTML for creating a form also specifies a method for submitting data to the web service. There are
two methods:

METHOD=GET
submits information from the form as part of the URL. The information is given as a sequence of query
variables, with names and values specified in the URL. The URL uses a '?' character to mark the
beginning of query variable definitions.

The other method of submitting data uses
METHOD=POST

The web browser will deliver information to the web service as a collection of form variables, passed as
a block of data that accompanies the URL.

It is up to the programmer to pick which method is most suitable. Large forms with lots of data should
use POST, which places no restriction on the amount of data sent.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 Web server basics
 CGI

The Common Gateway Interface (CGI) defines a way to pass a URL request to a web service invoked
by the web server. A web service invoked via CGI writes data to its standard output and the web server
passes that data directly to the web browser.

CGI is simple to use, but it has several drawbacks. In particular, you have to start a separate program
each time you receive a URL; there is no direct way to start a program on the Server side and have it
interact back and forth with the User side.

One way to work around this limitation is to encode “state information” in the data that the program
sends back to the User side. For example, suppose that an interaction with the user involves two
forms.

· The user enters data in the first form, then clicks Submit to send the data to the web server. The
server invokes the web service specified in the URL, and that service processes the data.

· The program transmits a second form back to the user. This form contains HIDDEN fields which are
not visible to the user, but which contain any necessary information from the first form.

· When the user submits the second form, the web server invokes a second web service which
receives all the information from the second form: the hidden fields derived from the first form as
well as any new information filled into the second form.

In this way, the second web service program can process all the information from the two forms.

This approach to processing information is slow, since a new program must be invoked for each URL.
Performance becomes even slower if a database has to be accessed or if input fields have to be
checked for validity, since this usually means more back-and-forth communications between the Server
and User sides. Furthermore, programmers may need time to get used to programming in such an
environment, since it is significantly different from other types of programming.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 Web server basics
 NSAPI and ISAPI

To improve efficiency, vendors have introduced two other environments for writing Internet based
programs:

· The Netscape Web Server Plug-in environment (NSAPI)

· The Microsoft Internet Information Server environment (ISAPI)

These environments are provided through HTTP web servers which provide special interfaces for
executing programs on the Server side. These custom interfaces are proprietary, and are therefore not
“universal” like CGI. They are also more complex than CGI and therefore more difficult to learn. On the
other hand, they provide better performance and high speed response to user input. Furthermore, they
allow a single program to stay in execution for back-and-forth communications with the User side,
instead of invoking a new program for every exchange.

Note: This guide makes no attempt to explain technical details of CGI, NSAPI, or ISAPI. This chapter
only explains how Jato provides access to the three environments. For information on the
environments, see the following URLs:

CGI:
 http://hoohoo.ncsa.uiuc.edu/cgi/

NSAPI:
 http://www.netscape.com/newsref/std/server_api.html

ISAPI:
 http://www.microsoft.com/win32dev/apiext/isaphome.htm

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications
 Support for interface environments

%%% Jato doesn’t yet support all the interface environments discussed in the following section.

Jato supports CGI, NSAPI, and ISAPI. In all three cases, you use the Target Wizard to create an
appropriate target:

· CGI targets are executables which can be invoked by the web server.

· NSAPI and ISAPI targets are DLLs. The web server loads the DLL, which then provides extended
services on the web server.

The templates offered through the Target Wizard set linkage flags and other options for creating the
target application, and set up the basic structure needed to work in the selected environment.

Although you must choose the environment at the time you create the target, Jato does as much as
possible to make environmental differences transparent. In particular, you make use of a common
interface class to refer to information exchanged between the User and Server sides. For example, you
use the same methods to obtain information from the user, no matter which environment you choose. If
you want to write different versions of an application to run under NSAPI and ISAPI, the two versions
can use much of the same code.

All three types of targets run on the Server side. They interface with the web server in order to interact
with the User side.

None of these targets have forms associated with them. Since they do not interact with users on the
Server side, they do not have graphical interfaces.

Warning: NSAPI and ISAPI targets are DLLs which run by being attached to the web server. If the
web server receives multiple requests to the same URL using the same DLL, the DLL code may be
entered by multiple users at the same time. This means that you must write the code to provide
adequate protection in multi-user situations. For example, you should use critical sections to protect
shared resources if the resources cannot be used by multiple users simultaneously. For more
information about critical sections, see Synchronizing threads.

Installation instructions
The NSAPI target template contains a file named INSTALL.HTM. This file contains HTML text
explaining providing supplementary information on creating an NSAPI target. Once you create your
NSAPI target, you can read this file by opening it with your web browser.

 Non-visible forms for web services

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 Support for interface environments
 Non-visible forms for web services

Web services run on the Server system; they interact with programs on User systems but do not
interact directly with human users. Therefore, web services cannot have visible forms associated with
them. Typically, they use visual classes instead.

If you have a web service that interacts with a database, you can begin designing the application by
placing a transaction object and query object on a visual class form. In this way, you can use the
normal design-time property sheets to set up the transaction and the query.

If you use a form instead of a visual class, you must make the form non-visible. (Turn off the Visible
style in the form’s property sheet.) This prevents the application from trying to display the form. If a
web service tries to display a Visible form, it will receive an execution error, since there is no place for
the service to display the form.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications
 NetImpact Dynamo server applications

The NetImpact Dynamo web server provides access to databases located on the Server system.
NetImpact Dynamo servlets are typically used as part of a larger web application, where applets
running on the User system interact with servlets running on the Server system.

¨ To create a NetImpact Dynamo server application:
1. From the File menu on the main Jato menu bar, click New, then Target. This opens the Target

Wizard.

2. Under What type of target do you want?, click Java Dynamo Server Application, then click
Next.

3. Select the folder where you want to store the Dynamo target, then click Finish.

A Dynamo servlet does not have a user interface. Therefore, the servlet does not have a form
associated with it. In many cases, however, you will find it useful to create a visual class for the servlet,
where you can place objects like transaction and query objects. For more information, see Non-visible
forms for web services.

Important: For complete details about the capabilities of NetImpact Dynamo, see the documentation
that accompanies that product. This guide makes no attempt to explain how Dynamo works.

 The RunApp method
 Data members defined in the primary class
 The Session class for Dynamo targets
 The Document class
 The DBConnection class
 Dynamo exceptions

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 NetImpact Dynamo server applications
 The RunApp method

When you create a Dynamo servlet target, Jato creates a number of files, class definitions, and so on
which are used to build the target. Most of these files are maintained by Jato; you shouldn’t try to edit
them yourself.

To see the items created as part of the target, open the Classes window and expand the entry for the
Dynamo target. In this list, you will see a item which has the same name as the target itself. For
example, if the target is called MyDynamo, there will be an item called MyDynamo in the expansion for
the target. This is called the primary class of the Dynamo target.

Click the primary class in the left half of the Classes window. In the right half of the Classes window,
you see that the primary class contains a number of methods including one called RunApp. The
RunApp method is the heart of your Dynamo servlet: this is where you write the code that does the
main work of the servlet.

The RunApp method has the prototype
public void RunApp(String args[])

The arguments to RunApp are the command line arguments received by your application when it was
invoked.

When you create a Dynamo servlet, the RunApp method contains sample code which demonstrates a
number of programming techniques often used in writing servlets. To write your own servlet, delete this
sample code and replace it with your own code.

When RunApp runs
Your servlet will be invoked when the user sends a URL to the web server, specifying that the servlet
should run. The servlet creates an object of the primary class and invokes three methods for that class:

· StartApp to initialize the servlet.

· RunApp to perform the actual work of the servlet.

· EndApp to clean up after the servlet.

You can add your own user code to any of these methods. You can also add your own data members
to the primary class.

Once the servlet has run StartApp, RunApp, and EndApp for the primary class, the servlet
terminates. If the User sends another URL which invokes the servlet, the servlet creates a new object
of the primary class and goes through the same procedure again. Since this is a new object and a new
invocation of the servlet, it does not have direct access to any data used by the previous invocation of
the servlet.

You cannot preserve data from one invocation to the next inside the servlet itself. However, NetImpact
Dynamo provides a feature that will retain data for five minutes. It works like this:

· Your servlet can set any number of name=value variables within NetImpact Dynamo.

· If Dynamo receives a request from the same User browser within five minutes of the termination of
the previous servlet, Dynamo allows the new invocation of the servlet to obtain the data saved by
the previous invocation.

In this way, Dynamo makes it possible for you to define data that is persistent from one invocation of
the servlet to the next.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 NetImpact Dynamo server applications
 Data members defined in the primary class

The primary class defines a number of data members that you’ll find useful for writing your servlet:

Session session;
The Session class offers methods for maintaining an ongoing session with the User. For more
information, see The Session class for Dynamo targets.

Document document;
The Document class offers methods for preparing an HTML document to send back to the User
system, in response to the URL that invoked this servlet. For more information, see The Document
class.

DBConnection connection;
The DBConnection class offers methods for interacting with the database that you connect with by
going through NetImpact Dynamo. For more information, see The DBConnection class.

The data members listed above are all used to provide access to the functionality of their associated
class. For example, if you want to send HTML code to the User, you invoke the appropriate method on
the document object.

When you create a Dynamo servlet target, Jato generates Java class definitions for the classes listed
above (DynamoConnection, Document, and so on). To see the full definition of one of these classes,
open the Classes window, expand the servlet target, and open the appropriate class definition.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 NetImpact Dynamo server applications
 The Session class for Dynamo targets

The Session class has two important methods: setValue and getValue. These methods make it
possible for you to store data in the form of name=value variables within NetImpact Dynamo itself. In
this way, you can preserve data from one invocation of the servlet to the next.

The setValue method has the prototype
boolean setValue(String name, String value)

For example,
boolean success = session.setValue("myvar", "abc");

stores a variable named myvar with a value of "abc". This data is only retained for five minutes
between invocations of the servlet. If there is a longer gap, your servlet may not have access to this
information.

The getValue method has the prototype
String getValue(String name)

For example,
boolean value = session.getValue("myvar");

obtains the value that was previously assigned to myvar.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 NetImpact Dynamo server applications
 The Document class

The Document class provides methods for creating an HTML document that will be sent to the User
system in response to the URL that invoked this servlet. Each time RunApp is invoked, you get a new
Document object. In this way, you start with a “clean” HTML document every time you react to a URL
from the user.

Sending HTML code to the user
The most important methods of Document are write and writeln. These both write a string to the
HTML document. The difference is that writeln automatically adds a new-line character at the end of
the string while write does not. For example, several write operations in a row all write to the same
line, while several writeln operations in a row each writes to a new line.

The following shows a simple example of writeln:
document.writeln("<P>Hello there.");

This writes the given string to the HTML document. Notice that this string contains the <P> HTML
formatting directive. The HTML file that is created through such calls to write and writeln will
eventually be sent to the User system.

For more information about the Document class, see the SQL Anywhere documentation on NetImpact
Dynamo.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 NetImpact Dynamo server applications
 The DBConnection class

The DBConnection class provides an interface to the Dynamo connection object, for a single request
from the NetImpact Dynamo web server. This allows access to the current connection for the current
document. The current document corresponds to the template that originated this request.

The most important method of DBConnection is the createQuery method. This has the prototype
Query createQuery(String SQLStatement)

where SQLStatement is a normal SQL statement. For example,
Query query_1 =
 connection.createQuery("select id, lname from customer");
creates a Jato Query object that has the given SQL statement as its SQL property. You can then
perform normal methods on the Query object to examine the results obtained from the database.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 NetImpact Dynamo server applications
 Dynamo exceptions

The classes associated with Dynamo servlets will throw a DynamoException in case of error. For
example, if you pass an invalid argument to a method in the Document class, the method typically
throws a DynamoException in response to the error. The sample RunApp code demonstrates a
format for catching such exceptions.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications
 ISAPI web server applications

An ISAPI web server application (ISAPI servlet) works in conjunction with an ISAPI server on the
Server system. ISAPI servlets are typically used as part of a larger web application, where applets
running on the User system interact with servlets running on the Server system.

¨ To create an ISAPI web server application:
1. From the File menu on the main Jato menu bar, click New, then Target. This opens the Target

Wizard.

2. Under What type of target do you want?, click Java WWW Server Application, then click Next.
3. Select the folder where you want to store the Dynamo target, then click Finish.

An ISAPI servlet does not have a user interface. Therefore, the servlet does not have a form
associated with it. In many cases, however, you will find it useful to create a visual class for the servlet,
where you can place objects like transaction and query objects. For more information, see Non-visible
forms for web services.

Important: For complete details about the capabilities of ISAPI web server, see

 http://www.microsoft.com/win32dev/apiext/isaphome.htm

This guide makes no attempt to explain how the ISAPI server works.

 The RunApp method
 Data members defined in the primary class
 Response headers
 Sending data to the user
 Form variables
 Query variables
 Result codes
 Redirecting the user
 Preserving data from one servlet invocation to the next
 Web service exceptions

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 ISAPI web server applications
 The RunApp method

When you create an ISAPI servlet target, Jato creates a number of files, class definitions, and so on
which are used to build the target. Most of these files are maintained by Jato; you shouldn’t try to edit
them yourself.

To see the items created as part of the target, open the Classes window and expand the entry for the
servlet target. In this list, you will see a item which has the same name as the target itself. For
example, if the target is called MyServ, there will be an item called MyServ in the expansion for the
target. This is called the primary class of the servlet target.

Click the primary class in the left half of the Classes window. In the right half of the Classes window,
you see that the primary class contains a number of methods including one called RunApp. The
RunApp method is the heart of your servlet: this is where you write the code that does the main work
of the servlet.

The RunApp method has the prototype
public void RunApp(String args[])

The arguments to RunApp are the command line arguments received by your application when it was
invoked.

When you create an ISAPI servlet, the RunApp method contains sample code which demonstrates a
number of programming techniques often used in writing servlets. To write your own servlet, delete this
sample code and replace it with your own code.

When RunApp runs
Your servlet will be invoked when the user sends a URL to the web server, specifying that the servlet
should run. The servlet creates an object of the primary class and invokes three methods for that class:

· StartApp to initialize the servlet.

· RunApp to perform the actual work of the servlet.

· EndApp to clean up after the servlet.

You can add your own user code to any of these methods. You can also add your own data members
to the primary class.

Once the servlet has run StartApp, RunApp, and EndApp for the primary class, the servlet
terminates. If the User sends another URL which invokes the servlet, the servlet creates a new object
of the primary class and goes through the same procedure again. Since this is a new object and a new
invocation of the servlet, it does not have direct access to any data used by the previous invocation of
the servlet.

You cannot preserve data from one invocation to the next inside the servlet itself. However, Jato
provides facilities that let you store data outside the servlet and retrieve it later. For more information,
see Preserving data from one servlet invocation to the next.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 ISAPI web server applications
 Data members defined in the primary class

The primary class defines the following data member that you’ll find useful for writing your servlet:
WebConnection server;

The WebConnection class offers methods for interacting with the web server. For example,
WebConnection has methods that can obtain form variables and query variables from the web server
as well as setting up HTTP response headers. The methods of WebConnection are discussed in the
sections that follow.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 ISAPI web server applications
 Response headers

When you begin sending data to the User side, the first thing you should send is a HTTP header
describing the data to be sent. For example, if you are going to transmit an HTML file, the header is

text/html
If you are going to transmit a JPEG graphic, you first send the header

image/jpeg
This header makes it possible for the web browser to know how to handle the data that follows. The
content types specified by response headers are defined in the MIME standard (Multipurpose Internet
Mail Extensions). For information about MIME, see
 http://www.oac.uci.edu/indiv/ehood/MIME/MIME.html
Data sent to the user may have multiple headers. Each header has the form

HeaderName: value
To set a header that will be sent to the User side, you use the setResponseHeader method of
WebConnection, as in
// WebConnection server;
server.setResponseHeader("Content-type", "text/html");
The first argument is a String giving the text of the header itself and the second argument is a String
giving the value to be associated with the header.

Removing headers
Some interface environments may automatically create headers that you don’t actually want to transmit
to the user. You can prevent such headers from being delivered to the user with

server.removeResponseHeader("HeaderName");
Default headers
All the headers that you have defined are automatically sent to the user the first time you execute one
of the write methods of WebConnection. If you call a write method without setting headers first, the
default headers are

HTTP/1.1 200 OK
Content-type: text/html

Note that the "200 OK" specifies a result code of 200 and a message of OK, indicating success.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 ISAPI web server applications
 Sending data to the user

The two WebConnection methods for sending data to the user are write and writeln. These both write
a string to the HTML document. The difference is that writeln automatically adds a new-line character
at the end of the string while write does not. For example, several write operations in a row all write to
the same line, while several writeln operations in a row each writes to a new line.

The following shows a simple example of writeln:
// WebConnection server;
server.writeln("<P>Hello there.");

This writes the given string to the HTML document. Notice that this string contains the <P> HTML
formatting directive. The HTML file that is created through such calls to write and writeln will
eventually be sent to the User system.

Setting up a print stream
Another way to send output to the User side is to use a PrintStream object associated with the User
system:

PrintStream ps = server.getStream();
Any data written to this PrintStream object is automatically transmitted to the User system, as your
response to the URL sent by the user. You can use any of the standard PrintStream methods to write
on this stream.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 ISAPI web server applications
 Form variables

Form variables are created when the HTML form uses METHOD=POST. The name of a form variable is
the name given in the HTML form, and the value of a form variable is a string giving the data specified
by the user when filling out the form.

To obtain the value of a simple form variable, use
// WebConnection server;
String str = server.getFormVariable("varName");

This returns the value of the variable as a string.

Some form variables may have multiple values. In this case,
String str = server.getFormVariable("varName", N);

to get the Nth value associated with the variable. The first form variable has an index of zero.

You can set a new string value for a form variable with
server.setFormVariable("varName", "newValue");

This new value can be retrieved later with
str = getFormVariable("varName", 0);

The setFormVariable method does not affect any of the N other values associated with the given
name.

Determining whether data was POSTed
The getIsPostMethod method of WebConnection determines whether this servlet was invoked from a
form with POSTed variables:

boolean posted = server.getIsPostMethod();
returns true if the form used POSTed variables and false otherwise.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 ISAPI web server applications
 Query variables

Query variables are created when the HTML form uses METHOD=GET. The WebConnection methods
for dealing with query variables are similar to those for form variables:

String str = server.getQueryVariable("varName");
String str = server.getQueryVariable("varName", N);
server.setQueryVariable("varName", "newValue");

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 ISAPI web server applications
 Result codes

Your program may pass a result code to the server, to indicate status. Different servers accept different
result codes:

· CGI: a zero exit code indicates success; non-zero indicates failure

· NSAPI: one of the values defined for the interface, represented by symbolic constants beginning
with the characters PROTOCOL_

· ISAPI: one of the values defined for the interface, represented by symbolic constants beginning
with the characters HSE_

The setResultCode method of WebConnection sets the result code for your application. For example,
with an ISAPI servlet you might use

SetResultCode(HSE_STATUS_SUCCESS);
You may set the ResultCode property at any time during execution. The current result code is returned
to the web server the first time you send output to the User system (for example, with write).

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 ISAPI web server applications
 Redirecting the user

The redirect method redirects the user to another URL:
server.redirect("http://www.anothersite.com");

The effect is to force the user’s web browser to access another file or site.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 ISAPI web server applications
 Preserving data from one servlet invocation to the next

The Session class makes it possible for you to preserve data from one invocation of your servlet to the
next. It does this by providing access to the web server’s own facilities for preserving data across
invocations.

The first step in this process is to obtain an object of the Session class, using the following
WebConnection method:

// WebConnection server;
Session session = server.getSession;

The Session class supports two important methods:
 boolean success = session.setValue("varName", "value");
 String value = session.getValue("varName");
The first stores a name=value variable in the web server. The second retrieves the value of a
specified variable.

Now, suppose you save a number of session variables in one invocation of your servlet. The next time
your servlet is invoked, it can again call

Session session = server.getSession();
If the servlet was invoked from the same User system and User browser, and if it has been a relatively
short time since the last invocation of this servlet (the maximum length of time is typically ten minutes),
the new invocation of the servlet receives the same Session data object as the previous invocation.
The servlet can then use this Session object to retrieve all the session variable data stored in the last
invocation. This allows persistent data to survive from one invocation to the next.

If there has been no previous session with the current User, getSession returns null. This lets you
know that this is a new session (or that too much time has elapsed since the last interaction, so you
have to start over again from scratch).

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 ISAPI web server applications
 Web service exceptions

The classes associated with web service servlets will throw a WebServiceException in case of
error. For example, if you pass an invalid argument to a method in the WebConnection class, the
method may throw a WebServiceException in response to the error. The sample RunApp code
demonstrates a format for catching such exceptions.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications
 Sockets

A socket provides a two-way connection between programs running on different systems on the
Internet. For example, suppose a branch of a company wants to communicate with the home office. A
program on the branch’s computer could establish a socket connection with another program on the
home office’s computer. When one program outputs data into the socket, the other program receives
the data from the other end of the socket. Transmission of the data is handled through the Internet (or
some other supported communication channel).

Socket services are provided through a library named WSOCK32.DLL which comes as part of your
Windows environment. Some application packages may replace the standard Microsoft sockets library
with their own version of the library. For example, many Web browsers overwrite the existing
WSOCK32.DLL with their own version. Different versions of the library may provide different services.

Socket services are supported by socket libraries in accordance with the current sockets specifications
—Windows Sockets: An Open Interface for Network Programming under Microsoft Windows, Version
1.1. The Jato programmer’s guide makes no attempt to reproduce the information of the specification
document; it only explains how Jato makes socket functionality available to your programs.

Normal sockets are represented by Socket objects. Jato gives sockets default names of the form
socket_N. On the Internet page of the Java component palette, sockets are represented by the
following button:

Socket objects placed on a form are visible at design time, but are not seen at run time.

 Blocking vs. non-blocking sockets
 Types of sockets
 Design-time socket properties
 Other socket properties
 Connecting to a remote system
 Writing on a socket
 Reading data from a socket
 Closing a socket
 Handling socket errors
 Socket events
 Datagram sockets

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 Sockets
 Blocking vs. non-blocking sockets

A blocking socket is used in a synchronous way. The effect of blocking depends on whether data is
being sent or received.

· Suppose that program X sends data into a connected socket. The socket then blocks (refuses to
take more data) until the data has been buffered for delivery by the WSOCK32 library. This does not
mean that the data has been successfully delivered to the remote machine; it just means that the
WSOCK32 library has made its own copy of the data and has taken responsibility for transmitting the
copied data.

· Suppose that program Y calls a function indicating that it wants to receive data from the socket. In
this case, the function call does not return until some data has actually been received from the
other end. This means that your program does nothing else until some data actually comes in.

A non-blocking socket is used in an asynchronous way. A program may output data into a connected
socket, then output more data before the first transmission is acknowledged. Similarly, the program
does not have to wait to receive data; instead, a SocketDataArrival event is triggered on the socket
when there is data ready to read, so the program can be written to respond to such an event rather
than calling a function that waits until something comes in.

This shows that non-blocking sockets are used in an event-driven way. Non-blocking sockets are
therefore more in keeping with Jato programs. However, blocking sockets have their uses too; they are
especially appropriate in server applications where multithreading is likely.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 Sockets
 Types of sockets

A connection-based socket is a socket that must be explicitly connected before you can send data to a
remote system.

Jato defines the following classes derived from the Socket class:

DatagramSocket
Represents a non-connection-based datagram socket. A datagram is essentially a complete packet
of data, kept together during transmission. You cannot create a DatagramSocket object directly.
Instead, you create a normal Socket object and set the Type property to SockDGRAM.

Since this type of socket is not connection-based, you can send data down the socket as soon as
the socket object is created and you have specified a remote system and port.

StreamSocket
Represents a connection-based socket, whether it is a true stream socket or a datagram socket.
You cannot create a StreamSocket object directly. However, the base Socket class creates a
StreamSocket object if you create a connection-based socket.

Since this type of socket is connection-based, you must explicitly connect the socket to another
system before sending data.

Since both of these socket types are based on Socket, they share all the methods and properties of
Socket.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 Sockets
 Design-time socket properties

The following list discusses socket properties that can be set at design time:

Type [General page]
The type of data that will be transmitted using the socket. The default is SockSTREAM, indicating a
connection-based socket. SockDGRAM indicates a non-connection-based datagram socket and
SockUNKNOWN represents an unknown type of socket. For a complete list of possible types, see
the Jato Component Library Reference.

RemotePort [General page]
The port number on the remote computer. If you specify a port number of zero, the socket uses any
free remote port.

RemoteHostName [General page]
The name of the remote computer. This is a String giving the address of the remote computer in
the standard Internet format.

Asynchronous [General page]
If this property is turned on, the socket is non-blocking; otherwise, it is blocking. By default,
Asynchronous is turned off, producing a blocking socket.

AutoConnect [General page]
If both AutoConnect and Asynchronous are turned on, the program automatically attempts to
connect to the remote system when the socket object is created at run time.

If AutoConnect is turned off, the program does not attempt to connect to the remote system and
does not attempt to initialize the socket when it is constructed. Therefore, you must explicitly call
the create method for the socket in order to initialize the socket, as in

socket_1.create(SockSTREAM);
Using these properties you can specify a socket that connects to a remote computer for intersystem
communications. For example, if you specify a RemoteHostName and AutoConnect, the program
automatically attempts to establish a connection with the remote system when the socket object is
created at run time.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 Sockets
 Other socket properties

Sockets have a number of properties which can only be set at run time. The following list discusses
some of these properties:

RemoteInetAddress
This is a read-only property similar to RemoteHostName, but it expresses the Internet address as
an array of four bytes. For example, if the numeric form of the address is 172.31.2.50,
getRemoteInetAddress returns an array of bytes giving the four values 172, 31, 2, and 50.

LocalHostName
This is a read-only property giving the name of the system where Jato is running. The property is
only guaranteed to have a valid value when the socket is connected (since your local computer
may have several possible IP addresses).

LocalHostAddress
This is a read-only property giving the IP address of the system where Jato is running. The address
is expressed as an array of four bytes. LocalHostAddress is only guaranteed to have a valid
value when the socket is connected (since your local computer may have several possible IP
addresses).

LocalPort
Specifies a local port for the socket. This is not a read-only property, but connection-based sockets
should not set the local port; instead, the local port is determined by the system at connection time.
If the local port is set to zero, the socket can use any free port that is available.

BytesWaiting
While you use a blocking socket, the BytesWaiting property tells the number of bytes of data that
are waiting to be received by your program. If BytesWaiting is non-zero, and you attempt to
receive the given number of data bytes from the socket, the Receive function will not block, since
there is that much data immediately available.

The values of the above properties can be determined with an appropriate get method. For example,
getBytesWaiting determines the number of bytes currently waiting to be read. Similarly, if a property is
not read-only, there is a set method to set the value of the property. For example,
setRemoteHostName sets the name of the remote host.

Note: Most of the rest of this section applies to stream mode sockets, as opposed to datagram
sockets. With stream mode sockets, data transfer is reliable, sequenced, and unduplicated.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 Sockets
 Connecting to a remote system

The connect method attempts to connect a socket to the remote system that is specified by the
socket’s properties. For example,

socket_1.setRemoteHostName("system.domain");
boolean status = socket_1.connect();

attempts to connect the socket with the given system. The connect method returns true if the
connection attempt succeeds and false if it fails.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 Sockets
 Writing on a socket

The send method writes data into the socket so that the data is transmitted to the remote application:
// byte buf[];
boolean status = socket_1.send(buf);

The buf argument specifies a buffer containing the data to send. The send method returns true if the
operation succeeds and false otherwise.

There is a second version of send:
// int length;
boolean status = socket_1.send(buf, length);

This sends the given number of bytes from the buffer.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 Sockets
 Reading data from a socket

The receive method reads data from the socket:
// byte buf[];
int result = socket_1.receive(buf);

The buf argument specifies a buffer where receive can store the data read from the socket. The
maximum number of bytes that can be read by this version of receive is the number of bytes in the
buf array. The result of receive is:

· -1 if an error occurs.

· 0 if the remote system closes the connection.

· Otherwise, the result is the number of bytes received. For datagram sockets, the result is always
the number of bytes received.

There is a second form of receive:
// int length;
int result = socket_1.receive(buf, length);

The length argument specifies the maximum number of bytes you want to receive. The result of
receive is the same as in the previous form.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 Sockets
 Closing a socket

When your program is finished using a socket, you can use the close method to close the socket:
boolean success = socket_1.close();

The result of close is true if the operation succeeds and false if an error occurs.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 Sockets
 Handling socket errors

Most socket methods return false if an error occurs during an operation. In this case, you can use
getLastError to determine what went wrong. The result of getLastError is an integer indicating the
source of the error.

For example, suppose that you attempt to connect to a remote system, but the connect method
returns false. You can then use

int code = socket_1.getLastError();
to obtain an error code indicating the nature of the problem. For example, getLastError might return
the value SockEIsConnected to indicate that the socket is already connected to another system.

Possible error code values are defined in the SocketExceptionCode interface. For more information,
see the Jato Component Library Reference.

The getLastError method returns the most recent error to occur on the socket. This means that you
should check the last error after any socket operation that fails. Suppose, for example, that you attempt
to connect to a socket, but the operation fails; then suppose that you try to send data down the
socket. The send operation will receive an error, since the socket isn’t connected on the other end.
This error from send overwrites the error information recorded for connect. As a result, your program
will no longer be able to tell why the connect failed.

Resetting after errors
The resetLastError method clears up after the last error detected. For example, suppose your
program receives an error after a send operation. You use getLastError to determine what went
wrong and then correct that problem. Once the problem has been corrected,

socket_1.resetLastError();
turns off the error flag associated with the socket and resets the socket into a workable state.
Whenever you recover from an error, you should use resetLastError to mark the socket as “clean”.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 Sockets
 Socket events

Sockets which have the Asynchronous property turned on may receive events. Possible events are:

SocketConnect
A connection request has been accepted by the remote system.

SocketHostResolved
The socket support software has determined the true Internet address of the remote system. This
event takes place after you have specified a new remote system with setRemoteHostName. The
event tells you that the name has been successfully converted into a raw Internet address.

SocketHostResolved is also triggered when getRemoteHostName is called for the first time after
a call to setRemoteHostAddress. In this case, getRemoteHostName returns a null string when it
is first called. If you call it again after the default handling for SocketHostResolved,
getRemoteHostName returns the correct host name.

SocketDataArrival
Data has arrived from the remote system and is ready to be read by receive.

SocketError
An error occurred during an operation on the socket.

SocketSendComplete
This event is triggered when all the data from a send operation has been delivered to the WSOCK32
library subsystem for handling.

The event handlers for these events receive an event data block providing information about the event.
For example, a SocketDataArrival event handler receives a pointer to a SocketDataArrivalEvent
object; this is derived from the usual EventData, but also includes the method getBytesReceived
which returns the number of bytes that just arrived.

For more information on any of these events, see the Jato Component Library Reference.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 Sockets
 Datagram sockets

Datagram sockets do not need to be connected before sending data. For example, you can simply use
the following sequence

// int portNumber;
Socket sendsocket_1 = new Socket();
sendsocket_1.create(SockDGRAM);
sendsocket_1.setRemoteHostName("system.domain");
sendsocket_1.setRemotePort(portNumber);
sendsocket_1.send(buffer);

to send to the designated system. Notice there is no call to connect.
On the receiving end, you can prepare the receiving socket with:

// int portNumber;
Socket rcvsocket_1 = new Socket();
rcvsocket_1.create(SockDGRAM);
rcvsocket_1.setLocalPort(portNumber);
rcvsocket_1.receive(buffer);

This receives the datagram from the specified port. After the datagram has been received, the
RemoteHostName property for the socket will contain the host name of the sender (as obtained from
the datagram). Similarly, the RemotePort property will contain the sender’s port number.

These two operations establish both ends of the socket. Once this has occurred, either system may
send or receive on the socket.

Note: Datagram sockets do not guarantee reliable, sequenced, or unduplicated data transfer.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications
 Server sockets

A server socket is used by network server applications to listen for incoming requests from client
applications. Server sockets can be compared to telephone switchboard operators—they listen for
incoming calls and connect each call to its intended recipient. This means that a server socket waits for
incoming socket connection requests, then services each request by creating an appropriate socket
and making the new socket available to the program that will actually use it.

Server sockets are represented by ServerSocket objects. Jato gives server sockets default names of
the form srvsocket_N. On the Internet page of the Java component palette, server sockets are
represented by the following button:

Server socket objects placed on a form are visible at design time, but are not seen at run time.
Server sockets support many of the same properties and methods as normal Socket objects. These
include the properties:

Asynchronous
RemoteHostName
RemoteInetAddress
RemotePort
LocalHostName
LocalHostAddress
LastError

and the methods
close
resetLastError

Server sockets do not support send, receive, or connect. Server sockets may not have the datagram
type (WSockDGRAM).

 Server socket events
 Server socket methods

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 Server sockets
 Server socket events

Server sockets support the following events:

SocketError
An error occurred during an operation on the server socket.

SocketHostResolved
The socket support software has determined the true Internet address of the remote system.

SocketConnectionRequest
The server socket has received a connection request from a client.

For further information on these events, see the Jato Component Library Reference.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 Server sockets
 Server socket methods

A server socket’s job is to wait for clients to attempt a connection, and to accept connections when
they are received. Before you can listen for incoming connection requests, you must set the LocalPort
property so that the server socket knows where to listen.

The accept method waits for a connection request to be received and then accepts the request:
Socket socket = srvsocket_1.accept();

The result of accept is a Socket object which can then be used to communicate with the program that
submitted the connection request. For example, you can execute the send method on this socket to
send data down the socket to the remote system. Here is typical code for using a server socket:

// int portNumber;
socket.setLocalPort(portNumber);
Socket client = socket.accept();
if (client != null)
{
 String msg;
 int received = client.receive(msg);
 if (received > 0)
 System.out.println(msg);
}

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications
 Web application targets

A Web application target ties together a set of other targets into a single manageable package. For
example, suppose that you are creating a software package that consists of software running on User
systems (such as Java applets) as well as software running on a Server system (web services). You
can create a web application target which represents all this software (as well as data files) as a single
object. This offers a number of advantages:

· When you build the web application target, Jato can build everything as needed. You don’t have to
worry about different parts of the project getting out of synch with each other.

· Web application targets have simple mechanisms for preparing the package for a debugging test,
as well as packaging everything for production use.

· Web application targets can include various types of source files, including HTML files,
GIF/JPEG/AVI files, and HTML templates (such as those used by NetImpact Dynamo), as well as
sub-targets like Java applets and CGI, NSAPI, or ISAPI web services. These files may be stored in
any folders you find convenient.

· Web application targets automatically interface with any source control system supported by Jato
(for example, RCS, PVCS, Object Cycle, and so on).

 Web projects
 Creating a web application target
 Actions on a web application target

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 Web application targets
 Web projects

A web project consists of the following:

· A web application target

· Any number of dependent targets—these are targets such as Java applets and web services that
Jato builds as separate “sub-targets” of the web application

· A staging web site

· A source control archive

The files associated with the web application target represent all the files in a web site. The web
application target also contains a small number of extra Jato generated files that are not needed in the
final production web site. Jato uses these to maintain information about the structure of the target.

Dependent targets: Dependent targets are built in their own folders, separate from the web
application target. As with normal Jato targets, dependent targets have a target folder, a Release
folder and a Debug folder.

Whenever Jato builds the web application, it also builds any dependent targets that need to be built.
After dependent targets have been built, Jato copies the executable files to a location specified for the
web application target.

Staging web site: The staging web site is a web site where the developer runs the web application for
testing purposes. This web site may be any of the following:

· A web site on a different machine

· A specified folder on the same machine as the web application target

· The folders used by the web application target itself.

The process of copying files from the web application target folders to the staging web site is called
Publishing.

You can also Publish a web application to a production web site, in which case Jato omits any files that
are only needed for debugging.

Source control archive: The source control archive contains the master revision control copies of the
files in the web application target and the dependent targets. The archive can be implemented with any
source control system Jato supports.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 Web application targets
 Creating a web application target

Before creating a web application target, create the dependent targets that will make up the web
application and store them in a single project.

¨ To create a web application target:
1. From the File menu of the main Jato menu bar, click New and then Target.
2. In the Target Wizard, click Web Application, then click Next.
3. Enter a name for the web application’s target folder, then click Next.
4. Click the names of the targets that will be the dependent targets for this web application (or click

Select all if all the targets listed will be dependent targets).

5. Click Finish.

Jato creates a file named main.htm to serve as the starting web page for this target. The contents of
this file is a typical HTML skeleton for a web page. For the purposes of testing, you might put HTML
links on this page which allow you to go to other HTML pages that belong to this application. For
example, you might put in a link which goes to a page containing a Java applet that you want to test.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 Web application targets
 Actions on a web application target

A web application target supports the following actions:

Build
Building a web application means building all the dependent targets, then copying the resulting files
to appropriate locations in the web application’s target folder.

Publish
Publishing the web application means copying all files in the target folder to the staging web site. If
the staging web site is the same as the web application target folder, Publish does nothing.
Otherwise, Publish copies the files to a specified location, either on the local system or on another
system.

Jato lets you write JavaScript instructions to specify the operations that should be performed in a
Publish action.

Publish automatically builds the web application (if necessary) before copying the files.

Run
Running a web target means starting a web browser to browse the staging web site and/or starting
a web server on the system containing the staging web site. This allows you to test User system
programs, Server system programs, or both.

Run automatically performs Build and Publish actions (if necessary) before running the
application.

These actions are controlled through the run options for the web application, accessed through the
Targets window. For example, the run options dialog has a Publish page where you can specify a
folder that will serve as the staging web site. Similarly, the General page lets you specify the following
options for running the application:

Just publish the target files
Presumably, you will then invoke a web browser and/or web server manually.

Publish, then run a web browser
You may specify the command line for invoking the web browser.

Publish, then run a web server
You may specify the command line for invoking the web server.

If you wish to run a web browser or web server, you can also specify configuration options for the
software being invoked.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications
 Internet components

Jato supports several components that can be used to establish various types of Internet connections:

· The Internet class (powersoft.jcm.net.Internet)—this can be used to open a connection to
a remote Server system using a variety of protocols.

· The HTTP class (powersoft.jcm.net.HTTP)—this is based on the Internet class but offers
additional methods for submitting HTTP requests to the remote web server.

· The FTP class (powersoft.jcm.net.FTP)—this is based on the Internet class but offers
additional methods for submitting FTP requests to a remote FTP server.

All of these classes are intended for use on the User side of an Internet connection; they are not
appropriate for use on the Server side.

Note: The three classes discussed in this section are derived from standard classes in java.net.*.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications
 The Internet component class

An Internet object makes it easy to establish a connection with remote servers on the Internet. Jato
gives Internet objects default names of the form internet_N. On the Internet page of the Java
component palette, Internet objects are represented by the following button:

Internet objects placed on a form are visible at design time, but are not seen at run time.

 Internet object properties
 Establishing an Internet session
 Reading the input stream
 Closing a connection

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 The Internet component class
 Internet object properties

The URL property of an Internet object associates a URL with the object. The URL is typically
constructed from separate properties specifying the components of the URL as String objects:

· ProtocolName: the name of the protocol (e.g. http or ftp).

· ServerName: the name of the remote server (e.g. www.powersoft.com).

· ServerPort: the port number on the remote system (this is an int value, not a String). A value of -1
means any available port.

· File: the file part of the URL.

· Ref: any additional reference information for the URL.

For example, the following sequence of calls initialize the URL associated with an Internet object:

internet_1.setProtocolName("http");
internet_1.setServerName("www.powersoft.com");
internet_1.setFile("help/contact.html");

In a similar way, you could construct URLs to use services like Gopher, FTP, and so on. If a property is
not initialized explicitly, it is set to a null string (except for ServerPort, which is set to -1).

Internet objects also support String properties named UserName and UserPassword. These
properties are often useful when interacting with remote servers that require login procedures of some
kind (for example, FTP).

Note: The parts of a URL can also be set at design time using the property sheet of the Internet object.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 The Internet component class
 Establishing an Internet session

The open method of the Internet class attempts to establish a connection with the URL specified by the
Internet object’s URL property. The following code sets up the parts of a URL, then attempts to open a
connection:

internet_1.setProtocolName("http");
internet_1.setServerName("www.powersoft.com");
internet_1.setFile("help/contact.html");
internet_1.open();

The process of opening a URL establishes an input stream for your program. This input stream
receives data from the remote server as a stream of bytes. For example, if you open a URL that
specifies an HTML file, the HTML data is delivered to your program using this input stream.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 The Internet component class
 Reading the input stream

You read the input stream using the readFile method of the Internet class. The simplest version of this
is

// byte buffer[];
int byteCount = internet_1.readFile(buffer);

The readFile method reads bytes into the specified buffer, up to the maximum number of bytes that the
buffer can hold. The return value of readFile specifies the actual number of bytes read. The data that is
read comes from the remote server, sent in response to your URL.

The readFile method may also take a second form:
// byte buffer[];
// InputStream stream;
int byteCount = internet_1.readFile(buffer, stream);

This form reads the specified input stream rather than reading the input sent by the remote server.

Determining how much data is available
The queryDataAvailable method of Internet lets you determine how much data is available on the
input stream associated with the URL connection:

int byteCount = internet_1.queryDataAvailable();
The result is the number of bytes of data waiting to be read. This data can be read by calling readFile.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 The Internet component class
 Closing a connection

The close method of Internet closes a connection that has previously been opened with open:
internet_1.close();

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications
 The HTTP component class

The HTTP class is derived from the Internet class. Therefore, it has all of the “generic” Internet
connection services defined in Internet, but has additional methods which are specific to HTTP
connections. In particular, HTTP objects make it easy to construct HTTP requests and submit them to a
web server on the remote system.

This guide makes no attempt to provide technical details about HTTP requests and other interactions
with web servers. For information, see RFC 1945, available at either

ftp://ds.internic.net/rfc or
ftp://nic.merit.edu/documents/rfc

Jato gives HTTP objects default names of the form http_N. On the Internet page of the Java
component palette, HTTP objects are represented by the following button:

HTTP objects placed on a form are visible at design time, but are not seen at run time.
Since the HTTP class is derived from the Internet class, it supports all the methods and properties of
Internet. In particular, every HTTP object may have an associated URL which is established by setting the
properties ServerName, ServerPort, File, and Ref. You do not have to set ProtocolName, since that is
assumed to be HTTP. For more information about these properties, see Internet object properties.

 Establishing an HTTP connection
 HTTP requests
 Closing an HTTP connection

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 The HTTP component class
 Establishing an HTTP connection

The connect method of HTTP connects to the URL associated with the HTTP:
boolean success = http_1.connect();

The result is true if the connection succeeded and false otherwise.

The connect method attempts to establish two I/O streams with the remote web server:

· An input stream that your application can read using readFile. This input stream delivers data from
the remote web server to your application. For example, this stream might contain HTML code or a
JPEG graphic.

· An output stream that your application can use to send HTTP requests to the remote web server.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 The HTTP component class
 HTTP requests

An HTTP request consists of a number of headers. These are text lines of the form
headername: value

Submitting an HTTP request follows these steps:

1. Begin constructing the request with the openRequest method.

2. Create a sequence of headers using addRequestHeader to create each header.

3. Transmit the request to the remote web server using sendRequest.
4. Free up the memory occupied by the request with the closeRequest method.

Each of these steps is discussed in the sections that follow.

Constructing the request
The openRequest method of HTTP constructs the opening line for the HTTP request. It has the
format:
// String object;
// String verb;
// String version;
boolean success = http_1.openRequest(object, verb, version);
The result is true if the request can be opened and false otherwise. Here’s an example of a typical
openRequest call:
boolean success =
 http_1.openRequest("http://www.powersoft.com/file.html",
 "GET",
 "HTTP/1.0");
Adding request headers
The addRequestHeader method of HTTP adds a header line to the request being constructed:
// String headerField;
// String headerFieldValue;
// int headerFieldFlag;
boolean success =
 http_1.addRequestHeader(headerField,
 headerFieldValue,
 headerFieldFlag);
For example, the following constructs a typical header:
boolean success =
 http_1.addRequestHeader("Content-Encoding", "x-gzip", 0);
The headerFieldFlag argument is one of the following values:

HTTP_ADDREQ_FLAG_ADD_IF_NEW
Only adds this request header if it is new. If there is already a request header of this type, the
specified header is not added and addRequestHeader returns false.

HTTP_ADDREQ_FLAG_REPLACE
Adds this request header and deletes any previous header of this type if one already exists.

If you specify a value of zero for headerFieldFlag, the default is
HTTP_ADDREQ_FLAG_ADD_IF_NEW.

You may call addRequestHeader any number of times to add request headers to the request (or to
replace existing headers with new values, provided you specify the flag
HTTP_ADDREQ_FLAG_REPLACE).

Sending the request
The sendRequest method of HTTP transmits the current request and its headers to the remote web
server:

boolean success = http_1.sendRequest();
The result is true if the request is sent successfully and false otherwise.

Closing the request
The closeRequest method of HTTP performs clean-up after a request has been sent:

http_1.closeRequest();
You can also use closeRequest to delete a request that you have been constructing. For example, if
you begin building a request, then decide not to send it after all, you can delete the partly-constructed
requested using closeRequest.

Receiving the server's response
Once you have sent an HTTP request, you can receive the web server’s response using the readFile
method:

// byte buffer[];
int byteCount = http_1.readFile(buffer);

The byteCount gives the number of bytes in the server’s response. The maximum number of bytes
read by readFile is the maximum number of bytes that can be stored in buffer.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 The HTTP component class
 Closing an HTTP connection

The closeConnection method of HTTP closes a connection that has previously been opened with
connect:

http_1.closeConnection();

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications
 The FTP component class

The FTP class is derived from the Internet class. Therefore, it has all of the “generic” Internet
connection services defined in Internet, but has additional methods which are specific to FTP
connections. In particular, FTP objects make it easy to perform common FTP operations (for example,
changing the current directory, and getting or putting a file) in cooperation with the remote FTP server.

Many FTP operations are only allowed if you have appropriate permissions. For example, you may be
allowed to read files from the remote system but not to write files to that system.

This guide makes no attempt to provide technical details about FTP requests and other interactions
with web servers. For information, see RFC 959, available at:

ftp://ds.internic.net/rfc
ftp://nic.merit.edu/documents/rfc

Jato gives FTP objects default names of the form ftp_N. On the Internet page of the Java component
palette, FTP objects are represented by the following button:

FTP objects placed on a form are visible at design time, but are not seen at run time.

Note: This section does not examine all the methods available in the FTP class; it only deals with the
most commonly used. For a complete description of all methods, see the Jato Component Library
Reference.

 Establishing an FTP connection
 Obtaining a directory listing
 Changing the current directory
 Retrieving a file from the remote system
 Sending a file to a remote system
 Closing an FTP connection

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 The FTP component class
 Establishing an FTP connection

The connect method of FTP connects to the URL associated with the FTP:
boolean success = ftp_1.connect();

The result is true if the connection succeeded and false otherwise.

The connect method attempts to establish two I/O streams with the remote web server:

· An input stream that your application can read using various FTP methods. This input stream
delivers data from the remote FTP server to your application.

· An output stream that your application can use to send FTP requests to the remote FTP server.

For many FTP connections, you must set the UserName and the Password properties of the FTP
object before calling connect. For more information about these properties, see Internet object
properties.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 The FTP component class
 Obtaining a directory listing

The retrieveDirectoryListing method of FTP retrieves the contents of a specified directory on the
remote system:
 // String dirName;
 Vector files = ftp_1.retrieveDirectoryListing(dirName);
The result is a vector of file names expressed as String objects. For example,
 Vector files = ftp_1.retrieveDirectoryListing("pub");
retrieves the contents of the pub directory in the current directory. The file names are given by
files[0], files[1], and so on.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 The FTP component class
 Changing the current directory

The changeCurrentDirectory method of FTP changes the current directory on the remote system:
 // String dirName;
 boolean success = ftp_1.changeCurrentDirectory(dirName);
The return value is true if the operation succeeds and false otherwise (for example, if the specified
directory doesn’t exist).

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 The FTP component class
 Retrieving a file from the remote system

The retrieveFile method of FTP retrieves a file from the remote system and copies it to a local file:
 // String remoteFile;
 // String localFile;
 // int transferType;
 // boolean failIfFileExists;
 boolean success = ftp_1.retrieveFile(remoteFile,
 localFile, transferType, failIfFileExists);
If failIfFileExists is true, retrieveFile terminates if the specified local file already exists. If
failIfFileExists is false, retrieveFile overwrites the local file if it exists.

The transferType argument may have one of the following values:
TYPE_ASCII
TYPE_BINARY
TYPE_EBCDIC
TYPE_IMAGE
TYPE_LOCAL

These indicate the type of data file being retrieved.

The result of retrieveFile is true if the file is successfully retrieved, and false otherwise.

The following shows a typical example of using retrieveFile:
boolean success = ftp_1.retrieveFile("rfc959.txt",
 "mycopy.txt", TYPE_ASCII, false);

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 The FTP component class
 Sending a file to a remote system

The putFile method of FTP sends a file from your local computer system to the remote system:
 // String localFile;
 // String remoteFile;
 // int transferType;
 // boolean overwriteFile;
 boolean success = ftp_1.putFile(localFile,
 remoteFile, transferType, overwriteFile);
If overwriteFile is false, putFile will not try to send your file if there is already a file of the given
name on the remote system. If overwriteFile is true, putFile will overwrite the remote file, if it
exists.

The transferType argument may have one of the following values:
TYPE_ASCII
TYPE_BINARY
TYPE_EBCDIC
TYPE_IMAGE
TYPE_LOCAL

These indicate the type of data file being sent.

The result of putFile is true if the file is successfully delivered, and false otherwise. For example, if
you do not have permissions to write files to the remote system, putFile returns false.

The following shows a typical example of using putFile:
boolean success = ftp_1.putFile("myprog.zip",
 "yourprog.zip", TYPE_BINARY, false);

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 The FTP component class
 Closing an FTP connection

The closeConnection method of FTP closes a connection that has previously been opened with
connect:

ftp_1.closeConnection();

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications
 Integrating Jato and Microsoft FrontPage

A web site is simply a collection of files. Some of these files contain only content: HTML, JPG and GIF
files are examples of content files. Some files in a web site are executable, such as Java applets or
servlets. Creating and maintaining the two types of files requires different skills and tools.

Those responsible for the content files need a sense of aesthetics and layout. They need tools that
help them maintain the links between the content files that make up the web site. They need editors
that let them modify the various files. Those responsible for the executable files need an understanding
of computer programming. They need tools that help them build source code into executables and
debug those executables.

The integration between FrontPage and Jato is based on this division of tasks. FrontPage and Jato
may be used as different views on the same web site. Both those responsible for content and those
responsible for executable files will work on the same files but they will use different tools because they
have different needs.

You would likely use FrontPage to edit the web site’s content files. It contains file management facilities
that let you view the links between the files in the web site and functions that let you verify that all the
links are valid. It also contains a graphical HTML editor.

You would likely use Jato to work on the executable files in the web site. It contains facilities that let you
manage the dependencies between source files and the executable files built from them. It allows you
to build executable files from source files and debug them.

While either tool can be used to view the web site, you may not edit the web site in both tools
simultaneously on one machine. If you do, the two tools may overwrite each other’s files and the
revision control support in Jato will not work correctly.

 Control Files
 Creating a Web Site
 File Management
 Revision Control
 Publishing
 HTML Editing in Jato

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 Integrating Jato and Microsoft FrontPage
 Control Files

Each product creates its own control files, used to store information about the files in the web site. Jato
generates WXT, WXP and WXU files. FrontPage stores control files in folders that begin with _vti_.
Neither Jato or FrontPage will read or write the other’s control files. Information about the state of the
web site will not be shared between the two tools.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 Integrating Jato and Microsoft FrontPage
 Creating a Web Site

The web site can be initially created using either Jato or FrontPage. You simply follow the usual
procedure to create a new web site using either tool.

Before the web site can be edited using the other tool, you must go through the process of creating a
new web site using that tool. When asked for the folder for the new web site, you enter the folder
created by the first tool for the web site. Both tools will warn that there are already files in the folder you
have chosen. Jato displays the following dialog.

FrontPage displays this dialog.

In both cases, the dialog is only a warning and you will be allowed to continue creating the web site. Any
files created by the tool that initially created the web site will not be disturbed.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 Integrating Jato and Microsoft FrontPage
 File Management

FrontPage considers all files in the web site folder to be part of the web site. Any executable files
added to the web site by Jato appear as part of the web site when it is viewed with FrontPage.

Jato maintains its own list of the files in the web site. When files are added to the web site using
FrontPage, they only appear in Jato Files window. They will not appear in the Targets window unless
you specifically add them to the Jato web target.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 Integrating Jato and Microsoft FrontPage
 Revision Control

Different skills are needed to edit the content and executable files in the web site. In most cases,
separate people will work on these two types of files. A revision control system provides the tools
needed to let several people share access to the various files in the web site. It lets you set up a
central repository for the web site files where everyone can retrieve the most up-to-date copies of the
files.

Jato has built in support for many popular revision control systems including Visual Source Safe. It also
has a generic batch file scheme that will allow it to work with almost any revision control system. When
editing the web site with Jato you will be able to use the built in revision control support.

If you use both tools to view the project you will be able to do revision control operation using the
facilities available in either environment. For example, you could check a file out using whatever
revision control support is available in FrontPage, then check that file in later using Jato. However, you
must not have the same web site open in both tools on one machine at a time.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 Integrating Jato and Microsoft FrontPage
 Publishing

Publishing is the process of copying files from the folder where Jato or FrontPage edits them to the
folder where a web server accesses them. Both FrontPage and Jato will recognize and publish files
added to the web site by the other. Publishing can be accomplished using either tool.

Jato recognizes control files created by either tool and does not publish them. FrontPage publishes
control files created by Jato.

FrontPage supports publishing by copying all the web site files to another folder or using the Web Post
API.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 9. Writing Internet applications

 Integrating Jato and Microsoft FrontPage
 HTML Editing in Jato

The File Types page of the Jato Options dialog box lets you choose the editor used to edit a file with a
particular file name extension. For further information, see Error! Reference source not found..
Since the FrontPage HTML editor is a separate executable, you can use the dialog to specify that it
should be used to edit HTML files. If you install FrontPage before Jato, you can configure Jato to use
FrontPage as its HTML editor.

 Jato Programmer ’ s Guide

 Part II. Advanced topics
 Chapter 10. Using and creating JavaBeans

This chapter explains how to:

· Use JavaBeans components or other Java components.

· Create JavaBeans components.

%%% Note: This chapter describes features that may not have been thoroughly tested in the pre-
release version of Jato. Please report any bugs that you find!

 Using an existing JavaBean
 Creating your own JavaBean
 JavaBean property sheets
 Summary of using and creating JavaBeans

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 10. Using and creating JavaBeans
 Using an existing JavaBean

A JavaBean defines a component that can be used in the same way as components like command
buttons and list boxes. A JavaBean is basically a Java class definition (a .class file) which conforms
to the JavaBean standard for specifying properties, methods, and so on.

JavaBeans serve the same purpose as Microsoft Windows ActiveX components: custom-written
components which are designed to be reusable in a number of contexts. However, since JavaBeans
are written in Java, they can be used on any system that supports Java, not just on Windows systems.

This guide does not explain the design principles underlying JavaBeans. For more information, see the
most recent release of the JDK. The “official” web site for JavaBean specifications is

http://splash.javasoft.com/beans
This provides the technical specifications for JavaBeans, as well as an overview of the JavaBeans
concept and tips for using JavaBeans.

 Attaching a JavaBean to Jato

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 10. Using and creating JavaBeans

 Using an existing JavaBean
 Attaching a JavaBean to Jato

Jato makes it easy to incorporate existing JavaBeans into your Jato session. For example, suppose
that someone in your company has written a JavaBean designed to work with your company’s
database. You can attach this Bean to your Jato session by adding the Bean to the Database page of
the Java components palette. Once you have done this, you can use the Bean just like any of the
standard Jato components: you can place it on forms, set properties by property sheets, and so on.

Before you can attach a JavaBean to Jato, you must have the following information:

· The name of the .class file defining the JavaBean.

· The page on the Java components palette where you want to place the Bean. By default, Jato
creates a new page named Classes and places the Bean there.

· The name of a folder where Jato can place various files that are used in building the JavaBean
from the .class file.

· An icon to represent the Bean on the Java components palette. Jato can produce a default icon, let
you browse for icons available on your system, or invoke the image editor so you can create a new
icon. You must have a large icon (24x24 pixels) and a small one (16x16 pixels).

Note: The large and the small icon are stored together in a single ICO file. If you invoke the Image
Editor to edit the icons, you always see the 16x16 version of the icon first. To edit the 24x24 icon, use
the Select Icon Image entry of the Edit menu in the Image Editor to switch from image to the other.

The process of attaching a JavaBean to Jato is controlled by the Java class component wizard.

¨ To attach an existing JavaBean to Jato:
1. In the Components menu of the main Jato menu bar, click Add Java Component. This opens the

Java class component wizard.

2. Under Page on the component palette, click the page where you want the Bean to appear.

3. Under Class file, type the name of the .class file containing the Bean definition or click Browse
to locate the file on your computer.

4. Click Next.
5. Under Folder name, type the name of the folder where Jato can build the Bean or click Browse to

locate such a folder on your computer.

6. Make sure the Use JavaBeans naming conventions is checked, then click Next.
7. Specify an icon file for the Bean, either by clicking Browse and choosing an existing icon file or by

clicking Edit and designing your own.

8. Click Finish.

After you click Finish, Jato attempts to build the JavaBean from the .class file and attach it to your
program. If this is successful, the icon for the Bean will appear on the components palette page that
you specified.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 10. Using and creating JavaBeans
 Creating your own JavaBean

A JavaBean is just a .class definition that follows the JavaBean model. For example, properties for
the class are controlled using get and set methods, events follow the listener model used by Jato itself,
and so on. To create your own JavaBean with Jato, you simply create a class that obeys these rules.

Jato has a number of features which make it easier to define a class that fits the JavaBean model.
These features are described in the sections that follow.

 Defining a JavaBean class
 Adding a property to a JavaBean class
 Adding a method to a JavaBean class
 Adding an event to a JavaBean class

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 10. Using and creating JavaBeans

 Creating your own JavaBean
 Defining a JavaBean class

The first step in creating a JavaBean is to create the class. You do this the same way you would create
any other class: using the Class wizard.

The Class wizard requires the following information:

· A name for the JavaBean class.

· An existing class on which the JavaBean is based. The default is Object, the most general Java
class. However, you can choose a different class if appropriate. For example, suppose you want to
create a JavaBean which is an enhanced type of list box. You can base your JavaBean on
powersoft.jcm.ui.ListBox, then add new properties, methods, and events to support the
enhancements you want to implement.

· A name for the package that will contain the JavaBean. You can leave this blank if you don’t intend
the Bean to be part of a package.

· Whether or not the JavaBean implements an interface.

¨ To create a JavaBean class:
1. In the Classes window, click the target where you will define the JavaBean class.

2. In the File menu of the Classes window, click New, then Class. This opens the Class wizard.

3. Click Visual Class if the JavaBean will be visible when it is used on forms; otherwise, click
Standard Java.

4. Click Next.
5. If the JavaBean will be part of a package, type the name of the package under Package.

6. Under Class name, type a name for the JavaBean.

7. Under Extends, type the name of the class on which the JavaBean will be based.

8. If the JavaBean implements an interface, type the name of the interface under Implements.

9. If the JavaBean will be a public class, make sure Public is checked.

10. If the JavaBean will be an abstract class, make sure Abstract is checked.

11. If the JavaBean will be an interface, make sure Interface is checked.

12. Click Finish.

After you finish, Jato opens a code editor window where you can enter a definition for the class.
Specifically, you can enter declarations for any data members in the class and any import statements
that the class may require.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 10. Using and creating JavaBeans

 Creating your own JavaBean
 Adding a property to a JavaBean class

In a JavaBean class, properties are controlled by property functions. This means a get method which
determines the current value of the property, and/or a set method to assign a new value. A property
that only has a get method is called a read-only property.

Often, the value of a property will be represented by a data member in the JavaBean class. For
example, if you have a property named MyValue, you might create a data member named _myValue
which holds the property’s value. This makes it possible to create very simple inline property functions,
as shown below:
 // String _myValue;
 String getMyValue() { return _myValue; };
 void setMyValue(String newValue) { _myValue = newValue; };
The above code assumes that MyValue has the String data type. Comparable code could be
generated for other data types.

If a property has its value stored in a data member as shown above, Jato can automatically generate
inline property functions using the form of the preceding example. In more complex situations, you
must write your own get and set functions to work with the property. You may also want to create
several overloaded versions of a get or set function, in applications where there may be several useful
calling sequences for the property function.

Before you add a property to a JavaBean class, you need to decide the following information:

· A name for the property.

· A data type for the property. For example, if the property contains text information, you might
choose the String class.

· Whether you want Jato to generate simple inline get and set functions or you prefer to write your
own functions.

Once you have determined this information, you can create the property.

¨ To add a property to a JavaBean class:
1. In the Classes window, use the right mouse button to click the class where you want to define the

property, then click Insert, then Property. This opens the Property Wizard.

2. Under Name, type the name of your property.

3. Under Data Type, click the name of the data type for your property.

4. Click Next.
5. If you want to write your own property functions, click Member functions, then type prototypes for

the property functions you want to define.

6. If you want Jato to automatically create simple inline get and set functions, click Member variable
with inline Get-Set and type in the name of the data member that will hold this property’s value.

7. Click Finish.

Jato will open a code editor window that will let you enter code for the property functions.

In some cases, you may want to define a property before you’re ready to write the property functions.
You should note that the code will not compile until you give the get function a return statement that
returns a value of the appropriate type.

Deleting properties from a JavaBean
You can delete a property in the same way you delete any other object.

¨ To delete a property from a JavaBean class:
1. In the Classes window, use the right mouse button to click on the property, then click Delete.

There is one special consideration: if you had the Property Wizard create a data member to hold the
value of the property, Jato does not delete the data member when you delete the property. You must
delete the data member manually in the code for the JavaBean class.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 10. Using and creating JavaBeans

 Creating your own JavaBean
 Adding a method to a JavaBean class

The process of adding a method to a JavaBean class is similar to adding a property. Before you add
the method, you must decide the following information:

· The name of the method.

· One or more prototypes for invoking the method.

· One or more categories in the Reference Card where you want this method to be listed. The
default is Essential.

Note: The Essential category of the Reference Card is specified as " Essential" (with a blank
before the first character of the name). When categories are sorted in alphabetical order, the blank
ensures that the Essential category appears first in the Reference Card list.

¨ To add a method to a JavaBean class:
1. In the Classes window, use the right mouse button to click the class where you want to define the

property, then click Insert, then Method. This opens the Method Wizard.

2. Under Name, type the name of your method.

3. Under Prototype(s), type one or more prototypes for invoking your method.

4. Click Next.
5. Under Reference Card Categories, type one or more categories where you want the method to

appear in the Reference Card.

6. Click Finish.

Jato opens a code editor window where you can begin entering code for the method.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 10. Using and creating JavaBeans

 Creating your own JavaBean
 Adding an event to a JavaBean class

You may define events for JavaBeans components, using the event model described in Standard
events. You can use an existing event (like Click or Select) or define a new event.

If you define a new event, you must specify an event identifier (event ID) for the event. This is a
symbolic name that will be used to differentiate your event from other events. Jato automatically
assigns a unique numeric value to the event ID name you choose.

For every event, you must also specify an event data structure that will be used to pass information to
event handlers. This will either be an existing event data structure (for example,
powersoft.jcm.event.ClickEvent) or a new event data structure based on Jato EventData class
(powersoft.jcm.event.EventData).

If you intend to use a new event data structure, you must create a class defining this structure before
you define an event that uses the structure.

Before you add an event to a JavaBean class, you need to decide the following information:

· Whether you intend to use an existing event or define a new one.

· An event ID name for the event (if you are not using an existing event).

· A brief description of the event to appear in the Object Inspector and the Events menu. (This is not
needed if you are using an existing event.)

· The event data structure type that will be used to hold information about the event.

¨ To add an event to a JavaBean class:
1. In the Classes window, use the right mouse button to click the class where you want to define the

property, then click Insert, then Event. This opens the Event Wizard.

2. If you intend to use an existing event, click Use an existing event, then click the name of the
event under Existing Event.

3. If you intend to define a new event, click Define a new event, then type a name for the event’s
event ID.

4. Click Next.
5. If you are defining a new event, type a brief description under Description.

6. Under Event Data Structure, click the data structure that will contain information about this event.

7. Click Finish.

Adding an event to a JavaBean class defines several methods within the class:

addEventListener
Adds a listener for the event to the list of listeners already registered. The name of this method
depends on the event being defined. For example, if you are defining a Click event, the name of
this method is addClickListener.

removeEventListener
Removes a listener for the event from the list of listeners already registered. The name of this
method depends on the event being defined. For example, if you are defining a Click event, the
name of this method is removeClickListener.

fireEvent
Triggers the event on the current object. The name of this method depends on the event being

defined. For example, if you are defining a Click event, the name of this method is fireClick.

As an example of how this comes together, suppose you create a class named MyButton as an
enhanced type of command button, and you define a Click event for this class. You build the .class
file defining MyButton and attach this to your Jato session, as described in Attaching a JavaBean to
Jato.

Once you have done this, you can place MyButton objects on forms in other Java applications.
Suppose you place a MyButton named mb_1 on a form. Then you may take the following steps to
enable Click events on mb_1:

1. The form that contains mb_1 should be declared as an implementation of ClickListener.

2. The create method for the form should contain the code

mb_1.addClickListener(this);

to indicate that the form is listening for Click events on mb_1.

3. The form should contain a click method with the prototype

public void
 click(powersoft.jcm.event.ClickEvent event)

This method is invoked when the form receives a Click event on mb_1. Typically, the click method
uses event.getSource() to verify that the Click event was triggered on mb_1, then invokes an
appropriate Click event handler (for example, mb_1_Click).

Alternatively, you can set up a relay function to listen for Click events on mb_1. You do this with the
following steps.

1. Create an mb_Relay class that implements ClickListener. This class should define a click method
with the same prototype as given in the previous approach.

2. In the create method for the form, create an mb_Relay object and make it the Click listener for
mb_1, as in:

mb_1_Relay = new mb_Relay();
mb_1.addClickListener(mb_1_Relay);

In this case, the click method for mb_1_Relay should be set up to invoke an appropriate Click event
handler for mb_1.

User-defined events
The previous section discussed how to deal with JavaBeans which used an existing event (Click). If
you define your own event, the process is similar but requires some extra steps. As an example,
suppose you have defined a new event named MyEvent in a JavaBean named MyBean. You have
also defined an event data structure class named MyEventData, derived from the basic Jato EventData
class.

To work with this new event, you must begin by creating an interface named MyEventListener. This
should be an extension of the powersoft.jcm.event.EventListener class. A typical definition
would be
import powersoft.jcm.event.EventListener;
public interface MyEventListener extends EventListener {
 void myEvent(MyEventData eventData);
}
This specifies that a listener for this event must include a method named myEvent.
When you use MyBean in an actual application, the application must include an object that implements
MyEventListener and contains a method named myEvent. This object can either be the form that

contains the object where MyEvent is triggered, or a relay that is specifically associated with the
object. Whichever you choose, you would use

mb_1.addMyEventListener(...);
to specify which object will be the event listener.

Now suppose you have a MyBean object named mb_1 and want to trigger a MyEvent on the object.
You do this with

// MyEventData event;
mb_1.fireMyEvent(event);

Your program must initialize the event argument to specify event information that you want to pass to
the event handler(s).

The fireMyEvent method determines the first MyEventListener object associated with mb_1, and
invokes myEvent in the event listener. The myEvent method typically invokes an event handler routine
to handle the event, as in

event.setHandled(mb_1_MyEvent(event));
This passes the event data block to an event handler named mb_1_MyEvent. If the event handler
returns true, myEvent uses setHandled on the event block to indicate that the event has been
handled; otherwise, the event is still considered unhandled. Control passes back to fireMyEvent. If the
event is still unhandled and there are more event listeners for the same object, fireMyEvent invokes
myEvent in the next event listener. In this way, fireMyEvent works through the list of registered event
listeners until one uses setHandled on the event data block to indicate that the event has been
handled (or until fireMyEvent has gone through all the registered event listeners).

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 10. Using and creating JavaBeans
 JavaBean property sheets

Jato maintains property sheets for JavaBean classes, and for properties, methods, and events defined
for those classes. These property sheets summarize the information that was gathered by the wizard
that created the item. For example, if you define a method in a JavaBean class, the property sheet for
the method summarizes the information that was gathered by the Method Wizard when you first
created the method.

You can use the property sheets to change information about JavaBean classes, properties, methods,
and events. For example, if you want to change the Reference Card categories where a method
appears, you can open the property sheet for the method and make a change on the appropriate page
of the property sheet.

¨ To open the property sheet for a class:
1. In the left part of the Classes window, use the right mouse button to click on the name of the class,

then click Properties.

Opening a property sheet for an item defined within a classe (for example, a property) is similar.

¨ To open the property sheet for a property, method, or event:
1. In the right part of the Classes window, use the right mouse button to click on the name of the item,

then click Properties.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 10. Using and creating JavaBeans
 Summary of using and creating JavaBeans

This chapter has explained how to use Java components, including JavaBeans, and how to create
JavaBeans components.

 Jato Programmer ’ s Guide

 Part II. Advanced topics
 Chapter 11. Using ActiveX components and servers

This chapter explains how to:

· Use ActiveX controls (also called ActiveX controls or OCXs) as components that interact with Java
applets on your web pages.

· Use ActiveX server components as programmable extensions of your servlets.

ActiveX controls are based on OLE and ultimately on the COM architecture. ActiveX controls were
formerly referred to as OCXs, because their files have the OCX extension. ActiveX components can be
smaller and faster than OCXs. As a result, they can be downloaded and used more easily over the
internet.

Note: ActiveX controls cannot be hosted by every browser. Users of your applications will need either
Microsoft Internet Explorer version 3.0 or later or Netscape Navigator with an ActiveX plug-in.

 OLE and ActiveX
 Getting started with ActiveX controls
 Using ActiveX controls and server components
 Summary of using ActiveX components and servers

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 11. Using ActiveX components and servers
 OLE and ActiveX

Object Linking and Embedding (OLE) is a standard that provides a way to share functionality between
applications. An ActiveX control (also called an OCX) is a standardized component type which can be
used by your Java applets on a web page. ActiveX controls are provided by a large number of vendors
and cover a wide range of functionality.

ActiveX controls are similar to native Jato components in that the interface to them is implemented as
properties, methods, and events. Unlike native components, however, ActiveX controls do not appear
within the applet's window. ActiveX controls are embedded in a web page along with a Java applet. You
can manipulate the ActiveX control in your java applet by invoking the control's methods and setting its
properties.

When the ActiveX control triggers an event, the event is relayed to your Java applet using Visual Basic
Script. Jato automatically manages the relaying of events so that you can invoke methods and respond
to events in the same way that you do with native Java components.

ActiveX server components are used by a web server to perform server-side operations. Using ActiveX
server components on a web server you can access databases, perform business logic, and so on.
Because server components have a standardized interface, they can be used by Jato and any
development environment that supports ActiveX.

ActiveX controls and server components are handled similarly in Jato, as detailed in the following
sections.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 11. Using ActiveX components and servers
 Getting started with ActiveX controls

ActiveX controls are used in much the same way as other components in Jato. An ActiveX control is
not an application that can be run on its own; it is a control that can be used in other applications by
invoking its methods, setting its properties, and responding to its events.

When you add an ActiveX control to the Component palette, Jato creates a native interface to it. The
methods and properties of that control are added to the Jato Reference Card and are available for drag
and drop programming. If the documentation is provided as online help it will be directly accessible
from the Reference Card.

After the ActiveX control has been added to the Component palette, you use it as you would any native
Jato component except that ActiveX controls are not visible on Java forms. ActiveX controls are
embedded in a web page and controlled by a Java applet on the same page.

 Registering ActiveX controls
 Adding and ActiveX component to Java palette
 Place component on a Java form

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 11. Using ActiveX components and servers

 Getting started with ActiveX controls
 Registering ActiveX controls

Before you can use an ActiveX control, it must be registered with the system. When you register a
control, its description is stored in the system registry. This information allows all programs (including
those you build with Jato) to use the control. Some controls provide an installation program that
registers them for you. If this is the case, or if the control has been registered by some other program,
skip this section.

¨ To register an ActiveX control:
1. In the Tools menu of the main Jato menu bar, click Register ActiveX controls…. This displays a

list of all ActiveX controls currently registered.

2. If the control is already in the list then it is already registered so you should click Close. Otherwise,
click Register.

3. Locate and select the control’s library (for example, the OCX file or DLL file containing the control).
When you have found the library, click Open. This opens the file and registers the control.

4. Click Close.

Note: Registration is a system-wide operation: registered controls become available to all programs,
not just Jato. Similarly, Jato can use controls that have been registered by other applications.

If you move an ActiveX control's file, you must unregister it, then re-register it in its new location.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 11. Using ActiveX components and servers

 Getting started with ActiveX controls
 Adding and ActiveX component to Java palette

Adding an ActiveX control to the Jato palette integrates the control with the Reference Card and makes
it possible for you to use objects of that type with your Java applet or servlet. When you add an ActiveX
control to the Component palette, Jato generates the class files needed to access the associated
methods and properties.

The rest of this section describes the basic steps for adding an ActiveX control to the Component
palette. The same procedure applies to adding ActiveX server components.

¨ To add an ActiveX control to the Component palette:
1. On the Components menu of the main Jato menu bar, click Add ActiveX Component(s). You are

presented with the ActiveX Component Wizard.

2. Choose the control that you want to add to the Component palette.

3. Select the Java Component Palette from the Component palette list.

4. Choose the page on the Component palette where you want the new control(s) to reside. You may
select a page from the list or create a new page by typing the name of the new page.

5. Click the item that you want to add. Click Finish.

The first page of the Component Wizard has two options: Show type libraries and Show automation
servers. The only difference between these two options is how they are registered with the system.
Most ActiveX controls will be registered as type libraries. Some automation servers are registered as
type libraries, some as automation servers. If an item is shown in both lists, you may choose either with
the same result.

If the control you wish to register is not in the list, make sure it is registered. For information on
registering controls, see Registering ActiveX controls.

Some automation servers provide a type library that is not registered with the system. If the type library
you seek is not in the list, click the Browse button to search for it on disk. Type libraries are usually
stored as a file with the TLB extension in the same folder as the automation server.

When Jato has finished, the controls defined by the type library appear on the Component palette.
There may be a number of controls for each type library. Once an ActiveX control resides on the
Component palette, you can use it in any project you make.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 11. Using ActiveX components and servers

 Getting started with ActiveX controls
 Place component on a Java form

ActiveX components reside on a web page rather than residing on a Java form. To use an ActiveX
component in your Java applet, you place a component proxy on your Java form and use the proxy to
invoke the component's methods. When the applet is being used in a browser, the control's methods
are invoked by your applet through the Java virtual machine.

Place the component that you want to use on your Java form. An icon representing the component will
appear on the form. For Java applets, you should open the component's property sheet and turn on the
Externally Created property. This property causes Jato to automatically attach the component your
Java applet.

Attaching components to Java forms
The new ActiveX component is represented by a member variable of the form. Since the ActiveX
component resides on the web page and not on the Java form, your web page must invoke a method
of your Java to provide your Java applet with the component.

When you turn on the Externally Created property, Jato creates a method for your form that allows the
web page to provide the form with a component. The web page should normally invoke this method
when it is loaded. When you turn on the Externally Created property, Jato generates Visual Basic
script to invoke the method to attach the Java applet to a component.

For example, if you place a Formula One worksheet component on your form and turn on the
Externally Created property, Jato will declare a private data member named _DVCF1_1 as part of
your Java form:
 private _DVCF1 _DVCF1_1;
Jato will also create a public method called Set_DVCF1_1:

public void __Set_DVCF1_1(Object o)
 {
 _DVCF1_1 = (_DVCF1)o;
 }
Since the component resides on the web page, Jato automatically generates an OBJECT tag in the
default web page for your applet:

<OBJECT ID="HTML_DVCF1_1" WIDTH=200 HEIGHT=100
 CLASSID="CLSID:042BADC5-5E58-11CE-B610-524153480001">
</OBJECT>
This tag will be replaced with a Formula One worksheet when it is viewed with an ActiveX-enabled web
browser such as Internet Explorer 3.0 or Netscape Navigator equiped with an ActiveX plug-in. When the
web page is loaded by the browser, the Set_DVCF1_1 method must be invoked to provide your applet with
the component. Jato generates the following Visual Basic script which invokes the Set_DVCF1_1
method when the web page is loaded:

<SCRIPT LANGUAGE=VBScript>
Sub window_onLoad
 document.applet.Set_DVCF1_1(HTML_DVCF1_1)
End sub
</SCRIPT>
When the web page is loaded, your applet is started, the ActiveX component is created, and the Visual Basic
script is executed to attach the ActiveX component to your applet's form.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 11. Using ActiveX components and servers
 Using ActiveX controls and server components

Once you have placed an ActiveX control on your Java form and turned on its Externally Created
property, you are ready to start integrating the ActiveX component with your applet. The ActiveX control
is just like any native Java component; it has methods and properties and can trigger events. This
section describes how to invoke methods, set and retrieve properties, and handle events.

 Methods and properties of ActiveX controls
 Handling events
 Running your applet or application

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 11. Using ActiveX components and servers

 Using ActiveX controls and server components
 Methods and properties of ActiveX controls

An ActiveX control’s methods constitute the programming interface that allows you to program the
control in your code. You can invoke these methods in much the same way you invoke the methods of
any control in Jato. You can also use the Reference Card and drag and drop programming to simplify
writing the code.

Using the Reference Card
Once you have added an ActiveX control to the Component palette, its methods are available in the
Reference Card. You access these methods and properties in the usual way. The following figure
shows the Reference Card displaying the methods and properties of the ctSlide ActiveX component
(provided with Jato):

You can access online documentation for the methods of an ActiveX control (as long as the control
vendor provides this documentation). To access information about a method, select the method and click
Help.

You can set properties of an ActiveX control in the same way as you invoke methods. Properties are
placed in the Properties group in the Reference Card. As with standard Java components, you invoke
the property's put method to change the value, or the property's get method to retrieve the value.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 11. Using ActiveX components and servers

 Using ActiveX controls and server components
 Handling events

ActiveX controls trigger events in the same way as native Java components. For example, an event
may be triggered when the user clicks the control or when a timer expires. Jato allows you to program
the event handlers of ActiveX controls within your java applet.

¨ To program the event handler for an ActiveX control:
1. Right-click the ActiveX control on the design-time Java form.

2. On the popup menu for the control, point to Events and click More…. Jato will display the Events
page of the Object Inspector for the control that you selected.

3. In the Object Inspector, double-click the event that you want to handle. Jato creates the event
handler in your code.

The code that you write in the event handler is executed when the control triggers the event. Because
the ActiveX control resides on a web page and not on the Java form, the event must be relayed to the
Java applet using Visual Basic Script. Jato automatically generates the script required to call your
event handler when an event is triggered.

For example, the following Visual Basic Script in an HTML document relays the Click event from the
Formula One worksheet to your Java applet:

<SCRIPT LANGUAGE=VBScript>
Sub HTML_DVCF1_1_Click(P0, P1)
 document.applet.Call_DVCF1_1_ClickEvent()
End sub
</SCRIPT>

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 11. Using ActiveX components and servers

 Using ActiveX controls and server components
 Running your applet or application

If your applet is using an ActiveX control on a web page, you must run the applet in a web browser that
supports ActiveX controls. Both Microsoft Internet Explorer version 3.0 and Netscape Navigator version
3.0 with the ActiveX plug-in offer support for ActiveX controls, and are available on the internet.

¨ To change the environment that is used to run your applet:
1. From the View menu, select Targets. Jato will display the Targets View.

2. In the Targets View, select the Java applet target.

3. From the File menu, click Run Options.

4. On the General option page, select the third option labeled Use a web browser.
5. In the web browser field, enter the full path of your web browser, or click Browse to select it from

disk.

6. Click OK.

Once you have configured the web browser, you can press F5 to run your applet. Jato will open your
applet's web page using the web browser that you specified.

Because ActiveX controls are executed on the client machine, they have full access to the client
computer. Most web browsers inform users when an ActiveX control is instantiated and allow them to
decide whether the control will be allowed to execute. When a web page with an embedded ActiveX
control is loaded, you will see a dialog box indicating that a potentially dangerous application is
running. If you know that the control will not cause damage to your computer, you can allow the control
to execute.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 11. Using ActiveX components and servers
 Summary of using ActiveX components and servers

This chapter has explained how to use ActiveX components with your Java applets and ActiveX
automation servers with your Java applications.

 Jato Programmer ’ s Guide

 Part II. Advanced topics
 Chapter 12. Using threads

This chapter examines the use of threads to perform multiple tasks concurrently. It describes what
threads are, and why you might want to use them. Finally, it discusses how to create and synchronize
multiple threads of execution within a process.

Note: The Threads and Threads and User Events sample projects demonstrate the use of
threads.

 Processes, threads and multitasking
 Designing for multiple threads
 Specifying threads
 Terminating a thread
 Suspending and resuming thread execution
 Thread properties
 Synchronizing threads
 Debugging threads
 Summary of threads

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 12. Using threads
 Processes, threads and multitasking

A process is an independently executing program. It has its own virtual address space; therefore it has
its own code and data, separate from the code and data of other processes. When one process starts
another, the new process executes with its own address space, including copies of its own code and
data. Each process is started as a single thread of execution, but other threads can be created in the
process.

A thread is a single line of execution within a program. Threads execute independently. All threads in a
process share the virtual address space, static memory, dynamically allocated memory, and system
resources of the process. Each thread maintains a private copy of context information, including copies
of machine registers, the execution stack, a thread environment block, and a user stack.

In a simple program, there is a single line or thread of execution. When one routine calls another, the
first routine waits for the second to finish before resuming its own execution. This kind of program is
called single threaded; execution proceeds in a linear fashion, with only one routine executing at a
time.

A multithreaded program has more than one line of execution running concurrently in single process.
For example, one routine may call another, then immediately resume its own execution, without waiting
for the called routine to finish. In other words, the calling routine starts a new thread of execution which
runs concurrently with the first thread.

One thread in a multithreaded program is designated as the primary thread. This is the thread that will
begin executing when you invoke the program (unless you explicitly specify a different thread). In other
words, the primary thread corresponds with the default entry point of the program.

Jato uses the standard thread-handling facilities of the Java language. The rest of this chapter
provides an introduction to those facilities. For more information, see the standard Java
documentation.

 Multitasking and multiprocessing
 Differences between processes and threads
 When to use multiple threads

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 12. Using threads

 Processes, threads and multitasking
 Multitasking and multiprocessing

Operating systems typically use multitasking to allow a single processor to run multiple threads
concurrently. This means that the system runs an active thread for a short time period, known as a time
slice, and then switches to the next active thread. The switch from one thread to another is called a
context switch. A context switch can also occur if the thread yields control before its time slice is
completed. After another time slice, the operating system switches to the next thread. The operating
system continuously repeats this action to cycle through all threads for all active processes, with
threads of higher priority getting more frequent time slices.

Only one thread can be executing on a single processor at any instant, but multitasking allows the
execution of multiple threads to be interleaved. Because the time slice is small (approximately 20
milliseconds), multiple threads appear to run simultaneously, even though only one thread is being
executed at a time. Actually, because of system overhead, a system slows down if it has to coordinate
too many threads.

Some operating systems, such as Windows NT but not Windows 95, support multiprocessing. This
means that if your computer has more than one processor, the operating system can allocate different
threads to different processors. In a multiprocessing system, more than one thread can be executing at
any instant.

Systems that cannot multitask
Some systems (for example, Windows 3.1x) do not support multitasking. In such cases, the Java run-
time environment can still provide a form of multithreaded execution, but general program behavior
may be different. For more information, see Thread priority.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 12. Using threads

 Processes, threads and multitasking
 Differences between processes and threads

It is important to understand the differences between processes and threads. When your program
starts a new thread, the thread executes within the process; it shares the same address space, and
therefore has direct access to data and code. When your program starts a new process, the process
executes as a separate entity; it has a separate address space, and has no direct access to any data
or code of the original process.

Unlike processes, threads share code and the memory heap, but each thread has its own stack. The
heap stores global, static variables and dynamically allocated memory items. The stack stores
execution information; for example, when one function calls another, the stack holds the address where
execution should return when the called function terminates. The stack also provides space for
automatic variables. Thus static variables and allocated memory are shared between threads while
local automatic variables are not.

Threads incur less system overhead than processes. Since threads do not require their own address
space and code, the operating system can create threads and switch between threads more quickly
than between processes. The operating system also uses less memory to keep context information for
an individual thread than for an entire process.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 12. Using threads

 Processes, threads and multitasking
 When to use multiple threads

There are many reasons why you might want to use multithreaded processes. These include wanting a
more responsive user interface or wanting to make more efficient use of the hardware.

· If your application performs lengthy tasks that interfere with the responsiveness of its user
interface, you could perform the lengthy tasks with a separate thread. The user interface thread
would then receive regular time slices and be more responsive, especially if it is given higher
priority than the other thread. For instance, it might be appropriate to start a separate thread for
tasks where a single threaded version would make the user wait for completion while displaying an
hourglass cursor.

· If your program is accessing slow hardware, such as reading a file from disk, you could move that
part of the program to a separate thread. That way, other threads can execute during the time that
the one thread is waiting for the hardware.

· If your application is computationally intensive, you can divide the work among multiple threads to
exploit multiprocessing when it is available.

Keep in mind that using multiple threads consumes more processor time and memory, and that there is
added programming complexity for you to avoid conflicts between the threads.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 12. Using threads
 Designing for multiple threads

A fundamental difference between single threaded and multithreaded programs is that the sequence of
execution for a multithreaded program is much less deterministic. A multithreaded program cannot be
expected to execute in the same order twice, since the operating system is unlikely to allocate time
slices to its threads in the same order. This can make a multithreaded program much harder to debug,
since you cannot completely reproduce runs when trying to track down a problem.

Because threads share the same address space and context switches between threads can occur at
any time, your program must avoid problems that can arise from interactions between threads. You
must write a multithreaded program so that while any thread is using a resource, other threads are
prevented from using it. For example, consider a data structure read by thread A and updated by
thread B. If a context switch from A to B occurs while A is in the midst of reading the data, and B
updates the data in its time slice, A can end up with corrupt data. You can prevent this by synchronizing
the execution of threads so that shared resources are not accessed by more than one thread at a time.

When designing a multithreaded program, you must also be careful to prevent problems like deadlock
and race conditions. Deadlock occurs when all threads are waiting or are otherwise blocked from
executing in an interdependent way, so the process is indefinitely suspended. A race condition arises
when one thread relies on the completion of a task in another thread without explicitly waiting for it, so
it only works if the second process “wins the race” and completes its action before the first needs it.

For an example of deadlock, consider three threads A, B and C. The main thread is A. It invokes B then
waits for thread C to complete. B invokes C and then waits for A to complete. C waits for B to complete.
The sequence of events is:

1. A invokes B.

2. A then waits for C to complete.

3. B invokes C.

4. B then waits for A to complete.

5. C then waits for B to complete.

Each thread is left waiting for another, so none of the threads can resume; the threads are deadlocked.
While deadlock may be easy to predict in this circularly-dependent case, it can also arise in more
subtle ways. The key to avoiding deadlock is to structure your program so that it cannot occur.

 Synchronization
 Master-worker model
 Daemon threads
 Accessing resources

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 12. Using threads

 Designing for multiple threads
 Synchronization

In order to prevent deadlock or race conditions, to protect resources, or to ensure that execution occurs
in the proper order, you need to synchronize the execution of different threads. This can be
accomplished in several ways, including:

· Using Java monitors. Monitors are facilities intended specifically for synchronization.

· Using shared data. Since global and static data is shared between threads, it can be used to
exchange synchronization information.

These techniques are discussed in more detail in Synchronizing threads.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 12. Using threads

 Designing for multiple threads
 Master-worker model

To reduce the chance of deadlock and keep multithreading simple, most multithreaded programs
operate on the master-worker model. In this model, there is a primary thread called the master thread.
From time to time, the master thread may start up worker threads to perform specific tasks. When a
worker is finished, it indicates to the master that it has finished, and then it closes.

For example, suppose you want to display a “Please wait” dialog box while a lengthy operation takes
place. The master could start a worker thread to perform the operation, then display the “Please wait”
dialog box until the thread was finished.

In the master-worker model, workers do not interact with each other—they only communicate with the
master. The master supervises worker efforts to keep things running smoothly. This simple division of
labor usually leads to code that is easier to develop and debug.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 12. Using threads

 Designing for multiple threads
 Daemon threads

Another approach to coordinating threads is the use of daemon threads. A daemon thread can be
regarded as a worker thread whose services are available to all other threads in the program. For
example, you might create a thread whose purpose is to open URLs and load graphic images.
Whenever another thread wants to perform this operation, it queues up a request for the “graphics
loader” thread. Meanwhile, the loader simply loops until it receives a request, whereupon it does all the
work required to fetch the desired image.

Programs typically start daemon threads during initialization or the first time such a thread is needed.
From this point on, the daemon threads remain in existence until the program terminates. This ensures
that the services provided by daemons are available to other threads whenever needed.

Daemon threads often just loop until their services are needed. One way to do this is for the thread to
“go to sleep” for an appropriate period of time, then wake up to see if a request for services has been
received. This sleep/wake pattern prevents a thread from taking up too much processor time when the
thread’s services are not needed. It is also possible for a daemon thread to go into a wait state until
another thread notifies the daemon that its services are required.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 12. Using threads

 Designing for multiple threads
 Accessing resources

A frequent cause of deadlock is having different threads access the same resources in different order.
For instance, consider two processes in the following situation:

· Thread A holds resource X and waits for resource Y.

· Thread B holds resource Y and waits for resource X.

Each thread waits for the other, resulting in deadlock.

You can avoid this by minimizing the sharing of resources, by having threads access shared resources
in the same order where possible, and by having each thread release a shared resource whenever
possible, even if the thread later has to wait to get the same resource back.

Another good strategy is to order the use of resources by how precious the resource is. The least
precious resources should be accessed first. Resources should be released in the opposite order if
more than one resource is no longer needed at the same time. This way, the most precious resources
will be held for the shortest time.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 12. Using threads
 Specifying threads

There are two ways to specify a new thread in your program:

· Create an object of a class that is derived from the Thread class.

· Create an object that implements Runnable.

These two alternatives are discussed in the sections that follow.

 The Thread class
 The Runnable interface
 The current thread

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 12. Using threads

 Specifying threads
 The Thread class

The Thread class is a standard Java class (in java.lang). One way to create a new thread in your
program begins with creating a class based on Thread. Here is a simple example of such a class:

public class MyThread extends Thread
{
 public MyThread(String threadName)
 {
 super(threadName);
 }

 public void run()
 {
 System.out.println("MyThread in execution now");
 }
}
This class has two methods: a constructor and a run method.

· The constructor takes a single argument threadName; this is just a string providing a name for the
thread. The constructor simply uses super to invoke the constructor for the parent class (Thread
itself). Therefore, the constructor for MyThread just uses the Thread constructor to create a thread
of the given name.

· The run method specifies the code that will run when the thread is put into execution. Therefore,
run can be considered the “mainline” routine of the thread. In the sample above, the thread just
prints out a message.

In order to put this kind of thread into execution, you create an object of the given class and then
execute the start method on it:

MyThread t = new MyThread("DoIt");
t.start();

The start method (defined in Thread and inherited by MyThread) initializes the thread for execution
and then invokes your run routine. The run routine then performs the desired “work” of the thread.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 12. Using threads

 Specifying threads
 The Runnable interface

The Runnable interface is available when you want the “mainline” of your thread to be a member
function in a class that isn’t based on Thread. For example, suppose that you want the mainline of your
thread to be a member function in a form. Form classes are based on the Jato Form class; since Java
does not support multiple inheritance, you can’t have a form that is based on both Form and Thread.
Therefore, you can use the following format to declare your form class:
public class MyForm extends Form implements Runnable {
 // define data members and member functions

 public void run() {
 // mainline for thread
 }
}
As shown, you specify that the class implements Runnable. You then define a run method within the
class, in addition to other data members and member functions required by the class. This run method
serves as the mainline for the thread.

In order to start the thread executing, create an object of the specified type and execute the start
method on that object, as in

MyForm f = new MyForm();
f.start();

The start method initializes the thread for execution, and then invokes your run routine. The run
routine then performs the desired “work” of the thread.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 12. Using threads

 Specifying threads
 The current thread

During execution, a Java program may obtain a reference to the currently executing thread with
Thread t = Thread.currentThread();

This executes a static method named currentThread defined in the Thread class. The Thread object
returned by currentThread always refers to the thread that is executing the currentThread function
call.

Once you have obtained this Thread object, you can use it to invoke Thread methods on the current
thread.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 12. Using threads
 Terminating a thread

A thread terminates execution when the thread’s run method returns to its caller. This is generally the
“cleanest” way to terminate a thread. After run finishes executing, the run-time environment cleans up
after the thread.

Another way to terminate thread execution is to invoke the stop method on the thread object. For
example, if you start the thread executing with

MyThread t = new MyThread("DoIt");
t.start();

you can terminate execution with
t.stop();

Similarly, if you started the thread using an object that implements Runnable, you can execute the stop
method on the same object.

When you execute stop on a thread, the run-time environment cleans up after the thread, but the
thread doesn’t get the chance to do any of its own wrap-up. For example, if you stop a thread that is in
the middle of writing data to a file, the thread doesn’t get a chance to finish writing the rest of the data.
This may leave the file’s data corrupted.

Because of such difficulties, you may want to avoid using stop on certain threads. Instead, you could
set a global variable to a value that indicates you want the thread to terminate. The run method for that
thread can check this variable periodically. When the variable indicates a termination request, run can
perform any necessary wrap-up, and then return.

 Daemon threads and program termination

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 12. Using threads

 Terminating a thread
 Daemon threads and program termination

A program terminates when the last of its non-daemon threads finishes execution. At this time, there
may still be active daemon threads—remember that daemon threads typically stay in some kind of
waiting loop through all of program execution, in case some other thread needs a daemon’s services.
Once all the non-daemon threads are gone, it is assumed that the daemons are just looping without
any work to do, so the whole program is terminated.

Since the daemons are automatically terminated when all the non-daemons are finished, your last non-
daemon should not terminate until all daemons are finished real work. For example, the primary thread
is typically the last thread to terminate. This thread should not terminate until it has checked that all
daemons have finished any tasks they have been assigned.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 12. Using threads
 Suspending and resuming thread execution

The suspend method of Thread temporarily stops the execution of a thread. The thread does nothing
until another thread issues a resume operation on the suspended thread. For example,

Thread t = Thread.currentThread();
t.suspend();

immediately suspends the current thread. Execution does not resume until another thread re-activates
this thread. When execution does resume, it will look as if suspend just returned normally. Therefore,
execution continues with the statement after the call to suspend.

To suspend another thread, you must have a Thread object referring to that thread. For example, the
following code creates a thread, performs a few more actions, then suspends the thread:

MyThread t = new MyThread("Name");
t.start();

// ...other actions.
t.suspend();

In the interval between the start call and the suspend call, both the new thread and the current thread
execute simultaneously.

 The resume method
 The sleep method
 Interrupting a sleeping thread

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 12. Using threads

 Suspending and resuming thread execution
 The resume method

The resume method tells a suspended thread to resume execution. This can only be performed on
another thread, using a Thread object. For example, the thread suspended by the preceding code
could be re-activated with:

t.resume();
Execution resumes at the point where the thread was suspended. Therefore, the thread cannot tell that
it was suspended at all: the suspend/resume process is transparent to the thread.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 12. Using threads

 Suspending and resuming thread execution
 The sleep method

The sleep method of Thread is a static method which pauses the currently executing thread for a given
length of time. While a thread is sleeping, other threads (if any) are allowed processor time in order to
execute.

There are two forms for the sleep method. The first gives a time in terms of milliseconds:
Thread.sleep(milli);

For example,
Thread.sleep(1000);

puts the current thread to sleep for 1000 milliseconds (one second).

The second form of sleep is
Thread.sleep(milli, nano);

The first argument gives a number of milliseconds and the second a number of additional
nanoseconds. The thread goes to sleep for the total specified time.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 12. Using threads

 Suspending and resuming thread execution
 Interrupting a sleeping thread

The interrupt method of Thread can be executed to wake a thread that is currently sleeping. The
interrupt method is executed by one thread on another thread:

// Thread otherThread;
otherThread.interrupt();

When a sleeping thread wakes up, it can use the static interrupted method to determine whether it
slept the whole specified time or was interrupted before the full time elapsed:

boolean intrupt = Thread.interrupted();
This method is executed by the current thread to see if it was interrupted. It returns true if the current
thread was interrupted during the most recent sleep, and false otherwise.

The isInterrupted method is similar to interrupted, but is executed on another thread to see if it has
been interrupted:

// Thread otherThread;
boolean intrupt = otherThread.isInterrupted();

Warning: The interrupt method works by setting a bit saying that an interrupt has been requested on
a particular thread. Both interrupted and isInterrupted do their work by checking this bit. Some
implementations of Java may not do anything in response to interrupt except set the bit. This means
that threads always sleep for the full specified time; however, when they wake up, they can check the
bit to see if some other thread wanted to interrupt them.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 12. Using threads
 Thread properties

This section discusses some of the properties that a thread may have.

 Thread name
 Thread priority
 The Daemon property
 Thread states

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 12. Using threads

 Thread properties
 Thread name

All threads have a name, set at the time the thread was constructed. For example,
MyThread t = new MyThread("Foo");

creates a new thread named Foo. You can determine the name of a thread with getName:
String threadName = t.getName();

You can change the name of a thread with setName:
t.setName("NewName");

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 12. Using threads

 Thread properties
 Thread priority

Every thread has a Priority property, indicating its urgency relative to other threads. The priority is
expressed as an integer between Thread.MIN_PRIORITY and Thread.MAX_PRIORITY (inclusive).
This corresponds to a range of 1 through 10, with normal priority (Thread.NORM_PRIORITY) set to 5.

The Priority property has the usual get and set methods. For example, the following code increases
the priority of the current thread by 1:

Thread t = Thread.currentThread();
int p = t.getPriority();
if (p < Thread.MAX_PRIORITY) t.setPriority(p+1);

A thread can set its own priority or the priority of another thread. In order to set the priority of another
thread, you need a Thread object referring to that thread.

Note: If you attempt to set a priority outside the allowed range (for example, a higher priority than
Thread.MAX_PRIORITY), setPriority throws an IllegalArgumentException.

The effect of priority depends on whether the operating system is multitasking.

· If the operating system is multitasking, high priority threads are scheduled time slices for execution
more frequently than low priority threads.

· If the operating system is not multitasking, priority is handled entirely by the Java run-time
environment. The environment allows the highest priority thread to execute until one of the
following occurs:

1) The thread terminates.

2) The thread yields control (as explained below).

3) The thread starts a new thread with a higher priority.

If there are several threads which all share the same high priority, the run-time environment
chooses one of these threads and lets it run until one of the above three conditions applies. The
run-time cycles through all the threads of the highest priority in a round-robin fashion, without
letting lower priority threads execute.

In a multitasking system, even low priority threads get a chance to execute occasionally. In a non-
multitasking system, a high priority thread can effectively block a low priority thread from ever
executing. In World Wide Web’s user/server applications, it is possible that some of your users will
have non-multitasking systems (for example, if you want to support Windows 3.1x users). In such a
situation, you should make sure a high priority thread is not waiting for a low priority thread to
terminate, since this often leads to deadlock.

The yield method
The yield method of Thread makes it possible for a high priority thread to give up control to another
thread:

// Thread t;
t.yield();

This allows another running thread to obtain some processor time. In particular, the yield method is
one way for a high priority thread to yield to a lower priority thread. Note, however, that you cannot
specify which thread obtains processor time after the current thread yields. For example, suppose the

program is running on a non-multitasking system, with two high priority threads and one low priority
one. If one high priority thread yields, the other high priority thread goes into execution. If the new
thread yields, the first high priority thread goes back into execution. In this situation, the two high
priority threads may keep yielding back and forth to each other, without ever giving the low priority
thread a chance to execute.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 12. Using threads

 Thread properties
 The Daemon property

The Daemon property determines whether a thread is a daemon thread. (For an explanation of
daemon threads, see Daemon threads. You can turn a thread into a daemon thread with

// Thread t;
t.setDaemon(true);

You can turn a daemon thread into a non-daemon thread with
t.setDaemon(false);

The isDaemon method determines whether a given thread is a daemon thread:
boolean dm = t.isDaemon();

The result is true if the thread is a daemon thread and false otherwise.

The difference between daemon and non-daemon threads is only relevant in determining when a
program terminates. For more information, see Daemon threads and program termination.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 12. Using threads

 Thread properties
 Thread states

Threads may occupy any of the following states:

New
A new thread has been created using an appropriate Thread or Runnable object, but has not yet
been put into execution using start.

Runnable
The thread has been put into execution using start and is eligible to be given processor time. A
Runnable thread may not actually be running at the moment; for example, it may be a low priority
thread that is stuck behind a high priority thread. Nevertheless, the thread is in a state where it
could execute if given a chance.

Not Runnable
The thread is not available for active execution. This may happen for any of the following reasons:

The thread is blocked while it waits for an I/O operation to complete.

The thread has been suspended with the suspend method.

The thread has gone to sleep using the sleep method.

The thread has used the wait method to wait for a condition to be fulfilled.

Dead
The thread has been stopped with the stop method, or it has finished execution by returning from
its run method.

A thread is considered “alive” if it is Runnable or Not Runnable. The isAlive method of Thread
determines whether a thread is alive.

// Thread t;
boolean alive = t.isAlive();

If a thread is not alive, it may be New (hasn’t started running yet) or Dead (has finished running).

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 12. Using threads
 Synchronizing threads

The Java language provides facilities to synchronize threads through the use of monitors. A monitor is
a mechanism that is associated with a specific data object, and controls access to that data object. The
purpose of a monitor is to ensure that when one thread is accessing a data object, other threads are
prevented from accessing the object.

 Synchronized critical sections
 The notify and wait methods
 Volatile data

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 12. Using threads

 Synchronizing threads
 Synchronized critical sections

The synchronized keyword in Java is used to label sections of executable code within a class
definition. Usually, synchronized is applied to an entire method function; it can be applied to blocks
of code within methods, but this tends to make the code harder to debug and maintain.

The monitor for a specific data object prevents separate threads from executing synchronized code on
the same object. To see what this means, consider a simple class definition:

class SingleAccess {
 private int data;

 public synchronized int read() {
 return data;
 }

 public synchronized void store(int value) {
 data = value;
 }
}
(In practical terms, you would almost never use synchronized with a data object this simple.
Nevertheless, the example illustrates a number of fundamental principles.)

This class holds a single integer value. It provides two member functions: read to obtain the current
value of the integer, and store to store a new value. Both of these member functions are marked as
synchronized.

Now suppose you create an object of this class with
SingleAccess sa;

Creating an object of this class also creates a monitor to keep track of the object sa. The monitor does
not allow separate threads to execute synchronized code on sa. For example, it won’t let one thread
try to read the object at the same time that another thread is trying to store a new value; similarly, the
monitor won’t let two separate threads store values at the same time. Only one thread can access sa
at a time.

Note that the monitor only controls a single object. If, for example, your program has two objects of the
SingleAccess type, one thread could store a value in one of the objects at the same time another
thread was storing a value in the other object.

Critical sections
A block of code marked as synchronized is called a critical section. While one critical section is
executing for a data object, the monitor prevents other critical sections from executing on the same
data object.

Once a critical section finishes execution, the monitor allows other critical sections to execute on the
object. For example, suppose a thread named X begins executing a synchronized method on a data
object and then a thread named Y tries to execute a synchronized method on the same object. The
monitor suspends Y at this point of execution until X’s critical section terminates. At that point, the
monitor executes the resume method on Y to allow Y to proceed with its critical section.

Re-entrancy
Java monitors allow re-entrance. This means that the same thread can simultaneously be executing
more than one synchronized method on the same object.

For example, suppose an object has three synchronized methods: setForeColor, setBackColor, and
setBothColors. The setBothColors method calls the other two methods to set foreground and
background colors together. A thread can call the synchronized setBothColors which in turn calls the
other two synchronized methods; this is allowed because the monitor allows the same thread to
execute more than one synchronized method on the same object. However, suppose another thread
attempts to use setBackColor to set the object’s background color. The monitor will lock out the
second thread because the first thread is already executing a synchronized method on the object.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 12. Using threads

 Synchronizing threads
 The notify and wait methods

The notify and wait methods may be used in synchronized routines to coordinate the activities of
multiple threads.

The notify and wait methods are defined in the Object class. This means they can be used on any
object that inherits from Object.

The easiest way to understand how these methods work is to consider a simple example. Suppose that
store and read are synchronized methods for an object X. The store method stores a value in a
data member of X; the read method retrieves the value from that data member. Thread TS uses store
to store a new value in X and thread TR uses read to read that value; therefore, you want TR to wait
for TS to store its value.

You can implement this using the following calls:

· In read (used by TR), you call wait before reading the value.

· In store (used by TS), you call notify after writing the value.

The call to wait suspends TR indefinitely, until some other thread notifies TR that it can resume
execution. The call to notify chooses one suspended thread for the object and tells that thread it can
resume. In effect, TR waits for TS to set the value; when TS notifies TR that the value has been set, TR
proceeds to read the value.

Here’s a simple class definition that uses this principle:

class SingleAccess {
 private int data;
 private bool newData = false;

 public synchronized int read() {
 while (!newData) wait();
 newData = false;
 return data;
 }

 public synchronized void store(int value) {
 data = value;
 newData = true;
 notify();
 }
}
This introduces a variable named newData which is set true after store stores a new value in data.

· The read method checks newData to see if a data value has been stored; if not, it waits for
another thread to store that value. If a new data value has already been stored, read does not wait
but goes straight to obtain the new value.

· The write method sets newData to indicate that a new data value has been stored. It also calls
notify to notify any waiting threads that the new value has been stored.

When a synchronized routine starts to wait, the monitor associated with the object will allow other
threads to use synchronized routines on the object. If one thread is waiting in read, the monitor lets
another thread execute store, even though both read and store are synchronized.

As a more complicated example, the following definition is designed to let two threads store and read in

alternating fashion. Once a value has been stored, store waits for it to be read with read before
making itself available for storing new values.

class SingleAccess {
 private int data;
 private bool newData = false;

 public synchronized int read() {
 while (!newData) wait();
 newData = false;
 notify();
 return data;
 }

 public synchronized void store(int value) {
 while (newData) wait();
 data = value;
 newData = true;
 notify();
 }
}
In this new version, read notifies store when it has read the current value, just as store notifies read
when it has stored a new value.

The notifyAll method
The notify method notifies a single waiting thread. If there are several threads waiting to use the same
object, notify chooses one and notifies that thread.

In some cases, you may want to notify all of the threads that are waiting to use an object. In this case,
notifyAll();

notifies all the threads. You often need notifyAll in situations where you may have several threads
waiting, with each one waiting for a different condition to come into effect. By invoking notifyAll, you
can have each thread wake up, check to see if its own condition has been fulfilled, and go back into
wait if the notification is intended for some other thread.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 12. Using threads

 Synchronizing threads
 Volatile data

The volatile qualifier is used to mark a data object whose value may be changed by different
threads but which is not protected by a monitor. For example, suppose that different threads may
change the value of an integer variable. You could protect this variable by making a special class and
by protecting it with a monitor, but that imposes a considerable amount of overhead. Another approach
is simply to mark the variable as volatile.

When an object is volatile, the program makes sure to access the object directly every time it is
used. This differs from the usual handling of data objects. For example, if you use a variable in one part
of an expression, then re-use the same variable in another part of the expression, the compiler may try
to optimize performance by storing the variable’s value in a hardware register; since it is faster to
access a register than normal memory, storing frequently used values in registers can speed
execution. However, volatile prevents this kind of optimization—it forces the program to obtain the
value directly from the data object every time it is used, on the theory that the value may be changed
by another thread without warning.

Note: Your program should be careful how it uses volatile data. For example, consider the situation
discussed in the previous paragraph, where a volatile value is used more than once in the same
expression. There is a possibility that the value will be changed by another thread between one use
and the next, with the result that the same symbol has two different values within a single expression.
Obviously, this may lead to confusion and hard-to-find bugs. Therefore, you should avoid the overuse
of volatile data.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 12. Using threads
 Debugging threads

During program execution, the Threads window provides more information about the threads of your
program. The Threads window is available during a debugging session, whenever execution has been
suspended (for example, at a breakpoint). While you are debugging and execution is suspended, all
threads are suspended until execution resumes.

¨ To see the Threads window:
1. On the Debug menu of the code editor, click Threads.

The Threads window contains an entry for each thread. Each entry gives the name and ID number of
the thread, and the current thread has the Current state.

 Operations on threads

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 12. Using threads

 Debugging threads
 Operations on threads

To perform actions with the Threads window, you first have to click the name of a thread in the list of
threads. Then the Thread menu offers the following items:

Freeze
Freezes the selected thread. If you resume executing the program, this thread will not begin
executing. In other words, Freeze manually suspends the selected thread.

Thaw
Reverses a Freeze operation.

Make Current
Lets you start debugging the selected thread. The display of the execution point, variables, or other
debugging information switches to the selected thread.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 12. Using threads
 Summary of threads

A multithreaded program has several independently running threads of execution. Each thread shares
the same address space, so that they can interact with each other.

The most common model for multithreaded programs is the master-worker model, where a single
master thread creates separate worker threads to perform individual tasks. The workers do not interact
with each other; they only interact with the master thread.

 Jato Programmer ’ s Guide

 Part II. Advanced topics
 Chapter 13. Using graphics and printers

This chapter discusses the use of graphics in a program: how to create graphics and display them on a
form.

 The Graphics class
 Drawing on a graphic context
 The Image class
 The MediaTracker class

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 13. Using graphics and printers
 The Graphics class

The AWT Graphics class is an abstract class representing an area where a graphical image may be
drawn. Graphics is a platform-independent abstract class which is used as the basis for appropriate
system-dependent classes. For example, the AWT library on a particular computer may define one
Graphics-derived class for drawing pictures on the monitor screen, another class for drawing pictures
that will be sent to a printer, and so on.

Any class derived from Graphics must support the standard methods defined for the root class
Graphics. Therefore, the rest of this section describes various methods which can be applied to any
Graphics object.

Note: A Graphics object is said to define a graphic context. Therefore, drawing on a Graphics object is
sometimes described as drawing in a graphic context. The graphic context may describe all or part of a
window on the screen, an area on a printer page, etc.

 Creating a graphic context
 Common Graphics properties
 Disposing of a graphic context

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 13. Using graphics and printers

 The Graphics class
 Creating a graphic context

%%% The getGraphics method is not yet implemented.

The usual way to create a graphic context is to use the getGraphics method for a component. For
example, suppose that you want to be able to draw on the current form:

Graphics g = getGraphics();
obtains a graphic context for the form using the form’s getGraphics method. Similarly, suppose you
want to be able to draw on command button cb_1 (so that you can place a picture on the button rather
than text). You can obtain a suitable graphic context with

Graphics cbg = cb_1.getGraphics();
The create method of Graphics creates a new Graphics object associated with a particular rectangle in
the original Graphics object:

// Graphics g1;
Graphics g2 = g1.create(x, y, width, height);

For example, suppose you want to draw a picture in a selected portion of a form. You could use
getGraphics on the form to get a graphic context for the entire form, then create on the first graphic
context to get a new (smaller) context.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 13. Using graphics and printers

 The Graphics class
 Common Graphics properties

A Graphics object has the following properties:

ClipRect
The rectangle that marks the boundary of the object’s clipping rectangle. The clipping rectangle is
the area that you can actually draw in. For example, if the Graphics object represents an entire
printer page, the clipping rectangle is typically initialized to be the part of the page where you can
actually draw. (Most printers cannot print all the way out to the edge of the page, since they need
space on each side to grip the paper.)

You can use the clipRect method to reduce the current size of the object’s clipping rectangle. For
example, suppose you have already drawn an image on one side of the graphic context and want
to avoid drawing over that image. You can reduce the clipping rectangle to exclude the existing
image, so that anything you draw in future cannot touch the image. For more about clipRect, see
the Jato Component Library Reference.

Color
The color currently used for drawing on the object. For example, if you draw a line on the object,
the line will have the color specified by the Color property.

Font
The font currently used when placing text on the object.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 13. Using graphics and printers

 The Graphics class
 Disposing of a graphic context

When you finish using a graphic context, you should free up the memory that is used to maintain
information about the context. You do this with the dispose method of Graphics:

// Graphics g;
g.dispose();

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 13. Using graphics and printers
 Drawing on a graphic context

The Graphics class defines a number of methods for drawing on a graphic context. For example,
drawLine draws a line, drawOval draws an ellipse, drawString writes out the text from a String object,
and so on. These methods are discussed in detail in the sections that follow.

Note: All the methods for drawing on a graphic context measure size and position in pixels.

 Drawing lines
 Drawing rectangles
 Drawing ellipses (ovals)
 Drawing arcs and pie shapes
 Drawing polygons
 Drawing text

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 13. Using graphics and printers

 Drawing on a graphic context
 Drawing lines

The drawLine method of Graphics draws a line between two points:
// Graphics g;
g.drawLine(x1, y1, x2, y2);

The above function draws a line between (x1, y1) and (x2, y2). This line has the color specified by the
Color property of the Graphics object.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 13. Using graphics and printers

 Drawing on a graphic context
 Drawing rectangles

The drawRect method of Graphics draws a rectangle:
// Graphics g;
g.drawRect(x, y, width, height);

The above function draws a rectangle of the given width and height, with its upper left corner at (x, y).
The edges of the rectangle have the color specified by the Color property of the Graphics object.

The fillRect method fills a rectangle with the current color (as specified by the Color property):
g.fillRect(x, y, width, height);

The clearRect method clears a rectangle by filling it with the current background color:
g.clearRect(x, y, width, height);

Using clearRect therefore “reverses” the effects of fillRect.

Alternate rectangle types
The Graphics class supports several alternatives to the simple rectangle. For example, a 3D Rectangle
is a rectangle that appears to be raised above the level of other objects, or recessed into its container.
The following methods draw such rectangles:

// boolean raised;
g.draw3DRect(x, y, width, height, raised);
g.fill3DRect(x, y, width, height, raised);

In the above methods, the raised argument is true if you want the rectangle raised above its
surroundings and false if you want it recessed into its surroundings. Otherwise, the above methods
are similar to the methods for normal rectangles.

A round rectangle is a rectangle with rounded corners instead of sharp points. The amount of rounding
is specified by two arguments:

int arcWidth;
Specifies a horizontal distance from a corner of the rectangle. For example, suppose that
arcWidth is 10. Then the top and bottom edges of the rectangle begin rounding themselves off
when they approach 10 pixels from the “true” corners of the rectangle.

int arcHeight;
Specifies a vertical distance from a cornder of the rectangle. For example, suppose that
arcHeight is 5. Then the left and right edges of the rectangle begin rounding themselves off
when they approach 5 pixels from the “true” corners of the rectangle.

The following methods work with rounded rectangles:
 g.drawRoundRect(x, y, width, height, arcWidth, arcHeight);
 g.fillRoundRect(x, y, width, height, arcWidth, arcHeight);

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 13. Using graphics and printers

 Drawing on a graphic context
 Drawing ellipses (ovals)

The drawOval method of Graphics draws an ellipse. In order to draw an ellipse, you specify the
rectangle that is tangent to the ellipse. In other words, you specify a rectangle and drawOval draws an
ellipse whose edge just touches the midpoints of each of the rectangle’s sides.

The following methods draw ellipses:
// Graphics g;
g.drawOval(x, y, width, height);
g.fillOval(x, y, width, height);

The fillOval method fills the ellipse with the current color specified by the Color property for the
Graphics object.

Note: A circle is an ellipse whose bounding rectangle is a square.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 13. Using graphics and printers

 Drawing on a graphic context
 Drawing arcs and pie shapes

The drawArc method of Graphics draws a portion of an ellipse. The ellipse itself is specified by the
rectangle that bounds it (as with drawOval).
The starting point of the arc is specified by an integer giving angles in terms of degrees. The zero
degree mark is at the three o’clock position. Positive angles are measured counterclockwise, so that a
value of 90 indicates the twelve o’clock position. Negative angles are measured clockwise, so that a
value of -90 indicates the six o’clock position.

The length of the arc is specified in terms of degrees, with positive values indicating counterclockwise
rotations and negative values indicating clockwise rotations.

The drawArc method is used as follows:
// Graphics g;
g.drawArc(x, y, width, height, startAngle, arcAngle);

The arcAngle argument specifies how much arc is swept out. For example,
g.drawArc(x, y, width, height, 0, 90);

draws the upper right quarter of the ellipse, while
g.drawArc(x, y, width, height, 0, -90);

draws the lower right quarter.

The fillArc method of Graphics draws a pie shape or wedge. The edges of the pie consist of an arc,
plus the two radius lines from the endpoints of the arc to the midpoint of the ellipse. The interior of the
pie is filled with the color specified by the Color property of the Graphics object. The fillArc method is
used as follows:

g.fillArc(x, y, width, height, startAngle, arcAngle);
For example,

g.fillArc(x, y, width, height, 0, 90);
fills the upper right quadrant of the ellipse, while

g.drawArc(x, y, width, height, 0, -90);
fills the lower right quadrant.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 13. Using graphics and printers

 Drawing on a graphic context
 Drawing polygons

For the purposes of drawing shapes, a polygon is any figure whose sides are straight lines. The point
where two lines meet is called a vertex of the polygon. In order to draw a polygon, you specify the
vertex points in the order that they should be joined by lines. The lines for the polygon are drawn in the
order given, using the color specified by the Color property for the Graphics object.

The drawPolygon method of Graphics draws a polygon. It has the format:
// Graphics g;
// int xPoints[];
// int yPoints[];
g.drawPolygon(xPoints, yPoints, N);

where N is the number of vertex points for the polygon. The first vertex of the polygon is
(xPoints[0], yPoints[0]), the next is (xPoints[1], yPoints[1]), and so on. Similarly, the
fillPolygon method fills the interior of a polygon with the color given by the Color property of the
Graphics object:

// Graphics g;
// int xPoints[];
// int yPoints[];
g.drawPolygon(xPoints, yPoints, N);

For example, the following fills a diamond-shaped quadrilateral:
 int xPoints[] = { 50, 100, 50, 0 };
 int yPoints[] = { 0, 50, 100, 50 };
 g.fillPolygon(xPoints, yPoints, 4);
The result is the following.

The order of points in the two arrays is important. The following code uses the same vertex points as the
previous example, but in a different order:
 int xPoints[] = { 50, 50, 100, 0 };
 int yPoints[] = { 0, 100, 50, 50 };
 g.fillPolygon(xPoints, yPoints, 4);
The result is a much different shape.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 13. Using graphics and printers

 Drawing on a graphic context
 Drawing text

There are several methods for “drawing” (placing) text on a graphic context. The simplest is
drawString:

// Graphics g;
// String str;
g.drawString(str, x, y);

This places the specified string, using (x, y) as the starting point for the baseline of the string. The
baseline is the line on which the characters are drawn; characters may extend above and below this
line.

The drawChars method is similar to drawString but takes its character text from a char array instead
of a String:

// char text[];
// int offset, length;
g.drawChars(text, offset, length, x, y);

The offset argument specifies an offset within the character array text and the length argument
specifies the number of characters you want to output. For example,

g.drawChars(text, 5, 10, x, y);
outputs 10 characters, beginning with the character at text[5].

The drawBytes method is similar to drawChars but takes its text from a byte array:
// byte text[];
g.drawBytes(text, offset, length, x, y);

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 13. Using graphics and printers
 The Image class

The AWT Image class is an abstract class representing graphical images. These can be used as
“pictures” on Java forms.

Image is intended to be a platform-independent basis class. The AWT library on a given computer will
contain system-dependent classes based on Image to work with actual image types. For example, a
Windows 95 system will have specific classes based on Image to handle bitmaps, icons, and so on.
These classes will handle such images using whatever techniques are standard on the system.

 Loading images from files
 Image size
 Drawing images

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 13. Using graphics and printers

 The Image class
 Loading images from files

The easiest way to create an Image object is to load an image from a file or URL. AWT supports GIF
and JPEG images.

The getImage method creates an image object based on a GIF or JPEG file. This method is defined in
the AWT Applet class and as a static method in the Toolkit class. For more information about these
classes, see The Applet class and The Toolkit class.

Here are some sample uses of the method:
Toolkit tk = Toolkit.getDefaultToolkit();
Image img1 = tk.getImage("picture.jpeg");
Image img2 =
 tk.getImage(new URL("http://www.site.com//pic.gif");
Notice that you can specify where to find the image using either a file name or a URL.

The getImage method simply associates the name of the file or URL with the Image object. The
method does not load the image, nor does it check whether the file or URL can actually be opened.
The image will not be loaded from its source until the program actually tries to draw the image. At that
time, the run-time environment will attempt to access the file or URL, then load the image.

This delayed-loading approach is simple and efficient, since the time-consuming process of loading
only takes place when the image is actually needed. On the other hand, some programs need to have
more detailed knowledge of the image-loading process. For example, one thread in a multi-threaded
program may need to know whether another thread has finished loading a particular image. For more
information, see The MediaTracker class.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 13. Using graphics and printers

 The Image class
 Image size

You can determine the size of an image using
// Image img;
int h = img.getHeight();
int w = img.getWidth();

Both of these dimensions are given in pixels.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 13. Using graphics and printers

 The Image class
 Drawing images

The drawImage method of Graphics draws an image on a graphic context:
// Graphics g;
// Image img;
g.drawImage(img, x, y, this);

The x and y arguments specify the upper left corner position for the image. For example,
g.drawImage(img, 0, 0, this);

draws the image in the upper left hand corner of the graphic context.

The last argument for this form of drawImage specifies the component associated with this graphic
context. This argument is almost always this, standing for the current form.

Note: The last argument for this form of drawImage is an ImageObserver value. The ImageObserver
class represents objects that can keep track of the progress of loading an image. This includes Jato
form classes. For more information on ImageObserver objects, see the standard references on AWT.

Drawing scaled images
Another form of drawImage lets you scale an image to fit a particular rectangle:

g.drawImage(img, x, y, width, height, this);
The width and height arguments specify the width and height to which the image should be scaled
when it is drawn.

Setting background color
Two final forms of drawImage let you specify a background for the image:

// Color bgCol;
g.drawImage(img, x, y, bgCol, this);
g.drawImage(img, x, y, width, height, bgCol, this);

The first form draws the image at the given (x, y) position. The second form also scales the image to
the given width and height.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 13. Using graphics and printers
 The MediaTracker class

The MediaTracker class provides a simple way to determine whether Image objects have finished
loading. MediaTracker provides methods to:

· Specify one or more images whose status you want to check.

· Determine whether selected images have finished loading.

· Wait for selected images to finish loading.

· Force selected images to be loaded immediately, even if you haven’t tried to draw them yet in a
graphic context.

The usual approach to creating a MediaTracker object is
MediaTracker tracker = new MediaTracker(this);

The argument for the constructor refers to the component with which the image is associated. This
argument will almost always be this, referring to the current form.

Note: The ImageObserver interface provides an even greater degree of control over the loading of
images. For more information, see the standard AWT reference.

 Associating images with a MediaTracker
 Checking whether an image has been loaded
 Errors while loading
 MediaTracker status methods
 Waiting for images to be loaded

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 13. Using graphics and printers

 The MediaTracker class
 Associating images with a MediaTracker

The addImage method of MediaTracker associates an image with a MediaTracker object, and assigns
that image an identifier that will be used in future MediaTracker methods:

// int id;
// Image img;
tracker.addImage(img, id);

The id can be any integer, but it is common practice to use 0 for the first identifier, 1 for the next, and
so on.

A MediaTracker object may have any number of images associated with it. You may also specify the
same identifier for several Image objects. In this case, the images are treated as a group for the
purposes of other MediaTracker methods.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 13. Using graphics and printers

 The MediaTracker class
 Checking whether an image has been loaded

The checkID method of MediaTracker checks whether all the images associated with a particular
identifer number have finished loading:

boolean loaded = tracker.checkID(id);
The result is true if they have all finished loading and false otherwise.

The checkAll method checks whether all the images associated with the MediaTracker object have
finished loading:

boolean loaded = tracker.checkAll();
Again, the result is true if they have all finished loading and false otherwise.

It is possible that the run-time environment has not even started to load one or more images
associated with the MediaTracker object. In this case, these check methods simply return false; they
do not force the run-time environment to start loading the image.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 13. Using graphics and printers

 The MediaTracker class
 Errors while loading

Errors may occur when loading an image. For example, suppose that when you create the Image
object, you specify an incorrect file name or URL. The program does not check whether the file name
or URL is valid until the image actually begins loading; therefore, the error is not discovered until
loading. In such cases, checkID and checkAll will never return true because the image can never be
loaded successfully.

The isErrorAny method determines whether any of the images associated with a MediaTracker object
are in an error state:

boolean err = tracker.isErrorAny();
The result is true if any of the images encountered an error while loading. The result is false if there
is no error state yet. However, if there are still some images being loaded, there is still a chance that
one of those images will enter an error state later; for example, if you are loading from a URL on a
remote system, an error will occur if you get disconnected partway through the loading process.

The isErrorID method determines whether any of the images associated with a specific identifier
number are in an error state:

boolean err = tracker.isErrorID(id);
Again, the result is true if any of the images is in an error state and false otherwise.

The getErrorID method returns a list of the images which are in an error state:
Object errList[] = tracker.getErrorID(id);

The list specifies all the Image objects which are associated with the given id and which are currently
in an error state.

The getErrorAll method is similar to getErrorID, but it examines all the images associated with the
MediaTracker object:

Object errList[] = tracker.getErrorAll();

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 13. Using graphics and printers

 The MediaTracker class
 MediaTracker status methods

The statusID method of MediaTracker offers another way to check the progress of loading images. It
has the following format:

// MediaTracker tracker;
// int id;
// boolean load;
int status = tracker.statusID(id, load);

This examines the status of all images with the given id. Possible statuses are represented by static
values:

MediaTracker.LOADING
Image is loading.

MediaTracker.ABORTED
The loading process has been aborted for at least one image with the given id.

MediaTracker.ERRORED
The loading process has encountered an error for at least one image with the given id.

MediaTracker.COMPLETE
The loading process has completed successfully for at least one image with the given id.

When an id has more than one associated image, the status values are ORed together to produce the
status value returned by statusID.

The second argument of statusID is a boolean value load. If this argument is true, the run-time
environment immediately attempts to start loading all the appropriate images, if the loading hasn’t
started already. If this argument is false, the run-time environment does not try to load images which
have not begun loading. Therefore, statusID can be used to force the loading of an image as well as
for checking on the loading status.

 Jato Programmer ’ s Guide

 Part II. Advanced topics

 Chapter 13. Using graphics and printers

 The MediaTracker class
 Waiting for images to be loaded

The waitForID method immediately starts loading all images with the specified ID (if they have not
been loaded already). It then waits for every image to be loaded or to receive an error:

tracker.waitForID(id);
After waitForID returns, you should use statusID or isErrorID to determine if any of the images
received an error.

The waitForAll method is similar to waitForID but starts loading all images associated with the
MediaTracker object and waits for the process to finish:

tracker.waitForAll();
These wait methods do not return until all appropriate images have been loaded or have received an
error during loading.

 Jato Programmer ’ s Guide
 Appendices

The appendix describes the coding style used in Jato examples and generated code.

 Bibliography

 Jato Programmer ’ s Guide

 Appendices
 Bibliography

The following is a selection of books and World Wide Web pages on topics related to programming with
Jato:

Internet applications
Windows Sockets: An Open Interface for Network Programming under Microsoft Windows, Version 1.1
[1995].

Windows Sockets 2 Application Programming Interface, Revision 2.1.0 [1996].

Web sites
http://www.powersoft.com/products/internet/optima.html

The latest information about Optima++.

http://www.watcom.on.ca/optdev/
Optima++ technical product information, tips and tricks.

http://www.earthchannel.com/binpub/archives/optimapp/
Archive of an independent Optima++ email list.

http://www.total.net/~bklein/optima/
A user's site with Optima++ information.

http://www.optimapp.pbe.com/
A user's site with Optima++ information.

Search sites such as http://www.altavista.digital.com and http://www.yahoo.com can also help you to
find relevant information.

