
    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997

Hello again! I bet you are surprised to see an issue again so soon… Well, I was just getting swamped
with material and had some free time on my hands (my contract with PG&E ended), so I sat down and
figured I would get ahead on UNDU.

I have noticed that sometimes people will re-subscribe to the UNDU subscriber list after they are already
on. It highlighted to me a few things I need to say about the way this list works….

First, this is not a listserver that is managing this system. It is a Delphi application that I wrote that looks
into my Compuserve mail folders and extracts names and return addresses from people who have sent
me an email with the text "SUBSCRIBE UNDU" in the message subject line. It also sends out the
notifications as well. Since it is mostly an automated system, it is extracting your return address from the
message you send. As a result, the subscriber notification will go out to you on the same email account
that you used to send the message to me. Sometimes people will include text saying "please use this
email account instead…". This is fine if I happen to see it, but often times I dont.

Also, each time I send out the notifications, I invariably will get close to 40 or 50 pieces sent back as
"unable to deliver". Usually, this means the users email account is no longer valid. When this occurs, I
take that name off the subscriber list to avoid future delivery failures. If you stop getting notifications, you
may want to re-subscribe. I can tell the difference between a mail delivery "failure" and a "delay", so I do
try over again on those that dont work because of some server problem. And if anyone is interested, there
currently is a tad over 1,900 names on the list.

I hope this helps clarify things… if you have further questions, please feel free to contact me!

The randomly chosen winner of this months UNDU Prize is Andrew Jeffries for his article on Getting
Control of the Control Panel. His prize is a copy of the book Delphi-In-Depth published by McGraw-Hill.

This issue is a "Tools" issue, so we have a bunch of reviews and product announcements!

- Robert
Getting Control of the Control Panel

A Review of the Programmers Guild Animated Tray Icon

A Review of MicroEdge's Visual SlickEdit for Delphi

A Review of IniOut - by Alan Moore

A Review of Addict 2.2 Spell Checker for Delphi

Announcement - SQLExpress Now Available

Delphi Users Groups

Tips & Tricks

Questions From UNDU Readers

UNDU Subscriber List

Index of Past Issues

Where To Find UNDU

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997

Index of Past Issues
Below is a complete index of all principle articles in past issues of the Unofficial Newsletter of Delphi
Users. Provided that you have the prior issues in the same directory as this issue, you can click on any of
these hotspots to go directly to that article. To return to the index, you can click on the Back button, or you
can use the History list. Once you jump to one of these issues, you can navigate through the issue as
you would normally, but you will need to go to the History list to get back to this index. There will be an
updated index included in all future issues of UNDU.

Issue #1 - March 15, 1995
What You Can Do
Component Design
Currency Edit Component
Sample Application
The Bug Hunter Report
About The Editor
SpeedBar And The ComponentPalette
Resource Name Case Sensitivity
Lockups While Linking
Saving Files In The Image Editor
File Peek Application

Issue #2 - April 1, 1995
Books On The Way
Making A Splash Screen
Linking Lockup Revisited
Problem With The CurrEdit Component
Return Value of the ExtractFileExt Function
When Things Go Wrong
Zoom Panel Component

Issue #3 - May 1, 1995
Articles
Books
Connecting To Microsoft Access
Cooking Up Components
Copying Records in a Table
CurrEdit Modifications by Bob Osborn
CurrEdit Modifications by Massimo Ottavini
CurrEdit Modifications by Thorsten Suhr
Creating A Floating Palette
What's Hidden In Delphi's About Box?
Modifications To CurrEdit

Periodicals
Progress Bar Bug
Publications Available
Real Type Property Bug
TIni File Example
Tips & Tricks
Unit Ordering Bug
When Things Go Wrong

Issue #4 - May 24, 1995
Cooking Up Components
Food For Thought - Custom Cursors
Why Are Delphi EXE's So Big?
Passing An Event
Publications Available
Running From A CD
Starting Off Minimized
StatusBar Component
TDBGrid Bug
Tips & Tricks
When Things Go Wrong

Issue #5 - June 26, 1995
Connecting To A Database
Cooking Up Components
DateEdit Component
Delphi Power Toolkit
Faster String Loading
Font Viewer
Image Editor Bugs
Internet Addresses
Loading A Bitmap
Object Alignment Bug
Second Helping - Custom Cursors
StrToTime Function Bug
The Aquarium
Tips & Tricks
What's New
When Things Go Wrong

Issue #6 - July 25, 1995
A Call For Standards
Borland Visual Solutions Pack - Review
Changing a Minimized Applications Title
Component Create - Review
Counting Components On A Form
Cooking Up Components
Debug Box Component
Dynamic Connections To A DLL
Finding A Component By Name
Something Completely Unrelated - TVHost
Status Bar Component

The Loaded Method
Tips & Tricks
What's In Print

Issue #7 - August 31, 1995
ChartFX Article
Component Cookbook
Compression Shareware Component
Corrected DebugBox Source
Crystal Reports - Review
DBase On The Fly
Debug Box Article
Faster String Loading
Formula One - Review
Gupta SQL Windows
Header Converter
Light Lib Press Release
Limiting Form Size
OLE Amigos!
Product Announcements
Product Reviews
Sending Messages
Study Group Schedule
The Beginners Corner
Tips & Tricks
Wallpaper
What's In Print

Issue #8 - October 10, 1995
Annotating A Help System
Core Concepts In Delphi
Creating DLL's
Delphi Articles Recently Printed
Delphi Informant Special Offers
Delphi World Tour
Getting A List Of All Running Programs
How To Use Code Examples
Keyboard Macros in the IDE
The Beginners Corner
Tips & Tricks
Using Delphi To Perform QuickSorts

Issue #9 - November 9, 1995
Using Integer Fields to Store Multiple Data Elements in Tables
Core Concepts In Delphi
Delphi Internet Sites
Book Review - Developing Windows Apps Using Delphi
Object Constructors
QSort Component
The Component Cookbook
TSlideBar Component
TCurrEdit Component

The Delphi Magazine
Tips & Tricks
Using Sample Applications

Issue #10 - December 12, 1995
A Directory Stack Component
A Little Help With PChars
An Extended FileListBox Component
Application Size & Icon Tip
DBImage Discussion
Drag & Drop from File Manager
Modifying the Resource Gauge in TStatusBar
Playing Wave Files from a Resource
Review of Orpheus and ASync Professional
The Component Cookbook
Tips & Tricks
UNDU Readers Choice Awards
Using Integer Fields to Store Multiple Data Elements in Tables

Issue #11 - January 18th, 1996
Core Concepts With Delphi - Part I
Core Concepts With Delphi - Part II
Dynamic Delegation
Data-Aware DateEdit Component
ExtFileListBox Component
DBExtender Product Announcement
Dynamic Form Creation
Finding Run-Time Errors
Selecting Objects in the Delphi IDE
The Beginners Corner
The Delphi Magazine
Top Ten Tips For Delphi
The Component Cookbook
Tips & Tricks
The UNDU Awards

Issue #12 - Feburary 23rd, 1996
The Beginners Corner
Delphi Projects
Marketing Your Components
An LED Component
A 3D Progress Bar
Common Strings Functions
Checking if your application is running already
AutoRepeat for SpeedButtons
Form and Component Creation Tip
Detecting a CD-ROM Drive
Drawing Metafiles in Delphi
Shazam Review
Product Announcement - Dr. Bob's Delphi Experts
Book Review - Instant Delphi Programming
Tips & Tricks

The Component Cookbook

Issue #13 - May 1st, 1996
Core Concepts - Sorting
Delphi Information Connection
Creating Resource-Only DLL's
Quick Reports
TIFIMG Product Announcement

Issue #14 - June 1st, 1996
A 3-D Component
An Animation Component
A Bug In TGauge
The Component Cookbook
A Look At Cross Tabs
New Book - Delphi In Depth
New Book - The Revolutionary Guide to Delphi 2
Making the Enter Key Work Like the Tab Key
Jumping Straight to Form Level
Making Menu Items Work Like Radio Buttons
Modifying The System Menu
Products & Reviews
The Beginners Corner
The UNDU Awards
Tips & Tricks

Issue #15 - August 1st, 1996
UNDU - A Work In Progress…
UNDU Prizes!
The UNDU Subscriber List
Core Concepts With Delphi - Parameter Passing
Delphi Programmers Book Shelf
Component Cookbook
Tips & Tricks
How to 'Catch'Keys
Working with String Grids
Coloring Columns in a Grid
Solving a DLL problem
Reducing Memory Requirements
Creating an AutoDialer component

Issue #16 - September 1st, 1996
Menu Buttons
Core Concepts With Delphi - Enumerated Types
Extending The INI Component
Limiting Multiple Instances Of a Program in Delphi 2.0
How to Draw a Rubber-Banding Line
Marching Ants!
How to Restrict the Mouse Cursor
How to make a Color ComboBox
A Better Way to Create Menu Items
Splash Screen

Splash Screen with a Time Delay

Issue #17 - October 1st, 1996
Does Windows 95 give you a Square Deal?
The Great StringList
Manipulating Regions with Delphi
Tips & Tricks
When Delphi's smart-linker doesn't seem so smart
Cut, Copy, & Paste
A Quick Way of Setting the Tab Order
Background Bitmaps on Forms
Non-Rectangular Windows

Issue #18 - November 1st, 1996
Object Express by OOPSoft Inc
Tips & Tricks
The Component Cookbook
IniOut Component Property Manager
New Book - Delphi Component Design by Danny Thorpe
Storing Fonts in INI Files
Sorting Columns in a DBGrid
What's Your Version Number
Drawing MetaFiles
Adding Undo to your Edit Menu
How To Put Anything In Your Delphi EXE
Delphi Newsgroups
A Simple Clipboard Viewer Component

Issue #19 - January 1st, 1997
Speed Daemon Review
A Look at MagiKit
Humor - Are You Computer Illiterate?
Tips & Tricks
The Component Cookbook
Using the SHFileOperation to Copy/Move/Delete/Rename Files
How to create a Polygon Splash screen
Is Someone else running?
Lock Violation
Printing Directly to a printer
Refreshing MDI Menus
Extending the Background Bitmap Technique
Paradox File Size Limits
Safer use of Enumerated Types
Simplifying Code management with Include
A Look at the TreeView Control
Text, Aligned in a Grid
TPageControl Flambé
Big Bitmaps
Masks ala Transparency

Issue #20 - March 1st, 1997
Learning How To Drive - Disk Information in Delphi

Delphi Books & Periodicals
Questions (and Answers) From Readers
Tips & Tricks
The Component Cookbook
Is Someone Else Running - Revisited!
InputQueryEx
Multi-colored text in a string grid
Converting Pascal Source to HTML
Processing large database tables
SHFileOperation Revisited
How to Make Your EXE's Lighter!
Form Aspect Ratio
Previous Instances Revisited
Printing Raw data to the Printer
Tip Of The Day Component
TFieldPanel

Issue #21 - May 1st, 1997
Video Capture in Delphi
Review - Delphi Component Design
Product Announcement - Addict for Delphi
Questions (and Answers) From Readers
Tips & Tricks
The Component Cookbook
Low Level Windows Stuff
Listing Procedures
Hiding Apps from the Task Bar
Excel OLE Tips
Playing Sounds Asynchronously
Bitmaps on StringGrids
How To Find Up-to-date Delphi 2 Books
Margin Marker in Delphi 1 & 2
Lock Violations
Object Creation Tip
How to Compress a Bitmap
TEndSession

Return to Front Page

Where To Find UNDU
When each issue of UNDU is complete, I put them in the following locations:
1. UNDUs official web site at http://www.informant.com/undu/index.htm. This site houses all

the issues in both HTML and Windows HLP format. Click on the large icons for the HTML versions
and the small red book icons for downloadable Windows HLP files.

2. Borlands Delphi forum on CompuServe (GO DELPHI) in the "Delphi IDE" file section. This forum will
only hold the issues in Windows HLP format.

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997

Tips & Tricks
Last issue there was an article on how to insert Bitmaps in String Grids. I should be flogged repeatedly
with a wet noodle for not catching the problems with this one. It was unnecessarily complex and many of
you let me know it. Lets try it one more time with Bitmaps in String Grids.
In a couple of recent issues I had a discussion on preventing multiple instances of an application from
running at once. There had been one pesky little problem however, but I finally came up with a solution…
Check it out in A Cure For Previous Instance Problems.
Arlan Mock brings us two handy tricks this month with his articles on Word Search Tip and Unbridled
Acceleration

Have you ever noticed in some editors (such as the Delphi IDE or MS Word) that it shows the line and
column number at the bottom of the screen as you type. Well, Rolando Casumpang came up with an
interesting technique to accomplish something similar in Showing The Caret Position. It isn't a perfect
solution but maybe it can serve as a springboard for further experimenting.

Have you been using INI files simply because using the Registry sounds too complex. Well you don't
have an excuse anymore. Wim Vandersmissen shows us step by step how it is done in Using the
Windows 95 Registry.

Also a while back, we had a few discussions on wallpapering forms. One thing eluded us though… How
do you do it with an MDI application? Well know you can courtesy of Mark Pritchard in Wallpapering MDI
Forms.

Back in issue #20, Gene Fowler presented an interesting technique for adding a history list to the
InputQuery function in Delphi. Well, he revisits the example to make a Delphi 3.0 compatible version in
his article this month on InputQueryEX.

Have you ever run into problems with really large projects in Delphi? Check out the discussion on
Exceeding the Data Segment.

And lastly… Have you just recently converted to Delphi 3.0? Still want to keep Delphi 2.0 on your system?
Well you can make the process a bit smoother with the tip from Kevin Gallagher in his article on Delphi
2.0 and Delphi 3.0 on the Same Computer.

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997

UNDU Subscriber List
The subscriber list is a method by which I can notify the readers when a new issue is out. I will maintain a
list of readers email addresses and when a new issue is released, I will fire off a batch mailing to notify
everyone that it is available.
This is what you need to do to get on the subscriber list… Simply send me an email to my CompuServe
address (RobertV@compuserve.com) and put the words SUBSCRIBE UNDU anywhere in the subject
line or in the main body of the message. If you no longer wish to be notified of future issues (i.e. you are
on the list and want off…) just send an email with the words UNSUBSCRIBE UNDU.
Thats all there is to it!

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997

Questions (And Answers) From UNDU Readers
I often get a wide variety of emailed questions from readers of UNDU. Some of them have been quite
interesting and the solutions are equally interesting. Anyway, I figured "Why not let everyone help on the
solution?"
Each month I will present a few questions here that readers have submitted to me and open them up to
all the readers of UNDU. If you know the answer to a question, feel free to send it in to
RobertV@compuserve.com. I will chose the best solution to the question and post it in the following
issue. This way, everyone gets to see the answer!
The solutions can be anything including even shareware components that might solve a particular
problem.

This Months Questions Are:

Neil Howard at i-am-de-walrus@geocities.com asks:
"How do I format disks in Delphi without shelling to DOS?"

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997
A Review of IniOut
by Alan C. Moore, Ph.D.
Users expect a lot from the applications we write for them.    They had better be fast, feature-rich, and free
of bugs.    Today users have also come to expect some level of flexibility and control, particularly in terms
of the configuration of the user interface. In other words, they want to be able to adjust certain aspects of
an application's appearance and they might want certain field values to be "remembered" from one run to
the next.

Delphi's component properties and Windows configuration files (*.INI for 16-bit versions, the registry for
32-bit versions) help a lot.    Still, there's a certain amount of grunt work involved in monitoring certain
component properties and writing them to and reading them back from configuration files.    Wouldn't it be
great if there were an easy way to manage this so that we would simply tell the application which
component properties to monitor and then with just a few lines of code?    Now we can!    Enter Robert
Vivrette's    IniOut Component.

This clever and useful component belongs to the class of helper components that Ray Lischner calls   
metacomponents in "Secrets of Delphi 2", i.e. components which manage other components.    In this
case, having set up your form with all of its various components you simply add a TIniOut component to it.
Then if you double-click on it (or click on it in the Object Inspector) you'll get its specialized dialog box
(see Figure A) which allows you to manage all of the component properties you need to save between
application runs.

Figure A
In the test project I wrote I used both data settings (TEdit text and TRadioButton selections) and several
aspects of the visual design (the main form's Top, Left, Height, and Width properties) that I wanted to
restore the next time I fired up the application.    It worked-- TIniOut did its job flawlessly!    Figure B shows
the application with new data settings and in a different location (not shown) from the original settings.   
Further, an examination of the Windows Registry shows that all of the settings are properly registered
there (see Figure C.)    And    TIniOut automatically set up all of the subkeys for me.    Very cool.

Figure B

Figure C
With all of its powerful features for maintaining configuration files for our applications,    I would
recommend this component highly to any Delphi developer. Further, how can you lose with shareware?   
You can't.    So, download TIniOut, convince yourself that I am not exaggerating about its usefulness, and
then go ahead and get the registered version, which costs $20 (an absolute bargain, in my opinion.)    You
can register 32bit version on Compuserve at SWREG #14633, and the 16bit version at SWREG #14724.   
The 16-bit version can be found at http://www.informant.com/undu/iniouts1.zip and the 32-bit version can
be found at http://www.informant.com/undu/iniouts2.zip.
There is a special registration option available with includes the source code for $99.    In my view this
price is much too high, despite the considerable merits of the source code.    Here's what I've suggested
to Mr. Vivrette: sell the component only with source code and raise the price to $39 (still a good deal,
particularly with the code included.)    There's a lot of reluctance on the part of many Delphi developers
(including me) to purchase any component without its source code.    Further, I think a lot of adventurous
programmers could benefit from studying this code.    Maybe you've read what Ray Lischner has to say
about RTTI (run time type information), specialized property editors, and metacomponents in "Secrets of
Delphi 2" but are still wondering how to use this knowledge in your own custom components.      TIniOut   
provides a perfect model.

As of this writing, the Delphi 3 version of IniOut is available but has not been released as shareware.    If
registered users of IniOut had the source code, they would already have been able to "package" the
component for use in this latest Delphi version.    Also, making the code available to the Delphi community
(at a reasonable rate) might encourage others to develop similar useful components.    I understand that
there will be some changes in the pricing structure in the near future -- stay tuned for developments.   

For any Delphi developer who needs to save configuration information, I recommend this component
highly.    It comes with excellent documentation in its help file, and its creator is committed to improving it
based upon users' input.    Examples?    In addition to Delphi 3 support, here are some of the
enhancements Mr Vivrette has planned for future versions:

· The ability to add managed items (nonpublished component properties, global and local
variables)    at runtime.

· Support for String lists
· An Editor for default fonts, sets, and colors
· The INI file can reside in any directory and not be required to be in System directory
· The ability to set some properties as readonly (i.e. they would not write their values when
SaveToIni or SaveToRegistry is called).
· Boolean values would be saved as 1/0 instead of True/False for backward compatibility

So my concluding advice is simply to download this component, try it, then get the registered version;
you'll love what it does for you and your users.

About Alan Moore
Alan C. Moore is a Professor of Music at Kentucky State University, specializing in music theory and
composition.    His experiences in programming go back to working with Fortran as a graduate student at
Yale in the mid 1960's and more recently developing educational software with the Borland languages.   
He writes regularly for a number of technical journals including Delphi Developers Journal and Delphi
Informant.    With Delphi he specializes in writing custom components and implementing multimedia
capabilities in applications (particularly sound and music.)    You can reach Alan on the Internet at
acmdoc@aol.com.

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997

A Cure for Previous Instance Problems
by Robert Vivrette - RobertV@compuserve.com
In both issues #16 and #20 I presented a discussion on how to restrict multiple instances of an application
running at once. There was one problem, however, that was common to both discussions, namely that
when you used the technique in the Delphi IDE, it counted the design-time form as one of the instances.
As a result, the program would refuse to run if run from within the IDE.
After thinking about it a bit, I came up with a simple solution. In your design-time copy of the form, delete
any text in its caption property. Then, in the form's FormCreate method, assign whatever caption you want
(i.e. Caption := 'Form1'). Because the technique limits previous instances by looking at the window titles,
the design-time form (that doesn't have the appropriate title) will not be viewed as another instance.

Problem solved!

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997
A Review of MicroEdge's Visual SlickEdit for Delphi
by Robert Vivrette - RobertV@compuserve.com
Borland is in the business of making hot programming languages. They excel at fast code, fast compilers,
and fast application development. However, quite frankly, they are not in the business of making full-
featured programming editors. The IDE code editors in Delphi 1.0 and 2.0 are fairly basic. They perform
the necessary functions that a programmer needs, but not many frills. Delphi 3.0 has listened to the
screaming of the Delphi community and has added quite a few extensions to the way the code editor
behaves, all under the name "Code Insight". Code Insight includes 4 key features, namely Code
Completion, Code Parameters, Tooltip Expression Evaluation, and Code Templates. All of these go a long
way towards making the code editor a more functional and efficient environment to work in.

Enter MicroEdge's Visual SlickEdit (or VSE)…

Simply stated, VSE is a programmers editor. It has been around for a number of years in various forms
and has quite a faithful following. Its roots originate in the C/C++ developer community and you can see
this throughout the application. It supports a dizzying array of languages and operating systems.
Internally, it supports C++, C, Delphi, Java, HTML, Pascal, Assembly, and Slick-C (MicroEdge's macro
language). It can also install support for AWK, Perl, Modula-2, dBASE, COBOL, FORTRAN, REXX, or
Ada. MicroEdge has versions of VSE that run on Win95, Win31, WinNT, OS/2, SCO, Unixware, Sun OS,
Solaris, HP-UX, AIX, Linux, UNIX, and a few more I haven't even heard of before.

With the introduction of VSE 2.0, MicroEdge has added specific support for Delphi. Initially, I was having
some difficulty getting them to work together, but a recent update from MicroEdge added support for
Delphi 3.0, and resolved all my previous problems. This update is available on their Web site and
automatically updates an existing VSE 2.0 installation.

So… down to brass tacks. How does VSE work with Delphi? Well, the integration is a kind of "Love/Hate"
relationship so it is fairly difficult to really give a definite opinion. Let's go through a bit of how this
integration works, and you will see what I mean. For the purpose of this review, I am going to be primarily
discussing the integration of VSE with Delphi, rather than a review of all of VSE's extensive capabilities. I
will be using Delphi 3.0 in this discussion.

For the two programs to work together, they need to establish a "connection". This is a fairly
straightforward and simple process. Basically, if you are running Delphi, you can pick "Visual SlickEdit"
from the tools menu. That will launch VSE and establish the connection. You can also start in VSE and
choose "Connect to Delphi 3" from its Delphi menu. That will launch Delphi and establish the connection
as well.

Once the connection is established, VSE synchronizes its behavior with what Delphi is doing. For
example, if you start a new project from Delphi, VSE will automatically show the same information you
see in Delphi's Edit window. If you change text in either program, the change is automatically reflected in
the other. MicroEdge is proud of the fact that it can accomplish this without needing to save the files, and
many programmers will appreciate the extra work they went to to achieve this as well. I tried very hard to
make changes to one side or the other and to get them out of sync, but VSE kept up with every change I
made. When you go to Delphi and add components onto a form, VSE shows the textual changes to the
form's unit as you would expect. It even keeps the cursor in the same spot so you never have to find
where you are when switching between the two.

This, then is the basic capability that VSE adds to your Delphi programming. An alternative editor that
keeps up with Delphi's editor. It has other interesting features such as adding commonly used Delphi
functionality inside of VSE's Delphi menu. For example, you can start a new Delphi application inside of
VSE, or Compile/Build a project as well. There also connections to Delphi's PVCS Version Control
System allowing you to check-in and check-out code modules.
Now as for VSE as an editor, I must say it is pretty impressive. If I had to spend all day typing code, I
could see where VSE would save me a considerable amount of time. Here are some of the features that I
particularly liked:

Word Completion - VSE has the ability to automatically complete words that you have previously typed.
For example, if you are creating several procedures and you start typing the word 'procedure' again, you
can stop after the first character or two and hit CTRL-SHIFT-COMMA and it will complete the word for
you. VSE looks backwards through what you have typed and picks the word that best matches what you
just partially typed and completes it for you. Saves a lot of time.

Another feature I particularly liked was VSE's ability to selectively hide and show lines. For example, you
can hide all comments and VSE collapses the text, excluding comments:

By clicking on the icon to the left, the comments come back:

VSE also has the ability to collapse the code section of a block, so you can see for example, just the
function and procedure headers in a unit without looking at all of the code associated with each unit. I
really loved these two features.

As you can see from the partial screen shots above, VSE supports keyword colorizing, which is user
definable. It also has an interesting feature called SmartPaste. When you cut or copy a block of text and
paste it somewhere else, VSE automatically adjusts its indenting to match the area where it has been
inserted. Another great time-saver.

VSE also has a very impressive differencing system. This allows you to take 2 source code files and
compare them side by side. It does a very good job of illustrating what has changed in each file, unlike
many of the other systems I have seen. It also allows you to easily copy text back and forth between the
two files.

The help integration of VSE is also a key selling point for me. When VSE is installed it hunts down
programming-related help files on your system and ties them together within its environment. Whenever
you hit CTRL-F1 you are shown the various help files that contain that topic, so you can decide which to
use.

No One Is Perfect...
There is no question in my mind that VSE is one of the hottest programming editors on the market. It is
slick (no pun intended) and highly configurable.

However, by its very nature, it has been designed to work with virtually any language, development
environment, and operating system. This tends to make its Delphi integration look like only a minor
capability in the big scheme of things. There are still plenty of areas that I would like to see more tightly
integrated. For example, when you choose the compile command in VSE, it switches over to Delphi and
compiles your code. If there are errors, it locates them in Delphi's editor making it necessary for you to
manually switch task-switch back to VSE if you want to make the change there. In VSE, I would like to
have compiler errors listed and affected lines of code highlighted, but I couldn't accomplish this.
MicroEdge indicates this capability is available if you configure the language compiler to output a list of
error messages, however if Delphi can do this, VSE doesn't make it easy to get there. That whole process
was a bit daunting so I moved on.

There were also some unfortunate conflicts in hotkeys that I discovered while using VSE. For example, in
Delphi I am used to hitting F9 to compile and run the application. Thinking that VSE had tied the F9 key to
the same feature in Delphi, I tried it out. It turns out though, that the F9 key is the Undo key in VSE. VSE's
keyboard mapping is completely configurable, so I am sure this could be corrected. It would have been
nice to have it done beforehand however.

One last complaint I have is an odd effect in VSE when you are in Delphi and compile the application. It
seems (to me at least) like VSE closes and reopens the editing file under certain circumstances. Initially
this made the edit window in VSE close and then reopen in a new location for no apparent reason. I
eventually got it to keep the window maximized, but I still from time to time would see it flash indicating it
had closed and reopened it again. The integration would "feel" much smoother if this odd visual effect was
corrected.

In Conclusion
Don't get me wrong. I love VSE, and I may make it my standard editor for Delphi programming. However,
tighter integration with the Delphi IDE would really help it out quite a bit. If I had a wish, I would like to see
VSE completely take the place of Delphi's code editing window. However, because MicroEdge is
committed to making VSE as widely compatible as possible, I don't see them spending the time and effort
doing this. If they did, I would be first in line to get a copy though.

For a first time user, VSE can be a bit daunting, and the learning curve might be a bit steep. The
overwhelming number of configuration options shows how you can really make it do anything you want.
But at the same time, this highly configurable nature makes it a little more difficult to really get a grasp on
the best way to set it up.

VSE is a very fast and effective code editor for programmers. For those of you who have used VSE in
other languages and/or operating systems, the inclusion of support for Delphi is a great selling point for
this latest version. No doubt the Delphi support will get even better with future releases.

You can learn more about MicroEdge and Visual SlickEdit at their web site http://www.slickedit.com.

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997

SQLExpress Announcement
from OOPSoft Inc.
Editors Note: Look for a full review of SQLExpress in the next issue of UNDU!
SQL Express is a fully Integrated Query Building tool and Interactive SQL Editor for Delphi and C++
Builder designed around the Borland Database Engine.    With SQL Express, the developer can
interactively build, test and work with live data.    The Interactive SQL Editor allows the developer to run
scripts or queries on the database platform they are working.    SQL Express promotes minimal typing and
in many instances only parameter names, data values and alias names require keyboard action.    SQL
Express is also modeless so you are free to work in the IDE while SQL Express is running.

SQL Express's advantages include:
Its Live Data! - Instant results from within the property editor.    See your data at query design time.

Minimal Typing - Typing is only required for literal values, parameters and alias names. Results are a

mouse click away.

Modeless - SQL Express is modeless. You can switch between SQL Express and the IDE.

Switch databases - You can easily change databases within SQL Express without closing the property
editor.

Parameters - Add/Edit your parameters in the same window you design your SQL statements. No need
to work with the Params property.

DataType - You know longer have to be bothered with setting the DataType for the Params property in
TQuery.

View Image/Memo Field data - View Images and Memo field data live in SQL Express.    You can even
edit this data at design time!

Alias support - Assign alias names to tables and the change is instantly propagated throughout the
query.

Object Creation - SQL Express will generate new TDataSource and TDataGrid objects linked to the
current query or a new TQuery object based upon the current TQuery object.

Sub-Select Support in the "IN" clause - SQL Express allows you to create select statements for the
"IN" clause.

SQL Elapsed time - Instantly displays the time a query took to execute.

ISQL Editor - Complete ISQL Editor with Boiler Plate Template Support!

Create your own templates - Add your own Boiler Plate Templates for others in your group to use!

ALL AT DESIGN TIME !

For more information on OOPSoft or SQLExpress, you can visit their web site at http://www.oopsoft.com
or contact them via email at oopsoft@airmail.net.

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997

Wallpapering MDI Forms
by Mark Pritchard - pritchma@netlink.com.au
I notice that UNDU had a wallpaper discussion going for a little while. Well, I wrapped this up into a
component, which also saves and loads the forms position to and from an INI file. It works under Delphi 1
and 2, and most likely 3, which I haven't got my hands on yet.
The component is called TIDSFormAssist and serves a dual purpose. First, it saves the forms location
and size in an INI file, and more importantly (for this discussion) provides wallpapering, particularly on an
MDI form. I hadn't seen anyone else accomplish this technique, but this component does, and is very
easy to use.
The properties of interest are Options, Wallpaper and WallpaperMode. For Options, set faoLayout to True
to save/restore the position and size of the form. Set faoWallpaper to True to wallpaper the surface of the
form. The Wallpaper property Holds the bitmap used to paint the surface. WallpaperMode can be set to
wmTile to tile, or wmCentre to centre the bitmap.

I should point out that this component was one of those "you want wallpaper on an MDI form? OK...how
long do I have? This afternoon? Cripes!" It works well, but may not be the most elegant solution ;-)

The implementation of this is a little more difficult, since the component also handles the wallpapering of
MDI parent forms. It accomplishes this by installing a hook into the form's message processing loop, and
watching for the WM_ERASEBKGND message. This seems to be the most reliable and efficient method
of painting MDI parent forms, and has the added benefit of working for fsNormal and fsMDIChild forms!

There is a bit of additional work involved in translating the window handle to a TIDSFormAssist instance,
but you should be able to sort it out from the source code. If you can't, just close your eyes and forget
about what's going on under the hood!

Source Code for Wallpaper Project

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997
Source Code for Wallpaper Project (FormAsst.pas)
{ TIDSFormAssist - Assists you with common form management tasks.
 PROPERTIES:
 Options - determines which things you wish to handle automatically.
 faoFormLayout - Restores and saves Left, Top, Width and Height to the INI file
 INIFile - specifies the INI file to which the component will restore and
 save settings if not specified, it is set to Application.EXEName
 with a .INI extension }
unit FormAsst;

interface

uses
 WinTypes, WinProcs, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs;

type
 { Forward class declaration }
 TIDSFormAssist = class;

 { Enumerated types for Options }
 TFormAssistOption = (faoLayout,faoWallpaper);
 TFormAssistOptions = set of TFormAssistOption;

 { Enumerated type for wallpaper tile mode }
 TWallpaperMode = (wmTile,wmCentre);

 { Type for OnWallpaperPaint event }
 TOnWallpaperPaintEvent = procedure(Sender : TIDSFormAssist) of object;

 TIDSFormAssist = class(TComponent)
 private
 { Internal field storage }
 FOptions : TFormAssistOptions;
 FOnWallpaperPaint : TOnWallpaperPaintEvent;
 FWallpaper : TBitmap;
 FWallpaperMode : TWallpaperMode;

 { Internal variables }
 { Used to stop recursion }
 blRecurs : Boolean;
 { Whether we should be painting }
 blPaint : Boolean;
 { This component's owner form }
 frmOwner : TForm;
 { The handle of the owner form }
 hwndOwner : HWND;
 { Pointer to previous window handler }
 pPrevWndProc : TFarProc;
 { INI file for layout storage }
 sINIFile : String;

 { Internal routines }
 { Load the form's layout from the INI file }
 procedure LayoutRestore;
 { Save the form's layout to an INI file }
 procedure LayoutSave;
 { Handles a change to the wallpaper }
 procedure WallpaperChange(Sender : TObject);
 { Creates new wallpaper object }
 function WallpaperCreate : TBitmap;
 { Initialises wallpaper handling }

 procedure WallpaperInit;
 { Tiles the wallpaper }
 procedure WallpaperPaintTile(dcForm : HDC; rectWnd : TRect; iBmpW,iBmpH :
Integer);
 { Centres the wallpaper }
 procedure WallpaperPaintCentre(dcForm : HDC; rectWnd : TRect; iBmpW,iBmpH :
Integer);
 { Field modification routines }
 procedure SetWallpaper(bmpNew : TBitmap);
 procedure SetWallpaperMode(wmNew : TWallpaperMode);
 protected
 destructor Destroy; override;
 procedure Loaded; override;
 public
 constructor Create(cmpOwner : TComponent); override;
 { Handles the repainting }
 procedure WallpaperPaint(hwndPaint : HWND);
 published
 property OnWallpaperPaint : TOnWallpaperPaintEvent read FOnWallpaperPaint write
FOnWallpaperPaint;
 { Determines which form assistance options to use }
 property Options : TFormAssistOptions read FOptions write FOptions;
 { Wallpaper holds the bitmap which stores the background bitmap }
 property Wallpaper : TBitmap read FWallpaper write SetWallpaper;
 { WallpaperMode handles whether the wallpaper is tiled or centred }
 property WallpaperMode : TWallpaperMode read FWallpaperMode write
SetWallpaperMode;
 end;

 TIDSFormAssistList = class(TComponent)
 private
 lstObjects : TList;
 public
 { Adds a new TIDSFormAssist to the global control list }
 procedure Add(faNew : TIDSFormAssist);
 constructor Create(cmpOwner : TComponent); override;
 destructor Destroy; override;
 { Returns the TIDSFormAssist managing the HWND or Nil if none match }
 function GetFormAssistFromHWND(hwndSrch : HWND) : TIDSFormAssist;
 { Removes a TIDSFormAssist from the global control list }
 procedure Remove(faOld : TIDSFormAssist);
 end;

procedure Register;

implementation

uses INIFiles;

var
 gfalControl : TIDSFormAssistList;

procedure Register;
begin
 RegisterComponents('IDS', [TIDSFormAssist]);
end;

{ Event handler for window moves and sizes - used for background painting }
{$IFDEF VER80}
function FormAssistWndProc(hwndDest : HWND; uiMsg : Word; wpIn : SmallInt; lpIn :
LongInt) : LongInt; export;
{$ELSE}
function FormAssistWndProc(hwndDest : HWND; uiMsg : UINT; wpIn : WPARAM; lpIn :

LPARAM) : LRESULT; stdcall;
{$ENDIF}
var
 faInst : TIDSFormAssist;
begin
 { Retrieve the form assist managing this hwnd }
 faInst := gfalControl.GetFormAssistFromHWND(hwndDest);
 { Check if we are erasing background, the form assist is valid and has a valid
wallpaper bitmap }
 if (uiMsg = WM_ERASEBKGND) and (Assigned(faInst)) and
 (not faInst.Wallpaper.Empty) then
 begin
 { Paint the window }
 faInst.WallpaperPaint(faInst.hwndOwner);
 { Indicate we have handled the repaint }
 Result := 1;
 end
 else
 { Pass the message on }
 Result := CallWindowProc(faInst.pPrevWndProc,hwndDest,uiMsg,wpIn,lpIn);
end;

constructor TIDSFormAssist.Create;
begin
 inherited Create(cmpOwner);
 { Initialise }
 Options := [faoLayout];
 pPrevWndProc := Nil;
 FWallpaper := WallpaperCreate;
 WallpaperMode := wmTile;
 { Retreive the INI file }
 sINIFile := ChangeFileExt(Application.EXEName,'.INI');
 { Add ourself to the global control list }
 gfalControl.Add(Self);
end;

destructor TIDSFormAssist.Destroy;
begin
 { Ensure we are in not in design-mode, and our owner is a TForm }
 if (not (csDesigning in ComponentState)) and (Assigned(frmOwner)) then
 begin
 { Save the form layout }
 if faoLayout in Options then LayoutSave;
 { Unhook our message handler }
 if Assigned(pPrevWndProc) then
 SetWindowLong(hwndOwner,GWL_WNDPROC,LongInt(pPrevWndProc));
 end;
 { Destroy allocated objects }
 FWallpaper.Free;
 { Remove ourself from the global control list }
 gfalControl.Remove(Self);
 inherited Destroy;
end;

procedure TIDSFormAssist.LayoutRestore;
const
 cNOTFOUND = -1;
var
 iniRead : TINIFile;
begin
 { Check if position is modifiable }
 if frmOwner.Position = poScreenCenter then
 raise Exception.Create('Layout cannot be restored when Position =

psScreenCenter');
 iniRead := TINIFile.Create(sINIFile);
 try with frmOwner do
 begin
 { Attempt to read the Left property }
 if iniRead.ReadInteger(ClassName,'Left',cNOTFOUND) = cNOTFOUND then
 begin
 { Layout hasn't been stored - programmatically position it }
 if FormStyle = fsMDIChild then
 begin
 Left := 0;
 Top := 0;
 end
 else
 begin
 Left := (Screen.Width - Width) div 2;
 Top := (Screen.Height - Height) div 2;
 end;
 end
 else
 begin
 { Read layout from INI file }
 Left := iniRead.ReadInteger(ClassName,'Left',Left);
 Top := iniRead.ReadInteger(ClassName,'Top',Top);
 Width := iniRead.ReadInteger(ClassName,'Width',Width);
 Height := iniRead.ReadInteger(ClassName,'Height',Height);
 end;
 end;
 finally
 iniRead.Free;
 end;
end;

procedure TIDSFormAssist.LayoutSave;
var
 iniOut : TINIFile;
begin
 iniOut := TINIFile.Create(sINIFile);
 try
 { Write the Left, Top, Width and Height properties to the INI file }
 with frmOwner do
 begin
 iniOut.WriteInteger(ClassName,'Left',Left);
 iniOut.WriteInteger(ClassName,'Top',Top);
 iniOut.WriteInteger(ClassName,'Width',Width);
 iniOut.WriteInteger(ClassName,'Height',Height);
 end;
 finally
 iniOut.Free;
 end;
end;

procedure TIDSFormAssist.Loaded;
begin
 inherited Loaded;
 { Ensure we are in not in design-mode, and the owner is a valid form }
 if not (csDesigning in ComponentState) then
 begin
 { Check if owner is a valid TForm }
 if (Owner = Nil) or (not (Owner is TForm)) then
 raise Exception.Create('Owner must be a TForm');
 { Retrieve the owner form }
 frmOwner := TForm(Owner);

 { Retreive the owner handle }
 if frmOwner.FormStyle = fsMDIForm then
 hwndOwner := frmOwner.ClientHandle
 else
 hwndOwner := frmOwner.Handle;
 { Restore the layout }
 if faoLayout in Options then LayoutRestore;
 { Install the event handlers }
 if faoWallpaper in Options then WallpaperInit;
 end;
end;

procedure TIDSFormAssist.SetWallpaper;
begin
 { Workaround for bitmap palette problem }
 FWallpaper.Free;
 FWallpaper := WallpaperCreate;
 { Check if a new bitmap has been set }
 if (bmpNew <> Nil) then FWallpaper.Assign(bmpNew);
 { Repaint }
 WallpaperPaint(hwndOwner);
end;

procedure TIDSFormAssist.SetWallpaperMode;
begin
 { Check if wallpaper mode has changed }
 if wmNew <> FWallpaperMode then
 begin
 { Update the wallpaper mode }
 FWallpaperMode := wmNew;
 { Repaint }
 WallpaperPaint(hwndOwner);
 end;
end;

procedure TIDSFormAssist.WallpaperChange;
var
 bmpTmp : TBitmap;
begin
 { Check if this routine has already been called }
 if blRecurs then Exit;
 { Update bitmap to avoid bitmap change bug }
 bmpTmp := TBitmap.Create;
 try
 blRecurs := True;
 bmpTmp.Assign(Wallpaper);
 { Assign new bitmap and repaint screen }
 Wallpaper := bmpTmp;
 blRecurs := False;
 finally
 bmpTmp.Free;
 end;
end;

function TIDSFormAssist.WallpaperCreate;
begin
 { Create a new bitmap object }
 Result := TBitmap.Create;
 { Set the OnChange handler }
 Result.OnChange := WallpaperChange;
end;

procedure TIDSFormAssist.WallpaperInit;

{$IFDEF VER80}
var
 dwErrCode : LongInt;
begin
 { Install the message handler }
 pPrevWndProc := TFarProc(SetWindowLong(hwndOwner,GWL_WNDPROC,
 LongInt(Addr(FormAssistWndProc))));
 if LongInt(pPrevWndProc) = 0 then
 raise Exception.Create('Unable to install message handler');
 { Start paint processing }
 blPaint := True;
end;
{$ELSE}
var
 dwErrCode : DWORD;
begin
 { Install the message handler }
 SetLastError(0);
 pPrevWndProc :=
Pointer(SetWindowLong(hwndOwner,GWL_WNDPROC,LongInt(Addr(FormAssistWndProc))));
 { Check if installation was successful }
 dwErrCode := GetLastError;
 if (LongInt(pPrevWndProc) = 0) and (dwErrCode <> 0) then
 raise Exception.Create('Unable to install message handler -
'+SysErrorMessage(dwErrCode));
 { Start paint processing }
 blPaint := True;
end;
{$ENDIF}

procedure TIDSFormAssist.WallpaperPaint;
var
 dcForm : HDC;
 rectWnd : TRect;
 iBmpW, iBmpH : Integer;
begin
 { Check whether we should repaint }
 if (not blPaint) or (Wallpaper.Empty) then Exit;
 { Retreive the device context for the window }
 dcForm := GetDC(hwndPaint);
 { Retreive the window's rectangle }
 GetWindowRect(hwndPaint,rectWnd);
 { Retreive size of wallpaper bitmap }
 with Wallpaper do
 begin
 iBmpW := Width;
 iBmpH := Height;
 end;
 { Draw the bitmap }
 if WallpaperMode = wmTile then
 WallpaperPaintTile(dcForm,rectWnd,iBmpW,iBmpH)
 else
 WallpaperPaintCentre(dcForm,rectWnd,iBmpW,iBmpH);
 { Release the device context }
 ReleaseDC(hwndPaint,dcForm);
 { Invalidate the window contents }
 InvalidateRect(hwndPaint,Nil,False);
 { Check if the user has hooked the paint event }
 if (not blRecurs) and (Assigned(FOnWallpaperPaint)) then
 begin
 blRecurs := True;
 FOnWallpaperPaint(Self);
 blRecurs := False;

 end;
end;

procedure TIDSFormAssist.WallpaperPaintTile;
var
 iX, iY : Integer;
begin
 { Start from the top row }
 iY := 0;
 { Keep drawing rows until we pass the bottom of the client rectangle }
 while iY < rectWnd.Bottom do
 begin
 { Start from the first column }
 iX := 0;
 { Keep drawing columns until we pass the right side of the client rectangle }
 while iX < rectWnd.Right do
 begin
 { Draw the bitmap at this position }
 BitBlt(dcForm,iX,iY,iBmpW,iBmpH,Wallpaper.Canvas.Handle,0,0,SRCCOPY);
 { Move to the next column }
 Inc(iX,iBmpW);
 end;
 { Move to the next row }
 Inc(iY,iBmpH);
 end;
end;

procedure TIDSFormAssist.WallpaperPaintCentre;
var
 iX, iY : Integer;
 rectFill : TRect;
begin
 { Fill the background rectangle }
 with rectFill do
 begin
 Left := 0;
 Top := 0;
 Right := rectWnd.Right - rectWnd.Left;
 Bottom := rectWnd.Bottom - rectWnd.Top;
 end;
 FillRect(dcForm,rectFill,GetStockObject(LTGRAY_BRUSH));
 { Calculate co-ordinates for draw }
 with rectWnd do
 begin
 iX := (Right - Left - iBmpW) div 2;
 iY := (Bottom - Top - iBmpH) div 2;
 end;
 { Draw the bitmap on the form }
 BitBlt(dcForm,iX, iY, iBmpW, iBmpH,Wallpaper.Canvas.Handle,0,0,SRCCOPY);
end;

{--}

procedure TIDSFormAssistList.Add;
begin
 { Add this new form assist object to the list }
 lstObjects.Add(faNew);
end;

constructor TIDSFormAssistList.Create;
begin
 inherited Create(cmpOwner);
 { Create internal objects }

 lstObjects := TList.Create;
end;

destructor TIDSFormAssistList.Destroy;
begin
 { Free allocated objects }
 lstObjects.Free;
 inherited Destroy;
end;

function TIDSFormAssistList.GetFormAssistFromHWND;
var
 iCount : Integer;
begin
 Result := Nil;
 { Iterate through the internal list of TIDSFormAssist objects }
 for iCount := 0 to lstObjects.Count-1 do
 { Check if this TIDSFormAssist is managing the HWND }
 if TIDSFormAssist(lstObjects[iCount]).hwndOwner = hwndSrch then
 begin
 { Return this TIDSFormAssist object }
 Result := TIDSFormAssist(lstObjects[iCount]);
 Break;
 end;
end;

procedure TIDSFormAssistList.Remove;
var
 iCount : Integer;
begin
 { Find index of this object in the list and delete it }
 for iCount := 0 to lstObjects.Count-1 do
 if lstObjects[iCount] = faOld then
 begin
 lstObjects.Delete(iCount);
 Break;
 end;
end;

initialization
begin
 { Create the form assist control list. It is freed when Application is destroyed }
 gfalControl := TIDSFormAssistList.Create(Application);
end;

end.

Return to Article

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997

Finding That Caret
by Rolando Casumpang (r.casumpang@cgnet.com)
& Robert Vivrette - RobertV@compuserve.com
A short while back a gentleman by the name of Rolando Casumpang presented a tip on finding the caret
position inside of a memo control. It was an elegant little piece of code, but he was having problems
getting it to work with a RichEdit. After toying with it myself for a bit, I eventually came up with a version
that worked equally well in any edit-type control. Here is the sum of our efforts:
The brains of the technique is a procedure that sends windows messages to the control in question and
then fills two variables, L and C, with the Line and Column of the Caret.
procedure CaretPos(H: THandle; var L,C : Word);
begin
 L := SendMessage(H,EM_LINEFROMCHAR,-1,0);
 C := LoWord(SendMessage(H,EM_GETSEL,0,0)) - SendMessage(H,EM_LINEINDEX,-1,0);
end;

Then all we have to do is find a place to call it. Here, I place a RichEdit on a form and a StatusBar. It is
important to add at least 1 Panel to the status bar before running this code otherwise you will get an error.
Then add the following code to the RichEdit's KeyUp method:
procedure TForm1.RichEdit1KeyUp(Sender: TObject; var Key: Word; Shift: TShiftState);
var
 LineNum,ColNum : Word;
begin
 CaretPos(RichEdit1.Handle,LineNum,ColNum);
 Statusbar1.Panels[0].Text := format('Line %d Col %d',[LineNum,ColNum]);
end;

If you don't want to use a StatusBar, you can just use a label control and assign the value to its Caption
property.
Also, there is still one little problem with this whole technique though. The numbers get all wacky when
you are selecting text. Anyone have any ideas?

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997
Bitmaps In String Grids
by Robert Vivrette - RobertV@compuserve.com
Last issue, a reader presented a technique to display bitmaps in string grids that was a bit more complex
than it needed to be. Needless to say, I was rushed putting out the issue and did not take the time I
should have to look it over. Anyway, here is a simpler solution...

All you need to do is place a StringGrid on a form and align it to alClient with the form. Then add the code
shown below to its OnDrawCell, OnCreate, and OnDestroy methods. Next add the Bmp private variable
to the form of type TBitmap.

Lastly, you need to put together a resource file that has a bitmap in it. I chose to use one of the button
glyphs out of the IMAGES sub-directory in Delphi. The resource file contains a single bitmap named
'BMP'.

All I do to indicate where the graphic goes is to assign some special character to the cell. This is only one
of many ways of accomplishing this however. You could also show the graphic based on row and/or
column number for example. You also could assign the graphics into the StringGrid's Objects property.
That way you could paint the text normally (with TextOut) and also have a reference to some graphic to
use.
Also, one small warning. Be careful of your use of With statements in the DrawCell method. Two of the
parameters passed in are Row and Col, which are also both valid properties of a StringGrid. It can
produce really confusing results if a misplaced with statement tells the code to use the Row property of
the StringGrid rather than the Row parameter being passed into the DrawCell function.
unit Unit1;
interface
uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 Grids;

type
 TForm1 = class(TForm)
 StringGrid1: TStringGrid;
 procedure StringGrid1DrawCell(Sender: TObject; Col, Row: Integer;
 Rect: TRect; State: TGridDrawState);
 procedure FormCreate(Sender: TObject);
 procedure FormDestroy(Sender: TObject);
 private
 Bmp : TBitmap;
 public
 { Public declarations }
 end;
var
 Form1: TForm1;

implementation

{$R *.DFM}
{$R BMPS.RES}

procedure TForm1.StringGrid1DrawCell(Sender: TObject; Col, Row: Integer;
 Rect: TRect; State: TGridDrawState);
var
 SRect,DRect : TRect;
begin
 (Sender as TStringGrid).Canvas.FillRect(Rect);
 if (Sender as TStringGrid).Cells[Row,Col] = '@' then
 begin
 SRect := Classes.Rect(0,0,Bmp.Width,Bmp.Height);
 DRect.Left := Rect.Left+3;
 DRect.Top := Rect.Top+(Rect.Bottom-Rect.Top-Bmp.Height) div 2;
 DRect.Right := DRect.Left+SRect.Right+1;
 DRect.Bottom := DRect.Top+SRect.Bottom+1;
 (Sender as TStringGrid).Canvas.BrushCopy(DRect,Bmp,SRect,clOlive);
 end;
end;
procedure TForm1.FormCreate(Sender: TObject);
begin
 Bmp := TBitmap.Create;
 Bmp.LoadFromResourceName(HInstance,'BMP');
 StringGrid1.Cells[1,1] := '@';
 StringGrid1.Cells[3,1] := '@';
end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
 Bmp.Free;
end;
end.

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997

Delphi 2.0 & Delphi 3.0 on The Same Computer
by Kevin S. Gallagher - gallaghe@teleport.com
Do you need to keep Delphi 2.0 and Delphi 3.0 on your computer? Although they both can be used there
is a slight problem if you want to start a project from Windows Explorer. If you double click on a project
file, Delphi3 is called to execute the project. If you are using third party components that are not Delphi
3.0 ready i.e. SuccessWare's Apollo then you will see my point. I need not explain any deeper what will
happen. To fix this problem until you don't need Delphi 2.0 any more simply follow the steps below:

Open Explorer
Select View|Options, File Type
Double Click "Delphi Project File"
Edit "Open", Press Ctrl-C, then press Cancel
Select "New" button
Type something for Action, for example "Open With Delphi 2.0"
Press TAB, press Ctrl-V to paste from step 4
Edit path to reflect Delphi2 path
Save changes by pressing OK button.

If all went OK with the steps above, you should be able to start a Delphi 3.0 project in Explorer by double
clicking a project. Now to start the same project as a Delphi 2.0 project, single click the right mouse button
and select the action typed in step 6, the project will be opened in Delphi 2.0.

You can expand on the above idea to include Pascal units so that you can open them with either version
of Delphi, further more while you're at it, why not add an action for units that allow you to open them with
Windows "notepad". Of course you can open a unit in Delphi but when opening a unit in another directory
then the project directory you will need to change directories any time a new file needs to be saved into
the current project directory.    When I need to add code from other units I will fire up Explorer and find the
needed unit, open it with notepad and copy whatever I need to the clipboard then paste to a unit in the
current project. A second option is to choose (from Delphi IDE menu) File|New, text file and paste the
copied code into it. Now you can use this as a personal holding area for the project.

So there you have it, working two versions of Delphi and also adding new methods of opening units.

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997

Adding a History List to an InputQuery Box - the 32 bit version
By Gene Fowler - acorioso@ccnet.com
In UNDU issue #20, March 1997, I worked out a "template" unit for InputQueryEx, a function that is
identical to InputQuery except that a ComboBox replaces the Edit so there's a history that can be reused
in subsequent calls or sessions.
I made this Delphi 1 unit by pulling up the compiler directives and uses statement from dialogs.pas and
put them in the inputqx unit (inputqx.pas). I made my modified declaration for the new function, and I gave
old and new lines for the changes in the InputQuery function code which I had to leave for users to bring
over so that I'd not be "distributing" Borland's code.
I skipped Delphi 2 because I didn't have a 32 bit operating system to run it in. But, a new system with Win
95 pre-installed became an excuse and Delphi 3 now sits on my desktop. Sooooooo, a new "template"
unit is in order. This will be inputqex (inputqex.pas). Note the "e" inserted. The original functions are quite
different in detail and so my rewrites are, too, though anybody who chose not to wait likely didn't have any
real trouble.

The pulling of code from dialogs.pas is both simpler and a tiny bit more complex. The compiler directives
reduced to only {$R-}. But two uses statements, and they had extras so far as my function was
concerned, so both are there but edited down. But you will have to bring over one hidden function
(GetAveCharSize) from dialogs.pas with the InputQuery code.

Here's the "testbed" use of InputQueryEx in a Delphi 3 32 bit program.
procedure TFrameForm.Test1Click(Sender:TObject);
var
 ClickedOK: boolean;
begin
 { Test InputQueryEx implementation in Delphi 3 (32 bit).
 Temporary testbed for 32 bit InputQueryEx, an InputQuery
 with a history list.
 uses ..., inputqex; { inputqex.pas }
 Just above "implementation" lie my variables:
 var
 AValue: string;
 SomeValues: TStringList;
 At the end of this unit file, I have an Initialization
 section containing:
 SomeValues := TStringList.Create;
 }
 if AValue = '' then AValue := 'Default String';
 ClickedOK := InputQueryEx('Test InputQueryEx', 'EnterString:',
 AValue, SomeValues);
end;
initialization
 SomeValues := TStringList.Create;

end.

Note the set-up or preparation in the note at the top of the procedure, particularly the initialization of the
TStringList in the form's initialization section.

Source Template for InputQEx.Pas

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997

Exceeding the Data Segment
by Robert Vivrette - RobertV@compuserve.com
A few weeks ago, I received an email from Steve Bentall at Custom Computing
(slbentall@customcomputing.cix.co.uk) that covered an interesting problem and eventual solution. Here is
the problem and solution in his words…

The Problem
The application I have been developing has hit the 'Compiler Error 49 Data Segment Too Large' brick wall
and I am desperate to come up with an approach that will allow me to complete the development. The
app currently consists of 95 Forms in 97 units and provides approximately 75% of it's required
functionality at this stage. It is written in D1 and as much as I would love to move to D3, this app will be
running under w3.x for at least 18 months after initial release.

I have spent some time looking closely at the app using the Turbo Debugger and am staggered at how
much of the Data Segment appears to be cluttered with VCL related data for components that I am not
aware that I require.

I am willing to consider almost any approach (except moving from D1 unfortunately) and wondered
whether you could suggest what I should try or where I may find guidelines and recommendations
(Moving more literals into Resource Strings?, splitting certain functionality into DLL(s)? etc?).

Later… The Solution!
I have made quite remarkable progress more by luck than by judgment. I have managed to reduce the
size of the Data Segment (excluding Stack and Local Heap) from 42,838 bytes to 11,894 bytes.

I realized almost by chance that variables declared in a unit outside of any procedures or functions are
placed in the Data Segment even if they are local to the unit by virtue of the fact that they are declared in
the implementation section. I had incorrectly assumed that only those declared in the interface section
would be placed in the Data Segment.

Moving these variables out of the Data Segment was simply a case of declaring them as Private variables
of the unit's form.

Variables declared outside of any procedures or functions in the implementation section are only
accessible within the unit and are not visible in the MAP as Public Variables hence I didn't spot them. I
assume that would explain why I am having difficulties identifying where the remaining space between the
Public Variables is defined.

A cautionary tale for others perhaps?

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997
A Review of Addict by Addictive Software
by Robert Vivrette - RobertV@compuserve.com
Professional touches to an application really set it apart from the crowd. What better way to set apart your
application than by giving it the ability to do Spell Checking as well as access to a Thesaurus? It isn't as
difficult as you might think!

To show you just how easy it is, lets build a sample application using Addictive Software's AddictSpell
component. Don't blink or you will miss it!

Start a new project. Add an RichEdit control, a Button, and a AddictSpell component. It should look
something like this:

Double-click on the button and add the following code:
procedure TForm1.BitBtn1Click(Sender: TObject);
begin
 AddictSpell1.Check(RichEdit1);
end;

Now compile and run it! (I told you not to blink…) I type in some text and click on the button, and viola!
Addict goes to work identifying spelling errors in the RichEdit control.

This is the most basic of examples, but I think you can see just how easy it is to add a very powerful
feature to your applications.
Addict supports user-dictionaries as well as the Microsoft Word dictionaries (that will help save disk
space!). If you have a list of custom words you need to add, there is a Dictionary compiler to process
them for you automatically, and you can setup multiple user-dictionaries and have any or all of them

active at the same time. It automatically understands how to spell check any descendent of TCustomEdit,
TCustomMemo, and TCustomRichEdit and a number of 3rd party edit controls. It also can check Pchars
and strings. Addict also has a large number of configuration options including the ability to allow it to
handle HTML tags, and spell check in the background.
For fast and simple spell checking, you need look no further than AddictSpell. It is fast and incredibly easy
to use!

For a trial version, you can visit their web site at http://www.flinthills.com/~addict. You can also contact
Addictive Software at addict@flinthills.com. The full version includes source code.

By the way… the Thesaurus component is great too… A review of that will have to wait until a future issue
of UNDU… Stay tuned!

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997
A Review of the Programmers Guild Animated Tray Icon
by Robert Vivrette - RobertV@compuserve.com
Windows 95 adds all sorts of handy user interface features that Delphi programmers love to play with.
One of the handiest is the ability to insert an icon in the Windows 95 TaskBar Tray area and use it to
control various features of an application.

Programmers Guild has offered their Animated Tray Icon for some time now and I have been using it for
the last 6 months or so (in various incarnations). Recently they released an updated version that now
supports all versions of Delphi as well as C++ Builder. This latest version does not disappoint! Since the
first time I used it I was hooked!

To show you how simple it is, I am going to walk through a short illustration of its use:

After a ridiculously simple install (it even puts it into Delphi for you), I am ready to go. I start a new project
and plop a PGTrayIcon95 onto the form. Here is a look at some of the properties you have at your
disposal:

Let's make an animated tray icon… After placing the PGTrayIcon95 component on to the form, I set its
State property to tsAnimated. Now since this is going to be an animation, we need to give it something to
animate. I create a RES file (with Delphi's ImageEditor) and add 3 icon resources to it. I make the icons
16x16 and in 16 colors, and paint 3 different arrows on their surfaces. I then save the RES file as
ICONS.RES. The resource file looks something like this:

Next, I provide the names of the 3 icon resources in the Animation.Icons stringlist. All I need to do here
is type in their names: ARROW1, ARROW2, and ARROW3. Next I set its Animation.Options property to
aoIconsInExe. This tells the component that the images are in a resource bound in with the EXE.
Two steps left! I need to tell Delphi to bind in the resource file so I include {$R ICONS.RES} somewhere
in the Form's unit file and then lastly, I set the components Active property to True. Compile and Run!

As you can see when the program is running, the little icon is down in the TaskTray area flipping around
between the three graphics. Pretty cool! And I didn't even have to write any code. Of course it really
doesn't do anything other than animate, so let's add a popup menu.

I add a TPopupMenu to the form and add 2 menu items to it: Show Menu and Hide Menu. Here are the
OnClick events:

procedure TForm1.HideForm1Click(Sender: TObject);
begin
 Hide;
end;
procedure TForm1.ShowForm1Click(Sender: TObject);
begin
 Show;
end;

And then I need to tell the PGTrayIcon95 component that it has a popup menu by connecting its
PopupMenu property to my newly added PopupMenu1 component. Last step is to set the PGTrayIcon95
components AutoPopup property to True. Compile and run it again…

Now I get the same thing, but when I right-click on the dancing arrow, I get a popup menu allowing me to
selectively hide or show the form.

This has been a pretty simple example of how the PGTrayIcon95 works, and I haven't even touched most
of its capabilities. Some of its added features include the ability to set a flyover hint for the icon, showing
the icon in an enabled or disabled state, as well as a full host of user events such as OnClick, OnDblClick,
OnMouseMove, OnMouseEnter, OnMouseExit, OnAppMinimize, OnAppRestore, and OnStateChanging -
Whew!!!
You can get a trial version of the component (and others) at Programmers Guild's Web site
http://www.programmersguild.com. Registering the component will cost you a mere $10 and $25 will get
you the source code. A bargain!

I love PGTrayIcon95 (except for the name perhaps) and would highly recommend it to anyone who wants
an easy and effective way to manage icons in the TaskTray area.

You can reach Programmers Guild at feedback@programmersguild.com or by snail mail at:
The Programmers' Guild
7 Main Street
St. George, N.B.
Canada
E0G 2Y0

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997

Using the Win95 Registry
by Wim Vandersmissen - pin10012@pophost.ping.be
After playing around with Delphi 2 for a few months, I wanted to use the Win 95 registry instead of the old
INI files to store the options used by my programs. After browsing the Delphi and Windows 32 API help
files, I concluded that the TRegistry object would be the best to do this. Now the only thing that was left
was to find out how you had to use the methods of this object, 'cause there are no examples. That's why I
decided to write this article, so that you don't have to find out the hard way (like me and many others) ;-)
The first thing to do when your form uses the registry is to add the Registry unit to the uses clause at the
top of your source-code. In 90% of the cases you want to set some properties of your form to predefined
settings you store in the registry (e.g. the width and height of the form), so you'll have to add some code
to the OnCreate-event of your form too.

Now let's have a look at an example. The following program will check at startup if a certain key already
exists in the registry, if so, it will read a value from it, if not, the key will be created and set to a certain
default value.
unit Unit2;
interface
uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
 Dialogs, Registry, StdCtrls;

type
 TForm1 = class(TForm)
 Label1: TLabel;
 CountLabel: TLabel;
 Label2: TLabel;
 Button1: TButton;
 procedure Button1Click(Sender: TObject);
 procedure FormCreate(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;
var
 Form1: TForm1;

implementation
{$R *.DFM}

procedure TForm1.Button1Click(Sender: TObject);
begin
 Close;
end;

procedure TForm1.FormCreate(Sender: TObject);
var
 theReg : TRegistry;
 KeyName : String;
 Counter : Integer;
begin
 theReg := TRegistry.Create;
 KeyName := 'Software\Wim\Test';
 if (theReg.KeyExists(KeyName)) then
 begin
 theReg.OpenKey(KeyName, False);
 Counter := theReg.ReadInteger('UsageCount');
 end
 else
 begin
 theReg.OpenKey(KeyName, True);
 Counter := 0;
 end;
 Counter := Counter + 1;
 theReg.WriteInteger('UsageCount', Counter);
 CountLabel.Caption := IntToStr(Counter);
 theReg.Free;
end;
end.

Now let me try to explain how it works. First you create an instance of the TRegistry object, using
TRegistry.Create. Don't forget to do this, because if you don't, strange things can happen (in the good ol'
days it would be a GPF, but now. who knows). Also, when you're done reading from or writing to the
registry, don't forget to free the memory used by the TRegistry object, by using the Free method.

Now that we have a valid instance of the TRegistry object, I check whether or not the key 'Software\Wim\
Test' already exists. To do this, you just call the KeyExists method, using the keyname as a parameter.
The function returns a True when the key already exists and False if it doesn't. I use a relative key, but
you can also use an absolute key, by starting the name with a backslash (using '\
HKEY_CURRENT_USER\Software\Wim\Test' would give the same result).

Let's suppose the key doesn't exist yet. The first thing you have to then is to create and open the key. You
can do this by calling the OpenKey method. This method needs 2 parameters which are the key's name
and a boolean value. To create the key you have to call OpenKey(<key name>, True) . After this call you
can add all kinds of data values to this key. I just add the UsageCount as an Integer, by using the
WriteInteger method.

If the key already exists, I open it Using OpenKey, but this time the boolean value is set to False, because
the key already exists (you could set it to true though. doesn't matter in this example). After this, I read the
value stored in the UsageCount data value using the ReadInteger method.

As you can see, it isn't all that difficult to use the registry. If you'd like to get more information are have
problems using the registry, you can always let me know of course.

May the source be with you!

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997

Word Search Tip
by Arlan Mock - amock@alum.mit.edu
When you bring up the find/replace dialog box in Delphi, do you ever wish the editor would automatically
enter the word your cursor is currently on?    In Delphi 1, select Options|Environment.    On the Editor
Options tab check the 'Find text at cursor' checkbox.    In Delphi 2, select Tools|Options.    You'll find the
same checkbox on the Editor tab.

Return to Tips & Tricks
Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997

Unbridled Acceleration
by Arlan Mock - amock@alum.mit.edu
I have come across a strange bug in Delphi having to do with accelerator keys used in the Caption
property of buttons, checkboxes, labels with a FocusControl, etc.    Normally, to use an accelerator key
you must press the Alt-<char> combination.    However, under certain conditions, the accelerator is
executed without the use of the Alt key.    This can be reproduced in both Delphi 1 and Delphi 2.

0 to 60 WITHOUT THE ALT KEY
To see this behavior, start a new project and place two buttons on the form. Set the captions of the
buttons to '&A Button' and '&B Button'. Also, assign an OnClick event handler for each button.    For
example, for the A button, you could use ShowMessage('You pressed the A button'). Likewise, have the
'B' button show a message that you have pressed the 'B' button.    Now, run the project. Click on the 'A'
button so that it receives focus and displays its message.    Close the message box, and then, using the
keyboard, press the 'B' key without the Alt key while button A has focus.    The message dialog for the 'B'
button will be erroneously displayed.

It seems that an accelerator key executes without the Alt key whenever a TButton, a TStringGrid with
Options.goEditing = false or a TCheckbox has focus.

UNDER THE HOOD
This section discusses the gory details behind the problem.    If you just want to know how to correct this
behavior, skip to the section entitled 'THROTTLING BACK A TAD'.

It seems any TWinControl descendent that doesn't want to accept characters and that has focus will
cause accelerator keys to work without the Alt key. To be more specific, this behavior appears while focus
is held by any TWinControl descendent that does not set the DLGC_WANTCHARS flag in response to
the WM_GETDLGCODE message.    The WM_GETDLGCODE message is sent from the
TWinControl.CNChar message handler.    After the call to the WMGETDLGCODE message handler
returns, CNChar checks the DLGC_WANTCHARS flag.    If it is not set, CNChar tells the parent form to
perform the CM_DIALOGCHAR message.

It is in the CMDIALOGCHAR message handlers that the problem starts to surface. CM_DIALOGCHAR is
the internal Delphi message that is overridden if a control can make use of an accelerator key.    TForm
inherits its CMDIALOGCHAR message handler from TWinControl.    This message handler is different
than other such message handlers in that it does not check for accelerator keys. Instead it broadcasts the
CM_DIALOGCHAR message to all child controls to see if the children have an accelerator key. So when
TForm performs this message, it broadcasts the message to all its child controls.    Any container controls
on the form, such as panels, will in turn broadcast the message to all its child controls.    This continues
until a control has a CMDIALOGCHAR message handler that checks for an accelerator key that matches
the character key that was pressed or until all controls have had a chance to handle the message, none
of which have a corresponding accelerator.

All CMDIALOGCHAR message handlers in the VCL other than TWinControl's check for an accelerator
key.    Each one does this by calling a function in FORMS.PAS called IsAccel.    This function requires two
parameters - the key that was pressed and the caption.    IsAccel checks to see if the key matches the
character after the caption's first '&' character. Unfortunately, IsAccel does not have a parameter for the

state of the control, alt and shift keys!

My initial thought on solving this problem was to modify IsAccel in FORMS.PAS to have a third parameter
for the key state.    This doesn't work well because that changes the interface section of the FORMS unit,
and any other unit that uses FORMS would need to be recompiled.    This would require source code for
any such unit, which may not be available. This is one reason it is a good idea to never modify the
interface section of any VCL source code.

THROTTLING BACK A TAD
The fix I    use involves finding and modifying each CMDialogChar message handler in the VCL that calls
the IsAccel procedure in FORMS.PAS.    If you decide to do this, be sure to back up the old source, just in
case. Here's an example of the modification in TButton.CMDIALOGCHAR.    It makes use of the KeyData
field of the Message parameter, which contains information about the state of Ctrl, Alt and Shift.    The
modification is underlined and marked by {>}...{<}.

procedure TButton.CMDialogChar(var Message: TCMDialogChar);
begin
 with Message do
 if {>} (KeyDataToShiftState(KeyData) = [ssAlt]) and {<}
 IsAccel(CharCode, Caption) and CanFocus then
 begin
 Click;
 Result := 1;
 end
 else
 inherited;
end;

To find all such routines in the VCL, just search for IsAccel in BUTTONS.PAS, STDCTRLS.PAS,
TABNOTBK.PAS and TABS.PAS.    Not all CMDialogChar message handlers have a 'with Message do'
statement.    In such cases, you will have to use Message.KeyData instead of KeyData.

FOREIGN VEHICLES
One last note - any third party components you have that override CMDialogChar may need to be
modified as well.

Editors Note:
I just want to reinforce to UNDU readers that this solution involves making some minor changes to the
VCL source code. You should definitely backup any files prior to modifying them.

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997

Delphi Users Groups
A while back, I sent out emails to all the Delphi Users Groups I could get my hands on and asked them to
send me some basic information about their group. This issue, I will be starting my attempt at publishing
this material. I only got a few responses back, but hopefully it will grow with time. As a result, it will be a bit
sparse this time, but more information will definitely be added as we go.
If you run a Delphi Users Group that is not on this list, please feel free to send me an email with the
essentials. Please include basic information about where and when the group meets, and particularly any
web links you may have to support the group. I am going to keep the info to a minimum so I can include in
each issue (or maybe every other issue). I have provided a sample form to help you provide the right
information.

California
Orange County Delphi Users Group

North Bay Delphi SIG

Canada
Metro Halifax Delphi Developers Group

Iowa
Central Iowa Delphi Users Group

Michigan
Royal Oak Delphi Users Group

North Carolina
Research Triangle Park Delphi Users Group

Pennsylvania
Pittsburgh Area Delphi Users Group

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997
Group Name: Orange County Delphi Users Group
Person(s) In Charge: Maurie Seymour
Meeting Date/Time: Second Saturday of each month at 1:00pm
Meeting Location: 1520 Brookhollow Drive, Suite 38, Santa Ana, CA
Dues: ???
Email Address: delphibegin.sig@ocipug.org or mauries@pacbell.net
Phone Number: (714) 633-2914
Internet URL: http://www.ocipug.org
Description:

Return to Delphi Users Groups

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997
Group Name: Pittsburgh Area Delphi Users Group
Person(s) In Charge: Kirk A. Farra
Meeting Date/Time: Second Thursday of the month at 7:00pm
Meeting Location: Mastech Inc.
Dues: None
Email Address:
Phone Number: (412) 452-6121
Internet URL: http://www.nauticom.net/www/kfarra
Description: We cover Delphi and any related products/tools. Members are

exposed to many 3rd party components and have a local support
network for Q/A. Members get to review many products before they
are released and get information on local job opportunities and
contracting positions.

Return to Delphi Users Groups

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997
Group Name: Central Iowa Delphi Users Group
Person(s) In Charge: David W. Body
Meeting Date/Time: Third Thursday of every month at 5:30pm
Meeting Location: Offices of Iowa Bankers Association, Liberty Building, 418 6th

Ave. Suite 430, Des Moines, Iowa.
Dues: None
Email Address:
Phone Number: (515) 984-6243
Internet URL: http://www.bigcreek.com/delphi
Description:

Return to Delphi Users Groups

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997
Group Name: Royal Oak Delphi Users Group
Person(s) In Charge: ???
Meeting Date/Time: First Thursday of each month at 7:00pm
Meeting Location: William Beaumont Hospital (Lower Level), Royal Oak, MI.

Classrooms in AB-West building.
Dues: None
Email Address: ???
Phone Number: (810) 551-5000
Internet URL: http://ourworld.compuserve.com/homepages/STNICOL/
Description: Constructing DLL's, SQL Server 6.5, CGI, Email enabled

databases, data collection alternatives, VCL parties, book
review night, etc.

Return to Delphi Users Groups

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997
Group Name: Metro Halifax Delphi Developers Group
Person(s) In Charge: Dave Hackett
Meeting Date/Time: First Tuesday of each month from 7:00pm to 9:00pm
Meeting Location: Maritime Life Business Park
Dues: None
Email Address: 71650.2646@compuserve.com
Phone Number:
Internet URL:
Description: News, Q&A, Presentations

Return to Delphi Users Groups

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997
Group Name: North Bay Delphi Special Interest Group
Person(s) In Charge: Bjarne Winkler
Meeting Date/Time: Second and Fourth Wednesday of each month from 7:00pm to 9:00pm
Meeting Location:
Dues:
Email Address: nts4618086@aol.com
Phone Number:
Internet URL:
Description: Announcements, Q&A, Special topics each meeting.

Return to Delphi Users Groups

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997
Group Name: Research Triangle Park Delphi Users Group
Person(s) In Charge: Mark Hutchinson
Meeting Date/Time: Third Wednesday of each month, 5pm
Meeting Location: New Horizons Computer Learning Center - Willow Oak Bldg, Suite

116, 4625 Creekstone Drive, Durham, NC
Dues:
Email Address: aikimark@aol.com
Phone Number:
Internet URL: http://www.geocities.com/CapeCanaveral/Lab/1185/rtpdig.html
Description:

Return to Delphi Users Groups

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997
Form For Users Groups
If your Delphi Users Group is not mentioned in the list, please take a moment to email me the particulars
about your group. To make the information as uniform as possible, please cut and paste this form into an
email and send it to me at RobertV@compuserve.com. Please only send one if you are in charge of the
group… I don't want to have to wade through 30-40 copies for each group… Thanks!

Group Name:
Person(s) In Charge:
Meeting Date/Time:
Meeting Location (include City & State):
Dues:
Email Address:
Phone Number:
Internet URL:
Brief description of meeting format:

Return to Delphi Users Groups

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997

Getting Control of the Control Panel
by Andrew Jeffries - adjeffries@clara.net
An application I have just written has about thirty settings which are loaded at start-up, so I thought it
would be useful to have these in a separate application, or at least in a part of the system that can be
accessed separately from the main application.    Then my thoughts turned to writing a Control Panel
Application (or Applet as Microsoft likes them known).
After delving through then Windows API help files (16 & 32-bit) and a lot of conversion from horrid C
notation to our beloved Delphi I have now managed that very task…and was surprised how easy it works.

Applet Basics Covered    (As easy as A..B..C)
A Control Panel Applet is a DLL (Dynamically-Linked Library) renamed to a CPL.    If you can write a DLL
you are not far behind writing a Control Panel Applet.    If you can write a Delphi application you are not far
behind writing a DLL.

So to make our CPL, all we need is a small application that is working fine.    For our example, this will
simply save the name of a user in an INI file.      Yes, I know we should use the registry (for 32-bit
applications) but lets walk before we can run.

We will then convert it into a DLL (available to our main application) and then into a CPL.    The example
doesnt do a lot you understand but it demonstrates the principles nicely.    The following example is for 16-
bit applets.    If you wish to create 32-bit applets read the note at the end of this article.

User Name Application
The first step is to write a working application.    The example shown below is the design of the form,
nothing fancy just a label, an edit box and a button.

In the OnCreate event for the form put the following code:
procedure TForm1.FormCreate(Sender: TObject);
begin
 with TIniFile.Create('c:\windows\myapp.ini') do
 begin
 Edit1.Text := ReadString('User Details', 'Name', '(None)');
 Free;
 end;
end;

With IniFiles in the forms uses clause, this will open (if it doesnt exist - create) a file called myapp.ini in
the C:\Windows folder.    In the OnClick event for the TButton put the following code:

procedure TForm1.Button1Click(Sender: TObject);
begin
 with TIniFile.Create('c:\windows\myapp.ini') do
 begin
 WriteString('User Details', 'Name', Edit1.Text);
 Free;
 end;
 Close;
end;

And that is our application written.    All it does is opens the INI file, creating one if necessary, reads in the
Users name and saves any changes out upon clicking the OK button.    This could be made more efficient,
but this will do for our example.

Recipe for a DLL
Now our application is working, it is time to convert it to a DLL.    This is very simple.    The project source
for the application should currently look something like this:

program Project1;
uses
 Forms,
 Unit1 in 'UNIT1.PAS' {Form1};
{$R *.RES}

begin
 Application.CreateForm(TForm1, Form1);
 Application.Run;
end.

To convert this to a DLL all we need to do is alter the initial declaration so that Delphi knows to compile it
as a DLL and export a routine that does the startup. It could be changed to the following:

library Project1;
uses
 Forms,
 Unit1 in 'UNIT1.PAS' {Form1};
{$R *.RES}

procedure RunApp; export;
begin
 Application.CreateForm(TForm1, Form1);
 Application.Run;
end;
exports
 RunApp;

begin
end.

All we have done is change the header from program to library, move the routine that opens the form
and runs the application to its own procedure and exported that function.    This is now a fully functional
DLL and could be used by a larger application.    But our task is to create a Control Panel Applet, so…

Making the Final Leap
This is where all our work is done and this is where the source code starts getting slightly complex.   
Before we start altering our source code, a small application of how the Control Panel Application
(CONTROL.EXE) talks to our Control Panel Applet (MYAPPLET.CPL) is in order.

Control Panel uses a Callback function to start up the Applet and gain information about it.    Now
technically, many Applets can be contained within a single CPL file although for the moment we shall only
be concerned with doing one for the moment.    Now all this callback business sounds a bit complex, but it
isnt.

In this context, all it means is that you have to declare a function with a standard set of parameters.   
Control Panel will then execute this function passing what it wants your Applet to do and you take care of

the information it passes.    Does this still sound complicated?    Here is a small (simplified) example:

You have a function called:    function CPLApplet (CPLMessage):Result;

Control Panel runs this function sending the message Are you a Control Panel applet? - to which well
reply true as the result.

Control Panel then runs the function again sending the message How many Icons do you want in my
Control Panel Window? - To which well reply 1 as the result.

Control Panel then sends the message OK, give me the information for your first applet - and you return
the a handle to an icon, and short and long names (for under the icon and the bottom of the window
respectively).    This message will be repeated for each of the Applets required, although we already
stated we only want one.

Control Panel then sends a message when the user double clicks on the icon in Control Panel.

Now, does that seem a bit easier?    Right, now we start delving into code and actually convert our DLL in
to a CPL.

The only real thing to do is to declare a function called CPLApplet with the parameters Control Panel
expects (slightly more complex than the example above!).    The following function does all the talking with
Control Panel.    In the comments CP represents the Control Panel application (CONTROL.EXE).

function CPLApplet (hWndCpl: HWnd; msg: Word; lParam1: Longint;
var NewCPLInfo: TNewCPLInfo): Longint; export;

begin
 case msg of
 CPL_INIT: CPlApplet := 1;
 {CP asks Are you an Applet We reply 1 - Yes I am}

 CPL_GETCOUNT: CPlApplet := 1;
 {CP asks How many icons do you want We reply 1 - One icon,
 please}

 CPL_NEWINQUIRE:
 {CP sends this message once for every icon you require. In our
 case this is only sent once, so we dont need to concern ourself
 with what applet number CP wants to know about}
 begin
 with NewCPLInfo do begin
 dwSize:=sizeof(TNewCPLInfo);
 dwFlags := 0;
 dwHelpContext := 0;
 lData := 0;
 szHelpFile[0]:= #0;
 {Now comes the intersting bit; our icon and names}
 Icon :=Application.Icon.Handle;
 StrPCopy(szName,'My First Applet');
 StrPCopy(szInfo,'My first Control Panel Applet (in Delphi!)');
 end;
 end;
 CPL_DBLCLK: RunApp;
 end;
end;

Now we nearly have a functional Control Panel Applet.    Only five small steps left before it actually works
from Control Panel.

Add the following libraries to the uses clause of the DPR - WinProcs, WinTypes, CPL, SysUtils.

Add the CPLApplet function to the exports clause of the DPR.

Compile the project.

Rename the resulting DLL to a CPL, for example MYAPPLET.CPL.

Copy this CPL file to your Windows\System folder\directory.

Now the next time you run Control Panel, your applet will appear…

32-Bit Considerations
For an applet to be compiled under Delphi 2.0 a number of other considerations are necessary, for
example there is no defined library CPL.PAS that was included with Delphi 1.0, so the constants and
types need redeclaring as shown below.    This will now work under Windows 95 but further thoughts are
necessary for it to run under Windows NT.    As I am new to programming for NT, any thoughts on this
issue, e-mailed to me, would be greatly appreciated.

// Control Panel Declarations
type
 TNewCPLInfo = record
 dwSize: Longint;
 dwFlags: Longint;
 dwHelpContext: Longint;
 lData: Longint;
 Icon: HIcon;
 szName: array[0..31] of Char;
 szInfo: array[0..63] of Char;
 szHelpFile: array[0..127] of Char;
 end;
const
 CPL_INIT = 1;
 CPL_GETCOUNT = 2;
 CPL_DBLCLK = 5;
 CPL_NEWINQUIRE = 8;

Source Code for Main Form (MAINFORM.PAS)

Source Code for Project File (MYAPPLET.DPR)

Form Definition File    (MAINFORM.DFM)

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997
Source Code for MainForm.PAS
unit Mainform;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, StdCtrls, IniFiles;

type
 TForm1 = class(TForm)
 Label1: TLabel;
 Edit1: TEdit;
 Button1: TButton;
 procedure FormCreate(Sender: TObject);
 procedure Button1Click(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;
var
 Form1: TForm1;

implementation
{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
begin
 with TIniFile.Create('c:\windows\myapp.ini') do
 begin
 Edit1.Text:=ReadString('User Details', 'Name', '(None)');
 Free;
 end;
end;
procedure TForm1.Button1Click(Sender: TObject);
begin
 Close;
end;
end.

Return to Article

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997
Form Definition File - MainForm.DFM
object Form1: TForm1
 Left = 241
 Top = 134
 Width = 246
 Height = 126
 Caption = 'Our Application'
 Font.Color = clWindowText
 Font.Height = -13
 Font.Name = 'System'
 Font.Style = []
 PixelsPerInch = 96
 OnCreate = FormCreate
 TextHeight = 16
 object Label1: TLabel
 Left = 12
 Top = 12
 Width = 75
 Height = 16
 Caption = 'User name:'
 end
 object Edit1: TEdit
 Left = 96
 Top = 8
 Width = 121
 Height = 24
 TabOrder = 0
 Text = 'Edit1'
 end
 object Button1: TButton
 Left = 60
 Top = 52
 Width = 89
 Height = 33
 Caption = '&OK'
 Default = True
 TabOrder = 1
 OnClick = Button1Click
 end
end

Return to Article

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997
Control Panel Project Source
library Myapplet;
uses
 Forms,
 Mainform in 'MAINFORM.PAS', {Form1}
 WinTypes, WinProcs, SysUtils;

{$R *.RES}

procedure RunApp; export;
begin
 Application.CreateForm(TForm1, Form1);
 Application.Run;
end;
function CPLApplet (hWndCpl: HWnd; msg: Word; lParam1: Longint;
 var NewCPLInfo: TNewCPLInfo): Longint; export;
begin
 case msg of
 CPL_INIT: begin
 CPlApplet:=1;
 end;
 {CP asks "Are you an Applet" We reply 1 - "Yes I am"}

 CPL_GETCOUNT:begin
 CPlApplet:=1;
 end;
 {CP asks "How many icons do you want" We reply 1 - "One icon,
 please"}

 CPL_NEWINQUIRE:
 {CP sends this message once for every icon you require. In our
 case this is only sent once, so we dont need to concern ourself
 with what applet number CP wants to know about}
 begin
 with NewCPLInfo do begin
 dwSize:=sizeof(TNewCPLInfo);
 dwFlags := 0;
 dwHelpContext := 0;
 lData := 0;
 szHelpFile[0]:= #0;
 {Now comes the intersting bit; our icon and names}
 Icon :=Application.Icon.Handle;
 StrPCopy(szName,'My First Applet');
 StrPCopy(szInfo,'My first Control Panel Applet (in Delphi!)');
 end;
 end;
 CPL_DBLCLK: RunApp;

 end;
end;

exports
 RunApp,
 CPLApplet;

begin

end.

Return to Article

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #22 - June 1997
Source Template for InputQuery
unit InputQEx; { inputqex.PAS, for Delphi 32 bit }

{ This unit is a template in which you can build InputQueryEx, a
 function identical to InputQuery but with a ComboBox in place of
 the Edit so that you have a history to reuse in subsequent calls
 or sessions.

 You must bring code for two functions in from dialogs.pas (in
 the Delphi 2/3 VCL source code). I have only Delphi 3, but assume
 this code was likely the same in Delphi 2.

 Bring in GetAveCharSize from the top of the implementation section
 and put it where I've made the comment below. Then, bring in the
 code for InputQuery BUT WITHOUT THE DECLARATION. Start it with
 the VAR(iables) list for the function and, then, the code. The
 first change will be a couple entries in that VAR list.

 --Gene fowler
 May, 1997
}

{$R-}
interface

uses Windows, Classes, Graphics, Controls, Forms, StdCtrls, Dialogs;

function InputQueryEx(const ACaption, APrompt: string;
 var Value: string; var Values: TStringList): Boolean;

implementation

uses Consts;

{function GetAveCharSize(Canvas: TCanvas): TPoint;
 goes here. It's under implementation in dialogs.pas}

function InputQueryEx(const ACaption, APrompt: string;
 var Value: string; var Values: TStringList): Boolean;
{ Copy the var(iables)list here}

{ Add these two items to the var list }
 i: integer;
 S: string;

{ Insert from begin here. Then, in that whole code block
 find the lines that match one of my old-lines blocks and
 replace it with the new-lines block beside that.}

{First block}

{old} Edit := TEdit.Create(Form);
{old} with Edit do
{old} begin
{old} Parent := Form;
{old} Left := Prompt.Left;
{old} Top := MulDiv(19, DialogUnits.Y, 8);
{old} Width := MulDiv(164, DialogUnits.X, 4);
{old} MaxLength := 255;
{old} Text := Value;

{old} SelectAll;
{old} end;

{new} Combo := TComboBox.Create(Form);
{new} with Combo do
{new} begin
{new} Parent := Form;
{new} Left := Prompt.Left;
{new} Top := MulDiv(19, DialogUnits.Y, 8);
{new} Width := MulDiv(164, DialogUnits.X, 4);
{new} MaxLength := 127;
{new} SelectAll;
{new} Text := Value;
{new} Combo.Items.Clear;
{new} if Values.Count > 0 then
{new} begin
{new} For i := 0 to Values.Count - 1 do
{new} begin
{new} S := Values[i];
{new} Combo.Items.Add(S);
{new} end;
{new} if Combo.Items[0] Combo.text then
{new} begin
{new} Combo.Items.Insert(0, Combo.Text);
{new} for i := 0 to Combo.Items.Count - 1 do
{new} if Combo.Items[i] = Combo.Items[0] then
{new} Combo.Items.Delete(i);
{new} end
{new} end
{new} else
{new} Combo.Items.Add(Combo.Text)
{new} end;

{Second block}

{old} if Form.ShowModal = mrOk then
{old} begin
{old} Value := Edit.Text;
{old} Result := True;
{old} end;

{new} if Form.ShowModal = mrOK then
{new} begin
{new} Result := True;
{new} Value := Combo.Text;
{new} if Combo.Items[0] Combo.Text then
{new} Combo.Items.Insert(0, Combo.Text);
{new} for i := 1 to Combo.Items.Count - 1 do
{new} if Combo.Items[i] = Combo.Items[0] then
{new} Combo.Items.Delete(i);
{new} Values.Clear;
{new} For i := 0 to Combo.Items.Count - 1 do
{new} begin
{new} S := Combo.Items[i];
{new} Values.Add(S);
{new} end;
{new} end;

Return to Article

Return to Tips & Tricks

Return to Front Page

