
    The Unofficial Newsletter of Delphi Users - Issue #21 - May 1997

Well, Delphi 3.0 is here. It has taken a bit longer than anyone wanted, but better a late great product than
an early flawed one! As Delphi 3.0 starts establishing itself in the marketplace, we will start seeing more
articles in magazines and programming journals that specifically discuss some of the new features of
Delphi 3.0. Although this latest version is still just a 32-bit programming environment like its 2.0
predecessor, the new features added (like creation of ActiveX controls for example) will give a bit of
incentive for many to upgrade.

If you have discovered some really helpful new feature of Delphi 3.0 that you would like to share with
others, please jot it down in an email and send it to me. It is always nice to get real-world views of a
product from day-to-day programmers.

UNDU is turning out to be a great way of sharing ideas with other Delphi programmers. If you have a tip
or trick or product review you would like to share, please send it to RobertV@compuserve.com. I have
quite a few articles that I am preparing for future issues of UNDU so if you have sent something in, but
havent seen it in print yet, please be patient!

I continue to be impressed by the international acceptance of Delphi. Many of us here in the United States
might be naive enough to think that programming is the sole domain of the English speaking world. Not a
chance! It is fascinating hearing from programmers from every conceivable corner of the globe. I have
received countless emails from Delphi programmers in Belgium, South Africa, Brazil, China, the
Philippines, Australia, many of the former Soviet Republics… the list goes on and on. Pardon me for using
a cliché, but each day the world gets a little smaller and we all draw a little closer together…

This months randomly chosen winner for the UNDU prize goes to Jorge Romero Gomez for his article on
Low-Level Windows Stuff. His prize is a copy of the book Kick-Ass Java published by Coriolis Group
Books. In addition, as mentioned last month, OOPSoft, Inc has offered a special set of prizes. For last
issue and this issue (only) they have given out 5 copies of their products. Last month, it was 5 copies of
the ObjectExpress package (reviewed is issue #18) and this month it is their new SQLExpress package.
The five randomly chosen winners this month are Mark DeBelder, Paul Furbacher, Mike Yui, David
Sugden, and Benjamin Morin.

- Robert
Video Capture in Delphi

Review - Delphi Component Design

Product Announcement - Addict for Delphi

Questions (and Answers) From Readers

Tips & Tricks

The Component Cookbook

UNDU Subscriber List

Index of Past Issues

Where To Find UNDU

    The Unofficial Newsletter of Delphi Users - Issue #21 - May 1997

Index of Past Issues
Below is a complete index of all principle articles in past issues of the Unofficial Newsletter of Delphi
Users. Provided that you have the prior issues in the same directory as this issue, you can click on any of
these hotspots to go directly to that article. To return to the index, you can click on the Back button, or you
can use the History list. Once you jump to one of these issues, you can navigate through the issue as
you would normally, but you will need to go to the History list to get back to this index. There will be an
updated index included in all future issues of UNDU.

Issue #1 - March 15, 1995
What You Can Do
Component Design
Currency Edit Component
Sample Application
The Bug Hunter Report
About The Editor
SpeedBar And The ComponentPalette
Resource Name Case Sensitivity
Lockups While Linking
Saving Files In The Image Editor
File Peek Application

Issue #2 - April 1, 1995
Books On The Way
Making A Splash Screen
Linking Lockup Revisited
Problem With The CurrEdit Component
Return Value of the ExtractFileExt Function
When Things Go Wrong
Zoom Panel Component

Issue #3 - May 1, 1995
Articles
Books
Connecting To Microsoft Access
Cooking Up Components
Copying Records in a Table
CurrEdit Modifications by Bob Osborn
CurrEdit Modifications by Massimo Ottavini
CurrEdit Modifications by Thorsten Suhr
Creating A Floating Palette
What's Hidden In Delphi's About Box?
Modifications To CurrEdit

Periodicals
Progress Bar Bug
Publications Available
Real Type Property Bug
TIni File Example
Tips & Tricks
Unit Ordering Bug
When Things Go Wrong

Issue #4 - May 24, 1995
Cooking Up Components
Food For Thought - Custom Cursors
Why Are Delphi EXE's So Big?
Passing An Event
Publications Available
Running From A CD
Starting Off Minimized
StatusBar Component
TDBGrid Bug
Tips & Tricks
When Things Go Wrong

Issue #5 - June 26, 1995
Connecting To A Database
Cooking Up Components
DateEdit Component
Delphi Power Toolkit
Faster String Loading
Font Viewer
Image Editor Bugs
Internet Addresses
Loading A Bitmap
Object Alignment Bug
Second Helping - Custom Cursors
StrToTime Function Bug
The Aquarium
Tips & Tricks
What's New
When Things Go Wrong

Issue #6 - July 25, 1995
A Call For Standards
Borland Visual Solutions Pack - Review
Changing a Minimized Applications Title
Component Create - Review
Counting Components On A Form
Cooking Up Components
Debug Box Component
Dynamic Connections To A DLL
Finding A Component By Name
Something Completely Unrelated - TVHost
Status Bar Component

The Loaded Method
Tips & Tricks
What's In Print

Issue #7 - August 31, 1995
ChartFX Article
Component Cookbook
Compression Shareware Component
Corrected DebugBox Source
Crystal Reports - Review
DBase On The Fly
Debug Box Article
Faster String Loading
Formula One - Review
Gupta SQL Windows
Header Converter
Light Lib Press Release
Limiting Form Size
OLE Amigos!
Product Announcements
Product Reviews
Sending Messages
Study Group Schedule
The Beginners Corner
Tips & Tricks
Wallpaper
What's In Print

Issue #8 - October 10, 1995
Annotating A Help System
Core Concepts In Delphi
Creating DLL's
Delphi Articles Recently Printed
Delphi Informant Special Offers
Delphi World Tour
Getting A List Of All Running Programs
How To Use Code Examples
Keyboard Macros in the IDE
The Beginners Corner
Tips & Tricks
Using Delphi To Perform QuickSorts

Issue #9 - November 9, 1995
Using Integer Fields to Store Multiple Data Elements in Tables
Core Concepts In Delphi
Delphi Internet Sites
Book Review - Developing Windows Apps Using Delphi
Object Constructors
QSort Component
The Component Cookbook
TSlideBar Component
TCurrEdit Component

The Delphi Magazine
Tips & Tricks
Using Sample Applications

Issue #10 - December 12, 1995
A Directory Stack Component
A Little Help With PChars
An Extended FileListBox Component
Application Size & Icon Tip
DBImage Discussion
Drag & Drop from File Manager
Modifying the Resource Gauge in TStatusBar
Playing Wave Files from a Resource
Review of Orpheus and ASync Professional
The Component Cookbook
Tips & Tricks
UNDU Readers Choice Awards
Using Integer Fields to Store Multiple Data Elements in Tables

Issue #11 - January 18th, 1996
Core Concepts With Delphi - Part I
Core Concepts With Delphi - Part II
Dynamic Delegation
Data-Aware DateEdit Component
ExtFileListBox Component
DBExtender Product Announcement
Dynamic Form Creation
Finding Run-Time Errors
Selecting Objects in the Delphi IDE
The Beginners Corner
The Delphi Magazine
Top Ten Tips For Delphi
The Component Cookbook
Tips & Tricks
The UNDU Awards

Issue #12 - Feburary 23rd, 1996
The Beginners Corner
Delphi Projects
Marketing Your Components
An LED Component
A 3D Progress Bar
Common Strings Functions
Checking if your application is running already
AutoRepeat for SpeedButtons
Form and Component Creation Tip
Detecting a CD-ROM Drive
Drawing Metafiles in Delphi
Shazam Review
Product Announcement - Dr. Bob's Delphi Experts
Book Review - Instant Delphi Programming
Tips & Tricks

The Component Cookbook

Issue #13 - May 1st, 1996
Core Concepts - Sorting
Delphi Information Connection
Creating Resource-Only DLL's
Quick Reports
TIFIMG Product Announcement

Issue #14 - June 1st, 1996
A 3-D Component
An Animation Component
A Bug In TGauge
The Component Cookbook
A Look At Cross Tabs
New Book - Delphi In Depth
New Book - The Revolutionary Guide to Delphi 2
Making the Enter Key Work Like the Tab Key
Jumping Straight to Form Level
Making Menu Items Work Like Radio Buttons
Modifying The System Menu
Products & Reviews
The Beginners Corner
The UNDU Awards
Tips & Tricks

Issue #15 - August 1st, 1996
UNDU - A Work In Progress…
UNDU Prizes!
The UNDU Subscriber List
Core Concepts With Delphi - Parameter Passing
Delphi Programmers Book Shelf
Component Cookbook
Tips & Tricks
How to 'Catch'Keys
Working with String Grids
Coloring Columns in a Grid
Solving a DLL problem
Reducing Memory Requirements
Creating an AutoDialer component

Issue #16 - September 1st, 1996
Menu Buttons
Core Concepts With Delphi - Enumerated Types
Extending The INI Component
Limiting Multiple Instances Of a Program in Delphi 2.0
How to Draw a Rubber-Banding Line
Marching Ants!
How to Restrict the Mouse Cursor
How to make a Color ComboBox
A Better Way to Create Menu Items
Splash Screen

Splash Screen with a Time Delay

Issue #17 - October 1st, 1996
Does Windows 95 give you a Square Deal?
The Great StringList
Manipulating Regions with Delphi
Tips & Tricks
When Delphi's smart-linker doesn't seem so smart
Cut, Copy, & Paste
A Quick Way of Setting the Tab Order
Background Bitmaps on Forms
Non-Rectangular Windows

Issue #18 - November 1st, 1996
Object Express by OOPSoft Inc
Tips & Tricks
The Component Cookbook
IniOut Component Property Manager
New Book - Delphi Component Design by Danny Thorpe
Storing Fonts in INI Files
Sorting Columns in a DBGrid
What's Your Version Number
Drawing MetaFiles
Adding Undo to your Edit Menu
How To Put Anything In Your Delphi EXE
Delphi Newsgroups
A Simple Clipboard Viewer Component

Issue #19 - January 1st, 1997
Speed Daemon Review
A Look at MagiKit
Humor - Are You Computer Illiterate?
Tips & Tricks
The Component Cookbook
Using the SHFileOperation to Copy/Move/Delete/Rename Files
How to create a Polygon Splash screen
Is Someone else running?
Lock Violation
Printing Directly to a printer
Refreshing MDI Menus
Extending the Background Bitmap Technique
Paradox File Size Limits
Safer use of Enumerated Types
Simplifying Code management with Include
A Look at the TreeView Control
Text, Aligned in a Grid
TPageControl Flambé
Big Bitmaps
Masks ala Transparency

Issue #20 - March 1st, 1997
Learning How To Drive - Disk Information in Delphi

Delphi Books & Periodicals
Questions (and Answers) From Readers
Tips & Tricks
The Component Cookbook
Is Someone Else Running - Revisited!
InputQueryEx
Multi-colored text in a string grid
Converting Pascal Source to HTML
Processing large database tables
SHFileOperation Revisited
How to Make Your EXE's Lighter!
Form Aspect Ratio
Previous Instances Revisited
Printing Raw data to the Printer
Tip Of The Day Component
TFieldPanel

Return to Front Page

Where To Find UNDU
When each issue of UNDU is complete, I put them in the following locations:
1. UNDUs official web site at http://www.informant.com/undu/index.htm. This site houses all

the issues in both HTML and Windows HLP format. Click on the large icons for the HTML versions
and the small red book icons for downloadable Windows HLP files.

2. Borlands Delphi forum on CompuServe (GO DELPHI) in the "Delphi IDE" file section. This forum will
only hold the issues in Windows HLP format.

    The Unofficial Newsletter of Delphi Users - Issue #21 - May 1997

Tips & Tricks
The most popular section of UNDU is its Tips & Tricks section, so I always try to bring you the best ones I
can. Keep those tips coming!
Delphi does a very good job at providing a simple wrappers around complex Windows API functions. This
month, Jorge Romero Gomez (I hope I got that right) presents his own set of wrappers around Low Level
Windows Stuff.
Sometimes, finding that one procedure or function in piles of source code can be a real chore. David
Sugdens project this month is a program to extract the names of procedure and functions within your
Delphi code. Check it out in the tip on Listing Procedures.
A while back, I got an email from Frank Harlow (nstn1846@fox.nstn.ca) on how to hide an applications
icon in the Windows 95 Task Bar. After thinking about it for a bit, I put together a few lines of code which
seemed to do the trick. Check it out in Hiding Apps from the Task Bar.

Joelito Real brings an interesting discussion to this months issue on Excel OLE Tips. If you have been
wanting to tinker with OLE, this would give you a good first shot at how it is done.

If you are a sound aficionado, you might be interested in the follow-up discussion by Alan Lloyd on
Playing Sounds Asynchronously.

Also, in answer to a Question from Readers in issue #19, Mark DeBelder (pekari@glo.be) brings an
answer on how to put Bitmaps on StringGrids.

And last but not least, we have a tip by Ken Dowling on How To Find Up-to-date Delphi 2 Books, one by
Paul Furbacher on a neat use for the Margin Marker in Delphi 1 & 2, a short re-visit on the topic of Lock
Violations by Paul Harding, and a quick Object Creation Tip by Mike Yui.

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #21 - May 1997

The Component Cookbook
This month in the Component Cookbook, Herbert Beemster brings us an interesting discussion of How to
Compress a Bitmap, followed by a great solution for providing shutdown behavior for your Delphi
application using Benjamin Morins TEndSession component.

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #21 - May 1997

UNDU Subscriber List
The subscriber list is a method by which I can notify the readers when a new issue is out. I will maintain a
list of readers email addresses and when a new issue is released, I will fire off a batch mailing to notify
everyone that it is available.
This is what you need to do to get on the subscriber list… Simply send me an email to my CompuServe
address (RobertV@compuserve.com) and put the words SUBSCRIBE UNDU anywhere in the subject
line or in the main body of the message. If you no longer wish to be notified of future issues (i.e. you are
on the list and want off…) just send an email with the words UNSUBSCRIBE UNDU.
Thats all there is to it!

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #21 - May 1997

Questions (And Answers) From UNDU Readers
I often get a wide variety of emailed questions from readers of UNDU. Some of them have been quite
interesting and the solutions are equally interesting. Anyway, I figured "Why not let everyone help on the
solution?"
Each month I will present a few questions here that readers have submitted to me and open them up to
all the readers of UNDU. If you know the answer to a question, feel free to send it in to
RobertV@compuserve.com. I will chose the best solution to the question and post it in the following
issue. This way, everyone gets to see the answer!
The solutions can be anything including even shareware components that might solve a particular
problem.

In answer to a Question from Readers in issue #19, Mark DeBelder (pekari@glo.be) brings an answer on
how to put Bitmaps on StringGrids.

This Months Questions Are:

Keith Brown at BEDCO@aol.com asks:
I am writing a program that generates a one-page invoice based on the contents of four tables: Details
(has customer name & info, plus a description of the work in a Memo field), Materials, Miscellanous and
Labor.

My problem is that ReportSmith and QuickReports appear to only allow horizontal bands that can contain
one table at a time. I need to be able to print from two tables side-by-side horizontally (two tables and
the memo field are stacked vertically). Can this be done in ReportSmith or QuickReports?

Brian Boyce at BriBoyce@aol.com asks:
I am trying to use the validation information entered in database desktop to validate user entries to data
aware components. I have tried using ValidateEdit but this doesn't seem to take the picture field into
account. e.g. {Y,N} to only accept Y or N as input. It works when adding data from within DB desktop but
not when I access the database from within Delphi.

Any help would be greatly appreciated, and thanks for the magazine - I'm new to Delphi and it's helping
me to pick-up a lot of information in a very short space of time.

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #21 - May 1997
Danny Thorpes "Delphi Component Design"
A review by Robert Vivrette - RobertV@compuserve.com
Ever since I started programming in Delphi, I have had the opportunity to go through quite a number of
books on the subject. Most have been good basic reading, but only a few stand out above the rest.
Delphi Component Design by Danny Thorpe is one of this latter group. You won't find too many example
programs or cool new component designs within its pages, but you will learn quite a bit about what goes
on inside Delphi.

The author, Danny Thorpe, is an R&D engineer on Borlands Delphi development team, which makes him
imminently qualified to write about detailed Delphi internal concepts. While most books go into showing
you how to design new components or explain things the Delphi on-line help left out, Delphi Component
Design takes a different approach. Rather than telling you this is how you do this, Danny explains why it is
done that way and the details of how it is achieved.

Part 1 of the book covers Analysis and Design. There is a discussion of the Delphi Programming model
as well as how we got to that point through the various languages that came before it. There is also a
high-level discussion of component design. Sometimes we develop a component only thinking about the
immediate need, but Danny explains where the real power of components comes from, and how you can
retrain your thinking to develop extensible and reusable ones.

Part 2 of the book covers some of the implementation details of component design. Chapters include
Virtual Methods, Polymorphism, Exceptions, Run-Time Type Information, Streaming, Messaging, VCL
Subsystems, OLE and COM interfaces, and Optimization Techniques (my favorite). I learned far more
than I really wanted to about Virtual Methods here! Occasionally, Danny will illustrate his point with a few
lines of assembler. It really helps knowing what is going on behind a few Object Pascal statements!

Part 3 wraps up the book with a discussion of Design-Time Support Tools, including Delphis Open Tools
Architecture, Property Editors, Component Editors, Experts and Add-in Tools.

As mentioned earlier, my favorite chapter is the one on Optimization Techniques. I have always been a
fan of learning better, faster, and more efficient ways to accomplish something, and this chapter did not let
me down. In fact, my copy of this chapter is riddled with little post-it note scraps stuck to most every
page… Not many Delphi books make me want to mark a section to come back to later! In this chapter, he
discusses things such as Window handles, memory management techniques, string management, as well
as some Plain Old Dirty Tricks. The String management section was particularly an eye opener and after
reading it, I jumped back into a few of my applications to change the way I had worked with Strings.

Currently, there are only 3 books that I possess that I consider to be indispensable works. The first is the
Win32 Programming API Bible, then Ray Lischners Secrets of Delphi 2, and now Danny Thorpes Delphi
Component Design. While the first two are primarily reference works for me, Dannys book has been more
of an educational work… One that helps me think beyond the scope that I programmed in before.

If you are a newbie to component design or to Delphi, many of the topics discussed will likely go over your
head. However, if you think youre hot stuff and know all there is to know about Delphi… buy this book. It
will give you a renewed sense of humility…

If you want to learn about the inner workings of Delphi, you need look no further than Delphi Component
Design.

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #21 - May 1997

How to Compress a Bitmap
by Herbert J. Beemster - HerbertJB@compuserve.com
Currently I'm working on a project involving lots of bitmaps… we're talking about some fifty to ninety
bitmaps used by a program. As you might know the structure of a bitmap has a remarkable resemblance
with a soap-bubble, in that is there is plenty of air but only a fraction of water! So we can use some
compression here.
After a long quest involving resources as UNDU and CompuServe I ended up with a couple of
compressors and some samples using them but no direct bitmap compressor. So it was time to produce
something of my own. Fortunately with the sources of the things I found it was relatively simple to knit
together a descendant of TBitmap which has the extra features of storing and loading a compressed
bitmap.
The result of this all is implemented in a unit called UBitmap. I also added a simple test program to show
how it works. The test program loads a normal bitmap and writes out a compressed form as TEST.LZR.
By implementing the components load and saving methods, you can then deal strictly with these
compressed files.

Enjoy!

Source for Ubitmap.pas

Source for LZRW1KH.pas

Source for FBitmap.pas

Source for FBitmap.dfm

Return to Component Cookbook

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #21 - May 1997
Source for Ubitmap.pas
unit UBitmap;
{
Extented TBitmap object for Delphi 1.0
Added methods to load and save a compressed bitmap.
Copyright © 1997 by Herbert J.Beemster.

Questions, positive remarks, improvements etc. : herbertjb@compuserve.com

Credits goes to:
- Kurt Haenen for the LZRW1KH unit.
- Dan English for the trick with the streams.
- Danny Heijl for sample of using LZRW1KH.

This piece of source is hereby donated to the public domain. Enjoy!
}

interface

uses WinTypes, WinProcs, SysUtils, Classes, Graphics;

type
 TLZRBitmap = class(TBitmap)
 public
 procedure LZRLoadFromFile(const Filename : string); virtual;
 procedure LZRSaveToFile(const Filename : string); virtual;
 end; {TLZRBitmap}

implementation

uses
 LZRW1KH; {Credits : Kurt Haenen}

const
 ChunkSize = 32768;
 IOBufSize = (ChunkSize + 16);
 LZRWIdentifier : LONGINT =
 ((((((ORD('L') SHL 8)+ORD('Z')) SHL 8)+ORD('R')) SHL 8)+ORD('W'));

var
 InStream : TMemoryStream;
 OutStream : TMemoryStream;

procedure TLZRBitmap.LZRLoadFromFile(const Filename : string);
var
 Tmp,
 Identifier,
 OrigSize,
 SrcSize,
 DstSize : LongInt;
 SrcBuf,
 DstBuf : BufferPtr;
begin
 try
 {Create InStream & OutStream}
 InStream := TMemoryStream.Create;
 OutStream := TMemoryStream.Create;
 {Create buffers for LZWR1KH}

 Getmem(SrcBuf, IOBufSize);
 Getmem(DstBuf, IOBufSize);

 {Load the compressed bitmap}
 InStream.LoadFromFile(Filename);
 InStream.Seek(0,0);

 {Decompress the lot...}
 {Read compression ID }
 InStream.Read(Identifier, SizeOf(LongInt));

 {Read in uncompressed filesize }
 InStream.Read(OrigSize, SizeOf(LongInt));

 DstSize := ChunkSize;
 SrcSize := 0;
 while (DstSize = ChunkSize) do
 begin
 {Read size of compressed block }
 Tmp := InStream.Read(SrcSize, SizeOf(Word));
 {Read compressed block }
 InStream.Read(SrcBuf^, SrcSize);
 {Decompress block }
 DstSize := Decompression(SrcBuf, DstBuf, SrcSize);
 {Write decompressed block out to OutStream }
 OutStream.Write(DstBuf^, DstSize);
 end;

 {TBitmap thinks its loading from a file!}
 OutStream.Seek(0,0);
 LoadfromStream(OutStream);

 finally
 {Clean Up Memory}
 InStream.Free;
 OutStream.Free;
 Freemem(SrcBuf, IOBufSize);
 Freemem(DstBuf, IOBufSize);

 end; {try}

end; {LZRLoadFromFile}

procedure TLZRBitmap.LZRSaveToFile(const Filename : string);
var
 Size,
 CompIdentifier,
 SrcSize,
 DstSize : LongInt;
 SrcBuf,
 DstBuf : BufferPtr;

begin
 try
 {Create InStream & OutStream}
 InStream := TMemoryStream.Create;
 OutStream := TMemoryStream.Create;
 {Create buffers for LZWR1KH}
 Getmem(SrcBuf, IOBufSize);
 Getmem(DstBuf, IOBufSize);

 {Save the bitmap to InStream}

 SaveToStream(InStream);
 InStream.Seek(0,0);

 {Compress the lot...}
 {Write out compression ID }
 CompIdentifier := LZRWIdentifier;
 OutStream.Write(CompIdentifier, SizeOf(LongInt));

 {Write out uncompressed filesize }
 Size := InStream.Size;
 OutStream.Write(Size, SizeOf(LongInt));

 SrcSize := ChunkSize;
 while (SRCSize = ChunkSize)
 do
 begin
 {Read a block of data }
 SrcSize := InStream.Read(SrcBuf^, ChunkSize);
 {Compress it }
 DstSize := Compression(SrcBuf, DstBuf, SrcSize);
 {Write out compressed size }
 OutStream.Write(DstSize, SizeOf(Word));
 {Write out compressed data }
 OutStream.Write(DstBuf^, DstSize);
 end; {while}

 {Save compressed OutStream to file}
 OutStream.SaveToFile(Filename);

 finally
 {Clean Up Memory}
 InStream.Free;
 OutStream.Free;
 Freemem(SrcBuf, IOBufSize);
 Freemem(DstBuf, IOBufSize);

 end; {try}

end; {LZRSaveToFile}

end.

Return to Article

Return to Component Cookbook

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #21 - May 1997
Source for LZRW1KH.PAS
{$R-} { NO range checking !! }

{

 This posting includes the sources for the Turbo Pascal
version of the LZRW1/KH compression algoritm.

File #1 : The LZRW1KH unit

}
{ ### }
{ ## ## }
{ ## ## ##### ##### ## ## ## ## ## ## ## ## ## }
{ ## ## ### ## ## ## # ## ### ## ## ## ## ## ## }
{ ## ## ### ##### ####### ## ## #### ###### ## }
{ ## ## ### ## ## ### ### ## ## ## ## ## ## ## }
{ ## ##### ##### ## ## ## ## #### ## ## ## ## ## ## }
{ ## ## }
{ ## EXTREMELY FAST AND EASY TO UNDERSTAND COMPRESSION ALGORITM ## }
{ ## ## }
{ ### }
{ ## ## }
{ ## This unit implements the updated LZRW1/KH algoritm which ## }
{ ## also implements some RLE coding which is usefull when ## }
{ ## compress files containing a lot of consecutive bytes ## }
{ ## having the same value. The algoritm is not as good as ## }
{ ## LZH, but can compete with Lempel-Ziff. It's the fasted ## }
{ ## one I've encountered upto now. ## }
{ ## ## }
{ ## ## }
{ ## ## }
{ ## Kurt HAENEN ## }
{ ## ## }
{ ### }

UNIT LZRW1KH;

INTERFACE

uses SysUtils;

{$IFDEF WIN32}
type Int16 = SmallInt;
{$ELSE}
type Int16 = Integer;
{$ENDIF}

CONST
 BufferMaxSize = 32768;
 BufferMax = BufferMaxSize-1;
 FLAG_Copied = $80;
 FLAG_Compress = $40;

TYPE
 BufferIndex = 0..BufferMax + 15;
 BufferSize = 0..BufferMaxSize;
 { extra bytes needed here if compression fails *dh *}
 BufferArray = ARRAY [BufferIndex] OF BYTE;
 BufferPtr = ^BufferArray;

 ELzrw1KHCompressor = Class(Exception);

FUNCTION Compression (Source,Dest : BufferPtr;
 SourceSize : BufferSize) : BufferSize;

FUNCTION Decompression (Source,Dest : BufferPtr;
 SourceSize : BufferSize) : BufferSize;

IMPLEMENTATION

type
 HashTable = ARRAY [0..4095] OF Int16;
 HashTabPtr = ^Hashtable;

VAR
 Hash : HashTabPtr;

 { check if this string has already been seen }
 { in the current 4 KB window }
FUNCTION GetMatch (Source : BufferPtr;
 X : BufferIndex;
 SourceSize : BufferSize;
 Hash : HashTabPtr;
 VAR Size : WORD;
 VAR Pos : BufferIndex) : BOOLEAN;
VAR
 HashValue : WORD;
 TmpHash : Int16;
BEGIN
 HashValue := (40543*((((Source^[X] SHL 4) XOR Source^[X+1]) SHL 4) XOR
 Source^[X+2]) SHR 4) AND $0FFF;
 Result := FALSE;
 TmpHash := Hash^[HashValue];
 IF (TmpHash <> -1) and (X - TmpHash < 4096) THEN BEGIN
 Pos := TmpHash;
 Size := 0;
 WHILE ((Size < 18) AND (Source^[X+Size] = Source^[Pos+Size])
 AND (X+Size < SourceSize)) DO begin
 INC(Size);
 end;
 Result := (Size >= 3)
 END;
 Hash^[HashValue] := X
END;
 { compress a buffer of max. 32 KB }
FUNCTION Compression(Source, Dest : BufferPtr;
 SourceSize : BufferSize) :BufferSize;
VAR
 Bit,Command,Size : WORD;
 Key : Word;
 X,Y,Z,Pos : BufferIndex;
BEGIN
 FillChar(Hash^,SizeOf(Hashtable), $FF);
 Dest^[0] := FLAG_Compress;
 X := 0;
 Y := 3;
 Z := 1;
 Bit := 0;
 Command := 0;
 WHILE (X < SourceSize) AND (Y <= SourceSize) DO BEGIN
 IF (Bit > 15) THEN BEGIN

 Dest^[Z] := HI(Command);
 Dest^[Z+1] := LO(Command);
 Z := Y;
 Bit := 0;
 INC(Y,2)
 END;
 Size := 1;
 WHILE ((Source^[X] = Source^[X+Size]) AND (Size < $FFF)
 AND (X+Size < SourceSize)) DO begin
 INC(Size);
 end;
 IF (Size >= 16) THEN BEGIN
 Dest^[Y] := 0;
 Dest^[Y+1] := HI(Size-16);
 Dest^[Y+2] := LO(Size-16);
 Dest^[Y+3] := Source^[X];
 INC(Y,4);
 INC(X,Size);
 Command := (Command SHL 1) + 1;
 END
 ELSE begin { not size >= 16 }
 IF (GetMatch(Source,X,SourceSize,Hash,Size,Pos)) THEN BEGIN
 Key := ((X-Pos) SHL 4) + (Size-3);
 Dest^[Y] := HI(Key);
 Dest^[Y+1] := LO(Key);
 INC(Y,2);
 INC(X,Size);
 Command := (Command SHL 1) + 1
 END
 ELSE BEGIN
 Dest^[Y] := Source^[X];
 INC(Y);
 INC(X);
 Command := Command SHL 1
 END;
 end; { size <= 16 }
 INC(Bit);
 END; { while x < sourcesize ... }
 Command := Command SHL (16-Bit);
 Dest^[Z] := HI(Command);
 Dest^[Z+1] := LO(Command);
 IF (Y > SourceSize) THEN BEGIN
 MOVE(Source^[0],Dest^[1],SourceSize);
 Dest^[0] := FLAG_Copied;
 Y := SUCC(SourceSize)
 END;
 Result := Y
END;

 { decompress a buffer of max 32 KB }
FUNCTION Decompression(Source,Dest : BufferPtr;
 SourceSize : BufferSize) : BufferSize;
VAR
 X,Y,Pos : BufferIndex;
 Command,Size,K : WORD;
 Bit : BYTE;
 SaveY : BufferIndex; { * dh * unsafe for-loop variable Y }

BEGIN
 IF (Source^[0] = FLAG_Copied) THEN begin
 FOR Y := 1 TO PRED(SourceSize) DO begin
 Dest^[PRED(Y)] := Source^[Y];
 SaveY := Y;

 end;
 Y := SaveY;
 end
 ELSE BEGIN
 Y := 0;
 X := 3;
 Command := (Source^[1] SHL 8) + Source^[2];
 Bit := 16;
 WHILE (X < SourceSize) DO BEGIN
 IF (Bit = 0) THEN BEGIN
 Command := (Source^[X] SHL 8) + Source^[X+1];
 Bit := 16;
 INC(X,2)
 END;
 IF ((Command AND $8000) = 0) THEN BEGIN
 Dest^[Y] := Source^[X];
 INC(X);
 INC(Y)
 END
 ELSE BEGIN { command and $8000 }
 Pos := ((Source^[X] SHL 4)
 +(Source^[X+1] SHR 4));
 IF (Pos = 0) THEN BEGIN
 Size := (Source^[X+1] SHL 8) + Source^[X+2] + 15;
 FOR K := 0 TO Size DO begin
 Dest^[Y+K] := Source^[X+3];
 end;
 INC(X,4);
 INC(Y,Size+1)
 END
 ELSE BEGIN { pos = 0 }
 Size := (Source^[X+1] AND $0F)+2;
 FOR K := 0 TO Size DO
 Dest^[Y+K] := Dest^[Y-Pos+K];
 INC(X,2);
 INC(Y,Size+1)
 END; { pos = 0 }
 END; { command and $8000 }
 Command := Command SHL 1;
 DEC(Bit)
 END { while x < sourcesize }
 END;
 Result := Y
END; { decompression }

{
 Unit "Finalization" as Delphi 2.0 would have it
}

var
 ExitSave : Pointer;

Procedure Cleanup; far;
begin
 ExitProc := ExitSave;
 if (Hash <> Nil) then
 Freemem(Hash, Sizeof(HashTable));
end;

Initialization

 Hash := Nil;

 try
 Getmem(Hash,Sizeof(Hashtable));
 except
 Raise ELzrw1KHCompressor.Create('LZRW1KH : no memory for HASH table');
 end;
 ExitSave := ExitProc;
 ExitProc := @Cleanup;
END.

Return to Article

Return to Component Cookbook

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #21 - May 1997
Source for FBitmap.pas
unit FBitmap;

{Test unit for UBitmap's TLZRBitmap}

interface

uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, StdCtrls, UBitmap, ExtCtrls;

type
 TFrmMain = class(TForm)
 PnlButtons: TPanel;
 DlgOpen: TOpenDialog;
 BtnPack: TButton;
 BtnUnpack: TButton;
 BtnOpen: TButton;
 ScrollBox: TScrollBox;
 Image: TImage;
 procedure BtnPackClick(Sender: TObject);
 procedure BtnUnpackClick(Sender: TObject);
 procedure FormCreate(Sender: TObject);
 procedure BtnOpenClick(Sender: TObject);
 procedure FormDestroy(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 LZRBitmap : TLZRBitmap;
 end;

var
 FrmMain: TFrmMain;

implementation

{$R *.DFM}

procedure TFrmMain.BtnPackClick(Sender: TObject);
var
 TmpPicture : TPicture;
begin
 TmpPicture := TPicture.Create;
 TmpPicture.Assign(Image.Picture);
 Image.Picture.Bitmap.Monochrome := TRUE;
 Update;

 LZRBitmap.LZRSaveToFile('TEST.LZR');

 BtnUnpack.Enabled := TRUE;
 Image.Picture := TmpPicture;
 Update;
 TmpPicture.Free;
end;

procedure TFrmMain.BtnUnpackClick(Sender: TObject);
begin
 Image.Picture.Bitmap.Monochrome := TRUE;
 Update;

 LZRBitmap.LZRLoadFromFile('TEST.LZR');
(* LZRBitmap.SaveToFile('TEST.BMP'); *) {uncomment this if you want it
 written to disk}
 Image.Picture.Bitmap := LZRBitmap;
end;

procedure TFrmMain.FormCreate(Sender: TObject);
begin
 LZRBitmap := TLZRBitmap.Create;
end;

procedure TFrmMain.BtnOpenClick(Sender: TObject);
begin
 DlgOpen.Filename := '*.BMP';
 if (DlgOpen.Execute)
 then
 begin
 Image.Picture.Bitmap.Monochrome := TRUE;
 Update;

 LZRBitmap.LoadFromFile(DlgOpen.Filename);
 DlgOpen.InitialDir := ExtractFilePath(DlgOpen.Filename);
 Image.Picture.Bitmap := LZRBitmap;

 BtnPack.Enabled := TRUE;
 BtnUnpack.Enabled := FALSE;

 Image.Picture.Bitmap.Monochrome := FALSE;
 Update;

 end; {if}

end;

procedure TFrmMain.FormDestroy(Sender: TObject);
begin
 LZRBitmap.Free;
end;

end.

Return to Article

Return to Component Cookbook

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #21 - May 1997
Source for FBitmap.dfm
object FrmMain: TFrmMain
 Left = 200
 Top = 95
 Width = 344
 Height = 308
 Caption = 'FrmMain'
 Font.Color = clWindowText
 Font.Height = -13
 Font.Name = 'Arial'
 Font.Style = []
 PixelsPerInch = 96
 OnCreate = FormCreate
 OnDestroy = FormDestroy
 TextHeight = 16
 object PnlButtons: TPanel
 Left = 0
 Top = 225
 Width = 336
 Height = 56
 Align = alBottom
 TabOrder = 0
 object BtnPack: TButton
 Left = 20
 Top = 12
 Width = 89
 Height = 33
 Caption = 'Pack'
 Enabled = False
 TabOrder = 0
 OnClick = BtnPackClick
 end
 object BtnUnpack: TButton
 Left = 124
 Top = 12
 Width = 89
 Height = 33
 Caption = 'Unpack'
 Enabled = False
 TabOrder = 1
 OnClick = BtnUnpackClick
 end
 object BtnOpen: TButton
 Left = 227
 Top = 12
 Width = 89
 Height = 33
 Caption = 'Open'
 TabOrder = 2
 OnClick = BtnOpenClick
 end
 end
 object ScrollBox: TScrollBox
 Left = 0
 Top = 0
 Width = 336
 Height = 225
 Align = alClient
 TabOrder = 1
 object Image: TImage
 Left = 0

 Top = 0
 Width = 334
 Height = 223
 AutoSize = True
 end
 end
 object DlgOpen: TOpenDialog
 DefaultExt = 'BMP'
 Filter = 'Bitmaps|*.BMP'
 Left = 306
 Top = 201
 end
end

Return to Article

Return to Component Cookbook

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #21 - May 1997

Low Level Windows Stuff
by Jorge Romero Gomez, Merchise - merchise@minrex.cu
This unit has (I think) some very nice functions for low-level manipulation of windows. The ones that are
of most use to me are the WndProc related ones (for subclassing windows), the LockPainting ones (locks
the updating of windowed controls), and the WindowSizeable ones (I don't understand why Delphi always
forces us to allow resizing of any normal-looking form, what if I don't want a dialog?)

The Message queue inspectors were used for a FlicPlayer that could drop frames when needed (I was
using a high resolution multimedia timer, it could become a real pain with a BIG flic).

If you think this unit is useful, write to me and maybe I can send you some higher level stuff...

Source for WinUtils

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #21 - May 1997
Source for WinUtils
unit WinUtils;

// Copyright (c) 1996 Jorge Romero Gomez, Merchise.

interface

 uses
 Windows, Messages, SysUtils;

 // Message Queue Inspection

 function WindowHasMessageWaiting(WinHandle : HWND) : boolean;

 const
 // See QS_XXX flags in GetQueueStatus
 QS_USERINPUT = QS_KEY or QS_MOUSEBUTTON or QS_HOTKEY;
 QS_IMPORTANT = QS_USERINPUT or QS_POSTMESSAGE;

 function ThreadHasInputWaiting : boolean;
 function ThreadHasMessageWaiting : boolean;
 function ThreadHasImportantMessageWaiting : boolean;
 function ThreadHasTheseMessagesWaiting(Mask : integer) : boolean;

 // Mask = QS_XXX flags

 // Window searching

 function GetWindowOfClass(const ClassName : string) : HWND;
 function GetWindowOfCaption(const Caption : string) : HWND;

 // Window info

 function GetWindowCaption(WinHandle : HWND) : string;
 function GetWindowClass(WinHandle : HWND) : string;

 function GetWindowInstance(WinHandle : HWND) : HMODULE;
 function GetWindowID(WinHandle : HWND) : integer;

 // Window style

 procedure ExcludeWindowStyle(WinHandle : HWND; NewStyle : integer);
 procedure IncludeWindowStyle(WinHandle : HWND; NewStyle : integer);
 procedure SetWindowStyle(WinHandle : HWND; NewStyle : integer);
 function GetWindowStyle(WinHandle : HWND) : integer;

 procedure ExcludeWindowExStyle(WinHandle : HWND; NewExStyle : integer);
 procedure IncludeWindowExStyle(WinHandle : HWND; NewExStyle : integer);
 procedure SetWindowExStyle(WinHandle : HWND; NewExStyle : integer);
 function GetWindowExStyle(WinHandle : HWND) : integer;

 // Window list

 function GetWindowOwner(WinHandle : HWND) : HWND;
 function GetFirstChild(WinHandle : HWND) : HWND;
 function GetFirstSibling(WinHandle : HWND) : HWND;
 function GetLastSibling(WinHandle : HWND) : HWND;
 function GetNextSibling(WinHandle : HWND) : HWND;
 function GetPrevSibling(WinHandle : HWND) : HWND;

 // Window Visuals

 procedure SetWindowRedraw(WinHandle : HWND; Redraw : boolean);
 // For compatibility with Windowsx.h
 procedure LockWindowPainting(WinHandle : HWND; Locked : boolean);
 procedure UnlockPainting(WinHandle : HWND);

 function IsMinimized(WinHandle : HWND) : boolean;
 function IsMaximized(WinHandle : HWND) : boolean;
 function IsRestored(WinHandle : HWND) : boolean;

 procedure MaximizeWindow(WinHandle : HWND);
 procedure MinimizeWindow(WinHandle : HWND);
 procedure RestoreWindow(WinHandle : HWND);
 procedure ActivateWindow(WinHandle : HWND);

 procedure UpdateWindowFrame(WinHandle : HWND);
 procedure SetWindowSizeable(WinHandle : HWND; WinSizeable : boolean);
 function WindowIsSizeable(WinHandle : HWND) : boolean;

 function GetRealClientRect(WinHandle : HWND) : TRect;

 function WindowIsDropTarget(WinHandle : HWND) : boolean;

 type
 EWndProcCannotBeRestored = class(Exception);

 function SubclassWindow(WinHandle : integer; NewWndProc : pointer) : pointer;
 // For compatibility with Windowsx.h
 function ChangeWndProc(WinHandle : integer; NewWndProc : pointer) : pointer;
 function RestoreWndProc(WinHandle : integer; OldWndProc, SafeCheck : pointer) :
pointer;

implementation

 uses
 Debug;

 // Window Messages

 function WindowHasMessageWaiting(WinHandle : HWND) : boolean;
 var
 Msg : TMsg;
 begin
 Result := PeekMessage(Msg, WinHandle, 0, 0, PM_NOREMOVE);
 end;

 function ThreadHasInputWaiting : boolean;
 begin
 Result := GetInputState;
 end;

 function ThreadHasMessageWaiting : boolean;
 begin
 Result := GetQueueStatus(QS_ALLINPUT) <> 0;
 end;

 function ThreadHasImportantMessageWaiting : boolean;
 begin
 Result := GetQueueStatus(QS_IMPORTANT) <> 0;
 end;

 function ThreadHasTheseMessagesWaiting(Mask : integer) : boolean;
 begin

 Result := GetQueueStatus(Mask) <> 0;
 end;

 // Window info

 function GetWindowCaption(WinHandle : HWND) : string;
 begin
 SetLength(Result, MAX_PATH);
 SetLength(Result, GetWindowText(WinHandle, pchar(Result), length(Result)));
 end;

 function GetWindowClass(WinHandle : HWND) : string;
 begin
 SetLength(Result, MAX_PATH);
 SetLength(Result, GetClassName(WinHandle, pchar(Result), length(Result)));
 end;

 function GetWindowStyle(WinHandle : HWND) : integer;
 begin
 Result := GetWindowLong(WinHandle, GWL_STYLE);
 end;

 procedure SetWindowStyle(WinHandle : HWND; NewStyle : integer);
 begin
 SetWindowLong(WinHandle, GWL_STYLE, NewStyle);
 end;

 procedure IncludeWindowStyle(WinHandle : HWND; NewStyle : integer);
 begin
 NewStyle := GetWindowStyle(WinHandle) or NewStyle;
 SetWindowLong(WinHandle, GWL_STYLE, NewStyle);
 end;

 procedure ExcludeWindowStyle(WinHandle : HWND; NewStyle : integer);
 begin
 NewStyle := GetWindowStyle(WinHandle) and (not NewStyle);
 SetWindowLong(WinHandle, GWL_STYLE, NewStyle);
 end;

 function GetWindowExStyle(WinHandle : HWND) : integer;
 begin
 Result := GetWindowLong(WinHandle, GWL_EXSTYLE);
 end;

 procedure SetWindowExStyle(WinHandle : HWND; NewExStyle : integer);
 begin
 SetWindowLong(WinHandle, GWL_EXSTYLE, NewExStyle);
 end;

 procedure IncludeWindowExStyle(WinHandle : HWND; NewExStyle : integer);
 begin
 NewExStyle := GetWindowExStyle(WinHandle) or NewExStyle;
 SetWindowLong(WinHandle, GWL_EXSTYLE, NewExStyle);
 end;

 procedure ExcludeWindowExStyle(WinHandle : HWND; NewExStyle : integer);
 begin
 NewExStyle := GetWindowExStyle(WinHandle) and (not NewExStyle);
 SetWindowLong(WinHandle, GWL_EXSTYLE, NewExStyle);
 end;

 function GetWindowOwner(WinHandle : HWND) : HWND;
 begin

 Result := GetWindow(GW_OWNER, WinHandle);
 end;

 function GetWindowInstance(WinHandle : HWND) : HMODULE;
 begin
 Result := GetWindowLong(WinHandle, GWL_HINSTANCE);
 end;

 function GetFirstChild(WinHandle : HWND) : HWND;
 begin
 Result := GetTopWindow(WinHandle);
 end;

 function GetFirstSibling(WinHandle : HWND) : HWND;
 begin
 Result := GetWindow(WinHandle, GW_HWNDFIRST);
 end;

 function GetLastSibling(WinHandle : HWND) : HWND;
 begin
 Result := GetWindow(WinHandle, GW_HWNDLAST);
 end;

 function GetNextSibling(WinHandle : HWND) : HWND;
 begin
 Result := GetWindow(WinHandle, GW_HWNDNEXT);
 end;

 function GetPrevSibling(WinHandle : HWND) : HWND;
 begin
 Result := GetWindow(WinHandle, GW_HWNDPREV);
 end;

 function GetWindowID(WinHandle : HWND) : integer;
 begin
 Result := GetDlgCtrlID(WinHandle);
 end;

 // Window searching

 function GetWindowOfCaption(const Caption : string) : HWND;
 begin
 Result := FindWindow(nil, pchar(Caption));
 end;

 function GetWindowOfClass(const ClassName : string) : HWND;
 begin
 Result := FindWindow(pchar(ClassName), nil);
 end;

 // Window Visuals

 procedure SetWindowRedraw(WinHandle : HWND; Redraw : boolean);
 begin
 SendMessage(WinHandle, WM_SETREDRAW, WPARAM(Redraw), 0);
 end;

 procedure LockWindowPainting(WinHandle : HWND; Locked : boolean);
 begin
 SendMessage(WinHandle, WM_SETREDRAW, WPARAM(not Locked), 0);
 end;

 procedure UnlockPainting(WinHandle : HWND);

 begin
 LockWindowPainting(WinHandle, false);
 InvalidateRect(WinHandle, nil, false);
 end;

 function IsMinimized(WinHandle : HWND) : boolean;
 begin
 Result := IsIconic(WinHandle);
 end;

 function IsMaximized(WinHandle : HWND) : boolean;
 begin
 Result := IsZoomed(WinHandle);
 end;

 function IsRestored(WinHandle : HWND) : boolean;
 begin
 Result := GetWindowStyle(WinHandle) and (WS_MINIMIZE or WS_MAXIMIZE) = 0;
 end;

 procedure MaximizeWindow(WinHandle : HWND);
 begin
 ShowWindow(WinHandle, SW_MAXIMIZE);
 end;

 procedure MinimizeWindow(WinHandle : HWND);
 begin
 ShowWindow(WinHandle, SW_MINIMIZE);
 end;

 procedure RestoreWindow(WinHandle : HWND);
 begin
 ShowWindow(WinHandle, SW_RESTORE);
 end;

 procedure ActivateWindow(WinHandle : HWND);
 begin
 ShowWindow(WinHandle, SW_SHOWNORMAL);
 end;

 procedure UpdateWindowFrame(WinHandle : HWND);
 begin
 SetWindowPos(WinHandle, 0, 0, 0, 0, 0, SWP_FRAMECHANGED or
 SWP_NOSIZE or SWP_NOMOVE or SWP_NOACTIVATE or SWP_NOZORDER);
 end;

 procedure SetWindowSizeable(WinHandle : HWND; WinSizeable : boolean);
 begin
 if WinSizeable
 then IncludeWindowStyle(WinHandle, WS_SIZEBOX)
 else ExcludeWindowStyle(WinHandle, WS_SIZEBOX);
 UpdateWindowFrame(WinHandle);
 end;

 function WindowIsSizeable(WinHandle : HWND) : boolean;
 begin
 Result := (GetWindowStyle(WinHandle) and WS_SIZEBOX) <> 0;
 end;

 function GetRealClientRect(WinHandle : HWND) : TRect;
 var
 WinStyle : dword;
 begin

 WinStyle := GetWindowStyle(WinHandle);
 GetClientRect(WinHandle, Result);
 with Result do
 begin
 if WinStyle and WS_HSCROLL <> 0
 then inc(Bottom, GetSystemMetrics(SM_CYHSCROLL));
 if WinStyle and WS_VSCROLL <> 0
 then inc(Right, GetSystemMetrics(SM_CXVSCROLL));
 end;
 end;

 function WindowIsDropTarget(WinHandle : HWND) : boolean;
 begin
 Result := (GetWindowExStyle(WinHandle) and WS_EX_ACCEPTFILES) <> 0;
 end;

 function SubclassWindow(WinHandle : integer; NewWndProc : pointer): pointer;
 begin
 Result := pointer(SetWindowLong(WinHandle, GWL_WNDPROC,longint(NewWndProc)));
 end;

 function ChangeWndProc(WinHandle : integer; NewWndProc : pointer) : pointer;
 begin
 Result := pointer(SetWindowLong(WinHandle, GWL_WNDPROC, longint(NewWndProc)));
 end;

 function RestoreWndProc(WinHandle : integer; OldWndProc, SafeCheck: pointer) :
pointer;
 begin
 Result := ChangeWndProc(WinHandle, OldWndProc);
 if Debugging and
 (Result <> nil) and (Result <> SafeCheck)
 then raise EWndProcCannotBeRestored.Create('');
 end;
end.

Return to Article

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #21 - May 1997

Hiding Apps from the Task Bar
by Robert Vivrette - RobertV@compuserve.com
A while back, I received an email from a gentleman who was wondering if it was possible to hide the icon
of an application in the Windows 95 Task Bar. What I came up with was really just a matter of looking for a
specific window and hiding it. With Delphi applications, all you have to do is this:

procedure TForm1.HideAppWindow;
var
 H : HWnd;
begin
 H := FindWindow(Nil,'Project1');
 if H <> 0 then ShowWindow(H,SW_HIDE);
end;

This example calls the FindWindow API function to go out and look for the Applications window by name.
Every Delphi application has this hidden application window which is separate from any regular forms the
app might have. The first parameter is the Class Name of the window you are looking for, and the second
is its Window caption. In this example, we are telling FindWindow that we are not interested in the class
name but rather just the Window caption. After we find the window, I use the ShowWindow API function
with the SW_HIDE flag to make it invisible (I guess they shouldnt have called it ShowWindow the huh?)

And then I call my new HideAppWindow procedure from the FormCreate. The icon will be hidden, but the
form will remain on the screen normally. The only odd behavior is that when the form is minimized, the
app window appears in the taskbar and stays there when you restore it. The first part of the behavior
(having it appear on the taskbar when it is minimized) is acceptable I think… How else would you get it
restored? But the second behavior (staying visible after restoring it) isnt acceptable. This is easily
overcome by adding a simple event handler to the Application.OnRestore method, and then from that
method, call our HideAppWindow procedure again.

procedure TForm1.FormCreate(Sender: TObject);
begin
 HideAppWindow;
 Application.OnRestore := AppRestore;
end;
procedure TForm1.AppRestore(Sender: TObject);
begin
 HideAppWindow;
end;

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #21 - May 1997

Lock Violations Revisited
by Paul Harding - paulharding@compuserve.com
In UNDU #19 (January 97) I wrote about Lock Violations that could not be debugged due to running the
16 bit BDE on a 32 bit operating system and sharing the data tables. At a recent Borland Developer's
conference, Bill Todd told me another way of getting around this problem, and so I thought I'd share it with
everyone (I have also received email on this obscure but important topic).
Another way of avoiding getting strange 'Lock Violation' errors that occur if you mix using the 32 bit BDE
with the 16 bit BDE on a network of, say Windows 3.1 and Windows 95 machines, is to do this:

 Go into every Win 95 machine's control panel. Select as follows:
SYSTEM
PERFORMANCE
FILE SYSTEM
TROUBLESHOOTING

Now check the box Disable New File Sharing & Locking Semantics, and you will have to reboot. Make
sure you do this for EVERY Win 95 machine, and hey presto - now you can run Delphi 1.0 shared
database programs on your Win 95 and NT machines!

I hope this presents another approach to people who do have Win 3.x/95/NT mixed networks and many
thanks to Bill Todd for this tip.

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #21 - May 1997

Listing Procedures and Functions
by David Sugden - DBSugden@compuserve.com
http://ourworld.compuserve.com/homepages/DBSugden
A very simple Delphi program - but one I've found useful if like me you write monolithic lumps of source
and have to try to find your way around them later - I started off as a FORTRAN programmer... It's Delphi
1.0 for a Win 3.1 environment and should work elsewhere, no problems.
It looks through all the *.PAS files in a directory/folder and adds a file LISTPROC.TXT. This is a sorted tab
separated text file giving the line numbers and file for each of the procedure and function declarations.
All you have to do is use your "worm-processor" to get the tab columns in sensible positions and print it
out.

BitBtn1Click appunit1 18
CheckDLLUse appunit1 68
ExitDLL appunit1 40
ExitDLL dllunit1 46
ExitDLL dllunit1 105
FormClose dllunit1 22
SelectBtn1Click appunit1 17
TAppForm1.BitBtn1Click appunit1 49
TAppForm1.SelectBtn1Click appunit1 43
TAppForm1.ViewBtn1Click appunit1 54
TDllForm1.FormClose dllunit1 92
UseDLL appunit1 39
UseDLL dllunit1 45
UseDLL dllunit1 125
ViewBtn1Click appunit1 19
ViewTable appunit1 41
ViewTable dllunit1 47
ViewTable dllunit1 69

Source for Listmain.pas

Source for Listmain.dfm

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #21 - May 1997
Source for Listmain.pas
unit Listmain; { create a tab separated list of procs/fns
 & where they appear in the source a project.
 Comments to DBSugden@compuserve.com
 http://ourworld.compuserve.com/homepages/DBSugden
 Copyright D B Sugden Feb 97 - Public Domain software }
interface

uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, StdCtrls, FileCtrl, Buttons;

type
 TLForm = class(TForm)
 Label1: TLabel;
 Label2: TLabel;
 Label3: TLabel;
 BitBtn2: TBitBtn;
 ProcCount: TLabel;
 FnCount: TLabel;
 OutHint: TLabel;
 FilesCount: TLabel;
 Examine: TBitBtn;
 DriveComboBox1: TDriveComboBox;
 DirList1: TDirectoryListBox;
 procedure ExamineClick(Sender: TObject);
 procedure FormCreate(Sender: TObject);
 procedure FormDestroy(Sender: TObject);
 procedure DirList1Change(Sender: TObject);
 private
 SList : TStringList;
 public
 { Public declarations }
 end;

var
 LForm: TLForm;

implementation

{$R *.DFM}

procedure TLForm.ExamineClick(Sender: TObject);
var
 procs, fns, files : integer;
 line, x, y, p, code : integer;
 T : textfile;
 s, buff, buffl : string;
 ans : TSearchRec;

 procedure xy(z : char); { see if "z" is the terminating char }
 begin
 y := pos(z, buff);
 if y = 0 then y := 255;
 if y < x then x := y;
 end;

 procedure AddIt; { up to rest of line of name of proc/fn }
 begin
 if length(buff) = 0 then exit;
 while buff[1] = ' ' do buff := copy(buff, 2, 255);

 x := pos('(', buff);
 if x = 1 then exit; { don't get confused with type or proc declarations }
 if x = 0 then x := 255;
 xy(';'); xy(':'); xy('('); xy('{');
 str(line:4, s);
 SList.Add(copy(buff, 1, x-1) + chr(9)
 + lowercase(copy(ans.Name, 1, pos('.', ans.Name) - 1))
 + chr(9) + s);
 end;
begin
 procs := 0;
 fns := 0;
 files := 0;
 OutHint.Visible := false;
 code := FindFirst(DirList1.Directory+'*.pas', faArchive, ans);
 while code = 0 do
 begin { analysis of this file }
 try
 AssignFile(T,DirList1.Directory+'\'+ans.Name);
 Reset(T);
 inc(files);
 FilesCount.Caption := IntToStr(files);
 line := 1;
 while not eof(T) do
 begin
 readln(t, buff);
 buffl := Lowercase(buff);
 p := pos('procedure', buffl);
 if p <> 0 then
 begin
 inc(procs);
 ProcCount.Caption := IntToStr(procs);
 buff := copy(buff, p+10, 255);
 AddIt;
 end;
 p := pos('function', buffl);
 if p <> 0 then
 begin
 inc(fns);
 FnCount.Caption := IntToStr(fns);
 buff := copy(buff, p+9, 255);
 AddIt;
 end;
 inc(line);
 end;
 Application.ProcessMessages;
 finally
 end;
 CloseFile(T);
 code := FindNext(ans);
 end;
 SList.Sort;
 AssignFile(T, DirList1.Directory + '\ListProc.txt');
 rewrite(T);
 for x := 0 to SList.Count - 1 do writeln(T, SList[x]);
 Closefile(T);
 OutHint.Visible := true;
end;

procedure TLForm.FormCreate(Sender: TObject);
begin
 SList := TStringList.Create;
 SList.Duplicates := dupAccept;

end;

procedure TLForm.FormDestroy(Sender: TObject);
begin
 SList.Free;
end;

procedure TLForm.DirList1Change(Sender: TObject);
begin
 OutHint.Visible := False;
end;

end.

Return to Article

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #21 - May 1997

Source for Listmain.dfm
object LForm: TLForm
 Left = 208
 Top = 111
 Width = 316
 Height = 197
 Caption = 'Procedure/Function Lister'
 Font.Color = clBlack
 Font.Height = -13
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 Position = poScreenCenter
 OnCreate = FormCreate
 OnDestroy = FormDestroy
 PixelsPerInch = 96
 TextHeight = 16
 object Label2: TLabel
 Left = 160
 Top = 8
 Width = 85
 Height = 16
 Alignment = taRightJustify
 AutoSize = False
 Caption = 'Procedures:'
 end
 object Label3: TLabel
 Left = 160
 Top = 32
 Width = 85
 Height = 16
 Alignment = taRightJustify
 AutoSize = False
 Caption = 'Functions:'
 end
 object ProcCount: TLabel
 Left = 248
 Top = 8
 Width = 30
 Height = 16
 end
 object FnCount: TLabel
 Left = 248
 Top = 32
 Width = 30
 Height = 16
 end
 object OutHint: TLabel
 Left = 176
 Top = 92
 Width = 109
 Height = 32
 Alignment = taCenter
 Caption = 'Output written to ListProc.TXT'
 Font.Color = clRed
 Font.Height = -13
 Font.Name = 'System'
 Font.Style = []
 ParentFont = False
 Visible = False
 WordWrap = True

 end
 object Label1: TLabel
 Left = 160
 Top = 56
 Width = 85
 Height = 16
 Alignment = taRightJustify
 AutoSize = False
 Caption = 'Files:'
 end
 object FilesCount: TLabel
 Left = 248
 Top = 56
 Width = 30
 Height = 16
 end
 object BitBtn2: TBitBtn
 Left = 176
 Top = 136
 Width = 89
 Height = 25
 TabOrder = 0
 Kind = bkClose
 end
 object Examine: TBitBtn
 Left = 32
 Top = 136
 Width = 105
 Height = 25
 Caption = 'Examine'
 TabOrder = 1
 OnClick = ExamineClick
 Glyph.Data = {
 78010000424D7801000000000000760000002800000020000000100000000100
 04000000000000000000120B0000120B00000000000000000000000000000000
 800000800000008080008000000080008000808000007F7F7F00BFBFBF000000
 FF0000FF000000FFFF00FF000000FF00FF00FFFF0000FFFFFF00333333303333
 333333333337FF3333333333330003333333333333777F333333333333080333
 3333333F33777FF33F3333B33B000B33B3333373F777773F7333333BBB0B0BBB
 33333337737F7F77F333333BBB0F0BBB33333337337373F73F3333BBB0F7F0BB
 B333337F3737F73F7F3333BB0FB7BF0BB3333F737F37F37F73FFBBBB0BF7FB0B
 BBB3773F7F37337F377333BB0FBFBF0BB333337F73F333737F3333BBB0FBF0BB
 B3333373F73FF7337333333BBB000BBB33333337FF777337F333333BBBBBBBBB
 3333333773FF3F773F3333B33BBBBB33B33333733773773373333333333B3333
 333333333337F33333333333333B3333333333333337333333330000}
 NumGlyphs = 2
 end
 object DriveComboBox1: TDriveComboBox
 Left = 8
 Top = 8
 Width = 145
 Height = 22
 DirList = DirList1
 TabOrder = 2
 end
 object DirList1: TDirectoryListBox
 Left = 8
 Top = 32
 Width = 145
 Height = 97
 ItemHeight = 16
 TabOrder = 3
 OnChange = DirList1Change

 end
end

Return to Article

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #21 - May 1997

Managing Shutdown Procedures with TEndSession
by Benjamin Morin - bem@prolaw.com
In UNDU Issue #17 Grahame Marsh showed us how to a intercept the Win 95 WM_Sizing message. In
UNDU Issue #20 he gave us a shell to which we could create our own WndProc function and intercept
any windows message (that was passed to the form).
Using the code set forth in his shell code, I created a component that intercepts the
WM_QUERYENDSESSION message and allows the application to process an event prior to windows
closing the program, and optionally halting the shut down all together.
Notice that I'm replacing WndProc for the Application Handle, not the Form Handle as Mr. Marsh does for
his sizing forms.

Code added to the components OnEndSession event will execute when the application receives notice
that the user is logging out or shutting down the system. By modifying the value of the ShutDownOK
parameter, you can abort the shutdown process.

I'd been working on this for 2 days when I finally came across Mr. Marshs article. Thanks to Mr. Marsh for
his help on WndProc.
unit tEndSession;
(* *)
(* TEndSession - Benjamin Morin (bem@prolaw.com) *)
(* *)

interface
uses
 Messages, SysUtils, Classes, Forms, Windows;

type
 TShutDownEvent = procedure (Sender: TObject; var ShutDownOK: boolean) of object;
type
 TtEndSession = class(TComponent)
 private
 FApp: THandle;
 FParent: THandle;
 FOldWndProc: pointer;
 FNewWndProc: pointer;
 sOnEndSession: TShutDownEvent;
 ShutDownOK: boolean;
 procedure NewWndProc(var M: TMessage);
 public
 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override;
 procedure Loaded; override;
 published
 property OnEndSession: TShutDownEvent read sOnEndSession write sOnEndSession;
end;

procedure Register;
implementation
constructor TEndSession.Create (AOwner : TComponent);
begin
 inherited Create(AOwner);
 ShutDownOK := TRUE;
 FApp := Application.Handle;
 FParent := (AOwner as TForm).Handle;
 FNewWndProc := MakeObjectInstance(NewWndProc);
end;
destructor TEndSession.Destroy;
begin
 SetWindowLong(FApp, GWL_WndProc, longint(FOldWndProc));
 FreeObjectInstance(FNewWndProc);
 inherited Destroy;
end;
procedure TEndSession.Loaded;
begin
 inherited Loaded;
 FOldWndProc := pointer(SetWindowLong(FApp, GWL_WndProc,longint(FNewWndProc)));
end;
procedure TEndSession.NewWndProc(var M: TMessage);
begin
 with M do
 begin
 if (Msg=WM_QUERYENDSESSION) then
 begin
 if Assigned(sOnEndSession) then sOnEndSession(Self,ShutDownOK);
 if ShutDownOK then
 Result := CallWindowProc(FOldWndProc, FApp, Msg, wParam,lParam)
 else
 Result := 0;
 end
 else
 Result := CallWindowProc(FOldWndProc, FApp, Msg, wParam,lParam);
 end;
end;
procedure Register;
begin
 RegisterComponents('Samples', [TEndSession]);
end;
end.

Return to Component Cookbook

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #21 - May 1997

Excel OLE Tips for Everyone:
by Joselito Real - reajos@kinwticsys.com
I mainly use Excel to dump the output of my database reports because of the very good printer output that
I can get, and besides, my clients want all the output in Excel so that they can tweak the reports a little bit
and still print it or reformat according to their whims.
To make my tips work, you must have at least Excel version 7, I haven't tried the earlier versions of Excel.
I have been using OLE to drive Excel at a very acceptable speed for my clients, of course, if I know ALL
about the Excel Type of Clipboard format to dump to Excel, that is the fastest way to go and dump my
output there. However, OLE is here, and after digging into it, here are some things that I have uncovered
by myself:
An example of program flow might be:

Procedure ExcelOut;
 var XL:variant;
begin
 //start Excel by creating an instance of Excel Application
 //add a workbook where you dump your data
 //do your data dump routines
 //control Excel's cell format
 //control Excel's page setup
 //make Excel visible
 //tell excel to preview/print your report
 //tell Excel to save your output
 //quit and free the instance of Excel
end;

Here are some details:
 // start Excel by creating an instance of Excel Application
 XL:=CreateOLEObject('Excel.Application');

 // add a workbook where you dump your data
 XL.WorkBooks.add;

You must include declaration of variant variables to facilitate your data dump, for example, included in the
var statement following procedure ExcelOut;
 // do your data dump routines
 Var XL, XArr: Variant;

then after the begin statement you may wish to create XArr, ie.,
 XArr:=VarArrayCreate([1,10],varVariant);

the array's purpose in our example is to dump 10 cells at a time per OLE call to Excel. Then load your
data to XArr, for example:
 XArr[1]:=12.85;
 XArr[2]:='Yes';
 XArr[3]:='California';

 XArr[4]:=Table1.FieldByName('FIRSTNAME').AsString;
 XArr[5]:='';
 XArr[6]:=i; //i must have been predeclared elsewhere
 XArr[7]:=TempStr; //TempStr is a string predeclared elsewhere
 XArr[8]:=AVG; //AVG is a predeclared real number
 XArr[9]:=STD; //STD is a predeclared real number
 XArr[10]:=j; //j is a predeclared integer

of course, it is always better to load the array using a for-next loop instead of the brute-force illustration
above. A sample of such application is to transfer a record of a database table to an Excel row, ie.:
 XArr:=VarArrayCreate([1,Table1.FieldDefs.Count],varVariant);
 for i:=1 to Table1.FieldDefs.Count do
 XArr[i]:=Table1.Fields[i-1]; //first field of a table is 0
 //FieldDefs.Count is no. of fields

whatever method you choose, you then dump XArr unto Excel for example, we want to dump XArr to first
row and from columns A to J:
 XL.Range('A1:J1').Value:=XArr;

another programmatic approach may be to define RowRange as string and then assign string values to
RowRange controlled by our program, ie.:
 RowRange:='A'+IntToStr(j)+':'+CHR(64+Table1.FieldDefs.Count)+IntToStr(j);
 XL.Range(RowRange).Value:=XArr;

of course, as long as the number of fields do not go over 26 columns for the above example, where j in
the above column is the desired row number in the excel spreadsheet. You may also dump a 2-
dimensional array at a time but please avoid dumping one cell at a time because OLE process could
become sooo slooowwww!

Assuming you have dumped your data, you may wish to format them, like add bold lines, thick lines,
adjust to correct cell width, and here are the list of Excel OLE commands from within Delphi:

To format a cell or group of cells, you must select it first:
 //control Excel's cell format
 XL.Range('A1:J25').Select;

To select the entire spreadsheet cells use:
 XL.cells.select;

Then apply the format commands:
 XL.Selection.Font.Name:='Arial Cyr';
 XL.Selection.Font.Size:=9;
 XL.selection.Columns.AutoFit;

And here some other detailed cell formatting commands: These commands will generate a border for the
selected cells using thin lines. For other types of lines, you may email me on how to get them
 XL.Selection.Borders(xlLeft).Weight := xlThin;
 XL.Selection.Borders(xlRight).Weight := xlThin;
 XL.Selection.Borders(xlTop).Weight := xlThin;
 XL.Selection.Borders(xlBottom).Weight := xlThin;

For these detailed commands to work, you must predeclare:
const
 xlLeft=-4131;
 xlRight=-4152;
 xlTop=-4160;
 xlBottom=-4107;

 xlThin=2;
 xlHairline=1;
 xlNone=-4142;
 xlAutomatic=-4105;

where did I get the values for these constants? email me!
 //control Excel's page setup
 XL.ActiveSheet.PageSetup.PrintTitleRows := 'A1:J1'; //Repeat this row/page
 XL.ActiveSheet.PageSetup.LeftMargin:=18; //0.25" Left Margin
 XL.ActiveSheet.PageSetup.RightMargin:=18; //0.25" will vary between printers
 XL.ActiveSheet.PageSetup.TopMargin:=36; //0.5"
 XL.ActiveSheet.PageSetup.BottomMargin:=36; //0.5"
 XL.ActiveSheet.PageSetup.HeaderMargin:=18; //0.25"
 XL.ActiveSheet.PageSetup.FooterMargin:=18; //0.25" Footer Margin
 XL.ActiveSheet.PageSetup.CenterHorizontally:=1; //zero, means not centered
 XL.ActiveSheet.PageSetup.Orientation:=2; //landscape=2, portrait=1

 //make Excel visible
 XL.visible:=true;

 //tell excel to preview/print your report
 XL.ActiveSheet.PrintPreview; //for previewing
 XL.ActiveWindow.SelectedSheets.PrintOut (Copies := 1); //print directly

 //tell Excel to save your output
 XL.ActiveWorkBook.SaveAs ('MyOutput');

you can also save your output in other formats
 //quit and free the instance of Excel
 XL.visible:=False;
 XL.quit;
 XL:=unassigned;

How Did I Dig Out These Commands?
Well, it is easy, just run your Excel application, record a macro, and then do what you want, like page
setup, open file, save file, sort, etc,... then stop recording the macro, then print your recorded macro, LO
and behold!

All the commands are exposed for your perusal in Delphi, just tweak them to conform to Delphi Pascal's
syntax.

My Best Tip for the Fastest Transfer of Database Data to Excel Using OLE:
Batchmove your query results, paradox tables, or sections of your large dBASE Tables into a temporary
Table having a format of dBASEIV or earlier format and then using OLE, control Excel to convert the table
instantly into Excel format or print the Table in Excel by opening your temporary table as a dBASE file.

For example, Temp.DBF is a dBASEIV formatted file produced as a result of a TBatchMove procedure
from a query. To start the process of conversion to Excel file do the following:
 Procedure ExcelOut;
 var XL:variant;
 begin
 XL:=CreateOLEObject('Excel.Application');
 XL.workbooks.open ('\Temp.DBF'); //supply the directory path if needed
 XL.ActiveWorkBook.SaveAs (Filename := '\MyTable', FileFormat := -4143);
 //the above line saves whatever loaded file as MyTable.XLS
 //at this point, conversion to Excel File is done, no need for further code
 //except for cleaning up the instance of Excel Application
 //but say, you want a nice printed output, add the following codes:
 XL.Cells.select; //Select all Cells and prepare for format

 XL.Selection.Font.Name:='Arial';
 XL.Selection.Font.Size:=9;
 XL.selection.Columns.AutoFit;
 XL.ActiveSheet.PageSetup.PrintTitleRows := '$1:$1'; //repeat column headings/page
 XL.ActiveSheet.PageSetup.PrintGridlines := 1; //print with grid lines
 XL.ActiveWindow.SelectedSheets.PrintOut (Copies := 1); //print directly to
 //House-cleaning is required
 XL.quit;
 XL:=unassigned;
 end;

The above example, is the fastest so far (less than 10 seconds on my Pentium 133 MHz machine to
transfer 15 Fields by 9,656 records!) to convert your medium to large dBASE tables into Excel using only
the current OLE technology but without using those expensive conversion DLL's or OCX's, and without
using those QuickReports and other fancy printer formatting tools!

Well I hope you have some fun in using my tips! You can even build a faster OLEExcel component using
my tips! Should you find my tip useful, kindly post my dream component in the appropriate places:

One of my wishes is really that if someone out there could write an XLDBGrid or XLStringGrid
component:

This component should have the ease of use of cut and paste type of data entry for repetitive data as you
would with an Excel spreadsheet, the use of ctrl-C, ctrl-V, Ctrl-X, direct cut and paste to/from an open
Excel spreadsheet onto these Grid components are allowed, it should also facilitate the ease of
inserting/deleting cells or entire rows or columns, it should have the same way of selecting the group of
cells using a mouse or shift keys. No need to include the formula computations. You see, almost
everybody who have some exposure to computers knows how to enter data in an Excel spreadsheet
without the need for further training. Let them enter Tabular data in a DBGrid... AAARRRRGH!

The Paradox style DBGrid in Delphi is such a pain to enter your data, for example all the other columns
are correct, except that there is one item you need to insert into that one-column and everything will be
aligned correctly--you don't need to reenter or type over those other entries--just move them automatically
after inserting an item! The same is true for the DBEdits, they are not suited for tabular types of data.
Most receipts and scientific data are tabular, and you enter them in a tabular format, with the ease and
convenience of an Excel or Lotus spreadsheet! If such a component is available, without me doing the
code for those mouse and key controls, and without digging those Microsoft Clipboard Excel format, it
would be a very nice front end for tabular types of data entry all controlled within Delphi. Yes there is a
Formula One OCX, that is available but it is an overkill! and besides, you have to intercept or redefine the
way it is handling the clipboard. Lots of work to do to emulate it to behave like an Excel-style of data entry
and the OCX that ships together with your program is a big file. So please, if somebody out there who
has this type of StringGrid or DBGrid, I'd gladly buy that component. For me, it would be an indispensable
data entry front-end.

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #21 - May 1997

Playing Sounds Asynchronously From Resources - Revisited
by Alan G. Lloyd - AlanGLLoyd@aol.com
In UNDU number 12, Adrian Bottoms described how to incorporate WAV files in resources, and how to
play them from the resource. He pointed out that if the sound was played synchronously then everything
stopped until it had finished. However if the sound was played asynchronously then the program
continued after the Play Sound call and promptly unloaded the resource while it was playing (causing big
red button time interrupt). Also only one sound could be played asynchronously, requesting another sound
to play asynchronously while the previous one was so playing, caused the previous sound to abort.
One way round the first part of the problem is to load all the resources in memory at form creation, lock
them, and leave them locked until the program finishes. This has problems. Firstly the operating system
gets slow as it tries to re-arrange the memory it needs around the locked regions. Secondly, with a large
number of sound resources, a large amount of memory is used holding resources which are rarely used..

The approach I started with was to load resources and lock them until either another resource is needed,
or until a defined time after the use of the resource.

The original scheme then looks something like this:

1. Find resource
2. Load resource
3. Lock resource
4. Play resource
5. Unlock resource
6. Free resource

And the new scheme would look something like this:

1. If resource is locked then
2. Stop playing old resource (in case it is playing)
3. Unlock old resource
4. Free old resource
5. Find new resource
6. Load new resource
7. Lock new resource
8. Set ResourceIsLocked flag
9. Play new resource asynchronously

However this could leave a resource locked for a long time, so a timer (which must be longer than the
time to play the longest sound) is set to free the resource when the timer fires. So the final scheme looks

like:

1. Clear old resource
2. Find new resource
3. Load new resource
4. Lock new resource
5. Set ResourceIsLocked flag
6. Start timer
7. Play new resource asynchronously

And the ClearOldResource procedure would then look like:

1. If ResourceIsLocked flag is set then
2. Disable timer
3. Stop playing previous resource
4. Unlock old resource
5. Free old resource
6. Clear ResourceIsLocked flag

The brain then started working, and I realized that if I knew the time the sound took to play, I could start a
timer and leave the resource locked until it had finished . The next step was to put the desired sounds into
a StringList and play each sound (asynchronously) when the previous sound had finished. I thus had the
ability to have a list of sounds played consecutively but asynchronously. Finally, bytes, 6., 5, and 4 of
the .WAV file give the (triple byte) size of the WAVE file (resource) data. Byte 24 is $11, $22, or $44 to
indicate the type of WAVE data (11kb/s mono, 22Kb/s mono or 44kb/s stereo). (I may not be fully correct
on this latter info.)

Playing the sound stringlist is:
while stringlist.count > 0

if resource_in_use flag is clear then
PlaySound(top sound in stringlist)
delete top sound in stringlist

 end
ProcessMessages {lets other events continue while in this while loop}

end

PlaySound is:
find new resource
load new resource {handle <> 0 = resource_in_use flag}
lock new resource
get resource data length
resource time = length divided by appropriate data rate
set timer interval
start timer
play new resource asynchronously

TimerTimer is:
If resource_in_use flag is set then
disable timer
play a sound asynchronously with a nil resource pointer
{stops any sound playing in case play timer is too short}
unlock old resource

free old resource
clear resource_in_use flag

Adding additional sound to the list is:
stringlist.add(sound name), which adds the name to the bottom of the list.

The hRes handle becomes a convenient flag to be > 0 if a resource is in use. Note that I have not put any
exception protection or handling in the program (well what do you expect for a quickie !!).

Note that the Win API call FindResource(ResInfoHandle, ResName, ResType) needs a PChar for the
ResType. This has the same string as you use as the resource type in your .RC file. A number of type
constants are pre-defined by Win API using RT_ plus the resource type in the file. I have continued that
format nominating RT_WAVE as the constant containing WAVE.

I have USEd MMSYSTEM in Delphi 1, but the program could be changed to make Win API calls in Delphi
2.

The test program enables you to play a number of sounds asynchronously, while doing some other task
(making a shopping list of course…) I got into playing sounds while building a program to help my grand-
daughter tell the time (hence the sounds in the test program).

Source for Async Sounds
Return to Tips & Tricks
Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #21 - May 1997

Object Creation Tip
by Mike Yui - mikeyui@netcom.ca
This may be obvious to those innately savvy programmers out there, but it took a while for this one to
dawn on me (a "while" equals just over 2 years of Delphi programming)
Instead of creating objects by explicitly declaring a variable in the var section, you can create much
simpler code simply by using the with statement. For example, instead of:

var
 MyForm: TForm;
begin
 MyForm := TForm.Create(Self);
 with MyForm do
 try
 Show;
 finally
 Free;
 end;
end;

you could simply write:
begin
 with TForm.Create(Self) do
 try
 Show;
 finally
 Free;
 end;
end;

Personally I think the latter example, is simpler and easier to read, not to mention more elegant; thus
affirming my long-standing belief that there is elegance in simplicity.

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #21 - May 1997

Video Capture in Delphi
by G.L. Alston
About a year ago I was strapped into service doing a specialized video capture application. The tool I
chose to use was my (then new) Delphi 1.0 compiler, mostly because I know that it could be done in C/C+
+ and I wanted to find out for myself if Delphi was as fast as Borland claimed it was. If Delphi could
handle real-time stuff like video capture, the sky was the limit!
Video capture isn't as exotic as you might think. In fact, it's really pretty simple to do, thanks to
AVICAP.DLL. This DLL ships with Win95 and is a video capture engine. All you need to do to capture
video is create a capture window and then do some message sending, and AVICAP handles the hard
stuff. That's not to say that you have no control, either; AVICAP provides all sorts of control options via
settings and callback functions. Essentially, your app talks to AVICAP, which in turn talks to the driver,
which in turn does all of the talking to the hardware. The mechanism for the app talking to AVICAP is not
the prettiest in the world, however: it uses user-defined message numbers and requires the
SendMessage() API call. I changed the constants in my code to WM_USER + N so that you could get a
better idea of what it looks like.
My primary source of information was Microsoft's Win32 SDK which assumes C code, so there was a bit
of translating to do. The example code is Delphi 1.0 and is culled from my working app. It should translate
to 32 bits with no problems.

OK, to start, you need to create a structure that will hold the set of capture control parameters that
AVICAP uses. The "capturerec" record is the Delphi equivalent of what I found in the SDK docs. I left the
names the same as the C names.

AVICAP basically grabs video frames and streams them to a disk file. You can specify the name of this
file. If you don't, it will create CAPTURE.AVI on the root directory of the drive it's running on.

The first thing that needs to be done is to create a capture window, which is done by CreateCapWin. First,
you need to create a window and give it a name.
 hWndC := capCreateCaptureWindow(captit,WS_CHILD or WS_VISIBLE,
 { The next 4 items are coordinates)
 0, 0, { upper left }
 320, 240, { height / width}
 main.handle, 0);

 { Tell AVICAP to connect to the Capture driver. }
 smreturn := SendMessage(hWndC, WM_USER + 10, 0, 0);

The position coordinates simply outline the location and size of the preview window, although for the best
looking results the window sizes ought to be the same as the video being captured. More on that later.

The last parameter specifies which capture device. In my case I knew that the capture board was an Intel
ISVR Pro, and the driver for it doesn't do screen captures. On the other hand, 0 on a Video Blaster is
used for screen capture and 1 is used for video capture. The Win32 SDK docs have some examples that
will help you figure this out dynamically if you need to. This same number must also be sent to the driver
via the SendMessage() call that does the driver connect using the wParam (third) parameter. A Video
Blaster implementation would look like this:
 smreturn := SendMessage(hWndC, WM_USER + 10, 1, 0);

Note that the code also specifies "main.handle", which is the hWnd that your preview window will show up
in. You will need to rename this to your main form's handle (or any other window handle) accordingly.

After that, the rest is mostly a matter of telling AVICAP exactly what to do. To start, you need to retrieve
the current capture parameters AVICAP is using so that you can initialize the capturerec record. You could
just create a record from scratch, but since you probably are not going to fill in every field, it's safest to let
AVICAP fill in the defaults for you.

It turns out that AVICAP is quite flexible. For instance, note that in the code we're specifying a preview
window that is showing video at 30 frames per second. The frames per second rate is variable, with 30
being the maximum. Typical frame rates are 15, 24 and 30.

In the app I wrote, audio wasn't important, so this was disabled. The app needed to capture 30 fps at
(MAX) 320x200, which is really hard on the hardware, so I elected to not capture audio since this steals
some clock cycles. If you decide to capture audio, you will probably have to reduce the capture frame
rate, the size of the capture window, or both -- unless you have top notch hardware.

There are a group of parameters that in my case were left to their default states, mostly because they
didn't have any effect on what I was doing. You can look the descriptions up in the SDK and decide if
these will effect you. They probably won't. After writing the modified capturerec back to AVICAP, all you
have to do is specify any callbacks and it's pretty much ready to go.

Callbacks:
AVICAP has the ability to let your program know when a video frame (or an audio frame if you're also
capturing audio) has been captured, and if your system is fast enough, do something to the frame before
it is streamed to the disk. It uses a callback to do this. A callback function is one in YOUR program that is
called by Windows. Essentially you can think of a callback as a way to extend something that resides in
another program. For instance, if you wanted to have a visible time and date stamp on the captured
video, if your hardware is fast enough (or the capture speed is slow enough, etc.) you could get into the
video data (it's basically a bitmap), add the stamp, and restore the video data in the proper format before
finishing the function. As you could guess, it's important to make sure that the callback can execute
cleanly between the times that it is called.

The method for specifying callbacks with AVICAP is a little ugly, which essentially is the use of the 32 Bit
lParam parameter of SendMessage. What we have to do is get the function address using the addr()
function, typecast this to a longint, and then include this in the message:
 { tell AVICAP where to find the framecount callback }
 SendMessage(hWndC, WM_USER + 6, 0, longint(addr(StreamCallback)));

Now for every video frame AVICAP will call the StreamCallback function by referencing its address. In the
example code, StreamCallback does little more than count up the number of frames that have been
processed, and if you want to play with the code (and test callbacks in general) to cause an autoabort of
the capture process, all you have to do is set the framestopcount variable to a number > 1. In the app this
code is pulled from, I was looking at some hardware for a specific condition, which if met, would cause the
process to stop.

The procedures ShowVideoParamsWindow and ShowCompressionWindow aren't required for capturing
but serve to illustrate the relationship of your code, AVICAP, and the driver for the hardware. These
procedures cause dialogs to appear that modify the capture, such as which Codec is used, how many
colors are captured, etc. Essentially these functions are little more than wrappers for SendMessage()
calls; they tell AVICAP to tell the driver that we need the dialogs. The important thing here is that these
dialogs are supplied by the driver and will vary with the hardware.

The procedures ShowCapWin, HideCapWin and KillCapWin are wrappers for the window management
API calls. Lastly, CreateVideo serves as a small function that acts as a main() for the purposes of showing
what the final app would tend to look like. All you need to do capture a video is (of course) send a
message! In sum, video capture is a simple process:

a) set up a capture window
b) initialize AVICAP
c) tell AVICAP to capture video.

Other things to consider when capturing video mainly depend on your hardware. For instance, the largest
video you can currently capture with consumer grade hardware is 320x200 at 30 frames/sec. And believe
it or not, only the Intel ISVR PRO board can do this reliably. I tested a lot of different boards, and the
frame dropout rate was not good at all, and this was on a moderate speed Pentium. The reason the Intel
board is so much more reliable is because it is fine-tuned to run the INDEO Codec and use your main
processor. Even then, it's not perfect. At 30 frames per second, you can expect to drop frames depending
on what is happening in the picture. Too much movement, and you'll lose frames. We're a long way away
from being perfect, but if you're needing to do multimedia work or games, the ISVR board is about $250
or so and you can hook it up to a standard camcorder.

By the way, Delphi 1.0 did everything either at the same speed as a C app or faster. The Win32 SDK
provides benchmarks which I compiled using Borland's BC++ 4.5, and the Delphi app offered equivalent
performance. Apparently Borland wasn't kidding.

OK, that about sums it all up. I hope I haven't forgotten anything really important. If I did, or you'd like
further information, you can contact me via the ASL website at http://www.siteit.com/asl. (Currently I'm in
the process of getting a different ISP for my email otherwise I'd give you my email address. The web site
will always point to the current one!)
Note: ISVR PRO is a trademark of Intel Corp. The author is not affiliated in any way with Intel Corp. or any
subsidiaries.

Copyright 1997 ASL All Rights Reserved

Source for Video Capture

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #21 - May 1997

Up To Date Delphi 2 Books
by Ken Dowling - Ken.Dowling@earthlight.co.nz
Having trouble deciding which Delphi 2 book to buy?
You can quickly weed out books that were hastily written prior to the commercial release of Delphi 2 by
checking their index. If there is no information on the database verbs LOCATE and LOOKUP, then keep
looking.
Return to Tips & Tricks
Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #21 - May 1997
Gutters in Delphi 1 & 2
by Dr. Paul Furbacher - pf@bilbo.bio.purdue.edu
I am sure this has happened to you… All too often, I would accidentally set a breakpoint if I used the
mouse to place the insertion point at the beginning of a line in the source-code editor. Of course, I could
use the "Home" key to move the insertion point to the beginning of a line, but there are times when I get
lazy and use the mouse.

I had wished for some kind of indicator to visually tell me where it's okay to click without setting that
breakpoint -- a line or a shaded region, perhaps. After some thought, I realized that there is a quick and
easy solution -- just show and set the right margin to zero in the "Environment Options | Display" dialog. (I
had not found a good use for the right margin line up to this point: I suppose you could use it as a hint for
breaking long lines. But that's only for printing purposes, and I don't do a lot of printing, if any, of my
source code from Delphi or C++ Builder.)

When the right margin is set to zero, the faint gray line is drawn to very left of the first character in a line.
A breakpoint isn't set unless you click about halfway into the region to the left of the margin line, so there's
some room for error while clicking. This has virtually eliminated the accidental setting of breakpoints.

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #21 - May 1997
Bitmaps on StringGrids?
by Mark DeBelder - pekari@glo.be
In issue #19 Steven Gill had a questions that I wanted to present a solution for. The question was: I am
trying to work out how to add bitmaps to StringGrids. I want to use the first column as a status column
with graphics indicating the status. Whats a simple way to do this?

Im not really an expert but I think that StringsGrids are there for Strings and DrawGrids for Bitmaps. Ive
seen samples on the shareware market that combine these two components, but it seems expensive to
buy these when you already have the above 2 components available. I admit that the routines below are
not a solution to all Steves problems, but may be it will start him off in the right direction.

To illustrate the solution Ive created an array with some items Id like to display. The first column in this
array would be made visible with a red, yellow or green light (a bitmap); the other three columns are plain
text and fit perfectly in a StringGrid:

type
 EatRecord = record
 Status : Byte;
 Who : String;
 What : String;
 Result : String;
 end;
const
 EatArray : array[1..7] of EatRecord =
 ((Status:0; Who:'Fred Flintstone'; What:'A Steak'; Result:'SeemsOK'),
 (Status:1; Who:'Veggy Saurus'; What:'Eucalyptus Tree'; Result:'Suffocated'),
 (Status:2; Who:'G.E. Hoover'; What:'Bookworm'; Result:'Died'),
 (Status:1; Who:'T. Rex'; What:'Veggy Saurus'; Result:'Escaped'),
 (Status:2; Who:'Tom'; What:'Jerry'; Result:'Got wacked'),
 (Status:0; Who:'B.C. Linton'; What:'Beans in sauce'; Result:'A bit windy'),
 (Status:2; Who:'Tarantula'; What:'Chameleon'; Result:'Tarantula
Eaten'));

To display the Status as a bitmap I dropped a DrawGrid on the Form. Ive then adjusted some properties
so this DrawGrid does nothing but display a single column. I then dropped a StringGrid on the Form and
positioned it to the right side of the DrawGrid and adjusted its properties so that both grids seem to be
one grid. It is important to disable the vertical scrollbar of the DrawGrid.

The DrawGrid will be setup something like this:
object DrawGrid1: TDrawGrid
 Left = 16
 Top = 16

 Width = 49
 Height = 152
 ColCount = 1
 DefaultColWidth = 24
 FixedCols = 0
 RowCount = 11
 ScrollBars = ssHorizontal
 TabOrder = 1
 OnDrawCell = DrawGrid1DrawCell
end

and the StringGrid like this:
object StringGrid1: TStringGrid
 Left = 41
 Top = 16
 Width = 407
 Height = 152
 ColCount = 3
 DefaultColWidth = 128
 FixedCols = 0
 RowCount = 11
 TabOrder = 0
 OnTopLeftChanged = StringGrid1TopLeftChanged
end

In the OnCreate method I do some initializing. Put headers in the StringGrid and create a Tbitmap
variable.

procedure TForm1.FormCreate(Sender: TObject);
begin
 { create a bitmap variabel }
 Bmp := TBitMap.Create;
 { put some headers in the Fixed Row of the StringGrid }
 StringGrid1.Cells[0,0] := 'Who ate it?';
 StringGrid1.Cells[1,0] := 'What was eaten?';
 StringGrid1.Cells[2,0] := 'Result?';
end;

The OnDestroy method is even simplier with only a Free statement for the bitmap.
procedure TForm1.FormDestroy(Sender: TObject);
begin

 { free the bitmap }
 Bmp.Free;
end;

Ive used the OnShow method to copy the contents of the EatArray to the StringGrid.
procedure TForm1.FormShow(Sender: TObject);
var I: Byte;
begin
 for I := 1 to 7 do
 begin
 StringGrid1.Cells[0, I] := EatArray[I].Who;
 StringGrid1.Cells[1, I] := EatArray[I].What;
 StringGrid1.Cells[2, I] := EatArray[I].Result;
 end;
end;

The OnDrawCell of the DrawGrid is not difficult to understand. It will just display bitmaps according to the
Status byte in the EatArray. Note that I only do this starting with the TopRow.
procedure TForm1.DrawGrid1DrawCell(Sender: TObject; Col, Row: Longint;

 Rect: TRect; State: TGridDrawState);
begin
 { if the cell is visible load the bitmap according to Status byte }
 if Row >= DrawGrid1.TopRow (if excluded a GPF is generated}
 then begin
 case EatArray[Row].Status of
 0: Bmp.Handle := LoadBitMap(HInstance, 'LED_GREEN');
 1: Bmp.Handle := LoadBitMap(HInstance, 'LED_YELLOW');
 2: Bmp.Handle := LoadBitMap(HInstance, 'LED_RED');
 end;
 { draw the bitmap on the DrawGrid }
 DrawGrid1.Canvas.Draw(Rect.Left, Rect.Top, Bmp);
 end;
end;

If I leave like this I have a nice look-a-like grid with the first column showing a LED-bitmap and columns 2
to 4 plain text. Neat huh?

The last problem that remains to be solved is the scrolling. When you scroll the StringGrid the DrawGrid
has to scroll too, equally, of course. This can be achieved with one simple statement in the
OnTopLeftChanged method:
procedure TForm1.StringGrid1TopLeftChanged(Sender: TObject);
begin
 DrawGrid1.TopRow := StringGrid1.TopRow;
end;

This will set the TopRow of DrawGrid equal to the TopRow of StringGrid, so that when you scroll the
StringGrid, you will also scroll the DrawGrid.

This solution requires a bit of manipulation at design time to get the two components together. But the
code around it is nothing special really.

Return to Front Page

     The Unofficial Newsletter of Delphi Users - Issue #21 - May 1997

Source for Video Capture
unit vidcap;

interface

type
 capturerec = record
 dwRequestMicroSecPerFrame: longint;
 fMakeUserHitOKToCapture: wordbool;
 wPercentDropForError: word;
 fYield: wordbool;
 dwIndexSize: longint;
 wChunkGranularity: word;
 fUsingDOSMemory: wordbool;
 wNumVideoRequested: word;
 fCaptureAudio: wordbool;
 wNumAudioRequested: word;
 vKeyAbort: word;
 fAbortLeftMouse: wordbool;
 fAbortRightMouse: wordbool;
 fLimitEnabled: wordbool;
 wTimeLimit: word;
 fMCIControl: wordbool;
 fStepMCIDevice: wordbool;
 dwMCIStartTime: longint;
 dwMCIStopTime: longint;
 fStepCaptureAt2x: wordbool;
 wStepCaptureAverageFrames: word;
 dwAudioBufferSize: longint;
 fDisableWriteCache: wordbool;
 AVStreamMaster: word;
 end;

procedure InitVariables;
function CreateVideo: integer;
procedure CreateCapWin;
procedure ShowCapWin;
procedure HideCapWin;
procedure KillCapWin;
procedure ShowVideoParamsWindow;
procedure ShowCompressionWindow;
procedure UserMessage(msg: string);
function StreamCallback(wnd: THandle; vh: longint): wordbool; export;

var
 framespersec,
 framecount,
 framestopcount: integer;
 videofilename: string;
 cparams,
 captureparams: capturerec;

implementation

{
 this prototype needs to be listed to access the AVICAP function
}
function capCreateCaptureWindow(var lpszWindowName;
 dwStyle: longint; x: integer; y: integer;

 nWidth: integer; nHeight: integer;
 anhwnd: THandle; nID: integer): THandle; far; external 'avicap';

procedure InitVariables;
begin
 { This is used by the callback to auto-stop after the given
 number of frames have been captured. }

 framestopcount := 0;

 { AVICAP will default to creating the file CAPTURE.AVI in the
 root directory of the drive the program is called from. This
 variable can store a path\name so that you have some better
 control over where it gets captured to. }

 videofilename := 'c:\mydir\testcap.avi';

 { The frame capture rate is dependant on many conditions. These
 are addressed in the article. For now, we'll set it to MAX. }

 framespersec := 30;

end;

procedure CreateVideo;
begin
 InitVariables;
 CreateCapWin;
 { Delete any capture file if it exists }
 if(FileExists(videofilename)) then
 DeleteFile(videofilename);
 { There are no frames captured yet }
 framecount := 0;
 { Tell AVICAP to begin capturing }
 smreturn := SendMessage(hWndC, WM_USER + 62, 0, 0);
 KillCapWin;
end;

{
 Callback from AVICAP.DLL... every frame that gets captured
 generates a function call from AVICAP. In this case we are
 using it strictly to count the number of captured frames.
 This callback gets initialized by CreateCapWin().
}
function StreamCallback(wnd: THandle; vh: longint): wordbool;
begin
 if(framestopcount > 0) then begin
 inc(framecount); { note the frame number }
 if(framecount > framestopcount) then
 { Tell AVICAP to abort the operation. }
 SendMessage(hWndC, WM_USER + 69, 0, 0);
 end;
 { Reassure AVICAP that all is OK. }
 result := wordbool(1);
end;

{
 This procedure creates the capture window and initializes
 all of the capture parameters.
}

procedure CreateCapWin;
var

 capavi: array[0..40] of char;
 captit: array[0..40] of char;
 smreturn: longint;
 apntr: pointer;
 asize: integer;
begin
 {
 STEP 1: INIT THE CAPTURE WINDOW AND GET CONNECTED TO
 THE DRIVER
 }
 strpcopy(capavi, videofilename); { captured video file name }
 strpcopy(captit, 'capture win'); { capture window }
 (*
 SEE THE ARTICLE TEXT ABOUT THE FOLLOWING WINDOW CREATION ROUTINE
 *)
 hWndC := capCreateCaptureWindow (captit, WS_CHILD or WS_VISIBLE, 0, 0,
 320, 240, main.handle, 0);
 ShowWindow(hWndC, SW_SHOW);
 { Tell AVICAP to connect to the Capture driver. }
 smreturn := SendMessage(hWndC, WM_USER + 10, 0, 0);

 if(smreturn <> 0) then begin
 usermessage('Connected'); { feedback }
 { tell AVICAP what the name of the file to capture to is }
 apntr := addr(capavi);
 SendMessage(hWndC, WM_USER + 20, 0, longint(apntr));

 { STEP 2: SET IMAGE PREVIEW UP }
 { Set preview rate at 30 frames per second, in mSec.
 1000 mSec/30 frames = 33 mSec. }
 SendMessage(hWndC, WM_USER + 52, 33, 0);
 { Now go ahead and preview }
 SendMessage(hWndC, WM_USER + 50, 1, 0);

 { STEP 3: INITIALIZE CAPTURE PARAMETERS }
 { First, the capture parameters structure gets initialized
 by asking AVICAP to fill it in for us. }
 apntr := addr(captureparams);
 asize := sizeof(captureparams);
 SendMessage(hWndC, WM_USER + 65, asize, longint(apntr));

 { Then start setting up the preferences: }
 { 1 = capture audio, 0 = disable }
 captureparams.fCaptureAudio := wordbool(0);

 (*
 The time limit params are used to force a stop of the
 video capture at a specified time, just in case
 anything goes wrong. The params here are filled out
 to stop capture automatically after 15 seconds just
 for the sake of illustration.
 *)

 { 1 = enable time limiting, 0 = disable }
 captureparams.fLimitEnabled := wordbool(1);
 { In this case, 15 seconds of video, translated to hex }
 captureparams.wTimeLimit := word($0E);

 { max error rate = 1%. This is somewhat hardware dependant. }
 captureparams.wPercentDropForError := 1;

 { these are the most common frame rates }
 if(framespersec = 30) then

 captureparams.dwRequestMicroSecPerFrame := 33334 { 30 fps }
 else
 captureparams.dwRequestMicroSecPerFrame := 41667; { 24 fps }

 { 0 = automatic mode, 1 = put up an OK button to initiate }
 captureparams.fMakeUserHitOKToCapture := wordbool(0);
 { 1 = abort capture on Left button click, 1 = disable }
 captureparams.fAbortLeftMouse := wordbool(0);
 { 1 = abort capture on Right button click, 1 = disable }
 captureparams.fAbortRightMouse := wordbool(0);
 { escape key aborts capturing }
 captureparams.vKeyAbort := VK_ESCAPE;

 (*
 These parameters are listed but aren't required for general
 purpose video capture. Refer to the Win32 SDK discussion of
 AVICAP to see if your intended application will be affected.

 captureparams.wChunkGranularity := 0;
 captureparams.dwIndexSize := 0;
 captureparams.fUsingDOSMemory := byte(0); { don't use DOS memory }
 captureparams.fStepMCIDevice := 0;
 captureparams.fMCIControl := 0;
 captureparams.fStepCaptureAt2x := 0;
 captureparams.fDisableWriteCache := byte(0);
 captureparams.wStepCaptureAverageFrames := 3;
 *)

 { Now write the capture parameters }
 apntr := addr(captureparams);
 asize := sizeof(captureparams);
 SendMessage(hWndC, WM_USER + 64, asize, longint(apntr));

 { tell AVICAP where to find the framecount callback }
 SendMessage(hWndC, WM_USER + 6, 0, longint(addr(StreamCallback)));

 end else begin
 usermessage('Invalid video driver.');
 killcapwin; { just to be safe. It *is* windows, after all... }
 end;
end;

{ show the capture window (including the live video) }
procedure ShowCapWin;
begin
 ShowWindow(hWndC, SW_SHOW);
end;

{ hide the capture window }
procedure HideCapWin;
begin
 ShowWindow(hWndC, SW_HIDE);
end;

{ destroy the capture window used by AVICAP }
procedure KillCapWin;
begin
 ShowWindow(hWndC, SW_HIDE);
 DestroyWindow(hWndC);
end;

{ Show the video format dialog. This is supplied by
 the capture driver. All we need to do is tell

 AVICAP to make the proper call to the driver. }
procedure ShowVideoParamsWindow;
begin
 ShowCapWin;
 SendMessage(hWndC, WM_USER + 41, 0, 0);
 { allow this to happen }
 application.processmessages;
 HideCapWin;
end;

{ Show the video compression options dialog supplied by the
 capture driver. This works like the ShowVideoParamsWindow
 procedure. }
procedure ShowCompressionWindow;
begin
 ShowCapWin;
 SendMessage(hWndC, WM_USER + 46, 0, 0);
 { allow this to happen }
 application.processmessages;
 HideCapWin;
end;

{ display a message to the user }
procedure UserMessage(msg: string);
begin
 {
 use for troubleshooting or your own messages...
 main.messagelabel.caption := msg;
 }
end;

end.

Return to Article

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #21 - May 1997
Product Announcement - Addict for Delphi
by Michael Novak
Addictive Software

http://www.flinthills.com/~addict

addict@flinthills.com

Editors Note - Next issue we will have a review of Addict so stay tuned!

Addictive Software is pleased to announce the release of the Addict 2.0 suite for Delphi 1.0 and 2.0.
Addict consists of, what we believe to be the most powerful spell check component available for Delphi,
as well as the only known thesaurus component for Delphi 1.0 and 2.0.

AddictSpell provides your users with a full featured spell check component to give your applications a
more professional look and feel. AddictSpell mirrors, and in some ways exceeds, the functionality of
several spell check engines residing in commercial word processors. Following is a brief list of some of
the major features of AddictSpell:

· Full Component Source Code: When you order Addict, you will receive the full component source
code used to implement AddictSpell.

· Dictionary Compiler: AddictSpell comes complete with an executable utility you can use to create
new, royalty free dictionary files to be used with AddictSpell.
· Multiple Main and User Dictionaries Open Simultaneously: Any number of dictionary files and
user dictionaries may be open simultaneously, giving new freedom to multi-lingual users.
· Can Use Microsoft Word User Dictionaries. Microsoft Word user dictionaries can be directly
imported by your users for use with AddictSpell.
· Auto Correct Feature: Auto-corrections can be added to user dictionaries to enable AddictSpell's
ability to automatically correct common spelling errors (i.e. teh=the).
· Checks a Wide Range of Controls: AddictSpell checks a number of controls / data structures,
including PChar Buffers, Strings, and any descendant of TCustomEdit, TCustomMemo, and
TCustomRichEdit. AddictSpell will also check UDC's MemoWriter components and Turbo Power's
Orpheus editing components.
· Extensive Configuration System: AddictSpell's multi-user configuration system gives each user of
a multi-user application independent configuration.
· Configuration Dialog: AddictSpell's configuration dialog allows any user of your application to
independently specify a multitude of configuration options.
· User Constructed Dialogs: You are free to use the included spell check dialog, or design your own
spell check dialog. The default dialog is, in fact, simply a user constructed dialog.
· Non-Modal Dialog: The spell check dialog is not a modal dialog freely allowing users to edit their
document in the middle of a spell check. AddictSpell automatically detects this and restarts the check at
the cursor position when the user hits the start button.
· Multiple Undo: AddictSpell automatically remembers the positioning and replacement information
necessary to allow users to undo multiple spell check actions.
· Selection Avoidance: Initial position and selection avoidance properties prevent the dialog from
covering the selected word and provide extensive control of dialog positioning.
· Background Suggestions: Though AddictSpell can generate suggestions in the usual manner,
background word suggestions can be continuously generated in the background, eliminating the need for
the user to wait on the appearance of suggestions before choosing a course of action.
· Ignore HTML Tags: For those writing HTML compatible applications, this feature allows the
AddictSpell to natively ignore HTML tags.
· Fast: AddictSpell's spell check engine is fast and flexible native Delphi code (11,000 words
checked per second on a P100 w/24 MB RAM).
Following is a brief list of some of the major features of the thesaurus component:

· Large Thesaurus: The component comes with a compiled version of Roget's 1911 Public Domain
Thesaurus, containing over 1000 context topics and 30,000 words.

· Thesaurus Compiler: This version of this component comes with a utility that allows you to
compile context-sensitive thesaurus topics of your own into the format used by the component.
· Selection Avoidance: When used in conjunction with an editing control, the thesaurus dialog box
will automatically avoid the selected word in the editing control and position the dialog directly under it.
· Fast: Despite the size of the thesaurus file (it is compressed), the component loads in less than a
second on a P100 (24 MB RAM). Context topic lookup is near instantaneous.
Stop by our web site to see screen shots, or try out our trial-run version!

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #21 - May 1997
Source for ASync Sounds
unit As_playu; {6 May 1997}
{consecutive aysynchronous playing of WAV resources}

interface

uses
 {SysUtils, Messages, Graphics, Dialogs,}
 WinTypes, WinProcs, Classes, Controls, Forms,
 StdCtrls, MMSystem, ExtCtrls;

type
 TASyncPlayTestF = class(TForm)
 OneBtn: TButton;
 TwoBtn: TButton;
 ThreeBtn: TButton;
 HickDickBtn: TButton;
 ExitBtn: TButton;
 Timer1: TTimer;
 Panel1: TPanel;
 Panel2: TPanel;
 Panel3: TPanel;
 Label1: TLabel; {to show Play Now}
 ListBox1: TListBox; {to display Play List}
 Label2: TLabel;
 Label3: TLabel;
 Label4: TLabel;
 Label5: TLabel;
 {to do user activities while playing}
 ComboBox1: TComboBox;
 ListBox2: TListBox;
 ClearListBtn: TButton;
 procedure AddSoundClick(Sender: TObject);
 procedure CloseRes;
 procedure ComboBox1Change(Sender: TObject);
 procedure ExitBtnClick(Sender: TObject);
 procedure FormCreate(Sender: TObject);
 procedure PlaySound(WaveRes : string);
 procedure PlayStack;
 procedure Timer1Timer(Sender: TObject);
 procedure ClearListBtnClick(Sender: TObject);

 private
 { Private declarations }
 public
 { Public declarations }
 end;

function StrAsPChar(var S : OpenString) : PChar;

var
 ASyncPlayTestF: TASyncPlayTestF;
 hRes : THandle; {handle to the loaded resource
 if 0 indicates nothing playing}
 PlayList : TStringList; {holds list of sounds to play}

implementation

{$R *.DFM}
{$R MY_SOUND.RES}
{comments == prefix statements which are for the purpose

 of Now Playing & Play List display purposes and are not
 necessary for async playing}

procedure TASyncPlayTestF.FormCreate(Sender: TObject);
{sets up display & resource handle}
begin
 hRes := 0; {resource handle and flag for CloseRes}
 Timer1.Interval := 12000;
 {timer interval must be longer than longest sound}
 PlayList := TStringList.Create;
 {==}Label1.Caption := ''
end;

{ ===== This is the nub of the action ====== }
procedure TASyncPlayTestF.PlayStack;
{plays all sounds in the PlayList stringList}
begin
 with PlayList do
 while Count > 0 do begin
 if hRes = 0 then {no resouce is loaded so play next sound}
 begin
 PlaySound(Strings[0]); {play top sound of list ...}
 {==}Label1.Caption := Strings[0];
 Delete(0); { ... and delete it}
 {==}ListBox1.Items := PlayList;
 end; {if not playing}
 Application.ProcessMessages; {let other processes live}
 end; {while count > 0}
end;

procedure TASyncPlayTestF.PlaySound(WaveRes : string);
{plays a WAV resource - called only if no resource is playing}
var
 PtrRes : PChar;
 hResInfo : THandle;
 ResLength : longint;
 temp, ResTime {mSecs} : integer;
const
 RT_WAVE : PChar = 'WAVE'; {my resource type}
begin
 {find resource}
 hResInfo := FindResource(HInstance, StrAsPChar(WaveRes), RT_WAVE);
 if hResInfo <> 0 then {found the rssource}
 begin
 {load the resource}
 hRes := LoadResource(HInstance, hResInfo);
 if hRes > 32 then {its a good load}
 begin
 {lock the resource}
 PtrRes := LockResource(hRes);
 {calculate sound run time from data in resource}
 ResLength := longint(Byte(Ptr(hRes, 6)^)) * 65536
 + longint(Byte(Ptr(hRes, 5)^)) * 256
 + Byte(Ptr(hRes, 4)^);
 case Byte(Ptr(hRes,24)^) of
 $11 : {telephone quality - 8 bit mono 11.025Kb/s}
 temp := ResLength div 11;
 $22 : {radio quality - 8 bit mono 22.050Kb/s}
 temp := ResLength div 22;
 $44 : {CD quality - 16 bit stereo 44.1/sec = 176.4Kb/s}
 temp := ResLength div 176;
 end;
 ResTime := temp - (temp div 440); {=/11.025, 22.050 etc}

 {set timer}
 Timer1.Interval := ResTime;
 Timer1.Enabled := true;
 sndPlaySound(PtrRes, snd_ASync or snd_Memory); {play sound}
 end
 else
 hRes := 0; {resource could not be found}
 {hRes > 32}
 end; {hResInfo <> 0}
end;

procedure TASyncPlayTestF.Timer1Timer(Sender: TObject);
begin
 CloseRes;
end;

procedure TASyncPlayTestF.CloseRes;
begin
 if hRes <> 0 then {we have a locked resource}
 begin
 Timer1.Enabled := false; {stop timer}
 sndPlaySound(Nil, snd_ASync or snd_Memory); {stop sound}
 UnlockResource(hRes); {unlock . . .}
 FreeResource(hRes); { . . . and free reource}
 {==}Label1.Caption := '';
 hRes := 0; {flag for any later call to CloseRes}
 end;
end;
{ ===== End of the nub of the action ===== }

procedure TASyncPlayTestF.AddSoundClick(Sender: TObject);
{button action to add sound to list}
begin
 if TButton(Sender) = OneBtn then
 PlayList.Add('One');
 if TButton(Sender) = TwoBtn then
 PlayList.Add('Two');
 if TButton(Sender) = ThreeBtn then
 PlayList.Add('Three');
 if TButton(Sender) = HickDickBtn then
 PlayList.Add('Hickory');
 {==}ListBox1.Items := PlayList;
 PlayStack;
end;

procedure TASyncPlayTestF.ClearListBtnClick(Sender: TObject);
{clears list of sounds to play}
begin
 PlayList.Clear;
 {==}ListBox1.Items := PlayList;
end;

procedure TASyncPlayTestF.ExitBtnClick(Sender: TObject);
begin
 CloseRes;
 PlayList.Clear;
 Close;
 {PlayList.Free is in S_Play.DPR}
end;

procedure TASyncPlayTestF.ComboBox1Change(Sender: TObject);
{this is just to do something while it's playing sounds}
begin

 with ComboBox1 do
 ListBox2.Items.Add(Items[ItemIndex]);
end;

function StrAsPChar(var S : OpenString) : PChar;
{returns a PChar from a string}
begin
 if Length(S) = High(S) then dec(S[0]);
 S[Ord(Length(s)) + 1] := #0;
 Result := @S[1];
end;

end.

(*
Contents of MY_SOUND.RC

 ONE WAVE ONE.WAV
 TWO WAVE TWO.WAV
 THREE WAVE THREE.WAV
 HICKORY WAVE HICKORY.WAV
*)

Source for the DPR File

program As_play;

uses
 Forms,
 As_playu in 'AS_PLAYU.PAS' {ASyncPlayTestF};

{$R *.RES}

begin
 Application.CreateForm(TASyncPlayTestF, ASyncPlayTestF);
 Application.Run;
 PlayList.Free; {put here because GPF is caused if put in
 TASync_PlayTestF.ExitBtnClick()}
end.

Return to Article

Return to Tips & Tricks

Return to Front Page

