
Edific
Edific is an utility that allows you to make diferent kinds of modifications automatically in text files, windows INI
format files and registry entries.

It works with an script file having all the operations you want to execute.

See how you can use and make it work for you:

Introduction to Edific scripts

Commands organized by name

Commands organized by function

List of samples

Version history of Edific

Usage in production environments

Notes about Edific

 For comments or suggestions please send mail to edific@dlcsistemas.com

Version History of EdiFic

This utility was created as a solution for a specific problem in a project. We wanted to make automatic changes in a
group of Windows 3.1 office computers that were connected to a Novell network: to configure expanded memory in
DOS, set some paths, add some scripts in the autoexec or config files, set some parameters in ini files, change
configuration data in Novell Netware clients, etc.

We developed this solution and then Edific became the most effective utility to do our job in this project, and also
for later maintenance of the PC stations.

Later, in a Data Processing Centre of a client we worked, we had also to modify NT logon scripts for a great amount
of people: we just cannot do the work file-by-file and a automatic solution to this problem was required. This was
to increase and develop more functionalities on our utility to make the job described above: the multiple files.

Think only to change a share directory to another NT computer and to have to modify 300 scripts of people that
had this connection: with Edific was easy and automatic !

For many months ago, we thought that was necessary to make a complete version of this utility, that we have
found so interesting, so now its the time to release a documented, tested and increased version of this program.

Version 1.0 – March 1997

· Only for DOS.
· Supports basic managemente of text lines
· Supports basic management of Windows INI files

Version 1.2 – June 1997

· Test and fix of minor errors
· Increased functionality on managing text lines
· Adding strings replacing functions

Version 2.0 – July 1998

· Tested and fixed minor errors
· Adding multiple files management

Version 2.1 – December 1998

· Added flags functionality to the functions (Casesen)
· Tested and fixed minor errors

Version 2.2 – January 2000

· New 32 bits version
· Added registry functionality (only 32 bits version)
· Added more flag functionalities
· Added line numbering functions
· Added line text functions
· Added control execution structures

The next releases of this program are depending on you. Please feedback your opinion to us: if this program is
helpful to you, what you think is interesting to add, if you have any question, or simply if you have any comment or
opinion, please let us know.

This is a freeware program. You can use it freely but you can’t change it.
Please let know your colleages the existence of this utility and our web.

http://www.dlcsistemas.com
mailto://edific@dlcsistemas.com

Notes About Edific
Terms and Conditions

By using this software you are consenting to be bound by this agreement.

Edific and Edific32 are a free software.

You may not:

· Modify or translate the executable files or help files provided.
· Sell this software. These utilities are free.

Under no circumstances and under no legal theory, contract or otherwise shall DLC sistemas or the author be
liable to you or any other person for any indirect, special, incidental or consequential damages of any character.
There is no warranty for damages of any type caused by using this application.

The author will appreciate any kind of support from you if it does not put the author under some obligation.

You can contact the author by email : edific@dlcsistemas.com

You may find the latest version of Edific at DLC Sistemas home page:

http://www.dlcsistemas.com

Requirements

Supported operating systems:

· MS-Windows 95, 98
· MS-Windows NT 3.51 and 4.0
· MS-Windows 3.x
· MS-DOS 6.x

Note: For Windows 3.x and DOS use EDIFIC, othercase use EDIFIC32

Usage in Production Environments

As you can saw at the history of Edific, you know this utility has a main mission that is to help system
administrators, operators and technical systems engineers to do controlled automatic changes in any group of
workstations.

To do so, just think about the login scripts. Any network technology now has a point where the PC workstation
connects to the server and there is a functionality that allows to execute something that the system administrator
wants to do on each user workstation: a connection unit to a share, a message, etc… And also now you can use the
Edific batches.

Let’s see an example in a Windows NT environment. Think also you can make similar things in any IBM OS/2 LAN
Server/Warp Server domain or Novell Netware:

In our example guess that there is 300 users in a NT domain group servers. Think there are a Primary domain
controller (PDC) and a Backup domain controller (BDC).

The users in our domain have each one a login script defined in the C:\WINNT\System32\Repl\Import\Scripts
directory of the PDC and the corresponding configuration in the Users Manager for Domains applet of the system.

Then you want to change all login scripts that have a connection to a server \\SERVER3\SHAREFIN by another that
points to a new added server where the shared resource is now \\SERVERNEW\SHARENEW (i.e. because you’ve
migrate it)

Now you can make all changes by hand in all scripts (with the corresponding time spent and mistakes, up to 300
times) or you can use Edific to do the job:

· First, make a backup copy of your scripts on to a secure directory

XCOPY C:\WINNT\System32\Repl\Import\Scripts*.* C:\BACKUPSCRIPTS*.* /E/V
· Create a text file NEWSRV.SC with this content:

LoadAllFile “C:\WINNT\System32\Repl\Import\Scripts*.Bat”
ReplaceString “\\SERVER3\SHAREFIN” by “\\SERVERNEW\SHARENEW”
SaveAllFile
End

· Execute the script as follows:

EDIFIC NEWSRV.SC
· Be sure all Backup Domain Controllers have the same version of the scripts directory (see replication

directories in your NT documentation)

Then you’ve changed all scripts that had the old resource share by the new. Note that with this, all files were
loaded an saved, even the files that had no changes of resource names.

But you can also execute scripts, not only as an “automatic edition file” but as an powerful setting of workstation
maintenance.

Let’s see a new little sample. Think all your 95 workstations have a program or application you want to modify its
configuration: the INI files, that points now to another sharename; the Registry, that has an performance-down
configuration parameter, a default configuration that you wants to erase, etc.

You’ve now two possibilities: or to give the problem to the PC-Installations & Maintenance department (if you have
it in your entreprise) or to walk arround all the floors of the building(s) and do the changes yourself PC-by-PC (not
a good idea, isn’t-it ? :-{)

You have another way also. You can use edific if you know specifically what changes you want to do (i.e. change
the param x of the file or registry to the value y)

Guess you want to change the parameter DefaultDir of the corporate application software DataQueryCorp that is in
the key HKEY_LOCAL_MACHINE\SOFTWARE\DQ\DataQueryCorp\2.0 of the all W95 users workstations registry.

Then you can follow the steps below:

· Put the EDIFIC32.EXE program in the scripts repository C:\WINNT\System32\Repl\Import\scripts. (Remember:
never allow users to write on to the scripts repository on any domain controller – the NETLOGON share)

· Create the following file with NOTEPAD, save it as NEWDIR.SC and put it in the scripts repository too:

InsertRegistryValue “HKLM\Software\DQ\DataQueryCorp\2.0\DefaultDir” String “C:\NEWDIR”
End

· Modify all logon scripts to add at first or last the line below (note you can do this modification like the example
shown above with the command BeforeBeginInsert or AfterEndInsert)

@EDIFIC32 NEWDIR.SC /o

· Be sure all Backup Domain Controllers have the same version of the scripts directory

Now it’s all. When people get connected, the script will execute the Edific and will change the registry. Note that
when the logon script is executing no credits are shown because the /o flag.

There are many examples of using Edific. You can combine its functionality in logon scripts with these on Kix32
provided by Microsoft in its Resource Kit for Windows NT.

Introduction

Versions and Call Format

There are two versions of Edific utility. First, there is the 16 bits version, corresponding to DOS systems and
Windows 3.x (Edific). The second is the 32 bits version for Windows 95,98 and NT (Edific32).

Both versions have the same behavior and keywords, but the 16 bits version has no support for registry edition
commands.

To execute EdiFic, follow this format:

EDIFIC ScriptFile [/d] [/h] [/lLogFile] [/aLogFile] [/o]

Where

ScriptFile Mandatory, is a file with scripts command for Edific to execute
/d Optional, tells Edific to show the executed commands and its results
/h Optional, shows the little help on call format
/lLogfile Optional, tells Edific to put all results in this Logfile, creating or overwriting it
/aLogfile Optional, tells Edific to put all results int this Logfile, appending the information if the file already

exists
/o Optional, tells Edific to not to display the credits

Go next >>

How Works Edific

The script file contains all the commands you want to execute. You can open or save any text file, make
substitutions, replacements, line deletions and insertions, etc.

Edific doesn’t need any temporary disk repository because it gets all the file in memory to do all the operations the
script want.

For this reason, text data files to work with can’t be very big, but it depends of the power of the system on Edific
will be executed.

To make scripts use your preferred text editor.

See the information on…

Loading and saving files

Modifying a Windows INI file

Working with strings

Editing the registry (!)

Repeating Structures

Working with case letters

Working with delimiters and comments

Working with debug information

Loading and saving files

When you load files with the corresponding command scripts in Edific, the original file is read and closed and the
data resides in memory to make changes.

At any time only one file data is on memory. You can create a script with multiple loads and saves and all them will
be executed sequentially, this become to work with multiple files, but any command execution affects only the data
in memory the program has at a specific time.

When you execute a LoadFile or LoadAllFile command, all data in memory will be discarded. You have to save the
data previously to this commands.

Then you see that load and save commands are the only Edific uses to go to disk. By this, all functions between a
load and a save are treated in memory. The changes are in memory, so you have to save to get the new data file.

Let’s see an example of loading and saving files:

Make a file with any editor (i.e. NOTEPAD) and create a file named SAMPLE.SC at C:\TEMP directory:

LoadFile "C:\CONFIG.SYS"
BeforeBeginInsert "@ECHO OFF"
SaveFile "C:\CONFIG2.SYS"
End

Go now to a command prompt and execute the script from the directory you have Edific.exe:

EDIFIC C:\TEMP\SAMPLE.SC

You have now the prompt. You can see that you have another file in C:\ called CONFIG2.SYS that has the same
content as CONFIG.SYS but the first line added.

Guess now you want to work with multiple files that have similar names except for a number or any else. Think you
have forty files in the C:\DATA directory called DATA001.TXT to DATA040.TXT and you would to substituye any
string, or delete any line in all of these files. For that you can use the LoadAllFile or SaveAllFile commands. Let’s
see this example:

LoadAllFile "C:\DATA\DATA*.TXT"
ReplaceString "Tihs" by "This"
SaveAllFile
End

Now you will have forty files corrected automatically :-)
Or best, you can have a copy of all these files by setting the SaveAllFile of the script above like this:

SaveAllFile "C:\NEWDATA\NWDAT*.TXT"

Then you will get forty files in the C:\NEWDATA called from NWDAT001.TXT to NWDAT040.TXT that are copy of the
C:\DATA\DATA*.TXT but corrected.

You can see more information on loading and saving files by viewing the following samples:

Modifying a file,
Saving a new file,
Modifying multiple files,
Creating multiple files,
Changing the default directory

Modifying Windows INI files

You can use Edific to modify any Windows INI file.
There is a set of command specially oriented to modify INI files. These functions are here.

To work with this, simply get the file by loading and apply the changes you want with the specified functions: you
can add data keys, delete keys, delete sections, add sections. You can combine also the strings and line functions
to add complexity.

In example, you can see now how to add a driver in a W3.x system or a W95 for compatibility:

LoadFile "C:\WINDOWS\SYSTEM.INI"
InsertValue "386Enh" "device" "C:\WINDOWS\SYSTEM\DRVTEST.386"
SaveFile
End

Then you get a SYSTEM.INI file with the line device = C:\WINDOWS\SYSTEM\DRVTEST.386 added to its [386Enh]
section.

You can see more information on working with Windows INI files by viewing the following samples:

Replacing a key value,
Setting a new section and key value,
Adding a section,
Deleting a section,
Deleting keys

Working with Strings

A set of powerful string functions is needed when working automatically with text files.

Edific has the support of two groups of functions oriented to line and string treatement. They are line and substring
content oriented group and line number oriented group.

The first group of functions looks for matches with a specific string pattern and makes changes in many ways, like
changing lines, replacing found text to a new text, deleting lines, adding lines before or after any line that matches
the conditions, etc.

The second refers to the position a specific line has inside the file. Then there is functions to add lines before or
after an specific linenumber position, adding at top or bottom, deleting the line number-th, etc.

You can see more information on working with lines and strings by viewing the following samples:

Inserting a line after a line,
Inserting a line after a line that contains data,
Inserting a line before a line,
Inserting a line before a line that contains data,
Deleting lines,
Deleting lines that contains data substrings,
Replacing lines,
Replacing lines containing substrings,
Replacing Substrings,
Adding lines with linenumbers,
Adding lines at top or bottom,
Deleting line numbers

Editing the registry

Probably in NT,95 or 98 you should need to make changes to the registry. Here is a set of commands you can use
to do these jobs automatically, specially if you want to make changes to multiple computers.

The structure of the Registry is like a directory hierarchy, where the files are data values and the directories are the
keys. Sure you have worked anytime with REGEDIT or REGEDT32.

The data values have a specific data type and also any data value or key has their own access permissions.

In NT, to work with Edific inside the Registry, the execution userid of the process must have write permissions to
the keys and data values the edific script wants to modify. Generally the user must have Admin permissions.

You can use only registry commands with the 32bits version of Edific (EDIFIC32). These commands on 16bits
version are ignored.

WARNING: It’s recommended to make tests when you work with these functions because any mistake could break
your system configuration.

You can see more information on working with Registry by viewing the following samples:

Creating keys and inserting values in the registry,
Making data changes to the registry,
Deleting keys and values in the registry,

Repeating Structures

If you want to apply any command to a file a specific number of times, you have two options: to repeat the
command in the script n-times, or to do a loop.

You can use the Repeat…EndRepeat to construct loops.

The Repeat sentence is followed by the number of times you want to loop the entire structure till EndRepeat.

Also you can construct Repeat…EndRepeat structures inside another:

Repeat 10
 . . .
 Repeat 20

 Command1

 EndRepeat
 . . .
 Repeat 5

 Command2

 EndRepeat
 . . .
EndRepeat

You can see more information on working with iterations by viewing the following samples:

Doing Iterations

Working with case letters

On every command of string data treatement you can indicate care with case letters. There is a keyword flag called
CaseSen you can use at the end of the command to set up this functionality.

By default all comparations ignore case sensitive. Only if you put this flag, matches on “P” to “p” will not arise.

In all cases, the use of the flag CaseSen is optional.

You can see more information on working with case by viewing the following samples:

Inserting a line after a line,
Inserting a line after a line that contains data,
Inserting a line before a line,
Inserting a line before a line that contains data,
Deleting lines,
Deleting lines that contains data substrings,
Replacing lines,
Replacing lines containing substrings,
Replacing Substrings,
Making data changes to the registry,
Deleting keys and values in the registry

Working with delimiters and comments

You can specify the parameters data to the commands in the Edific script file by delimiting each one between (“)
characters. This is to avoid wrong interpretation of parameters by Edific when spaces inside the parameters are
contained.

But, what when you want to put (“) characters in your parameters ?. Well, there are some options to delimite data,
not only the (“). See the table below:

Options to define data in script files Examples

No delimiters. You can use that when a number or data without
spaces are specified.

1983
letmenow

Delimiting with (“). You should use this with lines with spaces. “let me now”
“It’s a sample”

Delimiting with (‘). You can use this when your data contains (“) or
spaces.

‘This is a “sample” of a line’

Delimiting with (‘). You can use this when your data contains (“) or
spaces.

‘This is a “sample” of a line’
‘This is a sample of a line’

Delimiting with (@). You can use this when your data contains (“), (‘)
or simply spaces.

@It’s a “sample” of a line@
@Also this@

Delimiting with (#). You can use this when your data contains (“),(‘),
(@) or spaces.

#This is a “sample” of a line#
#Note this line has only spaces#
#H@ve u’ thought about this “case”?#

See the following samples of commands. All they are valid:

InsertValue 386Enh ’device’ FILE.435
InsertValue #386Enh# device "FILE.435"
InsertValue 386Enh device FILE.435

BeforeLine @Searching for "this" line@ Insert ’this line #first# :-) ’
BeforeLine #Searching for "this" line# Insert @this line #first# :-) @

Display 1293981
Display "1293981"

In the scripts also you can include comments. The comments begins with a (‘) character, and then Edific ignores
the line.

’ This is a comment line

Working with debug information

The debug information the edific can show is a little trace of the operations executed.

Each executed line is shown to the screen of log file in the following format:

DD/MM/YYYY HH:MM:SS Command [Parameter1] [Parameter2] … [ParameterN] Result

Let’s see a sample of this. Guess that you have a script file and you run this script by

EDIFIC32 SAMPLE.SC /D /LSAMPLE.LOG

Then you will get a SAMPLE.LOG file like this:

09/01/2000 20:28:52 InsertRegistryValue [HKCU\Environment\TestKey\Param Number] [Dword]
[1003644].... Ok
09/01/2000 20:28:52 InsertRegistryValue [HKCU\Environment\TestKey\Param NumberBigEndian]
[NumeroBE] [1003644].... Ok
09/01/2000 20:28:52 InsertRegistryKey [HKEY_CURRENT_USER\Environment\TestKey2].... Ok
09/01/2000 20:28:52 InsertRegistryValue [HKCU\Environment\TestKey\Param Text] [String] [A
string message].... Ok
09/01/2000 20:28:52 InsertRegistryValue [HKCU\Environment\TestKey\Subkey2\Subkey21\
AnotherText] [String] [It's a message line].... Ok
09/01/2000 20:28:52 InsertRegistryValue [HKCU\Environment\TestKey\Param ExpText]
[ExpString] [An expanded string message].... Ok
09/01/2000 20:28:52 InsertRegistryValue [HKCU\Environment\TestKey\Param MultiText]
[MultiString] [The first line.The second line..Still the second line.The third line]....
Ok
09/01/2000 20:28:52 InsertRegistryValue [HKCU\Environment\TestKey\Param Data] [Binary]
[01F0E578 9FA03E80 910087E9].... Ok
09/01/2000 20:28:52 InsertRegistryValue [HKCU\Environment\TestKey\Subkey1\ParamData1]
[Binary] [9FA03E80 910087E9].... Ok
09/01/2000 20:28:52 DeleteRegistryKey [HKCU\Environment\TestKey\Subkey2].... Ok
09/01/2000 20:28:52 DeleteRegistryValue [HKCU\Environment\TestKey\Param Number].... Ok

The result of the execution is Ok when the command can complete its steps. This doesn’t mean that if you execute
i.e. ReplaceString “this” by “these” the command will do any change, but only that the command can complete its
execution.

The Error conditions can be shown when, in example, you would access to a key in the registry that you have no
right access, or a file you want to overwrite and it’s read only, or the command cannot got more memory to work,
etc.

Commands by Name
Command Abreviation Description

AfterEndInsert AFTENDINS Inserts a line after the end of the file
AfterLine AFTLIN Inserts a line after the designed line
AfterLineContaining AFTLINCON Inserts a line after another that contains a specific substring
AfterLineNumber AFTLINNUM Inserts a line after the number-th line
BeforeBeginInsert BEFBEGINS Inserts a line at top of the file
BeforeLine BEFLIN Inserts a line before the designed line
BeforeLineContaining BEFLINCON Inserts a line before another that contains a specific substring
BeforeLineNumber BEFLINNUM Inserts a line before the number-th line
ChangeRegistryValue CHAREGVAL Replaces a data value for another in all the registry
DeleteKey DELKEY Deletes a key in a Windows INI file
DeleteLine DELLIN Deletes a line
DeleteLineContaining DELLINCON Deletes a line that contains a specific substring
DeleteLineNumber DELLINNUM Deletes the number-th line
DeleteRegistryKey DELREGKEY Deletes a key in the registry and all its subkeys
DeleteRegistryValue DELREGVAL Deletes a value in the registry
DeleteSection DELSEC Deletes a section [] in a Windows INI file
Directory DIR Changes the current working directory
Disc DSK Changes the current working disk unit
Display DIS Displays a text
End END End of the script
EndRepeat ENDREP End of the repeating structure
InsertRegistryKey INSREGKEY Inserts a key in the registry
InsertRegistryValue INSREGVAL Inserts/Puts a value in the registry
InsertSection INSSEC Inserts a section [] in a Windows INI file
InsertValue INSVAL Inserts a value in a Windows INI file
LoadAllFile LOAALLFIL Loads all files to operate with
LoadFile LOAFIL Loads a file to operate with
Repeat REP Begins a repeat structure
ReplaceLine REPLIN Replaces a line with another
ReplaceLineContaining REPLINCON Replaces a line that contains a specific substring with another
ReplaceString REPSTR Replaces a substring with another
SaveAllFile SAVALLFIL Saves all files loaded with LoadAllFile
SaveFile SAVFIL Saves a file

All Commands by Group

Working with Files and Directories

With these functions you can get files to edit and save they as modified. You can also get multiple files and make
changes to all.

Command Abreviation Description

LoadAllFile LOAALLFIL Loads all files to operate with
LoadFile LOAFIL Loads a file to operate with
SaveAllFile SAVALLFIL Saves all files loaded with LoadAllFile
SaveFile SAVFIL Saves a file
Directory DIR Changes the current working directory
Disc DSK Changes the current working disk unit

Working with Windows INI files

Easily, you can change any windows INI file with this functions: add, delete or replace keys, sections and values.
These functions in combination with strings ones, and you will make all you want.

Command Abreviation Description

InsertSection INSSEC Inserts a section [] in a Windows INI file
InsertValue INSVAL Inserts a value in a Windows INI file
DeleteKey DELKEY Deletes a key in a Windows INI file
DeleteSection DELSEC Deletes a section [] in a Windows INI file

Working with Lines and Substrings

There are a powerful set of commands you will use to edit your string data. You can add lines before or after a text
line, that could begin or contain a substring, replace lines, etc.

Command Abreviation Description

AfterLine AFTLIN Inserts a line after the designed line
AfterLineContaining AFTLINCON Inserts a line after another that contains a specific substring
BeforeLine BEFLIN Inserts a line before the designed line
DeleteLine DELLIN Deletes a line
DeleteLineContaining DELLINCON Deletes a line that contains a specific substring
BeforeLineContaining BEFLINCON Inserts a line before another that contains a specific substring
ReplaceLine REPLIN Replaces a line with another
ReplaceLineContaining REPLINCON Replaces a line that contains a specific substring with another
ReplaceString REPSTR Replaces a substring with another

Working with Lines and Linenumbers

And with these commands you can do all the changes like strings funcions (up) but with the reference of the line
number within the file.

Command Abreviation Description

AfterEndInsert AFTENDINS Inserts a line after the end of the file

AfterLineNumber AFTLINNUM Inserts a line after the number-th line
BeforeBeginInsert BEFBEGINS Inserts a line at top of the file
BeforeLineNumber BEFLINNUM Inserts a line before the number-th line
DeleteLineNumber DELLINNUM Deletes the number-th line

Working with Execution Steps

Also you can do simple sequences to repeat operations.

Command Abreviation Description

Repeat REP Begins a repeat structure
EndRepeat ENDREP End of the repeating structure
End END End of the script

Working with Display

If you want, you can display messages to the screen or the log file

Command Abreviation Description

Display DIS Displays a text

Working with Registry

And there are a set of commands you can use to make changes to registry entries. Be careful when you touch this
component !.

Command Abreviation Description

ChangeRegistryValue CHAREGVAL Replaces a data value for another in all the registry
DeleteRegistryKey DELREGKEY Deletes a key in the registry and all its subkeys
DeleteRegistryValue DELREGVAL Deletes a value in the registry
InsertRegistryKey INSREGKEY Inserts a key in the registry
InsertRegistryValue INSREGVAL Inserts/Puts a value in the registry

Commands by Function

Working with Files and Directories

With these functions you can get files to edit and save they as modified. You can also get multiple files and make
changes to all.

Working with Windows INI files

Easily, you can change any windows INI file with this functions: add, delete or replace keys, sections and values.

Working with Lines and Substrings

There are a powerful set of commands you will use to edit your string data. You can add lines before or after a text line,
that could begin or contain a substring, replace lines, etc.

Working with Lines and Linenumbers

And with these commands you can do all the changes like strings funcions (up) but with the reference of the line number
within the file.

Working with Execution Steps

Also you can do simple sequences to repeat operations.

Working with Display

If you want, you can display messages to the screen or the log file

Working with Registry

And there are a set of commands you can use to make changes to registry entries. Be careful when you touch this
component !.

You can see also the Complete Function List by name or by group

Working with files and Directories

Command Abreviation Description

LoadAllFile LOAALLFIL Loads all files to operate with
LoadFile LOAFIL Loads a file to operate with
SaveAllFile SAVALLFIL Saves all files loaded with LoadAllFile
SaveFile SAVFIL Saves a file
Directory DIR Changes the current working directory
Disc DSK Changes the current working disk unit

Working with Windows INI files

Command Abreviation Description

InsertSection INSSEC Inserts a section [] in a Windows INI file
InsertValue INSVAL Inserts a value in a Windows INI file
DeleteKey DELKEY Deletes a key in a Windows INI file
DeleteSection DELSEC Deletes a section [] in a Windows INI file

Working with Lines and Substrings

Command Abreviation Description

AfterLine AFTLIN Inserts a line after the designed line
AfterLineContaining AFTLINCON Inserts a line after another that contains a specific substring
BeforeLine BEFLIN Inserts a line before the designed line
DeleteLine DELLIN Deletes a line
DeleteLineContaining DELLINCON Deletes a line that contains a specific substring
BeforeLineContaining BEFLINCON Inserts a line before another that contains a specific substring
ReplaceLine REPLIN Replaces a line with another
ReplaceLineContaining REPLINCON Replaces a line that contains a specific substring with another
ReplaceString REPSTR Replaces a substring with another

Working with Lines and Linenumbers

Command Abreviation Description

AfterEndInsert AFTENDINS Inserts a line after the end of the file
AfterLineNumber AFTLINNUM Inserts a line after the number-th line
BeforeBeginInsert BEFBEGINS Inserts a line at top of the file
BeforeLineNumber BEFLINNUM Inserts a line before the number-th line
DeleteLineNumber DELLINNUM Deletes the number-th line

Working with Execution Steps

Command Abreviation Description

Repeat REP Begins a repeat structure
EndRepeat ENDREP End of the repeating structure
End END End of the script

Working with Display

Command Abreviation Description

Display DIS Displays a text

Working with Registry

Command Abreviation Description

ChangeRegistryValue CHAREGVAL Replaces a data value for another in all the registry
DeleteRegistryKey DELREGKEY Deletes a key in the registry and all its subkeys
DeleteRegistryValue DELREGVAL Deletes a value in the registry
InsertRegistryKey INSREGKEY Inserts a key in the registry
InsertRegistryValue INSREGVAL Inserts/Puts a value in the registry

List of Samples

Modifying a File

Saving a new File

Modifying multiple Files

Creating multiple Files

Changing default Directory

Replacing a Windows INI Key Value

Setting a new section and key value in a Windows INI File

Adding a Section to a Windows INI File

Deleting a Section in a Windows INI File

Deleting a Key in a Windows INI File

Inserting Lines After

Inserting Lines “ After Containing ”

Inserting Lines Before

Inserting Lines “ Before Containing ”

Deleting lines

Deleting lines containing substrings

Replacing Lines

Replacing Lines containing substrings

Replacing substrings

Adding lines with linenumbers

Inserting lines at bottom and top

Deleting line with linenumbers

Doing Iterations

Ending Scripts and Displaying Information

Creating keys and inserting values in the Registry

Making data changes to the Registry

Deleting keys and values in the Registry

SaveFile
Syntax

SaveFile [“filename”]

Also

SAVFIL [“filename”]
GuardaFichero [“filename”]
GrabaFichero [“filename”]

Parameters

Parameter Description
Filename Optional. Saves an edited file with this name of file. If not specified, SaveFile uses the one

when the file was loaded with LoadFile or LoadAllFile. Wildcards are not allowed.

Operation

Saves the current edited and modified file with the file name specified. If no file was loaded before, this
command does nothing.

Related commands

SaveAllFile, LoadFile, LoadAllFile
Working with Files and Directories

Samples

Sample 1: Modifying a file

Sample 2: Saving a new file

Modifying a file

Sample of

SaveFile, LoadFile

Script
File SAMPLE.SC:

’ Script to modify a file
LoadFile "C:\TEST\SPACE.TXT"
. . .
SaveFile
End

Execution

EDIFIC SAMPLE.SC

Results

File SPACE.TXT saved with changes

Comments

The script SAMPLE.SC has loaded the file SPACE.TXT, has made changes and has saved it with its name.

Saving a new file

Sample of

SaveFile, LoadFile

Script
File SAMPLE.SC:

’ Script to create a file
LoadFile "C:\TEST\SPACE.TXT"
. . .
SaveFile "C:\TEST\SKY.TXT"
. . .
SaveFile "C:\TEST\STAR.TXT"
End

Execution

EDIFIC SAMPLE.SC

Results

There is a new file SKY.TXT that is file SPACE.TXT with changes. Also there is a file STAR.TXT that is like
SKY.TXT with changes.

Comments

The script SAMPLE.SC has loaded the file SPACE.TXT, has made changes and has saved to the new file
SKY.TXT. Now there are two files, SPACE.TXT and SKY.TXT. SPACE.TXT has not modified at all.

After the first SaveFile command, you still can do changes to the edited file, because SaveFile doesn’t
empty the memory of the edited file. Then the script changed the data and the second SaveFile saved it in
the STAR.TXT file.

LoadFile
Syntax

LoadFile “filename”

Also

LOAFIL “filename”
CargaFichero “filename”

Parameters

Parameter Description
Filename Is the file to work with. Wildcards are not allowed.

Operation

Loads the desired text file. After load, all operations will work with its contents. Any work not saved before
this command will be discarded.

Related commands

LoadAllFile, SaveFile, SaveAllFile
Working with Files and Directories

Samples

Sample 1: Modifying a file

Sample 2: Saving a new file

LoadAllFile
Syntax

LoadAllFile “filename”

Also

LOAALLFIL “filename”
CargaTodoFichero “filename”

Parameters

Parameter Description
Filename Specifies all the files this command will load and operate with. Wilcards are allowed.

Operation

Loads sequencially all the desired text files indicated by the wilcards. You can use *,? to describe the files
as you do when putting wilcards arguments to OS commands. After load, all operations will work with the
contents of the current file. Any work not saved before this command will be discarded.
This command works with SaveAllFile. When a SaveAllFile command is encountered within the execution of
the script, control jumps to the next command of the first previous LoadAllFile, getting the next file to
load.

Related commands

LoadFile, SaveFile, SaveAllFile
Working with Files and Directories

Samples

Sample 1: Modifying multiple files

Sample 2: Creating multiple new files

Creating multiple files

Sample of

SaveAllFile, LoadAllFile

Script
File SAMPLE.SC:

’ Script to create multiple files
LoadAllFile "C:\TEST\S*.TXT"
. . .
SaveAllFile "C:\TEST\F*.??M"
End

Execution

EDIFIC SAMPLE.SC

Results

Let’s guess there are four files in the C:\TEST directory: SPACE.TXT, SKY.TXT, STAR.TXT, BLUE.TXT. The
files that begins by S will be loaded by the execution of the script and files FPACE.TXM, FKY.TXM and
FTAR.TXM will be created as result of SaveAllFile. Note that you have the same names of the files but
replacing S to F and last T to M.

Comments

The script SAMPLE.SC has loaded first the file SKY.TXT, next SPACE.TXT and so on. All the commands
between LoadAllFile and SaveAllFile have been executed for each of these files.
SaveAllFile gets the name corresponding to the current working file and applies the wildcards to save a
new file. This new file is like the original but with the changes.

You can try all combinations of wilcards to get any set of filename results.

Modifying multiple files

Sample of

SaveAllFile, LoadAllFile

Script
File SAMPLE.SC:

’ Script to modify multiple files
LoadAllFile "C:\TEST\S*.TXT"
. . .
SaveAllFile
End

Execution

EDIFIC SAMPLE.SC

Results

Let’s guess there are four files in the C:\TEST directory: SPACE.TXT, SKY.TXT, STAR.TXT, BLUE.TXT. The
files that begins by S will be modified by the execution of the script.

Comments

The script SAMPLE.SC has loaded first the file SKY.TXT, next SPACE.TXT and so on. All the commands
between LoadAllFile and SaveAllFile have been executed for each of these files.
Also the files have been saved with changes.

SaveAllFile
Syntax

SaveAllFile [“filename”]

Also

SAVALLFIL [“filename”]
GrabaTodoFichero [“filename”]
GuardaTodoFichero [“filename”]

Parameters

Parameter Description
Filename Optional. Specifies the filename pattern the files will be saved as. If this name are not

specified, the original name at LoadAllFile command will be used. Wildcards are allowed here.

Operation

SaveAllFile works in conjunction with LoadAllFile. This pair of commands work to make changes to a set of
files. LoadAllFile loads sequencially all the desired text files indicated by the wilcards. When SaveAllFile is
encountered, the current working text is saved aplying the wildcards that filename contains to the original
name of the file loaded previously. Then you can create a new set of files.

If you have not specified any filename parameter, files will be saved with the original name.

When SaveAllFile detects that there are still files to get, this command jumps control to the corresponding
LoadAllFile command, and next file will be loaded for work with.

Related commands

LoadAllFile, SaveFile, LoadFile
Working with Files and Directories

Samples

Sample 1: Modifying multiple files

Sample 2: Creating multiple new files

Disc
Syntax

Disc “unit”

Also

DSK “unit”
Disco “unit”

Parameters

Parameter Description
Unit Tells what disk unit to switch to

Operation

Disc switches to the unit hard disk as a default to get or put files.

Related commands

Directory
Working with Files and Directories

Samples

Sample : Changing default dir

Changing the default directory

Sample of

Disc, Directory

Script
File SAMPLE.SC:

’ Script to change default directory
Disc "C:"
Directory "\TEMP"
LoadFile "STAR.TXT"
. . .
SaveFile
End

Execution

EDIFIC SAMPLE.SC

Results

Let’s guess there is a file named STAR.TXT in the C:\TEST directory. With Disc and Directory commands,
LoadFile could get the file.

Comments

At the exit of Edific, the default directory is the specified by Disc and Directory.

Directory
Syntax

Directory “path”

Also

DIR “path”
Directorio “path”

Parameters

Parameter Description
Path Tells what directory to switch to

Operation

Directory switches to the path directory as default to get or put files.

Related commands

Disc
Working with Files and Directories

Samples

Sample : Changing default dir

InsertValue
Syntax

InsertValue “section” “key” “value”

Also

INSVAL “section” “key” “value”
InsertaValor “section” “key” “value”

Parameters

Parameter Description
Section Is the section attribute of the INI file
Key Is the key to add or change value to
Value Is the data assigned to the key

Operation

InsertValue works with Windows INI text files to insert a key value. If the key exists, is replaced with the
specified value. If the key doesn’t exists, the key will be created with the value. If the section doesn’t
exists, the specified section is created at the end of file to allow put the corresponding key.

Related commands

InsertSection, DeleteKey, DeleteSection
Working with Windows INI Files

Samples

Sample 1: Replacing a key value

Sample 2: Setting a new section and key value

Replacing a key value

Sample of

InsertValue

Script and Files
File SAMPLE.SC:

’ Script to change a windows INI value
LoadFile "C:\TEST\APPLIC.INI"
InsertValue "Begin" "AutoRun" "1"
SaveFile
End

File APPLIC.INI:

[Begin]
WinPos = 32,200,500,639
AutoRun = 0
[Directory]
TempDir=C:\TEMP
WorkDir=C:\TEST
SwapDir=C:\TEMP2

Execution

EDIFIC SAMPLE.SC

Results

The file APPLIC.INI will be modified by setting AutoRun to 1.

File APPLIC.INI (result):

[Begin]
WinPos = 32,200,500,639
AutoRun = 1
[Directory]
TempDir=C:\TEMP
WorkDir=C:\TEST
SwapDir=C:\TEMP2

Comments

You can also use parameters in InsertValue without quotations if data doesn’t contains spaces
It doesn’t matter about case attribute on matching key or section text, but if you specify any of this data,
the resulting file will get these properties (i.e. if you put “AUTOupdate” in the command of the script file,
at the final file you will get “AUTOupdate” in place of “AutoUpdate”).

Setting up a new section and key value

Sample of

InsertValue

Script and Files
File SAMPLE.SC:

’ Script to change a windows INI file
LoadFile “C:\TEST\APPLIC.INI”
InsertValue “Begin” “AutoUpdate” “0”
InsertValue “Error” “Message” “This is an error message”
SaveFile
End

File APPLIC.INI:

[Begin]
WinPos = 32,200,500,639
AutoRun = 0
[Directory]
TempDir=C:\TEMP
WorkDir=C:\TEST
SwapDir=C:\TEMP2

Execution

EDIFIC SAMPLE.SC

Results

The file APPLIC.INI will be modified by adding the key value AutoUpdate and the section [Error]

File APPLIC.INI (result):

[Begin]
WinPos = 32,200,500,639
AutoRun = 0
AutoUpdate = 0
[Directory]
TempDir=C:\TEMP
WorkDir=C:\TEST
SwapDir=C:\TEMP2
[Error]
Message = This is an error message

Comments

You can also use parameters in InsertValue without quotations if data doesn’t contains spaces.
It doesn’t matter about case attribute on matching key or section text, but if you specify any of this data,
the resulting file will get these properties (i.e. if you put “AUTOupdate” in the command of the script file,
at the final file you will get “AUTOupdate” in place of “AutoUpdate”).

InsertSection
Syntax

InsertSection “section”

Also

INSSEC “section”
InsertaSeccion “section”

Parameters

Parameter Description
Section Is the section attribute of the INI file

Operation

InsertSection works with Windows INI text files to insert a section block. If the section exists the
command does nothing. If the section doesn’t exists, an empty block section will be created at end of file.

Related commands

InsertValue, DeleteKey, DeleteSection
Working with Windows INI Files

Samples

Sample: Adding a Section to a Windows INI file

Adding a section to a Windows INI file

Sample of

InsertSection

Script and Files
File SAMPLE.SC:

’ Script to change a windows INI file
LoadFile “C:\TEST\APPLIC.INI”
InsertSection “Directory”
InsertSection “Work”
SaveFile
End

File APPLIC.INI:

[Begin]
WinPos = 32,200,500,639
AutoRun = 0
[Directory]
TempDir=C:\TEMP
WorkDir=C:\TEST
SwapDir=C:\TEMP2

Execution

EDIFIC SAMPLE.SC

Results

The file APPLIC.INI will be modified by adding the empty section [Work]

File APPLIC.INI (result):

[Begin]
WinPos = 32,200,500,639
AutoRun = 0
[Directory]
TempDir=C:\TEMP
WorkDir=C:\TEST
SwapDir=C:\TEMP2
[Work]

Comments

The [Begin] section alredy was in the file.
You can also use parameters in InsertSection without quotations if data doesn’t contains spaces. It doesn’t
matter about case attribute on matching key or section text (i.e. is the same InsertSection “Directory”
and InsertSection “direcTORY”)

DeleteSection
Syntax

DeleteSection “section”

Also

DELSEC “section”
EliminaSeccion “section”

Parameters

Parameter Description
Section Is the section attribute of the INI file

Operation

DeleteSection works with Windows INI text files to delete a section block. If the section exists, all its keys
are deleted with the section.

Related commands

InsertValue, InsertSection, DeleteKey
Working with Windows INI Files

Samples

Sample: Deleting a Section in a Windows INI file

Deleting a section in a Windows INI file

Sample of

DeleteSection

Script and Files
File SAMPLE.SC:

’ Script to change a windows INI file
LoadFile “C:\TEST\APPLIC.INI”
DeleteSection “directory”
DeleteSection “Test”
SaveFile
End

File APPLIC.INI:

[Begin]
WinPos = 32,200,500,639
AutoRun = 0
[Directory]
TempDir=C:\TEMP
WorkDir=C:\TEST
SwapDir=C:\TEMP2

Execution

EDIFIC SAMPLE.SC

Results

The file APPLIC.INI will be modified by erasing the section [Directory]

File APPLIC.INI (result):

[Begin]
WinPos = 32,200,500,639
AutoRun = 0

Comments

All the keys of the corresponding [Directory] section block have been deleted.
The [Test] section didn’t exists.
You can also use parameters in DeleteSection without quotations if data doesn’t contains spaces. It
doesn’t matter about case attribute on matching key or section text (i.e. is the same DeleteSection
“Directory” and DeleteSection “direcTORY”)

DeleteKey
Syntax

DeleteKey “section” “key”

Also

DELKEY “section” “key”
EliminaClave “section” “key”

Parameters

Parameter Description
Section Is the section attribute of the INI file
Key Is the key attribute of the INI file

Operation

DeleteKey works with Windows INI text files to delete a key value. If the key exists, the key and its value
is deleted.

Related commands

InsertValue, InsertSection, DeleteSection
Working with Windows INI Files

Samples

Sample: Deleting a Key in a Windows INI file

Deleting a key in a Windows INI file

Sample of

DeleteKey

Script and Files
File SAMPLE.SC:

’ Script to change a windows INI file
LoadFile “C:\TEST\APPLIC.INI”
DeleteKey “directory” “Workdir”
DeleteKey “Test” “message”
SaveFile
End

File APPLIC.INI:

[Begin]
WinPos = 32,200,500,639
AutoRun = 0
[Directory]
TempDir=C:\TEMP
WorkDir=C:\TEST
SwapDir=C:\TEMP2

Execution

EDIFIC SAMPLE.SC

Results

The file APPLIC.INI will be modified by erasing the key WorkDir.

File APPLIC.INI (result):

[Begin]
WinPos = 32,200,500,639
AutoRun = 0
[Begin]
WinPos = 32,200,500,639
AutoRun = 0
[Directory]
TempDir=C:\TEMP
SwapDir=C:\TEMP2

Comments

The WorkDir key has been removed.
The [Test] section didn’t exists.
You can also use parameters in DeleteKey without quotations if data doesn’t contains spaces. It doesn’t
matter about case attribute on matching key or section text (i.e. is the same DeleteKey “Directory”
“WORKDIR” and DeleteKey “direcTORY” “workDIR”)

AfterLine
Syntax

AfterLine “lineref” Insert “lineput” [CaseSen] [Ident] [NoRep]

Also

AFTLIN “lineref” INSERT “lineput” [CaseSen] [Ident] [NoRep]
DespuesDeLinea “lineref” Inserta “lineput” [CaseSen] [Ident] [NoRep]

Parameters

Parameter Description
Lineref Is a reference string
Lineput Is the string to insert as a line
CaseSen Optional. This keyword tells Edific that the match with the lineref must be case sensitive
Ident Optional. This keyword tells Edific that the match must be exact. If this word is not specified,

AfterLine matches when beginning of any line is the same as lineref
NoRep Optional. This keyword tells Edific not to insert the line if lineput is already after the line

matching the conditions

Operation

Inserts the line lineput after a line lineref that match the conditions.
AfterLine looks all the lines of the current loaded file for the lines lineref.
The conditions are determined by the flag keywords (CaseSen, Ident, NoRep).
If CaseSen is specified, lineref must match case sensitive. If Ident is not specified, the match is valid if
any line has the same lineref first string.
If NoRep is specified, the insertion of the line will be not done if the lineput already exists after the lineref
line.

Related commands

AfterLineContaining, BeforeLine , BeforeLineContaining, DeleteLine, DeleteLineContaining, ReplaceLine,
ReplaceLineContaining, ReplaceString
Working with Lines and Substrings

Samples

Sample: Inserting lines after

Inserting lines after

Sample of

AfterLine

Script and Files
File SAMPLE.SC:

’ Script to add lines
LoadFile “C:\TEST\ODYSSEY.TXT”
AfterLine "piling THEM" Insert "covered smoothly with rugs"
AfterLine "piling them" Insert "covered smoothly with rugs" NoRep
AfterLine "piling them" Insert "(this line cannot appear)" Ident
AfterLine "PILING them" Insert "(this line ALSO cannot appear)" CaseSen
SaveFile
End

File ODYSSEY.TXT:

At his word Helen of Argos
ordered her house-maidens
to range beds under the sun-porch,
piling them with lovely purple blankets
and thick woolen cloaks on top of all.

Execution

EDIFIC SAMPLE.SC

Results

The file ODYSSEY.TXT modified with the AfterLine commands.

File ODYSSEY.TXT (result):

At his word Helen of Argos
ordered her house-maidens
to range beds under the sun-porch,
piling them with lovely purple blankets
covered smoothly with rugs
and thick woolen cloaks on top of all.

Comments

Let’s see what’s happend with the AfterLine commands:
The first AfterLine matches the fourth line and puts the corresponding line after
The second, also matches the fourth line, but doesn’t puts any line because NoRep flag is specified, and
the “covered…” line was already there by the first command.
The third AfterLine doesn’t match any line to work because flag Ident is specified. This means that the
line must match exactly with “piling them”, not only the firsts characters.
The fourth command also doesn’t match because case is not the same as the fourth line.

Even this samples have one or none flags at the end of AfterLine commands, you can use all three flags in
combinations to do all operations you would.

AfterLineContaining
Syntax

AfterLineContaining “substringref” Insert “lineput” [CaseSen] [NoRep]

Also

AFTLINCON “substringref” INSERT “lineput” [CaseSen] [NoRep]
DespuesDeLineaConteniendo “substringref” Inserta “lineput” [CaseSen] [NoRep]

Parameters

Parameter Description
Substringref Is a reference string
Lineput Is the string to insert as a line
CaseSen Optional. This keyword tells Edific that the match with the substringref must be case sensitive
NoRep Optional. This keyword tells Edific not to insert the line if lineput is already after the line

matching the conditions

Operation

Inserts the line lineput after a line that contains a string substringref and matches the conditions.
If CaseSen is specified, substringref must match case sensitive.
If NoRep is specified, the insertion of the line will be not done if the lineput already exists after the
corresponding matching line.

Related commands

AfterLine, BeforeLine, BeforeLineContaining, DeleteLine, DeleteLineContaining, ReplaceLine,
ReplaceLineContaining, ReplaceString
Working with Lines and Substrings

Samples

Sample: Inserting lines after containing

Inserting lines after containing

Sample of

AfterLineContaining

Script and Files
File SAMPLE.SC:

’ Script to add lines
LoadFile “C:\TEST\ODYSSEY.TXT”
AfterLineContaining "lovely purple" Insert "covered smoothly with rugs"
AfterLineContaining "lovely purple" Insert "covered smoothly with rugs" NoRep
AfterLineContaining "lovely PurPlE" Insert "(this line cannot appear)" CaseSen
SaveFile
End

File ODYSSEY.TXT:

At his word Helen of Argos
ordered her house-maidens
to range beds under the sun-porch,
piling them with lovely purple blankets
and thick woolen cloaks on top of all.

Execution

EDIFIC SAMPLE.SC

Results

The file ODYSSEY.TXT modified with the AfterLineContaining commands.

File ODYSSEY.TXT (result):

At his word Helen of Argos
ordered her house-maidens
to range beds under the sun-porch,
piling them with lovely purple blankets
covered smoothly with rugs
and thick woolen cloaks on top of all.

Comments

Let’s see what’s happend with the AfterLineContaining commands:
The first AfterLineContaining matches the fourth line (because has an substring that is “lovely purple”) and
puts the corresponding line after.
The second, also matches the fourth line, but doesn’t puts any line because NoRep flag is specified, and
the “covered…” line was already there by the first command.
The third command doesn’t match any line because case in “lovely PurPlE” isn’t the same as the substring
in the fourth line.

Even this samples have one or none flags at the end of AfterLineContaining commands, you can use all
two flags in combinations to do all operations you would.

BeforeLine
Syntax

BeforeLine “lineref” Insert “lineput” [CaseSen] [Ident] [NoRep]

Also

BEFLIN “lineref” INSERT “lineput” [CaseSen] [Ident] [NoRep]
AntesDeLinea “lineref” Inserta “lineput” [CaseSen] [Ident] [NoRep]

Parameters

Parameter Description
Lineref Is a reference string
Lineput Is the string to insert as a line
CaseSen Optional. This keyword tells Edific that the match with the lineref must be case sensitive
Ident Optional. This keyword tells Edific that the match must be exact. If this word is not specified,

BeforeLine matches when beginning of any line is the same as lineref
NoRep Optional. This keyword tells Edific not to insert the line if lineput is already before the line

matching the conditions

Operation

Inserts the line lineput before a line lineref that match the conditions.
BeforeLine looks all the lines of the current loaded file for the lines lineref.
The conditions are determined by the flag keywords (CaseSen, Ident, NoRep).
If CaseSen is specified, lineref must match case sensitive. If Ident is not specified, the match is valid if
any line has the same lineref first string.
If NoRep is specified, the insertion of the line will be not done if the lineput already exists before the
lineref line.

Related commands

BeforeLineContaining, AfterLine, AfterLineContaining, DeleteLine, DeleteLineContaining, ReplaceLine,
ReplaceLineContaining, ReplaceString
Working with Lines and Substrings

Samples

Sample: Inserting lines before

Inserting lines before

Sample of

BeforeLine

Script and Files
File SAMPLE.SC:

’ Script to add lines
LoadFile “C:\TEST\ODYSSEY.TXT”
BeforeLine "piling THEM" Insert "to range beds under the sun-porch,"
BeforeLine "piling them" Insert "to range beds under the sun-porch," NoRep
BeforeLine "piling them" Insert "(this line cannot appear)" Ident
BeforeLine "PILING them" Insert "(this line ALSO cannot appear)" CaseSen
SaveFile
End

File ODYSSEY.TXT:

At his word Helen of Argos
ordered her house-maidens
piling them with lovely purple blankets
covered smoothly with rugs
and thick woolen cloaks on top of all.

Execution

EDIFIC SAMPLE.SC

Results

The file ODYSSEY.TXT modified with the BeforeLine commands.

File ODYSSEY.TXT (result):

At his word Helen of Argos
ordered her house-maidens
to range beds under the sun-porch,
piling them with lovely purple blankets
covered smoothly with rugs
and thick woolen cloaks on top of all.

Comments

Let’s see what’s happend with the BeforeLine commands:
The first BeforeLine matches the fourth line and puts the corresponding line before it.
The second, also matches the fourth line, but doesn’t puts any line because NoRep flag is specified, and
the “to range…” line was already there by the first command.
The third BeforeLine doesn’t match any line to work because flag Ident is specified. This means that the
line must match exactly with “piling them”, not only the firsts characters.
The fourth command also doesn’t match because case is not the same as the fourth line.

Even this samples have one or none flags at the end of AfterLine commands, you can use all three flags in
combinations to do all operations you would.

BeforeLineContaining
Syntax

BeforeLineContaining “substringref” Insert “lineput” [CaseSen] [NoRep]

Also

BEFLINCON “substringref” INSERT “lineput” [CaseSen] [NoRep]
AntesDeLineaConteniendo “substringref” Inserta “lineput” [CaseSen] [NoRep]

Parameters

Parameter Description
Substringref Is a reference string
Lineput Is the string to insert as a line
CaseSen Optional. This keyword tells Edific that the match with the substringref must be case sensitive
NoRep Optional. This keyword tells Edific not to insert the line if lineput is already before the line

matching the conditions

Operation

Inserts the line lineput before a line that contains a string substringref and matches the conditions.
If CaseSen is specified, substringref must match case sensitive.
If NoRep is specified, the insertion of the line will be not done if the lineput already exists before the
corresponding matching line.

Related commands

BeforeLine, AfterLine, AfterLineContaining, DeleteLine, DeleteLineContaining, ReplaceLine,
ReplaceLineContaining, ReplaceString
Working with Lines and Substrings

Samples

Sample: Inserting lines before containing

Inserting lines before containing

Sample of

BeforeLineContaining

Script and Files
File SAMPLE.SC:

’ Script to add lines
LoadFile “C:\TEST\ODYSSEY.TXT”
BeforeLineContaining "lovely purple" Insert "to range beds under the sun-porch,"
BeforeLineContaining "lovely purple" Insert "to range beds under the sun-porch," NoRep
BeforeLineContaining "lovely PurPlE" Insert "(this line cannot appear)" CaseSen
SaveFile
End

File ODYSSEY.TXT:

At his word Helen of Argos
ordered her house-maidens
piling them with lovely purple blankets
covered smoothly with rugs
and thick woolen cloaks on top of all.

Execution

EDIFIC SAMPLE.SC

Results

The file ODYSSEY.TXT modified with the BeforeLineContaining commands.

File ODYSSEY.TXT (result):

At his word Helen of Argos
ordered her house-maidens
to range beds under the sun-porch,
piling them with lovely purple blankets
covered smoothly with rugs
and thick woolen cloaks on top of all.

Comments

Let’s see what’s happend with the BeforeLineContaining commands:
The first BeforeLineContaining matches the fourth line (because has an substring that is “lovely purple”)
and puts the corresponding line before.
The second, also matches the fourth line, but doesn’t puts any line because NoRep flag is specified, and
the “to range…” line was already there by the first command.
The third command doesn’t match any line because case in “lovely PurPlE” isn’t the same as the substring
in the fourth line.

Even this samples have one or none flags at the end of BeforeLineContaining commands, you can use all
two flags in combinations to do all operations you would.

DeleteLine
Syntax

DeleteLine “lineref” [CaseSen] [Ident]

Also

DELLIN “lineref” [CaseSen] [Ident]
EliminaLinea “lineref” [CaseSen] [Ident]

Parameters

Parameter Description
Lineref Is a reference string
CaseSen Optional. This keyword tells Edific that the match with the lineref must be case sensitive
Ident Optional. This keyword tells Edific that the match must be exact. If this word is not specified,

DeleteLine matches when beginning of any line is the same as lineref

Operation

Erases any line that matches with lineref and the specified flags.
The conditions are determined by the flag keywords (CaseSen, Ident).
If CaseSen is specified, lineref must match case sensitive. If Ident is not specified, the match is valid if
any line has the same lineref first string.

Related commands

DeleteLineContaining, BeforeLine, BeforeLineContaining, AfterLine, AfterLineContaining, ReplaceLine,
ReplaceLineContaining, ReplaceString
Working with Lines and Substrings

Samples

Sample: Deleting lines

Deleting lines

Sample of

DeleteLine

Script and Files
File SAMPLE.SC:

’ Script to delete lines
LoadFile "C:\TEST\ODYSSEY.TXT"
DeleteLine "ordered her"
DeleteLine "Piling Them" CaseSen
DeleteLine "covered smoothly" Ident
SaveFile
End

File ODYSSEY.TXT:

At his word Helen of Argos
ordered her house-maidens
to range beds under the sun-porch,
piling them with lovely purple blankets
covered smoothly with rugs
and thick woolen cloaks on top of all.

Execution

EDIFIC SAMPLE.SC

Results

The file ODYSSEY.TXT modified with the DeleteLine commands.

File ODYSSEY.TXT (result):

At his word Helen of Argos
to range beds under the sun-porch,
piling them with lovely purple blankets
covered smoothly with rugs
and thick woolen cloaks on top of all.

Comments

Let’s see what’s happend with the DeleteLine commands:
The first DeleteLine matches the second line and erases it.
The second doesn’t match anything because has enabled the case sensitive
The third DeleteLine doesn’t match any line because flag Ident is specified. This means that the line must
match exactly with “covered smoothly”, not only the firsts characters.

Even this samples have one or none flags at the end of DeleteLine commands, you can use all two flags in
combinations to do all operations you would.

DeleteLineContaining
Syntax

DeleteLineContaining “substringref” [CaseSen]

Also

DELLINCON “substringref” [CaseSen]
EliminaLineaConteniendo “substringref” [CaseSen]

Parameters

Parameter Description
Substringref Is a reference string
CaseSen Optional. This keyword tells Edific that the match with the substringref must be case sensitive

Operation

Erases any line that contains the substringref.
If CaseSen is specified, substringref must match case sensitive.

Related commands

DeleteLine, BeforeLine, BeforeLineContaining, AfterLine, AfterLineContaining, ReplaceLine,
ReplaceLineContaining, ReplaceString
Working with Lines and Substrings

Samples

Sample: Deleting lines containing substrings

Deleting lines containing substrings

Sample of

DeleteLineContaining

Script and Files
File SAMPLE.SC:

’ Script to delete lines
LoadFile "C:\TEST\ODYSSEY.TXT"
DeleteLineContaining "ORDERED her"
DeleteLineContaining "With LoveLY" CaseSen
SaveFile
End

File ODYSSEY.TXT:

At his word Helen of Argos
ordered her house-maidens
to range beds under the sun-porch,
piling them with lovely purple blankets
covered smoothly with rugs
and thick woolen cloaks on top of all.

Execution

EDIFIC SAMPLE.SC

Results

The file ODYSSEY.TXT modified with the DeleteLineContaining commands.

File ODYSSEY.TXT (result):

At his word Helen of Argos
to range beds under the sun-porch,
piling them with lovely purple blankets
covered smoothly with rugs
and thick woolen cloaks on top of all.

Comments

Let’s see what’s happend with the DeleteLineContaining commands:
The first DeleteLineContaining matches the second line and erases it.
The second doesn’t match anything because has enabled the case sensitive

ReplaceLine
Syntax

ReplaceLine “lineref” By “lineput” [CaseSen] [Ident]

Also

REPLIN “lineref” BY “lineput” [CaseSen] [Ident]
ReemplazaLinea “lineref” Por “lineput” [CaseSen] [Ident]

Parameters

Parameter Description
Lineref Is the replaced string
Lineput Is the replacing string
CaseSen Optional. This keyword tells Edific that the match with the lineref must be case sensitive
Ident Optional. This keyword tells Edific that the match must be exact. If this word is not specified,

ReplaceLine matches when beginning of any line is the same as lineref

Operation

Replaces the line lineref by lineput. Seeks lineref in the loaded file and replaces all ocurrences by lineput.
Flag keywords modify the matches.

If CaseSen is specified, lineref must match case sensitive. If Ident is not specified, the match is valid
only if any line has the same lineref first string.

Related commands

ReplaceLineContaining, ReplaceString, BeforeLineContaining, BeforeLine, AfterLine, AfterLineContaining,
DeleteLine, DeleteLineContaining
Working with Lines and Substrings

Samples

Sample: Replacing lines

Replacing lines

Sample of

ReplaceLine

Script and Files
File SAMPLE.SC:

’ Script to delete lines
LoadFile "C:\TEST\ODYSSEY.TXT"
ReplaceLine "BIGS a" By "covered smoothly with rugs"
ReplaceLine "ORDERED her" By "(This line cannot appear)" CaseSen
ReplaceLine "At his word" By "(This line ALSO cannot appear)" Ident
SaveFile
End

File ODYSSEY.TXT:

At his word Helen of Argos
ordered her house-maidens
to range beds under the sun-porch,
piling them with lovely purple blankets
bigs and warms
and thick woolen cloaks on top of all.

Execution

EDIFIC SAMPLE.SC

Results

The file ODYSSEY.TXT modified with the ReplaceLine commands.

File ODYSSEY.TXT (result):

At his word Helen of Argos
ordered her house-maidens
to range beds under the sun-porch,
piling them with lovely purple blankets
covered smoothly with rugs
and thick woolen cloaks on top of all.

Comments

Let’s see what’s happend with the ReplaceLine commands:
The first ReplaceLine matches the fifth line and substitutes it. Note that It doesn’t care about case here.
The second command doesn’t match anything because the case sensitive flag is active
The third ReplaceLine also doesn’t match any line, because the Ident flag is active.

ReplaceLineContaining
Syntax

ReplaceLineContaining “substringref” By “lineput” [CaseSen]

Also

REPLINCON “substringref” BY “lineput” [CaseSen]
ReemplazaLineaConteniendo “substringref” Por “lineput” [CaseSen]

Parameters

Parameter Description
substringref Is the substring the function looks for
Lineput Is the replacing string
CaseSen Optional. This keyword tells Edific that the match with the substringref must be case sensitive

Operation

Replaces the line that contains the substring substringref by lineput. Seeks substringref in the loaded file
and replaces the entire line that contains this substring by the new line lineput. Flag keywords modify the
matches.

If CaseSen is specified, substringref must match with case sensitive.

Related commands

ReplaceLine, ReplaceString, BeforeLineContaining, BeforeLine, AfterLine, AfterLineContaining, DeleteLine,
DeleteLineContaining
Working with Lines and Substrings

Samples

Sample: Replacing lines containing substrings

Replacing lines containing substrings

Sample of

ReplaceLineContaining

Script and Files
File SAMPLE.SC:

’ Script to delete lines
LoadFile "C:\TEST\ODYSSEY.TXT"
ReplaceLineContaining "AND wA" By "covered smoothly with rugs"
ReplaceLineContaining "HER house-mai" By "(This line cannot appear)" CaseSen
SaveFile
End

File ODYSSEY.TXT:

At his word Helen of Argos
ordered her house-maidens
to range beds under the sun-porch,
piling them with lovely purple blankets
bigs and warms
and thick woolen cloaks on top of all.

Execution

EDIFIC SAMPLE.SC

Results

The file ODYSSEY.TXT modified with the ReplaceLineContaining commands.

File ODYSSEY.TXT (result):

At his word Helen of Argos
ordered her house-maidens
to range beds under the sun-porch,
piling them with lovely purple blankets
covered smoothly with rugs
and thick woolen cloaks on top of all.

Comments

Let’s see what’s happend with the ReplaceLineContaining commands:
The first ReplaceLineContaining command matches the fifth line and substitutes it. Note that It doesn’t
care about case here.
The second command doesn’t match anything because the case sensitive flag is active.

ReplaceString
Syntax

ReplaceLineContaining “substringref” By “substringput” [CaseSen]

Also

REPSTR “substringref” BY “substringput” [CaseSen]
Reemplaza “substringref” Por “substringput” [CaseSen]

Parameters

Parameter Description
substringref Is the substring the function looks for
substringput Is the replacing string
CaseSen Optional. This keyword tells Edific that the match with the substringref must be case sensitive

Operation

Replaces all the specified substing substringref by the substring specified. Note that doesn’t replace all the
line like the other functions. The substring will be replaced every time it’s found, even when multiple
matches in the same line.

If CaseSen is specified, substringref must match with case sensitive.

Related commands

ReplaceLine, ReplaceLineContaining, BeforeLineContaining, BeforeLine, AfterLine, AfterLineContaining,
DeleteLine, DeleteLineContaining
Working with Lines and Substrings

Samples

Sample: Replacing substrings

Replacing substrings

Sample of

ReplaceString

Script and Files
File SAMPLE.SC:

’ Script to delete lines
LoadFile "C:\TEST\ODYSSEY.TXT"
ReplaceString "TH" By "X"
ReplaceString "red" By "(RED)" CaseSen
ReplaceString "OF" By "(OF)" CaseSen
SaveFile
End

File ODYSSEY.TXT:

At his word Helen of Argos
ordered her house-maidens
to range beds under the sun-porch,
piling them with lovely purple blankets
covered smoothly with rugs
and thick woolen cloaks on top of all.

Execution

EDIFIC SAMPLE.SC

Results

The file ODYSSEY.TXT modified with the ReplaceString commands.

File ODYSSEY.TXT (result):

At his word Helen of Argos
orde(RED) her house-maidens
to range beds under Xe sun-porch,
piling Xem wiX lovely purple blankets
cove(RED) smooXly wiX rugs
and Xick woolen cloaks on top of all.

Comments

Let’s see what’s happend with the ReplaceString commands:
The first ReplaceString command matches “th” substrings and substitutes this by “X”. Note that multiple
matches also have been treated.
The second command match “red” because the case sensitive flag is active and the string is the same.
Note that in the third command case sense makes function do nothing.

AfterLineNumber
Syntax

AfterLineNumber number Insert “lineput”

Also

AFTLINNUM number INSERT “lineput”
DespuesDeLineaNumero number Inserta “lineput”

Parameters

Parameter Description
Number Is an positive integer number
Lineput Is the string to insert

Operation

Puts the line lineput after the one that is the number-th line in the current loaded file.
The number parameter must be greater than 0 and minor or equal than the number of lines of the file at
the moment the command is executed. Othercase is ignored
Note that first line in a file is line 1.

Related commands

AfterEndInsert, BeforeBeginInsert, BeforeLineNumber, DeleteLineNumber
Working with Lines and Linenumbers

Samples

Sample: Adding lines with linenumbers

Adding lines with linenumbers

Sample of

AfterLineNumber, BeforeLineNumber

Script and Files
File SAMPLE.SC:

’ Script to delete lines
LoadFile "C:\TEST\ODYSSEY.TXT"
AfterLineNumber 6 Insert "(this line cannot appear)"
AfterLineNumber 2 Insert "ordered her house-maidens"
AfterLineNumber 6 Insert "(this line MUST appear at the end)"
BeforeLineNumber 6 Insert 'this line appears before "and thick.. " line'
SaveFile
End

File ODYSSEY.TXT:

At his word Helen of Argos
to range beds under the sun-porch,
piling them with lovely purple blankets
covered smoothly with rugs
and thick woolen cloaks on top of all.

Execution

EDIFIC SAMPLE.SC

Results

The file ODYSSEY.TXT modified with the AfterLineNumber and BeforeLineNumber commands.

File ODYSSEY.TXT (result):

At his word Helen of Argos
ordered her house-maidens
to range beds under the sun-porch,
piling them with lovely purple blankets
covered smoothly with rugs
this line appears before "and thick.. " line
and thick woolen cloaks on top of all.
(this line MUST appear at the end)

Comments

Let’s see what’s happend with the AfterLineNumber commands:
The first AfterLineNumber command do not inserts any line because the file only has five lines. When the
second command is executed, then inserting the new line give to the file one more line. It’s for this reason
the third command can insert now a line after the sixth.

The BeforeLineNumber command works like AfterLineNumber. Note also that you can use diferent
character delimiter (‘, *, @) in place of (“).

BeforeLineNumber
Syntax

BeforeLineNumber number Insert “lineput”

Also

BEFLINNUM number INSERT “lineput”
AntesDeLineaNumero number Inserta “lineput”

Parameters

Parameter Description
Number Is an positive integer number
Lineput Is the string to insert

Operation

Puts the line lineput before the one that is the number-th line in the current loaded file.
The number parameter must be greater than 0 and minor or equal than the number of lines of the file at
the moment the command is executed. Othercase is ignored
Note that first line in a file is line 1.

Related commands

BeforeBeginInsert, AfterEndInsert, AfterLineNumber, DeleteLineNumber
Working with Lines and Linenumbers

Samples

Sample: Adding lines with linenumbers

AfterEndInsert
Syntax

AfterEndInsert “lineput”

Also

AFTENDINS “lineput”
InsertaFinal “lineput”

Parameters

Parameter Description
Lineput Is the string to insert

Operation

Puts the line lineput at the end of the current edited file.

Related commands

BeforeBeginInsert, BeforeLineNumber, AfterLineNumber, DeleteLineNumber
Working with Lines and Linenumbers

Samples

Sample: Adding lines at end or top

Adding lines at end or top

Sample of

AfterEndInsert, BeforeBeginInsert

Script and Files
File SAMPLE.SC:

’ Script to delete lines
LoadFile "C:\TEST\ODYSSEY.TXT"
BeforeBeginInsert "(This is the first line)"
AfterEndInsert "(This is the final line)"
SaveFile
End

File ODYSSEY.TXT:

At his word Helen of Argos
ordered her house-maidens
to range beds under the sun-porch,
piling them with lovely purple blankets
covered smoothly with rugs
and thick woolen cloaks on top of all.

Execution

EDIFIC SAMPLE.SC

Results

The file ODYSSEY.TXT modified with the AfterEndInsert and BeforeBeginInsert commands.

File ODYSSEY.TXT (result):

(This is the first line)
At his word Helen of Argos
ordered her house-maidens
to range beds under the sun-porch,
piling them with lovely purple blankets
covered smoothly with rugs
and thick woolen cloaks on top of all.
(This is the final line)

Comments

AfterEndInsert has put its line at the end of the working file.
BeforeBeginInsert has put its line at top.

BeforeBeginInsert
Syntax

BeforeBeginInsert “lineput”

Also

BEFBEGINS “lineput”
InsertaPrincipio “lineput”

Parameters

Parameter Description
Lineput Is the string to insert

Operation

Puts the line lineput at the top of the current edited file.

Related commands

AfterEndInsert, BeforeLineNumber, AfterLineNumber, DeleteLineNumber
Working with Lines and Linenumbers

Samples

Sample: Adding lines at end or top

DeleteLineNumber
Syntax

DeleteLineNumber number

Also

DELLINNUM number
EliminaLineaNumero number

Parameters

Parameter Description
Number Is an positive integer number

Operation

Erases the line number-th in the current loaded file.
The number parameter must be greater than 0 and minor or equal than the number of lines of the file at
the moment the command is executed. Othercase is ignored
Note that first line in a file is line 1.

Related commands

BeforeBeginInsert, AfterEndInsert, AfterLineNumber, BeforeLineNumber
Working with Lines and Linenumbers

Samples

Sample: Deleting lines with linenumbers

Deleting lines with linenumbers

Sample of

DeleteLineNumber

Script and Files
File SAMPLE.SC:

’ Script to delete lines
LoadFile "C:\TEST\ODYSSEY.TXT"
DeleteLineNumber 4
DeleteLineNumber 4
SaveFile
End

File ODYSSEY.TXT:

At his word Helen of Argos
ordered her house-maidens
to range beds under the sun-porch,
piling them with lovely purple blankets
covered smoothly with rugs
and thick woolen cloaks on top of all.

Execution

EDIFIC SAMPLE.SC

Results

The file ODYSSEY.TXT modified with the DeleteLineNumber commands.

File ODYSSEY.TXT (result):

At his word Helen of Argos
ordered her house-maidens
to range beds under the sun-porch,
and thick woolen cloaks on top of all.

Comments

Here the file has been modified by the two DeleteLineNumber. Note that when the first command is
executed, the fourth line will be now the fifth in the original file.

Repeat
Syntax

Repeat number

Also

REP number
Repetir number

Parameters

Parameter Description
Number Repetitions for the structure

Operation

Is the begin of any Repeat…End Repeat structure. The value is the number of iterations the structure will
do.

Related commands

EndRepeat
Working with Execution Steps

Samples

Sample: Doing iterations

EndRepeat
Syntax

EndRepeat

Also

ENDREP
FinRepetir

Parameters

None

Operation

Is the end of any Repeat…End Repeat structure. At the EndRepeat, control jumps to the following
command after the nearest Repeat in the script.

Related commands

Repeat
Working with Execution Steps

Samples

Sample: Doing iterations

End
Syntax

End

Also

Fin

Parameters

None

Operation

Is the end of the script. Any code or command after this sentence will not be executed.

Samples

Sample: Displaying messages and Ending Scripts

Doing Iterations

Sample of

Repeat, EndRepeat

Script and Files
File SAMPLE.SC:

’ Script to do iterations
LoadFile "C:\TEST\ODYSSEY.TXT"
Repeat 3
 BeforeLine "ordered" Insert "(this line was included by the 1st repeat)"
 Repeat 2
 AfterLine "ordered" Insert "(this line was included by the 2nd repeat)"
 EndRepeat
EndRepeat
SaveFile
End

File ODYSSEY.TXT:

At his word Helen of Argos
ordered her house-maidens
to range beds under the sun-porch,
piling them with lovely purple blankets
covered smoothly with rugs
and thick woolen cloaks on top of all.

Execution

EDIFIC SAMPLE.SC

Results

The file ODYSSEY.TXT modified with the BeforeLine and AfterLine commands up to 3 and 6 times
respectively.

File ODYSSEY.TXT (result):

At his word Helen of Argos
(this line was included by the 1st repeat)
(this line was included by the 1st repeat)
(this line was included by the 1st repeat)
ordered her house-maidens
(this line was included by the 2nd repeat)
(this line was included by the 2nd repeat)
(this line was included by the 2nd repeat)
(this line was included by the 2nd repeat)
(this line was included by the 2nd repeat)
(this line was included by the 2nd repeat)
to range beds under the sun-porch,
piling them with lovely purple blankets
covered smoothly with rugs
and thick woolen cloaks on top of all.

Comments

All code between the outer block Repeat and EndRepeat has been executed for 3 times. Inside this block it
was another Repeat block that also has been executed 2 times in each iteration of the first Repeat. This
makes 6 times (Its correct this ? Well, now you see we know to multiply, isn’t-it ? :-)

Displaying Messages and Ending Scripts

Sample of

End, Display

Script and Files
File SAMPLE.SC:

Display "This message will be shown"
End
Display "This not !"

Execution

EDIFIC SAMPLE.SC

Results

The display of the screen will be like this:

This message will be shown

Display
Syntax

Display “message”

Also

DIS “message”
Mensaje “message”

Parameters

Parameter Description
Message A string that is the message to show

Operation

Puts out the message string to the default standard output.
If the flags /l or /a in the Edific invocation are set, output will be to the log file.

Samples

Sample: Displaying messages and Ending Scripts

InsertRegistryKey
Syntax

InsertRegistryKey “keyreg”

Also

INSREGKEY “keyreg”
InsertaClaveRegistro “keyreg”

Parameters

Parameter Description
Keyreg Is a string refering the key to create in the registry. Must be specified from root keys

Operation

Creates a key in the registry. The keyreg string specifies the key entirely from the root key. A valid
example for this can be:

HKEY_CURRENT_USER\Control Panel\Draft

When InsertRegistryKey is executed with this key, Draft key in HKEY_CURRENT_USER\Control Panel will be
created if did not exists before.

The key is created with Generic Class Class-name and default permissions.

You can use the following keywords as abreviations.

Warning: Be careful about the use of registry. Any mistake could destroy configuration information of the
computer. Please make test in non production areas.

Related commands

InsertRegistryValue, DeleteRegistryKey, DeleteRegistryValue, ChangeRegistryValue
Working with Registy

Samples

Sample: Creating keys and setting values

Creating Keys and setting values

Sample of

InsertRegistryKey, InsertRegistryValue

Script and Files
File SAMPLE.SC:

’ Script to manage registry
InsertRegistryValue "HKCU\Environment\TestKey\Param Number" Dword 1003644
InsertRegistryValue "HKCU\Environment\TestKey\Param NumberBigEndian" NumeroBE 1003644
InsertRegistryKey "HKEY_CURRENT_USER\Environment\TestKey2"
InsertRegistryValue "HKCU\Environment\TestKey\Param Text" String "A string message"
InsertRegistryValue "HKCU\Environment\TestKey\Param ExpText" ExpString "An expanded string
message"
InsertRegistryValue "HKCU\Environment\TestKey\Param MultiText" MultiString "The first
line.The second line..Still the second line.The third line "
InsertRegistryValue "HKCU\Environment\TestKey\Param Data" Binary "01F0E578 9FA03E80
910087E9"
End

Registry View:

Execution

EDIFIC32 SAMPLE.SC

Results

Registry View:

Comments

This is a sample of setting all type of data values into the registry. First, the HKCU means
HKEY_CURRENT_USER, this is the root key.
At the first command, the TestKey doesn’t exists, but it’s not a problem to InsertRegistryValue because it
creates all key needed to set the value. In case the value already were in the registry an was another data
type, the command also has no problem with that and changes the type and value to the specifien in
parameters.
You can see the sample of inserting multiple strings (MultiString type). The lines are delimited by the “.”
character in the text, and if you put two points together “..”, this will be converted in a real point char in
the line and doesn’t become a line separator. See the result in the graphic above.
At the binary data inserting command, you can see the data is defined like hexadecimal values in a string.
Spaces in the line will be ignored. If you put here any invalid character (valid characters are from 0 to 9
and from A to F) will become a 0 value. You can see the result value in the graphic.

The InsertRegistryKey command only creates an empty subkey.
Note that is not necessary to open or edit any file to operate with registry. These functions are
independent.

The Environment key has their corresponding Path values, etc. But no any subkey.

The TestKey2 key was created empty, without any value inside.

This type is not recognized by Regedt32 or Regedit programs

InsertRegistryValue
Syntax

InsertRegistryValue “valreg” DataType “info”

Also

INSREGVAL “valreg” DataType “info”
InsertaValorRegistro “valreg” DataType “info”

Parameters

Parameter Description
Valreg Is a string refering the value or attribute to set in the registry. Must be specified from root

keys
DataType Identifies the type of the value in the registry. Is a keyword from the set { String, ExpString,

MultiString, Binary, Dword, DwordBE}
Info Is a string with the information to insert

Operation

Set the data of any value in the registry with the Info data.
To do this operation, the command needs to have permisions to access the value key.
The valreg is a string referencing the value entirely from the corresponding root key. For example, you can
specify

HKEY_CURRENT_USER\Control Panel\Draft\ParameterText

Where ParameterText is the value and the rest is the location of the attribute. You can see this in the
following view:

When InsertRegistryValue is executed, Draft key in HKEY_CURRENT_USER\Control Panel will be created if
did not exists before.

If the attribute doesn’t exists, it will be created with the corresponding data type and information data.
If the attribute already exists in the registry, the data type and info specified will be set in. Note that the
data type is set even the attribute had another.

For specify the location of the value, you can use the following keywords as abreviations.

The data types of the information you can set with InsertRegistryValue are:

Keyword Is a Data type And the info parameter is

String REG_SZ A string with the data
ExpString REG_EXPAND_SZ A string with the data
MultiString REG_MULTI_SZ A string with text lines delimited by the “.” Character
Binary REG_BINARY A string with hexadecimal values of the binary data. Spaces

are ignored
DWord REG_DWORD A string with a number in decimal base
DwordBE REG_DWORD_BIG_ENDIAN A string with a number in decimal base

If the Data type is not recognized, the value will have a REG_NONE type.

The Info parameter has data format string. Examples of this type of data can be:

Keyword Sample of Info Comments

String “A sample Message”
ExpString “%SystemRoot%\config” Contains environment variables
MultiString “DEC..DLL.NEXT..DLL” The “..” sequence is interpreted exactly as a “.” in the final

data, not a separator.
Binary “03 F9 8E 9E A0 19 GG” Data in hexa. The spaces will be ignored. The last value is

invalid: will be converted to 00
DWord 196738 A positive 32 bit number (you can use or not the “

delimiters)
DwordBE 196738 The same the above. The data will be put in the registry in

the Big Endian format

Warning: Be careful about the use of registry. Any mistake could destroy configuration information of the
computer. Please make test in non production areas.

Related commands

InsertRegistryKey, DeleteRegistryKey, DeleteRegistryValue, ChangeRegistryValue
Working with Registy

Samples

Sample: Creating keys and setting values

ChangeRegistryValue
Syntax

ChangeRegistryValue “keyreg” DataType “searchinfo” “replaceinfo” ChangeType [CaseSen]

Also

CHAREGVAL “keyreg” DataType “searchinfo” “replaceinfo” ChangeType [CaseSen]
CambiaValorRegistro “keyreg” DataType “searchinfo” “replaceinfo” ChangeType [CaseSen]

Parameters

Parameter Description
Keyreg Is a string refering the key to start changing values in the registry. Must be specified from root

keys
DataType Identifies the type of the value in the registry to search for. Is a keyword from the set {String,

ExpString, MultiString, Binary, Dword, DwordBE}
SearchInfo Is a string with the information to search in the registry values
ReplaceInfo Is a string with the information to set in the registry values
ChangeType Identifies the mode the change operation will act. This is a keyword from the set

{PartialMatch&Replace, PartialMatch&Set, Ident}
CaseSen Optional. Is a keyword that indicates the search will be with care on case.

Operation

Changes the data of any value in the registry beginning by the keyreg specified and all its subkeys, that
has the same information data as the searchinfo parameter, has the same data type as indicated in
DataType and complains the CaseSen flag if activated and the matching mode.

The function begins with keyreg. It seeks for any value at this key that matches the SearchInfo data in the
way the ChangeType indicates. If match is found, then the data value is changed by the ReplaceInfo
parameter also in the way set by ChangeType. In any case, the function will look for child subkeys and
does the same for each value until all values are investigated.

The keyreg is a string referencing any key entirely from the corresponding root key. For example, you can
specify

HKEY_CURRENT_USER\Control Panel\Draft

For specify the location of the value, you can use the following keywords as abreviations.

The data types of the information you can specify with ChangeRegistryValue are:

DataType
Keyword

Is a Data type on Registry And the SearchInfo and ReplaceInfo parameters are

String REG_SZ A string with the data
ExpString REG_EXPAND_SZ A string with the data
MultiString REG_MULTI_SZ A string with text lines delimited by the “.” Character
Binary REG_BINARY A string with hexadecimal values of the binary data. Spaces

are ignored
DWord REG_DWORD A string with a number in decimal base
DwordBE REG_DWORD_BIG_ENDIAN A string with a number in decimal base

The SearchInfo and ReplaceInfo parameters have data format strings. Examples of this type of data can
be:

DataType
Keyword

Sample of SearchInfo and
ReplaceInfo Comments

String “A sample Message”

ExpString “%SystemRoot%\config” Contains environment variables
MultiString “DEC..DLL.NEXT..DLL” The “..” sequence is interpreted exactly as a “.” in the final

data, not a separator.
Binary “03 F9 8E 9E A0 19 GG” Data in hexa. The spaces will be ignored. The last value is

invalid: will be converted to 00
DWord 196738 A positive 32 bit number (you can use or not the “

delimiters)
DwordBE 196738 The same the above. The data will be put in the registry in

the Big Endian format

The ChangeType keywords sets the way the matching and the replace will work. The three modes of
change values are:

ChangeType mode
You can use these
keywords How ChangeRegistryValue will act

Match contained data and
substitutes it

PartialMatch&Replace
PM&R
Contenido&Reemplaza

Search for SearchInfo contained in the data value and
replaces it if match to the ReplaceInfo data. Note that
only substitutes the SearchInfo data found.

Match contained data and
sets new data

PartialMatch&Set
PM&S
Contenido&Inserta

Search for SearchInfo contained in the data value and
changes all the data value to ReplaceInfo data. Note
that in this mode, all data value will be discarded.

Match exact data and
changes it

Ident
IDEM
Identico

Search for SearchInfo exactly in the data value and
replaces it if match to the ReplaceInfo data. Note that
only will be a match if the information is the same as
SearchInfo data

Note that only the matches arise if the value has the same registry data type as specified by DataType.

ChangeRegistryValue is a powerful command to do changes, but also is dangerous if you make mistakes
on params.

Warning: Be careful about the use of registry. Any mistake could destroy configuration information of the
computer. Please make test in non production areas.

Related commands

InsertRegistryKey, DeleteRegistryKey, DeleteRegistryValue, InsertRegistryValue
Working with Registy

Samples

Sample: Making data changes to the registry

Making data changes to the registry

Sample of

ChangeRegistryValue

Script and Files
File SAMPLE.SC:

’ Script to manage registry

ChangeRegistryValue "HKCU\Environment\TestKey" Binary "910087" "BACC" PM&R Casesen

ChangeRegistryValue "HKCU\Environment\TestKey" MultiString "Second line" "THIS CANNOT
APPEAR" PM&R Casesen
ChangeRegistryValue "HKCU\Environment\TestKey" MultiString "Second line" "NEW second line"
PM&R

ChangeRegistryValue "HKCU\Environment\TestKey" ExpString "An expanded str" "THIS CANNOT
APPEAR" Ident
ChangeRegistryValue "HKCU\Environment\TestKey" ExpString "An expanded STRING MESSage"
"THIS CANNOT APPEAR" Ident CaseSen
ChangeRegistryValue "HKCU\Environment\TestKey" ExpString "An expanded STRING MESSage"
"Replacing line by 'Ident' mode" Ident
ChangeRegistryValue "HKCU\Environment\TestKey" String "message" 'All strings with
"message" substring has been replaced to THIS line' PM&S

ChangeRegistryValue "HKCU\Environment\TestKey" Dword "1003644" "65" PM&R
ChangeRegistryValue "HKCU\Environment\TestKey" DwordBE "1003644" "66" PM&R

End

Registry View:

Execution

EDIFIC32 SAMPLE.SC

Results

Registry View:

Comments

The scripts shows a few samples of working with ChangeRegistryValue.
First, the HKCU means HKEY_CURRENT_USER, this is the root key.
All testings were done with HKEY_CURRENT_USER\Environment\TestKey as a start key.

The first command changed the data of the Param Data and Subkey1\ParamData1 by replacing the hexa
codes “910087” by “BACC”. Note that doesn’t care about different data length. Also the CaseSen keyword
is ignored here.
It’s important to know that the comparation of binary data is done byte-to-byte. That is, if you want to
replace “10087” in place of the byte-boundary “910087”, that wouldn’t work. See the results here.

The second command do not made anything because the search for info was beginning by “S” and the
data value in Param MultiText has the “s” char, and the command has to match in Case sensitive.

The third command changes the data because doesn’t care about case. Note that the data was found two
times in the lines, so the replace was made also two times. See the results here

The fourth command doesn’t make anything because Ident keyword has been specified and any value
data is not identical as “An expanded str”. Also the fifth, but this time by the CaseSen flag.

The sixth command changed the value in this way.

The seventh searched for the substring “message” in all the String data type values. See the results here.

The 8th and 9th commands changed the values of two values. Note that when working with numeric
values (Dword and DwordBE), neither mode (ChangeType) nor case sensitive affects the search and
replace, but it’s mandatory to set any mode keyword. In all cases, working with numbers, the function
works as if Ident keyword were specified.

Here you can see the results of the 8th command and the 9th command.

Note that is not necessary to open or edit any file to operate with registry. These functions are
independent.

Results of ChangeRegistryValue "HKCU\Environment\TestKey" Binary "910087" "BACC" PM&R
Casesen

HKEY_CURRENT_USER\Enviroment\TestKey\Param Data

Before Excution After Execution

HKEY_CURRENT_USER\Enviroment\TestKey\Subkey1\ParamData1

Before Excution After Execution

Results of ChangeRegistryValue "HKCU\Environment\TestKey" MultiString "Second line" "NEW second
line" PM&R

HKEY_CURRENT_USER\Enviroment\TestKey\Param MultiText

Before Excution After Execution

Results of ChangeRegistryValue "HKCU\Environment\TestKey" ExpString "An expanded STRING
MESSage" "Replacing line by 'Ident' mode" Ident

HKEY_CURRENT_USER\Enviroment\TestKey\Param ExpText

Before Excution After Execution

Results of ChangeRegistryValue "HKCU\Environment\TestKey" String "message" 'All strings with
"message" substring has been replaced to THIS line' PM&S

HKEY_CURRENT_USER\Enviroment\TestKey\Param Text

Before Excution After Execution

HKEY_CURRENT_USER\Enviroment\TestKey\Subkey1\Subkey21\AnotherText

Before Excution After Execution

Results of ChangeRegistryValue "HKCU\Environment\TestKey" Dword "1003644" "65" PM&R

HKEY_CURRENT_USER\Enviroment\TestKey\Param Number

Before Excution After Execution

Results of ChangeRegistryValue "HKCU\Environment\TestKey" DwordBE "1003644" "66" PM&R

HKEY_CURRENT_USER\Enviroment\TestKey\Param NumberBigEndian

Before Excution After Execution

(0x42 is 66 in decimal)

DeleteRegistryKey
Syntax

DeleteRegistryKey “keyreg”

Also

DELREGKEY “keyreg”
EliminaClaveRegistro “keyreg”

Parameters

Parameter Description
keyreg Is a string refering the key to delete in the registry. Must be specified from root keys

Operation

Delete the key keyreg and all its values and subkeys. If keyreg is a value in place a key, the commad will
do nothing.
To do this operation, the command needs to have permisions to access the value key.
The keyreg is a string referencing the key entirely from the corresponding root key. For example, you can
specify

HKEY_CURRENT_USER\Control Panel\Draft

For specify the location of the value, you can use the following keywords as abreviations.

Do not specify root keys alone in the command as a keyreg.

Warning: Be careful about the use of registry. Any mistake could destroy configuration information of the
computer. Please make test in non production areas.

Related commands

InsertRegistryKey, InsertRegistryValue, DeleteRegistryValue, ChangeRegistryValue
Working with Registy

Samples

Sample: Deleting values and keys in the registry

Deleting values and keys in the registry

Sample of

DeleteRegistryKey, DeleteRegistryValue

Script and Files
File SAMPLE.SC:

’ Script to manage registry

DeleteRegistryValue "HKCU\Environment\TestKey\Param Number"
DeleteRegistryKey "HKCU\Environment\TestKey\Subkey1"

End

Registry View:

Execution

EDIFIC32 SAMPLE.SC

Results

Registry View:

Comments

The first command erased the value “Param Number”. See the difference between before and after the
execution of the script.

The second command erased the all the data in the key “Subkey1”. Also all subkeys has been deleted.

Note that is not necessary to open or edit any file to operate with registry. These functions are
independent.

DeleteRegistryValue
Syntax

DeleteRegistryValue “valreg”

Also

DELREGVAL “valreg”
EliminaValorRegistro “keyreg”

Parameters

Parameter Description
valreg Is a string refering the value to delete in the registry. Must be specified from root keys

Operation

Delete the value valreg. If the valreg specifies a key, the command will do nothing.
To do this operation, the command needs to have permisions to access the value key.
The valreg is a string referencing the key entirely from the corresponding root key. For example, you can
specify

HKEY_CURRENT_USER\Control Panel\Draft\ParameterText

Where ParameterText is the value and the rest is the location of the attribute. You can see this in the
following view:

For specify the location of the value, you can use the following keywords as abreviations.

Warning: Be careful about the use of registry. Any mistake could destroy configuration information of the
computer. Please make test in non production areas.

Related commands

InsertRegistryKey, InsertRegistryValue, DeleteRegistryKey, ChangeRegistryValue
Working with Registy

Samples

Sample: Deleting values and keys in the registry

Root Registry Keywords

Root key Short name
HKEY_LOCAL_MACHINE HKLM
HKEY_CLASSES_ROOT HKCR
HKEY_CURRENT_USER HKCU
HKEY_USERS HKU
HKEY_DYN_DATA HKDD
HKEY_PERFORMANCE_DATA HKPD

Note that all root keys are not available in W95,W98,W3.x systems

