Dieter R. Pawelczak

Proteded Mode Programming with Pass32
The Pass32 User Manua & Reference Guide

Dieter R. Pawelczak

(C) 19961999 byDipl.-Ing. (Univ) Dieter R. Pawelczak,
Fasanenweg 41,

D-85540Haar,

Germany

All rights reserved. This manual is ©ld subject to the cndtion that it shal nat, by the way
of trade or otherwise, be lent, re-sold, hired out or otherwise drculated without the prior
written permisson d the aithor.

No part of this puldication may be reproduced o transmitted in any form or by any means,
electronicdly, opticd or medhanicaly, including phdocopying, recording a any information
storage or retrieval system without either the prior written permission of the author or a
license from the author, permitting restricted copying.

The author takes no warranty for the examples, the manuals, the usage and the de
generation d Pass32. The software comes withou any warranty.

Windows, MS-DOS is a trademark of Microsoft, Pentium is a trademark of Intel.

For my dea wife Alexandra

About

| started with Pass32 in late 1995, simple because there was no goodtool to credae proteded
mode applications for my Pro32 Dos Extender. Of course, there were many ather assemblers,
but there was nore, that could generate a complete applicationin ore run.

Pass32 shoud be similar to Turbo Pascal, and it shoud doall in ore pass- that's were the
name is from. Pass32 has grown from its ealy time and is now atodl, that not only allows to
generate protected mode goplications with Pro32 - today, it can assembly dos extenders by its
own. Since Version 2.5,Pass32 suppats as well specia registers like CRO and can compile
different code segment attributes at once: USE16 and USE32.

The features of Pass32 in brief:

Pass32 suppats moduar programming

Pass32 can generate DOS TINY and 32 It protected mode applications
The Dos Extender is directly linked to the program binary

Pass32 combines assember, debugger and linker

Pass32 can integrate a debugger in you application

The asmbler directives are simple and pawverful

Macros can create very complex code with an easy syntax

Pass32 is fast, it compil es about 1000lines on a DX4-100

Pass32 is areal mode programm, nevertheless the source code sizeis nat limited in si-
ze, the only limit is the number of symbals, procedures and maaos

Pass32 comes with alarge run-time-library for standard 1/0, file handling, joystick and
graphic functions
It includes a graphic library for Vesal.2 and Vesa2.0 gaphic adaptors.

Contents

N o o 1 P 4
LO0] 0 1= 0115 PP PRPPPPPIN a
g0 o 11 o 1 o o I 7
1. First StepsIn Assembler ... 9
1.1 Frst EXAMPIE .. 9
1.2 BegiNNESRUIES.......ouuiiiiiii e e e emmmmnn e 16
1.2.1 ASIgNMENt 8N EXPIESSONSeeeveiiiieiieeeeeeeeeee e e e aaaaiiibebbeeee e s mmmmme e eeeeeeeeeeees 16
1.2.2 1F, THEN, ELSE, CASE.....ootiiiiiiiieii ettt e e 18
R B 0T o < J PP PP TTPP 20
2. Protected Mode Programming BasiCS.........cuuvimiieimiiiiineeeimnnee 23
2.1 Proteded Mode versus Real MOGE.............ouvuviiiiiiiiiiiiiee e 23
2.2 AddressSNgin Real MOOE..........cooiiiiiiiicce e eeennne e 24
2.3 Proteded Mode Address CalCulation.............coevuuuuieiniiieeeee e 25
2.4 Descriptor and Global Descriptor Table..........ooovvvvviiiiiiiiiiiiiii e, 26
2.5 Proteded Mode Interrupts and EXCEPLIONS..........cccooviiiiiiiiiiiiiimmm e 32
2.5. 1 INEEITUPES .ot e et e e e 32
2.5.2 EXCEPUIONS.....ceiiitiiiieeee ettt e e ae e e e n e 33
3. Dos Proteaded Mode Interface (DPMI)cccvvviniiiiieeiiimee e 35
I N B 1= (= ot B . Y PP PPPPUPPPPPPPPPPPRR 35
3.2 Mode switch With DPMIcooviiiiiiiiiiiee e 36
3.3 DOS EXIENOESuvvviiiiiieiiiteiie ettt e e e e e e e e ae e e e e e a e e e 38
3.4 USING DPMI fUNCHIONS......uuiiiiiiiiiiiiiieeeeieee e e e 41
4. CO-Processor programming..........ecumeemreeemeriimeeesesesimeesmeeens 47
4.1 Definition d floating pant NUMDENS.ccooiiiieeeeiiieeeeeeee o e a7
4.2 The FPU INEINAIS.....utiiiiieie e e e e e e e e e e nnnnes 48
4.3 Draw Circle Function With the FPU ... 50
5. Writing A DLL LibBrary......ocouuveiiiieiiime e 53
51 THE FITSE DLL ..oeeceee e ee e e e e e e e e eanes 53
5.2 A GraphiC DLL c.occiiiiiii ettt 56
53 A SMPIE WINAONS DLLuiiiiiiiiiiiiiiiiieee e e 57
5.4 A short chapter on OVL WIHEINGccooiiiiiiiiiicee e e e 57
55 Thebinary fOrmatcccooiiiiiiiiiee e e 59
6. MACIO POWEN ...t e e e e s e e e e e e 61
7. Accessto Hardware from Protected Mode........ccooevvviiineeiinnnnnn. 65

(c) 1999 by Dieter R. Pawelcz&, Munich

7.1 Proteded Mode Mouse Driver/Handleruuveveeiiiiiiiiiiiieeiiiien) 65
7.2 VeSa2.0 aphiC ArVENuuiiiiiiiiiiiiiieeeeee e e 67
8. ThePass32 ASEMDIEr ... 69
8.1 Defining Code, Data and Memory MoOdelceeeiiiiiieiiiiiiiicce e 69
8.1.1 Definingthe TINY mOdel:........cooiiiiiiii e 69
8.1.2 Definingthe FLAT MOlcooiiiiiieeeeee e 70
8.1.3 DatadefiNitiONS......cceeiiiiiiiiciiiitiiii ettt e e 71
8.1.4 Dala EXPIrESSONS .. .coiiiiiiiiiiiti ittt e e e e e e 72
8.1.5 Predefined Data ldentifiers..........oooiiiiiiiiiiiiiiieeeee e 76
8.1.6 Usage of Data ldentifierS........ccoeeeiiiiiiieeeeie e e s 77
8.2 Addressing Data, Defining Labels and Procedures.............cccvvvvvviiiiiieeeinnnnnnn 380
8.2.1 AdreSSINGMEMOIYovvviiiiiiiiie et e e e e e e e e 80
8.2.2 DefiNINGLEDEAIS.... .ot 81
8.2.3 DEfiNIQaPrOCEAUI.........uuveeiiiiee e 84
8.3 Pre-procesor, Macros and Condtional Assembly..........ccooovviiiiiiiiiiiicmennennd 86
8.3.1 The .EQU DIFECHIVE........cevviiiiee et e e ee e e eeenaaed 87
8.3.2 Including ASEmbler MOAUES.........ccoiiiiieieeiieeeeeee et 4 38
8.3.3 DEfININGMBCIOS. ...ccii ittt e e e e eeeeeeeees 389
8.3.4 Conditional ASSEMDIINGcooiiiiiiiiee e e 91
8.4 The OVL MOCEl ..o 93
8.5 TNEDLL MOGEciieiiiiiiiiiiee e 95
8.6 Debuggng and Code OptiMIZaionN.............uuuururmimiiiiiiiieieeeeaeeeeeee e meenee e 98
8.6.1 Theintegrated AEDUGOENcooiiiiieeeeee e e 99
8.6.2 TheDebugFile FOrmat DMP...........cccooiiiiiiiiiciee e e 100
8.6.3 Usage of an external DEDUGORcooiii i e 102
8.6.4 Detailed Information- The Map Fil€...........ccooiiiiiiiiiiiee e e 102
8.6.5 Code OPtiMIZBLION.ceeeeeiiiiiiiieee et e e e e e e e e e e e et e s s e e e e e e e eeeeeemneennnnns 102
N] 01T [105
A The PassB2 ASEIMDIES ..o e 105
N R O 0= = {0 = PP 105
A B 1 = o £ Y= RS 105
A.3 Extender/Linker Variables..........ccuuuuiiiiiiiiiiiiiiii e 107
A4 PasSSB2 ATQUMENTS ..ucuieiiiieeiiee et e et e e e et e e et e e et e e e et e e e eeeeaa s 108
A5 RUNTIMELIDIAY oo 110
A.6 Suppated Asembler INSLIUCIONS.........vvveiiiiei e ee e 113
AT PaSSB2 LIMILS. ittt 119
B Pro32 D0OS EXTENOEYvuviiiiiiie et 119
B.1 TheDosExtender Loader............coooiiiiiiiiiiiiiiiiiiiiieccee e eneeeeeans 119
B.2 Thelntegrated DPMI SEIVEYooiiiiiiiiiiiiiiaaiii e e 121
B.3 TheDPMI SErVICE AP ...ttt e 122
B.4 DPMI EIror COOBSIN AX ittt a e e e s e ebbebe e eeeeeeenas 137
B.O EIMOr MESSAOESciieiee e 138
LISt OF TADIES ..ot et e e e e e e e e e e e e e e e e e e 139
T PP PPPPPRPPPPPPPRRI 141

(c) 1999 byDieter R. Pawelcz&, Munich

| ntroduction

Welcome to the world of PASS32 Assembler. PASS32 was created for easy proteded mode
programming. The idea for the asmbler was on the one hand to create aprogramming tool
for the Pro32 Dos Extender. On the other hand, | wanted to create my own assembler. | don't
like complicated linking and code with public or extern variables. | am used to write code
straight forward and that’s the idea of this assembler. The assembler does naot create object
code, bu standalone exeautable mde. You can, of course, link binaries into the cde or
include from other source files.

The a=mbler is a cmmbination d Assembler and Linker. For proteded mode programming
the Dos Extender Pro32is linked to the program.

The Assembler suppats 5 memory models:
e TINY for regular 16 bit DOS .COM files
» FLAT for 32 Lt protected mode files (fully compatible with Pro32)
e DLL for aPASS32 Version d 32 kit Dynamic Link Library
* OVL for aPASS32 Version d 32 it overlay code/driver code
« WIN32 for Win32 applications!

— CONSOLE for Win32 console applications
— GUI for standard Win32 GUI appli cations
— DLL for Win32 dyramic link libraries

For a more comfortable program development the assembler has a build-in debug function,
which allows to set break pants, to trace throughthe code ad to view the source code.

This bodk explains in general the methods of proteded mode programming. It shall not
replace a good assembler tutorial, althoughit provides enoughinformation for beginners to
write their own assembler programs. The book concentrates mainly on protecded mode
programming and touches operating system programming. The first chapter provides an
introduction in assembler programming and a set of rules for beginners. Chapter 2 explains
proteded mode basics. In chapter 3 the Dos Protected Mode Interface (DPMI) and the
programming with Dos Extenders is explained. Chapter 4 concentrates of FPU, co-processor
programming. In Chapter 5, the book deals with DLL programming. Chapter 6 describes
enhanced assmbler programming methods (macros, types). Chapter 7 introduces direct
hardware accessin protected mode. Chapter 8 provides a summary of al Pass32 dredives.

The disk attached to the book contains the complete Pass32 developper environment,
including the Pro32 debugger. Uncompressed, the files are stored in several subdiredories:

1.The Win32 PE-Format is supported in an alpha Version

— \BIN : binaries like PASS32. EXE, PRO32. EXE, PROSET. EXE

— \INC : include files, assembler modues for demo files

— \DOC: documentation PASS32. DOC, PASS32. TXT, PRC32. DOC etc
— \DEMQ Pass32 cemo files

— \EXAMPLES Example files introduces in this book

— \DISS32 : source files for the 32 kit disassembler

— \GRAPH example files for VESA graphics driver

— \PRO: example files of the Pro32 Dos Extender

— \WINS32 : source files for the win32 gogramming

You shoud add the \BIN directory to you path!

Asembler instructions and Pass32 diredives are marked with courier fonts like . DATA,
.CODE etc. Arguments for the Assembler and file names are marked with bdd courier fonts
like Pass32 deno -a -t

First Example 9

1. First Steps In Assembler

1.1 First Example

| want to start as all assembler, C or Pascal manuals gart - with a simple Hell o-World examp-
le. This will be the only real mode example, but | think you can create any real mode pro-
gram, if you undbrstand this example: (Hel | o1. ASM

.MODEL TINY
.DATA
HelloMesg db 'Hello,World’,10 , 13,'$’
.CODE
START:
mov dx,OFFSET HelloMesg ; offset of the text string
mov ah,9 ; print string function number
int 21h ; Dos call
mov ah,4ch ; terminate function number
int 21h ; Dos call
END START ; marks the en t ry procedure of the program
END

Let us go line by line again through the code and let me explain what is behind these com-
mands. Note, that all directives and assembler instructions are case-insensiti ve.

.MODEL TINY

This is the model definition. Pass32 suppats five model types: TINY, FLAT, DLL, OVL,
WIN32 and three WIN32 model sub-types: GUI, CONSOLEnd DLL. The mode definition
therefore defines, for what target system the goplication is compiled, e.g. DOS (TINY) or
Windows (WIN32). Additionally, the model implicitly defines, if the target is compiled as a
real or proteded mode application: All models are compil ed for 32 kit protected mode, except
the TINY model, which generates a 16 kit red mode application.

.DATA
HelloMesg DB’Hello,World’,10, 13,'%’

(c) 1999 by Dieter R. Pawelcz&, Munich

10 Firgt Steps In Assembler

The directive .DATA marks the beginning d the data segment. Note, that ailmost all assem-
bler diredives can ony be used inside a segment. Inside the .DATA segment, we can define
data, that is initialized, i.e., that uses pre-defined values. In our example, we define a simple
text string. The diredive DB defines a data storages, that al ocae one byte; DB stands for
Data Byte. The numbers following the text string define LineFeed and CarriageReturn to pa
ce the aursor in the next line. The'$ character is the old DOS string termination symbal. The
DOS print function grints the string character by character urtil it reachesa’$' character.

.CODE

The . CODEdiredive marks the beginning of the mde segment. The code segment contains
all assembler instructions, that may be exeauted during the program exeaution. Although yu
can define data cnstants inside the code segment as well, you shoud separate data and code
definitions as it makes your code easier to read and maintain.

START:

This is a label definition. A label does nat produce code. It marks a point inside your code,
that can be addressed throughits label name. We named this label START, as it marks the be-
ginning d our program. Note, that labels can have any name. The name START does not re-
fer diredly to the program’s entry pant! A label is defined by a name and a wlon. In Pass32
names are cae-insensitive, they are at least one and maximal 127 charaderslong.A label can
consist of the following charaders: 0..9,a.z, A.Z,” ', '#,' @', ’..

mov dx, OFFSET HelloMesg ; offset of the text string

This is the first assembler instruction in our example. It loads the register DX with the off set
addressof the text string HelloMesg . In high-level programming languages, we work with
variables. We can define variables in Assembler as well, e.g. the text string HelloMesg isa
string variable. The Central Processng Unit (CPU) of our PC can na directly work with va-
riables. All calculations are dore with internal data storages called the procesr registers. In
the case of an 1486 @ Pentium Il processor, the processor provides 8 general 32-bit registers:

(c) 1999 byDieter R. Pawelcz&, Munich

First Example 11

31.16 15..8 7.0
AH AL
AX
EAX
BH | BL
BX
EBX
CH | cL
cX
ECX
DH | DL
DX
EDX
| DI
EDI
| Sl
ESI
| BP
EBP
| sP
ESP

Tab. 1.1 The procesr’s registers

These registers are separated in ore 16-bit and two 8-bit registers, bu be areful, these sub-
sections refer to the same register! The registers can be used for calculations and data proces-
sing. The ESPregister isaspedal register, asit refers to the stack. The stack is a pile of num-
bers, which are dways placed ontop and taken ou from top again. The stack is used, when
the processor should store something for a short period. When something is pushed on the
stack (push isthe actual processor instruction, e.g. push eax), esp isdeaemented by 4
and the value is stored at the address that esp points to. If something is popped from the
stack (pop is the actual processor instruction, e.g. pop eax), the processor first reads the
value & the addressesp paints to and then increments esp by 4.

The processor has other special registers: The flag register and the program courter. The flag
register stores the status of the last assembler instruction, for example, if a cmparison was
equal, if asubstradion produced a number below zero, if an addition overflew the 32 kit num-
ber range, etc. The procesor offers gpedal instructions, which check these flags. These in-
structions are @lled condtiona branches, as they change the program flow according to the
status of the flags. The program courter, EIP (Extended | nstruction Courter) is smilar to the

(c) 1999 by Dieter R. Pawelcz&, Munich

12 Firgt Steps In Assembler

stack register: The value & the addressEIP currently pants to, is read; the instruction is ana-
lyzed and after the execution d the instruction, EIP isincremented, so that it now points to
the next instruction. We can na load or store EIP directly. The processor offers call, jump
and return instructions, which will modify EIP .

As the x86 processor family is a CISC (Complex I nstruction Set CPU) processor family, the
CPUs provide acomplex instruction set: all general registers (AL. .DH, AX..SP ,
EAX..ESP) can be added, multiplied, shifted, compared subtracted and dvided. A typica as-
sembler instruction has the foll owing layout:

Action - command Target Register Operand
eqg. eqg. eqg.
mov, add, eax, bx, cl, 100,
sub, imul, dh, si, esi, of fset HelloMesg
idiv, cmp ebp, sp
We now understand what mov dx, offset HelloM esg does: it simply loads a value
into the DX register.
mov ah,9 ; prin t string function number
int 21h ; Dos ¢ all

| skipped ore line, and cometo theint instruction. Thisinstructioninvokes an interrupt. The
x86 CPUs provide 256interrupts andint 21h invokes the interrupt number 21 h. The suf-
fix "h' stands for the hexadecimal notation. Assembler programmers typicdly write numbers
in the hex-natation. There is a simple reason: A procesor can only hande bits. A 32 kit num-
ber is presented internally by 32 bits, i.e. 32 D-flip flops with posgble states’0" and'1'. In
many cases, assembler programs need to modify spedfic bits. When we describe every 32 Lt
number in hits, we had to write alot of zeros and ores, which wouldn't be much effective.

There isamore degant solution: the hex natation. A hex digit alway presents 4 hits. As4 hits
allow 16 permutations, we need 16 symbals to present four bits. Theses gymbals are 0..9 and
A..F. I'm afraid, youcan't court these with your fingers, bu it is areally nice method, kecau-
se an 8 hit number - one byte - is presented by to hex digits. 00-FF, a 16 bt number by 4 hex
digits, a 32 it number by 8 hex digits and so on.You can tell in a glance from a hex digit,
which hits are set and which are not. You can’t do that with decimal numbers - smple examp-
le:

binary 0011 | 1101 | 1001 | 0100 | 0110 | 0010 |O0O101 | 1100
hexadecimal 3 d 9 4 6 2 5 c
dedmal 1,033,134,684

Tab. 1.2Hexadecimal notation

(c) 1999 byDieter R. Pawelcz&, Munich

First Example 13

As hexadedma numbers can start with a letter, we have to dstingush them from lables or
variable identifiers. For this reason, any number must start with a digit 0..9. The hexadecimal
value A0 therefore must be written as OAOH. Pass32 suppats other notations as well:

Suffix Notation Examples

b binary 0101100b, 1001000110001101
- (default) | decimal 1024, 65535, 1103847511

h hexadecimal Oefh, 16h, @ffeh

0 octal? 077,123, 77551

a. Thebasefor thisnotationis 8, an octal number consists of digitsbetween 0..7

Tab. 1.3 Number Notation with Pass32

Let us come back to the int instruction. There ae basicaly two kind d interrupts: SW and
HW interrupts. Software interrupts are alled via the int instruction. The processor fetches
the addressfor the interrupt service routine from an internal table, called the Interrupt Des-
criptor Table (IDT). The procesor exeautes the interrupt and continues the exeaution d the
main program, after the interrupt has finished. HW interrupts are processd identicdly, the
only difference isthe origin of the interrupt: a HW interrupt is invoked by a HW event, e.g. a
key stroke, an owerflow of the internal timer, etc. The x86 processors do nd distinguish bet-
ween these interrupts. So it may be cnfusing, that int 21h invokes a DOS function and
int 9h invokes the keyboard hander.

All functions of the DOS operating system and the DPMI (Dos Proteded Mode I nterface) are
called via interrupts. To execute a DOS functions, you load the function number in AH and
execute int 21h . Additional parameters may be passed via other registers. Tab. 1.4shows
some standard dcs functions.

Function | Parameter Description

AH=2 DL=character Print character

AH=7 AL=character Wait for keystroke, result in AL

AH=9 DX=offset Print string, dfset to Stringin DX, string must
endwiththe’$ Symbadl.

AH=4ch | AL=return code Terminate the program.

Tab. 1.4Sane DOS functions

mov ah,4ch ; terminate f unction number
int 21h ; Dos call

We aready learned abou the int 21h functions. Note, that we always have to terminate a
program correctly. Under DOS/DPMI we must use the Function 4Ch of int 21h . Under
Win32,we must use the Kernel Function ExitP r ocess .

(c) 1999 by Dieter R. Pawelcz&, Munich

14 Firgt Steps In Assembler

END START ; mar ks the entry procedure of the program
END

The diredive END defines the program entry paint. We use that diredive in combination with
alabel or a procedure. In ou case, the program will be executed from the label START The
directive ENDalso defines the end of the assembler source

We assemble the program with PASS32 HELLOL -t. The-t option isused in combinati-

onwith the TINY model. Actually the-t optionisalinker option and tells PASS32 to creae
a. COMfile. The output of the assembler tells you abou a rrect assembling:

Pass32-Assembler (c) 1996 by Dieter Pawelczak
Assembling:HELLO 1.ASM

Pass: 1

Pass: 2

Linking

Total Source Li nes: 13 Total Code By tes: 12
Total Data Byte S 14 Total Bytes : 26
Total instructi ons: 5 Total Time : 0.27

Output File :HE LLO1.COM

If yourunHel | o1 youwill get the output ,Hello,World “. Althoughit was a very tiny
program with roughly more than ten lines, we drealy leaned a lot about assembler pro-
gramming. | want to show you in advanced, howv the same example could look in proteded
mode (HELLO2. ASM):

.MODEL FLAT
.DATA
HelloMesg db 'H ello,World’,0
.CODE
mov edi,OFFSET Hello Mesg ; offset of the text string
call systemwriteLn ; call a protected mode library functio n
mov ah,4ch ; DPMI t erminate function
int 21h ; call DPMI function
.include system .inc ; include SYSTEM.INC (contains sys t emwriteLn)
END

Y ou assemble the demo with PASS32 HELLQ2. If yourunHel | 02, youwill get the same
output, bu now from protected mode!

Let'stake a doser look at that example: The first line .MODEL FLAT definesthe FLAT me-
mory model. Thisis the standard memory model for any 32 bt protected mode program: Data
and Code are in the same segment. This ssgment can be up to 4GByte in size. The Pass32 as-
sembler automaticdly links the Pro32 Dos Extender to the program, when you choaose the
FLAT model.

(c) 1999 byDieter R. Pawelcz&, Munich

First Example 15

As like in real mode, we define our text string after the .DATA directive. With the .CODE
diredive, we tell the assembler, that the folowing commands/instructions refer to code seg-
ment. All i nstructions are compiled as 32 kit instructions due to the FLAT model. Thisis very
important, as the atempt to run 16 bt codein 32 bt protected mode will | ead to an exception,
moreover, if you run 32hbit code under real mode, the processor stops execution and wsually
resets.

We don't use an interrupt function to print the message, as Pass32 provides a lot of library
functions. And we @muld na use theint 21h instruction drectly to print the string, uriess
we enable the extended dcs suppat: DOSisa 16 hit operating system and can na accessme-
mory above 1IMB - above the address 100000H. A 32 hit proteded mode program usually
runs above the IMB barrier, as the extended memory starts at that address. So it would na
make sense to force DOS to print a string, which is addresses above 100000H.

The .INCLUDE directive tells the assembler to include ancther assembler file at the arrent
cursor paosition. The assembler file may contain data, functions, procedures and may even
include again another modue. Any module is only included orce too avoid dugicate data or
code definitions. If you dona add an extension to you file name, the file name is extended
with . ASM The Asembler searches the foll owing drectories for the modue:

— The current directory, from which Pass32 has been cdl ed
— The subdredory | NC of the Pass32 drectory
— The parallel directory \ | NC of the Pass32 drectory

Usually the Aseembler islocated in the\ Bl N directory, include fil es are located in the paral-
lel directory \ | NC.

Pass32 is more than a simple Asssmbler. It allows intelli gent linking and code optimization.
Intelli gent linking means, that only code is linked into the goplication, that is actually used.
Code optimization means, that uselessinstructions are removed, e.g. mov eax,eax, and that
some instructions are replaced by faster ones, e.g. mov eax,0 by xor eax,eax or add
eax, 00000010h by add eax, 10h. You should try the following assembler function:
PASS32 HELLQO2 -o0. Aswe seethe assembler uses athird passto optimize the code.

Aswe can seefrom these examples, there's no big dff erence between the DOS . COMformat
and the Pro32 FLAT memory model. You could say, the Pro32 FLAT memory model is a
huge . COMformat, with 32 bt offsets instead of 16 bit. When you start writing proteded
mode programs, you shoud think of this model and youcan’'t go wrond

(c) 1999 by Dieter R. Pawelcz&, Munich

16 Firgt Steps In Assembler

As| mentioned above, we can nd use all DOS functions directly. We have to enable extended
DOS suppat first. Pass32 dfers the modue DOSX. | NC, which all ows to execute extended
DOS functions®. The third example is HELLCB. ASM- it uses the extended DOS function Sh

to dsplay the message:

.UCU .NM
INCLUDE DOSX.I NC ; include extended DOS library ...
.DATA
mesg db 'Hello, Worl d - with extended DOS!",13,10,'%’
.CODE
START:
mov edx,OFFSET mesg ; offset to text string
mov ah,9h ; extended dos function string to standard outpu t

int 21h ; dos call
mov ax,4c00h
int 21h ; terminate
END START
END

A list of al extended DOS function can be foundin the appendix. Please nate, that extended
dos functions always need to copy the operands into real mode memory before the execution
and copy back into the extended memory area after the execution. This makes the execution
much slower. A much faster way is the usage of zero selectorsin PM, which can drectly ac-
cess the red mode area.

1.2 Beginner’'s Rules

The following sedion cefines sme programming rules for assembler programming. It shoud
help beginners with coding in assembler or converting existing code into assembler. Some ba-
sic pitfalls are dso described.

1.2.1 Assignment and expressons

An assgnment is one of the basic machine instructions: the mov instruction:

1.Pro32 does not support extended DOS functions diredly. Pro32 GOLD has an integrated plug-in to en-
able 32 hbit DOS support. Some other DOS extenders have extended DOS functions already included.
DOSX.INC isgeneric and DPMI compatible and works with ather DOS extenders as well.

(c) 1999 byDieter R. Pawelcz&, Munich

Beginner’s Rules

17

Pascal C Assanbler
A:=0; 0; mov A,0
A=A+1; A++; inc A
A:=A+B; A=A+B; add A,B
A:=B*6 =B*6; mov eax,B

imul eax,6
mov A,eax
A:=B*C+D A=B*C+D mov eax,B
mov ebx,C
imul ebx
add eax,D
mov A,eax
H:=X;X:=Y; H=X;X=Y;Y =H; mov eax,X
Y:=H; xchg Y,eax
mov X,eax
A:=B div A=B/15; xor edx,edx 2
15; mov eax,B
mov ebx,15
idiv ebx
mov A,eax

a. The (integer) division aways assumes a larger dividend as the divisor. Therefore, a
idiv ebx instruction expeds EDX:EAX (a 64 bit value) as dividend. A idiv bx
instruction would require DX:AX (a32 kbt value) asdividensandanidiv bl instruction
would take AX (a 16 ht value) as the dividend. Note, that the div/idiv instruction
creadesadivision by zero exception, either if thedivisior iszero, or thedivident iszero,
or the division result overflows the result register (EAX,AX,AL), e.g. if you dvide
DX:AX=100000 by 1, the result does not fit into AX! The division always provides
two results: the division result and the remainder. The remainder is gored into EDX,

DX or AH!

A common gtfall is the division. First it may effect two register, e.g. EDX EAX And then,
the division result may na fit into the result register and cause adivision by zero exception.

Therefore, to be on the save side always use the following code for divisions.

PUSH EDX ; EDX is change
PUSH EBX ; EBX will take
XOR EDX, EDX ; not a 64
MOV EBX, divisor

MOV EAX, dividend

DIV EBX

POP EBX

POP EDX

; result in EAX

bit division!

s by the DIV instruction!
the divisor value

(c) 1999 by Dieter R. Pawelcz&, Munich

18 Firgt Steps In Assembler

Note, that an 8 it division, e.g. div bl, will store the result in AL, the remainder is gored in
AH. For an 8 ht division, wse the foll owing code:

PUSH EBX ; EBX will take the divisor value
MOV BL, divisor

XOR EAX,EAX

MOV AX, dividen d

DIV BL

POP EBX

XOR AH,AH

; result in EAX

A similar rule applies to the MULinstruction: The result of a 16 bt multiplicaionis 32 ht, the
result of a32 It multiplicationis 64 hit. Again we have to take care that DX EDXare changed
by the MW instruction together with EAX, AX. The MJL instruction takes EAX as the first
multi plicator and any ather general register as the other multiplicator. The result is aways
stored in EAX:EDX (if the multiplicator was 32 bt, e.g. EBX EAX), AXDX(if the multplica-
tor was 16 ht, e.g. BX AX) or AX(if the multiplicator was 8 hit, e.g. BL, AL). Since the 1386
we have an immediate IMUL instruction, i.e. you can multiply any general register with an 8
bit value directly, eg. IMUL EBX, 10 . Thisvariant of the MULIMUL instruction daes not
affed the EDXregister and the result is directly stored in EBX For most multiplicaionsit is
easier to use this immediate IMUL instead of the MUW/IMUL instruction.

Fast multiplications and divisions can be gained by shifting the registers contents to the left
or to theright. A shift to theright by n Ltsis an ursigned dvision by 2' (n>0). A shift to the
left by n kitsis an ursigned multiplication by 2' (n>0), e.g..

shl eax,2 ; equ als eax*4
shl ecx,5 ; equ als ecx*32
shreax,1; equ als eax/2

122 |F, THEN, ELSE, CASE

These highlevel language structs are not diredly suppated. The use of condtional jump in-
struction easily tranfsers them into assembler:

(c) 1999 byDieter R. Pawelcz&, Munich

Beginner’s Rules

Pascal C Assmbler

IF A=0 THEN if (A==0) A=5; cmp A0
A:=5 jne endif

mov A,5
endif:

IF A=0 THEN if (A==0) cmp A0
A:=5 ELSE A=5; ELSE jne else
A=A-1; A--; mov A,5

jmp endif
else:

dec A
endif:

IF if((A==0)&&(B==0)) cmp A0

(A=0)AND(B=0) C=0; jne endif
THEN C:=0; cmp B,0

jne endif
mov C,0
endif:

IF if (A==0)||(B=0)) cmp A0

(A=0)OR(B=0) C=0; je then
THEN C:=0; cmp B,0

je then
jmp endif:

CASE A OF switch(A) cmp A0

0: B:=0; { jne NO @

1,2,3: B:=1; case 0: B=0; mov B,0

4,5,6: B:=2; break; jmp NX

ELSE case 1: NO: cmp A,3

B:=3; case 2: jaN3 b

END case 3: B=1; mov B,1

break jmp NX
case 4: N3: cmp A,6
case 5: ja N6
case 6: B=2; mov B,2
break jmp NX
default: B=3; N6:
break; mov B,3
} NX: €

a. INE performs a jump incase the cmparison was not equal. JE performs a jump incase the
comparison was equal .

b. JA performs a jump incase the first operand is above the second operand. JB performs ajump
in case the first operand is below the second operand.

c. Note, that the aode for the switch instruction needs as many lines as the equivalent in C.

(c) 1999 by Dieter R. Pawelcz&, Munich

20 Firgt Steps In Assembler

A source for errors are the relative jump instructions: Either the instruction is negated, a the
signed and ursigned integer comparisons are mixed up.Take care, the smplest way to test, if
a certain value is reached, is dore by using the JNE instruction and puting the necessary ac-
tions between the JNE instruction and the target label. This is the most optimized translation
of an IF instruction:

IF EAX=0 THEN d o_action
refers to

cmp eax,0
jne not0
;EAX=0

; do the action
notO:

This does nat refer to an IF, ELSE construct - compare with the table above. A simple rule
for labeling such constructs isto use labels like NO, *Not Q'. If you reed EL SE or a complete
case, use NXas the exit label.

Hardware addresses are typicd unsigned integer values. Y ou shoud use JA (jump if Abowe),
JB (jump if below) to determine differences. Numbers are typically signed integer values, i.e.
you shoud use JG (jump if greater) or JL (jump if lesg, when you compare two values.

1.2.3 Loops

The procesor provides diredly aloopinstruction. Unfortunately, the loop instruction provi-
des only ore mnstruct, namely the repeat until construct. Due to those restrictions and duwe to
the fad, that the loop construct is restricted to 127 bytes offset only, it is recommended na to
use theloop instruction. It shoud be statet, that the loop instructionis dower than an equi-
valent assembler construct on a pentium processor.

(c) 1999 byDieter R. Pawelcz&, Munich

Beginner’s Rules

21

Pascal C Assmbler
REPEAT do LO:
ECX:=ECX-1; { loopd L 0
UNTIL ECX=0; ECX--;
} while(ECX!=0)
REPEAT do LO:
A:=A+10; { ADD A1 0
UNTIL A>100; A=A+10; CMP A,100
} while(A<=100) JBE LO

WHILE (A<100)

while (A<100)

LO:cmp A,100

do A:=A+10; { jae L1
A=A+10; addA,1 O
} jmp LO
L1:
FORI:=0TO 99 for (1=0;1<100;1++) mov 1,0
DO A[il=0; LO:cmp 1,99
Ali]:=0; jaLl
mov eax , |

mov [A+ eax],0
inc |

jmp LO

L1:

A typicd pitfa isthe loopinstruction: Imagine the following code:

mov eax,0
mov ecx,1000

L1:
mov dword ptr Screen+4*e cx,0
loop L1

The result is, that the first 4 bytes of the Screen array are nat initialized with 0, kecause the
loop instruction repeats only urtil ECXis zero. The @rrect solution d the problem would
be:

mov eax,0

mov ecx,1000

L1:

mov dword ptr Screen+4*e cx,0
dec ecx

jns L1

(c) 1999 by Dieter R. Pawelcz&, Munich

22 Firgt Steps In Assembler

The loop is repeated urtil ECXreaches -1, i.e. the case ECX=0is also processed inside the
loop. Note, that if the loop exceeds 64K, i.e. if ECXis abowve 65535, youshall use loop d.
Theloop menmonic refersto CXonly.

(c) 1999 byDieter R. Pawelcz&, Munich

Proteded Mode versus Red Mode 23

2. Proteded M ode Programming Basics

This Chapter introduces protected mode basics. It describes the differences between real mode
and protected mode. In tiny steps all necessary action will be taken to switch the processor
into 32 hit protected mode.

2.1 Protected Mode versus Real Mode

When the PC is switched on,the procesor starts in real mode. In real mode, all CPUs of the
x86 family, including latest 686 pocessors, are compatible with the obsolete 16 it 80868088
CPU. The CPU can not address more than 1 MB. As the aldress range from OAOOOOH to
OFFFFFH Is usually used by the BIOS, adually ony 640KByte memory can be used for ap-
plicaions.

In protected mode, the procesor can addressthe whole aldress pace of the processor. This
comprises up to 64TByte in combination with virtual memory management. Theoreticdly,
each application can have a virtual 4G address spacet. Additionally to the memory manage-
ment and protedion means, the CPU provides methods for multitasking unaer proteded mo-
de.

It should be noted at this point, that a lot of processor extensions, especially the protection
means are dso valid for real mode. Indeed, the processor creates an invalid opcode exception,
when the CPU reads an instruction, that it can’'t interpret. Unfortunately, these exceptions are
not handed by the red mode operating system, e.g. DOS. Therefore we assume, that the pro-
cessor crashes in real mode in case of an ill egal operation, bu atcually, the processor invoks
an exception hander, which is not provided by the operating system!

It is very easy to switch the procesr into proteced mode. The processor uses one flag in an
internal register, which defines the operating mode. This is the PE-Flag (Protected mode En-
able: bit 0) in the CRO register. To enable protected mode, the bit must be set to 1:

mov eax,cr0

bts eax,0 ; sets bit 0

mov cr0,eax

To switch back to red mode, the bit must be cleared:

mov eax,cr0
btr eax,0 ; resets bit 0
mov cr0,eax

Unfortunately, this bit does nat initialize the protected mode. A lot more needs to be dore be-
fore we can actualy switch into protected mode:

* interrupts must be re-directed to protected mode service routines, or al i nterrupts must
stay disabled,
» the Interrupt Descriptor Table (IDT) must be aeaed,

1.Under Win32, eat application gets avirtual 4G address space
(c) 1999 by Dieter R. Pawelcz&, Munich

24 Protected Mode Programming Basics

» the Globd Descriptor Table (GDT) needs to be establi shed,
» Code, Data and Stack descriptors must be defined.

2.2 Addressng in Real Mode

To undcerstand the procesor in red mode, we'll have alook onhow the processor addresses
memory in real mode. A red mode address is 20 hitslong. The aldress is calculated from the
segment register and the offset. The segment registers are CS DS ES, FS, GSand SS. CS
stands for Code Segment. The processor automatically uses this segment register when rea-
ding an instruction from the instruction panter. DS is used as the default data segment, i.e.
any memory accessis per default related to DS Accessto ather segments needs a segment
override, i.e. the segment register must be specified. SSis automaticaly used for stack access.
So a push or pop instructions refers to SS:ESP. The segment registers are 16 bit registers
inreal andin protected mode. In real mode, there is no virtua addressng, therefore any linear
addressrefers to the asolute physicd address in memory. The aldressis calculated multi-
plying the segment register value by 16 and adding the offset. In hex natation, this may for
example look like this:

CS: 1004h
IP: 0100h
Physical Addres s: 10140h

Asyou can see, the multiplication byfactor 16 isidentically with shifting the segment register
value 4 hits to the left. In binary natation, the same example would be:

CS: 0001.0000.0000.01 00
IP: .0000.0001.00 00.0000
Physical Addres s: 0001.0000.0001.01 00.0000

So ancther way to explain the real mode addresscdculation would be to say, the segment re-
gister presents the upper 16 bt of the aldress thus bit 19 to 4. The 16 bt offset address is
added to the bits 15to 0. The result isa 20 kit address A funnythingis, that an 1386 actually
has 32 addresslines. What happens, if the aldress cdculation exceeds the 20 bit? This hap-
pens, when the segment register plus the offset produces an overflow:

CS: 1111.1000.0000.00 00

IP: .1000.0000.00 00.0000
Physical Addres s: 0000.0000.0000.00 00.000 O on a real 8086
Physical Addres s: 1.0000.0000.0000.0000.000 0 on a 80286f

(c) 1999 byDieter R. Pawelcz&, Munich

Proteded Mode AddressCalculation 25

The 80286and rew processors calculate the aldress correct, i.e. bit 20 is t. Therefore we
can accessactualy 1 MB plus 65520 byes. This memory area from 010000hto OIFFEF is
called High Memory Area (HMA). DOS can load drivers to this memory. Note, that this
function of the CPU is disabled per default by most mother boards. The aldress line 20 is
forced to low level, to simulate the behaviour of the original 8086 pocesor. Typicdly, the
XMS (eXtended Memory Specification) memory driver, e.g. H MEM SYS, controls the A20
line. A correct 32 kit address calculation reeds an enabled A20 addressline, because otherwi-
se an address 010000his refleded to 000000h

2.3 Protected Mode Address Calculation

In proteded mode, the address calculation is completely different. The 80286 povided a 16
bit protected mode. For reasons of compatibili ty, the 80386and rewer procesors suppat this
addressng as well. The 16 bt protected mode provides as like the real mode only 64K seg-
ments. In general, we concentrate on 32 bt programming. Nevertheless for the mode switch,
we gtill need this 16 bt mode. In proteded mode, our segment registers have acomplete dif-
ferent meaning: They hdd a 16 kit value, an index to a segment descriptor. As the value itself
has nothing in common with the segment address the registers CS DS ES, FS, GSand SS
are caled seledor registers - they select a segment descriptor out of alist. In protected mode,
there ae two tables, which hold the segment descriptors. The global and the local decsriptor
table (GDT, LDT). The GDT hadds the system descriptors, the LDT application related des-
criptors. The selector registers now contain an index to the descriptor and a flag, which tell s
the CPU from which table the descriptor is used.

The selector has the following format:

Bits 1

IR
-
IR
-
IR
(o]
o
~
(o2}
(]
I
w
N
-
o

a G=0: GDT, G=1: LDT

Tab. 21 Sdledor Contents

The following example explains the protected mode aldresscadculation in an abstrad way:

GDT
0. Base: 00000000
1. Base: 00100000

_Inde x = 2, |2 Base: 00100000
CS: 0010h 3. Base: 000A0000
EIP: 0100h 0100h
+ 001000004

Linea r address: 00100100h

Fig. 2.1

(c) 1999 by Dieter R. Pawelcz&, Munich

26 Protected Mode Programming Basics

The CPU knows from bit 0O, that the selector is part of the global descriptor table. It reads the
32 bt base aldressfrom the crrespondng entry in the GDT and adds the 32 it offset. The
result is a 32 Lt linear address Note, that the linea addressof the CPU does nat neal to be
identical with the physical address The CPU offers another step in the address calculation,
before the adual address lines are accessed: the address management divides the whole me-
mory in 4K pages. A nested list of these pages define the actual addressin memory. These 4K
pages can be swapped to disk. Therefore, the CPU can offer more memory, that actualy is
available. In ou examples, we ignare this dep and asaume, that the linear addressis equal to
the physicd address'.

2.4 Descriptor and Global Descriptor Table

The descriptor halds information abou the memory segment. As we leaned in the previous
chapter, the 32 Lt base aldressis defined in the descriptor. The name protected mode already
implies memory protection: The descriptor defines also, the size of the memory segment, if
the memory is read ony, if it is a data or a code segment. The cntents of a descriptor are
shown in Tab. 2.2

Bits/ | 1| 1| 1| 1| 1| 1| 9| 8| 7| 6| 5| 4| 3] 2|1|0
offset 51 4| 3 2] 1| 0
0 Descriptor Limit 15..0
2 Descriptor Base 15..0
4 1 DPL {1 |C |E | R | A | Descriptor Base 23..16
D|C|W
6 Descriptor Bas e 31.24 G|B|O0O|A Limit
D Vv 19..16?
L
Tab. 2.2Descriptor contents
G Limit Granularity: 0: byte granular (Limit=Limit field)

1: page granular (Limit=4096*Limit field)
B/D: Segment Attribute Size 0: 16 bt = usel6

1: 32 Wbt = use32 (default)
AVL: Avallable Flag: (unused)
DPL: Privileg Level 00: kernel level

01: device driver level

1.Note, that this assumption can leal to afatal error, when hardware is related: Assuming, you provide a
disk buffer at the virtual address 00100000h. The disk driveis going to write the contents of this buffer to
your harddisk. Unfortunately, your OS provides virtual address management. Your virtual address
00100000h is acually mapped to 00010000h and the physicd memory 00100000h is not even present.
Theresult is, that the disk drive writes garbage to disk and it takes very longto find this bug!

(c) 1999 byDieter R. Pawelcz&, Munich

Descriptor and Global Descriptor Table 27

10: operating system level
11: user applicaion level

C/D: Segment Type 0: data
1: code
E/C: Expand/Conforming 0: data=expand-up code=non-conforming (default)
1: data=expand-downcode=conforming
R/W: Rea / Write 0: data=readcode=nonrealable
1. data=read/writecode=realable
A: Access 0: not accessed,
1: accessed

The descriptor limit takes only 20 bit, which refers to an addressrange of 16 MByte. The gra-
nularity flag (G defines, whether the limit value is diifted again 12 bt. The resulting address
rangs is 4 GByte. The idea behindis, that when virtual memory managment is used, the whole
memory is divided into 4 K pages. It wouldn't make any sense to all ocate 4.5 K memory for
an descriptor, as the memory management would become very ineffective. Therefore in com-
bination with virtual address management, it is very useful to allocate memory only in 4 K

steps.

The descriptor base takes the complete 32 bt and defines the virtual basis addressof the seg-
ment. Note, that if no virtual address managment is used, the virtual basis addressis equal to
the physicd basis address

We have two flag fields. Thefirst flag field at offset 5 hdds gandard flags for protection me-
ans. These flags describe, if the segment is a de or data segment (C/D). A data segment can
either be read and writeable, a code segment can orly be readable or not readable (R/W). The
expand flag defines, whether the segment is expanding upvards (typically heap memory,
which starts at a fixed addressand dyanimcally grows) or downwards (typically stack memo-
ry) (E/C). DPL defines the protedion level. DPL=00 is the highest privileged level. It is com-
parable with red mode, as a mde segment of this privileg level can access every thing:
changing the IDT, GDT, switching badk from protected mode to real mode, disabling inter-
rupts, etc. In lower privileg levels, instructions, which endanger the system stability invoke an
general protection fault exceptiont.

The secondflag field is not available in 16 bit protected mode. It provides one esential flag
for 32 bt programming: The Big or USE32 flag (B/D). If it is st to 1, a code segment hand-
led as a 32 kit code segment, e.g. the procesor reads per default 32 ht instructions®, a data
segment can exceed 64K. The second flag also halds the granularity bit, that all ows to access
the whole 4G address gace.

1.Although the processor provides clea protedion means, no commercial OSisredly based on them.
2.A 16- and 32-hit instruction is distinguished by the register and address prefix 66H/67h. This prefix is
used, when the registers or address modes diff er from the default segment type: If ecx isusedinaUSEL6
segment, the register prefix 66h is used. If the register cx isused in a USE32 segment, the register prefix
66h isused. If a USE16 segment holds a 32 bit addressing, e.g. [edi] , the aldress prefix 67his used. If
a USE32 segment holds a 16 hit addressing, e.g. [di] , the aldress prefix 67h is used as well.

(c) 1999 by Dieter R. Pawelcz&, Munich

28 Protected Mode Programming Basics

The GDT register of the CPU isasix byte large buffer, that contains two values: A 16 bt va
lue holding the number of maximum entries and the 32 it linear base aldress Note, that the
index field in the selector has only 12 hkits. The maximum number of descriptors is therefore
4096.The definition d the GDT could look like this:

.CONST
ALIGN 8
MAX_GDT_ENTRIES .EQU 32
.BLOCK
GDTRECORD DW MAX_GDENTRIES*8
DD OFFSET GDT
.NOBLOCK
GDT DD 256 D UP(0)

The foll owing sample function will create and store descriptors in the global descriptor table:

PROC Create_Des criptor ; EAX:Basis; EDX:Limit; ECX:Acc ess_Rights
push eax
push ecx
; Test the limi t, if G-bit has to be set
push edx
mov eax,edx
shr eax,24
cmp eax,0
je short LO
; Shift limits 12 bits and set G-bit...
pop edx
pop ecx
bts ecx,15 ; set Gbit
bts ecx,14 ; set D-bit
push ecx
shr edx,12 ; shif t limit
push edx
LO:
; The GDT is pr edefined with zero contents.
; We search for the first free table entry...
mov bx,offset GDT
Xor esi,esi
L1:
add si,8 ; first descriptor is per default zer o]
cmp si, MAX_GDT_ENTR | ES*8
jae short X ; GDT full
mov eax,[bx+si]
cmp eax,0
jne short L1

(c) 1999 byDieter R. Pawelcz&, Munich

Descriptor and Global Descriptor Table

29

mov eax,[bx+si+4]
cmp eax,0
jne short L1

; Got free entry...
add bx,si
pop edx
pop ecx
pop eax
mov [bx],dx ; limits - lower
mov [bx+2],ax ; basis - lowe
mov [bx+5],cl ; Flags, lower
shr eax,16
mov [bx+4],al ; Basis Bits 1
mov [bx+7],ah ; Basis Bits 2
shr edx,16
and dl,0f0Oh
or ch,dl
mov [bx+6],ch ; Flags Bits 8
Xor eax,eax
mov ax,si
ret

X: ;
XOr eax,eax
stc
ret

ENDP Create_descriptor

; Selextor in

; return Selec

Error!

16 bits
r 16 bits
8 bits

6..23
4.31

.15

S| - return in AX

tor 0

Note, that the first entry in the GDT is the so-called NULL descriptor. It has the selctor value
0. A selector register can be load with this slector. If youread or write using this seledor, a
genera protection fault exception will be invoked.

The following code will create all neaessary descriptors for a simply protected mode applica

tion:
XOr eax,eax
mov ax,cs ; Code Segme
shl eax,4 ; Basis = CS

mov edx,0ffffh ; Limit = 64K
mov ¢x,0009ah ; 16 bit code
call Create_Descriptor

mov SelCSeg,ax ; store selec
XOr eax,eax

mov ax,ss ; Stack Segm
mov Real_ss,ax ; store real
shl eax,4

mov edx,0ffffh

nt
shifted by bits to the left

segment

t or value

ent
node stack value

(c) 1999 by Dieter R. Pawelcz&, Munich

30 Protected Mode Programming Basics

mov ¢x,00092h ; 16 bit stack segment
call Create_Descript or

mov SelSSeg,ax

mov ax,ds ;D ata Segment
shleax,4 ;B asis = same as DS
mov edx,-1 ; Li mt = 4G

mov ¢x,00092h ; 3 2 bit Data segment
call Create_Descript or

mov SelDSeg,ax

Note, that we need a 16 kit code segment for the mode switch: when the processor has awit-
ched into protected mode, the USE bit of the cde segment does not change, therefore it as-
sumes a 16 kit code segment. The same happens, when the processor switches from a 32 Lt
code segment into red mode: The processor would again assume a 32 hit(!) red mode seg-
ment, which is not avalid procesor configuration. Therefore, we will need a 16 kit code seg-
ment, which hdds the necessary code for the mode switch from and to protected mode.

The 1386 and rewer processors use CPU pipelines to speal up the execution d commands.
The ideabehind a pipeline is, that the CPU can do severa (for every instruction) necessary
steps in parallel: it can for instance fetch a new instruction from memory and perform an
arithmetic operation in the same time. A sample pipeline ould consist for instance out of five
steps: fetch instruction (fi), analyse instruction (ai), arithmetic operation (ao), caculate off set
(co), store result (sr). The foll owing figure demonstrated such a pipeline. It is easy to uncer-
stand, that such a pipeline would increase the CPU spedl (in the optimum) by 5, as with every
clock a new instruction starts and ancther instruction ends:

fifth instruction fi |a |ao|co|sr
fourth fi |a |ao|co|sr
third fi |a |ao|co|sr
first instruction | secondinstruction sewmnd |fi [a |a0|co|sr
L1l|ai|ao|co|sr fi |ai |ao|co|sr | first\:llai ao|co|sr

Without Pipelinig With Pipelinig

An 386 pocessor uses pipelinig. Imagine, what happens, when ore of the instructions inside
the pipeline switches the CPU mode. This will happen after the procesor has analysed the in-
struction, therefore in stage 2 ar 3. The rest of the pipeline is aready fill ed with the new in-
structions, so the procesor has to treat some instructions diff erent in the pipeline: perform the
last operations of red mode instructions and already fetch and exeaute proteded mode in-
structions. Note, that newer procesors use amuch deeper pipeline with 16 and more stages.
As the procesor can only perfrom either real mode or protected mode instructions, we have
to flush the pipeline, when we switch to protected mode. This is done by a jump instruction.
As all ingtructions, which follow a jump instruction have to be discarded in the pipeline.

(c) 1999 byDieter R. Pawelcz&, Munich

Descriptor and Global Descriptor Table 31

Aswe leaned, that switching the PE bit does nat initialize any descriptor, we even use aFAR
jump instruction. This FAR jump instruction will read a new CSvaue and flush the pipeline.
Note, that prior to the FAR jump instruction, the processor still uses the old (real mode) CS
segment register to fetch the instructions. This is a somehow funny behaviour, because the
CPU uses a real mode segment register in protected mode! This is due to the fad, that the
mode switch itself does naot change any segement / selector register values. Additionally, the
procesor does nat actually use the segment or seledor values directly: when a segment / sel-
ector register is load, the procesor uses internal (hidden) registers, which are similar to des-
criptors: these registers define, where the segment starts, who is allowed to read / write, if its
32 a 16 ht, etc. These hidden registers are untouched by the CPU during the mode switch
and changed only, when the selector register is load with a new value. Some older dos exten-
ders, e.g. 16hit dos extenders do nd reload all segment registers, when they switch back to
real mode, e.g. FS, GS Anather application accessng these (protected mode selectors) in real
mode, will then cause an exception, which typically resultsin a aash of the real mode appli-
cation.

A simple switch into protected mode could look like this:

XOr eax,eax
mov ax, cs
shl eax, 4

add dword ptr [GDTRecord+2],

mov eax,crO

bts EAX, 0

jc X

cli

lgdt GDTRECORD

mov cr0,eax
.CONST

db OEAh

dw Offset PM

SelCSEG dw 0
.CODE

PM:
mov ax,cs:Sel_SSeg ; load st
mov ss,ax
mov ax,cs:Sel_DSeg ; load Da
mov ds,ax

EAX ; set linear address of GDT
; test and set BIT 0
; Error - already in PMode!
; No | DT, therefore disable interrupts!

; activate PMode

; F AR-JMP, to flush CPU - Pipeline and
; to load CS

ack selector

t a selector

Have alook at the example files PMODEL. ASMand PMODE2. ASM The first example swit-
chesinto 16 bt proteded mode, the second example switches into 3 bit protected mode.

(c) 1999 by Dieter R. Pawelcz&, Munich

32 Protected Mode Programming Basics

2.5 Protected Mode Interrupts and Exceptions

25.1 Interrupts

In red mode, the interrupt descriptor table IDT isfoundat the first 1024 byesin memory, i.e.
at offset 0000000hAIl 256 interrupts are described by a FAR pointer in the table. Asa FAR
pointer in 16K red mode requires 4 bytes (16 bit segment + 16 hit offset), the whole IDT
takes 1Kbyte in real mode. The pointer to interrupt 21h, for example is found at address
21h*4 = 00000084h.

In protected mode, the IDT contains alist of Interrupt Descriptors (ID), which accupy 8 by
tes. The whale IDT with 256interrupts, therefore requires 2K Byte.

Bits/ | 1| 1| 1| 1| 1| 1| 9| 8| 7| 6| 5| 4| 3|2|1]|0
offset 51 4| 3 2] 1| 0

0 Interrupt Service Rout i ne Offset (EIP) 15..0

2 Interrupt Service Rou t ine Descriptor (CS)

4 1 DPL | O Type unused =0

6 Interrupt Service Routi ne Offset (EIP) 31..16

Tab. 2.3Descriptor contents

In general, the cmncept is smilar to red mode: The IDT contains for each interrupt a descrip-
tor, with an Seledor:Offset to the I nterrupt Service Routine (1SR).

The protected mode defines different interrupt types:

* Interrupt Gate (TYPE= Oeh): The ISR is called with interrupts disabled,
» Trap Gates (TYPE= 0fh): The ISR is cdled with interrupts enabled.

The IDT provides for each of the 256 interrupts an interrupt descriptor. To load the IDT, the
instruction LIDT is used. It uses the same format as the LGDTinstruction:

ALIGN 8
.CONST

MAX_IDT_ENTRIES .EQU 255
.BLOCK

IDTRECORD DW MAX_IDT_ENTRIES*8

DD OFFSET IDT

.NOBLOCK

IDT DD MAX_IDT_ENTRIES*8 DUP(0)
.CODE

(c) 1999 byDieter R. Pawelcz&, Munich

Proteded Mode Interrupts and Exceptions 33

LIDT IDTRECORD

Note, that you can reduce the number of interrupts in the IDTRECORDThe maximum is li-
mited to 256.

25.2 Exceptions

The proteded mode defines exceptions. An exception aiginates from the CPU, i.e. an excep-
tionisan interrupt, which is caused by the CPU due to protection means. A typical exepction
isadivision by zero: The CPU recognizes such an error in an application and interrupts the
application with an exception. The main diff erence between exeption and interrupt is, that
some exception pu an error code on the stack. A simple return instruction from the ISR
would na remove that error code from the stack. Therefore we need especial exception hand-
lers for processor exceptions. Unfortunately, the procesor exceptions are assigned to fixed in-
terrupt vectors.

If we take a doser ook at Tab. 2.4,we will see, that the reserved exception interrupt vectors
are dready used in a standard PC. For example int 08h isused by the hardware dock and
also pants to the doule fault exception. Interrupt 010his used by the VGA board, but also
used as co-processor exception.

Everytime, an exception handler is called, it needs to check first, whether the causeis actually
an exception, a hardware interrupt, or a software interrupt, i.e. int instruction.

(c) 1999 by Dieter R. Pawelcz&, Munich

34

Protected Mode Programming Basics

Exception | Description Remark

0/00h | Division byzero No error code
1/01h | DebugTrap No error code
3/03h | Break Point Interrupt (int 03) No error code
4/04h | Overflow (into) No error code
5/05h | Bound error No error code
6/06h | invalid gpcode No error code
7/07h | noFPU extension avail able No error code
8/08h | doule fault error code 0000h
10/ 0ah | invalid task state segment error code =selector
11/ 0bh | segment nat present error code
12/0ch | stack error error code

13/ 0dh | genera protection fault error code

14/ 0eh | page error error code

16/ 10h | FPU exception No error code
17/ 11h | aignment check error code 0000h

Tab. 2.4 Exceptions

(c) 1999 byDieter R. Pawelcz&, Munich

Detect DPMI 35

3. Dos Proteded Mode Interface (DPMI)

In Chapter 2 we learned haw to switch the processor into protected mode. Unfortunately this
code runs on the highest privileged level. If you run such an application unar Windows for
instance, it will generate a genera protedion fault. Therefore we need ather means to switch
the procesor into protected mode. Windows, Intel and aher leading computer manufacturers
came together and defined the DPMI standard: The Dos Protected Mode I nterface

The DPMI provides to services to switch the processor into proteded mode, to creae and
manage descriptors and to accessreal mode code like BIOS interrupts, Dos calls, etc.

DPMI is suppated by Windows and aher memory managers like QUEMM, 38GVIAX, etc.
Unfortunately, the default memory manager EMM 386 dces not support DPMI. EMM386
supports only VCPI (Virtual Control Program Interface). VCPI is an dder (obsolete)
standard, that was used by Windows itself to switch into protected mode. VCPI suppats only
the mode switching feature, but not any further services.

3.1 Detect DPMI

Before we can use DPMI services, we have to test, if DPMI is available. The DOS operating
system provides a multi plex interrupt service to detect the presents of device drivers, memory
managers etc. We can invoke the interrupt 2fh with the function code 1687 in AX to
determine, whether the operating system provides a DPMI server:

Function cal: INT 2fh
AX = 1687h

Results, if successul

AX =0

BX = 0000000000000000mb m = 1: 32 bit DPMI supported

CL = processor (80x86)

DX = DPMI Version, DH = majo r, DL = minor version number

S| = number of memory paragr aphs necessary for the mode switch
ES:DI = 16-bit real mode far call address to DPMI enable procedure

If not succesdul:
AX 1= 0

Example:
mov AX,1687h
int 2fh

(c) 1999 by Dieter R. Pawelcz&, Munich

36 Dos Protected Mode Interface (DPMI)

cmp AX,0
jne DPMI_ERROR ; No DPMI available

The interrupt cdl returns the entry pant of a DPMI function to switch into protected mode
and some useful information in the registers. If bit 0 of BX is s, the DPMI provides 32 ht.!

If thereis no DPMI, we an nd make use of the DPMI services. We wuld now try again to
switch into protected mode by hand, but the conclusion, that if no DPMI is adive, we @an
switch the processor into protected mode by using priviledged instructions is nat true. So
athoughDPMI provides al necessary servicesto codein proteded mode, we still need atod,
that gives us a guarantee that the services are available. This is the basic ideaof a Dos
Extender. A Dos Extender is a small program, that tests, if DPMI is available and if not
emulates DPMI. Now if we link the Dos Extender to ou program, we an use DPMI service,
because the Dos Extender makes sure, that DPMI is available?. Most Dos Extender suppat as
well VCPI, so a protected mode gplicaionloaded by a dos extender can basically run onany
system configuration, i.e. plain DOS without memory manager, plain DOS with memory
manager, Windows DOS Box, Linux Dos emulation with DPMI, etc.

3.2 Mode switch with DPM

DPMI isaoneway dley, i.e. youcan switch the procesor into protected mode, but you can't
switch it back®. This may be abit confusing in the beginning, bu as DPMI allows to invoke
16 bt real mode code, there is no reason for an application to switch between real and
protected mode. If the gplication terminates, the procesr is switched back into real mode.

A nice feaure is, that DPMI restores the state of the real mode system after the goplication
has terminated. This makes DPMI programming much easier and more stable than real mode
programming. Due to the processor protections, a DPMI program can hardly crash the system.

The DPMI API, the service functions are avaiable through the interrupt 31h. The DPMI
function should be passed in AX. DPMI service functions are only available in protected
mode. Before we request a DPMI service, we therefore need to switch the processor into
protected mode.

1.Note, that there is no way to determinein advanced, if the DPMI host provides 16 hit. If bit 1is st, the
DPMI host provides 32 hit, but not necessarely 16 bit as well.

2.There ae some different understanding of dos extenders: A dos extender can also mean, that it allows
to perform Dos operations (i.e. int 21h instructions) in protected mode gplications, e.g. extended dos
functions. So a dos extender does not always provide DPMI services. Some dos extender even exped
DPMI to be available (e.g. newer GO32 versions). In this case, the user has to load a DPMI application
prior to the proteded mode program. Through ou the book, a dos extender means a DPMI service pro-
gram and application loader like Pro32/ WDosX / Dos32, etc.

3.DPMI adually provides raw mode switching feaures, i.e. you can switch the processor into proteded
mode and badk into red mode. These services are not recommended and unusual for DPMI programming.
If you use these services, you must make sure, that your program terminated from proteded mode - other-
wise nat all resources are freed by the DPMI host.

(c) 1999 byDieter R. Pawelcz&, Munich

Mode switch with DPM | 37

The function 1687h & interrupt 2fh returns a far procedure in ES:DI , that marks the entry
point of a DPMI program. If we cdl this function, the DPMI host performs the following
actions:

» switch the processor into protected mode

» creates a 16 bt code descriptor for CS which has the same basis as CS of the caller
(real mode CS) and limit 64K

» creates a 16 bt data descriptor for DS which has the same basis as DS of the caler
(real mode DS) and limit 64K

e createsa 16 bt stadk descriptor for SS, which has the same basisas SS of the cller
(real mode DS) and limit 64K*, SPisin general not changed

« creates a selector for the program environment, which is foundin the PSP at 2ch®

* maps al hardware interrupts to protected mode or to (virtual) red mode handers

Note, that we need to provide a free memory segment to the function in ES. The amourt of
necessary paragraphs has been return by int 2f, 1687hin the SI register. If SI was zero, we
can ignae the value in ES. Additionally, we have to specify, if we want to runa 16 kit or 32
bit DPMI application. The least significant bit of AX (bit 0) defines the DPMI mode: If set,
the applicationis 32 kit®. The mmplete interface of the DPMI entry paintsis given as follows:

Function call: cdl far [es:di - according to int 2fh, AX=1687hresult]

AX = 000000000000000mb m =1 : 32 bit DPMI, m = 0: 16 bit DPMI
ES = Free Memory, as request ed

Results, if succesul
carry flag clear
CS: 16 bit code selector
DS: 16 bit data selector
ES: 16 bit program environme nt selector
SS: 16 bit stack selector
FS,GS: 0

If not successul:
carry flag set, program stil | in real mode

Example:
mov AX,1687h
int 2fth
cmp AX,0

4.Note, that the stack contents are not changed, i.e. if you push ared mode segment on the stad priot to
the mode switch and pop the value afterwards, it isinvalid and will force an exceptionif you load a sel-
edor register with it!

5.Chedk the get env example provided with Pro32.

6.This book does not describe the obsolete 16 bit DPMI mode, only the 32 hit DPMI mode will be explai-
ned. Seethe DPMI spedfication for the diff erences.

(c) 1999 by Dieter R. Pawelcz&, Munich

38 Dos Protected Mode Interface (DPMI)

jne DPMI_ERROR ; No DPMI available
mov DPMI_ENTRY,DI
mov DPMI_ENTRY+2,ES

cmp SI,0 ; host does not request memory
je NoMem
mov AX,4800h ; dos allocate memory
mov BX, Sl ; humber of paragraphs from Sl
int 21h ; allocate memory
jc MEM_ERROR
mov es,ax
NoMem:
mov ax,1 ; 32 bit protected mode!
call far ptr DPMI_ ENTRY

JC DPMI_ERROR

You should have a look at the example file DPM TST. ASM which prints all i nformation
provided by function 1687h, interrupt 2fh and switches the processor into proteced mode.
Youshoud aso try CHECK32. ASM which isatiny protected mode application, which prints
some more information abou the DPMI host, e.g. avail able memory, etc (Pro32 Example
files).

3.3 Dos Extender

A dos extender makes life again much easier. First, the dos extender handles all DPMI
functions to switch into proteded mode and provides aloader, which will load ou application
into the extended memory space. Our application is not restricted to the 640 K Dos memory
anymore. Even, if a system does not provide DPMI, a dos extender will switch the processor
into protected mode and provide aDPMI API. A dos extender is typicdly linked at the
beginning d the program. When the dos extender is executed, it first checks, if DPMI is
available. If it is, the dos extender uses the DPMI service to switch into protected mode and
then loads the program. If there is no DPMI, the dos extender typically checks VCPI. If VCPI
isavailable, it will use VCPI to switch into proteded mode and emulate the DPMI API. If no
VCPI is avail able, the dos extender will test, if HH MEM SYS isavailable. H MEM SYS does
not allow to switch into protected mode, bu it manages the extended memory. So if there is
neither DPMI nor VCHI, it uses H MEM SYS to allocate XM S memory. If there isno DPMI,
nor VCPI, nor XMS, then the dos extender will try to use the bios interrupt 15h, function
AX=8800h to alocate XMS memory. If the bios interrupt is not avail able, the dos extender
can now try to find free memory and the upper memory limit by its own or abort with the
message, that no extended memory is available.

We refer to the Pro32 Dos Extender through oul the book, as it is distributed together with
Pass32. A Pass32/ Pro32 pogram uses the flat memory model, i.e. the program uses asinge

huge segment for code and data. The layout of the segment is described in Tab. 1 (compare
with chapter 10.1).

(c) 1999 byDieter R. Pawelcz&, Munich

Dos Extender 39

Directive Off set Description
000000 00-000000ff PSP - hads command line, environment set-
tings
.code 000001 00-XXXXXXXX Main Program, the entry pant is0100h
.data XXXXXX X X-XXXXXXXX Initi ali sed Data
.data? XXXXXX X X-XXXXXXXX Uninitialised Data
.data? XXXXXX X X-ffffffff Heap
00000-XxxXXX Extra Stack segment

Tab. 3.1 Typical Pass32/ Pro32 proteded mode program

The actual binary format is very similar to the DOS .COM format. The (obsolete) DOS PSP
contains additional information d the DPMI host.

At the program start, we find the segment / seledor registers load with the foll owing selector
values:

CS 32 Lt code selector
DS 32 Lt data selector
ES 16 [t video selector
FS 32 lt zero selector
GS 32 lt zero selector
SS 32 Lt stack seledor

Tab. 3.2Seledor Register values at program start

We can accessthe video memory for example with
.CODE
mov es:[0],A ; write an 'A' to top of the screen

We can accessthe bios data aeawith

.CODE
mov ax,FS : [41Ah] ; read the address of t he Keyboard buffer
mov Keybo ardBuffer,ax ; this would be in real mode 0040:001A

The FS and GS hald a so-called zero selector. They reference adescriptor with a base aldress
of zero and limit of 4G. Basically you can address any memory of the machine via those
selectors’. This descriptor is especially useful, when accessing real mode data or video data.

7.There ae, of course limits: Under Windows and many other DPMI hosts, virtual memory management
is enabled. Virtual memory management allows detailed memory protedion: Each 4k memory page can
beread or writeable acording to the priviledged level. Asa DPMI application usualy runsin the lowest
privileged level, ageneral protedion fault isinvoked, when proteded memory aress are accesed.

(c) 1999 by Dieter R. Pawelcz&, Munich

40 Dos Protected Mode Interface (DPMI)

We can access the video screen via FS, for instance by

.CODE
mov FS:[0b8000h],'A'

DSand CS have the same basis address Note, that just like in the TINY model, code and chta
are in the same segment. We cannot write into the mde segment with CS - this leals to a
genera exception. But we can read from CSand write via DS
The DS descriptor is the default descriptor. Every memory access without a segment
definition refers to the DS segment:

nov [25h],AX ; is same as mo v DS:[25h],AX

The stack segment is placed in ancther memory location, so that stack code and data never
colli de.

In case our DS or ESregister will be destroyed, Pro32 dfers a constant data area at the begin
of our code segment, the so-cdled PSP The first bytes of our code segment contain the
following data:

00-01 DS - data selector

02-03 ES - video seledor

04-05 FS, GS - zero seledor

06-07 Real Mode Fil e Buffer Selector
08-09 Real Mode File Buffer Segent
0A-0D Actual allocated XMS Memory

OE Flag, if windows has been detected®
OF Flag, if other DPMI host is active®
2C-2F seledor to DOS environment
80-FF command line with arguments

a avail able with Pro32 Version 1.47 and rewer versions.

Tab. 3.3The PSP of a Pro32 appication

Y ou can accesseach o these data via CS:

.CODE
mov ax,CS:[2]
nov es,ax ;restore es val ue
mov ax,CS:[4]
nmov fs,ax ;restore fs val ue
nov gs,ax ;restore gs val ue
nmov ax,CS:[0]
nmov ds,ax ;restore ds val ue
cmp byte ptr cs:[0eh],1
j € Windows

(c) 1999 byDieter R. Pawelcz&, Munich

Using DPMI functions 41

mov eax,c S:[0AH]
mov eax,M EMSIZE

The predefined variable identifier MEMSIZE points to CS:[0AH]. The last two examples are
equivalent!

The real mode fil e buffer selector is a32 KByte® buffer placed in real mode memory. Y ou can
use this buffer for DOS, BIOS or other red mode functions®. The red mode file buffer
segment is the arrespondening real mode segment value. Note, that you must use this value
for real mode functions - in protected mode you must use the selector value!

At CS:80h and the following bytesyou'll finda copy d the parameter line. Pass32 provides
some library functions to analyze the parameter line, i.e. to separate the parameters.

In the oppasite of other dos extenders, the code is nat relocated: the code starts always at a
virtual offset 0000100h. Every memory access inside this code segment is fixed to an
absolute addressinside this ssgment. Other dos extenders, e.g. DOSAGW, use dso the flat
memory model. Instead of providing a virtual segment, they provide asingle flat segment
starting at address0. The code must be relocated by the loader, as the ade can be load to any
address sarting from offset zero. In this case, aread from cs:[B8000] reads directly from
the screen and a write to ds:[AO00O] write to the video memory.

3.4 Using DPMI functions

In appendix B.3, youcan get alist of al DPMI functions. The are of these DPMI functions
(the most common wsed functions) are explained in the foll owing example: a smple graphic
modue. Note, that the Pro32 de extender does not provide all available DPMI functions. For
instance the raw mode switching serviceis nat avail able.

The graphic module has the same format as any assembler source. We name the module
GRAPH. | NC to demonstrate the diff erence between program and a modue source. A
program can include the modue with the following drective:

INCLUDE graph. inc

| want to start with the InitGra ph Procedure. This procedure shoud initidize the graphic
mode, set up a new descriptor for the graphic memory, install a new (user) defined graphic
palette and get the addressfor the internal character ROM. As we assume areal mode graphic
bios, you certainly see that we need a lot of real mode procedures to get the job ore.

8.Why 32K is one of the FAQs. The answer is smple, 16K istoo lessand 64K would be too much. The
purpose of the dos extender was to use aminimum of DOS memory. Pro32 for optimizes the DOS me-
mory usage, i.e. when Pro32 hes switched into proteced mode, every code, that is not longer necessary
will be freed to safe memory.

9.Use this buffer with care, as extended dos functions my use the same buffer.

(c) 1999 by Dieter R. Pawelcz&, Munich

42 Dos Protected Mode Interface (DPMI)

To use the DPMI we aan include the DPM . | NCfile. The file contains a data definition field
for the communication with real mode. This field is a 52 byte long field, where real mode
registers, segment register, real mode flags etc are stored. These register storage are simply
called intedi , inteax ,intes etc, because they usualy are used with areal mode in t
instruction.

Let us first include the graphic palette into the graph library. The palette is dored in the file
graph.pal. We can include this binary file with the .LOADBIN directive. The .LOADBIN is
similar to the .INCLUDE directive, it includes a binary file at the current offset in the code
segment. As we want to know the offset of our palette, we define a label, before we include
the pal ette (GRAPH. | NC):

.CODE
.PUBLI C colorpalette: ; declare label as pub lic
Joadb i n graph.pal ; load VGA Palette into p r ogram file

We @n now addressthe palette via the offset: OFFSET colorpalette 10 \When we call
the red mode biosto use our graphic palette, we must copy the palette first to real mode. This
is always the problem when using real mode procedures. We shoud therefore try to use &
lessas posgble real mode functions! To copy ou palette to areal mode area, we use the File
Buffer Area (a 32 KByte free data area in red mode)(GRAPH. | NO):

Initgr aph PROC NEAR ; Copy Colorpallete Into DOS Memory
mov ax,[6] ; Real M ode File Buffer Selector
mov es,ax
mov edi,offset color palette ; access the colorpalette
mov ecx,84 ; number of entries / 4
INIT@PALLOOP:
mov eax,[edi+ecx*4] ; make full use of 32 bit register an d memory
mov es:[ecx*4],eax ; copy to real
loop INIT@PALLOOP
mov eax,[edi] ; copy the first 4 bytes as well
xor edi,edi

mov es:[edi],eax

After we initialized the graphic mode, we can install our own palette (GRAPH. | NO):

mov ax,13h
int 10h ; init 320x 200x256 Color Mode

10.Note, that labels are dedared as locd inside procedures. To access a label global, you either dedare
the label as public or dedare the label as external identifier - see8.2.2 Defining Labels on page 81

(c) 1999 byDieter R. Pawelcz&, Munich

Using DPMI functions 43

To install the palette, we use the real mode function AX=1012h d the int 10h. But how can
we use a real mode segment in proteded mode? We can't! We have to use the red mode
register structure & defined in DPM . | NC. The red mode register structure will contain all
register values to perform ared mode function cdl. After the call, the resulting registers are
stored in the structure. DPMI offers two kind d real mode functions: interrupts and FAR
procedures. These ae the DPMI service functions 0300hand 0301 (see appendix B3.20/
B3.2])

Functioncdl: INT 31h

AX = 0300h / 0301h
BX = interrupt number (BH must be 0) (ignored for 0301h)
CX =number of wordsto copy from the protected mode stack to the
real mod e stack
ES:EDI = selector:offset of real mode register transfer data structure
Results'™:

ES:EDI = selector offset of modified real mode register transfer data
structur e

We can passvalus via the stack. If there are no values passed, pease make sure, that CX is
zero! The DPMI service function expects a far pointer in ES.EDI to the real mode register
structure (GRAPH. | NC):

mov ax,ds ;SetPalette
mov es,ax ; ES =DS Il

mov edi,offset intedi ; EDI = OFFSET of Data Field
mov inteax,1012h ; BIOS func tion AX=1012h

mov intebx,0 ; BX = first pa | ette register

mov intecx,112 ; CX = 112 co | ors total

mov intedx,0 ; DX = Offset o f the palette

mov ax,[8] ; Real Mode Segme nt To File Buffer

mov intes,ax ; ES = Real Mod e Segment of the palette
mov ax,300h ; DPMI Function 0300h: Call Real Mode Int
xor cx,cx ; No parameters on the PM Stack

mov bx,10h ; Interrupt Numbe r, BH must be 0

int 31h ; call DPMI function

It is afew instruction longer and a bit more confusing, bu it works. The DPMI calsint 10h
in real mode with the expected parameters. We can read the return parameters as well from
this data field. Our next problem is to get the addressof the video charader ROM. We need
as return parameters the ES register (Segment) and the BP (OFFSET) register. Again, we
have to use the data field and the DPMI function 0300h(GRAPH. | NO):

11.Make sure, that the exeaution of the red mode function does nat eff ed the stability of the system. The-
reisno exception handing in red mode.

(c) 1999 by Dieter R. Pawelcz&, Munich

44 Dos Protected Mode Interface (DPMI)

mov ax,ds

mov es,ax

mov edi,offset inted i ; make sure ES:EDI points to our st r ucture
mov inteax,1130h ; G et Offset of BIOS CHAR ROM

mov intebx,300h

mov ax,300h ; DPMI Function 0300h: Call Real Mode Int
xor cx,cx ; No para nmeters on the PM Stack

mov bx,10h

int 31h ; call real mode int 10h Function 1130h

XOr eax,eax

xor ebx,ebx

mov ax,intes ; ax = real mode ES

mov bx,word ptr inte bp ; bx = real mode BP (intebp = EBP = dword!)
shl eax,4

add eax,ebx ; calcul ate linear address (Segment+Offset)
mov RomFont,eax ; sa ve address of ROM character set

We calculate the address of the dharacter ROM from the real mode segment value and the
offset. We asume, that the physical addressis equal with the linear address The InitGraph
procedure is now nealy finished. Our last thing to dois to creae aseledor to accessthe
graphic memory(GRAPH. | NC):

mov ax,2 ; create r eal mode selector
mov bx,0a000h ; for graphic screen
int 31h

mov GSEL,AX ; store selector

ret
ENDP I nitGraph

The DPMI function 0002hcreates a seledor from a real mode segement register value. This
functionis very useful to translate segment value into protected mode descriptors / selectors.

Before we test our graphic modue, | want to take ashort look onthe PutPixel function.
This functionis now totaly in proteded mode (GRAPH. | NC):

PROC FRutPixel ; ECX: X EDX: Y BL : Color
push edx ; save edx
mov ax,gsel
lea edx,[edx*4+edX] ; edx:=edx*5
mov es,ax
shl edx,6 ; edx:=edx *64 <= edx*64*5 = edx * 320
mov es:[edx+ecx],bl ; plot (edx*320+ecx)
pop edx
ret
ENDP Putpixel

(c) 1999 byDieter R. Pawelcz&, Munich

Using DPMI functions 45

We make, of course, profit of the fast 32 bit addressing. In combination with the | ea
instruction (Load Effedive Addresg, we can multiply very fast. The lea instructionis used
to load address values. Whereas nov addresses the memory at the given address, | ea
calculates the addressand returns the addressin the destination operand:

lea edx,[edx*4+ edx] ; edx:=edx*5

will multiply EDXby 5and store the result in EDX Thisis much faster asthe mul instruction
asit isprocessd in a single cycle (586).

Let us test our graphic modue GRAPH. | NC with a simple test program (TESTPAL. ASM):

.MODEL FLAT

INCLUDE GRAPH. | NC

.CODE

START:
call initgraph
mov edx,0
@Loop:
mov ecx,0
@LineLoop:
mov ebx,edx
shr ebx,1
add ebx,ecx
shr ebx,2
call putpixel
inc ecx
cmp ecx,320
jb @LineLoop
inc edx
cmp edx,200
jb @Loop
mov ax,4c00h
int 21h

END START

END

In general, the dos extender does the complete setup, mode switch and provides us with all
necessary descriptors. Basically we dorit need any DPMI cdls except for real mode cdl s and
interrupt settings. Chapter 7 describes direct harware accessusing DPMI services.

(c) 1999 by Dieter R. Pawelcz&, Munich

46

Dos Protected Mode Interface (DPMI)

(c) 1999 byDieter R. Pawelcz&, Munich

Definition d floating pant numbers 47

4. Co-Proces®r programming

In some @ses integer values, as they can be presented by the processor’s registers, are not
able to solve amathematicd problem. We need as well floating point operations. With the
80486DX processors the FPU is integrated in the processor. Therefore Pass32 treds FPU in-
structions equal to CPU instructions.

4.1 Definition of floating point numbers

The FPU provides 8 register which use 10 bytes to store floating pant numbers. There are ba-
sicdly three ways to present numbers inside a @mputer: integer numbers, fixed point and
floating point numbers. A fixed point number is Smilar to an integer number, it’s valus is
simply shifted by ore, two o more decimal stellen. The integer number 100 could also pre-
sent 1.00 o 10.0 o 0.100.Fixed pdnt numbers are used for money calculations, etc. A fixed
point number has the same problem as integer numbers have: the limit of the range. If we take
a 16 4t fixed pant number with two dgits after the point, we have arange from -327.68to
+327.67.This is not much, if we think of money for instance. A floating pant number con-
sists of two values: a mantisse and an exponent. The exporent presents a binary exporent, e.g.

multiplicaion factor: the mantiss e * 2 €XPonent gives the actual value of the number.
The mantisse is dways normized as a real number between 0and 0.99999..A real number in
this case is defined as a binary number which is defined as:

X= bo*1/2 +b,;*1/4 +b,*18 + bg* 116 + b, *1/32

Now we have two values, which define the number range. The first value, the mantisse defi-
nes how many valid decimal digits our number provides - you can imagine, that a mantisse of
7 hit gives a maximum resolution d a 1/256, which is 0.00390625j.e. you have amaximum
of two valid dgits. Now the exporent defines the range of the number. It does not enlarge the

resolution, kut imagine an exporent of 10 Kt: your number can take values from 2212 to
2+911 this results in a range from about 101%4to 101°3 The IEEE has normed a set of floa-
ting pant numbers and cefined the values for mantisse and exporents. The FPU acts accor-

ding to these standards and provides three kind d floating pant numbers: single (32 ht),
double (64 Ht) and temporary ! (80 Hit):

1.the 80 hit temporary number isadually not acwrding to the standard. It isused internally for the cadcu-
lations.

(c) 1999 by Dieter R. Pawelcz&, Munich

48 Co-Procesor programming

Single 1.56-45 3.4E+38 7-8 dgits
double 5.0E-324 1.7E+308 1516 dgits
temp. 3.4E-4932 1.1E+4932 19-20 dgits

Tab. 4.1 Range of float numbers

Floating pant numbers provide a huge range, bu they also have one big dsadvantage: The
actually provide only as many valid digits as the mantisse provides bits, so it isavalid opera
tion to subtract two floating pant numbers with totally different exporents. The problem is,
the result is not correct! Therefore the FPU internally always calculates with the temporary
format, to avoid such errors. Nevertheless as on as the number values differs more than

1020 the FPU can’t work with them.

4.2 The FPU internals

The FPU is gadk based, i.e. similar to the processor stack, the FPU provides a stack to store
its operands. The top d the stack is Smilar to the ackumulator of the procesor: the FPU al-
ways uses the top d the stack as one of the operands and/or as result register. The FPU pro-
vides 8 registers, i.e. the stack is 8*10 bytes deep. The stack painter arithmetic is moduo 8,
i.e. when the stack panter paints to the 9th element, it points again to the stack top.

The FPU provides a 16 lt status register.

Bits i1 1f(1f21}| 1| 9| 8| 7| 6|54 3] 2] 1] 0
5(4 3] 2] 1] 0
B| C ST C| C| C| I - Pl U| O Z| D I
3 21 1 0 R E| E| E| E| E| E

Tab. 4.2FPU Satus Register

B: Busy is set, if the FPU is currently calculating a numerical expresson. Note, that the
FPU operations take longer than standard processor instructions.

ST. Stack panter. The value 0-7 defines the top d the stack.

Execption Flags. PE: resolution error, UE underflow, OE overflow, ZE, divison by zero, DE
operand nd normalized, IE invalid operation’.

IR: interrupt request - set in combination with ore of the exception flags.
C3,C2,C1, CO0: status bits of the stack top.In C3, CO, you Il find the result of a comparison:

1.The FPU caninvoke an exception (int 10h). The exegotion handler should analyzethe caise of the ex-
ception by examine the status word.

(c) 1999 byDieter R. Pawelcz&, Munich

The FPU internals

49

fc om St1 C3 Co
ST>ST1 0
ST<ST1 1
ST=ST1 0

Tab. 4.3Comparison d Floating Point Numbers

Since the 80486,the processor has dired accessto the FPU, so you can for instance directly
load the status word into the AX register with FSTSW AXwill store the status word into AX.
Luckily, the status bits are equivalent with the cary and zero flag of the procesor status, so
a SAHF instruction will load the FPU status into the CPU flags and youcan dredly use the

condtional jump instructions to compare two float numbers, e.g.:

fcom ST1
fstsw AX
sahf

jg is_greater

The FPU provides a 16 Lt control register:

Bits 1 1|11 1|11 1] 9 7
51 4| 3 2] 1| 0
- I RC PC I
C E
M

Tab. 4.4FPU Satus Register

The exception mask flags: PMresolution error, UMunderflow error, OE overflow error, ZMdi-
vision byzero, DMoperand nd normalized and IM invalid operation. If abit is t, the excep-

tion will not invoke an interrupt request.

IEM: If the interrupt enable mask is t, the FPU will not trigger an interrupt.

RC Theroundcontrol defines how the FPU rounds results: RC= 00 rounds to the next (pos-
sible) value, RC= 01 rounds downwards, e.g. to minus infinite, RC= 10 rounds up-
wards, e.g. to (pasitive) infinite, RC= 11 rounds towards zero. RC= 00 is the standard

and is most exact.

PC defines how the FPU shoud internaly round \alues: PC = 00 rounds to temporary (80
bit numbers - standard), PC= 01 rounds to single, PC= 10 rounds to doulle numbers.
IC: Theinfinite cntrol defines how the processor treats infinity: If | C= 0 pasitive and re-
gative infinity is equal (al real numbers lie uponadcircle), if IC =1, the FPU provides

positive and regative infinity (all red number lie uponaline).

(c) 1999 by Dieter R. Pawelcz&, Munich

50 Co-Procesor programming

4.3 Draw Circle Function with the FPU

We want to add a function to ou graphics modue, which is able to draw circles. We use the
simple mathematical expresson to creae the circle:

y = My+Ry Ccos(¢) x =M, +R, En(¢)

The first thing we do in ou procedure is to define data. Data which is defined within the
PROGCand ENDP of a procedure can be optimized with the .SM ART option (GRAPH. | NC):

PROC QG rcle ; CX:X DX:Y Sl:RadiusX DI:Radius Y BL:Color
.DATA

CircleR1dw 0

CircleR2 dw 0

CircleMX dw 0

CircleMY dw 0

CircleX dw 0

CircleY dw 0

CircleStartre 0

CircleResolution re 0.02

As you can see we define aso two floating pant constants: CircleStart and Circle -
Solution . The CircleSolution Is the increment for ¢, Circle Start represents ¢.

The registers are clled ST(0) = ST (stack top) to ST(7) . As the FPU is a stadk oriented
procesor, we therefore call the FPU registers also stack. We can store results and constants
on the stadk (using the stack is faster than using memory references!).

The first thing we do is to store our parameters in variable identifiers. Then we use directly
the FPU to set ¢ to zero(GRAPH. | NC):

.CODE
mov CircleR1,si
mov CircleR2,di
mov CircleMX,cx
mov CircleMY,dx

fldz ; load stack t op with zero
fstp CircleStart ; store zero to CircleStart and remove i t from the
stack

fld CircleResolution

(c) 1999 byDieter R. Pawelcz&, Munich

Draw Circle Function with the FPU 51

With the last instruction we store Cir cl eSol ut i on on the stadk. We kee this floating
point constant on the stack as long as we @l culate with it. Note, that we load the constant at
first and that we load this constant only once, because when it is on the stack, we @an use the
stack directly. The first register (stack top) contains now 0.02.

We initialize CX with 2*¢/0.02= 314, CXis again ou loopregister (GRAPH. | NC):

mov ¢x,314 ; 'Pi’
CircleLoop:

push cx ; Save cx

fild CircleR2 ; ST(2)

fild CircleMY ; ST(1)

fld CircleStart ; ST(0)

We load the integer variables R (radius) and My (center position y) with the FILD (FPU In-
teger LoaD) instruction. At last we load ou ¢. As acomment | added the current register lo-
cation d the FPU. Note that ST(3) isour 0.02constant. We want to calculate y. Thisisdone
by the foll owing sequence (GRAPH. | NC):

fcos ; calculate the cosine of ¢ = ST(0) ; result in ST(0)

fmul st,st(2) ; multiply ST(0) with R2

fadd st,st(1) ; add MY to ST (0)

fistp CircleY ; store the re sult as integer value in CircleY
;and remove it f rom the stack

fcompp ; (compare and) remov e MY and R2

mov dx,CircleY ; store the r esult in DX

Cadculating the X coordinate is dore in the same way (GRAPH. | NC):
fild CircleR1 ; ST(2)
fild CircleMX ; ST(1)
fld CircleStart ; ST(0)
fsin fmul st,st(2)
fadd st,st(1)

fistp CircleX

fcompp ; ST(O) is now 0.02

mov cx,CircleX ; store the r esult in CX
fld CircleStart

fadd st,st(1) ; + CircleReso | ution

fstp CircleStart ; store and remove ¢
call putpixel

pop cx

loop CircleLoop

fcompp ; remove CircleResolut ion

ret

(c) 1999 by Dieter R. Pawelcz&, Munich

52 Co-Procesor programming

ENDP Q rcle

Addingto the Circle Solution the 0.02factor, we dorit need to load the mnstant from
memory, because the constant is gill on the FPU stack! To remove values from the stack we
can either pop the values, using fstp (FPU STore and Pop) or using the fcomp (compare
and pop instruction to remove the values from the stack.

We will test the circle procedure with CIRCLE.ASM. The demo draws randamly circles in
different colors on the screen. For the randam generation, we use the function SystemGe-
tRando mfrom SYSTEM | NC. The function creates random numbers in the range of
1..65535,aacording to the value of EAX

(c) 1999 byDieter R. Pawelcz&, Munich

The First DLL 53

5. Writing A DLL Library

In the mean time, DLL has become a common pogramming methods. Althoughthe names
are different, all modern operating systems provide kind o DLLs. DLL stands for dynamic
link library, i.e. the library is linked at runtime and nd during the assembler / linker process
There ae several advantages: first, several application can share the same library, second,the
library can be adapted to the hardware withou changing the code of the gplication and third,
the DLL can be load and removed from memory according to its dynamica needs and memo-
ry requirements.

A DLL codeistypicaly load only onceinto memory. Every appli cation shares the same code.
Every application reserves its own data area for the DLL, so that the DLL can hdd dfferent
data for different applications.

The Pass32 Asembler provides a similar mechanism for proteded mode programs. The &-
sembler can creae pure binary with an interface header. The interface header can be included
in an appli cation, so that the program is linked as if it uses a standard modue. During the run
time, the DLL isload and wsed by the application.

This Chapter describes the basic means of DLL programming. Our gaol is to create asimple
graphic DLL. But before we start, we will first have alook ona simple example.

5.1 TheFirst DLL

Our first DLL shoud simply demonstrate the method d DLL programming. The DLL con-
sists of four pullic procedures, which simply print a message on the screen, when the are al-
led. Thisis the interface of our first DLL (TESTDLL. ASM:

.MODEL DLL
.INTERFACEDb

PROC TestDLLMai n OFFSET DLLMain

PROC TestDLLPro c1 OFFSET DLLProcl
PROC TestDLLPro c2 OFFSET DLLProc2
PROC TestDLLPro ¢3 OFFSET DLLProc3

The interface part ends with a .D ATA, . DATA?, . CODEor a . CONSTdiredive. The only
elements of the interface are procedure definitions and their correspondng procedure offsets.
The interface isincluded in the main program. When aDLL isload, the interfaceis load from
the DLL. You can now cdl any procedure defined in the interface from the main program. If

(c) 1999 by Dieter R. Pawelcz&, Munich

54 Writing A DLL Library

you reed more memory to install another DLL you can free the DLL until you want to use
one of its procedures again. We use the .FAR 1 directive so that we can call far procedure with
aforward reference. The order of the DLL procedures is free Note that you must declare pu-
blic procedure as FAR (TESTDLL. ASM:

.CODE
.FAR
PROC O_LMain FAR
push ds
mov ds, word ptr cs :[0] ;load DS selector
mov edi,offset DLLMe sg
mov bh,14
mov TextColor,bh
call systemwriteLn
pop ds
ret
ENDP DLLMain

Asyou see, the DS selector is saved and restored in the procedure. You shoud na forget, that
when calling the DLL form the main program, the DS seledor usually pants to the segment
of our main program. If we want to accessDLL data, we must get the 'DLL - DS from the
DLL interface?. As you can see from 8.5 The DLL model on pege 95, the DLL - DSis gored
at CS:[0]

A DLL typicdly has no heap memory. If you want hegp memory, you must define amemory
value with the .MEM directive.

Now we want to test the DLL. Look at the short demo program (DLLTEST. ASM
.MODEL FLAT
inclu de TESTDLL.ASM
DLL_ERROR .EQU 0
.DATA
DLLname db 'TESTDLL. DLL',0
ErrorMesg db 'ERROR: TSTDLL.DLL not found!',0
ErrorMesg2 db 'ERROR : Too less memory available!’,0

As you can see, we simply include the DLL. This does nat mean of course, that the whole
DLL codeisincluded - this would make no sense; only the interface part of the DLL isinclu-
ded. In ou example, the interface defines 5 variable identifier:

1.As Pass32 uses the TINY or FLAT memory model, Pass32 assumes per default near subroutine cdls,
i.e.a cdl usesa 16 hit (USEL6) or 32 kit (USE32) offset. AsaDLL isload into adifferent segement, its
functions have to be cdled via a16:16 (USE16) or 16:32 (USE32) hit pointer. The .FAR diredivetells
the assembler to assume far subroutine cdls as defaullt.

2.Youcan easily access datafrom the main program by not loading DS, but using ESto access DLL data.

(c) 1999 byDieter R. Pawelcz&, Munich

The First DLL 55

TESTDLL DW ?
TestDLLMain DF ?
TestDLLProcl DF
TestDLLProc2 DF
TestDLLProc3 DF ?

The first identifier is nat part of the interface, the first identifier is sSmply a name for the in-
terface. This nameis taken from the source name: TESTDLL. ASM You Il need thisidentifier
for the LoadDLL, InitDLL and FreeDLL function. This identifier isa kind d identifi-
cation for the DLL. Thisidentification reedn't be equal with the file name TESTDLL .DLL’!
When the interface part of two different DLLs is equal, you can load bah DLLs in the same
interface. This might be necessary, when youwant to address different graphic adapters, or
different sound bards. You write for ead configuration a different DLL, but all with the
same interface part. This means. the puldic procedure identifiers must be equal and the order
of the interface. You can nav include one interface in you main program, and according to
your hardware configuration at runtime, youload orly the DLL required. Automaticaly your
program is configured correctly for the available hardware.

To load the DLL we @n use this simple sequence (DLLTEST. ASM:

.CODE
mov esi,offset TESTDLL ; OFF SET TO DATA BUFFER TESTDLL
mov edi,offset DLLname ; OFF SET TO Filename
call InitDLL
call loadDLL

jc dlinotfound

The functions LoadDLL, InitD LL and FreeDLL are part of the DLLSYS. | NCfile. This
file is automatically added to you source file, when youinclude any DLL source file. You
usethe DLL ’id" and the off set of the filename & parameters for the loadDLL function. The
InitDLL functionsimply needsthe DLL ’id’. You shoud initialize all DLL at the beginning
of your program to avoid calls to nowvhere = exceptions! When youfree a DLL, the DLL is
automatically initialized. Any call is useless bu does not harm the system.

The loadDLL function first searches the current diredory, if the DLL is not found, it scans
the whole system path set by the $PATH environmental variable. Note, that the function may
load an dder version d the DLL, as it maybe found vathe $PATH variable. It sets the carry
flag if any error occurs and returns an error number in the AX register:

AX=1 Memory Error AX=0 Load Error

If you don't want to hande the eror messages by youself, you can set a label:
DLL_ERROR .EQU 1

(c) 1999 by Dieter R. Pawelcz&, Munich

56 Writing A DLL Library

The loadDLL function then automatically aborts if an error occurs. After a successful loa-
ding o our DLL we can use the DLL functions as if they are part of our program (DLL-
TEST. ASM:

call TestDLLMain
mov edi,offset Mesgl
mov bh,13

mov TextColor,bh
call systemwriteLn
call systemgetkey
call TestDLLProcl
call TestDLLProc2
mov edi,offset Mesgl
call systemwriteLn
call systemgetkey
call TestDLLProc3 ..

You must assemble baoth files: TESTDLL. ASMand DLLTEST. ASM To crede aDLL you
must run PASS32 with the / DLL option:

PASS32 TESTDLL /DLL
PASS32 DLLTEST

Youcan dter the DLL andrestart DLLTEST. Youwill seethe effed! Youcan usetheinternal
debugger for DLLs. Why dorit you try:

PASS32 TESTDLL /D /DLL
andrun DLLTEST again?

5.2 A Graphic DLL

The first example should gave us enough information to creae amore complex DLL. The
fine thing abou a DLL is, that you can easily creade aDLL from an assembler modue. You
can even create aDLL from a complete assembler program. You simply add an interface to
your file! Thisis the interface of our graphics DLL (GRAPHDLL. ASM):

.MODEL DLL
INTER FACE

PROC InitGraph OFFSET Initgraph
PROC PutPixel OFFSET PutPixel

(c) 1999 byDieter R. Pawelcz&, Munich

A simple Windows DLL 57

PROC GetPixel O FFSET GetPixel
PROC OutChar OF FSET OutChar
PROC OutTextXY COFFSET OutTextXY
PROC Circle OFF SET Circle

PROC Line OFFSE T Line

PROC Rectangle OFFSET Rectangle ...

We must add the FARdirective in every pulic procedure definition and - be careful, we must
add loading and restoring the data descriptor if we want to accessDLL datal

Look at the example Cl RCLE2. ASM At the beginning we have the same @de sequence &
in o DLLTEST demo. We load the DLL and check for an error, if no error occurs, we @an
use the graphic routines just as they had always been part of our program. For clear pro-
gramming youshoud write a short modue, which dces the whole including and testing.

You shoud have a look at the GRAPHI C. | NC modue. The modue offers a lot of graphic
functions and addresses the graphic screen via different graphic DLLs. VGA, XVGA,
VESA1.2and VESA2.0 divers.

5.3 A simple Windows DLL

Althoughthis book daes nat cover Win32 pogramming, it shoud be stated, that Pass32 can
also create Win32 DLLs. The difference of aWin32DLL is, that it shares the same code seg-
ment with the main program. A DLL function therefore can na be dedared as far. When
Windows loads an application, it creates a virtual 4G address space for this application. Every
DLL, that isrequired by the applicaionis mapped into the virtual address pace. Every appli-
cation is (in principle) separated from the other applicaions and shoud not be ale to harm
other applications. When we aeate aDLL with Pass32, we use the same interface definition
asfor aPass32 DLL . Whereas the Pass32 DLL uses a 256 byte longinterface header, Pass32
credes an export table for the Win32 DLL acwrding to this interface header. Note, that a
Win32 DLL neeals an intializer, which is basicdly the first function d the DLL. The init
function reeds to return zero to tell the windows desktop system, that the loading was suc-
cesdul.

5.4 A short chapter on OVL writing

Pass32 provides two additional linker forms: pure binaries and owerlays. Pure binaries can be
used for embedded system programming a microcontroller programming, which are based on
an x86core. Pure binaries can use the .ORG diredive, to define the offset addressof the pro-
gram code. The .ORG diredive must be used prior to the first . CODE or .CONST definition.
Anocther linker option is the export as overlay. An owerlay takes the same 256 byte interface

(c) 1999 by Dieter R. Pawelcz&, Munich

58 Writing A DLL Library

as a DLL, with the difference, that the overlay is load into the same segment. Therefore an
overlay must be assembled at a different start addressthan the main program. A DLL isload
in atotally new segment. When you free the DLL, al memory and descriptors will be freed
aswell. An owerlay isload directly into you code segment. This has one advantage, and a lot
of disadvantages. The advantage is, that overlay and main program share the same heap me-
mory. It is easy to handle data with an owerlay - DS and CS must not change, you can use a
32 bt offset to addressdata instead of an 48 bit pointer. But overlays are limited by the pro-
gram heg memory, and you must define the location of the overlay while you are coding
your program. You can compare the overlays with Windows' Drivers. You can write special
hardware driver as overlays, and load the specific driver at runtime. Especially for drivers the
memory sharing with the main program is useful.

The only difference between an OVL source and a DLL source is the .ORG directive in the
interface part. The simple overlay example has the following interface part (TESTOVL. ASM):

.MODEL OVL
.INTER FACE
.ORG 50000h

PROC TestOVLMain OFFSET OVLMain

PROC TestOVLProcl OFFSET OVLProcl
PROC TestOVLProc2 OFFSET OVLProc2
PROC TestOVLProc3 OFFSET OVLProc3

The .ORG directive sets the code offset. Withou this directive, the overlay would get an doff-
set of 00000100h the overlay would overwrite the main program, when it is load!

Y ou must make sure, that the off set for the overlay is unused memory hegp of your program!

The usage of an owerlay modue is again similar to the usage of a DLL modue: Youinclude
the interface part of the OVL file with .INCLUDE. When an OVL modue is included, the
file OVLSYS. | NC is automaticdly appended to your source. This module offers two main
functions: | nitOVL and LoadOVL. You shoud runthe InitO VL function at the begin-
ning. LoadOVL loads the overlay directly into the code segment, at the spedfied .ORG
addresd This is the sequence to load an owerlay:

.CODE
mov esi,offset TESTO VL ; OFFSET TO DATA BUFFER TESTOVL
mov edi,offset OVLna me ; OFFSET TO Filename
call InitOVL
call loadOVL
jc OVLnotfound

(c) 1999 byDieter R. Pawelcz&, Munich

The binary format 59

The loadOVL functions sts the carry flag, if the overlay is not fourd. When the overlay is
load, youcan treat any owerlay function as part of the program.

5.5 The binary format

In general, Pass32 is used to create direct exeautables, i.e. applicaions with the extension
.EXE or .COM. Sometimes, it is required to get a plain hinary file. For example, when x86
Software for embedded systems is written for ROM usage. With the -f option, Pass32 can
crede a binary image. In combination with the .ORG directive, the start offset can be defined.
Note, that Pass32 suppats only one segment, i.e. aflat segment.

(c) 1999 by Dieter R. Pawelcz&, Munich

60

Writing A DLL Library

(c) 1999 byDieter R. Pawelcz&, Munich

61

6. Macro Power

This Chapter describes programming means of the Pass32 assembler, which are generally
mode independent: Macros. A macro is a @llection d instructions, directives and assembler
commands, which can be combined in one maao. The 'power’ of a maao is, that you can
once define a complex set of instructions and then use them easily in you code. What might
look like pascal or basic can be rrect assembler code:

.CODE
Writeln('Hello, World’);
Exit(0);

END

Writeln and Exit are macros. First, we have alook at the macro exit. This is a common
macro type. The macro simple stands for a set of assembler instructions. Instead of writing an
exit sequence or cdling an exit procedure, we can simply use the exit macro. But as you see,
amacro can domore than inserting assembler instructions. A macro can use Pass32 drectives
as well. So we can define data storages with maaos, use mnditional assembly etc. And
exactly thisis, how we can creae a syntax like Writeln(" Hello, World').

Let’s have alook at the example file MACRO. ASM In the main program, we have abasic like
syntax:

.CODE

START:
Print(’********** HELLO| *kkk *********')
print('This is a simple macr o examplel’)
print(’********************** * ********')
PrintError(EOF Demo reached.)

END START

END

Print and PrintError are maaos. Now, lets have a look at the macro Print

.MACRO Print(Me ssage)
Create_Message(.LOCAL MESG,Me ssage)
Writeln(offset .LOCAL MESG)

ENDMACRO

(c) 1999 by Dieter R. Pawelcz&, Munich

62 Macro Power

Obvioudly, the macro uses again ather macros. We dorit learn much from this macro. But we
can see, that we @an passthe parameter to another macro. Obviously Create_Message is
a maao, which generates a data buffer with the mntents of our message. So let’s look at the
maao Cr eate_message :

.MACRO Create_Message(name,string)
.DATA

name db string,0 ; create string message
.CODE

ENDMACRO

This macro produces data and nd code. The parameter string contains our message. But what
is the parameter name for? Quite easy, to accessa data storage, we need an identifier, a name
for the data storage. The name comes from the macro print: Aswe see, Create_Messa ge
is cdled with the parameter .LOCAL MESG. The name of the data storage is MESGAS we
want to use the maao print more than orce the identifier name must be unambigous. Thisis
dore by the . LOCA. directive. Inside amaao the .LO CAL directive simply extends the
identifier name by a hex number, so instead of MESG our parameter is mething like:
@HHHHHHNBESG where HHHHHHHIgands for an individual hex number.

The other macro used by Print is WriteLn
.MACRO WRITELN(stringoffs)
WRITE(stringoffs)
mov dl,10
mov ah,2
int 21h
mov dl,13 ; do Carr i age Return
mov ah,2
int 21h
ENDMARO

The parameter stringoffs is passed to the macro Write . The rest of the macro smply
prints #10,#13 va standard ouput. As we can see from the Print maao, the parameter
stri ngof f s is the same as the first parameter to Cr eat e_Message. We first create a
data storage and then call afunction to dsplay this data storage. The macro Write is smply
afunctionto dsplay the string ia DOS:

.MACRO WRITE(stringoffs)
mov edi,stringoffs
.LOCAL @start:
mov dl,[edi]
cmp dl,0
je short .LOCAL @end
mov ah,2

(c) 1999 byDieter R. Pawelcz&, Munich

63

int 21h ; display string cha r by char
inc edi
jmp .LOCAL @start

.LOCAL @end:

ENDMACRO

Interesting is the use of . LOCA. inside of this maco. We need . LOCAL to define
unambigious label names. Withou .LOCAL, the second tse of this macro would lead to the
error: "dugicate label’, because @start would have been defined already. With .LOCAL we
create macao individual labels. Again, the labelname is extended by an individual hex
number.

Now, what happens when we cdl the macro pr i nt like this: print ('Hel lo ,
World’) ?

print(Hello Wo rid’)
| ======> Creat = e_Message(.LOCAL MESG,Hello World")

@O00000001MESG DB ' Hello World’,0
.CODE
======> Write Ln(offset .LOCAL MESG)
| ======> Write(offset .LOCAL MESG)
| ======> mov edi, @O00000001MESG

@00000002@start:
mov dl,[edi]
cmp dl,0
je short @00000002@end
mov ah,2
int 21h ; display string char by ¢ har
inc edi
jmp @00000002@start
@00000002@end:

mov dl,10

mov ah,2

int 21h

mov d|,13 ; do Carriage Return

mov ah,2

int 21h

With this knowledge, we can write totally different assembler code. And exactly that’s the
reason why Pass32 comes with a macro library SYSTEM MAC, which presents gandard /O
functions as macros (an extension of SYSTEM | NC) . Instead of a cdl to the function
SystemWrit eln , you can simply use the Macro WriteLn(String) . Look at the very
short demo file MACRO2. ASM

(c) 1999 by Dieter R. Pawelcz&, Munich

64 Macro Power

.nclu de system.mac

.CODE

start:
call systemclrscr
print(15,6,’******** * kxkkxkxkxRE NMACRQ 2 *r¥ksrkrksksksrsrs ***1)
print(15,7,* *
print(15,8,* ’
print(15,9,™ *
print(15, 10, rrkkkkk * kxkkxkxkxkek MACRQ 2 *Frsrkrksktksrsrs ****1)
color(14,0)
print(31,8,’Simple M acro Demo’)
color(14,7)
print(0,0,” Macro2.A SM);
print(0,24,” Press a ny key to continue ’);
call systemgetkey
color(7,0)
print(0,24,”);
gotoxy(1,12);
exit(0)

END st art

END

*
SN N N

As you can see, it is a combination of maaos and function cdls. We learned quite a lot
advantages of maaos. But | shoud mention the disadvantage, too. A macro is not a function,
the usage of amacroisnot a cdl i nstruction, bu the insertion d the macro instructions. If you
for example conwert the whole SystemWriteln function into a macro, you program will get
quite long, if you often cdl this maao. So you have to dedde between a fast exeaution
(withou overhea like call and ret) and a smaller code. Y ou shoud therefore use macros
either to simplify your source code, for example Writeln('Hello, World’) , to gain
speed by executing a 'fast’ function call, or to combine a small number of assembler
instructions, which is used gute often, for example exit(0)

(c) 1999 byDieter R. Pawelcz&, Munich

Proteded Mode Mouse Driver/Hand er 65

7. Access to Hardware from Protected
M ode

The DPMI interface dlows to use dl BIOS and real mode resources from proteded mode.
Unfrotunately, the DPMI is not designed to emulate this resources from proteded mode. The-
refore, a cal to a mouse driver function e.g., is actually a call to real mode. Even every time,
the mouse moves, the real mode mouse hander is invoked. Another example is VESA gra-
phics. When we use VESA graphics acoording to Version 1.2,we have to invoke real mode
functions to move the graphic window - althoughwe can addressthe whole aldress gace, we
arerestriced to a 64K graphic page. The Vesa standard V2.0 solved this problem: From 32 it
protected mode it is now possble to accessthe complete video ram.

7.1 Protected Mode Mouse Driver/Handler

This chapter describes the implementation o a protected mode mouse driver. We an of cour-
se use thereal mode driver int 33h to aacessthe mouse, bu this would mean, that our pro-
cessor is running mainly in real mode. We want to accessthe mouse driver diredly. This
means we install our own mouse driver, which istotally written in protected mode. For the in-
initialisation and the mouse detection, it still needs areal mode mouse driver. As a PS2 mouse
would additionaly require a new keyboard hander, the demo suppats only a serial mouse on
COM1 o COM2.

The real mode mouse driver isa TSR program. It install s according to the mouse port COM 1
or COM2 (or PS2 mouse), an interrupt service routine. This interrupt routine is called every
time, the serial mouse sends ome information ower the port. In words, every time we move
the mouse or pressa button, the red mode procedure is called. If we write our own interrupt
service routine, we would get two effects at once: The processor mustn’t switch to red mode
and - every mouse information is directly available - we do na even need to cdl thei nt

33h! With Pro32we can install a hardware interrupt service routines directly with the DPMI
Function 0205hWhen an HW interrupt occurs, ou installed procedure is called; when an ex-
ception accurs, the arrespondending exception hander routine will be called. As long as we
do na creae our own exception handing, Pro32 does the exception handing. For more infor-
mation abou exception handing, youcan look at the Pro32 demo file DEMOEXC. ASM- this
example detects a division by zero with a user defined exception hander...

The following code installs our own mouse interrupt service routine with function 0205h

PROC InitMouseC oml NEAR
MoV CX,CS
mov edx,OFFSET Coml1Mouse
mov ax,0205h ; set pm
int mov bx,0ch ; int Och

(c) 1999 by Dieter R. Pawelcz&, Munich

66 Accessto Hardware from Protected Mode

int 31h ; set new i nterrupt
ret
ENDP | nitMouseCom1

We don't need to save the old interrupt state, because dl proteded mode interrupts are inva-
lid, when we return to real mode. As the mouse interrupt is an hardware interrupt, we need to
send an EOI (End OF Interrupt) to the interrupt controller at the end d our routine:

PROC mlMouse
push eax
mov al,20h
out 20h,al
pop eax
iret

ENDP Coml1Mouse

The next problem is the communication with the mouse. We aswume that a real mode mouse
driver had been load already, so we dorit need to initialize the mouse, the port, the interrupt,
etc.

A MS compatible mouse sends three bytes for a movement, or a button click. The first byte
has information d the move diredions and the button, we redize the first byte, because the
6th bit is aways st. Our service routine does not wait for al three bytes - we receive asingle
byte and wait until we have gat al threebytes. Here is alist of information in these bytes:

1st byte 2ndbyte 3rd byte
0O1LRY YXX |00 XXXXXX 00YYYYYY

Tab. 7.1 The Serial Mouse Protocol

L stands for the left mouse button and R stands for the right mouse button (1 means pressed).
X describes the X-increment between the last cdls and Y the Y-increment. X and Y are Si-
gned 8 it numbers. The first byteisindicated by '01'.

After we received the third byte, we can analyse the information, and store the information in
global data:
.PUBLI C .DATA
MSX DW 100 ; mouse x position
MSY DW 100 ; mouse y position
MSMAXX DW 640 ; max mouse X position
MSMAXY DW 400 ; max mouse Yy position
MSLEFT DB 0 ; left nouse button
MSRIGHT DB 0 ; righ t mouse button

(c) 1999 byDieter R. Pawelcz&, Munich

Vesa 2.0 gaphic driver 67

When ou service interrupt is installed, we can access any mouse data through these identi-
fiers. We add to ou service routine adummy procedure which shoud draw the mouse. In our
main program we can define a procedure which draws the mouse on screen, depending onthe
video mode of the program, We replace the dummy procedure in ou mouse driver - and ou
mouse suppart is perfect!

The example files MSDEMO. ASMand MSDEMO2. ASMtest our protected mode mouse driver.
VBDEMOX2. ASMusesthe GRAPHDLL. DLL we created in 5.Writing A DLL Library on page
53, to display graphics.

7.2 Vesa 20 gaphicdriver

The VESA 2.0 extensions are mainly concerning the protected mode support for graphic ad-
aptors. In the mean time, modern operating systems do nd use real mode code to accessthe
video screen. This allows on the one hand to access g#gments above 1IMB and onthe other
hand, segments are nat restricted to be 64K in size VESA 1.2 solved this problem by splitting
the video memory in 64K pages, which are mapped to the 64K segment at AOOOOh With
VESA 2.0, this window management is obsolete, because the graphic adaptor can map the
whole video memory into the 4G address ace If VESA 2.0isinstalled, we smply need the
physicd address of the video memory, use the VESA function to enable the graphic mode.
Once the graphic mode is %t up, we can accessthw whole screen via avideo selector, or the
zero selector for instance.

A common ptfal is, that the physicd addressis usually nat equal with the linear address due
to the virtual management®. DPMI provides a function call to determine the linear addressof
aphysical address. Thisfunction isrequired, if we want to accessthe VESA graphicin aWin-
dows DOS emulation:

Function call: INT 31h

AX = 0800h
BX:CX = physical address i n memory
SI.DI = size of region in bytes

Results, if succesdul:

carry flag clear
BX:CX = linear address

The following steps are required to access the video ram of a VESA2.0 adaptor: First, we
have to lean the atua physical address. Then we map the original physical addressto a li-
near address Now we @n addressthe video ram through the linear address The following
code example will calculate the linea address of the video ram for a VESA2.0 gaphic card:

1.Pro32 disables virtual mangement when passible, becaise it slows down the processor’s geed.

(c) 1999 by Dieter R. Pawelcz&, Munich

68

Accessto Hardware from Protected Mode

MOV InteAX,4F01h
MOV InteCX,101h
MOV AX,CS:[8]
MOV IntES,AX

MOV InteDI,0

MOV AX,DS

MOV ES,AX

MOV AX,300h

MOV BX,10h

MOV CX,0

MOV EDI,Offset InteD
INT 31h

MOV FS, word ptr cs
MOV CX,FS:[40]
MOV BX,FS:[42]
CMP dword ptr fs:[4
je XX

test byte ptr fs:[0

je XX

MOV SI, SIZEX*SIZEY/
MOV DI, SIZEX*SIZEY%
MOV AX,0800h ; get

int 31h

MOV word ptr FrameBu
MOV word ptr FrameBu

; Pro32 real mod e buffer segment value

; Offset 0

|
; call VESA func tion: Get Mode Info
:[6] ; Pro32 real mode buffer selector

0],0 ; linear frame buffer address
; if zero -> Error!
1,128 ; support for VBE 2.0?
: no -> Error!
65536 ; graphic screen size
65536
linear address

f ferBase,CX
f ferBase+2,BX

(c) 1999 byDieter R. Pawelcz&, Munich

Defining Code, Data and Memory Model 69

8. The Pass32 Assembler

This Chapter gives an overview on the features of the Pass32 Assembler. It describes al as-
sembler directives and the general layout of assembler programs.

8.1 Defining Code, Data and Memory Model

Pass32 suppats two main memory models: The Dos compatible TINY model which is used
for . COM exeautables and the Dos Extender compatible FLAT memory model. The TINY
model is restricted to a 64 Kbyte segment for code, data and stack. The FLAT memory model
can use up to 4 Gigabytes code and data. The aeation o . COMfiles is useful, if you like to
create DOS oriented code (file transfer, file filters etc). The flat memory model is used for
working with a great amourt of data, for example for a graphic oriented system. It is the de-
cision ketween real and protected mode, between 16and 32 lit!

You define the memory model with the .MODEL diredive. You shoud always use this direc
tivel This directive defines the segement type atribute (USE16 a USE32).

8.1.1 Defining the TINY model:

Total Segment Size 64K for code, stack and data. The memory model is defined by writing:
.MODEL TINY
Tab. 8.1shows the typical layout of a .COM program.

Directive Offset Description
0000-00f f | PSP - haddscommandline, environment set-
tings
.code 0100-xxx x | Main Program, the entry paint is0100h
.data XXXX-XXX X | Initialised Data
.data? XXXX-XXX X | Uninitialised Data
xxxx-fff ~ f | Reserved for Stack and Heap

Tab. 8.1 The Tiny Model

The complete program canna exceed 64K. The shaded sections in the table are actually part
of the program binary. The other parts are created during the run time by the operating system
(PSP, STACK) or by the program itself (.DATA?). The stack starts from Offffh dovnwards.
You must make sure, that your program has enoughstack size A goodidea is to allocate an
extra 64K for the stack. In this case you dorit have to control the stadk usage and you code/
data size (NEWSTACK. ASM):

.MODEL TINY

(c) 1999 by Dieter R. Pawelcz&, Munich

70 The Pass32 Assembler
.CODE
.DATA MemErr or DB 'Not enough real mode memory av ailable’,13,10,'$'0
START:

MOV AH,48h

MOV BX,65536/16 ; amount of memo ry = BX*16

INT 21H

JC NoMem ; error - not en ough memory

CLI ; No interrupts now

MOV SS,AX

MOV SP,0fffeh ; word aligned s t ack

STI

; start of the o riginal program
NoMem: ; print error Me ssage with DosPrint

MOV DX, offset MemEr ror

MOV AH,9

INT 21H

MOV AX,4C03h

INT 21h

Example 3: Defining a new stack Segment

8.1.2 Defining the FLAT model:

Total segment size 4G for code, stack? and dhta.

Directive Offset Description
00000000-000000ff PSP - hads command line, environment set-
tings
.code 00000100-XXXXXXXX Main Program, the entry pant is0100h
.data XXXXXXXK-XXXKXXKXXX Initi alised Data
.data? XXXXXXXX-XXXXXXXX Uninitialised Data
.data? XXXXXXXX-FFFFFfE Heap
00000-XxXXX Extra Stack segment

Tab. 8.2 The Flat Model3

1.The 4G address space ca be aldressed hy these gplications. There isusualy alimit of 64MB by the
dos extender or even smaller limits due to the operating system. Pro32 and Pass32 generally support pro-
grams up to 4G length.
2.The Stadk segment is usually different from the CS/DS segment when using a dos extender, but some

dos extender def

ine SS=DS.

3.Thismemory model is provided by the Pro32 debugger. The stack segment is an extra segment, which
isresident in the red mode memory area(usually locked urder Windows/WinNt)

(c) 1999 byDieter R. Pawelcz&, Munich

Defining Code, Data and Memory Model 71

Tab. 8.2shows the layout of atypical flat memory model, asit is provided by the Pro32 Dos
Extender. Other dos extender might start directly at the offset address 000000000h (e.g.
WDOSX). Again ather dos extenders might start at a virtual address e.g. 01000000hwhere
the low 1 MB addressrange presents exadly the red mode addressrange. These dos exten-
ders are suppated as well by Pass32, by setting the program start off set, e.q:

.MODEL FLAT
.ORG 1000000h

8.1.3 Data definitions

As you can seefrom the tables, there are different data types:

- predefined data - at the end o the . EXE /. COMfile

- undefined data - value is unknown

- constant data - part of the mde

You dfine the beginning o data with the .DATA, .DATA? or .CONST directive:

.DATA The following dfinitions are part of the ,,data seg-
ment”. They all ocate andinitialize adata storage at the
end d the program code

.DATA? The following dfinitions are no part of the program.
A data storage is allocated, but of course nat initiali-
zed.

.CONST | Thefollowing cefinitions will be placed dredly into
the code segment. A .CONST directive & the begin of
an asembler source forces the first bytes of the code
to be data storage and nd to be instructions!

Tab. 8.3Data Segment Definitions

The .DATA andthe .CONST directive differ in the location d the data storage andin the usa-
ge of the data. The syntax is for both diredives the same. You can place @mnstant variable
identifiers directly into the code segment:

H1 DW ?
PROC Test

mov H1,AX

mov BX,H2 ...

ret

H2 DW ?
ENDP Test

(c) 1999 by Dieter R. Pawelcz&, Munich

72 The Pass32 Assmbler

A constant variable is usually accessed via the CS selector; mov H1,AX therefore will be-
come mov CS:H1,AX . To avoid a general exception (a write memory aaccesswith CS) you
must use a segment override, for example DS, to alter constant data. In a clear source code
you shoud use constant data & constants and nd alter them!

A datadefinitionis dore by defining an identifier (variable name) a storage size directive (Si-
ze of variable type) and the data value. Pass32 dfers the following storage size directives:

DB 1 byte all ocates one byte storage(8 hit)

DW 2 bytes | allocates one word storage(16 hit)

DD 4 bytes | alocates adoulde-word storage (32 ht)
DF, DP | 6 bytes | alocatesa32-hit far pointer

DQ 8 bytes | all ocates a quad-word storage

DT 10 bytes | allocates aten bytes gorage

Tab. 8.4Data storage directives

For floating point constants there are four more diredives:

RS 4 bytes | alocates gorage for single floating pant number
RD 8 bytes | allocates gorage for doule floating pant number
RC, RE | 10 bytes | allocates gorage for a comp (extended) float number

Tab. 8.5Data storage directive for float numbers

Any drective/label/procedure name is treated as not-case-sensitive.

8.1.4 Data Expressions

To initialize data you wse the following syntax:
[NAME] DB | DW | DD | DF | DP | DQ | DT expression {,exp r ession}

To initialize a floating pant number
[NAME] RS | RD | RE | RC float-constant {,float-constant}

An expresson might consist of the following numbers:

» hexadecima : denated with an hfoll owing the number and must begin with ore of the
digits0 - 9, e.g. 1234h. €fh, 4a7h

» octal : denoted with an o suffix, eg. 01230
* binary : denoted with a b at the end d the number, eg. 010100b
* decimal : thisisthe standard naation, eg. 65535

(c) 1999 byDieter R. Pawelcz&, Munich

Defining Code, Data and Memory Model 73

characters : a charader is presented by its ascii code, eg.'A’ = 65 several characters
are stored as they are: 'YOU'’ = 59h,4h,55h

and the following orerations:

() : marksan expression for priority evaluation

[1 : marksan expression as a memory reference
(unary) - : changes the sign d the expresson
NOT(unary): logicd NOT (inversion) of the expresson
AND: logical AND of two expressions

OR: logicd OR of two expressons

XOR: logical XOR of two expressons

* - multiplies two integer expressons

/ : divides two integer expressons

%: gives the remainder of an integer division (moduo)

- subtracts two integer expressons

+ : adds two integer expressions

SIZE : sizeof adatatype (DB =1,DW =2, ..)

BYTE PTR: to address a single byte memory location
WORD PTR to address a word memory location
DWORD PTRto address a doulde word memory location
FWORD PTR to address a 32-bit far pointer location
QWORD PTRto address a quad word memory location
TBYTE PTR: to address a ten byte memory location

Inside a .CONST data expresson, youcan use the directive:

OFFSET: to get the aldressof alabel / procedure / identifier?

Some examples of data definitions:

.DATA

ByteVar DB 01000 b OR 01b OR 100001b

ByteRow DBO,1,2 , 3,45,6,7,8,9,10

Wordvar DW OEF7Ah AND 01110011011b

WordRow DW 10+2* 20,20+2*20,30+2*20,48*8,48*16,128%7
DWordVar DD 00001 00h+SIZE ByteRow*11+SIZE ByteVar
BCDNumberDT ?

mesg DB 'Hell o, World",0

unicode DW 'Hell o, World!",0

1.Using charaders with word constants (DW), Pass32 creaes UNICODE conform charaders (16 ht)
2.Note, that you can't use off set inside .DATA Thisisdueto thefad, that .DATA isarealy parsed in the
first pass when the offset addresses are not yet known.

(c) 1999 by Dieter R. Pawelcz&, Munich

74 The Pass32 Assmbler

The question mark is a specia expresson, the value of the expresson is unknovn and urim-
portant! You can nd use the question mark with an operation: 10*?,? or 01b (wrong!!!) The
guestion mark is the only allowed expresson for undefined data:

.DATA?
IntResult DD ?
ResultVec DD ?,?,?
FloatRes RD ?
BCDResult DT ?

A floating pant constant can be defined with RS RD, RE or RC RSis the identifier for a
single floating point number (4 bytes). The constant has the following format:

[-] digits [.digits] [e +|- digits]

The range for the floating pant numbers are:

RS 1.56-45 3.4E+38 7-8 dgits
RD 5.0E-324 1.7E+308 15-16 dgits
RC, RE | 3.4E-4932 1.1E+4932 19-20 dgits

Tab. 8.6 Range of float numbers

Some examples for floating pant constants:

.DATA
Single RS 1.5
SingleRow RS 3.7E- 8, 19.2145, 18.125E+12, 29.111, 77.99
Double RD 1.999 E+200
DoubleRow RD 1.771 25, 1.998192, 0.25E-38, 0.125E+128
Comp RC -1.99 9e-500
CompRow RE 0.999 999999E-22,33344556E+88,9123456E-88

The DUP dugicate diredive creates an array of a data type':

[INAME]DB| DW | DD |DF | DP | DQ | DT field-c ount DUP (expression)
[NAME] RS | RD | RE | RC field-count DUP (floati ng-point-constant)

The expresson a floating-point-constant is dupicated field-court times. Examples:

1.Note, there’ snorecursive usage of DUR instead of DB 256 DUP(1024 DUP(?))
write DB 256*1024 DUP(?) !

(c) 1999 byDieter R. Pawelcz&, Munich

Defining Code, Data and Memory Model 75

.DATA
SingleArray RS 1000 DUP(0.1) ; 1000 times the constant 0.1
ByteField DB 1024 DUP(0) ; 1k bytes with value O
.DATA?
VideoBuffer DB 256*1024 DUP(?) ; 256K Video Buffer

Basicdly, data identifiers are treaed as local inside a module. This means, you can access
only data identifiers, which are defined in the same module; and, in dfferent modues, you
can use the same names for data identifiers...

If you want to accessdata defined inside another modue, you have to make export this varia-
ble. There ae basically two ways of exporting data: You can use the .PUBLIC directive in-
side this modue:

.DATA
privateid DB O
.PUBLIC publicid DB 1

The identifier publicid can naov be acessd from other modues. You can use .PUBLIC
before the .DATA directive to make all data identifiers pubic:

.PUBLIC .DATA
ispublic DB 0
ispublic2 DB 1

The first method reeds a dange to the modue file. This might not always be useful as the
identifiers made pulic will always be exported (if they are needed or not). You can force a
modue to export a data identifier (which is not made pulic) with the .E XTERN(directive:

MODULEA.INC:
.DATA
privateid DB O
.PUBLIC publicid DB 1

MODULEB.INC:

.INCLUDE MODULEA.INC
.EXTERN privateid ; now publicid and privateid can be acce ssed!

(c) 1999 by Dieter R. Pawelcz&, Munich

76 The Pass32 Assmbler

For the . EXTERN directive, the identifier must be known, this means, the module must be
included first®. .EXTERN is ignared, if the data identifier is already made pulic. .EXTERN
and .PUBLIC can also be used with lables and procedures.

The .ALIGN directive forces the assembler to align data or code, depending in which seg-
ment the directive is used®. With .ALIGN you can enable dignment inside adata segment:

Every data identifier begins at an offset divisible by 2 (TINY) or 4 (FLAT) according to the
memory model. If you reed a complete block of data, you can use the . BLOCKand .NO-

BLOCK diredive. Between . BLOCK and . NOBLOCK each data identifier follows the other
without a gap. Therefore you have data dignment for the first item, but nat certain for the
other elements. The .NOALIGN diredive disables data alignment. Y ou can specify the data
alignment by a ardinal number of 2,4 a 8 irrespective of the memory model.

Example:
.MODEL FLAT
.DATA .ALIG N ; same as .ALIGN 4
AlignedByte db ?
AlignedWord dw 0
ALignedDWord dd 0123456h
.BLOCK
TextStrings db 'INPUT 'JOUTP UT','LIST 'JRUN "’
db 'NEW '/OPEN ' JCLOSE '/CLEAR"’
TextStringEnd db 0
TextStringElements db 8
.NOBLOCK
AlignedBytes db 0,0, 1,1,2,2

f you wse .ALIGN inside the code segment, Pass32 will insert as many nop instructions urtil
the next instruction is aligned®,

8.1.5 Predefined Data lIdentifiers

Pass32 defines one global variable identifier for the TINY and two gobal variable identifier
for the FLAT memory model:

1.Note, the .EXTERN directive actualy copies the information d the private modue
dataidentifier into the puldic data area. For this reason, . EXTERN allocates the identi-
fier twice and needs more memory than the use of .PUBLIC.

2 Note, that Pass32 V2.0f ignares an .ALIGN directive outside any segment (for ex-
ample & the beginning)

3.Note, .ALIGN doesn’'t have an effed onthe ade segment generally, likeit hasin the
data segment.

(c) 1999 byDieter R. Pawelcz&, Munich

Defining Code, Data and Memory Model 77

a) TINY

 LASTDATA: OFFSET of the first free data aldress of the program heap pantsto the
last .DATA? identifier + its gze.

b) FLAT

* LASTDATA: OFFSET of the first freedata address of the program heap pants to the
last .DATA? identifier + its sze.

* MEMSIZEpants to CS:[OAh] of the protected mode PSP = amourt of allocated me-
mory for the program segment (Pro32 Dos Extender?).

If you reme any variable identifier with ore of these names, youwill get a warning message.

8.1.6 Usage of Data Identifiers

Any variable or constant identifier replaces the actual address. You can use the variable in-
stead of its address

mov ax,WordValue ; would be t he same as:
mov ax,[OFFSET WordValue] ;

The OFFSETidentifier returns the aldress of a label, a procedure or a variable. If you want
to addressdifferent elements of a variable identifier, you can use the PTRidentifier. For ex-
ample, if you want to make afar call viaavariable:
.DATA

FarPtrVar DF ?
.CODE

mov ax,Cs

mov edi, OFFSET FarPtrEntry

mov WORD PTR FarPtrvVar+4,AX ; AX and FarPtrVar different types!

mov DWORD PTR FarPtrVar,EDI ; EDI and FarPtrVar different types!

call FarPtrvar ; FarPtrvar i s expected type!
FarPtrEntry:

If you try to load o store with a different type of variable, youwill get an error message:
mov ax,ByteVar ; illegal typ es!

You must use the PTRidentifier if you want to avoid an error:
mov ax,BYTE PTR ByteVar

1.When ather Dos Extenders are used, you must ignore MEM SIZE, asthe contentsareinvalid. Neverthe-
less, LASTDATA points to the beginning of the freeheg and can be used with any Dos Extender

(c) 1999 by Dieter R. Pawelcz&, Munich

78

Pay attention, if you wse aligned data, you can nd be sure what the other bytes of a byte or
word identifier contain! You shoud na use the knowledge that an aligned data storage uses
a minimum of 24,8 or 16 bytes to store other values than the defined one! For example it
would be terrible programming if you d store adoulde word value into AlignedByte, because
you knaw that four bytes had been reserved! The SIZE identifier will return an amourt of 4
for the digned byte, word or dword identifier and 8for a 32 lit far pointer and a quad word!

You can define data anywhere in you source code:

PROC Print
.DATA
PrintX DW ?
Printy DW ?
.CODE
mov PrintX,Cx
mov PrintY,Cy

cmp ax,0

je AxlsZero
.Data

AXZerodb 0
.CODE

mov AxZero,1
AxlIsZero:

Note that memory for the data identifier is allocated at the end d the program code. As con
stant data defined with the .CONST directive is allocated drectly in the code segment, you
can not define data with the .CONST directive anywhere in the code!!!

wrong
.CODE
PROC Dummy
.CONST
Dummyl DD ?
Dummy2 DD ?
.CODE
Xor eax,eax

mov Dummy1,eax
mov Dummy2,eax ...

(c) 1999 byDieter R. Pawelcz&, Munich

The Pass32 Assmbler

Defining Code, Data and Memory Model 79

When the procedure Dummy is cdled, the first 8 bytes contain undsfined data - the behaviour
of the procedure is unknawn... You can pace .CONST definitions at the end d a procedure
(after the RETinstruction) or between two procedures. Or you can use the . CONSTdirective,
to create special instructions, for example:

PROC NewInt8
call Newinthandler
.CONST
DB OEAh ; JUMP
OLD8OFFS DD ? ; FAR JUMP TO OLD INTERRUPT HANDLER
OLD8SELDW ?
.CODE
ENDP NewInt8

PROC InitNew8

mov ax,204h

mov bl,8

int 31h ; get interrupt addr ess

mov DS:OLD8OFFS,edx ; store old interrupt vector

mov DS:OLD8SEL,cx ; .CONST d ata needs DS Prefix!

ENDP InitNew8

Usualy it makes no dfference whether a variable is declared before or after its usage. Imme-
diate memory access eg. mov [0],0100h , cmp ByteVar,0 etc must use an argument
override if the variable is nat defined:

wrong

mov AxIsZero,0
.DATA
AxIsZero db ?

AxlIsZero is nat defined when assembling the immediate mov instruction. The assembler the-
refore doesn’t know what type AxisZero will be. You reed an argument override:

right:

mov byte ptr AxlsZero,0
.DATA
AxlIsZero db ?

or

.DATA AxlIsZero db ? ; AxlsZero now defined
.CODE
mov AxIsZero,0

(c) 1999 by Dieter R. Pawelcz&, Munich

80 The Pass32 Assmbler

Basicdly you shoud define data before using it. This makes reading d the mde easier.

8.2 Addressng Data, Defining L abels and Procedures

8.2.1 Addressng Memory

The Pass32 suppats the 32 bt addressmodes of the 80386and newer processors. Y ou shoud
use square brackets to address with index or base registers. In bah models 16 and 32 bt
addressngis allowed. In the TINY model you must make sure, that the extended registers do
not override a segment, they shoud na addressoff sets abowve Offffh! Expressons in the code
segment are basicdly identical to those in the data segment (see 8.1.4 Data Expressons on
page 72), bu they are extended by the register addressng, i.e. additionally to variable identi-
fiers or number expressons, the registers of the CPU can be used.

Some examples of 16 bt addressing:

mov al,bytevar+bx+di ; you can leave square br ackets out
mov al,[bx+di] ; you must use square bra ckets!
mov dx,word ptr [byt evar+DI]

mov bx,es:[WordVar+S]

You can leave sguare bracket out, if the first item makes sure that this is an addressng form.
If the first item is aregister, the assembler only reagnizes the register, .eg: mov ax,bx+d i
makes mov ax,bx and+di which produces an errorl. If you are using 16bit addressmodes
in protected mode programs - you must make sure, that the base addressis below 64K! This
might happen, for example, if you like to index a variable with the Sl register and you pro-
gram code excedls 64K:

mov al,[Byt eVar+Sl] ; forces an erro r, when the offset of ByteValue
; is above Offff h m

Some examples of 32 bt addressing:

mov ax,es:[eax+ecx*4]

mov eax,dword ptr by t evar+edi
mov [esp+8],edi

mov ax,[eax+edi*8+01 11h]

cmp word ptr [eax+ed x*2],0

1.Thisisdueto speeal reasons. Theinstructions, which occur statisticaly at most use & least one register.
(c) 1999 byDieter R. Pawelcz&, Munich

Addressng Data, Defining Labels and Procedures 81

You can use any extended register as base and index register. The scde factor for the index
register must be 2,4 a 8. A segment override shoud be placed before the square brackets /
before the expresson.

Square brackets or a variable identifier refer to a memory location. To load a value direct into
aregister don't use square brackets:

mov dx,01111b and 47h or 100 0000b
mov ecx,4*1000h + 2*0100h +8 8h

Pass32 as well alows to load character or string values in aregister:

mov al,’$’
mov eax,’.COM’
mov ax,'DX’

Against the TASM convention, the string is dored in the register, like it would be stored in
memory; so youcan use this method to scan the memory for string expressions:

mov eax,.COM’

mov edi,OFFSET Parameter_1 Sc anParameter
cmp [edi],eax

je ok_is_COM_File

inc edi ...

jmp ScanParameter

Y ou can aso calculate string expressions:

Upcase:
mov al,’a’-’'A’ ;al=32
mov edx,’"HEY!'+’’ ; edx =hey?l’

8.2.2 Defining Labels

Labels are part of the program code. They define the beginning d aloop, an addressof a pro-
cedure, the entry paint of the mde, etc. In the TINY model alabel isa 16 kbt offset, in the
FLAT model alabel isa 32 ht off set.

A label is defined by a colon at the end d the name. The label hame must not begin with a
digit 0..9. It can consist of letters A-Z,a-z, digits 0-9, special characters as _@#., some ex-
amples:

(c) 1999 by Dieter R. Pawelcz&, Munich

82 The Pass32 Assmbler

.PUBLIC Pro gramStart:
ProgramExit
mov ah,4ch
int 21h
FirstChoice
SecondChoic e:
@loop:
mov es:[ecx*2+0b800h],al

loop @loop

END Program Start

The END [label | procedure] defines the entry paint of a program. Withou this directive any
assembler source will start at the first .CODE instruction a at the first .CONST entry. The
start label / procedure must be defined before the ENDdirective. The .PUBLIC diredive de-
fines a label globally.

Labels are dways treaed as local in the procedure they are used. Y ou can use the same |abel
name in dfferent procedures:

PROC ProcA
@Start:

je @Start
ENDP ProcA

PROC ProcB
je @Start

@Start:
ENDP ProcB

If youwant to use alabel globally, for example if you want to jump from one procedure into
a specific offset in anather procedure, you have to define this Label as pulic:

PROC ProcA

(c) 1999 byDieter R. Pawelcz&, Munich

Addressng Data, Defining Labels and Procedures 83

.PUBLIC Exit:

ENDP.IID'rocA

PROC ProcB
jmp Exit

ENDP ProcB

Withou the diredive .P UBLI C the instruction j mp Exit would produce an error. You
can’'t use a labelname more than orce inside a procedure, you can’'t use the same labelname
for different global labels and youcan't use the name of a pulic label for alocal label:

PROC ProcA

@Iloop:

@loop: ; wrong, dup | icate label
.PUBLIC Exit:

ENDP ProcA

PROC ProcB

@Iloop: ; right, use d for the first time

Exit: ; wrong, 'EXi t ' already defined as public!
ENDP ProcB

You can use the .EXTERN directive to make alabel public after the label definition:

PROC ProcA ...
Exit: ...
ENDP ProcA

.EXTERN Exit
PROC ProcB ...
jmp Exit ...
ENDP ProcB

Note, Pass32 will make the first label which isfound pulic! You shoud prefer the .PUBLIC
method, as it is not ambiguous!

(c) 1999 by Dieter R. Pawelcz&, Munich

84 The Pass32 Assmbler

8.2.3 Definig aProcedure

Y ou can define a procedure with the PROC directive. With PROC, the name and attributes of
aprocedure are defined. The procedure dtributes NEAR FAR and START are optional. The-
re are two ways of using the PROCdiredive:

PROC Main ; same as
Main PROC

Or, the same definition with attributes:

PROC Main N EAR START
Main PROC N EAR START

A procedure shoud end with the ENDCP diredive. This diredive is espedally necessary in
combination with code optimization! There are again two ways of using the ENDPdirective:

ENDP Main ; same as
Main ENDP

A procedure can have three atributes: NEAR FARor START. Generally all procedures of the
main program are NEARprocedures. This means, al procedures share the same @de segment.
A FAR procedure is a procedure outside the main code segment. If you wse a DLLY, for ex-
ample, the procedures of the DLL are resident in another code segment: therefore all procedu-
resin the DLL are defined as FAR procedures.

NEARIs the default attribute for TINY or FLAT model procedures. Y ou can explicitly force
the assembler to generate a near procedure with

PROC Main N EAR
afar procedure with

PROC Main F AR

Far procedures must be defined before they can be called. If you are working with far proce-
dure and youwant a forward reference, you can use the diredive .FAR. All procedure cls
are now treated as far cals, so every far procedure has aforward definition. If you dont want
far procedures to be treated like that, you can dsable the function by .NOFAR

1.Thisrefersto the Pass32 DLL type and not to aWin32DLL, which is defined as nea.
(c) 1999 byDieter R. Pawelcz&, Munich

Addressng Data, Defining Labels and Procedures 85

The attribute START produces an implicit call to this procedure & the beginning d the pro-
gram (before the start label is called). For example DOSX. | NC uses such a procedure type
to install the new DOS interrupt hander, to create extended DOS functions. A procedure with
the dtribute start must be defined as a near procedure, the dtribute STARTIs not valid in the
DLL / OVL model. In these models, Pass32 generates a warning message, that these procedu-
res are not called implicitely by program execution.

You can define a variable type as a jump target. The variable type can be a 16 ht offset =
WOR PTR(TINY only), a 16:16 panter = DWORD PTR (TINY only), a 32 bt offset =
DWORD PTRFLAT ONLY) and a 16:32 panter = FWDRD PTR(FLAT ONLY).

If you have two alternative procedures and you want to use avariable identifier to access
them, this could be dore like this:

.MODEL FLAT

.DATA GraphPutPixel DD ?
.CODE

PROC VGAPutPixel NEA R ...
ENDP VGAPutPixel

PROC SVGAPutPixel NE AR ...
ENDP SVGAPutPixel

START:
mov eax,offset VGAPutPixel
mov GraphPutPixel,eax ; initi alize one of the Procs ...
call GraphPutPixel ...
call GraphPutPixel ...
END START ; define START as entry point END

Condtiona jumps or jumps to a forward reference can be optimized with the SHORTdirecti-
ve, if the target is in the next 127 bytes.

For some instructions you must explicitly distingush between 32 bt and 16 It instructions:

The loop instruction can be used with the CX and ECX registers. Usually Pass32 uses loop
with the CX register, asthisisin most cases more dficient (small loops). To use the ECX re-
gister you must use the (pseudo) instruction loopd :

.CODE
mov cx,10
@loop:
mov al,[esi]
inc esi

(c) 1999 by Dieter R. Pawelcz&, Munich

86

The Pass32 Assmbler

loop @loop ; repeat

mov ecx,0b80000h+100
@@Iloop: mov fs:[ecx]
loop @@loop ; repeat

mov ecx,10000h
extloop:

mov fs:[ecx*4+esi]

loopd extloop ; repe

ten times ...
h

, al ; from b80100 to b80001
100h times (low word part of ECX) ..

at 65536 times (ECX)

The push immediate instruction can pwh a 16 Lt or a 32 kit immediate. We use ajain the
suffix "D’ to dstinguish the instructions:

push 1234h
push 1234h
push 12345678h

pushw 1234h
pushd 12345678h

; pushes an immediate of 16 bit in the TIN Y nodel

; pushes an imme diate of 32 bit in the FLATmodels

; pushes an imm ediate of 32 bit in the FLAT mode I's
; you'll get an error in the TINY model

; pushes an imme diate of 16 bit in all models
; pushes an imme diate of 32 bit in all models

Note: Pass32 always creates the push instruction according to the aurrent model: In Tiny a 16
bit push, in FLAT a32 it push, to use a different operand size (or to use the operand size mo-
del independend) use the suffix "W’ for 16 bt and’'D’ for 32 ht.

The JCXZ and JECXZ instructions aready show their difference in the instruction name!

8.3 Pre-processor, Macros and Conditional Assembly

The pre-procesor generates the source @de for the assembler with all modules included..
Thus, the pre-procesoor reals the source @de first. The pre-processor can change the source
code before the actual assembling kegins. Macros are typically expanded by the pre-proces-
sor. The pre-procesor actually understands only the foll owing commands:

(c) 1999 byDieter R. Pawelcz&, Munich

Pre-processor, Macros and Condtional Assembly

87

.EQU replace

.TYPE enumeration type

.SMART code optimization

.INCLUDE include another sourcemodue
INCLUDEDIR | set the seach path for include

.MACRO Macro definition

.LOCAL to define alocal identifier inside amacro
.DOSX Dos Extender Defintion

.UCU Pro32 Target for uncomercial use only
.NM Pro32 No further messages during program loading
.NB Pro32 CrrL+C/CRTL+BREAK is deaktivated
.PLUG Pro32Gold: Add dug-in

KEY Pro32Gold: Define License Key

Tab. 8.7 Pre-procesor Comnands

8.3.1 The .EQU Directive

We can define a variable for values and text strings with the .EQU diredive. For example if
we want a specia color design for our program, we @n use the .EQU directive:

BackColor .EQU 0
WindowFrameColor .EQU 14
ScriptColor .EQU 15
GraphColor .EQU 7

It iseasier to change the .EQU command at the beginning d our source, than changing all co-
lour attributes in the source, .eg mov al , 14. The. EQUcommandis a pre-procesor com-
mand. Actually all text strings ‘B ackColor’ are replaced by the text string '0’ . You can
not define a storage with this! You can na store avaue in BackColo r for example, this
would be like: mov BackColor,1 ===>nov 0,1 (!!!). Asthe .EQU directive forces a
string replacement you can even replace text strings:

HelloMesg .EQU 'Hello, World! "0

Note, the HelloMesg isno variable and hes no dfset! Y ou can use the replacement in a data
definition:
Message db HelloMesg

(c) 1999 by Dieter R. Pawelcz&, Munich

88 The Pass32 Assmbler

Y ou can even replace instructions with the .EQU directive:

ClearRegs .EQU xor e ax,eax//xor ecx,ecx//xor ebx,ebx//xor edx,edx
.CODE

ClearRegs

mov ah,4ch

int 21h
END

The // in the replacement is understood as a line feed. Note, that the name @an be 40 charac-
ters long and the replacement 60 charaders. The total number of .EQU replacements is 640.

Y ou can dedare multiple .E QU replcaements with the . TYPE diredive. The . TYPE directive
can be used to declare an enumeration type. For Example:

.TYPE (Red, Green, B | ue)

The .T YPE definition assgns the strings REDthe value 0, GREENhe value 1 and BLUEthe
value 2. Basicdly . TYPE generates . EQU replacements for integer expressons. For every
item, the value is increased. Y ou can define a value explicit:

.TYPE (Red=1, Green, Blue=4, Black=0fh)
Here, the result would be: RED= 1, GREEN= 2, BLUE =4, BL ACK= 15.

The .EQU identifiers are all replaced, when the regular assembly begins. You shoud na de-
fine with the .EQU directive in a condtional asssmbly!

8.3.2 Including Assembler Modules

With the .INC LUDEdirective you can include ancther source file. Note that the assembler
includes the same file only once Two files are equal for the assembler, if the name and ex-
tension are equal. Y ou can include with the correct path:

INCLUDE E:\PASS32\] NC\DPMLI.INC

And withou a path:

.INCLUDE Module

(c) 1999 byDieter R. Pawelcz&, Munich

Pre-processor, Macros and Condtional Assembly 89

The extension . ASMis added if the name is without extension. Without a path, the fileis s
arched in the current directory and then in a parall e directory of the PASS32. EXE directory
called \ I NC. Usually the assembler is located in the \ Bl N directory, al include files in the
\ I NC directory. You can define an alternative directory for include files with the .INCLU-
DEDIR directive:

INCLUDEDIR CA\TEST \INC

Now, Pass32 will search in this directory before searching any ather diredory. So Pass32 will
look in the current diredory and then in the directory defined with .INCLUDEDIR .

Unlike to C/C++, any modd is included orly once, so you dorit need to test if a modue is
already included!

8.3.3 Defining Macros

Another powerful tod of the preprocessor is the . MACROdiredive. A macro is a storage for
asembler commands, which can be used several times in your code. A maao is a kind of
subroutine. But in the opposit of a procedure defined with PROC the ade inside a maao de-
finition is diredly placel into you code. The best way to explain the maao method is to
show an example:

.MACRO Exit(ExitCode)
mov al,ExitCode
mov ah,4ch
int 21h

ENDMACRO

The usage of the macro in you code can be for example:

.CODE
START: ...

Exit(3)
END START
END

This example will be expanded by the preprocesor to the foll owing code:

.CODE

START: ...
mov al,3
mov ah,4ch
int 21h

(c) 1999 by Dieter R. Pawelcz&, Munich

90 The Pass32 Assmbler

END START
END

Wherever we use the macro Exit in ou code, these three instructions will be expanded. We
can see, that the parameter Exi tcod e is replaced by its value. We wuld use for example
Exit(Ah) andthe result would be mov al,ah / mov ah,4ch /int 21h - parameters
are similar to an . EQUexpression textual replacements, but they are only valid inside the
maao.

The definition d a macro generally has the following syntax:

.MACRO name [(parameter[,parameter])] ENDM [name] | ENDMACRO [name]
Y ou can end a macro with ENDMor ENDMACRO

As we learned, when a macro occurs in you source, it will be replaced by its definition con-
tents. This can cause problems, when you are defining labels, or data storages in you macro,
because dl labels or data definitions will have the same name. We need the .L OCAL directive
to use alabel localy inside amacro. The .LOCAL diredive simply extends a symbo name
by an’ @'’ following a macro specific hex number. This method guarantees, that every label /
data definition has an individual name. The following example usesthe .LO CAL directive to
define a label:

.MACRO WRITE(stringoffs)

mov edi,stringoffs
.LOCAL @sta rt:

mov dl,[edi]

cmp dl,0

je short .LOCAL @end

mov ah,2

int 21h ; display s t ring char by char

inc edi

jmp .LOCAL @start
.LOCAL @end:
ENDMACRO

.DATA mesg db 'Hello, World!",0
.CODE

Write(offset mesg)

Exit(0)
END

(c) 1999 byDieter R. Pawelcz&, Munich

Pre-processor, Macros and Condtional Assembly 91

As .LOCAL only extends the label name, we must use the directive dso when we refer to the
definition.

Youcan na nest maaos in the definition, bu you can use amacro inside other macros, when
the macro is already known to Pass32. The number of macros in total is limited to 256
macros, the number of words in a macro is limited to 256. As macros are expanded by the
preprocessor, the number of maaos does nat influenze the anourt of memory for the main
asembler pass

Note, that a macro definition deesn’'t produce ade, even, if you dace the definition inside
your code segment. Therefore, youwon't get an error, as longas you dorit use the macro, if
the macro definitionis wrong. Ancther thing isthe aror report: Pass32 dosen’'t remember the
macro definitionin the assembler pass so it can't display the line of the eror. If amaao con
tains an error, Pass32 reports:

Error in Macro: <n ame> : <instruction>

8.3.4 Conditional Assembling

Condtiona assembling is not a part of the pre-processor, as the pre-processor can nd under-
stand symbaol names and identifiers.

If youwant to test if amodue isincluded, youcan use the .IFM directive. The .IF Mdirec
tive isapart of the .IF diredives. The .l F diredives are:

AF expr tests an expression for unequal zero

.IFM module tests, if amodue isincluded

AFPM tests, if the target isfor protected mode

IFE tests, if exprl equal expr2

exprl,expr2

AFS expr tests, if expressonisastring

IFR expr tests, if exprisaregister (AL..DH, AX..Sl, EAX..ESI,
CS..SS)

IFR8 expr tests, if exprisan 8 kit register (AL..DH)

IFR16 expr tests, if exprisal6 dtregister (AX..SP)
AFR32 expr tests, if exprina 32 bt register (EAX-ESP)
.ELSE aternative assembly

.ENDIF end d conditional assembly

Tab. 8.8Condtiond Assembly

(c) 1999 by Dieter R. Pawelcz&, Munich

92 The Pass32 Assmbler

All .IF directives (except .IFPM) can be used in the oppasite way by writing:

AF NOT exp r
IFR NOT R1 6 expr
IFE NOT ex prl, expr2

With the .IFPM you can creae modules for red and protected mode. Y ou can make sure that
amodueisonly used for real mode:

AFPM

.DISPLAY Mo dul Only for Real Mode!
.ERR ;force an error

.ENDIF

The .IF diredivetestsif an expresson is unequal to zero. You can test if a variable is defi-
ned, if an .EQU definition has been made:

JF NOT Vid eoBuffer
.DATA? Vide oBuffer DB 256*1024 DUP(?)
.ENDIF

OVL_ERROR EQU 1

IFNOT OVL _ERROR
call printe rror
.ENDIF

With .IFS , .IFR and .IFE , youcan write multiply functional maaos. An example for a
multiple write string macro could look like this:

.MACRO SWrit eLn(String)
IFS String
.DATA .LOCA L mesg DB String ,0
.CODE

mov edi,OFFSET .LOCA L mesg
.ELSE
IFR String

mov edi,String
.ELSE

mov edi,offset Strin g
.ENDIF
.ENDIF

call SystemWriteLn
ENDMACRO

(c) 1999 byDieter R. Pawelcz&, Munich

The OVL modd 93

Now this macro can be cdled with three different types of parameters.
.DATA mesg db 'Hel | o, World"",0
.CODE
mov eax,offset mesg
Swriteln(eax)
Swriteln(mesg)
Swriteln('Hello, World!")

The Maao library SYSTEM MAC has aready included this maao definition for the W i-
teLn maao.

8.4 The OVL modd

The OVL model is a mode defined for protected mode use. The ideais smple: Several pro-
cedure can share the same memory; at run time you can load special driver functions to adapt
the software to the given hardware. The first idea of course is nearly unimportant: If you can
use so much memory, procedures dort need to share memory. The second idea is far more
important: To access ®veral music boards, graphic adapters etc. you can add several different
optimized OVLsto you code. You can set-up the program, so that only the best fitting OVL
is load and used. The OVL model of the Pass32 is very simple. The OVL code is load to a
given offset in the code and data segment. Usually somewhere in the heap. A short 256 byte
longinterface tells the assembler at run time where the diff erent routines are stored in memo-

ry.

This is the syntax of an OVL source

.MODEL OVL

INTERFACE

.ORG 50000h ; OVL s tart address in the heap

PROC FirstOVLProcedu re OFFSET OvlProcl
PROC SecondOVLProced ure OFFSET OvlProc2

.DATA Mesg db 'OVER LAY load!,0
.CODE
OvIProcl PROC FAR
mov edi,offset Mesg ...
OvlProcl ENDP

OvlProc2 PROC FAR .
OvlProc2 ENDP END

(c) 1999 by Dieter R. Pawelcz&, Munich

94 The Pass32 Assmbler

The .INTERFACE diredive is the start of the 256 byte long OVL interface. The .ORG di-
rective defines the address where the overlay is loaded to. The PROCdiredive defines a pu-
blic procedure. This identifier is public and can be cdled from the main program. The
OFFSETidentifier makes a conrection between the OVL procedure and the pulic procedure
identifier. The names could be the same of course.

To use an OVL, youinclude the OVL source interface part into you code. Independent of the
OVL size, the 256 byte longinterface will be part of the code.

A program which uses the OVL could look like this:

.MODEL FLAT
INCLUDE TS TOVL.ASM
.DATA ovina ne db 'TSTOVL.OVL’,0

.CODE
mov esi,offset tstov | ; OFFSET TO DATA BUFFER TSTOVL
mov edi,offset ovina me ; OFFSET TO Filename
call initovl ; to i nitialise the OVL
call loadovl ; to | oad the OVL
call FirstOVLProcedu re ; use the OVL procedure after loadi ng
call SecondOVLProced ure
mov ah,4ch
int 21h
END

The loadovl procedure is part of the OVLSYS. | NC file, which is part of the Pass32 as-
sembler. If any overlay modue is included, this modue is automatically included. Y ou must
make sure that the OVL is |loaded.

Theloadovl procedure will set the carry flag, if the OVL could na beload. You can define
an identifier cdled OM._ERROR the lo adov| procedure will then terminate the program
with an error message:

OVL_ERROR .EQU 1

The OVL interface structure has the foll owing format:

(c) 1999 byDieter R. Pawelcz&, Munich

The DLL model 95

00-0 3 load off set: addressof the overlay
04-1 F reserved

20-2 3 off set of first ovl procedure

24-2 5 selector of first ovl procedure
26-2 9 off set of second oV procedure
FA-FD off set of 37th oM procedure
FE-FF selector of 37th ovl procedure

Tab. 89 The header of an overlay

Theloadovl procedure does the foll owing jobs:

— load the interface and determine the load offset
— load the ovl
— dlter the selectors in the interface

Theinit ovl procedure simply initialises al procedure calls with a far return. You shoud
run this procedure on al overlays at the beginning d the program.

If procedures share the same memory, you shoud use the first procedure as an id procedure,
which tell s the program which owerlay is load at the moment.

85 The DLL modd

The DLL model is a model defined for proteded mode use only. It's ideais smilar to the
OVL model, but far more dfedive. A DLL is alibrary file containing several procedures,
which can beload at runtime. The library isno part of the program code segment; aDLL the-
refore does not limit the heap memory for the program. You can use single procedures of a
DLL and you can write whole programs as DLL to use the memory more efficient: If you
want to write a program which needs for example 8 MByte memory and youwant to make
sure that your program can even runif only 3 or 4 MByte memory are available, youcan split
your program in dfferent DLLsand a global data aea. If the computer off ers enoughmemory
the program can load all DLL s at the beginning. If nat, it can for example hold orly one DLL
in memory at the same time. Besides, a DLL is usually stored in real memory, if enoughreal
memory isavailable. A DLL again consists of a 256 byte longinterface andits code. The pro-
gram entry of the DLL is usualy at the offset 00000100hThe first 100h byes represent the
DLL interface.

(c) 1999 by Dieter R. Pawelcz&, Munich

96

The Pass32 Assmbler

00-01

DS selector of DLL data

02-03

ES - Video Selector

04-05

Zero Selector

06-07

Real Mode File Buffer Selector

08-09

Real Mode File Buffer Segment

0A-0OD

Memory sizefor the DLL

OE-11

Memory handle

12-13

CS (DLL Code descriptor)

14-17

Linear Addressof DLL

18-19

DS of the main application

1A-1F

reserved

20-23

offset of first dil procedure

24-25

seledor of first dil procedure

26-29

offset of second dl procedure

FA-FD

offset of 37th dl procedure

FE-FF

seledor of 37th dI procedure

Tab. 8.10The header of a Pass32 DLL

You can load those data in the DLL via CS. Note, that when the DLL is called usualy DS is
the data descriptor of the main program. Y ou can either use this descriptor to access global
data, or save the descriptor and load the DLL data descriptor from CS:[0]:

push ds
mov ds,word ptr CS:[

pop ds

Thisis the syntax of a DLL source:

.MODEL DLL
INTERFACE

0] ; set DLL - DS

PROC MainDLLProcedure OFFSET DLLMain
PROC FirstD LLProcedure OFFSET DLLProcl
PROC Second DLLProcedure OFFSET DLLProc2

(c) 1999 byDieter R. Pawelcz&, Munich

The DLL model 97

.CODE
DLLMain PROC FAR

ENDP DLLMain

DLLProcl PROC FAR

push ds

mov ds,word ptr CS: [0] ; set DLL - DS
mov edi,offset Mesg

pop ds

ret

DLLProcl ENDP

DLLProc2 PROC FAR .
DLLProc2 ENDP
END

The .INTERFACE directive is the start of the 256 byte longDLL interface. The PROCdirec
tive defines a public procedure. This identifier is public and can be cdled from the main pro-
gram. The OFFSET identifier makes a conrection between the original DLL procedure and
the pulic procedure identifier. The names can be the same, of course.

Theuse of aDLL isthe same & the use of an overlay: you include the DLL interface part into
your code. Independent of the DLL size, the 256 byte longinterface will be part of the mde.

A program which uses the DLL example from above could look like this:

.MODEL FLAT
.INCLUDE TSTDLL.ASM

.DATA DLLname db’'T STDLL.DLL’,0

.CODE
mov esi,offset tstdll ; OFFS ET TO DATA BUFFER TSTDLL
mov edi,offset dliname ; OFF SET TO Filename
call initDLL ; to initialise the DLL
call loadDLL ; to load the D LL
call DLLMAIN ; use a DLL pro cedure after loading

call SecondDLLProcedure ...
call FirstDLLProcedure

mov esi,offset tstdll ; OFFS ET TO DATA BUFFER TSTDLL
call FreeDLL ; to free the D LL ...

mov ah,4ch

int 21h

(c) 1999 by Dieter R. Pawelcz&, Munich

98 The Pass32 Assmbler

END

The procedures LoadDLL, InitDLL and F reeDLL are part of the DLLSYS. | NCfile,
which is part of the Pass32 assembler. If any DLL interfaceis included, this modue is auto-
maticdly included. Y ou must make sure that the DLL is loaded or at least initialised, before
using any DLL procedure.

The loadoV procedure will set the carry flag, if the DLL could na be found.You can define
an identifier called DLL_ERRORand the loadDL L procedure will terminate the program
with an error message:

DLL_ERROR .EQU 1

The DLL interface structure has the same format as snown in Tab. 8.10.When the DLL is ge-
nerated, orly the memory size (offset Oah) is defined in the header.

The first argument for the LoadDLL procedure is the offset to the zero terminated fil ename
string in the EDI register. The second parameter is the offset to the interface structure in the
ESI register. The interface structure has aways the same name as the filename of the DLL
source file withou extension. If your DLL sourcefileis called TSTDLL, the interface struc-
ture has the name TSTDLL .

Note, the LoadDLL procedure will seach in the current directory and in the path for the DLL
filename.

TheInitDLL andthe FreeDLL procedure both need the second mrameter TSTDLL. If you
are good at aseembler you can use or even modify the DLLSYS. | NC or OVLSYS. | NC file
to create your own DLL/OVL handing.

8.6 Debugging and Code Optimization

When you already wrote your first 32 kit program, youll know, that debuggng in proteded
mode is hard. The Turbo Debugger from Borland, Inc. for example, hangs when the processor
is switched into proteded mode. The aurrent version d the Pro32 Dos Extender does not sup-
port debuggng, so we need a spedal method for the debuggng. The easiest method (and
safest method - as it is compatible to Dos, Windows, Linux-DPMI and WinNT) is to include
the debugger in yaur program - and this is exactly, what the .DEBUG directive does.

1.Filenames are treaed by Pass32 to be 8 charaderslong
(c) 1999 byDieter R. Pawelcz&, Munich

Debugging and Code Optimizaion 99

8.6.1 Theintegrated debugger

When the pre-processor discovers a .DEBUGdiredive, he appends the DEBUG. | NC modue
to the source code. Every instruction which is debugged is extended to the form:

PUSH DebuglinfoOffset
CALL DebugProc [instruction]

The debugger (DEBUG. | NC) is compared to a red debugger, e.g. Turbo Debugger, Pro32
Debugger, only small utility, which displays the contents of all registers, segment registers
and flags. The debugger waits for a keystroke before the next instructionis executed. It allows
to set break paints and to alter the register contents. Here is alist of all commands:

[SPACE] Execute next instruction : the program is exeauted
until the next debugged instruction accurs.

[ESC] Run urtil the next debugged RET/RETF instruction
occurs

[RETURN] Run urtil the next debugged IMP/CALL (INC/DEC)
instruction accurs

[BCK SPC] Run urtil the bre&kpoint occurs

[a][b][c][d][e][f] display hex dump at [EAX], [EBX], [ECX], [EDX],
[EDI], [ES]

[h] to display hex dump every time (hold)

[A][B]IC]ID]IE]F] to alter the register contents? of EAX, EBX, ECX,
EDX, EDI, ESI

[Cursor Up] decrement hex dump by 10h

[Page Up] decrement hex dump by 100h

[Cursor Down] increment hex dump by 10h

[Page Down] increment hex dump by 100h

[Crtl]+C terminate the program

[Crtl]+B set a breakpoint?

a. Note: altering aregister value might force an exception, if the register is used as index or
base register.

b. Note, that only one bregpoint may be set. The bregpoint is marked by an '*’ before the
debug line information.

Tab. 8.11Debuggr Functions

(c) 1999 by Dieter R. Pawelcz&, Munich

100 The Pass32 Assmbler

Y ou can enter a new hex value. The resulting value for the register is the displayed value. If
the former value of EAX = 12345678hand youadlter only the first two dgits to zero, the re-
sult is 0034568h. Presang [ESC] during the inpu restores the old value. The inpu isfinis-
hed either with [RETURN] or when all 8 dgits are entered. During the inpu only the keys
0.9 ,a.f ,A.F ,[ESC] ,BCK SPC] ,[RETURN] are vdid.

When the program runs with, youcan interrupt the execution by hitting any key.
A ’debugged instruction’ isan ingtruction ketween the .DEB UG and the .NODEBUGirective.

Within the .DEBUG and the .NODEBUGdirective you can go step by step throughthe pro-
gram. If you want to set a breakpoint at a certain instruction, youcan set the .DEBUG here;
either around a single instruction a arounda group, a procedure, etc. To generally debuga
source file you can use the option - D.

The debugger supports video mode swapping. If the program to debug runs for example in
graphics mode, you can enable video mode swapping by setting the debugvideo identifier
with the .EQUdiredive:

debugvideo .EQU 1

8.6.2 The Debug File Format DMP

The DMP file format is actualy alisting d the source code with additional off set infromati-
on. The modue DLOADS. | NC is able to load the debug file format. The procedure DI S-
PLAY DEBUGSORCEIloads and shows the debug source file (program file name with the
extension . DMP) at the offset addressin EDI.

The - M or - DIVP option produces a debug file with the extension . DMP. This file contains
the whale source code (including all submodues), with the off set address for every line. The
output could look like this:

00000000: ; Pass32 DEBUG FILE (c) 1996 by Dieter P awelczak
00000000: . MODEL TINY

0000010C:. DATA

0000010C: H elloMesg db 'Hello,World’,10,13,'$’

0000011A:. CODE

00000100: S TART:

00000100: m ov dx,OFFSET HelloMesg ; offset of the text string
00000103: m ov ah,9 ; print string function number

00000105:i nt 21h ; dos call

00000107: m ov ah,4ch ; terminate function number

00000109:i nt 21h ; dos call

0000010B: E ND START ; marks the entry procedure o f the program

(c) 1999 byDieter R. Pawelcz&, Munich

Debugging and Code Optimizaion 101

0000010B:

The first 8 bytes of a line mntain the hexadecimal offset of the line. This off set information
is analysed by DLOADS. | NC.

A combination d the - MMoption and the - D option (or the equivalent .DEBUGdirective) au-
tomatically adds DLOADS. | NC to the source ade. The debugger realizes the presents of
DLOADS. | NC and dsplays - if posgble the debug source file. (The debug source file must
be in the current directory, when the first instruction is debugged!)

Try for example to debug the DI SPLAY. ASM example (see part 2 for further information)
with the command: Pass32 DI SPLAY -mm -d

DLQADS. | NC loads the whale debug source file into a buffer. This buffer is 256 Kbytes in
size. If your debug source file is above 256 KBytes, you must alter the buffer in
DLQADS. | NC:

DebugFILEBUFFER DB 256*1024 D UP(?)

You can use the debugger as well in DLL or OVL files. When displaying the source ®de is
enabled in combination with the OVL model, you must make sure that the main program al-
locates enoughmemory. The overlay will need abou 260 KBytes more heap memory because
of the source code file buffer. You can test for example debuggng the OVLTEST demo (see
part 2), with assembling the overlay TESTOVL with the debug ogion:

Pass32 testovl -ovl -d -mm
Pass32 ovltest - uc ovltest

You can test debuggng an DLL source a well...

The alvantage of the internal debugger is of course, that you can write your own debugger,
or ater the given debugger. If you want to ater the debugger, you should save DEBUG. | NC
under ancther name and alter this file. To use this geda debugger, you can use the .DE-
BUGFILE directive:

.DEBUGFILE Filename

Instead of DEBUG. | NC the filename (standard extension . ASM is used as debugger. The de-
bug modue is appended when a . DEBUGdirective or the option - D is used (.DEBUGFILE
itself does not append, bu names the debugger modue). Your debugger procedure must be
called DEBUGROCand must save and restore dl registers and flags!

(c) 1999 by Dieter R. Pawelcz&, Munich

102 The Pass32 Assmbler

8.6.3 Usage of an external Debugger

If youwant to use an external debugger (for example the Pro32 Debugger PRODB32. EXE),
you shoud assemble with the - MMor - DMP option. The external debugger is then able to load
the debugfile, and dsplay the source code, add watches etc.

If youwant to use a disassembler, youcan use DI SS32. Thisisasimple 32 kit disassembler,
which is part of the Pass32 package. The disassembler comes with complete source @de and
can be easily integrated in ather applications.

8.6.4 Detailed Information - The Map File

To gain general information d the assembled program, we can create amap file: We asem-
ble with the - Moption. A map file shows al symbads which had been created duing the as-
sembling. A typical map file could look like this(eg. HELLOL. MAP):

Pass32 MAP FILE (c) 1996 by Dieter Pawelczak

SOURCE :HELLO1.ASM

DESTINATION: HELLO1.COM

PROGRAM TYP DOS TINY

SEGMENT TYE CODE

ENTRYPOINT : 00000100
OFFSET TYPE NAME
00000100 LA BEL START

SEGMENT TYRE DATA
OFFSET TYPE NAME
0000010C DA TA HELLOMESG

8.6.5 Code Optimization

With the directive .SMART, .SM ART1, . SMART2.SMART3 or the equivalent options -
0, -0S,-0r, -0j, youcan enable mde optimization. Code optimizaion covers two main
aspects: optimization d the instructions and ogimization d the linker.

Some optimizations are always dore: For example if you work with the (E)AX register, the
faster and shorter (E)AX instruction are used, when posshble. Relative 8 hit jump instructions
are used when possble.

With .S MART3 or the option - 0] , Pass32 opimizes the jump instructions. Pass32 tries to
asemble al jump instructions as ort jump instructions, even if the target is unknaovn. This
is exactly the optimization, a user can dowith the SHORTdiredive...

With .SMART2, or the option - or , Pass32 ogimizes the register instructions:

(c) 1999 byDieter R. Pawelcz&, Munich

Debugging and Code Optimizaion 103

— any register immediate load with a zero constant will be replaced by the shorter regi-
ster XORregister instruction.

— any immediate add subcmp etc. with 16 o 32 it registersy memory locations and an

immediate byte value will be replaced by the shorter rm16, imm8 / rm32,imm8 in-
struction.

— any instruction like MOV AL,AL will be removed completely (such an instruction
might appear, when using maao parameters)

The .SMARTL (- 01 option) optimization excludes all procedures from the linker, which are
not explicitly cdled in the source file, addressed via the OFFSET directive or included with
the .PUBLIC directive.

The .SMART diredive (- o option) includes all other optimizations. .SMART1, SMART2and
.SMARTS3. Furthermore, with .SMART Pass32 scans throughthe source file (similar to a de-
bugger) and excludes al procedure which are not called or addressed via the OFFSETdirec
tive in the assumed course of the program at run time. This is the best optimization, kecause
only adually used procedures remain part of the program.

Three main rules for the use of . SMART or .SMARTZL:

— you must define every procedure arrectly between the PROCand ENDPdirective.
— you shoud not use the optimization urtil the unoptimized code is assembled correctly.

— you shoud na optimize and debug at the same time; the optimize function tries to
shorten the code, whereas the debug function expands the ade (actually, the debug
option even dsables some optimizaions like short jumps, etc.)

The optimizaion with .S MART and . SMART1 (- 0 and - 01) might take until 30% longer
than usual asseembling, kecause of a third pass. The other optimizations with .SMART?2 and
.SMARTS3 (- or and- oj) might take 1-2% longer.

(c) 1999 by Dieter R. Pawelcz&, Munich

104 The Pass32 Assmbler

(c) 1999 byDieter R. Pawelcz&, Munich

105

Appendix

A The Pass32 Assembler

A.l1 Operators

0

I

+

/

%

and

not

or

xor

byte ptr
word ptr
dword ptr
gword ptr
tbyte ptr
fword ptr
size

Marks priority evaluation

Marks memory location

Multiplies two integer expressons

adds to integer expressons

sign d integer expresson

subtrads two integer expressons

divides two integer expressons

moduo o two integer expressons

logical and d two expressons

logical invert of expresson

logical or of two expressons

logical xor of two expressons

forces memory location to be byte size

forces memory location to be word (2 bytes) size
forces memory location to be doudeword (4 bytes) size
forces memory location to be quadword (8 bytes) size
forces memory location to be 10-byte size

forces memory location to be 32-bit far pointer size
returns reserved byte court for the data identifier

A.2 Directives

ALIGN

ALLWARN

.BLOCK
.CODE

.COMMENT

.CONST

forces data alignment or code dignment - use in the segment

enables all warnings

the following data ae stored as one block (alignment ignared)

the following instructions belongto the mde segment;
asembler instructions foll owing

marks the start of a comment

the following instructions belongto the mde segment;
constant data definitions foll owing

(c) 1999 by Dieter R. Pawelcz&, Munich

106

.DATA

.DATA?

.DEBUG
.DEBUGFILE
.DISPLAY
DB

DD

DF, DP

DQ

DT

DW

DUP

.ELSE

AF

END Name
END
.ENDIF

ENDP
EMDM
ENDMACRO
EQU

ERR
.ERROR
EXTERN

.FAR
FAR

AF

AFE

IFM
AFPM
IFR

IFR R8
IFR R16

the following instructions belong to the data segment;
data definitions following

the following instructions belongto the uninitiali zed
data segment; indeterminate data definiti ons following
use debugger for the following instructions

use other debugger modue instead of DEBUG32INC/DEBUG.INC
displays message during aseembling

allocates and initi alizes a byte storage for data and code

allocates and initializes a doubleword (4 bytes) storage

allocates and initializes a 32-bit far pointer (6 bytes)

storage

allocates and initi alizes a quadword (8 bytes) storage

allocates and initializes a ten bytes gorage

allocates and initializes a word (2 bytes) storage

dugli cate storage

alternative condtional asseembly block - part of the

diredive

specifies the entry paint of the program

marks the end d the assembler source

end d condtiona assembly block - marks the end d the

AF directive

marks the end d a procedure

marks the end d a maao

marks the end d a maao

definition for a replacement

forces the assembler to generate an error

forces the assembler to generate an error

marks identifier of other module as public - marks label of

other procedure as pulic

al procedure clls are treated as far (forward far calls)

marks a procedure as far

initi ates a condtional assembly, expresson must be unequal 0
initi ates a condtional assembly, expresson must be equal

initi ates a condtional assembly, modue must be included

initi ates a condtional assembly, target must be for protected mode
initi ates a condtional assembly, expresson must be a register
initi ates a condtional assembly, expresson must be an 8 kit reg.
initi ates a condtional assembly, expresson must be a 16 Lt reg.

(c) 1999 byDieter R. Pawelcz&, Munich

107

IFR R32
AFS

INTERFACE

.INCLUDE

.INCLUDEDIR

.INVOKE
.LOADBIN
.MACRO
NEAR
.NOALIGN

.NOBLOCK
.NODEBUG

.NOFAR
.NOWARN
.MODEL
.ORG
OUuUT
PROC
RS

RD

RT, RE
SHORT
SMART
.SMART1
.SMART?2
.SMART3
START
.TYPE
.USE16
.USE32
WARN
WIN32

initi ates a condtional assembly, expresson must be a 32 Lt reg.
initi ates a condtional assembly, expresson must be a string
marks the start of interface definitions for DLL/OVL type
includes asembly file, any file will be included oy once
sets diredory to search for include files

to call awin32API function (only Win32 model)

links binary file diredly into program code

definesa MACRO

marks a procedure & near

no data alignment

marks the end d a data block

disables debugger: no debuggng beyondthis line

far cdls are treated individualy (no forward reference)
disables warnings

defines the memory model TINY/FLAT/OVL/DLL
defines the code segment start

displays message during assembling

defines procedure [attributes FAR / NEAR / START]
alocaes and initializes a single real constant (4 bytes)
alocaes and initializes a doule real constant (8 bytes)
alocaes and initi ali zes an extended (temp) real constant (10 bytes)
uses a 8 hit rel. jump instruction

enables all code optimizations

enables code optimizations for subroutines

enables code optimizations for register instructions
enables code optimizations for jump instructions

marks a procedure & a start-up procedure

multiple .EQU declaration for enumeration types

code segment attribute is 16 bt - default model TINY
code segment attribute is 32 bt - default model FLAT
forces the assembler to generate awarning message

to insert awin32 APl function (only Win32 model)

A.3 Extender/Linker Variables

.MEM
.MIN
.MAX

spedfies the mainmemory variable (FLAT/WIN32 model)
spedfies the minimum amourt of memory needed to run the program
spedfies the maximum amourt of memory used by the program

(c) 1999 by Dieter R. Pawelcz&, Munich

108

.NM disables extra messages during loading

.NB disables Pro32 bre& function

.PLUGIN forces the dos extender to load pugin

.STACK defines the stack size in KBytes (FLAT/WIN32 model)

.UCU disables 1 sec loop for copyright message (for uncommercial use only)
.DOSX to load ather dos extender as gub

A.4 Pass32 Arguments

The general syntax for the Pass32 Assembler is:
PASS32 Fil enane[.ASM [- OPTI ONS]
PASS32 Fil enane[.ASM [/ OPTI ONS]

Hereisalist of the Pass32 ogions:

* Linker options:

-t create aoom file ((COM) in combination with the TINY model

-f create flat model binary (.BIN) in combination with the FLAT
memory model

-w create Win32 PE file (.EXE)

- ovl create flat model overlay (.OVL)

-dl | create flat/Win32model DLL (.DLL)

- out :name specify ouput (.EXE/.COM) file name

* As®mbling ofions:

-a enable all warnings

- nw enable no warnings

-e do nd halt onfirst error

-0 optimize maximal

- 0S optimizefor size (exclude unused procedures)
- or optimize instructions

- 0] optimize short jump instructions

-i :name use directory name to search for include files
- i mname include assmbler file in source

(c) 1999 byDieter R. Pawelcz&, Munich

109

-Spp

silent: no ouput during the assembling
skip pre-procesor: asemble withou using the pre-processor

» Debugger options:

create map file: A file with the extendion MAP is creaed.

This file displays all symbals created duing the assembling.

create debugfile: A file with the extendion DMP is created.

This file displays the whole source (including all sub-modues) with the
correspondng offset addressfor each line.

add debuginformation: Debug information is added to the executable fil el
A combination d -mm and -d allows to dsplay the source code during
debuggng...

- error: HHHHH displays error at off set HHHHHhex): The source is assembled withou

creating an executable program file. When the eror addressis found,the
correspondng source line will be displayed.

» Extender/Linker options. (ignared when assemblingwith-t -dl | -ovl -f opti-
on)
- mem XXXXX -allocate xxxxx KBytes of XMS: The initial program code/data segment is

-m n: XXXXX
- max: XXXXX

-st o XXXXX
-nm

-nb

xxxxx KBytesin size.

-all ocate xxxxx Kbytes heap for the Win32 pogram

the program needs at least xxxxx KBytes of XMS?.

-the program uses max. xxxxx KBytes of XMS.

-the maximum program heap for the Win32 program

sets the size of stack in KBytes (only FLAT and Win32 Model)

display no message: Usually the Dos Extender displays the linear addressof
the program segment. When DPMI is emulated, the DPMI Version number
Is displayed. These messages won't be displayed when assembling

with this argument.

no control of CRTL-Break / CRTL+C In emulated DPMI the Dos
Extender takes control of [CRTL]+[Break] and [CRTL+C] .

To avoid program abortion with [CRTL]+[Break] /[CRTL+C] you
shoud use this option.

1.Note: Debug informationis added urtil thefirst .NODEBUGIiredive!
2. Thisoptionis equal to -mem

(c) 1999 by Dieter R. Pawelcz&, Munich

110

-core: XXXXX

- pl ug: NANE
- key:NAME

A5

write @re on error: For post debugging the emulated DPMI can generate
a core image of the program. When an exception accurs, the current
program code (and data) segment will be stored in the file CORE.COR,

which can be analysed by a disasseembler / debugger. (not suppated by the

Pro32 GOLD series)

.DATA size To store uninitialized data (DATA?) you can alter the core
size. (not suppated by the Pro32 GOLD series)

forces the Pro32 dbs extender to load a plug-i (Pro32 GOLD).
To enter the license key for the Pro32 Dos Extender (Pro32 GOLD). The
license key makes aure, that no aher user can change the application
settings with ProSet or any ather Pro32 dility.

Run Time Library

A.5.1 SYSTEM | NC - Some useful system routines:

Function Sy
Function Sy
Function Sy
Function Sy
Function Sy
Function Ma
Function Sy
Function Sy
Function Sy
Function Sy
Function Sy
Function Sy
Function Sy
Function Sy
Function Sy
Function Sy
Function Sy

Function SystemGetRan

Function Ge
Function Ge
Function Ge
Variable Te
Variable Ba
Macro Check

stemKeyPressed: returns Zero Flag, if n o0 key pressed

stemGetKey: waits for key stroke, retur ns key in al
stemGetMem: allocates eax bytes of memo ry on the heap
stemFreeMem: frees eax bytes of memory on the heap

stemMemAuvail: returns largest memory bl
t hToString: 32 bit (EAX) number to stri
stemPrint: prints at screen CX=X, DX=Y,
stemWrite: prints string EDI at cursor
stemWriteLn: prints string EDI at curso
stemNewLine: creates line feed and scro
stemClrSrc: clears the text screen

ock available on the heap
ng at Offset EDI
EDI=string

r with LineFeed
I ling at cursor

stemReadLn: reads line from keyboard to string in EDI
stemGotoXY: set cursor at CX, DX
stemSound: turn speaker on with frequen cyin AX

stemNoSound: turn speaker of

stemDelay: delays execution for ms in A X

stemExec: executes a program; name EDI, command line ESI
dom:retu rnsa 16bitunsignedrandomnumber, rangein
t ParamStr: gets paramstr in EDI for par ameter(AL)

t EnvStr returns environment string to m atching string in EDI
t PrgDir: returns Directory of the progr am path in EAX
xtColor: DB foreground color

ckground: DB background color

CPU(CPUType) macro to check the CPU Typ e

A.5.2 SYSTEM MAC- TheMacro Version of SYSTEM | NC

Macro GetMe m(Mem): allocates mem bytes of memory o

Macro FreeM
Macro Print
Macro Write
Macro Write

n the heap
em(Ptr,Mem): frees mem bytes of pointer ptr
(X,Y,String): prints string at screen

(String): prints string at cursor

Ln(String): prints string EDI at cursor with LineFeed

(c) 1999 byDieter R. Pawelcz&, Munich

write xxxxx KBytes core on error: Usually the core size is the .CODE and

111

Macro ReadLn: reads | ine from keyboard
Macro Color(Text,Bac k) sets color variables
Macro GotoXY(x,y) se t cursor

Macro Exit(ExitCode) terminate program

A53 1O I NC-Disk Access

Function FileLength: EDI offset to filename, length in EAX

Function LoadFile: EDI offsettofilename, ESI destination, result:size in EAX

Function OpenFileToR ead: EDI offset to filename, returns ha ndle in ebx
Function OpenFileToW rite: EDI offset to filename, returns h andle in ebx
Function CloseFile: EBX handle

Function SaveFile: E Dl offset to filename, ESI Source, ECX: size

Function BlockRead: EBX handle, ECX size, EDI dest., returns bytes read in EAX

Function BlockWrite: EBX handle, ECX size, EDI dest., returns bytes wri tten
Function GetDir: cop i es directory name of DRIVE in DL to ST RING in EDI
Function ChDir: chan ges to the directory in String EDI

A.5.4 STRI NG I NC - routinesfor zero terminated strings

Function strcat: app ends string EDI with string ESI, return s new length
Function strupcase: converts string in EDI to upcase string , returns length
Function strcopy : ¢ opys string ESI to EDI, returns length

Function strlength: r eturns the EDI string length

Function strpos: Che cks, if string ESI contains substring E Di

Function strcmp: com pares string ESI with string EDI result in eax

A.5.5 GAME. | NC- Joystick Access

Function GetXAXxis : Returns value in EAX proportional to th e X-Value
Function GetYAXis : Returns value in EAX proportional to th e Y-Value
Function CheckFire : Zero-Flag set if Fire is pressed

Function CheckButton : Zero-Flag set if Fire is pressed

A.5.6 GRAPH. | NC- VGA 320x200x256 gaphic routines

Function INITGRAPH : initializes graphic mode

Function SETTEXTMODE : returns to textmode

Function PUTPIXEL : sets pixel at CX:DX with color BL

Function GETPIXEL : gets pixel color at CX:DX in BL

Function OUTCHAR :d i splays a single character at CX:DX, co | or BL, char AL
Function OUTTEXTXY : displays a st ring at CX:DX, color BL, string offset EDI
Function FILLBLOCK : fills block CX:DX to SI:DI with color BL

Function CI RCLE :draws a circle at CX:DX with radius Sl and DI and color BL
Function LINE : draw s aline between CX:DX, SI:DI with colo r BL
FunctionPUTOBJECT :displaysa’sprite’at CX:DXwith sizeSl: BXand sourceEDI
Function P UTIMAGE : displays animage at CX:DX with size SI:BX and source EDI
FunctionGETIM AGE:getsan i magefromCX:DXwit h sizeSI:BXand imagebufferEDI
Function COLOROUTCHAR : displays a single character in diff erent colors

Function COLOROUTTEXTXY : displays a string in different colors (s. outtextxy)

A.5.7 NMSBDEMO. | NC - PMode mouse driver for COM1/COM2 port

Function InitMouse: Initializes pm mouse driver for COM1 or COM2
Variable MSX: DW current mouse X position

Variable MSY: DW current mouse Y position

Variable MSLEFT: DB status of left mouse button

(c) 1999 by Dieter R. Pawelcz&, Munich

112

Variable MS
Pointer MS

RIGHT: DB status of right mouse button
DRAW: DF far pointer for mouse draw p
called with every mouse movement

r ocedure;

A.5.8 GRAPHI C. I NC- DLL based graphic driver library

Function PU
Function GE
Function LI
Function RE
Function FI
Function CI

FunctionOUTTEXTXY
FunctionPUTSPRITE

Function FL
Function CL
Function FA

FunctionPUTIMAGE
FunctionGETIMAGE
FunctionPUT16x16

Function FL
Function IN
Function SE
Function GE
Function GE
Function SE
Function GE
Function LO
Function WA
Macros Draw
Macros Draw
Macros Draw
Macros Draw
Macros Draw
Macros Draw

TPIXEL : ECX = X-Axis, EDX = Y-Axis,
TPIXEL : ECX = X-Axis, EDX = Y-Axis,
NE :ECX=X1,EDX=Y1,ESI=X
CTANGLE :ECX=X1,EDX=Y1,ESI=X
LL :ECX=X1,EDX=Y1,ESI=X
RLCE :ECX =X, EDX =Y, ESI =11,
:ECX=X-Axis,EDX
:ECX =X,EDX =Y,EBX =SizeX
USHBUFFER : copys activ buffer to scree
EARSCREEN

STFILL :ECX=X1,EDX=Y1,ESI=X
:ECX=X,EDX = Y,EBX=SizeX,
:ECX=X,EDX Y,EBX=SizeX,
:ECX=X,EDX = Y,EBX=SizeX,
USHWINDOW : ECX = X1, EDX =Y1,ESI =X
| TGRAPH : EAX =video mode
TTEXTMODE : return to co80 mode

TMAXX :returns max value for X

TMAXY :returns max value for Y

TPAGE : EAX = page (O=screen, 1..n
TACTPAGE : returns in EAX active page
ADPALETTE : loads palette

| TFORVERTICALRETRACE : EAX and EDX dest

Text(X,Y,String,Color)
Line(X1,Y1,X2,Y2,Color)
Rectangle(X1,Y1,X2,Y2,Color)
Fill(X1,Y1,X2,Y2,Color)

I mage(X1,Y1,X2,Y2,0ffs)

| con(X1,Y1,o0ffs)

=Y-Axis,EBX=color,

EBX = color
EBX = color

2, EDI =Y2, EBX = color

2, EDI =Y2, EBX = color
2, EDI =Y2, EBX = color
EDI = r2, EBX = color

EDI=
n

SizeY,ESI

2, EDI =Y2, EBX = color
EDI=SizeY,ESIlimg.
EDI=SizeY,ESIlimg.
EDI=SizeY,ESIlimg.
2,EDI=Y2

= BUFFER)

r oyed

A.5.9 DOSX. | NC- Extended DOS Support for PRO32!

Include DOSX.INC at the beginning d your source to enable extended DOS suppat.

1.should not be used with Pro32 Gold - use DOSX plug-in instea.

(c) 1999 byDieter R. Pawelcz&, Munich

EDIl=str.offset
spr.offset

off s.
off s.
off s.

113

A.6 Supported

Assembler

I nstructions

AAA
AAD
AAM
AAS

ADC reg8, r/m8
ADC regl6, r/m16
ADC reg32, r/m32
ADC r/m8, imm8
ADC r/m8, reg8
ADC r/m16, imm8
ADC r/m16, imm16
ADC r/m16, regl6
ADC r/m32, imm8
ADC r/m32, imm32
ADC r/m32, reg32
ADC AL, imm8
ADC AX, imm16
ADC EAX, imm32

ADD reg8, r/m8
ADD regl6, r/m16
ADD reg32, r/m32
ADD r/m8, imm8
ADD r/m8, imm8
ADD r/m8, reg8
ADD r/m16, imm8
ADD r/m16, imm16
ADD r/m16, regl6
ADD r/m32, imm8
ADD r/m32, imm32
ADD r/m32, reg32
ADD AL, imm8
ADD AX, imm16
ADD EAX, imm32

AND reg8, r/m8
AND regl6, r/m16
AND reg32, r/m32
AND r/m8, imm8
AND r/m8, reg8
AND r/m16, imm8
AND r/m16, imm16
AND r/m16, regl6
AND r/m32, imm8
AND r/m32, imm32
AND r/m32, reg32
AND AL, imm8

AND AX, imm16
AND EAX, imm3 2

ARPL r/m16

BOUND r/m16
BOUND r/m32

BSF reg16, r/ nil6
BSF reg32, r/ n82

BSR regl6, r/ nil6
BSR reg32, r/ nB2

BSWAP reg32

BT r/m16, imm 8
BT r/m16, reg 16
BT r/m32, imm 8
BT r/m32, reg 32

BTC r/m16, im n8
BTC r/ml16, re gl6
BTC r/m32, im n8
BTC r/m32, re g32

BTR r/m16, im n8
BTR r/m16, re gl6
BTR r/m32, im n8
BTR r/m32, re g32
BTS r/m16, im n8
BTS r/m16, re gl6
BTS r/m32, im n8
BTS r/m32, re g32
CALL rell6

CALL rel32

CALL mem16

CALL mem32

CALL mem48

CBW

CDQ

CLC

CLD

CLI

CLTS

CMC

CMP reg8, r/m 8
CMP regl16, r/ nl6

(c) 1999 by Dieter R. Pawelcz&, Munich

CMP reg32, r/m32
CMP r/m8, imm8
CMP r/m8, reg8
CMP r/m16, imm8
CMP r/m16, imml6
CMP r/m16 , regl6
CMP r/m32, imm8
CMP r/m32, imm32
CMP r/m32, reg32
CMP AL, i mm8
CMP AX, i nml6
CMP EAX, i mm32

CMPSB

CMPSD

CMPSW

CMPXCHG f m8, reg8
CMPXCHG f m16, regl6
CMPXCHG f m32, reg32
CwWD

CWDE

DAA

DAS

DEC regl6

DEC reg32

DEC r/m8

DEC r/m16

DEC r/m32

DIV r/m8

DIV r/m16

DIV r/m32

ENTER imml6, imm8

F2XM1
F2XM1

FABS

FADD st, st(i)
FADD st(i), st
FADD mem2
FADD memé@t
FADDP st(i), st
FBLD mem&

FBSTP men80

114

FCHS

FCLEX

FCOM st(i)
FCOM merd2
FCOM merg4
FCOMP st (i)
FCOMP meB2
FCOMP met4
FCOMPP

FCOS
FDECSTP

FDIV st, st(i)
FDIV st(i), st
FDIV mem32
FDIV mem64
FDIVP st (i), st
FDIVR st , st(i)
FDIVR st (i), st
FDIVR menB2
FDIVR ment4
FDIVRP s t (i), st
FFREE st (i)
FFREEP st (i)

FIADD meni6
FIADD menB2

FICOM menil6
FICOM men82

FICOMP neml16
FICOMP nmem32

FIDIV me ni6
FIDIV me nB2

FIDIVR m em16
FIDIVR m em32

FILD mem16
FILD mem32
FILD mem64

FIMUL meni6
FIMUL menB2

FINCSTP
FINI T

FIST mem16
FIST mem32

FISTP mem16
FISTP mem32

FISUB mem16
FISUB mem32

FISUBR mem16
FISUBR mem32

FLD st(i)

FLD nem32
FLD nem64
FLD nem80
FLD1

FLDQN mem16
FLDENV r/m16
FLDL2E
FLDL2T
FLDLG2
FLDLN2

FLDPM

FLDZ

FMUL st, st(i)
FMUL st(i), st
FMUL mem32
FMUL mem64
FMULP st(i), st
FNINI T

FNOP
FNSTENV r/m16
FPATAN

FPREM

FPRBEVL

(c) 1999 byDieter R. Pawelcz&, Munich

FPTAN
FRNDINT
FRSTOR r/m16
FSAVE r/m16
FSCALE
FSETPM

FSIN

FSINCOS
FSQRT

FST st(i)

FST mem32
FST mem64
FSTCW mem16
FSTENV r/m16
FSTP st(i)
FSTP mem32
FSTP mem64

FSTP mem80

FSTSW r/m16
FSTSW AX

FSUB st, st(i)
FSUB st(i), st
FSUB mem32
FSUB mem64
FSUBP st(i), st
FSUBR st, st(i)
FSUBR st(i), st
FSUBR mem32
FSUBR mem64
FSUBRP st(i), st
FTST

FUCOM st(i)
FUCOMP st(i)
FUCOMPP

FWAIT

115

FXAM
FXCH st(i)
FXTRACT
FYL2X
FYL2XP1
HLT

IDIV r/m8
IDIV r/m16
IDIV r/m32

IMUL reg16, r/m16

IMUL reg32, r/m32

IMUL regl6,r/ ml6, imm38
IMUL reg32,r/ B2, imm8
IMUL r/m8

IMUL r/m16

IMUL r/m16, imm8

IMUL r/m16, imm16

IMUL r/m32

IMUL r/m32, imm8

IMUL r/m32, imm32

IN AL, imm8
IN AL, DX
IN AX, imm8
IN AX, DX
IN EAX, imm8
IN EAX, DX
INC regl16
INC reg32
INC r/m8
INC r/m16
INC r/m32
INSB

INSD

INSW

INT

INT3

INTO

INVD

INVLPG

IRET

IRETD

JA rel8
JA rell6
JA rel32

JAE rel8
JAE rell6
JAE rel32

JB rel8
JB rell6
JB rel32

JBE rel8
JBE rell6
JBE rel32

JC rel8
JC rell6
JC rel32

JCXZ rel8
JECXZ rel8

JE rel8
JE rell6
JE rel32

JG rel8
JG rell6
JG rel32

JGE rel8
JGE rell6
JGE rel32

JL rel8
JL rell6
JL rel32

JLE rel8
JLE rell6
JLE rel32

JMP rel8
JMP rell6
JMP rel32

JNA rel8
JNA rell6
JNA rel32

JNAE rel8
JNAE rell6
JNAE rel32

(c) 1999 by Dieter R. Pawelcz&, Munich

JNB rel8
JNB rell6
JNB rel32

JNBE rel8
JNBE rell
JNBE rel3

JNC rel8
JNC rell6
JNC rel32

JNE rel8
JNE rell6
JNE rel32

JNG rel8
JNG rell6
ING rel32

JNGE rel8
IJNGE rell
IJNGE rel3

JNL rel8
JNL rell6
JNL rel32

JNLE rel8
JNLE rell
JNLE rel3

JNO rel8
JNO rell6
JNO rel32

JNP rel8
JNP rell6
JNP rel32

JNS rel8
JNS rell6
JNS rel32

JNZ rel8
JNZ rell6
JNZ rel32

JO rel8
JO rell6
JO rel32

JP rel8
JP rell6
JP rel32

JPO rel8

(o]

6
2

(o]

116

JPO rell
JPO rel3 2

(o]

JS rel8

JS rell6

JS rel32

JZ rel8

JZ rell6

JZ rel32

LAHF

LAR regl 6, r/m16

LDS regl 6, mem32
LDS reg3 2, mem48

LEA regl 6, meml16
LEA reg3 2, mem32

LEAVE

LES regl 6, mem32
LES reg3 2, mem48

LFS regl 6, mem32
LFS reg3 2, mem48

LGDT meni6
LGDT men32

LGS regl 6, mem32
LGS reg3 2, mem48

LIDT mem16
LIDT mem32

LLDT meml6
LMSW r/m16
LOCK
LODSB
LODSD
LODSW
LOOP rel 8
LOOPD rel 8
LOOPDE rel8

LOOPDNEtr el8

LOOMNZ rel8
LOORYZ rel8
LOOHE rel8
LOORNE rel8
LOORZ rel8
LOOR rel8

LSL regl6, r/m16

LSS regl6, mem32
LSS reg32, mem48

LTR r/ml16

MOV r eg8, imm8
MOV r eg8, r/m8
MOV r eg16, imm16
MOV r egl6, r/m16
MOV r eg32, imm32
MOV r eg32, r/m32
MOV r /m8, imm8
MOV r /Im8, reg8
MOV r/m16, imm16
MOV r /Im16, regl6
MOV r /Im16, sreg
MOV r /m32, imm32
MOV r /Im32, reg32
MOV AL, mem8
MOV AX, mem16
MOV EAX, mem32
MOV sreg, r/m16
MOV nem8, AL
MOV nem16, AX
MOV nem32, EAX

MOV r eg32, CRO-CR7

MOV CRO-CR7,reg32

MOV r eg32, DRO-DR7

MOV DRO-DR7,reg32
MOV r eg32, TRO-TR7
MOV TRO-TR7,reg32
MOVS8

MOV®

MOVSV

MOV regl6, r/m8
MOV reg32, r/m8
MOV reg32, r/m16

MOVZX regl16, r/m8
MOVZX reg32, r/m8

(c) 1999 byDieter R. Pawelcz&, Munich

MOVZX reg32, r/m16

MJL r/m8
MJL r/m16
MJL r/m32

NEG r/m8
NEG r/m16
NEG r/m32

NOP

NOT r/m8
NOT r/m16
NOT r/m32

OR reg8, r/m8
OR regl6, r/m16
OR reg32, r/m32
OR r/m8, imm8
OR r/m8, reg8
OR r/m16, imm8
OR r/m16, imm16
OR r/m16, regl6
OR r/m32, imm8
OR r/m32, imm32
OR r/m32, reg32
OR AL, imm8

OR AX, imm16
OR EAX, imm32

QUT imm8, AL
QUT imm8, AX
QUT imm8, EAX
QUT DX, AL
QUT DX, AX
QUT DX, EAX

QUTSB
QUTSD
QUTSW

POP regl6
POP reg32
POP mem16
POP mem32
POP DS
POP ES
POP SS
POP FS
POP GS

POPA

POPAD

117

POPF
POPFD

PUSH imm16
PUSHD imm32
PUSH mem16
PUSH mem32
PUSH regl6
PUSH reg32
PUSH CS
PUSH DS
PUSH ES
PUSH SS
PUSH FS
PUSH GS

PUSHA
PUSHAD
PUSHF

PUSHFD

RCL r/m8, imm8
RCL r/m8, CL
RCL r/m16, imm8
RCL r/m16, CL
RCL r/m32, imm8
RCL r/m32, CL

RCR r/m8, imm8
RCR r/m8, CL
RCR r/m16, imm8
RCR r/mi16, CL
RCR r/m32, imm8
RCR r/m32, CL

REP
REPNE

RET
RET imm16

RETF
RETF imm16

ROL r/m8, imm8
ROL r/m8, CL
ROL r/m16, imm8
ROL r/mi6, CL
ROL r/m32, imm8
ROL r/m32, CL

ROR r/m8, imm8
ROR r/m8, CL
ROR r/m16, imm8

ROR r/m16, CL
ROR r/m32, im
ROR r/m32, CL

SAHF

SAL r/m8, imm
SAL r/m8, CL

SAL r/m16, im
SAL r/m16, CL
SAL r/m32, im
SAL r/m32, CL

SAR r/m8, imm
SAR r/m8, CL

SAR r/m16, im
SAR r/m16, CL
SAR r/m32, im
SAR r/m32, CL

SBB reg8, r/m
SBB reg16, r/
SBB reg32, r/
SBB r/m8, imm
SBB r/m8, reg
SBB r/m16, im
SBB r/m16, im
SBB r/m16, re
SBB r/m32, im
SBB r/m32, im
SBB r/m32, re
SBB AL, imm8
SBB AX, imm16

ng

3

8
ni6
nBd2
8

8
ng
ni6
g16
ng
nBd2
932

SBB EAX, imm3 2

SCASB

SCASD

SCASW

SETA r/m8

SETAE r/m8

SETB r/m8

SETBE r/m8

SETC r/m8

SETE r/m8

SETLE r/m 8

SETNA r/m 8

SETNAE r/ n8

SETNB r/m 8

SETNBE r/ n8

SETNC r/m 8

SETNE r/m 8

SETNG r/m 8

SETNGE 1/ n8

SETNL r/m 8

SETNLE r/ n8

SETNO r/m 8

SETNP r/m 8

SETNS r/m 8

SETNZ r/m 8

SETO r/m8

SETP r/m8

SETPE r/m 8

SETPO r/m 8

SETS r/m8

SETZ r/m8

SGDT mem®
SGDT mem2

SHL r/m8, imm8
SHL r/m8, CL

SHL r/m16 , imm8
SHL r/m16 , CL
SHL r/m32 , imm8
SHL r/m32 , CL

SETG r/m8

SETGE r/m8

SETL r/m8

(c) 1999 by Dieter R. Pawelcz&, Munich

SHLD r/m16, regl6, imm8
SHLD r/ml 6, regl6, CL
SHLD r/m32, reg32, imm8
SHLD r/m3 2, reg32, CL

118

SHR r/m8 , imm8

SHR r/m8 , CL

SHR r/m1 6, imm8

SHR r/m1 6, CL

SHR r/m3 2, imm8

SHR r/m3 2, CL

SHRD r/m16, reg16, imm8
SHRD r/m 16, reg16, CL
SHRD r/m32, reg32, imm8
SHRD r/m 32, reg32, CL

SIDT mem16
SIDT mem32

SMSW r/m16
STC

STD

STI

STOSB
STOSD
STOSW
STR r/ml 6

SUB reg8 , r/m8
SUB regl 6, r/m16
2

SUB reg3 2, r/m32
SUB r/m8 , imm38
SUB r/m8 , reg8

SUB r/ml1 6, imm8
SUB r/m1 6, imm16
SUB r/ml 6, regl6
SUB r/m3 2, imm8
SUB r/m3 2, imm32

SUB r/m3 2, reg32
SUB AL, i mm8

SUB AX, i mmil6
SUB EAX, imm32

TEST r/m 8, imm8
TEST r/m 8, reg8
TEST r/m 16, imm16
TEST r/m 16, regl6
TEST r/m 32, imm32
TEST r/m 32, reg32
TEST AL, imm8
TEST AX, imm16
TEST EAX, imm32

VERR r/m 16

VERW r/m16
WAIT
WBINVD

XADD r/m8, reg8
XADD r/m16, regl6
XADD r/m32, reg32

XCHG reg8, r/m8
XCHG regl16, r/ml6
XCHG reg32, r/m32
XCHG r/m8, reg8
XCHG r/m16, regl6
XCHG r/m32, reg32
XCHG AX, regl6
XCHG EAX, reg32

XLATB

XOR reg8, r/m8
XOR r eg16, r/m16
XOR reg32, r/m32
XOR r/m8, imm8
XOR r/m8, reg8
XOR r/m16, imm8
XOR r/m16, imm16
XOR r/m16, regl6
XOR r/m32, imm8
XOR r/m32, imm32
XOR r/m32, reg32
XOR AL, imm8
XOR AX, imm16
XOR EAX, imm32

(c) 1999 byDieter R. Pawelcz&, Munich

119

A.7 Pass32 Limits

Thereis nolimit in source file size. The limit for the memory size is 4G, although oty 64MB
are suppated by dder XMS Versions.

AsPass32is (still) areal mode product, the amourt of symbalsislimited bythe avail able Dos
memory. Symbals are: Labels, Procedures and Data identifier.

The maximal symbal length is 127 characters for labels and 128characters for procedures and
variable identifiers.

The maximal number of symbals is depending onthe symbad length. With an average of 11
charaders per symbol, the maximum is about 18000 symbols, with prepass optimization
abou 16000symbals. With an average of 35 characters per symbal, the maximum is abou
8000symbals. The number of proceduresislimited to 4000.The number of modues (actually
included) is limited to 50.

B Pro32Dos Extender

B.1 The Dos Extender Loader

The DOS extender program (PRO32. EXE) is copied to the beginning d the proteded mode
binary - dore by the assembler and linker PASS32. EXE or by the linker tool PROSET. EXE.
The DOS extender is therefore a part of the protected mode program. When called from DOS
only the DOS extender is load into DOS Memory and executed.

The extender first checks, if a DPMI host is available. If so, the procesor is switched into
proteded mode and the extender continues with the loading of the program. If there is no
DPMI available (or only a 16 kit DPMI haost), the Dos Extender checks for VCPI. If thereis
no VCPI, the DOS extender checks for XMS-memory manager. If there is no XM S-manager,
the dos extender emulates the XM S memory manager. Now, as XMS memory can be acces-
sed, the dos extender starts with the DPMI emulation. If VCPI is present, the extender uses
the VCPI methods to switch between red mode and protected mode. Otherwise, the dos ex-
tender initiates its own GDT and wses CPU instructions to switch between real mode and pro-
tected mode (see more section B.2 The Integrated DPMI Server on page 121).

The protected mode parts of the dos extender are independent of the interface DPMI, VCHI,
XMS or RAW. In protected mode, Pro32 tries to all ocate the program memory: Pro32 first
checks how much memory is available in the system. If the amourt of memory is below the
MinMemory variable, Pro32terminates with the eror message: too less memory available. If
the amourt of memory is above the MaxMemory variable, Pro32 al ocates memory aacording
to the MaxMemory value. Otherwise, Pro32 all ocates all available Memory. So Pro32 alloca
tes at least an amourt of memory according to the MinMemory value and maximal aacording
to MaxMemory.

(c) 1999 by Dieter R. Pawelcz&, Munich

120

Now the DOS Extender allocates real mode memory for the PM-stack. It uses red mode me-
mory, as this memory is according to the DPMI and Windows-Specification always locked.
Note, if the memory used by the stack is not locked, it will produces a stadk exception uncder
any Windows version. Therefore areal mode stack provides a more stable gpplication. Pro32
needs at least 100h byes of stack and can use max. 512 Kbytes. As default, Pro32 all ocaes
32K Byte stack.

Afterwards, the dos extender tries to open the program file. The progam name is usually the
parameter 0.

At last the DOS extender checks the video configuration. If the aurrent video mode is nat
80x25textmode, the DOS extender changes the video mode to 80x25textmode.

The extender establishes several descriptors:
- 32 it Code Descriptor
- 32 kbt Data Descriptor
- 32 1t Stadk Descriptor
- 16 [t Video Descriptor
- 32 [t Zero Base Descriptor (Basis:00000000y)
- 16 bt Real Mode File Buffer Descriptor
- 16 bt DOS Environment Descriptor

If the message flag is enabled, the extender displays the basis of the 32 bt code and dhta de-
scriptor: ,,load to addressXXXXXxxx"

The current PSP is copied with the High Data Descriptor into XMS at offset 00000000.The
DOS extender loads the program to CS:00000L00 (The load address can be changed, see
PRO32.DOC / PROSET.DOC).

When the whole program is copied into the XMS memory, all proteded descriptors and addi-
tional system information are wpied into the PSP. They can be reached by CS:

00-01 DS - data selector

02-03 ES - video seledor

04-05 FS, GS - zero seledor

06-07 Real Mode Fil e Buffer Selector
08-09 Real Mode File Buffer Segent
0A-0D Actual allocated XMS Memory

OE Flag, if windows has been detected®
OF Flag, if other DPMI host is active?
2C-2F seledor to DOS environment
80-FF command line with arguments

a. avail able with Pro32 Version 1.47 and rewer versions.

Tab. B.1 The selector register contents and the PMode PSP

(c) 1999 byDieter R. Pawelcz&, Munich

121

The value of EAX ,EBX,ECX,EDX,ESI,EDI and EBP is zero. ESP hdds the maximum stack
size

B.2 Thelntegrated DPMI Server

The main part of the DOS extender is using DPMI cdls. If the system already provides a 32
bit DPMI hogt, its DPMI functions are used. For this reason, Pro32 gograms are ale to run
under Windows 3.x, Windows 9x and undr Windows NT. Pro32 des not suppat all DPMI
functions. For this reason you shoud use only those that are listed. There are some differences
between the DPMI specifications and the Pro32 DPMI emulation. The main reason for these
differences is the speed of DPMI. DPMI is mainly slowed dawvn, because dl real mode inter-
rupts must be provided by the DPMI host. For this resson DPMI hosts typicaly uses an ex-
ception handler which is cheding the interrupt type (external, software,exception...) and
reading according to the type. Pro32 has a very fast interrupt hander for each individual in-
terrupt. It suppats the red mode interrupts 00..7h.

00 Division by zero* 16 keyboard

01 Single step* 17 Printer

02 NMI 1b CTRL-Bred&**

03 Bre&k Point* 1c Clock

04 Overflow* 21 DOS-API

05 Bound Chedc* 23 CRTL-C Exit**

06 Invalid Opcode* 24 FATAL ERROR Handler**
07 Nno nuUMeric co-processor* 31 DPMI API

(c) 1999 by Dieter R. Pawelcz&, Munich

122

double exception* .

08 HW IRWO-Timer 33 Mouse driver API
Segment overrun* .

09 HW IRQ1-K eyboard 70 HW IRQ8 Red time dock

Invalid Task STate Segment*
0A HW IRQ2 71 HW IRQ9 Lan adaptor
Segment not present*

Ob HW IRQ3 COM2 72 HW IRQ10
Stadk Exception*

Oc HW IRQ4 COM1 73 HW IRQ11

Genera Protedion Fault*

od HW IRQS 74 HW IRQ12

Oe HW IRQ6 Floppy Drive 75 HW IRQ13

of HW IRQ7 Printer 76 HW IRQ14 Fixed disk

10 VGA Bios 77 HW IRQ15

11

12

13 BIOS A Novell Netware API

14

15

* Exceptions are handled by Pro32
** These interrupts are dso transfered from red mode to protected mode.

Tab. B.2 SW/HW Interrupts and Exceptions

The interrupts 80h-OFFh cause an exception.

The exceptions 00 - 0ah, Och and 0dhfrom any ather DPMI host are (if the DPMI host offers
this function) controlled by the Pro32 Dos Extender. So when you program is runnng unaer
Windows, and an exception accurs, Pro32 will hande the exception. The exception hander
usually printsthe eror address the aror code, the exception type, the contents of all registers,
the basis addresses and the limits of the selectors CS, DS, ES, FS, GS, SS

The Pass32 Assembler offers afind error option, so youcan easily trace the aror by searching
for the error address:

Pass32 dunmy.asm -error: 0127

B.3 The DPMI Service API

The DPMI function nunbers are passed in AX. The DPMI functionis invoked by calling the
INT 31h. Parameters are passed in BX, CX, DX, DI, Sl and nd in 32 bt registers due to the
16 Lt origin of the DPMI. 32 bt parameters are typically expressed by BX:CX, CX:DX,
SI:DI.

(c) 1999 byDieter R. Pawelcz&, Munich

123

When the DPMI function has been succesful, the arry flag is clear. Otherwise, the carry flag
is =t and AX hadlds an error code (see section B.4 DPMI Error Codes in AX: on page 137).

The appendix refers to the 32 kit version d the DPMI.

B.3.1 Function 000 - Allocate Descriptor

Allocaes one or more descriptors in the descriptor table. These desciptors have abase and li-
mit of 00000000N, they will be set to expand-up writeable data, with the present bit set. If
more than ore desciptor was al ocated, the returnd selector is a base selector. You must add
the value of INT 31hfunction 0003ho get the next selector. Y ou shoud request only ore sel-
ector by ore, to avoid gaps in the descriptor table.

Function cal: INT 31h

AX = 0000h
CX =number of descript ors to allocate (usually CX=0001)

Results, if successul

carry flag clear
AX = base selector

Example:

mov CX,1

mov AX,0000h

int 31h

jc DPMIERROR ; probably no more system resources...
mov NewSelector,AX

DPMIERROR:
call printerror

B.3.2 Function 0001h - Free Descriptor

Frees a descriptor allocated by the function 0000h.Y ou shoud na free descriptors all ocated
by the DPMI host (for example the initial CS,SS,DS,ES,FS,GS) and descriptors allocated by
function 00002h.

Function call: INT 31h

AX = 0001h
BX = selector for the d escriptor to free

Results, if successul:
carry flag clear, selector f reed
Example:

mov BX,NewSelector ; no need for NewSelector anymore..
mov ax,0001h
int 31h

Notes:

Any use of afree selector will cause a general exception. If a selector register holds a freed
selector, Pro32 wsually loads the selector register with the dummy selector.

(c) 1999 by Dieter R. Pawelcz&, Munich

124

B.3.3 Function 0002 - Get Real M ode Segment Descriptor

Conwerts a real mode segment into a protected mode descriptor. The default size attribute is
16 ht, the descriptor type expand-up writeable data, with a base to the Rea Mode segment
and alimit of OFFFFh.

Functioncdl: INT 31h

AX = 0002h
BX =real mode segment

Results, if succesdul:

carry flag clear
AX = selector

Examples:

mov BX,0A000h ;Video Graphic Memory

mov AX,0002h

int 31h

jc DPMIERROR ; probably no more system resource S...
mov GraphicSel,ax

Notes:
According to the DPMI specification youshoud na alter base or limit of these descriptors.

B.3.4 Function 0005 - Get Seledor Increment Value

Y ou can allocate more than ore descriptors with INT 31hfunction (0000H. To get the next
descriptor you must add the increment value to the base selector.

Function call: INT 31h
AX = 0003h
Results:
AX = selector i ncrement value

B.3.5 Function 0006 - Get Segment Base Address
Returns the 32kt linear base aldressof the seledor.

Function cal: INT 31h

AX = 0006h
BX = selector

Results, if succesdul:

carry flag clear
CX:DX = 32bit line ar base address of the selector

B.3.6 Function 0007 - Set Segment Base Address
Sets the 32hit linea base addressfield in the descriptor for the specified segment.

Functioncdl: INT 31h

(c) 1999 byDieter R. Pawelcz&, Munich

125

AX = 0007h
BX = selector
CX:DX = 32bit linear base a ddress of segment

Results, if successul:
carry flag clear

Example:
mov BX,NewSelector
mov CX,0Ah
mov DX,0 ; CX: DX points to 0A0000h
mov AX,7 ;SO we create another Graphic Screen
int 31h ; Sel ector!

B.3.7 Function 000& - Set Segment Limit
Sets the limit field in the descriptor for the specified segment.

Function call: INT 31h

AX = 0008h
BX = selector
CX:DX = 32bit segment limit

Results, if succesdul:
carry flag clear
Example:

mov BX,NewSelector

mov CX,0

mov DX,0FFFFh ; set 64K Limit to NewSelector
mov AX,8 ; Limit = Size -1

int 31h

Note: The granularity may change depending onthe value of CX:DX

B.3.8 Function 000% - Set Descriptor AccessRights

Modifies the access rights field in the descriptor for the specified segment. The aacessrights
stored in CX have the following format:

Btis | 2| 12| 1| 1| 1| 1| 9| 8| 7| 65 4] 3] 2] 1] 0
5|1 4] 3] 2| 1| 0
G|B|O0|A ? 1 DPL |1 |C |E |R |A
D \% D|C|W
L
G Limit Granularity: 0: byte granular (Limit=Limit field)

1: page granular (Limit=4096* Limit field)
B/D: Segment Attribute Size 0: 16 bit = usel6

1: 32 bit = use32 (default)
AVL: Available Flag: (unused)
DPL: Privileg Level use the LAR instruction to examine the DPL. Typicdly:

(c) 1999 by Dieter R. Pawelcz&, Munich

126

00: kernel level

01: devicedriver level
10: operating system level
11: user application level

C/D: Segment Type 0: data
1: code
E/C: Expand/Conforming 0: data=expand-up code=non-conforming (default)
1: data=expand-down code=conforming
R/W: Rea / Write 0: data=read code=non-readable
1: data=read/write code=readable
A: Access 0: not accessed,
1: accessed
0: must be 0
1: must be 1

?: will beignored

Tab. B.3 Descriptor AccessRights

Function call: INT 31h
AX = 0009h
BX = selector
CX =accessrig hts/type word

Results, if succesgul:
carry flag clear

B.3.9 Function 00QAh - Create Alias Descriptor

Credes a so called alias descriptor that has the same base and limit as the specified descriptor.
The alias descriptor is always an expand-up catatype. You can create alias descriptors as well
from data and code descriptors.

Functioncdl: INT 31h

AX = 000ah
BX = selector

Results, if succesdul:

carry flag clear
AX =alias sele ctor (data)

B.3.10 Function 000Bh - Get Descriptor

Copies the descriptor table entry of the specified seledor into an 8 byte buffer. The buffer
contents are described in Tab. 4 .

(c) 1999 byDieter R. Pawelcz&, Munich

127

Bt.s/ | 1| 1| 1| 1| 1| 1| 9| 8| 7| 6| 5| 4| 3| 2| 1|0
offset 51 4| 3 2] 1| 0
0 Descriptor Limit 15 ..0
2 Descriptor Base 15. .0
4 1 DPL {1 |C |E | R | A | Descript orBase 23..16
D|IC|W

6 Descriptor Base 31..2 4 |G|(B |0 |A Limit

D Vv 19..16?

L

Tab. B.4 The layout of a 32 bt descriptor

The abreviations are acordingto Tab. 3.

Function cal: INT 31h

AX = 000bh
BX = selector
ES:EDI = selector:offset of 8 the byte buffer

Results, if succesgul:
carry flag clear, buffer pointed to by ES:EDI contains descriptor data

B.3.11 Function 000Ch - Set Descriptor

To write acomplete descriptor into the descriptor table. The @ntents of an 8 bytes buffer is
copied into the descriptor table for the specified seledor. The descriptor format is gown in
Tab. 3.

Functioncdl: INT 31h

AX = 000ch
BX = selector
ES:EDI = selector : offset of the 8 byte buffer with vail d

descript or format.
Results, if successul:
carry flag clear
Notes:
The function daes not check if the descriptor entries are valid. Invalid descriptor values will
cause an exception if the descriptor isload into a segment register.

(c) 1999 by Dieter R. Pawelcz&, Munich

128

B.3.12 Function 010Ch - Allocate DOS Memory

Allocates DOS memory through DOS function 48hand creates a descriptor for the memory.
If more than 64K is allocaed, the descriptor will have the limit set above 64K. According to
the DPMI Specification this function al ocates an array of descriptors with regard to the 16-
bit DPMI Version. The 16-bit DPMI function allocates as many 64K descriptors as are neces-
sary to select the whole memory. The 32-bit DPMI function all ocates as well an array of de-
scriptors with the limit of 64K, bu with the exception, that the first descriptor has a limit of
the total amourt of allocaed memory.

The DPMI emulation daes not allocate an array of 64K descriptors (these are limited system
resources!), but a single descriptor with a limit of the allocated memory. | think this is the
only useful way to handle this function!

Functioncdl: INT 31h

AX = 0100h
BX = paragraphs (in 16 bytes) of DOS memory to alloca te

Results, if succesgul:
carry flag clear

AX =real node segment address

DX = prote cted mode selector for memory block
Results, if failed:

carry flag set

AX =DOS e r ror code

BX = size of largest available block

B.3.13 Function 0101h - Free DOS Memory Block

Frees alow memory block previously alocaed by function QL0Oh.

Functioncdl: INT 31h

AX = 0101h
DX = protected mode selector for memo ry block

Results, if succesgul:
carry flag clear

B.3.14 Function 020t - Get Real M ode I nterr upt Vector

Returns the real mode interrupt vector for a specified interrupt.

Functioncdl: INT 31h

AX = 0200h
BL =interrupt number
Results:
CX:DX = segment:off set of real mode interrupt handler

(c) 1999 byDieter R. Pawelcz&, Munich

129

B.3.15 Function 0201h - Set Real Mode Interr upt Vector

To set ared mode interrupt vedor.

Function call: INT 31h

AX = 0201h
BL =interrupt number
CX:DX = segment:offset of r eal mode interrupt handler

Notes: The dtered interrupts are only valid as longas the program is running - after the DOS
exit function 4Ch all interrupt vectors are restored! The interrupt procedure must be located
in real memory with a segment attribute of 16 [t!

B.3.16 Function 0202 - Get Exception Handler

Returns the 16:32 \ector of the current proteded mode exception hander for tﬁe spedfied ex-
ception.

Function call: INT 31h

AX = 0202h
BL = exception number
Results:
CX:EDX = selector:offset of protected mode exception handler

Note: Pro32 suppats only values between 00hand Obhas exceptions.

B.3.17 Function 0203 - Set Exception Handler
Sets the 16:32 addressof the proteded mode exception hender for the specified exception.

Function call: INT 31h

AX = 0203h
BL = exception number
CX:EDX = selector:offset of protected mode exception handler

Note: Pro32 suppats only values between 00hand Obhas exceptions. CX and EDX shoud
contain the proteded mode address of an exception hender. The exception handler is called
by afar call from the DPMI host. The stack contains the following values according to Tab.
5.

(c) 1999 by Dieter R. Pawelcz&, Munich

130

Error Value of SS

Error Value of ESP

Error Value of E-Flags

Error Vaue of CS

Error Value of EIP

Error Code

Caller CS

Caler EIP

Tab. B.5 Sack Contents for the Exception Hander

The exception handler isinvoked by afar call and shoud return with retf . Look at the DE-
MOEXC. ASMexample file how to create an exception handler.

B.3.18 Function 0204 - Get Proteded Mode Interrupt Vector

Returns the 16:32 vector of the arrent protected mode interrupt hander for the speafied in-
terrupt.

Functioncdl: INT 31h

AX = 0204h
BL =interrupt number
Results:
CX:EDX = selector:of f set of protected mode interrupt handl er

B.3.19 Function 0205 - Set Protected Mode I nterrupt Vector
Sets the 16:32 addressof the protected mode interrupt handler for the spedfied interrupt.

Functioncdl: INT 31h

AX = 0205h
BL =interrupt number
CX:EDX = selector of f set of protected mode interrupt handl er

Note: You shoud use thisfunction to set any proteded mode interrupt vedor 00-7fh (see sec-
tion B.2 The Integrated DPMI Server on page 121). If you want to crede an exception hand-
ler, use function 0203h.The different Windows DPMI haosts differ espedally in this function:
int 3 , for example, can be under Windows DPMI either an interrupt or an exception.

B.3.20 Function 030 - Call Real Mode Interrupt
This function must be used to passreal mode segment register values to red mode interrupts.

(c) 1999 byDieter R. Pawelcz&, Munich

131

Function cal: INT 31h

AX = 0300h

BX = interrupt number (BH must be 0)

CX =number of wordsto copy from the protected mode stack to the
real mod e stack

ES:EDI = selector:offset of real mode register transfer data structure

Results’:

ES:EDI = selector offset of modified real mode register transfer data

structur e

The red mode transfer data structure holds the values of all CPU registers, that are passd to
the real mode interrupt.

Offset Type Contents

00 DD EDI register contents

04 DD ES| register contents

08 DD EBP register contents

Oc DD reserved O

10 DD EBX register contents

14 DD EDX register contents

18 DD ECX register contents

1c DD EAX register contents

20 DW Flags contents

22 DW ES segment register contents
24 DW DS segment register contents
26 DW FS segment register contents
28 DW GS segment register contents
2a DW IP?

2c DW CS segment register contents’
2e DW SP register contents®

30 DW SS segment register contents?

a. definesthe ade offs. in DPMI function #0301,#0302, ignored in DPMI function #0300
b. definesthe mde seg. in DPMI function #0301,#0302, ignored in DPMI function #0300
c. if thevalueis zero, the DPMI host providesits own red mode stadk
d. same & c). Must be zeo or hold a mrred real mode segment value.

Tab. B.6 The real mode register data transfer structure as defined in DPM . | NC

Example:

1.Make sure, that the exeaution of the red mode function does not effed the stability of the system. There
isnoexception handlingin red mode.

(c) 1999 by Dieter R. Pawelcz&, Munich

132

;we assume our struc t ure variables are called intedi, inte ax etc
mov inteax,0900h ; DOS Function ¢ all AH=09h

mov intedx,0 ; Offset of our Real Mode Message

mov ax,RealSegment ; a real mode segment value, segment of message
mov intds,ax

push ds

pop es

mov edi,offset inted i ; ES : EDI points to structure

mov c¢x,0 ; No parameters

mov bx,21h ; DOS Interrupt Number

mov ax,0300h ; Call Real Mode Interrupt Function

int 31h

B.3.21 Function 0301n - Call Real Mode Procedure With Far Return
Calls areal mode procedure which ends with a RETF instruction.

Functioncdl: INT 31h

AX = 0301h

BH =mustbeO

CX =number of words to copy from protected mode stac k to real

mode stack
ES:EDI = selector:offs etof realmode register data transfer structure
Results:
ES:EDI = selector offset of modified real mode register tran sfer data
structure

B.3.22 Function 0302 - Call Real Mode Procedure With IRET Return

This Function call s a real mode procedure which ends with ore of the following instructions:
IRET or RETF 2.

Functioncdl: INT 31h

AX = 0302h
BH =mustbeO
CX =number of words to copy from the protected mode stack to
the real mode stack
ES:EDI = selector:offs etof real mode register data transfer structure
Results:
ES:EDI = selector offset of modified real mode register tran sfer data
structure

B.3.23 Function 0303 -Install Real Mode Call Back Functions

This Function returns a real mode procedure, which will call a spedfic proteded mode hand-
ler.

Functioncdl: INT 31h

AX = 0303h
DS:ESI = selector:of f set to protected mode handler
ES:.EDI = selector:of f set of real mode register data transf er

(c) 1999 byDieter R. Pawelcz&, Munich

133

Results:;

CX:DX = segment:offset to r eal mode call back function.
The PM Hander (procedure in DS:ESI) is cdled by the real mode all back function with the
following parameters:

DS:ESI = point to real mode stack
ES:EDI = points to real mode register data transfer structure.

Notes:

The PM Handler returns with an IRET instruction. The PM Handler must store the real mode
return addressin the data transfer structure. (Usually dore by reading the offset and segment
address from the red mode stack provided by DS:ESI and writing the results into the red
mode register transfer structure). And the PM Handler is resporsible for popgang the return
addressfrom the real mode stack. See the EVENT. ASMexample file.

B.3.24 Function 0304 - Free Real Mode Call Back Functions
This Function frees a real mode cdl back function all ocated by function 0303.

Function call: INT 31h

AX = 0304h
CX:DX = segment:offsettor eal mode call back function.

Results:
Carry flag clear
Notes.

Y ou must make sure, that the real mode call back function won't be cdled again, before fre-
eing the call bad! Pro32 dfers 16 call bads per client!

B.3.25 Function 040Ch - Get Version
Returns the version o the DPMI host.

Function cal: INT 31h

AX = 0400h
Results:
AH = DPMI major version number
AL = DPMI minor version number
BX = Bits Descriptio n
0 :1 = host is 32bit
1:0 = CPU running V86 mode for reflected i nterrupts
1 = CPU running r eal mode for reflected interrupts
2:0 = virtual memory not supported
1 = virtual memo ry supported
CL = processor type:
03h = 80386
04h = 80486
05h = 80586

06h = 80686 / Pentium

(c) 1999 by Dieter R. Pawelcz&, Munich

134

DH = value of master PIC base interrupt
DL =value of slave PIC base interrupt

B.3.26 Function 050t - Get Free Memory Information

Returns Information about the amourt of free memory.

Functioncdl: INT 31h

AX = 0500h

ES:EDI = selector: offset of 48 byte buffer with the following form
Results:

mod fied entries of the 48 byte buffer a t ES:EDI

Offset Type Contents

00 DD Size of larges avail able free memory block in bytes

04 DD Size available with locking

08 DD Size available withou locking

Oc DD Size of total Memory in pages

10 DD number of locked pages

14 DD number of unlocked pages

18 DD number of free pages

1c DD number of al avail able pages

20 DW freelinear memory in pages

22 DW sizeof swap file

Tab. B.7 Free Memory Table

Notes:
Function shoud rever fail! At least first entry must be valid!

B.3.27 Function 0501n - Allocate M emory Block

Allocaes a block of extended memory.

Functioncdl: INT 31h

AX = 0501h
BX:CX = memory siz e to allocate in bytes

Results, if succesdul:
carry flag clear

BX:CX =linear add r ess of allocated memory block (*)
SI:DI = memory han dle

Example:
mov ax,0 ;Funk tion O

(c) 1999 byDieter R. Pawelcz&, Munich

at

135

mov cx,1 ;Allocate 1 D escriptor

int 31h

mov MemDesk,AX

mov ax,0501h ;Allocate Memo ry

mov c¢x,0

mov bx,1 ;010000h Byte s of Memory

int 31h ;DPMI CALL
jc TooLessMemory

mov AX,0007h ;Function 7:Se t Basis Address
mov BX,MemDesk

mov dx,cx ;Low Part of Linear Address
mov cx,bx ;upper Parto f Linear Address

int 31h ;DPMI CALL

mov BX,MemDesk

mov ax,0008h ;Function 8:Se t Limit of descriptor

mov cx,Offffh

mov dx,0

int 31h ;set Limit

mov BX,MemDesk

mov fs,BX ; FS selector to 64K XMS Memory Location!

B.3.28 Function 0502 - Free Memory Block

Frees a previously all ocated extended memory block.

Function call: INT 31h

AX = 0502h
SI:DI = memory handle

Results, if successul:
carry flag clear

B.3.29 Function 060Ch - Lock Linear Region

The function locks a spedfied linear addressrange.

Function cal: INT 31h

AX = 0600h
BX:CX = start of linear add ress in memory
SI:DI = size of region in b ytes

Results, if successul:
carry flag clear
Notes.

Pro32 DPMI sets up alocked linear address gace between 0 and the maximum available by-
tes in the DPMI emulation, therefore this function is alway successful under the DPMI emu-
lation.

B.3.30 Function 0601h - Unlock Linear Region
The function uriocks a specified linea addressrange previously locked with function 0600h.

(c) 1999 by Dieter R. Pawelcz&, Munich

136

Functioncdl: INT 31h

AX = 0601h
BX:CX = start of | i near address in memory
SI:DI =size of re gion in bytes

Results, if succesgul:
carry flag clear

B.3.31 Function 0602 - Mark real mode region as pagable
This function all ows to make real mode memory pagable.

Functioncdl: INT 31h

AX = 0602h
BX:CX = start of | i near address in memory
SI:DI =size of re gion in bytes

Results, if succesdul:
carry flag clear
Notes:

Y ou shoud relock al memory before terminating you program. Y ou shoud na mark regions
pageable, if they are not part of your applicaion.

B.3.32 Function 0603 - Relock real mode region

This function locks a previously unocked red mode memory region.

Functioncdl: INT 31h

AX = 0603h
BX:CX = start of | i near address in memory
SI:DI =size of re gion in bytes

Results, if succesgul:
carry flag clear

B.3.33 Function 080th - Map physical address

This function returns the linear addressregion to address a physical memory region.

Functioncdl: INT 31h

AX = 0800h
BX:CX = physical a ddress in memory
SI:DI =size of re gion in bytes

Results, if succesdul:

(c) 1999 byDieter R. Pawelcz&, Munich

137

carry flag clear
BX:CX = linear address

Notes: Pro32 provides alinea memory region equal to the physical address region between 0
and the maximum of available bytes. Therefore under the Pro32 DPMI emulation, this funw-
tion will always succed with BX:CX unchanged.

B.3.34 Function 090 - Get and Disable Virtual Interrupt State

Replacement for the CLI instruction, which is a priviledged(!) instruction. Especially when
runnng uncer V86 mode the CLI instruction will be very slow.

Function call: INT 31h

AX = 0900h

Results:
AL = 0 if virtual inter r upts were previously disabled
AL =1 if virtual inter r upts were previously enabled

B.3.35 Function 0901h - Get and Enable Virtual Interrupt State

Replacament for the STI instruction, which is a priviledged(!) instruction. Espeaally when
runnng uncer V86 mode the STI instruction will be very slow.

Function cal: INT 31h

AX = 0901h

Results:
AL = 0 if virtual inter r upts were previously disabled
AL =1 if virtual inter r upts were previously enabled

B.3.36 Function 0902 - Get Virtual Interrupt State
Returns the aurrent state of the virtual interrupt flag.

Function call: INT 31h

AX = 0902h

Results:
AL = 0 if virtual inter r upts were previously disabled
AL =1 if virtual inter r upts were previously enabled

B.4 DPMI Error Codesin AX:

AX = 0007h (DOS ERROR Function 01x¥: memory control blocks damaged
0008h (DOS ERROR Function 01xX: insufficient memory avail able
(c) 1999 by Dieter R. Pawelcz&, Munich

138

0009h (DOS ERROR Function 01xX: incorred memory segment
8001h invalid DPMI function (The requested function is not available).
8003h function would lead to a protection fault

8010h nomore system resources

8011h illegal descriptor

8012h insufficient linear memory

8013h insufficient physical memory

8016h invalid hande

8022h ill egal selector

B.5 Error Messages

Pro32 povides the foll owing error messages.

Error: Invalid DPMI
FUNCTION

The DPMI haost in you system doesn’'t provide a basic
dpmi function reeded to load and execute the program. Or
the resources of the system are exhausted.

Error: Tooless Memory
available

The amount of free memory is below the size of memory
needed for the program. Install more memory in the
system, or lower the size of necessary memory (if poss-
ble!).

Error: DOS: Int 24 failure

The default Pro32Int24 handler, occursin conredionwith
disk errors.Y ou can hookthisinterrupt to create your own
exception handler.

Error: System failure

The CHECKSUM of the Pro32 d extender iswrong.
This error occurs, if the pro32 extender is destroyed.

Error: Real Mode: Stack
Overflow

A red mode function either uses more than 8 Kbytes stack
or the function destroys the real mode stadk.

Error: Invalid Processor Type

The procesor used is identified as 80286 @ minor proces-
sor type.Pro32 reeds at least a 8038 procesor.

Error: Procesor aready in
virtual real mode

The system isrunningin virtual real mode. Pro32can’t
accessthe protected mode. This error ocaurs, if the system
neither provides DPMI, nar VCPI.

Error: DPMI Host: Error
Switchting to proteded mode

The PM initialisation dore by another DPMI host, for
exsample WINDOWSs fails. Y ou are already runnng other
programs under the same DPMI haost, or the host has insuf-
ficient memory

Error: VCPI Init failed

The PM initialisationwith VCPI fails.

Tab. B.8 Pro32 Error Messages

(c) 1999 byDieter R. Pawelcz&, Munich

139

List of Tables

Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.

1.2 The ProCeSr S TEISIENS .. .ccii ittt ettt e e e e e e e e ee e e e e e e 11
1.2 HexadeCimal NOEHTONuuueiiiiiiiiiiiiiie e e 12
1.3 Number Notation With PasS32........ccooiviieiiiiiiieeeee e 13
1.4 SOME DOS fUNCHIONS... ..ottt i e 13
2.1 SElECtOr COMENLS.....ciiieeeieiiiiiee e e et srrerens e e e e e e e e e e e e e eeeeees 25
2.2 DESCIPLOr COMEBIES ...eiiiiiieeeeeee e e e ettt e et e e e e e e e e e mr e e e ee e e e e e e e e aaeeaeaaaaanns 26
2.3 DESCIIPLOr COMENESuvtrtteiiieiee e e e e e eeeeee e et ettt e s e e e e e e mrnnmmm e e s e e eaeeeaaaaeeeees 32
2.4 EXCEPLIONS. ...ttt e ettt ettt mr e n s 34
3.1 Typica Pass32/ Pro32 potected mode program..........cceeevvveeeieeeeeeeeceeeeeeiieiiiinen 39
3.2 Selector Register values at Program Start...........ooeeeeeeeiiiiiiiiiimmme e 39
3.3 The PSP of aPro32appliCationuuuiiiiiiiiiiiiiiiieieeeeee e 40
4.2 Range of float NUMDENSccooi i ee e e e e 48
4.2 FPU SEAIUS REJISIENccoiiiieieieee ettt ettt mmmmnnn e e e e eaeaaee s 48
4.3 Comparison d Floating Point NUMDErScccoooieiiiiiiiiiiie e 49
4.4 FPU SEAIUS REJISIEN ..o eieiiiiieee ettt mmmmmnn e e e e e e e aaaee s 49
7.1 The Serial MOUSE ProtOCOcccviiiiiiiiiiiiiii ittt e 66
8.1 The TiNY MOGE!ccoi i emmmmmm e e e e e e e aaaeeee) 69
8.2 The Flat MOOEI ... s e e e e e e 70
8.3 Data Segment DefiNItIONS.......coiiiiiiiieeeieee e mrrene e e e e e e e 71
8.4 Data StOrage QITECLIVES.uuueiiiiiiiiiiiee e e e e e 12
8.5 Data storage directive for float NUMDENS............uuuiiiiiiiiie e, 12
8.6 Range of float NUMDEIS 74
8.7 Pre-proceS0r COMMANGS.........ooiiiiiiiiiiiiii e e e e e e e mr e e er e e e e e e e e e e e e e e 87
8.8 Condtional ASSEMDIY........ouuuiiiiiiiiie e e e a e e 91
8.9 The header of @ OVEIAYoooiiiiiii e 95
8.10The header Of @ PaSS32 DLLccuuiiiiiiiiieieiieeieeieccii e 96
8.1IDEDUQGERS FUNCLIONS. ...t e 99
B.1: The selector register contents and the PMode PSPccooceviiiiiiiiieieeeeee, 120
B.2: SW/HW Interrupts and EXCEPLIONS.......uuuiiiiiei e emmm e 122
B.3: DesCriptor ACCESS RIGIES......ccoiiiiiiiiiiiiiii et e e 126
B.4: The layout of @32 [t deSCriptor.......cceeiiiiie e mrrem e 127
B.5: Stack Contents for the Exception Handlerevvvviiiiiiiiiiiiienee 130
B.6: The real mode register data transfer structure & defined in DPMI.INC............. 131
B.7: Free Memory Table.........cuiiiiiiiiiiieiiieeee e e e 134
B.8: PrO32 ErrOr MESSAJES.cevvreeiiiiiiieae e ettt s e e e e e e e e e 138

(c) 1999 by Dieter R. Pawelcz&, Munich

140

(c) 1999 byDieter R. Pawelcz&, Munich

141

| ndex

Symbadls

ALIGN e, 76
BLOCK .. 16
CODE ... 10,15,82
COM e, 14
.CONSTvveeveveviiiieeeennnn 71,78, 82
DATA 10,15,71,75
DATA? e, 71
DEBUG ... 98
DEBUGFILE ..o, 101
ELSE ..o 91
ENDIF e 91
EQU ..o 87
EXTERNoooveviiiieeeeeeeeeeeee 75,83
FAR e 84
IFE o 91,92
1 Y 91
IFPM e, 91,92
IFR e 91,92
1 3 T 91
IFR32. e 91
IFRSB...eeeieee e, 91
IFES 91,92
INCLUDE ... 15,58, 88
ANCLUDEDIR ..o, 89
ANTERFACEooeeeeee. 53,94,97
LOADBIN .o 42
LOCAL .ot 62,63,90
MACROoovveeiiiiiieeieeeeeeeea 61,89
MEM L, 54
MODEL ..o 14,69
NOBLOCKoevveiiiiieieeeeeeeveen 76
NODEBUG ..., 100
NOFAR ..o 84
ORG ..o 58,94
PUBLIC ... 75,82,83,103
SMART e, 50,102
SMARTL e 102
SMARTZ e, 102
SMARTS e 102
TYPE o, 88
Numerics

BO486.........cevveeeeeiiee e a7

A

A20 .. 25
AND 73
argument overrideccccoeeeeeeeeeeen. 79
B

DaSE ... 80
binaryccoooeeiiiiiii, 13,72
BYTEPTR oo 73
C

CharaCtercccvvvvvvvvimiiiiivenenee 73
Circle ..o 50
CIRCLE.ASM ..., 52
CIRCLE2ASMccovveiiiiiiiiee, 57
Conditionalccooeeeeeiieiiiiee 91
CRO ..o 23
D

DB oo 10,72
DD oo 72
DebugTrapoooeeeeeeviieeeeeeeeeiiis 34
DEBUGLINC ..., 99
DebUgEEY ...coeeeeeeeeeeeeee e 98
decimalooovvvviiiiiiiiiii e 72
DF 12
directorycoooeeeeieiiiiiie e 89
DISS32 ...ttt 102
DiviSiON BYZerocceeveeeeeiiiiiinnn, 34
DLL ettt 95
DLL_ERRORcoovviiiimiiiieeiiiiiiiinn, 98
DLLSYSINC ... 55, B
DLLTEST.ASM ..ooviiiiiiniiiieeeen, 54,55
DLOADSINC ..., 100
DOSTUNCtiONSooveeeeieeeeeeeeeiiie 13
douldefaultooeiiiiiiie 34
DP e 72
DPMI oo 35
DPMI #0002h.........cuuvimeeeeeeiieiiiiins 44
DPMI #0205h.........cuuvimeeeeieeiiiiiiinns 65
DPMI #0300h.........ccovvmeriieeeeeeeinnnnn. 43
DPMI #0800h.........ccuuimeeeeeeeieniiiinnns 67
DPMILINC ..o, 42
DQ coooieeeeeee e 72
DT e 72
DUP .o 4
DW 12
DWORD PTR ...coovviiviiimiiiiieeen, 73,85
Dynamic Link Library (Pass32).......... 95
E

EMM386ccoiiiiitime e 35
END oo 82

(c) 1999 by Dieter R. Pawelcz&, Munich

142

ENDM ..ol 90
ENDMACRO ... 90
ENDP ..o 50,84, 103
entry POINtoovvvvveiiiiiiiieee e 82
EOI (End OF Interrupt)c.ovvvvveeenss 66
EXCEPLioNScvvviiiiiiiiiiiiii e 33
EXIt oo 61, 90
F

FAR Lo 84
FILD ot 51
FLA e 14
FLAT oo e 70,76, 81
floating pantcccceeevecms 50,72, 74
forward referencecccoeevveennennnd 85
FPU . eree 47,50
FreeDLL ...ovvvvviiiieeiiiiiiieeeeeeee, 55, 98
FWORD PTRcc.coeevvviievvieeena 73,85
G

GDT oo 27,28
generd protectionfault 34
Global Descriptor Table 26
GRAPH.INCccvviiiiiiiiivee. 41,45, 50
GRAPHIC.INC ..., S7
H

hardware interrupteeeeeeeennnnnd 65
HELLOLASM ..., 9
HELLO2ASM ...ooovvvviiiiiiiiiiiiiinee 14
HELLO3ASM ...coovvviiiiiiiiiiiiiiiieeee 16
Hello-World ... 9
hexadecimalcccccevvvvimmnnnne. 12,72
HMA e 25
I

IDT oo 13, 32
INOEX ..t 80
1 I 55, 98
INItGraphooovvvviiiieee e 41
INIEOVL oo 58
INITOVE e 95
INT 2N 35
INE 33N Lo 65
interrupt service routing 65
INEITUPLS .o 32
invalid opcodevvvvviiiieneeeeeeii 34
invalid task state segment 34
J

JA 20
JB o 20
JCKZ oo 86
JECKZ oo 86

JG e 20

INE e 20

L

Label v 81,10, 90
LASTDATA ..o 77

linear addreSScvvvvniiiieei e 67

LoadDLL ...covvevieiieiiieeee e 55, 98
[oT= "o | I 55

LoadOVLoovveeieeeiieeeeeeeeveeen, 58, 94
l0CaAl e, 75,82

o o] o 1 20,85

00D ... 85

M

(1 4= 0! (0 R 61,89

MACRO.ASM ...ooveieieeeieee e 61

MACRO2ASMoovivieeiiiieeie 63

MEMSIZE ... 77

(000 IR 9,69

ModUEe.......coevveiieiiiieeee e, 75, 88
MOUSE AIVEN ...cevniiveiieeeeeeeeee e 65

11070)V 2P 16

MSDEMO.ASMoiiviiiiiiiimeni 67

MSDEMO2ASMccooveeeeiiiiinn 67

MUL e 18

N

NEAR ..o 84

NOT oo, 73,92

NOt-Case-SENSItIVEvvvvvvvveeeeieieeeee,s 72

NULL desCriptorccccoeeeeveeivvnnnen. 29

@)

(07 - [13,72

OFFSET ...covveeeeeenn 42,77,94,97,103
OR e 73

overlayvvceeiiiiiieeeeee 93

OVL e 93

OVLSYSINC ... 58,94

P

Physical Addresscoevvvveene. 24,67

Pro32 oo, 71,77

Pro32Debugaer ...vvvvvveeeiieeeeceeee, 102

PROC ..o 50, 84,94,103
Procedurecocevveviiiieiiiiie e, 82, 84
PRODB32EXEcoovvvieiivvceeenn. 102

proteded modecccceeeeeiiimnnnnnnn. 14

proteded mode interrupt 66

PTR oo 77

PUSN e 386

Pushdooovr e 86

PUSIW ..o 86

(c) 1999 byDieter R. Pawelcz&, Munich

143

PULPIXEl ..., 44
Q

questionmarkcccccuviiiiiiiiiinnne. 74
QWORD PTR ... 73
R

real modeoooovvviieeiiiiin 9
S

scalefactorooeeeeciiiiiee e 81
segment NOt Presentcceevveeeeeeeenns 34
segment overridecoocceeeeeeeeeeeeenn. 81
shared MeMOIYcoeevveenevvvrnnennnne. 93
Sl e 18
SHORT ...oooiiiiiiiiemeeeeeee 85,102
SIZE ... 73,78
Stadk eITor ..o 34
START i, 84,85
SYSTEM.MAC ..., 63,93
SystemGetRandam ... 52
T

TBYTEPTR ..o 73
TESTDLL.ASM ... 53
TESTOVL.ASM ... 58
TESTPAL.AASM ..., 45
TINY e 14,69,76,80,81
TSR o 65
Vv

VECPl e 35
VESAL2 ..o 57
VESA2.0 ..o 57
VGA e 57
w

WDOSX ..o 71
WORD PTR ...ooovviiiiiimeeieiiiei, 73,85
WIHEELN Lo 63,93
WHtEIN e 61
X

XMS e 25,38
XOR e 73
XVGA it 57

(c) 1999 by Dieter R. Pawelcz&, Munich

