
Dieter R. Pawelczak

Protected Mode Programming with Pass32
The Pass32 User Manual & Reference Guide

Dieter R. Pawelczak

(C) 1996-1999 by Dipl.-Ing. (Univ) Dieter R. Pawelczak,

Fasanenweg 41,

D-85540 Haar,

Germany

All rights reserved. This manual is sold subject to the condition that it shall not, by the way
of trade or otherwise, be lent, re-sold, hired out or otherwise circulated without the prior
written permission of the author.

No part of this publication may be reproduced or transmitted in any form or by any means,
electronically, optical or mechanically, including photocopying, recording or any information
storage or retrieval system without either the prior written permission of the author or a
license from the author, permitting restricted copying.

The author takes no warranty for the examples, the manuals, the usage and the code
generation of Pass32. The software comes without any warranty.

Windows, MS-DOS is a trademark of Microsoft, Pentium is a trademark of Intel.

For my dear wife Alexandra

4

About

I started with Pass32 in late 1995, simple because there was no good tool to create protected
mode applications for my Pro32 Dos Extender. Of course, there were many other assemblers,
but there was none, that could generate a complete application in one run.

Pass32 should be similar to Turbo Pascal, and it should do all i n one pass - that’s were the
name is from. Pass32 has grown from its early time and is now a tool, that not only allows to
generate protected mode applications with Pro32 - today, it can assembly dos extenders by its
own. Since Version 2.5, Pass32 supports as well special registers li ke CR0 and can compile
different code segment attributes at once: USE16 and USE32.

The features of Pass32 in brief:

• Pass32 supports modular programming

• Pass32 can generate DOS TINY and 32 bit protected mode applications

• The Dos Extender is directly linked to the program binary

• Pass32 combines assember, debugger and linker

• Pass32 can integrate a debugger in your application

• The assembler directives are simple and powerful

• Macros can create very complex code with an easy syntax

• Pass32 is fast, it compiles about 1000 lines on a DX4-100

• Pass32 is a real mode programm, nevertheless the source code size is not limi ted in si-
ze, the only limit is the number of symbols, procedures and macros

• Pass32 comes with a large run-time-library for standard I/O, file handling, joystick and
graphic functions

• It includes a graphic library for Vesa1.2 and Vesa2.0 graphic adaptors.

5

(c) 1999 by Dieter R. Pawelczak, Munich

Contents

About ...4
Contents ..5
Introduction ..7

1. First Steps In Assembler .. 9

1.1 First Example..9
1.2 Beginner’s Rules...16
1.2.1 Assignment and expressions...16
1.2.2 IF, THEN, ELSE, CASE...18
1.2.3 Loops...20

2. Protected Mode Programming Basics.. 23

2.1 Protected Mode versus Real Mode...23
2.2 Addressing in Real Mode...24
2.3 Protected Mode Address Calculation...25
2.4 Descriptor and Global Descriptor Table...26
2.5 Protected Mode Interrupts and Exceptions...32
2.5.1 Interrupts...32
2.5.2 Exceptions...33

3. Dos Protected Mode Interface (DPMI) .. 35

3.1 Detect DPMI ...35
3.2 Mode switch with DPMI ..36
3.3 Dos Extender...38
3.4 Using DPMI functions..41

4. Co-Processor programming... 47

4.1 Definition of floating point numbers..47
4.2 The FPU internals...48
4.3 Draw Circle Function with the FPU...50

5. Wr iting A DLL L ibrary... 53

5.1 The First DLL ...53
5.2 A Graphic DLL ...56
5.3 A simple Windows DLL ...57
5.4 A short chapter on OVL writing ..57
5.5 The binary format ...59

6. Macro Power ... 61

7. Access to Hardware from Protected Mode...................................... 65

6

(c) 1999 by Dieter R. Pawelczak, Munich

7.1 Protected Mode Mouse Driver/Handler ...65
7.2 Vesa 2.0 graphic driver ..67

8. The Pass32 Assembler .. 69

8.1 Defining Code, Data and Memory Model ...69
8.1.1 Defining the TINY model:...69
8.1.2 Defining the FLAT model: ...70
8.1.3 Data definitions...71
8.1.4 Data Expressions ..72
8.1.5 Predefined Data Identifiers...76
8.1.6 Usage of Data Identifiers..77
8.2 Addressing Data, Defining Labels and Procedures...80
8.2.1 Addressing Memory ...80
8.2.2 Defining Labels ..81
8.2.3 Definig a Procedure..84
8.3 Pre-processor, Macros and Conditional Assembly..86
8.3.1 The .EQU Directive..87
8.3.2 Including Assembler Modules..88
8.3.3 Defining Macros...89
8.3.4 Conditional Assembling ...91
8.4 The OVL model ...93
8.5 The DLL model ..95
8.6 Debugging and Code Optimization..98
8.6.1 The integrated debugger ...99
8.6.2 The Debug File Format DMP...100
8.6.3 Usage of an external Debugger...102
8.6.4 Detailed Information - The Map File..102
8.6.5 Code Optimization..102

Appendix..105

A The Pass32 Assembler ...105
A.1 Operators...105
A.2 Directives..105
A.3 Extender/Linker Variables..107
A.4 Pass32 Arguments ..108
A.5 Run Time Library ...110
A.6 Supported Assembler Instructions..113
A.7 Pass32 Limits..119
B Pro32 Dos Extender ...119
B.1 The Dos Extender Loader...119
B.2 The Integrated DPMI Server ..121
B.3 The DPMI Service API...122
B.4 DPMI Error Codes in AX:..137
B.5 Error Messages...138
List of Tables ...139
Index ..141

7

Introduction

Welcome to the world of PASS32 Assembler. PASS32 was created for easy protected mode
programming. The idea for the assembler was on the one hand to create a programming tool
for the Pro32 Dos Extender. On the other hand, I wanted to create my own assembler. I don’ t
like complicated linking and code with public or extern variables. I am used to write code
straight forward and that’s the idea of this assembler. The assembler does not create object
code, but standalone executable code. You can, of course, l ink binaries into the code or
include from other source files.

The assembler is a combination of Assembler and Linker. For protected mode programming
the Dos Extender Pro32 is linked to the program.

The Assembler supports 5 memory models:

• TINY for regular 16 bit DOS .COM files

• FLAT for 32 bit protected mode files (fully compatible with Pro32)

• DLL for a PASS32 Version of 32 bit Dynamic Link Library

• OVL for a PASS32 Version of 32 bit overlay code/driver code

• WIN32 for Win32 applications1

– CONSOLE for Win32 console applications
– GUI for standard Win32 GUI applications
– DLL for Win32 dynamic link libraries

For a more comfortable program development the assembler has a build-in debug function,
which allows to set break points, to trace through the code and to view the source code.

This book explains in general the methods of protected mode programming. It shall not
replace a good assembler tutorial, although it provides enough information for beginners to
write their own assembler programs. The book concentrates mainly on protected mode
programming and touches operating system programming. The first chapter provides an
introduction in assembler programming and a set of rules for beginners. Chapter 2 explains
protected mode basics. In chapter 3 the Dos Protected Mode Interface (DPMI) and the
programming with Dos Extenders is explained. Chapter 4 concentrates of FPU, co-processor
programming. In Chapter 5, the book deals with DLL programming. Chapter 6 describes
enhanced assembler programming methods (macros, types). Chapter 7 introduces direct
hardware access in protected mode. Chapter 8 provides a summary of all Pass32 directives.

The disk attached to the book contains the complete Pass32 developper environment,
including the Pro32 debugger. Uncompressed, the files are stored in several subdirectories:

1.The Win32 PE-Format is supported in an alpha Version

8

– \BIN : binaries like PASS32.EXE, PRO32.EXE, PROSET.EXE

– \INC : include files, assembler modules for demo files

– \DOC: documentation PASS32.DOC, PASS32.TXT, PRO32.DOC etc

– \DEMO: Pass32 demo files

– \EXAMPLES: Example files introduces in this book

– \DISS32 : source files for the 32 bit disassembler

– \GRAPH: example files for VESA graphics driver

– \PRO: example files of the Pro32 Dos Extender

– \WIN32 : source files for the win32 programming

You should add the \BIN directory to your path!

Assembler instructions and Pass32 directives are marked with courier fonts like . DATA,
.CODE, etc. Arguments for the Assembler and file names are marked with bold courier fonts
like Pass32 demo -a -t

First Example 9

(c) 1999 by Dieter R. Pawelczak, Munich

1. First Steps In Assembler

1.1 First Example

I want to start as all assembler, C or Pascal manuals start - with a simple Hello-World examp-
le. This will be the only real mode example, but I think you can create any real mode pro-
gram, if you understand this example: (Hello1.ASM)

.MODEL TINY

.DATA

HelloMesg db ’Hello,World’,10 , 13,’$’

.CODE

START:

mov dx,OFFSET HelloMesg ; offset of the text string

mov ah,9 ; print string function number

int 21h ; Dos call

mov ah,4ch ; terminate function number

int 21h ; Dos call

END START ; marks the en t ry procedure of the program

END

Let us go line by line again through the code and let me explain what is behind these com-
mands. Note, that all directives and assembler instructions are case-insensitive.

.MODEL TINY

This is the model definiti on. Pass32 supports five model types: TINY , FLAT, DLL, OVL,
WIN32 and three WIN32 model sub-types: GUI, CONSOLE and DLL. The model definition
therefore defines, for what target system the application is compiled, e.g. DOS (TINY) or
Windows (WIN32). Additionally, the model implicitl y defines, if the target is compiled as a
real or protected mode application: All models are compiled for 32 bit protected mode, except
the TINY model, which generates a 16 bit real mode application.

.DATA

HelloMesg DB’Hello,World’,10, 13,’$’

10 First Steps In Assembler

(c) 1999 by Dieter R. Pawelczak, Munich

The directive .DATA marks the beginning of the data segment. Note, that almost all assem-
bler directives can only be used inside a segment. Inside the .DATA segment, we can define
data, that is initialized, i.e., that uses pre-defined values. In our example, we define a simple
text string. The directive DB defines a data storages, that allocate one byte; DB stands for
Data Byte. The numbers following the text string define LineFeed and CarriageReturn to pla-
ce the cursor in the next line. The ’$’ character is the old DOS string termination symbol. The
DOS print function prints the string character by character until it reaches a ’$’ character.

.CODE

The . CODE directive marks the beginning of the code segment. The code segment contains
all assembler instructions, that may be executed during the program execution. Although you
can define data constants inside the code segment as well , you should separate data and code
definitions as it makes your code easier to read and maintain.

START:

This is a label definition. A label does not produce code. It marks a point inside your code,
that can be addressed through its label name. We named this label START, as it marks the be-
ginning of our program. Note, that labels can have any name. The name START does not re-
fer directly to the program’s entry point! A label is defined by a name and a colon. In Pass32
names are case-insensitive, they are at least one and maximal 127 characters long. A label can
consist of the following characters: 0..9, a..z, A..Z, ’_’ , ’#’ , ’@’ , ’ .’ .

mov dx, OFFSET HelloMesg ; offset of the text string

This is the first assembler instruction in our example. It loads the register DX with the offset
address of the text string HelloMesg . In high-level programming languages, we work with
variables. We can define variables in Assembler as well, e.g. the text string HelloMesg is a
string variable. The Central Processing Unit (CPU) of our PC can not directly work with va-
riables. All calculations are done with internal data storages called the processor registers. In
the case of an i486 or Pentium II processor, the processor provides 8 general 32-bit registers:

First Example 11

(c) 1999 by Dieter R. Pawelczak, Munich

Tab. 1.1 The processor’s registers

These registers are separated in one 16-bit and two 8-bit registers, but be careful, these sub-
sections refer to the same register! The registers can be used for calculations and data proces-
sing. The ESP register is a special register, as it refers to the stack. The stack is a pile of num-
bers, which are always placed on top and taken out from top again. The stack is used, when
the processor should store something for a short period. When something is pushed on the
stack (push is the actual processor instruction, e.g. push eax), esp is decremented by 4
and the value is stored at the address, that esp points to. If something is popped from the
stack (pop is the actual processor instruction, e.g. pop eax), the processor first reads the
value at the address esp points to and then increments esp by 4.

The processor has other special registers: The flag register and the program counter. The flag
register stores the status of the last assembler instruction, for example, if a comparisson was
equal, if a substraction produced a number below zero, if an addition overflew the 32 bit num-
ber range, etc. The processor offers special instructions, which check these flags. These in-
structions are called conditional branches, as they change the program flow according to the
status of the flags. The program counter, EIP (Extended Instruction Counter) is similar to the

31..16 15..8 7..0

AH AL

AX

EAX

BH BL

BX

EBX

CH CL

CX

ECX

DH DL

DX

EDX

DI

EDI

SI

ESI

BP

EBP

SP

ESP

12 First Steps In Assembler

(c) 1999 by Dieter R. Pawelczak, Munich

stack register: The value at the address EIP currently points to, is read; the instruction is ana-
lyzed and after the execution of the instruction, EIP is incremented, so that it now points to
the next instruction. We can not load or store EIP directly. The processor offers call, jump
and return instructions, which will modify EIP .

As the x86 processor family is a CISC (Complex Instruction Set CPU) processor family, the
CPUs provide a complex instruction set: all general registers (AL. .DH , AX..SP ,
EAX..ESP) can be added, multiplied, shifted, compared subtracted and divided. A typical as-
sembler instruction has the following layout:

We now understand what mov dx, offset HelloM esg does: it simply loads a value
into the DX register.

mov ah,9 ; prin t string function number

int 21h ; Dos c all

I skipped one line, and come to the int instruction. This instruction invokes an interrupt. The
x86 CPUs provide 256 interrupts and int 21h invokes the interrupt number 21h. The suf-
fix ’h’ stands for the hexadecimal notation. Assembler programmers typically write numbers
in the hex-notation. There is a simple reason: A processor can only handle bits. A 32 bit num-
ber is presented internally by 32 bits, i.e. 32 D-flip flops with possible states ’0’ and ’1’ . In
many cases, assembler programs need to modify specific bits. When we describe every 32 bit
number in bits, we had to write a lot of zeros and ones, which wouldn’ t be much effective.

There is a more elegant solution: the hex notation. A hex digit alway presents 4 bits. As 4 bits
allow 16 permutations, we need 16 symbols to present four bits. Theses symbols are 0..9 and
A..F. I’m afraid, you can’ t count these with your fingers, but it is a really nice method, becau-
se an 8 bit number - one byte - is presented by to hex digits: 00-FF, a 16 bit number by 4 hex
digits, a 32 bit number by 8 hex digits and so on. You can tell in a glance from a hex digit,
which bits are set and which are not. You can’ t do that with decimal numbers - simple examp-
le:

Tab. 1.2 Hexadecimal notation

Action - command Target Register Operand

e.g.
mov, add,
sub, imul,
idiv, cmp

e.g.
eax, bx, cl,
dh, si, esi,
ebp, sp

e.g.
100,
of fset HelloMesg

binary 0011 1101 1001 0100 0110 0010 0101 1100

hexadecimal 3 d 9 4 6 2 5 c

decimal 1,033,134,684

First Example 13

(c) 1999 by Dieter R. Pawelczak, Munich

As hexadecimal numbers can start with a letter, we have to distinguish them from lables or
variable identifiers. For this reason, any number must start with a digit 0..9. The hexadecimal
value A0 therefore must be written as 0A0H. Pass32 supports other notations as well:

Tab. 1.3 Number Notation with Pass32

Let us come back to the int instruction. There are basically two kind of interrupts: SW and
HW interrupts. Software interrupts are called via the int instruction. The processor fetches
the address for the interrupt service routine from an internal table, called the Interrupt Des-
criptor Table (IDT). The processor executes the interrupt and continues the execution of the
main program, after the interrupt has finished. HW interrupts are processed identically, the
only difference is the origin of the interrupt: a HW interrupt is invoked by a HW event, e.g. a
key stroke, an overflow of the internal timer, etc. The x86 processors do not distinguish bet-
ween these interrupts. So it may be confusing, that int 21h invokes a DOS function and
int 9h invokes the keyboard handler.

All functions of the DOS operating system and the DPMI (Dos Protected Mode Interface) are
called via interrupts. To execute a DOS functions, you load the function number in AH and
execute int 21h . Additional parameters may be passed via other registers. Tab. 1.4 shows
some standard dos functions.

Tab. 1.4 Some DOS functions

mov ah,4ch ; terminate f unction number

int 21h ; Dos call

We already learned about the int 21h functions. Note, that we always have to terminate a
program correctly. Under DOS/DPMI we must use the Function 4Ch of int 21h . Under
Win32, we must use the Kernel Function ExitP r ocess .

a. The base for this notation is 8, an octal number consists of digits between 0..7

Suffix Notation Examples

b binary 0101100b, 1001000110001101b

- (default) decimal 1024, 65535, 1103847511

h hexadecimal 0efh, 16h, 0affeh

o octala 077, 123, 77551

Function Parameter Description

AH=2 DL=character Print character

AH=7 AL=character Wait for keystroke, result in AL

AH=9 DX=offset Print string, offset to String in DX, string must
end with the ’$’ Symbol.

AH=4ch AL=return code Terminate the program.

14 First Steps In Assembler

(c) 1999 by Dieter R. Pawelczak, Munich

END START ; mar ks the entry procedure of the program

END

The directive END defines the program entry point. We use that directive in combination with
a label or a procedure. In our case, the program wil l be executed from the label START. The
directive END also defines the end of the assembler source.

We assemble the program with PASS32 HELLO1 -t. The -t option is used in combinati-
on with the TINY model. Actually the -t option is a linker option and tells PASS32 to create
a .COM file. The output of the assembler tells you about a correct assembling:

Pass32-Assembler (c) 1996 by Dieter Pawelczak

Assembling:HELLO 1.ASM

Pass: 1

Pass: 2

Linking

Total Source Li nes: 13 Total Code By t es : 12

Total Data Byte s : 14 Total Bytes : 26

Total instructi ons: 5 Total Time : 0.27

Output File :HE LLO1.COM

If you run Hello1 you will get the output „Hello,World “ . Although it was a very tiny
program with roughly more than ten li nes, we already learned a lot about assembler pro-
gramming. I want to show you in advanced, how the same example could look in protected
mode (HELLO2.ASM):

.MODEL FLAT

.DATA

HelloMesg db ’H ello,World’,0

.CODE

mov edi,OFFSET Hello Mesg ; offset of the text string

call systemwriteLn ; call a protected mode library functio n

mov ah,4ch ; DPMI t erminate function

int 21h ; call DPMI function

.include system . inc ; include SYSTEM.INC (contains sys t emwriteLn)

END

You assemble the demo with PASS32 HELLO2. If you run Hello2, you will get the same
output, but now from protected mode!

Let’s take a closer look at that example: The first line .MODEL FLAT defines the FLAT me-
mory model. This is the standard memory model for any 32 bit protected mode program: Data
and Code are in the same segment. This segment can be up to 4GByte in size. The Pass32 as-
sembler automatically links the Pro32 Dos Extender to the program, when you choose the
FLAT model.

First Example 15

(c) 1999 by Dieter R. Pawelczak, Munich

As like in real mode, we define our text string after the .DATA directive. With the .CODE
directive, we tell the assembler, that the folowing commands/instructions refer to code seg-
ment. All i nstructions are compiled as 32 bit instructions due to the FLAT model. This is very
important, as the attempt to run 16 bit code in 32 bit protected mode will l ead to an exception,
moreover, if you run 32 bit code under real mode, the processor stops execution and usually
resets.

We don’ t use an interrupt function to print the message, as Pass32 provides a lot of library
functions. And we could not use the int 21h instruction directly to print the string, unless
we enable the extended dos support: DOS is a 16 bit operating system and can not access me-
mory above 1MB - above the address 100000H. A 32 bit protected mode program usually
runs above the 1MB barrier, as the extended memory starts at that address. So it would not
make sense to force DOS to print a string, which is addresses above 100000H.

The .INCLUDE directive tells the assembler to include another assembler file at the current
cursor position. The assembler fil e may contain data, functions, procedures and may even
include again another module. Any module is only included once, too avoid duplicate data or
code definitions. If you do not add an extension to your file name, the file name is extended
with .ASM. The Assembler searches the following directories for the module:

– The current directory, from which Pass32 has been called

– The subdirectory INC of the Pass32 directory

– The parallel directory \INC of the Pass32 directory

Usually the Assembler is located in the \BIN directory, include files are located in the paral-
lel directory \INC.

Pass32 is more than a simple Assembler. It allows intelli gent linking and code optimization.
Intelli gent linking means, that only code is linked into the application, that is actually used.
Code optimization means, that useless instructions are removed, e.g. mov eax,eax, and that
some instructions are replaced by faster ones, e.g. mov eax,0 by xor eax,eax or add
eax, 00000010h by add eax, 10h . You should try the following assembler function:
PASS32 HELLO2 -o. As we see the assembler uses a third pass to optimize the code.

As we can see from these examples, there’s no big difference between the DOS .COM format
and the Pro32 FLAT memory model. You could say, the Pro32 FLAT memory model is a
huge .COM format, with 32 bit offsets instead of 16 bit. When you start writing protected
mode programs, you should think of this model and you can’ t go wrong!

16 First Steps In Assembler

(c) 1999 by Dieter R. Pawelczak, Munich

As I mentioned above, we can not use all DOS functions directly. We have to enable extended
DOS support first. Pass32 offers the module DOSX.INC, which allows to execute extended
DOS functions1. The third example is HELLO3.ASM - it uses the extended DOS function 9h
to display the message:

.UCU .NM

.INCLUDE DOSX.I NC ; include extended DOS library ...

.DATA

mesg db ’Hello, Worl d - with extended DOS!’,13,10,’$’

.CODE

START:

mov edx,OFFSET mesg ; offset to text string

mov ah,9h ; extended dos function string to standard outpu t

int 21h ; dos call

mov ax,4c00h

int 21h ; terminate

END START

END

A list of all extended DOS function can be found in the appendix. Please note, that extended
dos functions always need to copy the operands into real mode memory before the execution
and copy back into the extended memory area after the execution. This makes the execution
much slower. A much faster way is the usage of zero selectors in PM, which can directly ac-
cess the real mode area.

1.2 Beginner’s Rules

The following section defines some programming rules for assembler programming. It should
help beginners with coding in assembler or converting existing code into assembler. Some ba-
sic pitfalls are also described.

1.2.1 Assignment and expressions

An assignment is one of the basic machine instructions: the mov instruction:

1.Pro32 does not support extended DOS functions directly. Pro32 GOLD has an integrated plug-in to en-
able 32 bit DOS support. Some other DOS extenders have extended DOS functions already included.
DOSX.INC is generic and DPMI compatible and works with other DOS extenders as well .

Beginner’s Rules 17

(c) 1999 by Dieter R. Pawelczak, Munich

A common pitfall is the division. First it may effect two register, e.g. EDX, EAX. And then,
the division result may not fit into the result register and cause a division by zero exception.
Therefore, to be on the save side always use the following code for divisions.

PUSH EDX ; EDX is change s by the DIV instruction!

PUSH EBX ; EBX will take the divisor value

XOR EDX, EDX ; not a 64 bit division!

MOV EBX, divisor

MOV EAX, dividend

DIV EBX

POP EBX

POP EDX

; result in EAX

a. The (integer) division always assumes a larger dividend as the divisor. Therefore, a
idiv ebx instruction expects EDX:EAX (a 64 bit value) as dividend. A idiv bx
instruction would require DX:AX (a 32 bit value) as dividens and an idiv bl instruction
would take AX (a 16 bit value) as the dividend. Note, that the div/idiv instruction
creates a division by zero exception, either if the divisior is zero, or the divident is zero,
or the division result overflows the result register (EAX,AX,AL), e.g. if you divide
DX:AX=100000 by 1, the result does not fit into AX! The division always provides
two results: the division result and the remainder. The remainder is stored into EDX,
DX or AH!

Pascal C Assmbler

A:=0; A=0; mov A,0

A:=A+1; A++; inc A

A:=A+B; A=A+B; add A,B

A:=B*6 A=B*6; mov eax,B

imul eax,6

mov A,eax

A:=B*C+D A=B*C+D mov eax,B

mov ebx,C

imul ebx

add eax,D

mov A,eax

H:=X;X:=Y;

Y:=H;

H=X;X=Y;Y =H; mov eax,X

xchg Y,eax

mov X,eax

A:=B div

15;

A=B/15; xor edx,edx a

mov eax,B

mov ebx,15

idiv ebx

mov A,eax

18 First Steps In Assembler

(c) 1999 by Dieter R. Pawelczak, Munich

Note, that an 8 bit division, e.g. div bl, will store the result in AL, the remainder is stored in
AH. For an 8 bit division, use the following code:

PUSH EBX ; EBX will take the divisor value

MOV BL, divisor

XOR EAX,EAX

MOV AX, dividen d

DIV BL

POP EBX

XOR AH,AH

; result in EAX

A similar rule applies to the MUL instruction: The result of a 16 bit multiplication is 32 bit, the
result of a 32 bit multiplication is 64 bit. Again we have to take care that DX, EDX are changed
by the MUL instruction together with EAX, AX. The MUL instruction takes EAX as the first
multiplicator and any other general register as the other multiplicator. The result is always
stored in EAX:EDX (if the multiplicator was 32 bit, e.g. EBX, EAX), AX:DX (if the multplica-
tor was 16 bit, e.g. BX, AX) or AX (if the multiplicator was 8 bit, e.g. BL, AL). Since the i386
we have an immediate IMUL instruction, i.e. you can multiply any general register with an 8
bit value directly, e.g. IMUL EBX, 10 . This variant of the MUL/IMUL instruction does not
affect the EDX register and the result is directly stored in EBX. For most multiplications it is
easier to use this immediate IMUL instead of the MUL/IMUL instruction.

Fast multiplications and divisions can be gained by shifting the registers contents to the left

or to the right. A shift to the right by n bits is an unsigned division by 2n (n>0). A shift to the

left by n bits is an unsigned multiplication by 2n (n>0), e.g.:

shl eax,2 ; equ als eax*4

shl ecx,5 ; equ als ecx*32

shr eax,1 ; equ als eax/2

1.2.2 IF, THEN, ELSE, CASE

These highlevel language structs are not directly supported. The use of conditional jump in-
struction easily tranfsers them into assembler:

Beginner’s Rules 19

(c) 1999 by Dieter R. Pawelczak, Munich

a. JNE performs a jump incase the comparison was not equal. JE performs a jump incase the
comparison was equal.
b. JA performs a jump incase the first operand is above the second operand. JB performs a jump
in case the first operand is below the second operand.
c. Note, that the code for the switch instruction needs as many lines as the equivalent in C.

Pascal C Assmbler

IF A=0 THEN

A:=5

if (A==0) A=5; cmp A,0

jne endif

mov A,5

endif:

IF A=0 THEN

A:=5 ELSE

A:=A-1;

if (A==0)

A=5; ELSE

A--;

cmp A,0

jne else

mov A,5

jmp endif

else:

dec A

endif:

IF

(A=0)AND(B=0)

THEN C:=0;

if ((A==0)&&(B==0))

C=0;

cmp A,0

jne endif

cmp B,0

jne endif

mov C,0

endif:

IF

(A=0)OR(B=0)

THEN C:=0;

if ((A==0)||(B=0))

C=0;

cmp A,0

je then

cmp B,0

je then

jmp endif:

CASE A OF

0: B:=0;

1,2,3: B:=1;

4,5,6: B:=2;

ELSE

B:=3;

END

switch(A)

{

case 0: B=0;

break;

case 1:

case 2:

case 3: B=1;

break

case 4:

case 5:

case 6: B=2;

break

default: B=3;

break;

}

cmp A,0

jne N0 a

mov B,0

jmp NX

N0: cmp A,3

ja N3 b

mov B,1

jmp NX

N3: cmp A,6

ja N6

mov B,2

jmp NX

N6:

mov B,3

NX: c

20 First Steps In Assembler

(c) 1999 by Dieter R. Pawelczak, Munich

A source for errors are the relative jump instructions: Either the instruction is negated, or the
signed and unsigned integer comparisons are mixed up. Take care, the simplest way to test, if
a certain value is reached, is done by using the JNE instruction and putting the necessary ac-
tions between the JNE instruction and the target label. This is the most optimized translation
of an IF instruction:

IF EAX=0 THEN d o_action

refers to

cmp eax,0

jne not0

; EAX = 0

; do the action

not0:

This does not refer to an IF, ELSE construct - compare with the table above. A simple rule
for labeling such constructs is to use labels like N0, ’Not 0’ . If you need ELSE or a complete
case, use NX as the exit label.

Hardware addresses are typical unsigned integer values. You should use JA (jump if Above),
JB (jump if below) to determine differences. Numbers are typically signed integer values, i.e.
you should use JG (jump if greater) or JL (jump if less), when you compare two values.

1.2.3 Loops

The processor provides directly a loop instruction. Unfortunately, the loop instruction provi-
des only one construct, namely the repeat until construct. Due to those restrictions and due to
the fact, that the loop construct is restricted to 127 bytes offset only, it is recommended not to
use the loop instruction. It should be statet, that the loop instruction is slower than an equi-
valent assembler construct on a pentium processor.

Beginner’s Rules 21

(c) 1999 by Dieter R. Pawelczak, Munich

A typical pitfal is the loop instruction: Imagine the following code:
mov eax,0

mov ecx,1000

L1:

mov dword ptr Screen+4*e cx,0

loop L1

The result is, that the first 4 bytes of the Screen array are not initialized with 0, because the
loop instruction repeats only until ECX is zero. The correct solution of the problem would
be:

mov eax,0

mov ecx,1000

L1:

mov dword ptr Screen+4*e cx,0

dec ecx

jns L1

Pascal C Assmbler

REPEAT

ECX:=ECX-1;

UNTIL ECX=0;

do

{

ECX--;

} while(ECX!=0)

L0:

loopd L 0

REPEAT

A:=A+10;

UNTIL A>100;

do

{

A=A+10;

} while(A<=100)

L0:

ADD A,1 0

CMP A,1 00

JBE L0

WHILE (A<100)

do A:=A+10;

while (A<100)

{

A=A+10;

}

L0: cmp A,100

jae L1

add A,1 0

jmp L0

L1:

FOR I:=0 TO 99

DO

A[i]:=0;

for (I=0;I<100;I++)

A[i]=0;

mov I,0

L0: cmp I,99

ja L1

mov eax , I

mov [A+ eax],0

inc I

jmp L0

L1:

22 First Steps In Assembler

(c) 1999 by Dieter R. Pawelczak, Munich

The loop is repeated until ECX reaches -1, i.e. the case ECX=0 is also processed inside the
loop. Note, that if the loop exceeds 64K, i.e. if ECX is above 65535, you shall use loop d.
The loop menmonic refers to CX only.

Protected Mode versus Real Mode 23

(c) 1999 by Dieter R. Pawelczak, Munich

2. Protected Mode Programming Basics

This Chapter introduces protected mode basics. It describes the differences between real mode
and protected mode. In tiny steps all necessary action will be taken to switch the processor
into 32 bit protected mode.

2.1 Protected Mode versus Real Mode

When the PC is switched on, the processor starts in real mode. In real mode, all CPUs of the
x86 family, including latest 686 processors, are compatible with the obsolete 16 bit 8086/8088
CPU. The CPU can not address more than 1 MB. As the address range from 0A0000H to
0FFFFFH Is usually used by the BIOS, actually only 640KByte memory can be used for ap-
plications.

In protected mode, the processor can address the whole address space of the processor. This
comprises up to 64TByte in combination with virtual memory management. Theoretically,
each application can have a virtual 4G address space1. Additionally to the memory manage-
ment and protection means, the CPU provides methods for multitasking under protected mo-
de.

It should be noted at this point, that a lot of processor extensions, especially the protection
means are also valid for real mode. Indeed, the processor creates an invalid opcode exception,
when the CPU reads an instruction, that it can’ t interpret. Unfortunately, these exceptions are
not handled by the real mode operating system, e.g. DOS. Therefore we assume, that the pro-
cessor crashes in real mode in case of an ill egal operation, but atcually, the processor invoks
an exception handler, which is not provided by the operating system!

It is very easy to switch the processor into proteced mode. The processor uses one flag in an
internal register, which defines the operating mode. This is the PE-Flag (Protected mode En-
able: bit 0) in the CR0 register. To enable protected mode, the bit must be set to 1:

mov eax,cr0

bts eax,0 ; sets bit 0

mov cr0,eax

To switch back to real mode, the bit must be cleared:
mov eax,cr0

btr eax,0 ; resets bit 0

mov cr0,eax

Unfortunately, this bit does not initialize the protected mode. A lot more needs to be done be-
fore we can actually switch into protected mode:

• interrupts must be re-directed to protected mode service routines, or all i nterrupts must
stay disabled,

• the Interrupt Descriptor Table (IDT) must be created,

1.Under Win32, each application gets a virtual 4G address space

24 Protected Mode Programming Basics

(c) 1999 by Dieter R. Pawelczak, Munich

• the Global Descriptor Table (GDT) needs to be established,

• Code, Data and Stack descriptors must be defined.

2.2 Addressing in Real Mode

To understand the processor in real mode, we’ ll have a look on how the processor addresses
memory in real mode. A real mode address is 20 bits long. The address is calculated from the
segment register and the offset. The segment registers are CS, DS, ES, FS , GS and SS. CS
stands for Code Segment. The processor automatically uses this segment register when rea-
ding an instruction from the instruction pointer. DS is used as the default data segment, i.e.
any memory access is per default related to DS. Access to other segments needs a segment
override, i.e. the segment register must be specified. SS is automatically used for stack access.
So a push or pop instructions refers to SS:ESP. The segment registers are 16 bit registers
in real and in protected mode. In real mode, there is no virtual addressing, therefore any linear
address refers to the absolute physical address in memory. The address is calculated multi -
plying the segment register value by 16 and adding the offset. In hex notation, this may for
example look like this:

CS: 1004h

IP: 0100h

Physical Addres s: 10140h

As you can see, the multiplication by factor 16 is identically with shifting the segment register
value 4 bits to the left. In binary notation, the same example would be:

CS: 0001.0000.0000.01 00

IP: .0000.0001.00 00.0000

Physical Addres s: 0001.0000.0001.01 00.0000

So another way to explain the real mode address calculation would be to say, the segment re-
gister presents the upper 16 bit of the address, thus bit 19 to 4. The 16 bit offset address, is
added to the bits 15 to 0. The result is a 20 bit address. A funny thing is, that an i386 actually
has 32 address lines. What happens, if the address calculation exceeds the 20 bit? This hap-
pens, when the segment register plus the offset produces an overflow:

CS: 1111.1000.0000.00 00

IP: .1000.0000.00 00.0000

Physical Addres s: 0000.0000.0000.00 00.000 0 on a real 8086

Physical Addres s: 1.0000.0000.0000.0000.000 0 on a 80286f

Protected Mode Address Calculation 25

(c) 1999 by Dieter R. Pawelczak, Munich

The 80286 and new processors calculate the address correct, i.e. bit 20 is set. Therefore we
can access actually 1 MB plus 65520 bytes. This memory area from 010000h to 01FFEF is
called High Memory Area (HMA). DOS can load drivers to this memory. Note, that this
function of the CPU is disabled per default by most mother boards. The address line 20 is
forced to low level, to simulate the behaviour of the original 8086 processor. Typically, the
XMS (eXtended Memory Specification) memory driver, e.g. HIMEM.SYS, controls the A20
line. A correct 32 bit address calculation needs an enabled A20 address line, because otherwi-
se an address 010000h is reflected to 000000h!

2.3 Protected Mode Address Calculation

In protected mode, the address calculation is completely different. The 80286 provided a 16
bit protected mode. For reasons of compatibili ty, the 80386 and newer processors support this
addressing as well . The 16 bit protected mode provides as like the real mode only 64K seg-
ments. In general, we concentrate on 32 bit programming. Nevertheless, for the mode switch,
we stil l need this 16 bit mode. In protected mode, our segment registers have a complete dif-
ferent meaning: They hold a 16 bit value, an index to a segment descriptor. As the value itself
has nothing in common with the segment address, the registers CS, DS, ES, FS , GS and SS
are called selector registers - they select a segment descriptor out of a li st. In protected mode,
there are two tables, which hold the segment descriptors: The global and the local decsriptor
table (GDT, LDT). The GDT holds the system descriptors, the LDT application related des-
criptors. The selector registers now contain an index to the descriptor and a flag, which tells
the CPU from which table the descriptor is used.

The selector has the following format:

Tab. 2.1 Selector Contents

The following example explains the protected mode address calculation in an abstract way:

Fig. 2.1

a. G=0: GDT, G=1: LDT

Bits 1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

Index 0 0 Ga

CS: 0010h
EIP: 0100h

GDT
0. Base: 00000000
1. Base: 00100000

3. Base: 000A0000

...00100000h
0100h

Linea r address: 00100100h
+

2. Base: 00100000 Inde x = 2

26 Protected Mode Programming Basics

(c) 1999 by Dieter R. Pawelczak, Munich

The CPU knows from bit 0, that the selector is part of the global descriptor table. It reads the
32 bit base address from the corresponding entry in the GDT and adds the 32 bit offset. The
result is a 32 bit linear address. Note, that the linear address of the CPU does not need to be
identical with the physical address. The CPU offers another step in the address calculation,
before the actual address lines are accessed: the address management divides the whole me-
mory in 4K pages. A nested list of these pages define the actual address in memory. These 4K
pages can be swapped to disk. Therefore, the CPU can offer more memory, that actually is
available. In our examples, we ignore this step and assume, that the linear address is equal to
the physical address1.

2.4 Descr iptor and Global Descr iptor Table

The descriptor holds information about the memory segment. As we learned in the previous
chapter, the 32 bit base address is defined in the descriptor. The name protected mode already
implies memory protection: The descriptor defines also, the size of the memory segment, if
the memory is read only, if it is a data or a code segment. The contents of a descriptor are
shown in Tab. 2.2:

Tab. 2.2 Descriptor contents

G: Limit Granularity: 0: byte granular (Limit=Limit field)

1: page granular (Limit=4096*Limit field)

B/D : Segment Attribute Size: 0: 16 bit = use16

1: 32 bit = use32 (default)

AVL: Available Flag: (unused)

DPL: Privileg Level 00: kernel level

01: device driver level

1.Note, that this assumption can lead to a fatal error, when hardware is related: Assuming, you provide a
disk buffer at the virtual address 00100000h. The disk drive is going to write the contents of this buffer to
your harddisk. Unfortunately, your OS provides virtual address management. Your virtual address
00100000h is actually mapped to 00010000h and the physical memory 00100000h is not even present.
The result is, that the disk drive writes garbage to disk and it takes very long to find this bug!

Bits /
offset

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

0 Descriptor Limit 15..0

2 Descriptor Base 15..0

4 1 DPL 1 C
D

E
C

R
W

A Descriptor Base 23..16

6 Descriptor Bas e 31..24 G B
D

0 A
V
L

Limit
19..16?

Descriptor and Global Descriptor Table 27

(c) 1999 by Dieter R. Pawelczak, Munich

10: operating system level

11: user application level

C/D: Segment Type 0: data

1: code

E/C : Expand/Conforming 0: data=expand-up code=non-conforming (default)

1: data=expand-downcode=conforming

R/W: Read / Write 0: data=readcode=non-readable

1: data=read/writecode=readable

A: Access 0: not accessed,

1: accessed

The descriptor limit takes only 20 bit, which refers to an address range of 16 MByte. The gra-
nularity flag (G) defines, whether the limit value is shifted again 12 bit. The resulting address
rangs is 4 GByte. The idea behind is, that when virtual memory managment is used, the whole
memory is divided into 4 K pages. It wouldn’ t make any sense to allocate 4.5 K memory for
an descriptor, as the memory management would become very ineffective. Therefore in com-
bination with virtual address management, it is very useful to allocate memory only in 4 K
steps.

The descriptor base takes the complete 32 bit and defines the virtual basis address of the seg-
ment. Note, that if no virtual address managment is used, the virtual basis address is equal to
the physical basis address.

We have two flag fields. The first flag field at offset 5 holds standard flags for protection me-
ans. These flags describe, if the segment is a code or data segment (C/D). A data segment can
either be read and writeable, a code segment can only be readable or not readable (R/W). The
expand flag defines, whether the segment is expanding upwards (typicall y heap memory,
which starts at a fixed address and dyanimcally grows) or downwards (typically stack memo-
ry) (E/C). DPL defines the protection level. DPL=00 is the highest privileged level. It is com-
parable with real mode, as a code segment of this privileg level can access every thing:
changing the IDT, GDT, switching back from protected mode to real mode, disabling inter-
rupts, etc. In lower privileg levels, instructions, which endanger the system stabilit y invoke an
general protection fault exception1.

The second flag field is not available in 16 bit protected mode. It provides one essential flag
for 32 bit programming: The Big or USE32 flag (B/D). If it is set to 1, a code segment hand-
led as a 32 bit code segment, e.g. the processor reads per default 32 bit instructions2, a data
segment can exceed 64K. The second flag also holds the granularity bit, that allows to access
the whole 4G address space.

1.Although the processor provides clear protection means, no commercial OS is really based on them.
2.A 16- and 32-bit instruction is distinguished by the register and address prefix 66h/67h. This prefix is
used, when the registers or address modes differ from the default segment type: If ecx is used in a USE16
segment, the register prefix 66h is used. If the register cx is used in a USE32 segment, the register prefix
66h is used. If a USE16 segment holds a 32 bit addressing, e.g. [edi] , the address prefix 67h is used. If
a USE32 segment holds a 16 bit addressing, e.g. [di] , the address prefix 67h is used as well .

28 Protected Mode Programming Basics

(c) 1999 by Dieter R. Pawelczak, Munich

The GDT register of the CPU is a six byte large buffer, that contains two values: A 16 bit va-
lue holding the number of maximum entries and the 32 bit li near base address. Note, that the
index field in the selector has only 12 bits. The maximum number of descriptors is therefore
4096. The definition of the GDT could look like this:

.CONST

.ALIGN 8

MAX_GDT_ENTRIES .EQU 32

.BLOCK

GDTRECORD DW MAX_GDT_ENTRIES*8

 DD OFFSET GDT

.NOBLOCK

GDT DD 256 D UP(0)

The following sample function will create and store descriptors in the global descriptor table:

PROC Create_Des criptor ; EAX:Basis; EDX:Limit; ECX:Acc ess_Rights

push eax

 push ecx

; Test the limi t , if G-bit has to be set

push edx

mov eax,edx

shr eax,24

cmp eax,0

je short L0

; Shift limits 12 bits and set G-bit...

pop edx

pop ecx

bts ecx,15 ; set G-bit

bts ecx,14 ; set D-bit

push ecx

shr edx,12 ; shif t limit

push edx

L0:

; The GDT is pr edefined with zero contents.

; We search for the first free table entry...

mov bx,offset GDT

xor esi,esi

L1:

add si,8 ; first descriptor is per default zer o

cmp si, MAX_GDT_ENTR I ES*8

jae short X ; GDT full

mov eax,[bx+si]

cmp eax,0

jne short L1

Descriptor and Global Descriptor Table 29

(c) 1999 by Dieter R. Pawelczak, Munich

mov eax,[bx+si+4]

cmp eax,0

jne short L1

; Got free entry...

add bx,si

pop edx

pop ecx

pop eax

mov [bx],dx ; limits - lower 16 bits

mov [bx+2],ax ; basis - lowe r 16 bits

mov [bx+5],cl ; Flags, lower 8 bits

shr eax,16

mov [bx+4],al ; Basis Bits 1 6..23

mov [bx+7],ah ; Basis Bits 2 4..31

shr edx,16

and dl,0f0h

or ch,dl

mov [bx+6],ch ; Flags Bits 8 . .15

xor eax,eax

mov ax,si ; Selextor in SI - return in AX

ret

X: ; Error!

xor eax,eax ; return Selec t or 0

 stc

ret

ENDP Create_descriptor

Note, that the first entry in the GDT is the so-called NULL descriptor. It has the selctor value
0. A selector register can be load with this selector. If you read or write using this selector, a
general protection fault exception will be invoked.

The following code wil l create all necessary descriptors for a simply protected mode applica-
tion:

xor eax,eax

mov ax,cs ; Code Segme nt

shl eax,4 ; Basis = CS shifted by bits to the left

mov edx,0ffffh ; Limit = 64K

mov cx,0009ah ; 16 bit code segment

call Create_Descriptor

mov SelCSeg,ax ; store selec t or value

xor eax,eax

mov ax,ss ; Stack Segm ent

mov Real_ss,ax ; store real mode stack value

shl eax,4

mov edx,0ffffh

30 Protected Mode Programming Basics

(c) 1999 by Dieter R. Pawelczak, Munich

mov cx,00092h ; 16 bit stack segment

call Create_Descript or

mov SelSSeg,ax

mov ax,ds ; D ata Segment

shl eax,4 ; B asis = same as DS

mov edx,-1 ; Li mit = 4G

mov cx,00092h ; 3 2 bit Data segment

call Create_Descript or

mov SelDSeg,ax

Note, that we need a 16 bit code segment for the mode switch: when the processor has swit-
ched into protected mode, the USE bit of the code segment does not change, therefore it as-
sumes a 16 bit code segment. The same happens, when the processor switches from a 32 bit
code segment into real mode: The processor would again assume a 32 bit(!) real mode seg-
ment, which is not a valid processor configuration. Therefore, we wil l need a 16 bit code seg-
ment, which holds the necessary code for the mode switch from and to protected mode.

The i386 and newer processors use CPU pipelines to speed up the execution of commands.
The idea behind a pipeline is, that the CPU can do several (for every instruction) necessary
steps in parallel: it can for instance fetch a new instruction from memory and perform an
arithmetic operation in the same time. A sample pipeline could consist for instance out of f ive
steps: fetch instruction (fi), analyse instruction (ai), arithmetic operation (ao), calculate offset
(co), store result (sr). The following figure demonstrated such a pipeline. It is easy to under-
stand, that such a pipeline would increase the CPU speed (in the optimum) by 5, as with every
clock a new instruction starts and another instruction ends:

An i386 processor uses pipelinig. Imagine, what happens, when one of the instructions inside
the pipeline switches the CPU mode. This wil l happen after the processor has analysed the in-
struction, therefore in stage 2 or 3. The rest of the pipeline is already fill ed with the new in-
structions, so the processor has to treat some instructions different in the pipeline: perform the
last operations of real mode instructions and already fetch and execute protected mode in-
structions. Note, that newer processors use a much deeper pipeline with 16 and more stages.
As the processor can only perfrom either real mode or protected mode instructions, we have
to flush the pipeline, when we switch to protected mode. This is done by a jump instruction.
As all i nstructions, which follow a jump instruction have to be discarded in the pipeline.

fi ai ao co sr fi ai ao co sr
fi ai ao co sr

fi ai ao co sr
fi ai ao co sr

fi ai ao co sr

fi ai ao co sr
first instruction second instruction

first
second
third
fourth
fifth instruction

Without Pipelinig With Pipelinig

Descriptor and Global Descriptor Table 31

(c) 1999 by Dieter R. Pawelczak, Munich

As we learned, that switching the PE bit does not initialize any descriptor, we even use a FAR
jump instruction. This FAR jump instruction will read a new CS value and flush the pipeline.
Note, that prior to the FAR jump instruction, the processor still uses the old (real mode) CS
segment register to fetch the instructions. This is a somehow funny behaviour, because the
CPU uses a real mode segment register in protected mode! This is due to the fact, that the
mode switch itself does not change any segement / selector register values. Additionally, the
processor does not actually use the segment or selector values directly: when a segment / sel-
ector register is load, the processor uses internal (hidden) registers, which are similar to des-
criptors: these registers define, where the segment starts, who is allowed to read / write, if its
32 or 16 bit, etc. These hidden registers are untouched by the CPU during the mode switch
and changed only, when the selector register is load with a new value. Some older dos exten-
ders, e.g. 16 bit dos extenders do not reload all segment registers, when they switch back to
real mode, e.g. FS, GS. Another application accessing these (protected mode selectors) in real
mode, wil l then cause an exception, which typically results in a crash of the real mode appli-
cation.

A simple switch into protected mode could look like this:

xor eax,eax

mov ax, cs

shl eax, 4

add dword ptr [GDTRecord+2], EAX ; set linear address of GDT

mov eax,cr0

bts EAX, 0 ; test and set BIT 0

jc X ; Error - already in PMode!

cli ; No I DT, therefore disable interrupts!

lgdt GDTRECORD

mov cr0,eax ; activate PMode

.CONST

db 0EAh ; F AR-JMP, to flush CPU - Pipeline and

dw Offset PM ; to load CS

SelCSEG dw 0

.CODE

PM:

mov ax,cs:Sel_SSeg ; load st ack selector

mov ss,ax

mov ax,cs:Sel_DSeg ; load Da t a selector

mov ds,ax

Have a look at the example files PMODE1.ASM and PMODE2.ASM. The first example swit-
ches into 16 bit protected mode, the second example switches into 32 bit protected mode.

32 Protected Mode Programming Basics

(c) 1999 by Dieter R. Pawelczak, Munich

2.5 Protected Mode Inter rupts and Exceptions

2.5.1 Interrupts

In real mode, the interrupt descriptor table IDT is found at the first 1024 bytes in memory, i.e.
at offset 0000000h. All 256 interrupts are described by a FAR pointer in the table. As a FAR
pointer in 16K real mode requires 4 bytes (16 bit segment + 16 bit offset), the whole IDT
takes 1Kbyte in real mode. The pointer to interrupt 21h, for example is found at address:
21h*4 = 00000084h.

In protected mode, the IDT contains a list of Interrupt Descriptors (ID), which occupy 8 by-
tes. The whole IDT with 256 interrupts, therefore requires 2KByte.

Tab. 2.3 Descriptor contents

In general, the concept is similar to real mode: The IDT contains for each interrupt a descrip-
tor, with an Selector:Offset to the Interrupt Service Routine (ISR).

The protected mode defines different interrupt types:

• Interrupt Gate (TYPE = 0eh): The ISR is called with interrupts disabled,

• Trap Gates (TYPE = 0fh): The ISR is called with interrupts enabled.

The IDT provides for each of the 256 interrupts an interrupt descriptor. To load the IDT, the
instruction LIDT is used. It uses the same format as the LGDT instruction:

.ALIGN 8

.CONST

MAX_IDT_ENTRIES .EQU 255

.BLOCK

IDTRECORD DW MAX_IDT_ENTRIES*8

 DD OFFSET IDT

.NOBLOCK

IDT DD MAX_IDT_ENTRIES*8 DUP(0)

.CODE

Bits /
offset

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

0 Interrupt Service Rout i ne Offset (EIP) 15..0

2 Interrupt Service Rou t ine Descriptor (CS)

4 1 DPL 0 Type unused = 0

6 Interrupt Service Routi ne Offset (EIP) 31..16

Protected Mode Interrupts and Exceptions 33

(c) 1999 by Dieter R. Pawelczak, Munich

LIDT IDTRECORD

Note, that you can reduce the number of interrupts in the IDTRECORD. The maximum is li-
mited to 256.

2.5.2 Exceptions

The protected mode defines exceptions. An exception originates from the CPU, i.e. an excep-
tion is an interrupt, which is caused by the CPU due to protection means. A typical exepction
is a division by zero: The CPU recognizes such an error in an application and interrupts the
application with an exception. The main difference between exeption and interrupt is, that
some exception put an error code on the stack. A simple return instruction from the ISR
would not remove that error code from the stack. Therefore we need especial exception hand-
lers for processor exceptions. Unfortunately, the processor exceptions are assigned to fixed in-
terrupt vectors.

If we take a closer look at Tab. 2.4, we will see, that the reserved exception interrupt vectors
are already used in a standard PC. For example int 08h is used by the hardware clock and
also points to the double fault exception. Interrupt 010h is used by the VGA board, but also
used as co-processor exception.

Everytime, an exception handler is called, it needs to check first, whether the cause is actually
an exception, a hardware interrupt, or a software interrupt, i.e. int instruction.

34 Protected Mode Programming Basics

(c) 1999 by Dieter R. Pawelczak, Munich

Tab. 2.4 Exceptions

Exception Description Remark

0 / 00h Division by zero No error code

1 / 01h Debug Trap No error code

3 / 03h Break Point Interrupt (int 03) No error code

4 / 04h Overflow (into) No error code

5 / 05h Bound error No error code

6 / 06h invalid opcode No error code

7 / 07h no FPU extension available No error code

8 / 08h double fault error code 0000h

10 / 0ah invalid task state segment error code = selector

11 / 0bh segment not present error code

12 / 0ch stack error error code

13 / 0dh general protection fault error code

14 / 0eh page error error code

16 / 10h FPU exception No error code

17 / 11h alignment check error code 0000h

Detect DPMI 35

(c) 1999 by Dieter R. Pawelczak, Munich

3. Dos Protected Mode Interface (DPMI)

In Chapter 2 we learned how to switch the processor into protected mode. Unfortunately this
code runs on the highest privileged level. If you run such an application under Windows for
instance, it will generate a general protection fault. Therefore we need other means to switch
the processor into protected mode. Windows, Intel and other leading computer manufacturers
came together and defined the DPMI standard: The Dos Protected Mode Interface.

The DPMI provides to services to switch the processor into protected mode, to create and
manage descriptors and to access real mode code like BIOS interrupts, Dos calls, etc.

DPMI is supported by Windows and other memory managers like QUEMM, 386MAX, etc.
Unfortunately, the default memory manager EMM386 does not support DPMI. EMM386
supports only VCPI (Vi r tual Control Program Interface). VCPI is an older (obsolete)
standard, that was used by Windows itself to switch into protected mode. VCPI supports only
the mode switching feature, but not any further services.

3.1 Detect DPMI

Before we can use DPMI services, we have to test, if DPMI is available. The DOS operating
system provides a multiplex interrupt service to detect the presents of device drivers, memory
managers etc. We can invoke the interrupt 2fh with the function code 1687h in AX to
determine, whether the operating system provides a DPMI server:

Function call: INT 2fh

AX = 1687h

Results, if successful

AX = 0

BX = 0000000000000000mb m = 1: 32 bit DPMI supported

CL = processor (80x86)

DX = DPMI Version, DH = majo r , DL = minor version number

SI = number of memory paragr aphs necessary for the mode switch

ES:DI = 16-bit real mode far call address to DPMI enable procedure

If not successful:

AX != 0

Example:

 mov AX,1687h

 int 2fh

36 Dos Protected Mode Interface (DPMI)

(c) 1999 by Dieter R. Pawelczak, Munich

 cmp AX,0

 jne DPMI_ERROR ; No DPMI available

 ...

The interrupt call returns the entry point of a DPMI function to switch into protected mode
and some useful information in the registers. If bit 0 of BX is set, the DPMI provides 32 bit.1

If there is no DPMI, we can not make use of the DPMI services. We could now try again to
switch into protected mode by hand, but the conclusion, that if no DPMI is active, we can
switch the processor into protected mode by using priviledged instructions is not true. So
although DPMI provides all necessary services to code in protected mode, we stil l need a tool,
that gives us a guarantee, that the services are available. This is the basic idea of a Dos
Extender. A Dos Extender is a small program, that tests, if DPMI is available and if not
emulates DPMI. Now if we link the Dos Extender to our program, we can use DPMI service,
because the Dos Extender makes sure, that DPMI is available2. Most Dos Extender support as
well VCPI, so a protected mode application loaded by a dos extender can basically run on any
system configuration, i.e. plain DOS without memory manager, plain DOS with memory
manager, Windows DOS Box, Linux Dos emulation with DPMI, etc.

3.2 Mode switch with DPMI

DPMI is a one way alley, i.e. you can switch the processor into protected mode, but you can’ t
switch it back3. This may be a bit confusing in the beginning, but as DPMI allows to invoke
16 bit real mode code, there is no reason for an appli cation to switch between real and
protected mode. If the application terminates, the processor is switched back into real mode.

A nice feature is, that DPMI restores the state of the real mode system after the application
has terminated. This makes DPMI programming much easier and more stable than real mode
programming. Due to the processor protections, a DPMI program can hardly crash the system.

The DPMI API, the service functions are avaiable through the interrupt 31h. The DPMI
function should be passed in AX. DPMI service functions are only available in protected
mode. Before we request a DPMI service, we therefore need to switch the processor into
protected mode.

1.Note, that there is no way to determine in advanced, if the DPMI host provides 16 bit. If bit 1 is set, the
DPMI host provides 32 bit, but not necessarely 16 bit as well.
2.There are some different understanding of dos extenders: A dos extender can also mean, that it allows
to perform Dos operations (i.e. int 21h instructions) in protected mode applications, e.g. extended dos
functions. So a dos extender does not always provide DPMI services. Some dos extender even expect
DPMI to be available (e.g. newer GO32 versions). In this case, the user has to load a DPMI application
prior to the protected mode program. Through out the book, a dos extender means a DPMI service pro-
gram and application loader like Pro32 / WDosX / Dos32, etc.
3.DPMI actually provides raw mode switching features, i.e. you can switch the processor into protected
mode and back into real mode. These services are not recommended and unusual for DPMI programming.
If you use these services, you must make sure, that your program terminated from protected mode - other-
wise not all resources are freed by the DPMI host.

Mode switch with DPMI 37

(c) 1999 by Dieter R. Pawelczak, Munich

The function 1687h of interrupt 2fh returns a far procedure in ES:DI , that marks the entry
point of a DPMI program. If we call this function, the DPMI host performs the following
actions:

• switch the processor into protected mode

• creates a 16 bit code descriptor for CS, which has the same basis as CS of the caller
(real mode CS) and limit 64K

• creates a 16 bit data descriptor for DS, which has the same basis as DS of the caller
(real mode DS) and limit 64K

• creates a 16 bit stack descriptor for SS, which has the same basis as SS of the caller
(real mode DS) and limit 64K4, SP is in general not changed

• creates a selector for the program environment, which is found in the PSP at 2ch5

• maps all hardware interrupts to protected mode or to (virtual) real mode handlers

Note, that we need to provide a free memory segment to the function in ES. The amount of
necessary paragraphs has been return by int 2f, 1687h in the SI register. If SI was zero, we
can ignore the value in ES. Additionally, we have to specify, if we want to run a 16 bit or 32
bit DPMI application. The least significant bit of AX (bit 0) defines the DPMI mode: If set,
the application is 32 bit6. The complete interface of the DPMI entry points is given as follows:

Function call: call far [es:di - according to int 2fh, AX=1687h result]

AX = 000000000000000mb m = 1 : 32 bit DPMI, m = 0: 16 bit DPMI

ES = Free Memory, as request ed

Results, if successful

carry flag clear

CS: 16 bit code selector

DS: 16 bit data selector

ES: 16 bit program environme nt selector

SS: 16 bit stack selector

FS, GS: 0

If not successful:

carry flag set, program stil l in real mode

Example:

 mov AX,1687h

 int 2fh

 cmp AX,0

4.Note, that the stack contents are not changed, i.e. if you push a real mode segment on the stack priot to
the mode switch and pop the value afterwards, it is invalid and will force an exception if you load a sel-
ector register with it!
5.Check the getenv example provided with Pro32.
6.This book does not describe the obsolete 16 bit DPMI mode, only the 32 bit DPMI mode will be explai-
ned. See the DPMI specification for the differences.

38 Dos Protected Mode Interface (DPMI)

(c) 1999 by Dieter R. Pawelczak, Munich

 jne DPMI_ERROR ; No DPMI available

 mov DPMI_ENTRY,DI

 mov DPMI_ENTRY+2,ES

 cmp SI,0 ; host does not request memory

 je NoMem

 mov AX,4800h ; dos allocate memory

 mov BX, SI ; number of paragraphs from SI

 int 21h ; allocate memory

 jc MEM_ERROR

 mov es,ax

NoMem:

 mov ax,1 ; 32 bit protected mode!

 call far ptr DPMI_ ENTRY

 JC DPMI_ERROR

You should have a look at the example fil e DPMITST.ASM, which prints all i nformation
provided by function 1687h, interrupt 2fh and switches the processor into protected mode.
You should also try CHECK32.ASM, which is a tiny protected mode application, which prints
some more information about the DPMI host, e.g. available memory, etc (Pro32 Example
files).

3.3 Dos Extender

A dos extender makes li fe again much easier. First, the dos extender handles all DPMI
functions to switch into protected mode and provides a loader, which wil l load our application
into the extended memory space. Our application is not restricted to the 640 K Dos memory
anymore. Even, if a system does not provide DPMI, a dos extender will switch the processor
into protected mode and provide a DPMI API. A dos extender is typicall y linked at the
beginning of the program. When the dos extender is executed, it first checks, if DPMI is
available. If it is, the dos extender uses the DPMI service to switch into protected mode and
then loads the program. If there is no DPMI, the dos extender typically checks VCPI. If VCPI
is available, it wil l use VCPI to switch into protected mode and emulate the DPMI API. If no
VCPI is available, the dos extender will t est, if HIMEM.SYS is available. HIMEM.SYS does
not allow to switch into protected mode, but it manages the extended memory. So if there is
neither DPMI nor VCPI, it uses HIMEM.SYS to allocate XMS memory. If there is no DPMI,
nor VCPI, nor XMS, then the dos extender will try to use the bios interrupt 15h, function
AX=8800h to allocate XMS memory. If the bios interrupt is not available, the dos extender
can now try to find free memory and the upper memory limit by its own or abort with the
message, that no extended memory is available.

We refer to the Pro32 Dos Extender through out the book, as it is distributed together with
Pass32. A Pass32 / Pro32 program uses the flat memory model, i.e. the program uses a single
huge segment for code and data. The layout of the segment is described in Tab. 1 (compare
with chapter 10.1).

Dos Extender 39

(c) 1999 by Dieter R. Pawelczak, Munich

Tab. 3.1 Typical Pass32 / Pro32 protected mode program

The actual binary format is very similar to the DOS .COM format. The (obsolete) DOS PSP
contains additional information of the DPMI host.

At the program start, we find the segment / selector registers load with the following selector
values:

Tab. 3.2 Selector Register values at program start

We can access the video memory for example with
 .CODE

 mov es:[0] ,'A' ; write an 'A' to top of the screen

We can access the bios data area with
 .CODE

 mov ax,FS : [41Ah] ; read the address of t he Keyboard buffer

 mov Keybo ardBuffer,ax ; this would be in real mode 0040:001A

The FS and GS hold a so-called zero selector. They reference a descriptor with a base address
of zero and limit of 4G. Basically you can address any memory of the machine via those
selectors7. This descriptor is especially useful, when accessing real mode data or video data.

7.There are, of course limits: Under Windows and many other DPMI hosts, virtual memory management
is enabled. Virtual memory management allows detailed memory protection: Each 4k memory page can
be read or writeable according to the priviledged level. As a DPMI application usually runs in the lowest
privileged level, a general protection fault is invoked, when protected memory areas are accessed.

Directive Offset Description

000000 00-000000ff PSP - holds command line, environment set-
tings

.code 000001 00-xxxxxxxx Main Program, the entry point is 0100h

.data xxxxxx xx-xxxxxxxx Initialised Data

.data? xxxxxx xx-xxxxxxxx Uninitialised Data

.data? xxxxxx xx-ffffffff Heap

00000-xxxxx Extra Stack segment

CS 32 bit code selector

DS 32 bit data selector

ES 16 bit video selector

FS 32 bit zero selector

GS 32 bit zero selector

SS 32 bit stack selector

40 Dos Protected Mode Interface (DPMI)

(c) 1999 by Dieter R. Pawelczak, Munich

We can access the video screen via FS, for instance by
 .CODE

 mov FS:[0b8000h],'A'

DS and CS have the same basis address. Note, that just like in the TINY model, code and data
are in the same segment. We cannot write into the code segment with CS - this leads to a
general exception. But we can read from CS and write via DS.

The DS descriptor is the default descriptor. Every memory access without a segment
definition refers to the DS segment:

 mov [25h],AX ; is same as mo v DS:[25h],AX

The stack segment is placed in another memory location, so that stack code and data never
colli de.

In case our DS or ES register will be destroyed, Pro32 offers a constant data area at the begin
of our code segment, the so-called PSP. The first bytes of our code segment contain the
following data:

Tab. 3.3 The PSP of a Pro32 application

You can access each of these data via CS:
 .CODE

 mov ax,CS:[2]

 mov es,ax ;restore es val ue

 mov ax,CS:[4]

 mov fs,ax ;restore fs val ue

 mov gs,ax ;restore gs val ue

 mov ax,CS:[0]

 mov ds,ax ;restore ds val ue

 cmp byte ptr cs:[0eh],1

 j e Windows

a. available with Pro32 Version 1.47 and newer versions.

00-01 DS - data selector

02-03 ES - video selector

04-05 FS, GS - zero selector

06-07 Real Mode File Buffer Selector

08-09 Real Mode File Buffer Segent

0A-0D Actual allocated XMS Memory

0E Flag, if windows has been detecteda

0F Flag, if other DPMI host is activea

2C-2F selector to DOS environment

80-FF command line with arguments

Using DPMI functions 41

(c) 1999 by Dieter R. Pawelczak, Munich

 mov eax,c s:[0AH]

 mov eax,M EMSIZE

The predefined variable identifier MEMSIZE points to CS:[0AH]. The last two examples are
equivalent!

The real mode file buffer selector is a 32 KByte8 buffer placed in real mode memory. You can
use this buffer for DOS, BIOS or other real mode functions9. The real mode fil e buffer
segment is the correspondening real mode segment value. Note, that you must use this value
for real mode functions - in protected mode you must use the selector value!

At CS:80h and the following bytes you’ ll find a copy of the parameter line. Pass32 provides
some library functions to analyze the parameter line, i.e. to separate the parameters.

In the opposite of other dos extenders, the code is not relocated: the code starts always at a
virtual offset 00000100h. Every memory access inside this code segment is f ixed to an
absolute address inside this segment. Other dos extenders, e.g. DOS4GW, use also the flat
memory model. Instead of providing a virtual segment, they provide a single flat segment
starting at address 0. The code must be relocated by the loader, as the code can be load to any
address starting from offset zero. In this case, a read from cs:[B8000] reads directly from
the screen and a write to ds:[A0000] write to the video memory.

3.4 Using DPMI functions

In appendix B.3, you can get a list of all DPMI functions. The core of these DPMI functions
(the most common used functions) are explained in the following example: a simple graphic
module. Note, that the Pro32 dos extender does not provide all available DPMI functions. For
instance the raw mode switching service is not available.

The graphic module has the same format as any assembler source. We name the module
GRAPH.INC to demonstrate the diff erence between program and a module source. A
program can include the module with the following directive:

.INCLUDE graph. i nc

I want to start with the InitGra ph Procedure. This procedure should initialize the graphic
mode, set up a new descriptor for the graphic memory, install a new (user) defined graphic
palette and get the address for the internal character ROM. As we assume a real mode graphic
bios, you certainly see that we need a lot of real mode procedures to get the job one.

8.Why 32K is one of the FAQs. The answer is simple, 16K is too less and 64K would be too much. The
purpose of the dos extender was to use a minimum of DOS memory. Pro32 for optimizes the DOS me-
mory usage, i.e. when Pro32 has switched into protected mode, every code, that is not longer necessary
wil l be freed to safe memory.
9.Use this buffer with care, as extended dos functions my use the same buffer.

42 Dos Protected Mode Interface (DPMI)

(c) 1999 by Dieter R. Pawelczak, Munich

 To use the DPMI we can include the DPMI.INC file. The file contains a data definition field
for the communication with real mode. This field is a 52 byte long field, where real mode
registers, segment register, real mode flags etc are stored. These register storage are simply
called intedi , inteax , intes etc, because they usually are used with a real mode in t
instruction.

 Let us first include the graphic palette into the graph library. The palette is stored in the file
graph.pal. We can include this binary file with the .LOADBIN directive. The .LOADBIN is
similar to the .INCLUDE directive, it includes a binary file at the current offset in the code
segment. As we want to know the offset of our palette, we define a label, before we include
the palette (GRAPH.INC):

 .CODE

.PUBLI C colorpalette: ; declare label as pub l ic

.loadb i n graph.pal ; load VGA Palette into p r ogram file

We can now address the palette via the offset: OFFSET colorpalette 10. When we call
the real mode bios to use our graphic palette, we must copy the palette first to real mode. This
is always the problem when using real mode procedures. We should therefore try to use as
less as possible real mode functions! To copy our palette to a real mode area, we use the File
Buffer Area (a 32 KByte free data area in real mode)(GRAPH.INC):

Initgr aph PROC NEAR ; Copy Colorpallete Into DOS Memory

mov ax,[6] ; Real M ode File Buffer Selector

mov es,ax

mov edi,offset color palette ; access the colorpalette

mov ecx,84 ; number of entries / 4

INIT@PALLOOP:

mov eax,[edi+ecx*4] ; make full use of 32 bit register an d memory

mov es:[ecx*4],eax ; copy to real

loop INIT@PALLOOP

mov eax,[edi] ; copy the first 4 bytes as well

xor edi,edi

mov es:[edi],eax

After we initialized the graphic mode, we can install our own palette (GRAPH.INC):

mov ax,13h

int 10h ; init 320x 200x256 Color Mode

10.Note, that labels are declared as local inside procedures. To access a label global, you either declare
the label as public or declare the label as external identifier - see 8.2.2 Defining Labels on page 81

Using DPMI functions 43

(c) 1999 by Dieter R. Pawelczak, Munich

To install the palette, we use the real mode function AX=1012h of the int 10h. But how can
we use a real mode segment in protected mode? We can’ t! We have to use the real mode
register structure as defined in DPMI.INC. The real mode register structure will contain all
register values to perform a real mode function call . After the call, the resulting registers are
stored in the structure. DPMI offers two kind of real mode functions: interrupts and FAR
procedures. These are the DPMI service functions 0300h and 0301 (see appendix B3.20 /
B3.21)

Function call: INT 31h

AX = 0300h / 0301h

BX = interrupt number (BH must be 0) (ignored for 0301h)

CX = number of words to copy from the protected mode stack to the

real mod e stack

ES:EDI = selector:offset of real mode register transfer data structure

Results11:

ES:EDI = selector offset of modified real mode register transfer data

structur e

We can pass valus via the stack. If there are no values passed, please make sure, that CX is
zero! The DPMI service function expects a far pointer in ES:EDI to the real mode register
structure (GRAPH.INC):

mov ax,ds ;SetPalette

mov es,ax ; ES = DS !!!

mov edi,offset intedi ; EDI = OFFSET of Data Field

mov inteax,1012h ; BIOS func t ion AX=1012h

mov intebx,0 ; BX = first pa l ette register

mov intecx,112 ; CX = 112 co l ors total

mov intedx,0 ; DX = Offset o f the palette

mov ax,[8] ; Real Mode Segme nt To File Buffer

mov intes,ax ; ES = Real Mod e Segment of the palette

mov ax,300h ; DPMI Function 0300h: Call Real Mode Int

xor cx,cx ; No parameters on the PM Stack

mov bx,10h ; Interrupt Numbe r , BH must be 0

int 31h ; call DPMI function

It is a few instruction longer and a bit more confusing, but it works: The DPMI calls int 10h
in real mode with the expected parameters. We can read the return parameters as well from
this data field. Our next problem is to get the address of the video character ROM. We need
as return parameters the ES register (Segment) and the BP (OFFSET) register. Again, we
have to use the data field and the DPMI function 0300h (GRAPH.INC):

11.Make sure, that the execution of the real mode function does not effect the stability of the system. The-
re is no exception handling in real mode.

44 Dos Protected Mode Interface (DPMI)

(c) 1999 by Dieter R. Pawelczak, Munich

mov ax,ds

mov es,ax

mov edi,offset inted i ; make sure ES:EDI points to our st r ucture

mov inteax,1130h ; G et Offset of BIOS CHAR ROM

mov intebx,300h

mov ax,300h ; DPMI Function 0300h: Call Real Mode Int

xor cx,cx ; No para meters on the PM Stack

mov bx,10h

int 31h ; call real mode int 10h Function 1130h

xor eax,eax

xor ebx,ebx

mov ax,intes ; ax = real mode ES

mov bx,word ptr inte bp ; bx = real mode BP (intebp = EBP = dword!)

shl eax,4

add eax,ebx ; calcul ate linear address (Segment+Offset)

mov RomFont,eax ; sa ve address of ROM character set

We calculate the address of the character ROM from the real mode segment value and the
offset. We assume, that the physical address is equal with the linear address. The InitGraph
procedure is now nearly finished. Our last thing to do is to create a selector to access the
graphic memory(GRAPH.INC):

mov ax,2 ; create r eal mode selector

mov bx,0a000h ; for graphic screen

int 31h

mov GSEL,AX ; store selector

ret

ENDP I nitGraph

The DPMI function 0002h creates a selector from a real mode segement register value. This
function is very useful to translate segment value into protected mode descriptors / selectors.

Before we test our graphic module, I want to take a short look on the PutPixel function.
This function is now totally in protected mode (GRAPH.INC):

PROC PutPixel ; ECX: X EDX: Y BL : Color

push edx ; save edx

mov ax,gsel

lea edx,[edx*4+edx] ; edx:=edx*5

mov es,ax

shl edx,6 ; edx:=edx * 64 <= edx*64*5 = edx * 320

mov es:[edx+ecx],bl ; plot (edx*320+ecx)

pop edx

ret

ENDP Putpixel

Using DPMI functions 45

(c) 1999 by Dieter R. Pawelczak, Munich

We make, of course, profit of the fast 32 bit addressing. In combination with the l ea
instruction (Load Effective Address), we can multiply very fast. The lea instruction is used
to load address values. Whereas mov addresses the memory at the given address, l ea
calculates the address and returns the address in the destination operand:

lea edx,[edx*4+ edx] ; edx:=edx*5

will multiply EDX by 5 and store the result in EDX. This is much faster as the mul instruction
as it is processed in a single cycle (586).

Let us test our graphic module GRAPH.INC with a simple test program (TESTPAL.ASM):

.MODEL FLAT

.INCLUDE GRAPH. I NC

.CODE

START:

call initgraph

mov edx,0

@Loop:

mov ecx,0

@LineLoop:

mov ebx,edx

shr ebx,1

add ebx,ecx

shr ebx,2

call putpixel

inc ecx

cmp ecx,320

jb @LineLoop

inc edx

cmp edx,200

jb @Loop

mov ax,4c00h

int 21h

END START

END

In general, the dos extender does the complete setup, mode switch and provides us with all
necessary descriptors. Basically we don’ t need any DPMI calls except for real mode calls and
interrupt settings. Chapter 7 describes direct harware access using DPMI services.

46 Dos Protected Mode Interface (DPMI)

(c) 1999 by Dieter R. Pawelczak, Munich

Definition of f loating point numbers 47

(c) 1999 by Dieter R. Pawelczak, Munich

4. Co-Processor programming

In some cases integer values, as they can be presented by the processor’s registers, are not
able to solve a mathematical problem. We need as well floating point operations. With the
80486 DX processors the FPU is integrated in the processor. Therefore Pass32 treats FPU in-
structions equal to CPU instructions.

4.1 Definition of f loating point numbers

The FPU provides 8 register which use 10 bytes to store floating point numbers. There are ba-
sically three ways to present numbers inside a computer: integer numbers, fixed point and
floating point numbers. A fixed point number is similar to an integer number, it’ s valus is
simply shifted by one, two or more decimal stellen. The integer number 100 could also pre-
sent 1.00 or 10.0 or 0.100. Fixed point numbers are used for money calculations, etc. A fixed
point number has the same problem as integer numbers have: the limit of the range. If we take
a 16 bit fixed point number with two digits after the point, we have a range from -327.68 to
+327.67. This is not much, if we think of money for instance. A floating point number con-
sists of two values: a mantisse and an exponent. The exponent presents a binary exponent, e.g.

multiplication factor: the mantiss e * 2 exponent gives the actual value of the number.
The mantisse is always normized as a real number between 0 and 0.99999... A real number in
this case is defined as a binary number which is defined as:

x = b 0 * 1/2 + b 1 * 1/4 + b 2 * 1/8 + b 3 * 1/16 + b 4 * 1/32 ...

Now we have two values, which define the number range. The first value, the mantisse defi-
nes how many valid decimal digits our number provides - you can imagine, that a mantisse of
7 bit gives a maximum resolution of a 1/256, which is 0.00390625, i.e. you have a maximum
of two valid digits. Now the exponent defines the range of the number. It does not enlarge the

resolution, but imagine an exponent of 10 bit: your number can take values from 2-512 to

2+511; this results in a range from about 10-154 to 10+153. The IEEE has normed a set of f loa-
ting point numbers and defined the values for mantisse and exponents. The FPU acts accor-
ding to these standards and provides three kind of f loating point numbers: single (32 bit),
double (64 bit) and temporary 1 (80 bit):

1.the 80 bit temporary number is actually not according to the standard. It is used internally for the calcu-
lations.

48 Co-Processor programming

(c) 1999 by Dieter R. Pawelczak, Munich

Tab. 4.1 Range of float numbers

Floating point numbers provide a huge range, but they also have one big disadvantage: The
actually provide only as many valid digits as the mantisse provides bits, so it is a valid opera-
tion to subtract two floating point numbers with totally different exponents. The problem is,
the result is not correct! Therefore the FPU internally always calculates with the temporary
format, to avoid such errors. Nevertheless, as soon as the number values differs more than

1020, the FPU can’ t work with them.

4.2 The FPU internals

The FPU is stack based, i.e. similar to the processor stack, the FPU provides a stack to store
its operands. The top of the stack is similar to the ackumulator of the processor: the FPU al-
ways uses the top of the stack as one of the operands and/or as result register. The FPU pro-
vides 8 registers, i.e. the stack is 8*10 bytes deep. The stack pointer arithmetic is modulo 8,
i.e. when the stack pointer points to the 9th element, it points again to the stack top.

The FPU provides a 16 bit status register.

.

Tab. 4.2 FPU Status Register

B: Busy is set, if the FPU is currently calculating a numerical expression. Note, that the
FPU operations take longer than standard processor instructions.

ST: Stack pointer. The value 0-7 defines the top of the stack.

Execption Flags: PE: resolution error, UE underflow, OE overflow, ZE, division by zero, DE
operand not normalized, IE invalid operation1.

IR : interrupt request - set in combination with one of the exception flags.

C3,C2,C1, C0: status bits of the stack top. In C3, C0, you’ ll find the result of a comparison:

1.The FPU can invoke an exception (int 10h). The execption handler should analyze the cause of the ex-
ception by examine the status word.

Single 1.5E-45 3.4E+38 7-8 digits

double 5.0E-324 1.7E+308 15-16 digits

temp. 3.4E-4932 1.1E+4932 19-20 digits

Bits 1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

B C
3

ST C
2

C
1

C
0

I
R

- P
E

U
E

O
E

Z
E

D
E

I
E

The FPU internals 49

(c) 1999 by Dieter R. Pawelczak, Munich

Tab. 4.3 Comparison of Floating Point Numbers

Since the 80486, the processor has direct access to the FPU, so you can for instance directly
load the status word into the AX register with FSTSW AX will store the status word into AX.
Luckily, the status bits are equivalent with the carry and zero flag of the processor status, so
a SAHF instruction will l oad the FPU status into the CPU flags and you can directly use the
conditional jump instructions to compare two float numbers, e.g.:

fcom ST1

fstsw AX

sahf

jg is_greater

The FPU provides a 16 bit control register:

.

Tab. 4.4 FPU Status Register

The exception mask flags: PM resolution error, UM underflow error, OE overflow error, ZM di-
vision by zero, DM operand not normalized and IM invalid operation. If a bit is set, the excep-
tion will not invoke an interrupt request.

IEM: If the interrupt enable mask is set, the FPU will not trigger an interrupt.

RC: The round control defines how the FPU rounds results: RC = 00 rounds to the next (pos-
sible) value, RC = 01 rounds downwards, e.g. to minus infinite, RC = 10 rounds up-
wards, e.g. to (positive) infinite, RC = 11 rounds towards zero. RC = 00 is the standard
and is most exact.

PC: defines how the FPU should internally round values: PC = 00 rounds to temporary (80
bit numbers - standard), PC = 01 rounds to single, PC = 10 rounds to double numbers.

IC : The infinite control defines how the processor treats infinity: If I C = 0 positive and ne-
gative infinity is equal (all real numbers lie upon a circle), if IC = 1, the FPU provides
positive and negative infinity (all real number lie upon a line).

fc om St1 C3 C0

ST>ST1 0 0

ST<ST1 0 1

ST=ST1 1 0

Bits 1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

- - - I
C

RC PC I
E
M

- P
M

U
M

O
M

Z
M

D
M

I
M

50 Co-Processor programming

(c) 1999 by Dieter R. Pawelczak, Munich

4.3 Draw Circle Function with the FPU

We want to add a function to our graphics module, which is able to draw circles. We use the
simple mathematical expression to create the circle:

The first thing we do in our procedure is to define data. Data which is defined within the
PROC and ENDP of a procedure can be optimized with the .SM ART option (GRAPH.INC):

PROC Ci rcle ; CX:X DX:Y SI:RadiusX DI:Radius Y BL:Color

.DATA

CircleR1 dw 0

CircleR2 dw 0

CircleMX dw 0

CircleMY dw 0

CircleX dw 0

CircleY dw 0

CircleStart re 0

CircleResolution re 0.02

As you can see we define also two floating point constants: CircleStart and Circle -
Solution . The CircleSolution is the increment for ϕ, Circle Start represents ϕ.

The registers are called ST(0) = ST (stack top) to ST(7) . As the FPU is a stack oriented
processor, we therefore call the FPU registers also stack. We can store results and constants
on the stack (using the stack is faster than using memory references!).

The first thing we do is to store our parameters in variable identifiers. Then we use directly
the FPU to set ϕ to zero(GRAPH.INC):

.CODE

mov CircleR1,si

mov CircleR2,di

mov CircleMX,cx

mov CircleMY,dx

fldz ; load stack t op with zero

fstp CircleStart ; store zero to CircleStart and remove i t from the

stack

fld CircleResolution

y My Ry+ ϕ()cos⋅= x Mx Rx+ ϕ()sin⋅=

Draw Circle Function with the FPU 51

(c) 1999 by Dieter R. Pawelczak, Munich

With the last instruction we store Ci r c l eSol ut i on on the stack. We keep this floating
point constant on the stack as long as we calculate with it. Note, that we load the constant at
first and that we load this constant only once, because when it is on the stack, we can use the
stack directly. The first register (stack top) contains now 0.02.

We initialize CX with 2*ϕ/0.02 = 314; CX is again our loop register (GRAPH.INC):

mov cx,314 ; ’Pi’

CircleLoop:

push cx ; Save cx

fild CircleR2 ; ST(2)

fild CircleMY ; ST(1)

fld CircleStart ; ST(0)

We load the integer variables Ry (radius) and MY (center position y) with the FILD (FPU In-

teger LoaD) instruction. At last we load our ϕ. As a comment I added the current register lo-
cation of the FPU. Note that ST(3) is our 0.02 constant. We want to calculate y. This is done
by the following sequence (GRAPH.INC):

fcos ; calculate the cosine of ϕ = ST(0) ; result in ST(0)

fmul st,st(2) ; multiply ST(0) with R2

fadd st,st(1) ; add MY to ST (0)

fistp CircleY ; store the re sult as integer value in CircleY

;and remove it f r om the stack

fcompp ; (compare and) remov e MY and R2

mov dx,CircleY ; store the r esult in DX

Calculating the X coordinate is done in the same way (GRAPH.INC):
fild CircleR1 ; ST(2)

fild CircleMX ; ST(1)

fld CircleStart ; ST(0)

fsin fmul st,st(2)

fadd st,st(1)

fistp CircleX

fcompp ; ST(0) is now 0.02

mov cx,CircleX ; store the r esult in CX

fld CircleStart

fadd st,st(1) ; + CircleReso l ution

fstp CircleStart ; store and remove ϕ

call putpixel

pop cx

loop CircleLoop

fcompp ; remove CircleResolut i on

ret

52 Co-Processor programming

(c) 1999 by Dieter R. Pawelczak, Munich

ENDP Ci rcle

Adding to the Circle Solution the 0.02 factor, we don’ t need to load the constant from
memory, because the constant is still on the FPU stack! To remove values from the stack we
can either pop the values, using fstp (FPU STore and Pop) or using the fcomp (compare
and pop) instruction to remove the values from the stack.

We will t est the circle procedure with CIRCLE.ASM. The demo draws randomly circles in
different colors on the screen. For the random generation, we use the function SystemGe-
tRando m from SYSTEM.INC. The function creates random numbers in the range of
1..65535, according to the value of EAX.

The First DLL 53

(c) 1999 by Dieter R. Pawelczak, Munich

5. Wr iting A DLL L ibrary

In the mean time, DLL has become a common programming methods. Although the names
are different, all modern operating systems provide kind of DLLs. DLL stands for dynamic
link library, i.e. the library is linked at run time and not during the assembler / linker process.
There are several advantages: first, several application can share the same library, second, the
library can be adapted to the hardware without changing the code of the application and third,
the DLL can be load and removed from memory according to its dynamical needs and memo-
ry requirements.

A DLL code is typically load only once into memory. Every application shares the same code.
Every application reserves its own data area for the DLL, so that the DLL can hold different
data for different applications.

The Pass32 Assembler provides a similar mechanism for protected mode programs. The as-
sembler can create pure binary with an interface header. The interface header can be included
in an application, so that the program is linked as if it uses a standard module. During the run
time, the DLL is load and used by the application.

This Chapter describes the basic means of DLL programming. Our gaol is to create a simple
graphic DLL. But before we start, we wil l first have a look on a simple example.

5.1 The First DLL

Our first DLL should simply demonstrate the method of DLL programming. The DLL con-
sists of four public procedures, which simply print a message on the screen, when the are cal-
led. This is the interface of our first DLL (TESTDLL.ASM):

.MODEL DLL

.INTERFACEb

PROC TestDLLMai n OFFSET DLLMain

PROC TestDLLPro c1 OFFSET DLLProc1

PROC TestDLLPro c2 OFFSET DLLProc2

PROC TestDLLPro c3 OFFSET DLLProc3

The interface part ends with a .D ATA, . DATA?, . CODE or a . CONST directive. The only
elements of the interface are procedure definitions and their corresponding procedure offsets.
The interface is included in the main program. When a DLL is load, the interface is load from
the DLL. You can now call any procedure defined in the interface from the main program. If

54 Writing A DLL L ibrary

(c) 1999 by Dieter R. Pawelczak, Munich

you need more memory to install another DLL you can free the DLL until you want to use
one of its procedures again. We use the .FAR1 directive so that we can call far procedure with
a forward reference. The order of the DLL procedures is free. Note that you must declare pu-
blic procedure as FAR (TESTDLL.ASM):

.CODE

.FAR

PROC DLLMain FAR

push ds

mov ds, word ptr cs : [0] ;load DS selector

mov edi,offset DLLMe sg

mov bh,14

mov TextColor,bh

call systemwriteLn

pop ds

ret

ENDP DLLMain

As you see, the DS selector is saved and restored in the procedure. You should not forget, that
when calli ng the DLL form the main program, the DS selector usually points to the segment
of our main program. If we want to access DLL data, we must get the ’DLL - DS’ fr om the
DLL interface2. As you can see from 8.5 The DLL model on page 95, the DLL - DS is stored
at CS:[0] .

A DLL typically has no heap memory. If you want heap memory, you must define a memory
value with the .MEM directive.

Now we want to test the DLL. Look at the short demo program (DLLTEST.ASM)

.MODEL FLAT

.inclu de TESTDLL.ASM

DLL_ERROR .EQU 0

.DATA

DLLname db ’TESTDLL. DLL’,0

ErrorMesg db ’ERROR: TSTDLL.DLL not found!’,0

ErrorMesg2 db ’ERROR : Too less memory available!’,0

As you can see, we simply include the DLL. This does not mean of course, that the whole
DLL code is included - this would make no sense; only the interface part of the DLL is inclu-
ded. In our example, the interface defines 5 variable identifier:

1.As Pass32 uses the TINY or FLAT memory model, Pass32 assumes per default near subroutine calls,
i.e. a call uses a 16 bit (USE16) or 32 bit (USE32) offset. As a DLL is load into a different segement, its
functions have to be called via a 16:16 (USE16) or 16:32 (USE32) bit pointer. The .FAR directive tells
the assembler to assume far subroutine calls as default.
2.You can easily access data from the main program by not loading DS, but using ES to access DLL data.

The First DLL 55

(c) 1999 by Dieter R. Pawelczak, Munich

TESTDLL DW ?

TestDLLMain DF ?

TestDLLProc1 DF ?

TestDLLProc2 DF ?

TestDLLProc3 DF ?

The first identifier is not part of the interface, the first identifier is simply a name for the in-
terface. This name is taken from the source name: TESTDLL.ASM. You’ ll need this identifier
for the LoadDLL , InitDLL and FreeDLL function. This identifier is a kind of identifi-
cation for the DLL. This identification needn’ t be equal with the file name ’TESTDLL.DLL’ !
When the interface part of two different DLLs is equal, you can load both DLLs in the same
interface. This might be necessary, when you want to address different graphic adapters, or
different sound boards. You write for each configuration a different DLL, but all with the
same interface part. This means: the public procedure identifiers must be equal and the order
of the interface. You can now include one interface in your main program, and according to
your hardware configuration at run time, you load only the DLL required. Automatically your
program is configured correctly for the available hardware.

To load the DLL we can use this simple sequence (DLLTEST.ASM):

.CODE

mov esi,offset TESTDLL ; OFF SET TO DATA BUFFER TESTDLL

mov edi,offset DLLname ; OFF SET TO Filename

call InitDLL

call loadDLL

jc dllnotfound

The functions LoadDLL , InitD LL and FreeDLL are part of the DLLSYS.INC file. This
file is automatically added to your source file, when you include any DLL source file. You
use the DLL ’ id’ and the offset of the filename as parameters for the loadDLL function. The
InitDLL function simply needs the DLL ’ id’ . You should initialize all DLL at the beginning
of your program to avoid calls to nowhere = exceptions! When you free a DLL, the DLL is
automatically initialized. Any call is useless, but does not harm the system.

The loadDLL function first searches the current directory, if the DLL is not found, it scans
the whole system path set by the $PATH environmental variable. Note, that the function may
load an older version of the DLL, as it maybe found via the $PATH variable. It sets the carry
flag if any error occurs and returns an error number in the AX register:

AX=1 Memory Error AX=0 Load Error

If you don’ t want to handle the error messages by yourself, you can set a label:
DLL_ERROR .EQU 1

56 Writing A DLL L ibrary

(c) 1999 by Dieter R. Pawelczak, Munich

The loadDLL function then automatically aborts if an error occurs. After a successful loa-
ding of our DLL we can use the DLL functions as if they are part of our program (DLL-
TEST.ASM):

call TestDLLMain

mov edi,offset Mesg1

mov bh,13

mov TextColor,bh

call systemwriteLn

call systemgetkey

call TestDLLProc1

call TestDLLProc2

mov edi,offset Mesg1

call systemwriteLn

call systemgetkey

call TestDLLProc3 .. .

You must assemble both files: TESTDLL.ASM and DLLTEST.ASM. To create a DLL you
must run PASS32 with the /DLL option:

PASS32 TESTDLL /DLL

PASS32 DLLTEST

You can alter the DLL and restart DLLTEST. You will see the effect! You can use the internal
debugger for DLLs. Why don’ t you try:

PASS32 TESTDLL /D /DLL

and run DLLTEST again?

5.2 A Graphic DLL

The first example should gave us enough information to create a more complex DLL. The
fine thing about a DLL is, that you can easily create a DLL from an assembler module. You
can even create a DLL from a complete assembler program. You simply add an interface to
your file! This is the interface of our graphics DLL (GRAPHDLL.ASM):

.MODEL DLL

.INTER FACE

PROC I nitGraph OFFSET Initgraph

PROC PutPixel OFFSET PutPixel

A simple Windows DLL 57

(c) 1999 by Dieter R. Pawelczak, Munich

PROC GetPixel O FFSET GetPixel

PROC OutChar OF FSET OutChar

PROC OutTextXY OFFSET OutTextXY

PROC Circle OFF SET Circle

PROC Line OFFSE T Line

PROC Rectangle OFFSET Rectangle ...

We must add the FAR directive in every public procedure definition and - be careful, we must
add loading and restoring the data descriptor if we want to access DLL data!

Look at the example CIRCLE2.ASM. At the beginning we have the same code sequence as
in our DLLTEST demo. We load the DLL and check for an error, if no error occurs, we can
use the graphic routines just as they had always been part of our program. For clear pro-
gramming you should write a short module, which does the whole including and testing.

You should have a look at the GRAPHIC.INC module. The module offers a lot of graphic
functions and addresses the graphic screen via dif ferent graphic DLLs: VGA, XVGA,
VESA1.2 and VESA2.0 drivers.

5.3 A simple Windows DLL

Although this book does not cover Win32 programming, it should be stated, that Pass32 can
also create Win32 DLLs. The difference of a Win32 DLL is, that it shares the same code seg-
ment with the main program. A DLL function therefore can not be declared as far. When
Windows loads an application, it creates a virtual 4G address space for this application. Every
DLL, that is required by the application is mapped into the virtual address space. Every appli-
cation is (in principle) separated from the other applications and should not be able to harm
other applications. When we create a DLL with Pass32, we use the same interface definition
as for a Pass32 DLL. Whereas the Pass32 DLL uses a 256 byte long interface header, Pass32
creates an export table for the Win32 DLL according to this interface header. Note, that a
Win32 DLL needs an intializer, which is basicall y the first function of the DLL. The init
function needs to return zero to tell the windows desktop system, that the loading was suc-
cessful.

5.4 A shor t chapter on OVL wr iting

Pass32 provides two additional li nker forms: pure binaries and overlays. Pure binaries can be
used for embedded system programming or microcontroller programming, which are based on
an x86 core. Pure binaries can use the .ORG directive, to define the offset address of the pro-
gram code. The .ORG directive must be used prior to the first .CODE or .CONST definition.
Another linker option is the export as overlay. An overlay takes the same 256 byte interface

58 Writing A DLL L ibrary

(c) 1999 by Dieter R. Pawelczak, Munich

as a DLL, with the difference, that the overlay is load into the same segment. Therefore an
overlay must be assembled at a different start address than the main program. A DLL is load
in a totally new segment. When you free the DLL, all memory and descriptors will be freed
as well . An overlay is load directly into your code segment. This has one advantage, and a lot
of disadvantages: The advantage is, that overlay and main program share the same heap me-
mory. It is easy to handle data with an overlay - DS and CS must not change, you can use a
32 bit offset to address data instead of an 48 bit pointer. But overlays are limited by the pro-
gram heap memory, and you must define the location of the overlay while you are coding
your program. You can compare the overlays with Windows’ Drivers. You can write special
hardware driver as overlays, and load the specific driver at run time. Especially for drivers the
memory sharing with the main program is useful.

The only difference between an OVL source and a DLL source is the .ORG directive in the
interface part. The simple overlay example has the following interface part (TESTOVL.ASM):

.MODEL OVL

.INTER FACE

.ORG 5 0000h

PROC TestOVLMain OFFSET OVLMain

PROC TestOVLProc1 OFFSET OVLProc1

PROC TestOVLProc2 OFFSET OVLProc2

PROC TestOVLProc3 OFFSET OVLProc3

The .ORG directive sets the code offset. Without this directive, the overlay would get an off-
set of 00000100h - the overlay would overwrite the main program, when it is load!

You must make sure, that the offset for the overlay is unused memory heap of your program!

The usage of an overlay module is again similar to the usage of a DLL module: You include
the interface part of the OVL file with .INCLUDE . When an OVL module is included, the
file OVLSYS.INC is automatically appended to your source. This module offers two main
functions: I nitOVL and LoadOVL. You should run the InitO VL function at the begin-
ning. LoadOVL loads the overlay directly into the code segment, at the specified .ORG
address! This is the sequence to load an overlay:

.CODE

mov esi,offset TESTO VL ; OFFSET TO DATA BUFFER TESTOVL

mov edi,offset OVLna me ; OFFSET TO Filename

call InitOVL

call loadOVL

jc OVLnotfound

The binary format 59

(c) 1999 by Dieter R. Pawelczak, Munich

The loadOVL functions sets the carry flag, if the overlay is not found. When the overlay is
load, you can treat any overlay function as part of the program.

5.5 The binary format

In general, Pass32 is used to create direct executables, i.e. applications with the extension
.EXE or .COM. Sometimes, it is required to get a plain binary file. For example, when x86
Software for embedded systems is written for ROM usage. With the -f option, Pass32 can
create a binary image. In combination with the .ORG directive, the start offset can be defined.
Note, that Pass32 supports only one segment, i.e. a flat segment.

60 Writing A DLL L ibrary

(c) 1999 by Dieter R. Pawelczak, Munich

61

(c) 1999 by Dieter R. Pawelczak, Munich

6. Macro Power

This Chapter describes programming means of the Pass32 assembler, which are generall y
mode independent: Macros. A macro is a collection of instructions, directives and assembler
commands, which can be combined in one macro. The ’power’of a macro is, that you can
once define a complex set of instructions and then use them easily in your code. What might
look like pascal or basic can be correct assembler code:

.CODE

Writeln(’Hello, World’);

Exit(0);

END

Writeln and Exit are macros. First, we have a look at the macro exit. This is a common
macro type. The macro simple stands for a set of assembler instructions. Instead of writing an
exit sequence, or calli ng an exit procedure, we can simply use the exit macro. But as you see,
a macro can do more than inserting assembler instructions. A macro can use Pass32 directives
as well. So we can define data storages with macros, use conditional assembly etc. And
exactly this is, how we can create a syntax like Writeln(’Hello, World’).

Let’s have a look at the example file MACRO.ASM. In the main program, we have a basic like
syntax:

.CODE

START:

Print(’********** HELLO! **** * ********’)

print(’This is a simple macr o example!’)

print(’********************** * ********’)

PrintError(’EOF Demo reached. ’)

END START

END

Print and PrintError are macros. Now, lets have a look at the macro Print :

.MACRO Print(Me ssage)

Create_Message(.LOCAL MESG,Me ssage)

Writeln(offset .LOCAL MESG)

ENDMACRO

62 Macro Power

(c) 1999 by Dieter R. Pawelczak, Munich

Obviously, the macro uses again other macros. We don’ t learn much from this macro. But we
can see, that we can pass the parameter to another macro. Obviously Create_Message is
a macro, which generates a data buffer with the contents of our message. So let’s look at the
macro Cr eate_message :

.MACRO Create_Message(name,string)

.DATA

name db string,0 ; create string message

.CODE

ENDMACRO

This macro produces data and not code. The parameter string contains our message. But what
is the parameter name for? Quite easy, to access a data storage, we need an identifier, a name
for the data storage. The name comes from the macro print: As we see, Create_Messa ge
is called with the parameter .LOCAL MESG. The name of the data storage is MESG. As we
want to use the macro print more than once, the identifier name must be unambigous. This is
done by the . LOCAL directive. Inside a macro the .LO CAL directive simply extends the
identifier name by a hex number, so instead of MESG, our parameter is something li ke:
@HHHHHHHHMESG, where HHHHHHHH stands for an individual hex number.

The other macro used by Print is WriteLn :

.MACRO WRITELN(stringoffs)

WRITE(stringoffs)

mov dl,10

mov ah,2

int 21h

mov dl,13 ; do Carr i age Return

mov ah,2

int 21h

ENDMACRO

The parameter stringoffs is passed to the macro Write . The rest of the macro simply
prints #10,#13 via standard output. As we can see from the Print macro, the parameter
st r i ngof f s is the same as the first parameter to Cr eat e_Message. We first create a
data storage and then call a function to display this data storage. The macro Write is simply
a function to display the string via DOS:

.MACRO WRITE(stringoffs)

mov edi,stringoffs

.LOCAL @start:

mov dl,[edi]

cmp dl,0

je short .LOCAL @end

mov ah,2

63

(c) 1999 by Dieter R. Pawelczak, Munich

int 21h ; display string cha r by char

inc edi

jmp .LOCAL @start

.LOCAL @end:

ENDMACRO

Interesting is the use of . LOCAL inside of this macro. We need . LOCAL to def ine
unambigious label names. Without .LOCAL, the second use of this macro would lead to the
error: ’duplicate label’ , because @start would have been defined already. With .LOCAL we
create macro individual labels. Again, the labelname is extended by an individual hex
number.

Now, what happens when we cal l the macro pr i nt l i ke this: pr int (’He l lo ,
World’) ?

print(’Hello Wo r ld’)

| ======> Creat e_Message(.LOCAL MESG,’Hello World’)

| ======> .DATA

@00000001MESG DB ’ Hello World’,0

.CODE

| ======> Write Ln(offset .LOCAL MESG)

| ======> Write(offset .LOCAL MESG)

| ======> mov edi, @00000001MESG

@00000002@start:

mov dl,[edi]

cmp dl,0

je short @00000002@end

mov ah,2

int 21h ; display string char by c har

inc edi

jmp @00000002@start

@00000002@end:

mov dl,10

mov ah,2

int 21h

mov dl,13 ; do Carriage Return

mov ah,2

int 21h

With this knowledge, we can write totally different assembler code. And exactly that’s the
reason why Pass32 comes with a macro library SYSTEM.MAC, which presents standard I/O
functions as macros (an extension of SYSTEM.INC). Instead of a call to the function
SystemWrit eln , you can simply use the Macro WriteLn(String) . Look at the very
short demo file MACRO2.ASM:

64 Macro Power

(c) 1999 by Dieter R. Pawelczak, Munich

.inclu de system.mac

.CODE

start:

call systemclrscr

print(15,6,’******** * *********** MACRO 2 ****************** * **’)

print(15,7,’* *’)

print(15,8,’* *’)

print(15,9,’* *’)

print(15,10,’******* * ************ MACRO 2 ***************** * ***’)

color(14,0)

print(31,8,’Simple M acro Demo’)

color(14,7)

print(0,0,’ Macro2.A SM ’);

print(0,24,’ Press a ny key to continue ’);

call systemgetkey

color(7,0)

print(0,24,’ ’);

gotoxy(1,12);

exit(0)

END st art

END

As you can see, it is a combination of macros and function call s. We learned quite a lot
advantages of macros. But I should mention the disadvantage, too. A macro is not a function,
the usage of a macro is not a call i nstruction, but the insertion of the macro instructions. If you
for example convert the whole SystemWriteln function into a macro, your program will get
quite long, if you often call this macro. So you have to decide between a fast execution
(without overhead li ke call and ret) and a smaller code. You should therefore use macros
either to simplify your source code, for example Writeln(’Hello, World’) , to gain
speed by executing a ’ fast’ function call , or to combine a small number of assembler
instructions, which is used quite often, for example exit(0) .

Protected Mode Mouse Driver/Handler 65

(c) 1999 by Dieter R. Pawelczak, Munich

7. Access to Hardware from Protected
Mode

The DPMI interface allows to use all BIOS and real mode resources from protected mode.
Unfrotunately, the DPMI is not designed to emulate this resources from protected mode. The-
refore, a call to a mouse driver function e.g., is actually a call to real mode. Even every time,
the mouse moves, the real mode mouse handler is invoked. Another example is VESA gra-
phics. When we use VESA graphics according to Version 1.2, we have to invoke real mode
functions to move the graphic window - although we can address the whole address space, we
are restriced to a 64K graphic page. The Vesa standard V2.0 solved this problem: From 32 bit
protected mode it is now possible to access the complete video ram.

7.1 Protected Mode Mouse Dr iver /Handler

This chapter describes the implementation of a protected mode mouse driver. We can of cour-
se use the real mode driver int 33h to access the mouse, but this would mean, that our pro-
cessor is running mainly in real mode. We want to access the mouse driver directly. This
means we install our own mouse driver, which is totally written in protected mode. For the in-
initialisation and the mouse detection, it still needs a real mode mouse driver. As a PS2 mouse
would additionaly require a new keyboard handler, the demo supports only a serial mouse on
COM1 or COM2.

The real mode mouse driver is a TSR program. It installs according to the mouse port COM1
or COM2 (or PS/2 mouse), an interrupt service routine. This interrupt routine is called every
time, the serial mouse sends some information over the port. In words, every time we move
the mouse or press a button, the real mode procedure is called. If we write our own interrupt
service routine, we would get two effects at once: The processor mustn’ t switch to real mode
and - every mouse information is directly available - we do not even need to call the i nt
33h ! With Pro32 we can install a hardware interrupt service routines directly with the DPMI
Function 0205h. When an HW interrupt occurs, our installed procedure is called; when an ex-
ception occurs, the correspondending exception handler routine will be called. As long as we
do not create our own exception handling, Pro32 does the exception handling. For more infor-
mation about exception handling, you can look at the Pro32 demo file DEMOEXC.ASM - this
example detects a division by zero with a user defined exception handler...

The following code installs our own mouse interrupt service routine with function 0205h:

PROC InitMouseC om1 NEAR

mov cx,cs

mov edx,OFFSET Com1Mouse

mov ax,0205h ; set pm

int mov bx,0ch ; int 0ch

66 Access to Hardware from Protected Mode

(c) 1999 by Dieter R. Pawelczak, Munich

int 31h ; set new i nterrupt

ret

ENDP I nitMouseCom1

We don’ t need to save the old interrupt state, because all protected mode interrupts are inva-
lid, when we return to real mode. As the mouse interrupt is an hardware interrupt, we need to
send an EOI (End OF Interrupt) to the interrupt controller at the end of our routine:

PROC Com1Mouse

push eax

mov al,20h

out 20h,al

pop eax

iret

ENDP Com1Mouse

The next problem is the communication with the mouse. We assume that a real mode mouse
driver had been load already, so we don’ t need to initialize the mouse, the port, the interrupt,
etc.

A MS compatible mouse sends three bytes for a movement, or a button click. The first byte
has information of the move directions and the button, we realize the first byte, because the
6th bit is always set. Our service routine does not wait for all three bytes - we receive a single
byte and wait until we have got all three bytes. Here is a li st of information in these bytes:

Tab. 7.1 The Serial Mouse Protocol

L stands for the left mouse button and R stands for the right mouse button (1 means pressed).
X describes the X-increment between the last calls and Y the Y-increment. X and Y are si-
gned 8 bit numbers. The first byte is indicated by ’01’ .

After we received the third byte, we can analyse the information, and store the information in
global data:

.PUBLI C .DATA

MSX DW 100 ; mouse x position

MSY DW 100 ; mouse y position

MSMAXX DW 640 ; max mouse x position

MSMAXY DW 400 ; max mouse y position

MSLEFT DB 0 ; left mouse button

MSRIGHT DB 0 ; righ t mouse button

1st byte 2nd byte 3rd byte

0 1 L R Y Y X X 0 0 X X X X X X 0 0 Y Y Y Y Y Y

Vesa 2.0 graphic driver 67

(c) 1999 by Dieter R. Pawelczak, Munich

When our service interrupt is installed, we can access any mouse data through these identi-
fiers. We add to our service routine a dummy procedure which should draw the mouse. In our
main program we can define a procedure which draws the mouse on screen, depending on the
video mode of the program, We replace the dummy procedure in our mouse driver - and our
mouse support is perfect!

The example files MSDEMO.ASM and MSDEMO2.ASM test our protected mode mouse driver.
MSDEMO2.ASM uses the GRAPHDLL.DLL we created in 5. Writing A DLL Library on page
53, to display graphics.

7.2 Vesa 2.0 graphic dr iver

The VESA 2.0 extensions are mainly concerning the protected mode support for graphic ad-
aptors. In the mean time, modern operating systems do not use real mode code to access the
video screen. This allows on the one hand to access segments above 1MB and on the other
hand, segments are not restricted to be 64K in size. VESA 1.2 solved this problem by splitting
the video memory in 64K pages, which are mapped to the 64K segment at A0000h. With
VESA 2.0, this window management is obsolete, because the graphic adaptor can map the
whole video memory into the 4G address space. If VESA 2.0 is installed, we simply need the
physical address of the video memory, use the VESA function to enable the graphic mode.
Once the graphic mode is set up, we can access thw whole screen via a video selector, or the
zero selector for instance.

A common pitfal is, that the physical address is usually not equal with the linear address, due
to the virtual management1. DPMI provides a function call to determine the linear address of
a physical address. This function is required, if we want to access the VESA graphic in a Win-
dows DOS emulation:

Function call: INT 31h
AX = 0800h
BX:CX = physical address i n memory
SI:DI = size of region in bytes

Results, if successful:
carry flag clear
BX:CX = linear address

The following steps are required to access the video ram of a VESA2.0 adaptor: First, we
have to learn the actual physical address. Then we map the original physical address to a li-
near address. Now we can address the video ram through the linear address. The following
code example will calculate the linear address of the video ram for a VESA2.0 graphic card:

1.Pro32 disables virtual mangement when possible, because it slows down the processor’s speed.

68 Access to Hardware from Protected Mode

(c) 1999 by Dieter R. Pawelczak, Munich

MOV InteAX,4F01h

 MOV InteCX,101h

 MOV AX,CS:[8] ; Pro32 real mod e buffer segment value

MOV IntES,AX

MOV InteDI,0 ; Offset 0

 MOV AX,DS

 MOV ES,AX

MOV AX,300h

MOV BX,10h

MOV CX,0

MOV EDI,Offset InteD I

INT 31h ; call VESA func t ion: Get Mode Info

MOV FS, word ptr cs : [6] ; Pro32 real mode buffer selector

MOV CX,FS:[40]

MOV BX,FS:[42]

 CMP dword ptr fs:[4 0],0 ; linear frame buffer address

je XX ; if zero -> Error!

 test byte ptr fs:[0] ,128 ; support for VBE 2.0?

 je XX ; no -> Error!

 MOV SI, SIZEX*SIZEY/ 65536 ; graphic screen size

MOV DI, SIZEX*SIZEY% 65536

MOV AX,0800h ; get linear address

 int 31h

MOV word ptr FrameBu f ferBase,CX

MOV word ptr FrameBu f ferBase+2,BX

Defining Code, Data and Memory Model 69

(c) 1999 by Dieter R. Pawelczak, Munich

8. The Pass32 Assembler

This Chapter gives an overview on the features of the Pass32 Assembler. It describes all as-
sembler directives and the general layout of assembler programs.

8.1 Defining Code, Data and Memory Model

 Pass32 supports two main memory models: The Dos compatible TINY model which is used
for .COM executables and the Dos Extender compatible FLAT memory model. The TINY
model is restricted to a 64 Kbyte segment for code, data and stack. The FLAT memory model
can use up to 4 Gigabytes code and data. The creation of .COM files is useful, if you like to
create DOS oriented code (file transfer, file filters etc). The flat memory model is used for
working with a great amount of data, for example for a graphic oriented system. It is the de-
cision between real and protected mode, between 16 and 32 bit!

 You define the memory model with the .MODEL directive. You should always use this direc-
tive! This directive defines the segement type attribute (USE16 or USE32).

8.1.1 Defining the TINY model:

Total Segment Size 64K for code, stack and data. The memory model is defined by writing:

.MODEL TINY

Tab. 8.1 shows the typical layout of a .COM program.

Tab. 8.1 The Tiny Model

The complete program cannot exceed 64K. The shaded sections in the table are actually part
of the program binary. The other parts are created during the run time by the operating system
(PSP, STACK) or by the program itself (.DATA?). The stack starts from 0ffffh downwards.
You must make sure, that your program has enough stack size. A good idea is to allocate an
extra 64K for the stack. In this case you don’ t have to control the stack usage and your code/
data size (NEWSTACK.ASM):

.MODEL TINY

Directive Offset Description

0000-00f f PSP - holds command line, environment set-
tings

.code 0100-xxx x Main Program, the entry point is 0100h

.data xxxx-xxx x Initialised Data

.data? xxxx-xxx x Uninitialised Data

xxxx-fff f Reserved for Stack and Heap

70 The Pass32 Assembler

(c) 1999 by Dieter R. Pawelczak, Munich

.CODE

.DATA MemEr r or DB ’Not enough real mode memory av ailable’,13,10,’$’0

START:

MOV AH,48h

MOV BX,65536/16 ; amount of memo r y = BX*16

INT 21H

JC NoMem ; error - not en ough memory

CLI ; no interrupts now

MOV SS,AX

MOV SP,0fffeh ; word aligned s t ack

STI

... ; start of the o r iginal program

NoMem: ; print error Me ssage with DosPrint

MOV DX, offset MemEr r or

MOV AH,9

INT 21H

MOV AX,4C03h

INT 21h

Example 3: Defining a new stack Segment

8.1.2 Defining the FLAT model:

Total segment size 4G1 for code, stack2 and data.

Tab. 8.2 The Flat Model3

1.The 4G address space can be addressed by these applications. There is usually a limit of 64MB by the
dos extender or even smaller limits due to the operating system. Pro32 and Pass32 generally support pro-
grams up to 4G length.
2.The Stack segment is usually different from the CS/DS segment when using a dos extender, but some
dos extender define SS=DS.
3.This memory model is provided by the Pro32 debugger. The stack segment is an extra segment, which
is resident in the real mode memory area (usually locked under Windows/WinNt)

Directive Offset Description

00000000-000000ff PSP - holds command line, environment set-
tings

.code 00000100-xxxxxxxx Main Program, the entry point is 0100h

.data xxxxxxxx-xxxxxxxx Initialised Data

.data? xxxxxxxx-xxxxxxxx Uninitialised Data

.data? xxxxxxxx-ffffffff Heap

00000-xxxxx Extra Stack segment

Defining Code, Data and Memory Model 71

(c) 1999 by Dieter R. Pawelczak, Munich

Tab. 8.2 shows the layout of a typical flat memory model, as it is provided by the Pro32 Dos
Extender. Other dos extender might start directly at the off set address 000000000h (e.g.
WDOSX). Again other dos extenders might start at a virtual address, e.g. 01000000h, where
the low 1 MB address range presents exactly the real mode address range. These dos exten-
ders are supported as well by Pass32, by setting the program start offset, e.g:

.MODEL FLAT

.ORG 1000000h

8.1.3 Data definitions

As you can see from the tables, there are different data types:

- predefined data - at the end of the .EXE / .COM file

- undefined data - value is unknown

- constant data - part of the code

 You define the beginning of data with the .DATA, .DATA? or .CONST directive:

Tab. 8.3 Data Segment Definitions

The .DATA and the .CONST directive differ in the location of the data storage and in the usa-
ge of the data. The syntax is for both directives the same. You can place constant variable
identifiers directly into the code segment:

H1 DW ?

PROC Test

mov H1,AX

mov BX,H2 ...

ret

H2 DW ?

ENDP Test

.DATA The following definitions are part of the „data seg-
ment“ . They allocate and initialize a data storage at the
end of the program code

.DATA? The following definitions are no part of the program.
A data storage is allocated, but of course not initiali -
zed.

.CONST The following definitions wil l be placed directly into
the code segment. A .CONST directive at the begin of
an assembler source forces the first bytes of the code
to be data storage and not to be instructions!

72 The Pass32 Assembler

(c) 1999 by Dieter R. Pawelczak, Munich

 A constant variable is usually accessed via the CS selector; mov H1,AX therefore will be-
come mov CS:H1,AX . To avoid a general exception (a write memory access with CS) you
must use a segment override, for example DS, to alter constant data. In a clear source code
you should use constant data as constants and not alter them!

 A data definition is done by defining an identifier (variable name) a storage size directive (si-
ze of variable type) and the data value. Pass32 offers the following storage size directives:

Tab. 8.4 Data storage directives

 For floating point constants there are four more directives:

Tab. 8.5 Data storage directive for float numbers

Any directive/label/procedure name is treated as not-case-sensitive.

8.1.4 Data Expressions

To initialize data you use the following syntax:

[NAME] DB | DW | DD | DF | DP | DQ | DT expression {,exp r ession}

To initialize a floating point number

 [NAME] RS | RD | RE | RC float-constant {,float-constant}

 An expression might consist of the following numbers:

• hexadecimal : denoted with an h following the number and must begin with one of the
digits 0 - 9, e.g. 1234h. 0fff h, 4a7h

• octal : denoted with an o suffix, eg. 0123o

• binary : denoted with a b at the end of the number, eg. 010100b

• decimal : this is the standard notation, eg. 65535

DB 1 byte allocates one byte storage(8 bit)

DW 2 bytes allocates one word storage(16 bit)

DD 4 bytes allocates a double-word storage (32 bit)

DF, DP 6 bytes allocates a 32-bit far pointer

DQ 8 bytes allocates a quad-word storage

DT 10 bytes allocates a ten bytes storage

RS 4 bytes allocates storage for single floating point number

RD 8 bytes allocates storage for double floating point number

RC, RE 10 bytes allocates storage for a comp (extended) float number

Defining Code, Data and Memory Model 73

(c) 1999 by Dieter R. Pawelczak, Munich

• characters : a character is presented by its ascii code, eg. ’A’ = 65 several characters
are stored as they are: ’YOU’ = 59h,4fh,55h1

 and the following operations:

• () : marks an expression for priority evaluation

• [] : marks an expression as a memory reference

• (unary) - : changes the sign of the expression

• NOT (unary): logical NOT (inversion) of the expression

• AND : logical AND of two expressions

• OR : logical OR of two expressions

• XOR : logical XOR of two expressions

• * : multiplies two integer expressions

• / : divides two integer expressions

• % : gives the remainder of an integer division (modulo)

• - : subtracts two integer expressions

• + : adds two integer expressions

• SIZE : size of a data type (DB = 1, DW = 2, ...)

• BYTE PTR : to address a single byte memory location

• WORD PTR : to address a word memory location

• DWORD PTR : to address a double word memory location

• FWORD PTR : to address a 32-bit far pointer location

• QWORD PTR : to address a quad word memory location

• TBYTE PTR : to address a ten byte memory location

 Inside a .CONST data expression, you can use the directive:

• OFFSET : to get the address of a label / procedure / identifier2

Some examples of data definitions:

 .DATA

ByteVar DB 01000 b OR 01b OR 100001b

ByteRow DB 0,1,2 , 3,4,5,6,7,8,9,10

WordVar DW 0EF7Ah AND 01110011011b

WordRow DW 10+2* 20,20+2*20,30+2*20,48*8,48*16,128%7

DWordVar DD 00001 00h+SIZE ByteRow*11+SIZE ByteVar

BCDNumberDT ?

mesg DB ’Hell o, World!’,0

unicode DW ’Hell o, World!’,0

1.Using characters with word constants (DW), Pass32 creates UNICODE conform characters (16 bit)
2.Note, that you can’ t use offset inside .DATA. This is due to the fact, that .DATA is already parsed in the
first pass, when the offset addresses are not yet known.

74 The Pass32 Assembler

(c) 1999 by Dieter R. Pawelczak, Munich

 The question mark is a special expression, the value of the expression is unknown and unim-
portant! You can not use the question mark with an operation: 10*?,? or 01b (wrong!!! !) The
question mark is the only allowed expression for undefined data:

 .DATA?

IntResult DD ?

ResultVec DD ?,?,?

FloatRes RD ?

BCDResult DT ?

A floating point constant can be defined with RS, RD, RE or RC: RS is the identifier for a
single floating point number (4 bytes). The constant has the following format:
 [-] digits [.digits] [e +|- digits]

The range for the floating point numbers are:

Tab. 8.6 Range of float numbers

Some examples for floating point constants:

.DATA

Single RS 1.5

SingleRow RS 3.7E- 8, 19.2145, 18.125E+12, 29.111, 77.99

Double RD 1.999 E+200

DoubleRow RD 1.771 25, 1.998192, 0.25E-38, 0.125E+128

Comp RC -1.99 9e-500

CompRow RE 0.999 999999E-22,33344556E+88,9123456E-88

The DUP duplicate directive creates an array of a data type1:

[NAME] DB | DW | DD | DF | DP | DQ | DT field-c ount DUP (expression)

[NAME] RS | RD | RE | RC field-count DUP (floati ng-point-constant)

The expression or floating-point-constant is duplicated field-count times. Examples:

1.Note, there’s no recursive usage of DUP, instead of DB 256 DUP(1024 DUP(?))
write DB 256*1024 DUP(?) !

RS 1.5E-45 3.4E+38 7-8 digits

RD 5.0E-324 1.7E+308 15-16 digits

RC, RE 3.4E-4932 1.1E+4932 19-20 digits

Defining Code, Data and Memory Model 75

(c) 1999 by Dieter R. Pawelczak, Munich

 .DATA

SingleArray RS 1000 DUP(0.1) ; 1000 times the constant 0.1

ByteField DB 1024 DUP(0) ; 1k bytes with value 0

.DATA?

VideoBuffer DB 256*1024 DUP(?) ; 256K Video Buffer

Basically, data identifiers are treated as local inside a module. This means, you can access
only data identifiers, which are defined in the same module; and, in different modules, you
can use the same names for data identifiers...

If you want to access data defined inside another module, you have to make export this varia-
ble. There are basically two ways of exporting data: You can use the .PUBLIC directive in-
side this module:

.DATA

privateid DB 0

.PUBLIC publicid DB 1

The identifier publicid can now be accessed from other modules. You can use .PUBLIC
before the .DATA directive to make all data identifiers public:

.PUBLIC .DATA

ispublic DB 0

ispublic2 DB 1

The first method needs a change to the module file. This might not always be useful as the
identifiers made public wil l always be exported (if they are needed or not). You can force a
module to export a data identifier (which is not made public) with the .E XTERN directive:

MODULEA.INC:

 .DATA

privateid DB 0

.PUBLIC publicid DB 1

MODULEB.INC:

.INCLUDE MODULEA.INC

.EXTERN privateid ; now publicid and privateid can be acce ssed!

76 The Pass32 Assembler

(c) 1999 by Dieter R. Pawelczak, Munich

For the . EXTERN directive, the identifier must be known, this means, the module must be
included first1. .EXTERN is ignored, if the data identifier is already made public. .EXTERN
and .PUBLIC can also be used with lables and procedures.

The .ALIGN directive forces the assembler to align data or code, depending in which seg-
ment the directive is used2. With .ALIGN you can enable alignment inside a data segment:

Every data identifier begins at an offset divisible by 2 (TINY) or 4 (FLAT) according to the
memory model. If you need a complete block of data, you can use the . BLOCK and .NO-
BLOCK directive. Between . BLOCK and . NOBLOCK each data identifier follows the other
without a gap. Therefore you have data alignment for the first item, but not certain for the
other elements. The .NOALIGN directive disables data alignment. You can specify the data
alignment by a cardinal number of 2,4 or 8 irrespective of the memory model.

Example:

.MODEL FLAT

.DATA .ALIG N ; same as .ALIGN 4

AlignedByte db ?

AlignedWord dw 0

ALignedDWord dd 0123456h

.BLOCK

TextStrings db ’INPUT ’,’OUTP UT’,’LIST ’,’RUN ’

db ’NEW ’,’OPEN ’ ,’CLOSE ’,’CLEAR ’

TextStringEnd db 0

TextStringElements db 8

.NOBLOCK

AlignedBytes db 0,0, 1,1,2,2

 I

f you use .ALIGN inside the code segment, Pass32 will insert as many nop instructions until
the next instruction is aligned3.

8.1.5 Predefined Data Identifiers

Pass32 defines one global variable identifier for the TINY and two global variable identifier
for the FLAT memory model:

1.Note, the .EXTERN directive actually copies the information of the private module
data identifier into the public data area. For this reason, .EXTERN allocates the identi-
fier twice and needs more memory than the use of .PUBLIC.
2.Note, that Pass32 V2.0f ignores an .ALIGN directive outside any segment (for ex-
ample at the beginning)
3.Note, .ALIGN doesn’ t have an effect on the code segment generally, li ke it has in the
data segment.

Defining Code, Data and Memory Model 77

(c) 1999 by Dieter R. Pawelczak, Munich

a) TINY

• LASTDATA: OFFSET of the first free data address of the program heap points to the
last .DATA? identifier + its size.

b) FLAT

• LASTDATA: OFFSET of the first free data address of the program heap points to the
last .DATA? identifier + its size.

• MEMSIZE points to CS:[0Ah] of the protected mode PSP = amount of allocated me-
mory for the program segment (Pro32 Dos Extender1).

If you name any variable identifier with one of these names, you will get a warning message.

8.1.6 Usage of Data Identifiers

Any variable or constant identifier replaces the actual address. You can use the variable in-
stead of its address:

mov ax,WordValue ; would be t he same as:

mov ax,[OFFSET WordValue] ;

The OFFSET identifier returns the address of a label, a procedure or a variable. If you want
to address different elements of a variable identifier, you can use the PTR identifier. For ex-
ample, if you want to make a far call via a variable:

.DATA

FarPtrVar DF ?

.CODE

mov ax,cs

mov edi, OFFSET FarPtrEntry

mov WORD PTR FarPtrVar+4,AX ; AX and FarPtrVar different types!

mov DWORD PTR FarPtrVar,EDI ; EDI and FarPtrVar different types!

call FarPtrVar ; FarPtrVar i s expected type!

FarPtrEntry:

If you try to load or store with a different type of variable, you will get an error message:

mov ax,ByteVar ; illegal typ es!

You must use the PTR identifier if you want to avoid an error:

 mov ax,BYTE PTR ByteVar

1.When other Dos Extenders are used, you must ignore MEMSIZE, as the contents are invalid. Neverthe-
less, LASTDATA points to the beginning of the free heap and can be used with any Dos Extender

78 The Pass32 Assembler

(c) 1999 by Dieter R. Pawelczak, Munich

Pay attention, if you use aligned data, you can not be sure what the other bytes of a byte or
word identifier contain! You should not use the knowledge that an aligned data storage uses
a minimum of 2,4,8 or 16 bytes to store other values than the defined one! For example it
would be terrible programming if you’d store a double word value into AlignedByte, because
you know that four bytes had been reserved! The SIZE identifier will return an amount of 4
for the aligned byte, word or dword identifier and 8 for a 32 bit far pointer and a quad word!

You can define data anywhere in your source code:

PROC Print

.DATA

PrintX DW ?

PrintY DW ?

.CODE

mov PrintX,Cx

mov PrintY,Cy

cmp ax,0

je AxIsZero

.Data

AXZero db 0

.CODE

mov AxZero,1

AxIsZero:

Note that memory for the data identifier is allocated at the end of the program code. As con-
stant data defined with the .CONST directive is allocated directly in the code segment, you
can not define data with the .CONST directive anywhere in the code!! !

wrong:

.CODE

PROC Dummy

.CONST

Dummy1 DD ?

Dummy2 DD ?

.CODE

xor eax,eax

mov Dummy1,eax

mov Dummy2,eax ...

Defining Code, Data and Memory Model 79

(c) 1999 by Dieter R. Pawelczak, Munich

When the procedure Dummy is called, the first 8 bytes contain undefined data - the behaviour
of the procedure is unknown... You can place .CONST definitions at the end of a procedure
(after the RET instruction) or between two procedures. Or you can use the . CONST directive,
to create special instructions, for example:

PROC NewInt8

call Newinthandler

.CONST

DB 0EAh ; JUMP

OLD8OFFS DD ? ; FAR JUMP TO OLD INTERRUPT HANDLER

OLD8SELDW ?

.CODE

ENDP NewInt8

PROC InitNew8

mov ax,204h

mov bl,8

int 31h ; get interrupt addr ess

mov DS:OLD8OFFS,edx ; store old interrupt vector

mov DS:OLD8SEL,cx ; .CONST d ata needs DS Prefix!

...

ENDP InitNew8

 Usually it makes no difference whether a variable is declared before or after its usage. Imme-
diate memory access, eg. mov [0],0100h , cmp ByteVar,0 etc must use an argument
override if the variable is not defined:

wrong:

 mov AxIsZero,0

.DATA

AxIsZero db ?

AxIsZero is not defined when assembling the immediate mov instruction. The assembler the-
refore doesn’ t know what type AxIsZero will be. You need an argument override:

right:

mov byte ptr AxIsZero,0

.DATA

AxIsZero db ?

 or

.DATA AxIsZero db ? ; AxIsZero now defined

.CODE

mov AxIsZero,0

80 The Pass32 Assembler

(c) 1999 by Dieter R. Pawelczak, Munich

Basically you should define data before using it. This makes reading of the code easier.

8.2 Addressing Data, Defining Labels and Procedures

8.2.1 Addressing Memory

The Pass32 supports the 32 bit address modes of the 80386 and newer processors. You should
use square brackets to address with index or base registers. In both models 16 and 32 bit
addressing is allowed. In the TINY model you must make sure, that the extended registers do
not override a segment, they should not address offsets above 0ffffh! Expressions in the code
segment are basically identical to those in the data segment (see 8.1.4 Data Expressions on
page 72), but they are extended by the register addressing, i.e. additionally to variable identi-
fiers or number expressions, the registers of the CPU can be used.

Some examples of 16 bit addressing:

mov al,bytevar+bx+di ; you can leave square br ackets out

mov al,[bx+di] ; you must use square bra ckets!

mov dx,word ptr [byt evar+DI]

mov bx,es:[WordVar+S I]

You can leave square bracket out, if the first item makes sure that this is an addressing form.
If the first item is a register, the assembler only recognizes the register, .eg: mov ax,bx+d i
makes mov ax,bx and +di which produces an error1. If you are using 16 bit address modes
in protected mode programs - you must make sure, that the base address is below 64K! This
might happen, for example, if you like to index a variable with the SI register and your pro-
gram code exceeds 64K:

mov al,[Byt eVar+SI] ; forces an erro r , when the offset of ByteValue

; is above 0ffff h !!!

Some examples of 32 bit addressing:

mov ax,es:[eax+ecx*4]

mov eax,dword ptr by t evar+edi

mov [esp+8],edi

mov ax,[eax+edi*8+01 11h]

cmp word ptr [eax+ed x*2],0

1.This is due to speed reasons. The instructions, which occur statistically at most use at least one register.

Addressing Data, Defining Labels and Procedures 81

(c) 1999 by Dieter R. Pawelczak, Munich

You can use any extended register as base and index register. The scale factor for the index
register must be 2,4 or 8. A segment override should be placed before the square brackets /
before the expression.

Square brackets or a variable identifier refer to a memory location. To load a value direct into
a register don’ t use square brackets:

mov dx,01111b and 47h or 100 0000b

mov ecx,4*1000h + 2*0100h +8 8h

Pass32 as well allows to load character or string values in a register:

mov al,’$’

mov eax,’.COM’

mov ax,’DX’

Against the TASM convention, the string is stored in the register, li ke it would be stored in
memory; so you can use this method to scan the memory for string expressions:

mov eax,’.COM’

mov edi,OFFSET Parameter_1 Sc anParameter

cmp [edi],eax

je ok_is_COM_File

inc edi ...

jmp ScanParameter

You can also calculate string expressions:

Upcase:
mov al,’a’-’A’ ; al = 32

mov edx,’HEY!’+’ ’ ; edx = ’hey!’

8.2.2 Defining Labels

Labels are part of the program code. They define the beginning of a loop, an address of a pro-
cedure, the entry point of the code, etc. In the TINY model a label is a 16 bit offset, in the
FLAT model a label is a 32 bit offset.

A label is defined by a colon at the end of the name. The label name must not begin with a
digit 0..9. It can consist of letters A-Z,a-z, digits 0-9, special characters as _@#., some ex-
amples:

82 The Pass32 Assembler

(c) 1999 by Dieter R. Pawelczak, Munich

.PUBLIC Pro gramStart:

....

ProgramExit :

mov ah,4ch

int 21h

FirstChoice :

....

SecondChoic e:

....

@loop:

mov es:[ecx*2+0b800h] ,al

loop @loop

END Program Start

The END [label | procedure] defines the entry point of a program. Without this directive any
assembler source will start at the first .CODE instruction or at the first .CONST entry. The
start label / procedure must be defined before the END directive. The .PUBLIC directive de-
fines a label globally.

Labels are always treated as local in the procedure they are used. You can use the same label
name in different procedures:

PROC ProcA

...

@Start:

...

je @Start

ENDP ProcA

PROC ProcB

...

je @Start

...

@Start:

ENDP ProcB

If you want to use a label globally, for example if you want to jump from one procedure into
a specific offset in another procedure, you have to define this Label as public:

PROC ProcA

...

Addressing Data, Defining Labels and Procedures 83

(c) 1999 by Dieter R. Pawelczak, Munich

.PUBLIC Exit:

...

ENDP ProcA

PROC ProcB

...

jmp Exit

...

ENDP ProcB

Without the directive .P UBLI C the instruction j mp Exit would produce an error. You
can’ t use a labelname more than once inside a procedure, you can’ t use the same labelname
for different global labels and you can’ t use the name of a public label for a local label:

PROC ProcA

@loop:

@loop: ; wrong, dup l icate label

.PUBLIC Exit:

ENDP ProcA

PROC ProcB

@loop: ; right, use d for the first time

Exit: ; wrong, ’Exi t ’ already defined as public!

ENDP ProcB

You can use the .EXTERN directive to make a label public after the label definition:

PROC ProcA ...

Exit: ...

ENDP ProcA

.EXTERN Exit

PROC ProcB ...

jmp Exit ...

ENDP ProcB

Note, Pass32 will make the first label which is found public! You should prefer the .PUBLIC
method, as it is not ambiguous!

84 The Pass32 Assembler

(c) 1999 by Dieter R. Pawelczak, Munich

8.2.3 Definig a Procedure

You can define a procedure with the PROC directive. With PROC, the name and attributes of
a procedure are defined. The procedure attributes NEAR, FAR and START are optional. The-
re are two ways of using the PROC directive:

PROC Main ; same as

Main PROC

Or, the same definition with attributes:

PROC Main N EAR START

Main PROC N EAR START

A procedure should end with the ENDP directive. This directive is especially necessary in
combination with code optimization! There are again two ways of using the ENDP directive:

ENDP Main ; same as

Main ENDP

A procedure can have three attributes: NEAR, FAR or START. Generally all procedures of the
main program are NEAR procedures. This means, all procedures share the same code segment.
A FAR procedure is a procedure outside the main code segment. If you use a DLL1, for ex-
ample, the procedures of the DLL are resident in another code segment: therefore all procedu-
res in the DLL are defined as FAR procedures.

NEAR is the default attribute for TINY or FLAT model procedures. You can explicitly force
the assembler to generate a near procedure with

PROC Main N EAR

a far procedure with

PROC Main F AR

Far procedures must be defined before they can be called. If you are working with far proce-
dure and you want a forward reference, you can use the directive .FAR . All procedure calls
are now treated as far calls, so every far procedure has a forward definition. If you don’ t want
far procedures to be treated like that, you can disable the function by .NOFAR.

1.This refers to the Pass32 DLL type and not to a Win32 DLL, which is defined as near.

Addressing Data, Defining Labels and Procedures 85

(c) 1999 by Dieter R. Pawelczak, Munich

The attribute START produces an implicit call to this procedure at the beginning of the pro-
gram (before the start label is called). For example DOSX.INC uses such a procedure type
to install the new DOS interrupt handler, to create extended DOS functions. A procedure with
the attribute start must be defined as a near procedure, the attribute START is not valid in the
DLL / OVL model. In these models, Pass32 generates a warning message, that these procedu-
res are not called implicitely by program execution.

You can define a variable type as a jump target. The variable type can be a 16 bit offset =
WORD PTR (TINY only), a 16:16 pointer = DWORD PTR (TINY only), a 32 bit offset =
DWORD PTR (FLAT ONLY) and a 16:32 pointer = FWORD PTR (FLAT ONLY).

If you have two alternative procedures and you want to use a variable identifier to access
them, this could be done like this:

.MODEL FLAT

.DATA GraphPutPixel DD ?

.CODE

PROC VGAPutPixel NEA R ...

ENDP VGAPutPixel

PROC SVGAPutPixel NE AR ...

ENDP SVGAPutPixel

START:

mov eax,offset VGAPutPixel

mov GraphPutPixel,eax ; initi alize one of the Procs ...

call GraphPutPixel ...

call GraphPutPixel ...

END START ; define START as entry point END

Conditional jumps or jumps to a forward reference can be optimized with the SHORT directi-
ve, if the target is in the next 127 bytes.

For some instructions you must explicitly distinguish between 32 bit and 16 bit instructions:

The loop instruction can be used with the CX and ECX registers. Usually Pass32 uses loop
with the CX register, as this is in most cases more efficient (small loops). To use the ECX re-
gister you must use the (pseudo) instruction loopd :

.CODE

mov cx,10

@loop:

mov al,[esi]

inc esi

86 The Pass32 Assembler

(c) 1999 by Dieter R. Pawelczak, Munich

loop @loop ; repeat ten times ...

mov ecx,0b80000h+100 h

@@loop: mov fs:[ecx] , al ; from b80100 to b80001

loop @@loop ; repeat 100h times (low word part of ECX) .. .

mov ecx,10000h

extloop:

mov fs:[ecx*4+esi]

loopd extloop ; repe at 65536 times (ECX)

The push immediate instruction can push a 16 bit or a 32 bit immediate. We use again the
suff ix ’D’ to distinguish the instructions:

push 1234h ; pushes an immediate of 16 bit in the TIN Y model

push 1234h ; pushes an imme diate of 32 bit in the FLATmodels

push 12345678h ; pushes an imm ediate of 32 bit in the FLAT mode l s

; you’ll get an error in the TINY model

pushw 1234h ; pushes an imme diate of 16 bit in all models

pushd 12345678h ; pushes an imme diate of 32 bit in all models

Note: Pass32 always creates the push instruction according to the current model: In Tiny a 16
bit push, in FLAT a 32 bit push, to use a different operand size (or to use the operand size mo-
del independend) use the suffix ’W’ for 16 bit and ’D’ for 32 bit.

The JCXZ and JECXZ instructions already show their difference in the instruction name!

8.3 Pre-processor , Macros and Conditional Assembly

The pre-processor generates the source code for the assembler with all modules included..
Thus, the pre-procesoor reads the source code first. The pre-processor can change the source
code before the actual assembling begins. Macros are typically expanded by the pre-proces-
sor. The pre-processor actually understands only the following commands:

Pre-processor, Macros and Conditional Assembly 87

(c) 1999 by Dieter R. Pawelczak, Munich

Tab. 8.7 Pre-processor Commands

8.3.1 The .EQU Directive

We can define a variable for values and text strings with the .EQU directive. For example if
we want a special color design for our program, we can use the .EQU directive:

BackColor .EQU 0

WindowFrameColor .EQU 14

ScriptColor .EQU 15

GraphColor .EQU 7

It is easier to change the .EQU command at the beginning of our source, than changing all co-
lour attributes in the source, .eg mov al , 14. The . EQU command is a pre-processor com-
mand. Actually all text strings ’B ackColor’ are replaced by the text string ’0’ . You can
not define a storage with this! You can not store a value in BackColo r for example, this
would be like: mov BackColor,1 ===> mov 0,1 (!! !). As the .EQU directive forces a
string replacement you can even replace text strings:

HelloMesg .EQU ’Hello, World! ’ ,0

Note, the HelloMesg is no variable and has no offset! You can use the replacement in a data
definition:

Message db HelloMesg

.EQU replace

.TYPE enumeration type

.SMART code optimization

.INCLUDE include another source module

.INCLUDEDIR set the search path for include

.MACRO Macro definition

.LOCAL to define a local identifier inside a macro

.DOSX Dos Extender Defintion

.UCU Pro32: Target for uncomercial use only

.NM Pro32: No further messages during program loading

.NB Pro32: CRTL+C/CRTL+BREAK is deaktivated

.PLUG Pro32 Gold: Add plug-in

.KEY Pro32 Gold: Define License Key

88 The Pass32 Assembler

(c) 1999 by Dieter R. Pawelczak, Munich

You can even replace instructions with the .EQU directive:

ClearRegs .EQU xor e ax,eax//xor ecx,ecx//xor ebx,ebx//xor edx,edx

.CODE

ClearRegs

mov ah,4ch

int 21h

END

The // in the replacement is understood as a line feed. Note, that the name can be 40 charac-
ters long and the replacement 60 characters. The total number of .EQU replacements is 640.

You can declare multiple .E QU replcaements with the .TYPE directive. The .TYPE directive
can be used to declare an enumeration type. For Example:

.TYPE (Red, Green, B l ue)

The .T YPE definition assigns the strings RED the value 0, GREEN the value 1 and BLUE the
value 2. Basically . TYPE generates . EQU replacements for integer expressions. For every
item, the value is increased. You can define a value explicit:

.TYPE (Red=1, Green, Blue=4, Black=0fh)

Here, the result would be: RED = 1, GREEN = 2, BLUE = 4, BL ACK = 15.

The .EQU identifiers are all replaced, when the regular assembly begins. You should not de-
fine with the .EQU directive in a conditional assembly!

8.3.2 Including Assembler Modules

With the .INC LUDE directive you can include another source file. Note that the assembler
includes the same file only once. Two files are equal for the assembler, if the name and ex-
tension are equal. You can include with the correct path:

.INCLUDE E:\PASS32\I NC\DPMI.INC

And without a path:

.INCLUDE Module

Pre-processor, Macros and Conditional Assembly 89

(c) 1999 by Dieter R. Pawelczak, Munich

The extension .ASM is added if the name is without extension. Without a path, the file is se-
arched in the current directory and then in a parallel directory of the PASS32.EXE directory
called \INC. Usually the assembler is located in the \BIN directory, all include files in the
\INC directory. You can define an alternative directory for include files with the .INCLU-
DEDIR directive:

 .INCLUDEDIR C:\TEST \ INC

Now, Pass32 will search in this directory before searching any other directory. So Pass32 will
look in the current directory and then in the directory defined with .INCLUDEDIR .

Unlike to C/C++, any model is included only once, so you don’ t need to test if a module is
already included!

8.3.3 Defining Macros

Another powerful tool of the preprocessor is the .MACRO directive. A macro is a storage for
assembler commands, which can be used several times in your code. A macro is a kind of
subroutine. But in the opposit of a procedure defined with PROC, the code inside a macro de-
finition is directly placed into your code. The best way to explain the macro method is to
show an example:

.MACRO Exit(ExitCode)

mov al,ExitCode

mov ah,4ch

int 21h

ENDMACRO

The usage of the macro in your code can be for example:

.CODE

START: ...

Exit(3)

END START

END

This example will be expanded by the preprocessor to the following code:

.CODE

START: ...

mov al,3

mov ah,4ch

int 21h

90 The Pass32 Assembler

(c) 1999 by Dieter R. Pawelczak, Munich

END START

END

Wherever we use the macro Exit in our code, these three instructions will be expanded. We
can see, that the parameter Exi tcod e is replaced by its value. We could use for example
Exit(Ah) and the result would be mov al,ah / mov ah,4ch / int 21h - parameters
are similar to an . EQU expression textual replacements, but they are only valid inside the
macro.

The definition of a macro generally has the following syntax:

.MACRO name [(parameter[,parameter])] ENDM [name] | ENDMACRO [name]

You can end a macro with ENDM or ENDMACRO.

As we learned, when a macro occurs in your source, it will be replaced by its definition con-
tents. This can cause problems, when you are defining labels, or data storages in your macro,
because all labels or data definitions wil l have the same name. We need the .L OCAL directive
to use a label locally inside a macro. The .LOCAL directive simply extends a symbol name
by an ’@’ following a macro specific hex number. This method guarantees, that every label /
data definition has an individual name. The following example uses the .LO CAL directive to
define a label:

.MACRO WRITE(stringoffs)

mov edi,stringoffs

.LOCAL @sta r t:

mov dl,[edi]

cmp dl,0

je short .LOCAL @end

mov ah,2

int 21h ; display s t ring char by char

inc edi

jmp .LOCAL @start

.LOCAL @end :

ENDMACRO

.DATA mesg db ’Hello, World!’,0

.CODE

Write(offset mesg)

Exit(0)

END

Pre-processor, Macros and Conditional Assembly 91

(c) 1999 by Dieter R. Pawelczak, Munich

As .LOCAL only extends the label name, we must use the directive also when we refer to the
definition.

You can not nest macros in the definition, but you can use a macro inside other macros, when
the macro is already known to Pass32. The number of macros in total is limited to 256
macros, the number of words in a macro is limited to 256. As macros are expanded by the
preprocessor, the number of macros does not influenze the amount of memory for the main
assembler pass.

Note, that a macro definition doesn’ t produce code, even, if you place the definition inside
your code segment. Therefore, you won’ t get an error, as long as you don’ t use the macro, if
the macro definition is wrong. Another thing is the error report: Pass32 dosen’ t remember the
macro definition in the assembler pass, so it can’ t display the line of the error. If a macro con-
tains an error, Pass32 reports:

 Error in Macro: <n ame> : <instruction>

8.3.4 Conditional Assembling

Conditional assembling is not a part of the pre-processor, as the pre-processor can not under-
stand symbol names and identifiers.

If you want to test if a module is included, you can use the .IFM directive. The .IF M direc-
tive is a part of the .IF directives. The .I F directives are:

Tab. 8.8 Conditional Assembly

.IF expr tests an expression for unequal zero

.IFM module tests, if a module is included

.IFPM tests, if the target is for protected mode

.IFE
expr1,expr2

tests, if expr1 equal expr2

.IFS expr tests, if expression is a string

.IFR expr tests, if expr is a register (AL..DH, AX..SI, EAX..ESI,
CS..SS)

.IFR8 expr tests, if expr is an 8 bit register (AL..DH)

.IFR16 expr tests, if expr is a 16 bit register (AX..SP)

.IFR32 expr tests, if expr in a 32 bit register (EAX-ESP)

.ELSE alternative assembly

.ENDIF end of conditional assembly

92 The Pass32 Assembler

(c) 1999 by Dieter R. Pawelczak, Munich

 All .IF directives (except .IFPM) can be used in the opposite way by writing:

.IF NOT exp r

.IFR NOT R1 6 expr

.IFE NOT ex pr1, expr2

With the .IFPM you can create modules for real and protected mode. You can make sure that
a module is only used for real mode:

.IFPM

.DISPLAY Mo dul Only for Real Mode!

.ERR ;force an error

.ENDIF

The .IF directive tests if an expression is unequal to zero. You can test if a variable is defi-
ned, if an .EQU definition has been made:

.IF NOT Vid eoBuffer

.DATA? Vide oBuffer DB 256*1024 DUP(?)

.ENDIF

OVL_ERROR .EQU 1

.IF NOT OVL _ERROR

call printe r ror

.ENDIF

With .IFS , .IFR and .IFE , you can write multiply functional macros. An example for a
multiple write string macro could look like this:

.MACRO SWri t eLn(String)

.IFS String

.DATA .LOCA L mesg DB String ,0

.CODE

mov edi,OFFSET .LOCA L mesg

.ELSE

.IFR String

mov edi,String

.ELSE

mov edi,offset Strin g

.ENDIF

.ENDIF

call SystemWriteLn

ENDMACRO

The OVL model 93

(c) 1999 by Dieter R. Pawelczak, Munich

Now this macro can be called with three different types of parameters:
 .DATA mesg db ’Hel l o, World!’,0

.CODE

mov eax,offset mesg

Swriteln(eax)

Swriteln(mesg)

Swriteln(’Hello, World!’)

The Macro library SYSTEM.MAC has already included this macro definition for the Wr i-
teLn macro.

8.4 The OVL model

The OVL model is a model defined for protected mode use. The idea is simple: Several pro-
cedure can share the same memory; at run time you can load special driver functions to adapt
the software to the given hardware. The first idea of course is nearly unimportant: If you can
use so much memory, procedures don’ t need to share memory. The second idea is far more
important: To access several music boards, graphic adapters etc. you can add several different
optimized OVLs to your code. You can set-up the program, so that only the best fitting OVL
is load and used. The OVL model of the Pass32 is very simple. The OVL code is load to a
given offset in the code and data segment. Usually somewhere in the heap. A short 256 byte
long interface tells the assembler at run time where the different routines are stored in memo-
ry.

This is the syntax of an OVL source:
.MODEL OVL

.INTERFACE

.ORG 50000h ; OVL s t art address in the heap

PROC FirstOVLProcedu r e OFFSET OvlProc1

PROC SecondOVLProced ure OFFSET OvlProc2

.DATA Mesg db ’OVER LAY load!’,0

.CODE

OvlProc1 PROC FAR

mov edi,offset Mesg ...

OvlProc1 ENDP

OvlProc2 PROC FAR . . .

OvlProc2 ENDP END

94 The Pass32 Assembler

(c) 1999 by Dieter R. Pawelczak, Munich

The .INTERFACE directive is the start of the 256 byte long OVL interface. The .ORG di-
rective defines the address where the overlay is loaded to. The PROC directive defines a pu-
blic procedure. This identif ier is publi c and can be call ed from the main program. The
OFFSET identifier makes a connection between the OVL procedure and the public procedure
identifier. The names could be the same of course.

To use an OVL, you include the OVL source interface part into your code. Independent of the
OVL size, the 256 byte long interface will be part of the code.

A program which uses the OVL could look like this:

.MODEL FLAT

.INCLUDE TS TOVL.ASM

.DATA ovlna me db ’TSTOVL.OVL’,0

.CODE

mov esi,offset tstov l ; OFFSET TO DATA BUFFER TSTOVL

mov edi,offset ovlna me ; OFFSET TO Filename

call initovl ; to i nitialise the OVL

call loadovl ; to l oad the OVL

call FirstOVLProcedu r e ; use the OVL procedure after loadi ng

call SecondOVLProced ure

mov ah,4ch

int 21h

END

The loadovl procedure is part of the OVLSYS.INC file, which is part of the Pass32 as-
sembler. If any overlay module is included, this module is automatically included. You must
make sure that the OVL is loaded.

The loadovl procedure will set the carry flag, if the OVL could not be load. You can define
an identifier called OVL_ERROR, the lo adov l procedure will t hen terminate the program
with an error message:

OVL_ERROR .EQU 1

The OVL interface structure has the following format:

The DLL model 95

(c) 1999 by Dieter R. Pawelczak, Munich

Tab. 8.9 The header of an overlay

The loadovl procedure does the following jobs:

– load the interface and determine the load offset

– load the ovl

– alter the selectors in the interface

The init ovl procedure simply initialises all procedure calls with a far return. You should
run this procedure on all overlays at the beginning of the program.

If procedures share the same memory, you should use the first procedure as an id procedure,
which tells the program which overlay is load at the moment.

8.5 The DLL model

The DLL model is a model defined for protected mode use only. It’ s idea is similar to the
OVL model, but far more effective. A DLL is a library file containing several procedures,
which can be load at run time. The library is no part of the program code segment; a DLL the-
refore does not limit the heap memory for the program. You can use single procedures of a
DLL and you can write whole programs as DLL to use the memory more efficient: If you
want to write a program which needs for example 8 MByte memory and you want to make
sure that your program can even run if only 3 or 4 MByte memory are available, you can split
your program in different DLLs and a global data area. If the computer offers enough memory
the program can load all DLLs at the beginning. If not, it can for example hold only one DLL
in memory at the same time. Besides, a DLL is usually stored in real memory, if enough real
memory is available. A DLL again consists of a 256 byte long interface and its code. The pro-
gram entry of the DLL is usually at the offset 00000100h. The first 100h bytes represent the
DLL interface.

00-0 3 load offset: address of the overlay

04-1 F reserved

20-2 3 offset of first ovl procedure

24-2 5 selector of f irst ovl procedure

26-2 9 offset of second ovl procedure

...

FA-F D offset of 37th ovl procedure

FE-F F selector of 37th ovl procedure

96 The Pass32 Assembler

(c) 1999 by Dieter R. Pawelczak, Munich

Tab. 8.10 The header of a Pass32 DLL

You can load those data in the DLL via CS. Note, that when the DLL is called usually DS is
the data descriptor of the main program. You can either use this descriptor to access global
data, or save the descriptor and load the DLL data descriptor from CS:[0]:

push ds

mov ds,word ptr CS:[0] ; set DLL - DS

...

pop ds

This is the syntax of a DLL source:

.MODEL DLL

.INTERFACE

PROC MainDLLProcedure OFFSET DLLMain

PROC FirstD LLProcedure OFFSET DLLProc1

PROC Second DLLProcedure OFFSET DLLProc2

00-01 DS selector of DLL data

02-03 ES - Video Selector

04-05 Zero Selector

06-07 Real Mode File Buffer Selector

08-09 Real Mode File Buffer Segment

0A-0D Memory size for the DLL

0E-11 Memory handle

12-13 CS (DLL Code descriptor)

14-17 Linear Address of DLL

18-19 DS of the main application

1A-1F reserved

20-23 offset of first dll procedure

24-25 selector of first dll procedure

26-29 offset of second dll procedure

...

FA-FD offset of 37th dll procedure

FE-FF selector of 37th dll procedure

The DLL model 97

(c) 1999 by Dieter R. Pawelczak, Munich

.CODE

DLLMain PROC FAR

...

ENDP DLLMain

DLLProc1 PROC FAR

push ds

mov ds,word ptr CS: [0] ; set DLL - DS

mov edi,offset Mesg

...

pop ds

ret

DLLProc1 ENDP

DLLProc2 PROC FAR . . .

DLLProc2 ENDP

END

The .INTERFACE directive is the start of the 256 byte long DLL interface. The PROC direc-
tive defines a public procedure. This identifier is public and can be called from the main pro-
gram. The OFFSET identifier makes a connection between the original DLL procedure and
the public procedure identifier. The names can be the same, of course.

The use of a DLL is the same as the use of an overlay: you include the DLL interface part into
your code. Independent of the DLL size, the 256 byte long interface will be part of the code.

A program which uses the DLL example from above could look like this:

.MODEL FLAT

.INCLUDE TSTDLL.ASM

.DATA DLLname db ’T STDLL.DLL’,0

.CODE

mov esi,offset tstdll ; OFFS ET TO DATA BUFFER TSTDLL

mov edi,offset dllname ; OFF SET TO Filename

call initDLL ; to initialise the DLL

call loadDLL ; to load the D LL

call DLLMAIN ; use a DLL pro cedure after loading

call SecondDLLProcedure ...

call FirstDLLProcedure

mov esi,offset tstdll ; OFFS ET TO DATA BUFFER TSTDLL

call FreeDLL ; to free the D LL ...

mov ah,4ch

int 21h

98 The Pass32 Assembler

(c) 1999 by Dieter R. Pawelczak, Munich

END

The procedures LoadDLL, InitDLL and F r eeDLL are part of the DLLSYS.INC file,
which is part of the Pass32 assembler. If any DLL interface is included, this module is auto-
matically included. You must make sure that the DLL is loaded or at least initialised, before
using any DLL procedure.

The loadovl procedure will set the carry flag, if the DLL could not be found. You can define
an identifier called DLL_ERROR and the loadDL L procedure will t erminate the program
with an error message:

DLL_ERROR .EQU 1

The DLL interface structure has the same format as shown in Tab. 8.10. When the DLL is ge-
nerated, only the memory size (offset 0ah) is defined in the header.

The first argument for the LoadDLL procedure is the offset to the zero terminated filename
string in the EDI register. The second parameter is the offset to the interface structure in the
ESI register. The interface structure has always the same name as the filename of the DLL
source file without extension. If your DLL source file is called TSTDLL, the interface struc-
ture has the name TSTDLL1.

Note, the LoadDLL procedure will search in the current directory and in the path for the DLL
filename.

The InitDLL and the FreeDLL procedure both need the second parameter TSTDLL. If you
are good at assembler you can use or even modify the DLLSYS.INC or OVLSYS.INC file
to create your own DLL/OVL handling.

8.6 Debugging and Code Optimization

When you already wrote your first 32 bit program, you’ ll know, that debugging in protected
mode is hard. The Turbo Debugger from Borland, Inc. for example, hangs when the processor
is switched into protected mode. The current version of the Pro32 Dos Extender does not sup-
port debugging, so we need a special method for the debugging. The easiest method (and
safest method - as it is compatible to Dos, Windows, Linux-DPMI and WinNT) is to include
the debugger in your program - and this is exactly, what the .DEBUG directive does.

1.Filenames are treated by Pass32 to be 8 characters long

Debugging and Code Optimization 99

(c) 1999 by Dieter R. Pawelczak, Munich

8.6.1 The integrated debugger

When the pre-processor discovers a .DEBUG directive, he appends the DEBUG.INC module
to the source code. Every instruction which is debugged is extended to the form:

 PUSH DebugInfoOffset

CALL DebugProc [instruction]

The debugger (DEBUG.INC) is compared to a real debugger, e.g. Turbo Debugger, Pro32
Debugger, only small utilit y, which displays the contents of all registers, segment registers
and flags. The debugger waits for a keystroke before the next instruction is executed. It allows
to set break points and to alter the register contents. Here is a li st of all commands:

Tab. 8.11 Debugger Functions

a. Note: altering a register value might force an exception, if the register is used as index or
base register.
b. Note, that only one breakpoint may be set. The breakpoint is marked by an ’ * ’ before the
debug line information.

[SPACE] Execute next instruction : the program is executed
until the next debugged instruction occurs.

[ESC] Run until the next debugged RET/RETF instruction
occurs

[RETURN] Run until the next debugged JMP/CALL (INC/DEC)
instruction occurs

[BCK SPC] Run until the breakpoint occurs

[a][b][c][d][e][f] display hex dump at [EAX], [EBX], [ECX], [EDX],
[EDI], [ESI]

[h] to display hex dump every time (hold)

[A][B][C][D][E][F] to alter the register contentsa of EAX, EBX, ECX,
EDX, EDI, ESI

[Cursor Up] decrement hex dump by 10h

[Page Up] decrement hex dump by 100h

[Cursor Down] increment hex dump by 10h

[Page Down] increment hex dump by 100h

[Crtl]+C terminate the program

[Crtl]+B set a breakpointb

100 The Pass32 Assembler

(c) 1999 by Dieter R. Pawelczak, Munich

You can enter a new hex value. The resulting value for the register is the displayed value. If
the former value of EAX = 12345678h, and you alter only the first two digits to zero, the re-
sult is 00345678h. Pressing [ESC] during the input restores the old value. The input is finis-
hed either with [RETURN] or when all 8 digits are entered. During the input only the keys
0..9 , a..f , A..F , [ESC] ,[BCK SPC] ,[RETURN] are valid.

When the program runs with, you can interrupt the execution by hitting any key.

A ’debugged instruction’ is an instruction between the .DEBUG and the .NODEBUG directive.

Within the .DEBUG and the .NODEBUG directive you can go step by step through the pro-
gram. If you want to set a breakpoint at a certain instruction, you can set the .DEBUG here;
either around a single instruction or around a group, a procedure, etc. To generally debug a
source file you can use the option -D.

The debugger supports video mode swapping. If the program to debug runs for example in
graphics mode, you can enable video mode swapping by setting the debugvideo identifier
with the .EQU directive:

debugvideo .EQU 1

8.6.2 The Debug File Format DMP

The DMP file format is actually a li sting of the source code with additional offset infromati-
on. The module DLOADS.INC is able to load the debug file format. The procedure DI S-
PLAYSDEBUGSOURCE loads and shows the debug source file (program file name with the
extension .DMP) at the offset address in EDI.

The -MM or -DMP option produces a debug file with the extension .DMP. This file contains
the whole source code (including all submodules), with the offset address for every line. The
output could look like this:

00000000: ; Pass32 DEBUG FILE (c) 1996 by Dieter P awelczak

00000000: . MODEL TINY

0000010C: . DATA

0000010C: H elloMesg db ’Hello,World’,10,13,’$’

0000011A: . CODE

00000100: S TART:

00000100: m ov dx,OFFSET HelloMesg ; offset of the text string

00000103: m ov ah,9 ; print string function number

00000105: i nt 21h ; dos call

00000107: m ov ah,4ch ; terminate function number

00000109: i nt 21h ; dos call

0000010B: E ND START ; marks the entry procedure o f the program

Debugging and Code Optimization 101

(c) 1999 by Dieter R. Pawelczak, Munich

0000010B:

The first 8 bytes of a line contain the hexadecimal offset of the line. This offset information
is analysed by DLOADS.INC.

A combination of the -MM option and the -D option (or the equivalent .DEBUG directive) au-
tomatically adds DLOADS.INC to the source code. The debugger realizes the presents of
DLOADS.INC and displays - if possible the debug source file. (The debug source file must
be in the current directory, when the first instruction is debugged!)

Try for example to debug the DISPLAY.ASM example (see part 2 for further information)
with the command: Pass32 DISPLAY -mm -d

DLOADS.INC loads the whole debug source file into a buffer. This buffer is 256 Kbytes in
size. If your debug source f il e is above 256 KBytes, you must alter the buf fer in
DLOADS.INC:

DebugFILEBUFFER DB 256*1024 D UP(?)

You can use the debugger as well in DLL or OVL files. When displaying the source code is
enabled in combination with the OVL model, you must make sure that the main program al-
locates enough memory. The overlay wil l need about 260 KBytes more heap memory because
of the source code file buffer. You can test for example debugging the OVLTEST demo (see
part 2), with assembling the overlay TESTOVL with the debug option:

Pass32 testovl -ovl -d -mm

Pass32 ovltest - uc ovltest

You can test debugging an DLL source as well...

The advantage of the internal debugger is of course, that you can write your own debugger,
or alter the given debugger. If you want to alter the debugger, you should save DEBUG.INC
under another name and alter this file. To use this special debugger, you can use the .DE-
BUGFILE directive:

.DEBUGFILE Filename

Instead of DEBUG.INC the filename (standard extension .ASM) is used as debugger. The de-
bug module is appended when a . DEBUG directive or the option -D is used (.DEBUGFILE
itself does not append, but names the debugger module). Your debugger procedure must be
called DEBUGPROC and must save and restore all registers and flags!

102 The Pass32 Assembler

(c) 1999 by Dieter R. Pawelczak, Munich

8.6.3 Usage of an external Debugger

If you want to use an external debugger (for example the Pro32 Debugger PRODB32.EXE),
you should assemble with the -MM or -DMP option. The external debugger is then able to load
the debug file, and display the source code, add watches etc.

If you want to use a disassembler, you can use DISS32. This is a simple 32 bit disassembler,
which is part of the Pass32 package. The disassembler comes with complete source code and
can be easily integrated in other applications.

8.6.4 Detailed Information - The Map File

To gain general information of the assembled program, we can create a map file: We assem-
ble with the -M option. A map file shows all symbols which had been created during the as-
sembling. A typical map file could look like this(eg. HELLO1.MAP):
Pass32 MAP FILE (c) 1996 by Dieter Pawelczak

SOURCE :HELLO1.ASM

DESTINATION: HELLO1.COM

PROGRAM TYPE DOS TINY

SEGMENT TYPE CODE

ENTRYPOINT : 00000100

OFFSET TYPE NAME

00000100 LA BEL START

SEGMENT TYPE DATA

OFFSET TYPE NAME

0000010C DA TA HELLOMESG

8.6.5 Code Optimization

With the directive .SMART, .SM ART1, . SMART2, .SMART3 or the equivalent options -
o, -os, -or, -oj, you can enable code optimization. Code optimization covers two main
aspects: optimization of the instructions and optimization of the linker.

Some optimizations are always done: For example if you work with the (E)AX register, the
faster and shorter (E)AX instruction are used, when possible. Relative 8 bit jump instructions
are used when possible.

With .S MART3, or the option -oj, Pass32 optimizes the jump instructions: Pass32 tries to
assemble all jump instructions as short jump instructions, even if the target is unknown. This
is exactly the optimization, a user can do with the SHORT directive...

With .SMART2, or the option -or, Pass32 optimizes the register instructions:

Debugging and Code Optimization 103

(c) 1999 by Dieter R. Pawelczak, Munich

– any register immediate load with a zero constant will be replaced by the shorter regi-
ster XOR register instruction.

– any immediate add,sub,cmp etc. with 16 or 32 bit registers/ memory locations and an
immediate byte value wil l be replaced by the shorter rm16, imm8 / rm32, imm8 in-
struction.

– any instruction like MOV AL,AL wil l be removed completely (such an instruction
might appear, when using macro parameters)

The .SMART1 (-o1 option) optimization excludes all procedures from the linker, which are
not explicitl y called in the source file, addressed via the OFFSET directive or included with
the .PUBLIC directive.

The .SMART directive (-o option) includes all other optimizations: .SMART1, SMART2. and
.SMART3. Furthermore, with .SMART Pass32 scans through the source file (similar to a de-
bugger) and excludes all procedure which are not called or addressed via the OFFSET direc-
tive in the assumed course of the program at run time. This is the best optimization, because
only actually used procedures remain part of the program.

Three main rules for the use of .SMART or .SMART1:

– you must define every procedure correctly between the PROC and ENDP directive.

– you should not use the optimization until the unoptimized code is assembled correctly.

– you should not optimize and debug at the same time; the optimize function tries to
shorten the code, whereas the debug function expands the code (actually, the debug
option even disables some optimizations like short jumps, etc.)

The optimization with .S MART and . SMART1 (-o and -o1) might take until 30% longer
than usual assembling, because of a third pass. The other optimizations with .SMART2 and
.SMART3 (-or and -oj) might take 1-2% longer.

104 The Pass32 Assembler

(c) 1999 by Dieter R. Pawelczak, Munich

105

(c) 1999 by Dieter R. Pawelczak, Munich

Appendix

A The Pass32 Assembler

A.1 Operators

() Marks priority evaluation

[] Marks memory location

* Multiplies two integer expressions

+ adds to integer expressions

- sign of integer expression

- subtracts two integer expressions

/ divides two integer expressions

% modulo of two integer expressions

and logical and of two expressions

not logical invert of expression

or logical or of two expressions

xor logical xor of two expressions

byte ptr forces memory location to be byte size

word ptr forces memory location to be word (2 bytes) size

dword ptr forces memory location to be doubleword (4 bytes) size

qword ptr forces memory location to be quadword (8 bytes) size

tbyte ptr forces memory location to be 10-byte size

fword ptr forces memory location to be 32-bit far pointer size

size returns reserved byte count for the data identifier

A.2 Directives

.ALIGN forces data alignment or code alignment - use in the segment

.ALLWARN enables all warnings

.BLOCK the following data are stored as one block (alignment ignored)

.CODE the following instructions belong to the code segment;

 assembler instructions following

.COMMENT marks the start of a comment

.CONST the following instructions belong to the code segment;

constant data definitions following

106

(c) 1999 by Dieter R. Pawelczak, Munich

.DATA the following instructions belong to the data segment;

data definitions following

.DATA? the following instructions belong to the uninitialized

data segment; indeterminate data definitions following

.DEBUG use debugger for the following instructions

.DEBUGFILE use other debugger module instead of DEBUG32.INC/DEBUG.INC

.DISPLAY displays message during assembling

DB allocates and initializes a byte storage for data and code

DD allocates and initializes a doubleword (4 bytes) storage

DF, DP allocates and initializes a 32-bit far pointer (6 bytes)

storage

DQ allocates and initializes a quadword (8 bytes) storage

DT allocates and initializes a ten bytes storage

DW allocates and initializes a word (2 bytes) storage

DUP duplicate storage

.ELSE alternative conditional assembly block - part of the

.IF directive

END Name specifies the entry point of the program

END marks the end of the assembler source

.ENDIF end of conditional assembly block - marks the end of the

.IF directive

ENDP marks the end of a procedure

EMDM marks the end of a macro

ENDMACRO marks the end of a macro

.EQU definition for a replacement

.ERR forces the assembler to generate an error

.ERROR forces the assembler to generate an error

.EXTERN marks identifier of other module as public - marks label of

other procedure as public

.FAR all procedure calls are treated as far (forward far calls)

FAR marks a procedure as far

.IF initiates a conditional assembly, expression must be unequal 0

.IFE initiates a conditional assembly, expression must be equal

.IFM initiates a conditional assembly, module must be included

.IFPM initiates a conditional assembly, target must be for protected mode

.IFR initiates a conditional assembly, expression must be a register

.IFR R8 initiates a conditional assembly, expression must be an 8 bit reg.

.IFR R16 initiates a conditional assembly, expression must be a 16 bit reg.

107

(c) 1999 by Dieter R. Pawelczak, Munich

.IFR R32 initiates a conditional assembly, expression must be a 32 bit reg.

.IFS initiates a conditional assembly, expression must be a string

.INTERFACE marks the start of interface definitions for DLL/OVL type

.INCLUDE includes assembly file, any file will be included only once

.INCLUDEDIR sets directory to search for include files

.INVOKE to call a win32 API function (only Win32 model)

.LOADBIN links binary file directly into program code

.MACRO defines a MACRO

NEAR marks a procedure as near

.NOALIGN no data alignment

.NOBLOCK marks the end of a data block

.NODEBUG disables debugger: no debugging beyond this line

.NOFAR far calls are treated individually (no forward reference)

.NOWARN disables warnings

.MODEL defines the memory model TINY/FLAT/OVL/DLL

.ORG defines the code segment start

.OUT displays message during assembling

PROC defines procedure [attributes FAR / NEAR / START]

RS allocates and initializes a single real constant (4 bytes)

RD allocates and initializes a double real constant (8 bytes)

RT, RE allocates and initializes an extended (temp) real constant (10 bytes)

SHORT uses a 8 bit rel. jump instruction

.SMART enables all code optimizations

.SMART1 enables code optimizations for subroutines

.SMART2 enables code optimizations for register instructions

.SMART3 enables code optimizations for jump instructions

START marks a procedure as a start-up procedure

.TYPE multiple .EQU declaration for enumeration types

.USE16 code segment attribute is 16 bit - default model TINY

.USE32 code segment attribute is 32 bit - default model FLAT

.WARN forces the assembler to generate a warning message

.WIN32 to insert a win32 API function (only Win32 model)

A.3 Extender/L inker Var iables

.MEM specifies the mainmemory variable (FLAT/WIN32 model)

.MIN specifies the minimum amount of memory needed to run the program

.MAX specifies the maximum amount of memory used by the program

108

(c) 1999 by Dieter R. Pawelczak, Munich

.NM disables extra messages during loading

.NB disables Pro32 break function

.PLUGIN forces the dos extender to load plugin

.STACK defines the stack size in KBytes (FLAT/WIN32 model)

.UCU disables 1 sec loop for copyright message (for uncommercial use only)

.DOSX to load other dos extender as stub

A.4 Pass32 Arguments

The general syntax for the Pass32 Assembler is:

 PASS32 Filename[.ASM] [-OPTIONS]

 or

 PASS32 Filename[.ASM] [/OPTIONS]

 Here is a li st of the Pass32 options:

• Linker options:

-t create com file (.COM) in combination with the TINY model

-f create flat model binary (.BIN) in combination with the FLAT

memory model

-w create Win32 PE file (.EXE)

-ovl create flat model overlay (.OVL)

-dll create flat/Win32 model DLL (.DLL)

-out:name specify output (.EXE/.COM) file name

• Assembling options:

-a enable all warnings

-nw enable no warnings

-e do not halt on first error

-o optimize maximal

-os optimize for size (exclude unused procedures)

-or optimize instructions

-oj optimize short jump instructions

-i:name use directory name to search for include files

-im:name include assembler file in source

109

(c) 1999 by Dieter R. Pawelczak, Munich

-s silent: no output during the assembling

-spp skip pre-processor: assemble without using the pre-processor

• Debugger options:

-m create map file: A file with the extendion .MAP is created.

This file displays all symbols created during the assembling.

-mm / -dmp create debug file: A file with the extendion .DMP is created.

This file displays the whole source (including all sub-modules) with the

corresponding offset address for each line.

-d add debug information: Debug information is added to the executable file1.

A combination of -mm and -d allows to display the source code during

debugging...

-error:HHHHH displays error at offset HHHHH (hex): The source is assembled without

creating an executable program file. When the error address is found, the

corresponding source line will be displayed.

• Extender/Linker options: (ignored when assembling with -t -dll -ovl -f opti-
on)

-mem:XXXXX -allocate xxxxx KBytes of XMS: The initial program code/data segment is

 xxxxx KBytes in size.

-allocate xxxxx Kbytes heap for the Win32 program

-min:XXXXX the program needs at least xxxxx KBytes of XMS2.

-max:XXXXX -the program uses max. xxxxx KBytes of XMS.

-the maximum program heap for the Win32 program

-st:XXXXX sets the size of stack in KBytes (only FLAT and Win32 Model)

-nm display no message: Usually the Dos Extender displays the linear address of

the program segment. When DPMI is emulated, the DPMI Version number

is displayed. These messages won’ t be displayed when assembling

with this argument.

-nb no control of CRTL-Break / CRTL+C: In emulated DPMI the Dos

Extender takes control of [CRTL]+[Break] and [CRTL+C] .

To avoid program abortion with [CRTL]+[Break] /[CRTL+C] you

should use this option.

1.Note: Debug information is added until the first .NODEBUG directive!
2. This option is equal to -mem

110

(c) 1999 by Dieter R. Pawelczak, Munich

-c write core on error: For post debugging the emulated DPMI can generate

a core image of the program. When an exception occurs, the current

program code (and data) segment will be stored in the file CORE.COR,

which can be analysed by a disassembler / debugger. (not supported by the

Pro32 GOLD series)

-core:XXXXX write xxxxx KBytes core on error: Usually the core size is the .CODE and

.DATA size. To store uninitialized data (.DATA?) you can alter the core

size. (not supported by the Pro32 GOLD series)

-plug:NAME forces the Pro32 dos extender to load a plug-i (Pro32 GOLD).

-key:NAME To enter the license key for the Pro32 Dos Extender (Pro32 GOLD). The

license key makes sure, that no other user can change the application

settings with ProSet or any other Pro32 utility.

A.5 Run Time L ibrary

A.5.1 SYSTEM.INC - Some useful system routines:

Function Sy stemKeyPressed: returns Zero Flag, if n o key pressed
Function Sy stemGetKey: waits for key stroke, retur ns key in al
Function Sy stemGetMem: allocates eax bytes of memo r y on the heap
Function Sy stemFreeMem: frees eax bytes of memory on the heap
Function Sy stemMemAvail: returns largest memory bl ock available on the heap
Function Ma t hToString: 32 bit (EAX) number to stri ng at Offset EDI
Function Sy stemPrint: prints at screen CX=X, DX=Y, EDI=string
Function Sy stemWrite: prints string EDI at cursor
Function Sy stemWriteLn: prints string EDI at curso r with LineFeed
Function Sy stemNewLine: creates line feed and scro l ling at cursor
Function Sy stemClrSrc: clears the text screen
Function Sy stemReadLn: reads line from keyboard to string in EDI
Function Sy stemGotoXY: set cursor at CX, DX
Function Sy stemSound: turn speaker on with frequen cy in AX
Function Sy stemNoSound: turn speaker of
Function Sy stemDelay: delays execution for ms in A X
Function Sy stemExec: executes a program; name EDI, command line ESI
Function SystemGetRan dom: retu r ns a 16 bit unsigned random number, range in AX
Function Ge t ParamStr: gets paramstr in EDI for par ameter(AL)
Function Ge t EnvStr returns environment string to m atching string in EDI
Function Ge t PrgDir: returns Directory of the progr am path in EAX
Variable Te xtColor: DB foreground color
Variable Ba ckground: DB background color
Macro Check CPU(CPUType) macro to check the CPU Typ e

A.5.2 SYSTEM.MAC - The Macro Version of SYSTEM.INC

Macro GetMe m(Mem): allocates mem bytes of memory o n the heap
Macro FreeM em(Ptr,Mem): frees mem bytes of pointer ptr
Macro Print (X,Y,String): prints string at screen
Macro Write (String): prints string at cursor
Macro Write Ln(String): prints string EDI at cursor with LineFeed

111

(c) 1999 by Dieter R. Pawelczak, Munich

Macro ReadLn: reads l ine from keyboard
Macro Color(Text,Bac k) sets color variables
Macro GotoXY(x,y) se t cursor
Macro Exit(ExitCode) terminate program

A.5.3 IO.INC - Disk Access

Function FileLength: EDI offset to filename, length in EAX
Function LoadFile: EDI offset to filename, ESI destination, result:size in EAX
Function OpenFileToR ead: EDI offset to filename, returns ha ndle in ebx
Function OpenFileToW r ite: EDI offset to filename, returns h andle in ebx
Function CloseFile: EBX handle
Function SaveFile: E DI offset to filename, ESI Source, ECX: size
Function BlockRead: EBX handle, ECX size, EDI dest., returns bytes read in EAX
Function BlockWrite: EBX handle, ECX size, EDI dest., returns bytes wri t ten
Function GetDir: cop i es directory name of DRIVE in DL to ST RING in EDI
Function ChDir: chan ges to the directory in String EDI

A.5.4 STRING.INC - routines for zero terminated str ings

Function strcat: app ends string EDI with string ESI, return s new length
Function strupcase: converts string in EDI to upcase string , returns length
Function strcopy : c opys string ESI to EDI, returns length
Function strlength: r eturns the EDI string length
Function strpos: Che cks, if string ESI contains substring E DI
Function strcmp: com pares string ESI with string EDI result in eax

A.5.5 GAME.INC - Joystick Access

Function GetXAxis : Returns value in EAX proportional to th e X-Value
Function GetYAxis : Returns value in EAX proportional to th e Y-Value
Function CheckFire : Zero-Flag set if Fire is pressed
Function CheckButton : Zero-Flag set if Fire is pressed

A.5.6 GRAPH.INC - VGA 320x200x256 graphic routines

Function INITGRAPH : initializes graphic mode
Function SETTEXTMODE : returns to textmode
Function PUTPIXEL : sets pixel at CX:DX with color BL
Function GETPIXEL : gets pixel color at CX:DX in BL
Function OUTCHAR : d i splays a single character at CX:DX, co l or BL, char AL
Function OUTTEXTXY : displays a st ring at CX:DX, color BL, string offset EDI
Function FILLBLOCK : fills block CX:DX to SI:DI with color BL
Function CI RCLE : draws a circle at CX:DX with radius SI and DI and color BL
Function LINE : draw s a line between CX:DX, SI:DI with colo r BL
Function PUTOBJECT : displays a ’sprite’ at CX:DX with size SI: BX and source EDI
Function P UTIMAGE : displays an image at CX:DX with size SI:BX and source EDI
Function GETIM AGE : gets an i mage from CX:DX wit h size SI:BX and image buffer EDI
Function COLOROUTCHA R : displays a single character in diff erent colors
Function COLOROUTTEXTXY : displays a string in different colors (s. outtextxy)

A.5.7 MSDEMO.INC - PMode mouse dr iver for COM1/COM2 por t

Function InitMouse: Initializes pm mouse driver for COM1 or COM2
Variable MSX: DW current mouse X position
Variable MSY: DW current mouse Y position
Variable MSLEFT: DB status of left mouse button

112

(c) 1999 by Dieter R. Pawelczak, Munich

Variable MS RIGHT: DB status of right mouse button
Pointer MS DRAW: DF far pointer for mouse draw p r ocedure;

 called with every mouse movement

A.5.8 GRAPHIC.INC - DLL based graphic dr iver library

Function PU TPIXEL : ECX = X-Axis, EDX = Y-Axis, EBX = color
Function GE TPIXEL : ECX = X-Axis, EDX = Y-Axis, EBX = color
Function LI NE : ECX = X1, EDX = Y1, ESI = X 2, EDI = Y2, EBX = color
Function RE CTANGLE : ECX = X1, EDX = Y1, ESI = X 2, EDI = Y2, EBX = color
Function FI LL : ECX = X1, EDX = Y1, ESI = X 2, EDI = Y2, EBX = color
Function CI RLCE : ECX = X, EDX =Y, ESI = r1, EDI = r2, EBX = color
Function OUTTEXTXY : ECX = X-Axis, EDX = Y-Axis, EBX = color, EDI = str. offset
Function PUTSPRITE : ECX = X, EDX = Y, EBX = Size X , EDI = Size Y, ESI spr. offset
Function FL USHBUFFER : copys activ buffer to scree n
Function CL EARSCREEN
Function FA STFILL : ECX = X1, EDX = Y1, ESI = X 2, EDI = Y2, EBX = color
Function PUTIMAGE : ECX = X, EDX = Y, EBX = Size X, EDI = Size Y, ESI img. off s.
Function GETIMAGE : ECX = X, EDX = Y, EBX = Size X, EDI = Size Y, ESI img. off s.
Function PUT16x16 : ECX = X, EDX = Y, EBX = Size X, EDI = Size Y, ESI img. off s.
Function FL USHWINDOW : ECX = X1, EDX = Y1, ESI = X 2, EDI = Y2
Function IN I TGRAPH : EAX = video mode
Function SE TTEXTMODE : return to co80 mode
Function GE TMAXX : returns max value for X
Function GE TMAXY : returns max value for Y
Function SE TPAGE : EAX = page (0=screen, 1..n = BUFFER)
Function GE TACTPAGE : returns in EAX active page
Function LO ADPALETTE : loads palette
Function WA I TFORVERTICALRETRACE : EAX and EDX dest r oyed
Macros Draw Text(X,Y,String,Color)
Macros Draw Line(X1,Y1,X2,Y2,Color)
Macros Draw Rectangle(X1,Y1,X2,Y2,Color)
Macros Draw Fill(X1,Y1,X2,Y2,Color)
Macros Draw I mage(X1,Y1,X2,Y2,offs)
Macros Draw I con(X1,Y1,offs)

A.5.9 DOSX.INC - Extended DOS Support for PRO321

Include DOSX.INC at the beginning of your source to enable extended DOS support.

1.should not be used with Pro32 Gold - use DOSX plug-in instead.

113

(c) 1999 by Dieter R. Pawelczak, Munich

A.6 Suppor ted
Assembler
Instructions

 AAA

 AAD

 AAM

 AAS

 ADC reg8, r/m8
 ADC reg16, r/m16
 ADC reg32, r/m32
 ADC r/m8, imm8
 ADC r/m8, reg8
 ADC r/m16, imm8
 ADC r/m16, imm16
 ADC r/m16, reg16
 ADC r/m32, imm8
 ADC r/m32, imm32
 ADC r/m32, reg32
 ADC AL, imm8
 ADC AX, imm16
 ADC EAX, imm32

 ADD reg8, r/m8
 ADD reg16, r/m16
 ADD reg32, r/m32
 ADD r/m8, imm8
 ADD r/m8, imm8
 ADD r/m8, reg8
 ADD r/m16, imm8
 ADD r/m16, imm16
 ADD r/m16, reg16
 ADD r/m32, imm8
 ADD r/m32, imm32
 ADD r/m32, reg32
 ADD AL, imm8
 ADD AX, imm16
 ADD EAX, imm32

 AND reg8, r/m8
 AND reg16, r/m16
 AND reg32, r/m32
 AND r/m8, imm8
 AND r/m8, reg8
 AND r/m16, imm8
 AND r/m16, imm16
 AND r/m16, reg16
 AND r/m32, imm8
 AND r/m32, imm32
 AND r/m32, reg32
 AND AL, imm8

 AND AX, imm16
 AND EAX, imm3 2

 ARPL r/m16

 BOUND r/m16
 BOUND r/m32

 BSF reg16, r/ m16
 BSF reg32, r/ m32

 BSR reg16, r/ m16
 BSR reg32, r/ m32

 BSWAP reg32

 BT r/m16, imm 8
 BT r/m16, reg 16
 BT r/m32, imm 8
 BT r/m32, reg 32

 BTC r/m16, im m8
 BTC r/m16, re g16
 BTC r/m32, im m8
 BTC r/m32, re g32

 BTR r/m16, im m8
 BTR r/m16, re g16
 BTR r/m32, im m8
 BTR r/m32, re g32

 BTS r/m16, im m8
 BTS r/m16, re g16
 BTS r/m32, im m8
 BTS r/m32, re g32

 CALL rel16
 CALL rel32
 CALL mem16
 CALL mem32
 CALL mem48

 CBW

 CDQ

 CLC

 CLD

 CLI

 CLTS

 CMC

 CMP reg8, r/m 8
 CMP reg16, r/ m16

 CMP reg32 , r/m32
 CMP r/m8, imm8
 CMP r/m8, reg8
 CMP r/m16 , imm8
 CMP r/m16 , imm16
 CMP r/m16 , reg16
 CMP r/m32 , imm8
 CMP r/m32 , imm32
 CMP r/m32 , reg32
 CMP AL, i mm8
 CMP AX, i mm16
 CMP EAX, i mm32

 CMPSB

 CMPSD

 CMPSW

 CMPXCHG r/ m8, reg8
 CMPXCHG r/ m16, reg16
 CMPXCHG r/ m32, reg32

 CWD

 CWDE

 DAA

 DAS

 DEC reg16
 DEC reg32
 DEC r/m8
 DEC r/m16
 DEC r/m32

 DIV r/m8
 DIV r/m16
 DIV r/m32

 ENTER imm16, imm8

 F2XM1
 F2XM1

 FABS

 FADD st, st(i)
 FADD st(i) , st
 FADD mem32
 FADD mem64

 FADDP st(i), st

 FBLD mem80

 FBSTP mem80

114

(c) 1999 by Dieter R. Pawelczak, Munich

 FCHS

 FCLEX

 FCOM st(i)
 FCOM mem32
 FCOM mem64

 FCOMP st (i)
 FCOMP mem32
 FCOMP mem64

 FCOMPP

 FCOS

 FDECSTP

 FDIV st, st(i)
 FDIV st(i), st
 FDIV mem32
 FDIV mem64

 FDIVP st (i), st

 FDIVR st , st(i)
 FDIVR st (i), st
 FDIVR mem32
 FDIVR mem64

 FDIVRP s t (i), st

 FFREE st (i)

 FFREEP st (i)

 FIADD mem16
 FIADD mem32

 FICOM mem16
 FICOM mem32

 FICOMP mem16
 FICOMP mem32

 FIDIV me m16
 FIDIV me m32

 FIDIVR m em16
 FIDIVR m em32

 FILD mem16
 FILD mem32
 FILD mem64

 FIMUL mem16
 FIMUL mem32

 FINCSTP

 FINI T

 FIST mem16
 FIST mem32

 FIST P mem16
 FIST P mem32

 FISUB mem16
 FISUB mem32

 FISUBR mem16
 FISUBR mem32

 FLD st(i)
 FLD mem32
 FLD mem64
 FLD mem80

 FLD1

 FLDCW mem16

 FLDENV r/m16

 FLDL2E

 FLDL2T

 FLDLG2

 FLDLN2

 FLDPI

 FLDZ

 FMUL st, st(i)
 FMUL st(i), st
 FMUL mem32
 FMUL mem64

 FMULP st(i), st

 FNINI T

 FNOP

 FNSTENV r/m16

 FPATAN

 FPREM

 FPREM1

 FPTAN

 FRNDINT

 FRSTOR r/m16

 FSAVE r/m16

 FSCALE

 FSETPM

 FSIN

 FSINCOS

 FSQRT

 FST st(i)
 FST mem32
 FST mem64

 FSTCW mem16

 FSTENV r/m16

 FSTP st(i)
 FSTP mem32
 FSTP mem64
 FSTP mem80

 FSTSW r/m16
 FSTSW AX

 FSUB st, st(i)
 FSUB st(i), st
 FSUB mem32
 FSUB mem64

 FSUBP st(i), st

 FSUBR st, st(i)
 FSUBR st(i), st
 FSUBR mem32
 FSUBR mem64

 FSUBRP st(i), st

 FTST

 FUCOM st(i)

 FUCOMP st(i)

 FUCOMPP

 FWAIT

115

(c) 1999 by Dieter R. Pawelczak, Munich

 FXAM

 FXCH st(i)

 FXTRACT

 FYL2X

 FYL2XP1

 HLT

 IDIV r/m8
 IDIV r/m16
 IDIV r/m32

 IMUL reg16, r/m16
 IMUL reg32, r/m32
 IMUL reg16, r/ m16, imm8
 IMUL reg32, r/ m32, imm8
 IMUL r/m8
 IMUL r/m16
 IMUL r/m16, imm8
 IMUL r/m16, imm16
 IMUL r/m32
 IMUL r/m32, imm8
 IMUL r/m32, imm32

 IN AL, imm8
 IN AL, DX
 IN AX, imm8
 IN AX, DX
 IN EAX, imm8
 IN EAX, DX

 INC reg16
 INC reg32
 INC r/m8
 INC r/m16
 INC r/m32

 INSB

 INSD

 INSW

 INT

 INT3

 INTO

 INVD

 INVLPG

 IRET

 IRETD

 JA rel8
 JA rel16
 JA rel32

 JAE rel8
 JAE rel16
 JAE rel32

 JB rel8
 JB rel16
 JB rel32

 JBE rel8
 JBE rel16
 JBE rel32

 JC rel8
 JC rel16
 JC rel32

 JCXZ rel8
 JECXZ rel8

 JE rel8
 JE rel16
 JE rel32

 JG rel8
 JG rel16
 JG rel32

 JGE rel8
 JGE rel16
 JGE rel32

 JL rel8
 JL rel16
 JL rel32

 JLE rel8
 JLE rel16
 JLE rel32

 JMP rel8
 JMP rel16
 JMP rel32

 JNA rel8
 JNA rel16
 JNA rel32

 JNAE rel8
 JNAE rel16
 JNAE rel32

 JNB rel8
 JNB rel16
 JNB rel32

 JNBE rel8
 JNBE rel1 6
 JNBE rel3 2

 JNC rel8
 JNC rel16
 JNC rel32

 JNE rel8
 JNE rel16
 JNE rel32

 JNG rel8
 JNG rel16
 JNG rel32

 JNGE rel8
 JNGE rel1 6
 JNGE rel3 2

 JNL rel8
 JNL rel16
 JNL rel32

 JNLE rel8
 JNLE rel1 6
 JNLE rel3 2

 JNO rel8
 JNO rel16
 JNO rel32

 JNP rel8
 JNP rel16
 JNP rel32

 JNS rel8
 JNS rel16
 JNS rel32

 JNZ rel8
 JNZ rel16
 JNZ rel32

 JO rel8
 JO rel16
 JO rel32

 JP rel8
 JP rel16
 JP rel32

 JPO rel8

116

(c) 1999 by Dieter R. Pawelczak, Munich

 JPO rel1 6
 JPO rel3 2

 JS rel8
 JS rel16
 JS rel32

 JZ rel8
 JZ rel16
 JZ rel32

 LAHF

 LAR reg1 6, r/m16

 LDS reg1 6, mem32
 LDS reg3 2, mem48

 LEA reg1 6, mem16
 LEA reg3 2, mem32

 LEAVE

 LES reg1 6, mem32
 LES reg3 2, mem48

 LFS reg1 6, mem32
 LFS reg3 2, mem48

 LGDT mem16
 LGDT mem32

 LGS reg1 6, mem32
 LGS reg3 2, mem48

 LIDT mem16
 LIDT mem32

 LLDT mem16

 LMSW r/m16

 LOCK

 LODSB

 LODSD

 LODSW

 LOOP rel 8

 LOOPD re l 8

 LOOPDE rel8

 LOOPDNE r el8

 LOOPDNZ rel8

 LOOPDZ rel8

 LOOPE rel8

 LOOPNE rel8

 LOOPNZ rel8

 LOOPZ rel8

 LSL r eg16, r/m16

 LSS r eg16, mem32
 LSS r eg32, mem48

 LTR r /m16

 MOV r eg8, imm8
 MOV r eg8, r/m8
 MOV r eg16, imm16
 MOV r eg16, r/m16
 MOV r eg32, imm32
 MOV r eg32, r/m32
 MOV r /m8, imm8
 MOV r /m8, reg8
 MOV r /m16, imm16
 MOV r /m16, reg16
 MOV r /m16, sreg
 MOV r /m32, imm32
 MOV r /m32, reg32
 MOV AL, mem8
 MOV AX, mem16
 MOV EAX, mem32
 MOV sreg, r/m16
 MOV mem8, AL
 MOV mem16, AX
 MOV mem32, EAX
 MOV r eg32, CR0-CR7
 MOV CR0-CR7,reg32
 MOV r eg32, DR0-DR7
 MOV DR0-DR7,reg32
 MOV r eg32, TR0-TR7
 MOV TR0-TR7,reg32

 MOVSB

 MOVSD

 MOVSW

 MOVSX reg16, r/m8
 MOVSX reg32, r/m8
 MOVSX reg32, r/m16

 MOVZX reg16, r/m8
 MOVZX reg32, r/m8

 MOVZX reg32, r/m16

 MUL r/m8
 MUL r/m16
 MUL r/m32

 NEG r/m8
 NEG r/m16
 NEG r/m32

 NOP

 NOT r/m8
 NOT r/m16
 NOT r/m32

 OR reg8, r/m8
 OR reg16, r/m16
 OR reg32, r/m32
 OR r/m8, imm8
 OR r/m8, reg8
 OR r/m16, imm8
 OR r/m16, imm16
 OR r/m16, reg16
 OR r/m32, imm8
 OR r/m32, imm32
 OR r/m32, reg32
 OR AL, imm8
 OR AX, imm16
 OR EAX, imm32

 OUT imm8, AL
 OUT imm8, AX
 OUT imm8, EAX
 OUT DX, AL
 OUT DX, AX
 OUT DX, EAX

 OUTSB

 OUTSD

 OUTSW

 POP reg16
 POP reg32
 POP mem16
 POP mem32
 POP DS
 POP ES
 POP SS
 POP FS
 POP GS

 POPA

 POPAD

117

(c) 1999 by Dieter R. Pawelczak, Munich

 POPF

 POPFD

 PUSH imm16
 PUSHD imm32
 PUSH mem16
 PUSH mem32
 PUSH reg16
 PUSH reg32
 PUSH CS
 PUSH DS
 PUSH ES
 PUSH SS
 PUSH FS
 PUSH GS

 PUSHA

 PUSHAD

 PUSHF

 PUSHFD

 RCL r/m8, imm8
 RCL r/m8, CL
 RCL r/m16, imm8
 RCL r/m16, CL
 RCL r/m32, imm8
 RCL r/m32, CL

 RCR r/m8, imm8
 RCR r/m8, CL
 RCR r/m16, imm8
 RCR r/m16, CL
 RCR r/m32, imm8
 RCR r/m32, CL

 REP
 REPNE

 RET
 RET imm16

 RETF
 RETF imm16

 ROL r/m8, imm8
 ROL r/m8, CL
 ROL r/m16, imm8
 ROL r/m16, CL
 ROL r/m32, imm8
 ROL r/m32, CL

 ROR r/m8, imm8
 ROR r/m8, CL
 ROR r/m16, imm8

 ROR r/m16, CL
 ROR r/m32, im m8
 ROR r/m32, CL

 SAHF

 SAL r/m8, imm 8
 SAL r/m8, CL
 SAL r/m16, im m8
 SAL r/m16, CL
 SAL r/m32, im m8
 SAL r/m32, CL

 SAR r/m8, imm 8
 SAR r/m8, CL
 SAR r/m16, im m8
 SAR r/m16, CL
 SAR r/m32, im m8
 SAR r/m32, CL

 SBB reg8, r/m 8
 SBB reg16, r/ m16
 SBB reg32, r/ m32
 SBB r/m8, imm 8
 SBB r/m8, reg 8
 SBB r/m16, im m8
 SBB r/m16, im m16
 SBB r/m16, re g16
 SBB r/m32, im m8
 SBB r/m32, im m32
 SBB r/m32, re g32
 SBB AL, imm8
 SBB AX, imm16
 SBB EAX, imm3 2

 SCASB

 SCASD

 SCASW

 SETA r/m8

 SETAE r/m8

 SETB r/m8

 SETBE r/m8

 SETC r/m8

 SETE r/m8

 SETG r/m8

 SETGE r/m8

 SETL r/m8

 SETLE r/m 8

 SETNA r/m 8

 SETNAE r/ m8

 SETNB r/m 8

 SETNBE r/ m8

 SETNC r/m 8

 SETNE r/m 8

 SETNG r/m 8

 SETNGE r/ m8

 SETNL r/m 8

 SETNLE r/ m8

 SETNO r/m 8

 SETNP r/m 8

 SETNS r/m 8

 SETNZ r/m 8

 SETO r/m8

 SETP r/m8

 SETPE r/m 8

 SETPO r/m 8

 SETS r/m8

 SETZ r/m8

 SGDT mem16
 SGDT mem32

 SHL r/m8, imm8
 SHL r/m8, CL
 SHL r/m16 , imm8
 SHL r/m16 , CL
 SHL r/m32 , imm8
 SHL r/m32 , CL

 SHLD r/m16, reg16, imm8
 SHLD r/m1 6, reg16, CL
 SHLD r/m32, reg32, imm8
 SHLD r/m3 2, reg32, CL

118

(c) 1999 by Dieter R. Pawelczak, Munich

 SHR r/m8 , imm8
 SHR r/m8 , CL
 SHR r/m1 6, imm8
 SHR r/m1 6, CL
 SHR r/m3 2, imm8
 SHR r/m3 2, CL

 SHRD r/m16, reg16, imm8
 SHRD r/m 16, reg16, CL
 SHRD r/m32, reg32, imm8
 SHRD r/m 32, reg32, CL

 SIDT mem16
 SIDT mem32

 SMSW r/m16

 STC

 STD

 STI

 STOSB

 STOSD

 STOSW

 STR r/m1 6

 SUB reg8 , r/m8
 SUB reg1 6, r/m16
 SUB reg3 2, r/m32
 SUB r/m8 , imm8
 SUB r/m8 , reg8
 SUB r/m1 6, imm8
 SUB r/m1 6, imm16
 SUB r/m1 6, reg16
 SUB r/m3 2, imm8
 SUB r/m3 2, imm32
 SUB r/m3 2, reg32
 SUB AL, i mm8
 SUB AX, i mm16
 SUB EAX, imm32

 TEST r/m 8, imm8
 TEST r/m 8, reg8
 TEST r/m 16, imm16
 TEST r/m 16, reg16
 TEST r/m 32, imm32
 TEST r/m 32, reg32
 TEST AL, imm8
 TEST AX, imm16
 TEST EAX, imm32

 VERR r/m 16

 VERW r/m16

 WAIT

 WBINVD

 XADD r/m8, reg8
 XADD r/m16, reg16
 XADD r/m32, reg32

 XCHG reg8, r/m8
 XCHG reg16, r/m16
 XCHG reg32, r/m32
 XCHG r/m8, reg8
 XCHG r/m16, reg16
 XCHG r/m32, reg32
 XCHG AX, reg16
 XCHG EAX, reg32

 XLATB

 XOR r eg8, r/m8
 XOR r eg16, r/m16
 XOR r eg32, r/m32
 XOR r /m8, imm8
 XOR r /m8, reg8
 XOR r /m16, imm8
 XOR r /m16, imm16
 XOR r /m16, reg16
 XOR r /m32, imm8
 XOR r /m32, imm32
 XOR r /m32, reg32
 XOR AL, imm8
 XOR AX, imm16
 XOR EAX, imm32

119

(c) 1999 by Dieter R. Pawelczak, Munich

A.7 Pass32 L imits

There is no limit in source file size. The limit for the memory size is 4G, although only 64MB
are supported by older XMS Versions.

As Pass32 is (stil l) a real mode product, the amount of symbols is limited by the available Dos
memory. Symbols are: Labels, Procedures and Data identifier.

The maximal symbol length is 127 characters for labels and 128 characters for procedures and
variable identifiers.

The maximal number of symbols is depending on the symbol length. With an average of 11
characters per symbol, the maximum is about 18000 symbols, with prepass optimization
about 16000 symbols. With an average of 35 characters per symbol, the maximum is about
8000 symbols. The number of procedures is limited to 4000. The number of modules (actually
included) is limited to 50.

B Pro32 Dos Extender

B.1 The Dos Extender Loader

The DOS extender program (PRO32.EXE) is copied to the beginning of the protected mode
binary - done by the assembler and linker PASS32.EXE or by the linker tool PROSET.EXE.
The DOS extender is therefore a part of the protected mode program. When called from DOS
only the DOS extender is load into DOS Memory and executed.

The extender first checks, if a DPMI host is available. If so, the processor is switched into
protected mode and the extender continues with the loading of the program. If there is no
DPMI available (or only a 16 bit DPMI host), the Dos Extender checks for VCPI. If there is
no VCPI, the DOS extender checks for XMS-memory manager. If there is no XMS-manager,
the dos extender emulates the XMS memory manager. Now, as XMS memory can be acces-
sed, the dos extender starts with the DPMI emulation. If VCPI is present, the extender uses
the VCPI methods to switch between real mode and protected mode. Otherwise, the dos ex-
tender initiates its own GDT and uses CPU instructions to switch between real mode and pro-
tected mode (see more section B.2 The Integrated DPMI Server on page 121).

The protected mode parts of the dos extender are independent of the interface DPMI, VCPI,
XMS or RAW. In protected mode, Pro32 tries to allocate the program memory: Pro32 first
checks how much memory is available in the system. If the amount of memory is below the
MinMemory variable, Pro32 terminates with the error message: too less memory available. If
the amount of memory is above the MaxMemory variable, Pro32 allocates memory according
to the MaxMemory value. Otherwise, Pro32 allocates all available Memory. So Pro32 alloca-
tes at least an amount of memory according to the MinMemory value and maximal according
to MaxMemory.

120

(c) 1999 by Dieter R. Pawelczak, Munich

Now the DOS Extender allocates real mode memory for the PM-stack. It uses real mode me-
mory, as this memory is according to the DPMI and Windows-Specification always locked.
Note, if the memory used by the stack is not locked, it will produces a stack exception under
any Windows version. Therefore a real mode stack provides a more stable application. Pro32
needs at least 100h bytes of stack and can use max. 512 Kbytes. As default, Pro32 allocates
32KByte stack.

Afterwards, the dos extender tries to open the program file. The progam name is usually the
parameter 0.

At last the DOS extender checks the video configuration. If the current video mode is not
80x25 textmode, the DOS extender changes the video mode to 80x25 textmode.

The extender establishes several descriptors:

- 32 bit Code Descriptor

- 32 bit Data Descriptor

- 32 bit Stack Descriptor

- 16 bit Video Descriptor

- 32 bit Zero Base Descriptor (Basis:00000000h)

- 16 bit Real Mode File Buffer Descriptor

- 16 bit DOS Environment Descriptor

If the message flag is enabled, the extender displays the basis of the 32 bit code and data de-
scriptor: „ load to address:xxxxxxxx“

The current PSP is copied with the High Data Descriptor into XMS at offset 00000000. The
DOS extender loads the program to CS:00000100 (The load address can be changed, see
PRO32.DOC / PROSET.DOC).

When the whole program is copied into the XMS memory, all protected descriptors and addi-
tional system information are copied into the PSP. They can be reached by CS:

Tab. B.1 The selector register contents and the PMode PSP

a. available with Pro32 Version 1.47 and newer versions.

00-01 DS - data selector

02-03 ES - video selector

04-05 FS, GS - zero selector

06-07 Real Mode File Buffer Selector

08-09 Real Mode File Buffer Segent

0A-0D Actual allocated XMS Memory

0E Flag, if windows has been detecteda

0F Flag, if other DPMI host is activea

2C-2F selector to DOS environment

80-FF command line with arguments

121

(c) 1999 by Dieter R. Pawelczak, Munich

The value of EAX,EBX,ECX,EDX,ESI,EDI and EBP is zero. ESP holds the maximum stack
size.

B.2 The Integrated DPMI Server

The main part of the DOS extender is using DPMI calls. If the system already provides a 32
bit DPMI host, its DPMI functions are used. For this reason, Pro32 programs are able to run
under Windows 3.x, Windows 9x and under Windows NT. Pro32 does not support all DPMI
functions. For this reason you should use only those that are listed. There are some differences
between the DPMI specifications and the Pro32 DPMI emulation. The main reason for these
differences is the speed of DPMI. DPMI is mainly slowed down, because all real mode inter-
rupts must be provided by the DPMI host. For this reason DPMI hosts typically uses an ex-
ception handler which is checking the interrupt type (external, software,exception...) and
reacting according to the type. Pro32 has a very fast interrupt handler for each individual in-
terrupt. It supports the real mode interrupts 00..7fh.

00 Division by zero* 16 keyboard

01 Single step* 17 Printer

02 NMI 1b CTRL-Break**

03 Break Point* 1c Clock

04 Overflow* 21 DOS-API

05 Bound Check* 23 CRTL-C Exit* *

06 Invalid Opcode* 24 FATAL ERROR Handler**

07 no numeric co-processor* 31 DPMI API

122

(c) 1999 by Dieter R. Pawelczak, Munich

* Exceptions are handled by Pro32

** These interrupts are also transfered from real mode to protected mode.

Tab. B.2 SW/HW Interrupts and Exceptions

The interrupts 80h-0FFh cause an exception.

The exceptions 00 - 0ah, 0ch and 0dh from any other DPMI host are (if the DPMI host offers
this function) controlled by the Pro32 Dos Extender. So when your program is running under
Windows, and an exception occurs, Pro32 wil l handle the exception. The exception handler
usually prints the error address, the error code, the exception type, the contents of all registers,
the basis addresses and the limits of the selectors CS, DS, ES, FS, GS, SS.

The Pass32 Assembler offers a find error option, so you can easily trace the error by searching
for the error address:

Pass32 dummy.asm -error:0127

B.3 The DPMI Service API

The DPMI function numbers are passed in AX. The DPMI function is invoked by calling the
INT 31h. Parameters are passed in BX, CX, DX, DI, SI and not in 32 bit registers due to the
16 bit origin of the DPMI. 32 bit parameters are typically expressed by BX:CX, CX:DX,
SI:DI.

08
double exception*
HW IRW0-Timer

33 Mouse driver API

09
Segment overrun*

HW IRQ1-Keyboard
70 HW IRQ8 Real time clock

0A
Invalid Task STate Segment*

HW IRQ2
71 HW IRQ9 Lan adaptor

0b
Segment not present*

HW IRQ3 COM2
72 HW IRQ10

0c
Stack Exception*
HW IRQ4 COM1

73 HW IRQ11

0d
General Protection Fault*

HW IRQ5
74 HW IRQ12

0e HW IRQ6 Floppy Drive 75 HW IRQ13

0f HW IRQ7 Printer 76 HW IRQ14 Fixed disk

10 VGA Bios 77 HW IRQ15

11
12
13
14
15

BIOS 7A Novell Netware API

123

(c) 1999 by Dieter R. Pawelczak, Munich

When the DPMI function has been succesful, the carry flag is clear. Otherwise, the carry flag
is set and AX holds an error code (see section B.4 DPMI Error Codes in AX: on page 137).

The appendix refers to the 32 bit version of the DPMI.

B.3.1 Function 0000h - Allocate Descr iptor

Allocates one or more descriptors in the descriptor table. These desciptors have a base and li-
mit of 00000000h, they wil l be set to expand-up writeable data, with the present bit set. If
more than one desciptor was allocated, the returnd selector is a base selector. You must add
the value of INT 31h function 0003h to get the next selector. You should request only one sel-
ector by one, to avoid gaps in the descriptor table.

Function call: INT 31h
AX = 0000h
CX = number of descript ors to allocate (usually CX=0001)

Results, if successful
carry flag clear
AX = base selector

Example:
 mov CX,1
 mov AX,0000h
 int 31h
 jc DPMIERROR ; probably no more system resources...
 mov NewSelector,AX

 DPMIERROR:
 call printerror

B.3.2 Function 0001h - Free Descr iptor

Frees a descriptor allocated by the function 0000h. You should not free descriptors allocated
by the DPMI host (for example the initial CS,SS,DS,ES,FS,GS) and descriptors allocated by
function 00002h.

Function call: INT 31h
AX = 0001h
BX = selector for the d escriptor to free

Results, if successful:
carry flag clear, selector f r eed

Example:
mov BX,NewSelector ; no need for NewSelector anymore.. .
mov ax,0001h
int 31h

Notes:

Any use of a free selector wil l cause a general exception. If a selector register holds a freed
selector, Pro32 usually loads the selector register with the dummy selector.

124

(c) 1999 by Dieter R. Pawelczak, Munich

B.3.3 Function 0002h - Get Real Mode Segment Descr iptor

Converts a real mode segment into a protected mode descriptor. The default size attribute is
16 bit, the descriptor type expand-up writeable data, with a base to the Real Mode segment
and a limi t of 0FFFFh.

Function call : INT 31h
AX = 0002h
BX = real mode segment

Results, if successful:
carry flag clear
AX = selector

Examples:
mov BX,0A000h ;Video Graphic Memory
mov AX,0002h
int 31h
jc DPMIERROR ; probably no more system resource s...
mov GraphicSel,ax

Notes:

According to the DPMI specification you should not alter base or limit of these descriptors.

B.3.4 Function 0003h - Get Selector Increment Value

You can allocate more than one descriptors with INT 31h function (0000h). To get the next
descriptor you must add the increment value to the base selector.

Function call : INT 31h
AX = 0003h

Results:
AX = selector i ncrement value

B.3.5 Function 0006h - Get Segment Base Address

Returns the 32bit linear base address of the selector.

Function call : INT 31h
AX = 0006h
BX = selector

Results, if successful:
carry flag clear
CX:DX = 32bit line ar base address of the selector

B.3.6 Function 0007h - Set Segment Base Address

Sets the 32bit li near base address field in the descriptor for the specified segment.

Function call : INT 31h

125

(c) 1999 by Dieter R. Pawelczak, Munich

AX = 0007h
BX = selector
CX:DX = 32bit linear base a ddress of segment

Results, if successful:
carry flag clear

Example:
mov BX,NewSelector
mov CX,0Ah
mov DX,0 ; CX: DX points to 0A0000h
mov AX,7 ; so we create another Graphic Screen
int 31h ; Sel ector!

B.3.7 Function 0008h - Set Segment L imit

Sets the limit field in the descriptor for the specified segment.

Function call: INT 31h
AX = 0008h
BX = selector
CX:DX = 32bit segment limit

Results, if successful:
carry flag clear

Example:
mov BX,NewSelector
mov CX,0
mov DX,0FFFFh ; set 64K Limit to NewSelector
mov AX,8 ; Limit = Size -1
int 31h

Note: The granularity may change depending on the value of CX:DX

B.3.8 Function 0009h - Set Descr iptor Access Rights

Modifies the access rights field in the descriptor for the specified segment. The access rights
stored in CX have the following format:

G: Limit Granularity: 0: byte granular (Limit=Limit field)

1: page granular (Limit=4096*Limit field)

B/D : Segment Attribute Size: 0: 16 bit = use16

1: 32 bit = use32 (default)

AVL: Available Flag: (unused)

DPL: Privileg Level use the LAR instruction to examine the DPL. Typically:

Bits 1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

G B
D

0 A
V
L

? 1 DPL 1 C
D

E
C

R
W

A

126

(c) 1999 by Dieter R. Pawelczak, Munich

00: kernel level

01: device driver level

10: operating system level

11: user application level

C/D: Segment Type 0: data

 1: code

E/C : Expand/Conforming 0: data=expand-up code=non-conforming (default)

 1: data=expand-down code=conforming

R/W: Read / Write 0: data=read code=non-readable

 1: data=read/write code=readable

A: Access 0: not accessed,

 1: accessed

0: must be 0

1: must be 1

?: will be ignored

Tab. B.3 Descriptor Access Rights

Function call : INT 31h
AX = 0009h
BX = selector
CX = access rig hts/type word

Results, if successful:
carry flag clear

B.3.9 Function 000Ah - Create Alias Descr iptor

Creates a so called alias descriptor that has the same base and limi t as the specified descriptor.
The alias descriptor is always an expand-up data type. You can create alias descriptors as well
from data and code descriptors.

Function call : INT 31h
AX = 000ah
BX = selector

Results, if successful:
carry flag clear
AX = alias sele ctor (data)

B.3.10 Function 000Bh - Get Descr iptor

Copies the descriptor table entry of the specified selector into an 8 byte buffer. The buffer
contents are described in Tab. 4 .

127

(c) 1999 by Dieter R. Pawelczak, Munich

Tab. B.4 The layout of a 32 bit descriptor

The abreviations are according to Tab. 3 .

Function call: INT 31h
AX = 000bh
BX = selector
ES:EDI = selector:offset of 8 the byte buffer

Results, if successful:
carry flag clear, buffer pointed to by ES:EDI contains descriptor data

B.3.11 Function 000Ch - Set Descriptor

To write a complete descriptor into the descriptor table. The contents of an 8 bytes buffer is
copied into the descriptor table for the specified selector. The descriptor format is shown in
Tab. 3 .

 Function call : INT 31h
AX = 000ch
BX = selector
ES:EDI = selector : offset of the 8 byte buffer with vail d

descript or format.

Results, if successful:
carry flag clear

Notes:

The function does not check if the descriptor entries are valid. Invalid descriptor values will
cause an exception if the descriptor is load into a segment register.

Bits /
offset

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

0 Descriptor Limit 15 . .0

2 Descriptor Base 15. . 0

4 1 DPL 1 C
D

E
C

R
W

A Descript or Base 23..16

6 Descriptor Base 31..2 4 G B
D

0 A
V
L

Limit
19..16?

128

(c) 1999 by Dieter R. Pawelczak, Munich

B.3.12 Function 0100h - Allocate DOS Memory

Allocates DOS memory through DOS function 48h and creates a descriptor for the memory.
If more than 64 K is allocated, the descriptor will have the limit set above 64K. According to
the DPMI Specification this function allocates an array of descriptors with regard to the 16-
bit DPMI Version. The 16-bit DPMI function allocates as many 64K descriptors as are neces-
sary to select the whole memory. The 32-bit DPMI function allocates as well an array of de-
scriptors with the limit of 64K, but with the exception, that the first descriptor has a limi t of
the total amount of allocated memory.

The DPMI emulation does not allocate an array of 64K descriptors (these are limited system
resources!), but a single descriptor with a limi t of the allocated memory. I think this is the
only useful way to handle this function!

Function call : INT 31h
AX = 0100h
BX = paragraphs (in 16 bytes) of DOS memory to alloca t e

Results, if successful:
carry flag clear
AX = real mode segment address
DX = prote cted mode selector for memory block

Results, if failed:
carry flag set
AX = DOS e r ror code
BX = size of largest available block

B.3.13 Function 0101h - Free DOS Memory Block

Frees a low memory block previously allocated by function 0100h.

Function call : INT 31h
 AX = 0101h
 DX = protected mode selector for memo r y block

Results, if successful:
carry flag clear

B.3.14 Function 0200h - Get Real Mode Interr upt Vector

Returns the real mode interrupt vector for a specified interrupt.

Function call : INT 31h
AX = 0200h
BL = interrupt number

Results:
CX:DX = segment:off set of real mode interrupt handler

129

(c) 1999 by Dieter R. Pawelczak, Munich

B.3.15 Function 0201h - Set Real Mode Interr upt Vector

To set a real mode interrupt vector.

Function call: INT 31h
AX = 0201h
BL = interrupt number
CX:DX = segment:offset of r eal mode interrupt handler

Notes: The altered interrupts are only valid as long as the program is running - after the DOS
exit function 4Ch all i nterrupt vectors are restored! The interrupt procedure must be located
in real memory with a segment attribute of 16 bit!

B.3.16 Function 0202h - Get Exception Handler

Returns the 16:32 vector of the current protected mode exception handler for the specified ex-
ception.

Function call: INT 31h
AX = 0202h
BL = exception number

Results:
CX:EDX = selector:offset of protected mode exception handler

Note: Pro32 supports only values between 00h and 0bh as exceptions.

B.3.17 Function 0203h - Set Exception Handler

Sets the 16:32 address of the protected mode exception handler for the specified exception.

Function call: INT 31h
AX = 0203h
BL = exception number
CX:EDX = selector:offset of protected mode exception handler

Note: Pro32 supports only values between 00h and 0bh as exceptions. CX and EDX should
contain the protected mode address of an exception handler. The exception handler is called
by a far call from the DPMI host. The stack contains the following values according to Tab.
5 .

130

(c) 1999 by Dieter R. Pawelczak, Munich

Tab. B.5 Stack Contents for the Exception Handler

The exception handler is invoked by a far call and should return with retf . Look at the DE-
MOEXC.ASM example file how to create an exception handler.

B.3.18 Function 0204h - Get Protected Mode Interrupt Vector

Returns the 16:32 vector of the current protected mode interrupt handler for the specified in-
terrupt.

Function call : INT 31h

AX = 0204h
BL = interrupt number

Results:

CX:EDX = selector:of f set of protected mode interrupt handl er

B.3.19 Function 0205h - Set Protected Mode Interrupt Vector

Sets the 16:32 address of the protected mode interrupt handler for the specified interrupt.

Function call : INT 31h

AX = 0205h
BL = interrupt number
CX:EDX = selector of f set of protected mode interrupt handl er

Note: You should use this function to set any protected mode interrupt vector 00-7fh (see sec-
tion B.2 The Integrated DPMI Server on page 121). If you want to create an exception hand-
ler, use function 0203h. The different Windows DPMI hosts differ especially in this function:
int 3 , for example, can be under Windows DPMI either an interrupt or an exception.

B.3.20 Function 0300h - Call Real Mode Interrupt

This function must be used to pass real mode segment register values to real mode interrupts.

Error Value of SS

Error Value of ESP

Error Value of E-Flags

Error Value of CS

Error Value of EIP

Error Code

Caller CS

 Caller EIP

131

(c) 1999 by Dieter R. Pawelczak, Munich

Function call: INT 31h
AX = 0300h
BX = interrupt number (BH must be 0)
CX = number of words to copy from the protected mode stack to the

real mod e stack
ES:EDI = selector:offset of real mode register transfer data structure

Results1:
ES:EDI = selector offset of modified real mode register transfer data

structur e

The real mode transfer data structure holds the values of all CPU registers, that are passed to
the real mode interrupt.

Tab. B.6 The real mode register data transfer structure as defined in DPMI.INC

Example:

1.Make sure, that the execution of the real mode function does not effect the stability of the system. There
is no exception handling in real mode.

a. defines the code offs. in DPMI function #0301,#0302, ignored in DPMI function #0300
b. defines the code seg. in DPMI function #0301,#0302, ignored in DPMI function #0300
c. if the value is zero, the DPMI host provides its own real mode stack
d. same as c). Must be zero or hold a correct real mode segment value.

Offset Type Contents

00 DD EDI register contents

04 DD ESI register contents

08 DD EBP register contents

0c DD reserved 0

10 DD EBX register contents

14 DD EDX register contents

18 DD ECX register contents

1c DD EAX register contents

20 DW Flags contents

22 DW ES segment register contents

24 DW DS segment register contents

26 DW FS segment register contents

28 DW GS segment register contents

2a DW IPa

2c DW CS segment register contentsb

2e DW SP register contentsc

30 DW SS segment register contentsd

132

(c) 1999 by Dieter R. Pawelczak, Munich

;we assume our struc t ure variables are called intedi, inte ax etc
mov inteax,0900h ; DOS Function c all AH=09h
mov intedx,0 ; Offset of our Real Mode Message
mov ax,RealSegment ; a real mode segment value, segment of message
mov intds,ax
push ds
pop es
mov edi,offset inted i ; ES : EDI points to structure
mov cx,0 ; No parameters
mov bx,21h ; DOS Interrupt Number
mov ax,0300h ; Call Real Mode Interrupt Function
int 31h

B.3.21 Function 0301h - Call Real Mode Procedure With Far Return

Calls a real mode procedure which ends with a RETF instruction.

Function call : INT 31h
AX = 0301h
BH = must be 0
CX = number of words to copy from protected mode stac k to real

 mode stack
ES:EDI = selector:offs et of real mode register data transfer structure

Results:
ES:EDI = selector offset of modified real mode register tran sfer data

structure

B.3.22 Function 0302h - Call Real Mode Procedure With IRET Return

This Function calls a real mode procedure which ends with one of the following instructions:
IRET or RETF 2 .

Function call : INT 31h
AX = 0302h
BH = must be 0
CX = number of words to copy from the protected mode stack to

 the real mode stack
ES:EDI = selector:offs et of real mode register data transfer structure

Results:
ES:EDI = selector offset of modified real mode register tran sfer data

structure

B.3.23 Function 0303h -Install Real Mode Call Back Functions

This Function returns a real mode procedure, which will call a specific protected mode hand-
ler.

Function call : INT 31h
AX = 0303h
DS:ESI = selector:of f set to protected mode handler
ES:EDI = selector:of f set of real mode register data transf er

133

(c) 1999 by Dieter R. Pawelczak, Munich

Results:
CX:DX = segment:offset to r eal mode call back function.

The PM Handler (procedure in DS:ESI) is called by the real mode call back function with the
following parameters:

DS:ESI = point to real mode stack
ES:EDI = points to real mode register data transfer structure.

Notes:

The PM Handler returns with an IRET instruction. The PM Handler must store the real mode
return address in the data transfer structure. (Usually done by reading the offset and segment
address from the real mode stack provided by DS:ESI and writing the results into the real
mode register transfer structure). And the PM Handler is responsible for popping the return
address from the real mode stack. See the EVENT.ASM example file.

B.3.24 Function 0304h - Free Real Mode Call Back Functions

This Function frees a real mode call back function allocated by function 0303.

Function call: INT 31h
AX = 0304h
CX:DX = segment:offset to r eal mode call back function.

Results:
Carry flag clear

Notes:

You must make sure, that the real mode call back function won’ t be called again, before fre-
eing the call back! Pro32 offers 16 call backs per client!

B.3.25 Function 0400h - Get Version

Returns the version of the DPMI host.

Function call: INT 31h
AX = 0400h

Results:
AH = DPMI major version number
AL = DPMI minor version number
BX = Bits Descriptio n

0 : 1 = host is 32bit
1 : 0 = CPU running V86 mode for reflected i nterrupts

1 = CPU running r eal mode for reflected interrupts
2 : 0 = virtual memory not supported
 1 = virtual memo r y supported

CL = processor type:
 03h = 80386
 04h = 80486
 05h = 80586
 06h = 80686 / Pentium

134

(c) 1999 by Dieter R. Pawelczak, Munich

DH = value of master PIC base interrupt
DL = value of slave PIC base interrupt

B.3.26 Function 0500h - Get Free Memory Information

Returns Information about the amount of free memory.

Function call : INT 31h
 AX = 0500h
 ES:EDI = selector: offset of 48 byte buffer with the following form at

Results:
 modi fied entries of the 48 byte buffer a t ES:EDI

Tab. B.7 Free Memory Table

Notes:

Function should never fail ! At least first entry must be valid!

B.3.27 Function 0501h - Allocate Memory Block

Allocates a block of extended memory.

Function call : INT 31h
AX = 0501h
BX:CX = memory siz e to allocate in bytes

Results, if successful:
carry flag clear
BX:CX = linear add r ess of allocated memory block (*)
SI:DI = memory han dle

Example:
mov ax,0 ;Funk t ion 0

Offset Type Contents

00 DD Size of larges available free memory block in bytes

04 DD Size available with locking

08 DD Size available without locking

0c DD Size of total Memory in pages

10 DD number of locked pages

14 DD number of unlocked pages

18 DD number of free pages

1c DD number of all available pages

20 DW free linear memory in pages

22 DW size of swap file

135

(c) 1999 by Dieter R. Pawelczak, Munich

mov cx,1 ;Allocate 1 D escriptor
int 31h
mov MemDesk,AX
mov ax,0501h ;Allocate Memo r y
mov cx,0
mov bx,1 ;010000h Byte s of Memory
int 31h ;DPMI CALL
jc TooLessMemory
mov AX,0007h ;Function 7:Se t Basis Address
mov BX,MemDesk
mov dx,cx ;Low Part of Linear Address
mov cx,bx ;upper Part o f Linear Address
int 31h ;DPMI CALL
mov BX,MemDesk
mov ax,0008h ;Function 8:Se t Limit of descriptor
mov cx,0ffffh
mov dx,0
int 31h ;set Limit
mov BX,MemDesk
mov fs,BX ; FS selector to 64K XMS Memory Location!

B.3.28 Function 0502h - Free Memory Block

Frees a previously allocated extended memory block.

Function call: INT 31h
AX = 0502h
SI:DI = memory handle

Results, if successful:
carry flag clear

B.3.29 Function 0600h - Lock L inear Region

The function locks a specified linear address range.

Function call: INT 31h
AX = 0600h
BX:CX = start of linear add r ess in memory
SI:DI = size of region in b ytes

Results, if successful:
carry flag clear

Notes:

Pro32 DPMI sets up a locked linear address space between 0 and the maximum available by-
tes in the DPMI emulation, therefore this function is alway successful under the DPMI emu-
lation.

B.3.30 Function 0601h - Unlock L inear Region

The function unlocks a specified linear address range previously locked with function 0600h.

136

(c) 1999 by Dieter R. Pawelczak, Munich

Function call : INT 31h
AX = 0601h
BX:CX = start of l i near address in memory
SI:DI = size of re gion in bytes

Results, if successful:
carry flag clear

B.3.31 Function 0602h - Mark real mode region as pagable

This function allows to make real mode memory pagable.

Function call : INT 31h
AX = 0602h
BX:CX = start of l i near address in memory
SI:DI = size of re gion in bytes

Results, if successful:
carry flag clear

Notes:

You should relock all memory before terminating your program. You should not mark regions
pageable, if they are not part of your application.

B.3.32 Function 0603h - Relock real mode region

This function locks a previously unlocked real mode memory region.

Function call : INT 31h
AX = 0603h
BX:CX = start of l i near address in memory
SI:DI = size of re gion in bytes

Results, if successful:
carry flag clear

B.3.33 Function 0800h - Map physical address

This function returns the linear address region to address a physical memory region.

Function call : INT 31h
AX = 0800h
BX:CX = physical a ddress in memory
SI:DI = size of re gion in bytes

Results, if successful:

137

(c) 1999 by Dieter R. Pawelczak, Munich

carry flag clear
BX:CX = linear address

Notes: Pro32 provides a linear memory region equal to the physical address region between 0
and the maximum of available bytes. Therefore under the Pro32 DPMI emulation, this funv-
tion will always succed with BX:CX unchanged.

B.3.34 Function 0900h - Get and Disable Vir tual Interrupt State

Replacement for the CLI instruction, which is a priviledged(!) instruction. Especially when
running under V86 mode the CLI instruction will be very slow.

Function call: INT 31h
AX = 0900h

 Results:
AL = 0 if virtual inter r upts were previously disabled
AL = 1 if virtual inter r upts were previously enabled

B.3.35 Function 0901h - Get and Enable Vir tual Inter rupt State

Replacement for the STI instruction, which is a priviledged(!) instruction. Especially when
running under V86 mode the STI instruction will be very slow.

Function call: INT 31h
AX = 0901h

Results:
AL = 0 if virtual inter r upts were previously disabled
AL = 1 if virtual inter r upts were previously enabled

B.3.36 Function 0902h - Get Vir tual Inter rupt State

Returns the current state of the virtual interrupt flag.

Function call: INT 31h
AX = 0902h

Results:
AL = 0 if virtual inter r upts were previously disabled
AL = 1 if virtual inter r upts were previously enabled

B.4 DPMI Err or Codes in AX:

AX = 0007h (DOS ERROR Function 01xx): memory control blocks damaged

0008h (DOS ERROR Function 01xx): insuff icient memory available

138

(c) 1999 by Dieter R. Pawelczak, Munich

0009h (DOS ERROR Function 01xx): incorrect memory segment

8001h invalid DPMI function (The requested function is not available).

8003h function would lead to a protection fault

8010h no more system ressources

8011h ill egal descriptor

8012h insufficient linear memory

8013h insufficient physical memory

8016h invalid handle

8022h ill egal selector

B.5 Err or Messages

Pro32 provides the following error messages:

.

Tab. B.8 Pro32 Error Messages

Error: Invalid DPMI
FUNCTION

The DPMI host in your system doesn’ t provide a basic
dpmi function needed to load and execute the program. Or
the resources of the system are exhausted.

Error: Too less Memory
available

The amount of free memory is below the size of memory
needed for the program. Install more memory in the
system, or lower the size of necessary memory (if possi-
ble!).

Error: DOS: Int 24 failure The default Pro32 Int24 handler, occurs in connection with
disk errors.You can hook this interrupt to create your own
exception handler.

Error: System failure The CHECKSUM of the Pro32 dos extender is wrong.
This error occurs, if the pro32 extender is destroyed.

Error: Real Mode: Stack
Overflow

A real mode function either uses more than 8 Kbytes stack
or the function destroys the real mode stack.

Error: Invalid Processor Type The processor used is identified as 80286 or minor proces-
sor type.Pro32 needs at least a 80386 processor.

Error: Processor already in
virtual real mode

The system is running in virtual real mode. Pro32 can’ t
access the protected mode. This error occurs, if the system
neither provides DPMI, nor VCPI.

Error: DPMI Host: Error
Switchting to protected mode

The PM initialisation done by another DPMI host, for
exsample WINDOWs fails. You are already running other
programs under the same DPMI host, or the host has insuf-
ficient memory

Error: VCPI Init failed The PM initialisation with VCPI fails.

139

(c) 1999 by Dieter R. Pawelczak, Munich

List of Tables

Tab. 1.1: The processor’s registers...11
Tab. 1.2: Hexadecimal notation..12
Tab. 1.3: Number Notation with Pass32...13
Tab. 1.4: Some DOS functions...13
Tab. 2.1: Selector Contents...25
Tab. 2.2: Descriptor contents..26
Tab. 2.3: Descriptor contents..32
Tab. 2.4: Exceptions..34
Tab. 3.1: Typical Pass32 / Pro32 protected mode program...39
Tab. 3.2: Selector Register values at program start..39
Tab. 3.3: The PSP of a Pro32 application..40
Tab. 4.1: Range of f loat numbers...48
Tab. 4.2: FPU Status Register...48
Tab. 4.3: Comparison of Floating Point Numbers ...49
Tab. 4.4: FPU Status Register...49
Tab. 7.1: The Serial Mouse Protocol ..66
Tab. 8.1: The Tiny Model ...69
Tab. 8.2: The Flat Model ..70
Tab. 8.3: Data Segment Definitions..71
Tab. 8.4: Data storage directives...72
Tab. 8.5: Data storage directive for float numbers...72
Tab. 8.6: Range of f loat numbers...74
Tab. 8.7: Pre-processor Commands..87
Tab. 8.8: Conditional Assembly..91
Tab. 8.9: The header of an overlay...95
Tab. 8.10:The header of a Pass32 DLL ...96
Tab. 8.11:Debugger Functions...99
Tab. B.1: The selector register contents and the PMode PSP..120
Tab. B.2: SW/HW Interrupts and Exceptions...122
Tab. B.3: Descriptor Access Rights...126
Tab. B.4: The layout of a 32 bit descriptor...127
Tab. B.5: Stack Contents for the Exception Handler..130
Tab. B.6: The real mode register data transfer structure as defined in DPMI.INC131
Tab. B.7: Free Memory Table...134
Tab. B.8: Pro32 Error Messages..138

140

(c) 1999 by Dieter R. Pawelczak, Munich

141

(c) 1999 by Dieter R. Pawelczak, Munich

Index

Symbols

.ALIGN ...76

.BLOCK ..76

.CODE10, 15, 82

.COM ..14

.CONST71, 78, 82

.DATA10, 15, 71, 75

.DATA? ..71

.DEBUG ...98

.DEBUGFILE101

.ELSE ..91

.ENDIF ...91

.EQU ...87

.EXTERN75, 83

.FAR ...84

.IFE ...91, 92

.IFM ..91

.IFPM ..91, 92

.IFR ...91, 92

.IFR16..91

.IFR32..91

.IFR8... 91

.IFS ...91, 92

.INCLUDE15, 58, 88

.INCLUDEDIR89

.INTERFACE53, 94, 97

.LOADBIN ...42

.LOCAL62, 63, 90

.MACRO61, 89

.MEM ..54

.MODEL14, 69

.NOBLOCK ..76

.NODEBUG100

.NOFAR ..84

.ORG ...58, 94

.PUBLIC75, 82, 83, 103

.SMART50, 102

.SMART1 ...102

.SMART2 ...102

.SMART3 ...102

.TYPE ...88

Numerics
80486.. 47

A
A20 ..25
AND ..73
argument override79
B
base..80
binary ..13, 72
BYTE PTR ..73
C
character ..73
Circle ...50
CIRCLE.ASM52
CIRCLE2.ASM57
Conditional ..91
CR0 ...23
D
DB ...10, 72
DD ...72
Debug Trap ...34
DEBUG.INC99
Debugger ...98
decimal ..72
DF ...72
directory ..89
DISS32 ..102
Division by zero34
DLL ...95
DLL_ERROR98
DLLSYS.INC55, 98
DLLTEST.ASM54, 55
DLOADS.INC100
DOS functions13
double fault ...34
DP ...72
DPMI ...35
DPMI #0002h44
DPMI #0205h65
DPMI #0300h43
DPMI #0800h67
DPMI.INC ...42
DQ ...72
DT ...72
DUP ...74
DW ..72
DWORD PTR73, 85
Dynamic Link Library (Pass32).......... 95
E
EMM386 ...35
END ..82

142

(c) 1999 by Dieter R. Pawelczak, Munich

ENDM ...90
ENDMACRO90
ENDP50, 84, 103
entry point ...82
EOI (End OF Interrupt)66
Exceptions ...33
Exit ..61, 90
F
FAR ...84
FILD ..51
FLA ...14
FLAT70, 76, 81
floating point50, 72, 74
forward reference85
FPU ...47, 50
FreeDLL ..55, 98
FWORD PTR73, 85
G
GDT ..27, 28
general protection fault34
Global Descriptor Table26
GRAPH.INC41, 45, 50
GRAPHIC.INC57
H
hardware interrupt65
HELLO1.ASM9
HELLO2.ASM14
HELLO3.ASM16
Hello-World ..9
hexadecimal12, 72
HMA ...25
I
IDT.. 13, 32
index ..80
InitDLL ...55, 98
InitGraph ...41
InitOVL ...58
initovl ..95
INT 2fh.. 35
int 33h ...65
interrupt service routine65
Interrupts ...32
invalid opcode34
invalid task state segment34
J
JA ..20
JB ..20
JCXZ... 86
JECXZ ...86

JG ..20
JNE ...20
L
Label .. 81,10, 90
LASTDATA77
linear address67
LoadDLL55, 98
loadDLL ...55
LoadOVL58, 94
local ..75, 82
loop ...20, 85
loopd ...85
M
macro ..61, 89
MACRO.ASM61
MACRO2.ASM63
MEMSIZE ..77
model ..9, 69
Module ..75, 88
mouse driver 65
mov ...16
MSDEMO.ASM67
MSDEMO2.ASM67
MUL ...18
N
NEAR ...84
NOT ..73, 92
not-case-sensitive72
NULL descriptor29
O
octal ..13, 72
OFFSET42, 77, 94, 97, 103
OR ..73
Overlay ...93
OVL ..93
OVLSYS.INC58, 94
P
Physical Address24, 67
Pro32 ..71, 77
Pro32 Debugger102
PROC50, 84, 94, 103
Procedure82, 84
PRODB32.EXE102
protected mode14
protected mode interrupt66
PTR ...77
push ..86
pushd ..86
pushw ..86

143

(c) 1999 by Dieter R. Pawelczak, Munich

PutPixel ...44
Q
question mark74
QWORD PTR73
R
real mode ..9
S
scale factor ..81
segment not present34
segment override81
shared memory93
shl ...18
SHORT85, 102
SIZE ..73, 78
stack error ...34
START ...84, 85
SYSTEM.MAC63, 93
SystemGetRandom52
T
TBYTE PTR73
TESTDLL.ASM53
TESTOVL.ASM58
TESTPAL.ASM45
TINY14, 69, 76, 80, 81
TSR ...65
V
VCPI ...35
VESA1.2 ...57
VESA2.0 ...57
VGA ...57
W
WDOSX ...71
WORD PTR73, 85
WriteLn ...63, 93
Writeln ..61
X
XMS ...25, 38
XOR ..73
XVGA ...57

