
IconAuthor Index
The following Help topics are available for IconAuthor. Use the scrollbar to see entries that
are not currently visible.
Keyboard
IconAuthor Keys

Commands
File Menu
Edit Menu
Run Menu
Options Menu
View Menu
Window Menu
Help Menu

Procedures
Icons
Objects
Variables
Multimedia
Building Structures
Adding Content
Editing
Managing Files
Running Applications
General Execution Rules
Debugging
Authoring for the Internet
Object Properties
Application
Audio
Button
Combo Box
Database
Graphic
HTML
IconAnimate
Keyboard
List Box
Menu
Movie
OLE
Palette
System
Table
Text
Timer
Transparent
Variable
Window
Icons
Beep Icon

Box Icon
Branches Icon
CD-Audio Icon
Circle Icon
Clear Icon
Color Icon
DDE Icon
DllCall Icon
Dll Link Icon
Database Icon
Date&Time Icon
Display Icon
Ellipse Icon
Exit Icon
Font Icon
Help Icon
If Icon
Input Icon
InputMenu Icon
Line Icon
LoadVar Icon
Loop Icon
LoopIndex Icon
MCI Icon
Menu Icon
MIDI Icon
Module Icon
MsgBox Icon
Note Icon
ObjDelete Icon
ObjEvent Icon
ObjGet Icon
ObjMenu Icon
ObjQueue Icon
ObjSet Icon
Parse Icon
Pause Icon
Print Icon
Program Icon
RS-232 Icon
Random Icon
SaveVar Icon
Shuffle Icon
Snapshot Icon
Startup Icon
SubApp Icon
SubAssign Icon
Subroutine Icon
Text Icon
V:Audio Icon
V: Frame #? Icon
V: Overlay Icon
V:PlayTo Icon
V:Player Icon
V:Segment Icon
V:Still Icon

Variable Icon
WaveAudio Icon
Window Icon
Write Icon

IconAuthor Keys
Use the following accelerator keys in IconAuthor:

Menu Command Key(s)
File Save Ctrl + S
Edit Cut Shift + Del

Copy Ctrl + Insert
Paste Shift + Insert
Clear Del
Find... Ctrl + F
Find Next F3

Edit /
Applicatio
n

Compress
Composite

Ctrl + C

Make Composite Ctrl + O
Disable Selection Ctrl + D
Enable Selection Ctrl + E
Add Content... Ctrl + A

Run Application From
Top

Ctrl + R

Window Tile Shift + F4
Cascade Shift + F5

Additionally, you can use the following keys to perform the corresponding functions:
Key Function
Escape 1) To cancel a File Open process, press Escape.

2) To stop an application from running, press
Escape.

Enter When an application window is active, press Enter
to open the Content Editor of the selected icon.

F4 When a Content Editor is open and the cursor is in
a text box that has a corresponding drop-down list
box, press F4 to drop-down the list.

Page Up Scrolls up, one screen at a time, in the active
window.    Valid for any window in the work area.   
Also valid for the Icon Library.

Page
Down

Scrolls down, one screen at a time, in the active
document window.    Valid for any window in the
work area.    Also valid for the Icon Library.

Ctrl +
Page Up

Scrolls to the left, one page at a time, in the active
document window.    Valid for any window in the
work area.

Ctrl +
Page
Down

Scrolls to the right, one page at a time, in the
active document window.    Valid for any window in
the work area.

Home 1) Jumps to the top of an active document window
that contains an application, a graphic, or a
SmartObject page.    Also valid for the Icon Library.
2) Jumps to the beginning of the current line in a
text window.

End 1) Jumps to the bottom of an active document
window that contains an application, a graphic, or
a SmartObject page.    Also valid for the Icon
Library.
2) Jumps to the end of the current line in a text
window.

Ctrl +
Home

Jumps to the left of an active document window.

Ctrl +
End

Jumps to the right of an active document window.

Control Press the Control key before starting to drag an
icon in the structure, to copy rather than move it.

Any
Letter
Key

When focus is in the Icon Library, press any key to
jump to the first icon that begins with that letter.   
Press the same key again to jump to the next icon
that begins with that letter.

IconAuthor Commands
To get help with a command, choose the appropriate menu.
File Menu
New...
Open...
Save
Save As...
Properties

Register Resources
File Type...

Library
Open...
Save
Save As...

Delete...
Page Setup...
Print...
Printer Setup...
Exit
Edit Menu
Cut
Copy
Paste
Clear
Select All
Copy To...
Paste From...
Find...
Find Next
Application

Compress Composite
Make Composite...
Add Composite to Library
Disable Selection
Enable Selection
Enable All
Add Content...

Library
Expand Categories
Compress Categories
Add Content...
Build
Remove Icon

Variables
Clear Application Variables
Set Path From File...

Run Menu
Application From Top
Application From Selected

Debug
Set Stop Point
Clear Stop Point
Clear All Stop Points

Default Windows Setup...
Editors

Animation...
Graphics...
IAScope...
Resource Manager...
ImageLab...
SmartObject...
Video...
Calculator
Clipboard
Notepad

Options Menu
Structure Setup...
Library Setup...
Color Scheme...
Auto Save...
Video Setup...
Overlay Setup...
Audio Setup...
Add Content On Build
Backup Structure On Save
Confirm Clear

View Menu
Library
Ribbon
Status
Zoom

25%
50%
75%
100%

Window Contents
Structure
User Variables
System Variables
Path Variables

Window Menu
Tile
Cascade
Close All
Duplicate
Show File Path

Help Menu
Index
Keyboard
Commands

Procedures
Using Help
About IconAuthor...

IconAuthor Procedures
Building
Icons
Building Structures
Finding Icons in the Library
Jumping to an Icon in the Library
Dragging and Dropping Icons
Composite Icons

Adding Content
Adding Content
Content Editors
Icon Colors
Naming Icons
Entering Values
Types of Values for Content Editor Fields
Editing Applications
Editing Applications
Editing Structures
Selecting Icons
Cutting Icons
Copying Icons
Pasting Icons
Clearing Icons
Editing Between Windows
Running Applications
Running an Application
General Execution Rules
Disabling and Enabling Icons
Debugging
Variables
Variables
User Variables
Indexed Variables
System Variables
Path Variables
Multimedia
Audio
Animation
Graphics
SmartObjects
Text
Video
Object Properties
Audio
Button
Combo Box
Database
Graphic
IconAnimate
Keyboard
List Box
Menu

Movie
OLE
System
Text
Timer
Transparent
Variable
Window
Managing Application Files
Organizing Files
Starting Applications
Naming Files
Saving Files
AutoSaving
Opening Applications
Closing Files
Exiting from IconAuthor
Distributing Applications
Opening Graphic Files in the IconAuthor Work Area
Opening SmartObject Pages in the IconAuthor Work Area
Path Files
Using Page Setup
Printing
Managing ASCII Text Files
Starting ASCII Text Files
Naming Files
Opening ASCII Text Files
Closing Files
Saving ASCII Text Files
Using Page Setup
Printing
Editing ASCII Text Files
Editing ASCII Text Files
Editing between Windows

RGB Values
An RGB value is made up of three numbers separated by commas, such as 0,255,127.    Each
number represents the level of intensity of red, green, and blue, respectively, that make up
the resulting color.    Each intensity level value can range from 0 to 255.    0,0,0 is black and
255,255,255 is white.

Subroutine
A subroutine is a structure of icons (contained in its own .IW file) that performs a specific
function.    The subroutine is not used on its own as a standalone application, but can be
called as often as necessary by other IconAuthor main or sub-application.    A subroutine can
be used repeatedly by one application, and it can also be called by several different
applications.

Icon Library
The Icon Library is the scrollable area on the left side of the IconAuthor window that contains
the icons you use to build a structure.    Initially, the library contains folders each of which
represents a category of icons.    You can open and close one folder or all of the folders to
bring icons into and out of view.    When the icons in a folder are visible, you can build them
into your application structure.

Ribbon Bar
The graphic bar across the top of the work area.    Press on-screen buttons to quickly perform
some of the more frequently used IconAuthor tasks.

Status Bar
The message area at the bottom left corner of the IconAuthor window.    The message in the
status bar indicates the status of the current item on which the mouse cursor is positioned.   
Hint: Position the mouse on an icon in the structure.    The content for that icon is described
in the status bar.

Structure
The flowchart (logical sequence) of icons you create in the work area.

Application Variables
Application variables (also called user variables) are so named because you create them as
part of your application.    Like all IconAuthor variables, application variables are structures
designed to hold values that are assigned while your application is running.    When you use
a variable (instead of a fixed value) in a Content Editor text box, the icon can perform
differently depending on the current value stored in the variable.

Composite Icon
A composite icon is one icon in the library that actually represents a mini-structure of several
icons.    Composites provide a way for saving groups of icons that represent a portion of a
structure that is commonly used in many applications or repeatedly used in one. IconAuthor
contains some composite icons in the initial library.    You can also create an save your own
composites.

Direct Value
When you click on a direct value in a Content Editor drop-down list box, such as a number or
color, the drop-down list box is closed and the value is automatically entered in the
corresponding text box.    If the text box already contained a value, that value is overwritten
by the new selection.

Indirect Value
When you click on an indirect value in a Content Editor drop-down list box, you access one of
several tools to help you locate or create a value for the corresponding text box.    In other
words, when you click on an indirect value, the item is not automatically entered in the
corresponding text box, but its tool is opened.

Single Value Application Variables
Single value application variables contain only one piece of information, such as a number or
a filename.

Loop
A loop is a group of icons in your structure that is executed more than once because
execution flows round and round in a circular fashion.    Rather than building the same logic
into your structure repeatedly, a loop is efficient because it uses the same logic, or, the
same portion of the structure over and over again.

Variable File
A variable file is an ASCII text file.    The file contains any number of application variables
(single value and/or indexed) and can be created with a text editor such as Notepad, or
using a text window within IconAuthor.    When you name a variable file, use a .VAR
extension.    Include a carriage return at the end of the last line in a variable file.

Document Window
A document window is a window that you can open within the IconAuthor work area.    You
can open a document window that contains an application file or a text file.    (In IconAuthor
these are referred to as an application window and a text window, respectively).    You can
also open document windows in IconAuthor that contain a SmartObject page or a graphic
file.    Document windows can be moved, resized, minimized, etc.    You can open several
document windows in the work area at once.

SmartObject Editor
When you select the SmartObject Editor item, the editor appears and can be used to view,
create, and edit one or more SmartObject files.    When you close the SmartObject Editor, the
name of the last file and page with which you were working is returned to the appropriate
Content Editor text boxes.   

Animation Editor
When you select the Animation Editor item, the animation editor, IconAnimate, appears and
can be used to view, create, and edit one or more animation files.    When you close
IconAnimate, the name of the last file with which you were working is returned to the
appropriate Content Editor text box.   

Video Editor
The Video Editor lets you view a videodisc or video tape through IconAuthor.    When you
access the Video Editor through a Content Editor, you can use the editor to select a starting
and/or ending frame of a segment.    When you close the Video Editor you have the option of
returning the selected frame number to the appropriate Content Editor text box.

FTP (File Transfer Protocol)
A protocol that lets you access files across the Internet.

HTTP (HyperText Transfer Protocol)
A protocol that lets you access hypertext documents across the Internet.

URL (Universal Resource Locator)
A URL (Universal Resource Locator) is a pointer to a piece of information on the World Wide
Web (WWW). It lets you specify information such as the protocol, computer name, directory,
and filename where information can be accessed. You can use a URL in any field in
IconAuthor or its editors where a filename is required.

Lead Icon in a Composite
The first icon in any composite is called the "lead" icon.    It marks the beginning of the
composite.
A composite icon is one icon in the library that actually represents a mini-structure of several
icons.    Composites provide a way for saving groups of icons that represent a portion of a
structure that is commonly used in many applications or repeatedly used in one. IconAuthor
contains some composite icons in the initial library.    You can also create an save your own
composites.
Related Topics:
CD-Audio Icon
MIDI Icon
ObjMenu Icon
WaveAudio Icon

Beep Icon

The Beep icon generates a brief computer sound.    To generate a number of beeps, use
multiple Beep icons in sequence (or create a Beep icon in a Loop)
Suggested Uses:
· Use a low tone to provide negative feedback, to signal the user that time is running out or to indicate

that the system is waiting for input.
· Use a high tone to indicate that a menu selection has been made or to provide positive feedback.

Beep Type
Specify the type of beep you want to generate: high, low, or a variable.
Drop-down List Box Items:

high - Creates a high tone.
low - Creates a low tone.
Variable Selector

Box Icon
The Box icon dynamically draws a box.
You can control whether the box is filled and outlined, or outlined only.    By default, the
outline color is black and the fill color is white.    To create a box using alternative colors,
precede the Box icon with a Color icon.    The fill and outline colors you specify are in effect
until you use another Color icon.    (If you use the Color icon to specify a fill color of
TRANSPARENT, the underlying screen display will show through the interior of the box.)
Suggested Uses:
· Create a box that is a border around the screen or around a part of the screen.
· Mask a box-shaped area of the screen.
· Create a square bullet to emphasize an item on the screen.

Content Editor Text Boxes:
Upper Left Corner
Lower Right Offset
Line Width
Filled or Outline

Upper Left Corner
Specify the location of the upper left corner of the box.
Acceptable values are: upper left or 2 numbers, separated by commas, that define a point
on the screen.    The numbers are the x,y coordinates of the upper left corner of the area. You
can use variables for any of the coordinates.
Drop-down List Box Items:

upper left - Defines the upper left corner of the box as the upper left corner of the screen.
Area Editor
Variable Selector

Lower Right Offset
Specify the width and height (in pixels) of the box. Acceptable values are: lower right or
two numbers, separated by commas, that represent the width and height respectively; or a
variable.
Note: A value automatically appears in this text box if you use the Area Editor to specify the
upper left corner of the box.
Drop-down List Box Items:

lower right - Defines the width and height of the box so that its lower right corner is located at the lower
right corner of the screen.
Variable Selector

Line Width
Specify the width (in pixels) of the border of the box.    If you are drawing an outlined box,
use a line width of 1 pixel or more.    If you are drawing a filled box, use a line width of 0
pixels or more.    (If the line width of a filled box is equal to 0, it has no border and uses only
a fill color.)
Drop-down List Box Items:

assorted whole numbers
Variable Selector

Filled or Outline
Indicate whether the box is filled and outlined, or outlined only. Acceptable Values are filled,
outline, or a variable.
Drop-down List Box Items:

filled - Creates a filled box. If the line width of a filled box is greater than 0, it uses a fill color and an
outline color. If the line width of a filled box is equal to 0, it has no border and uses only a fill color.
outline - Creates an outlined box. The width must be greater than 0.
Variable Selector

Branches Icon

The Branches icon is a composite icon that causes the application to take a particular
"branch" or path of execution when a user selects one or more options.
By default, the Branches icon consists of a lead icon called "Branches" and four If icons,
labeled "1" through "4".    Each of these If icons marks the start of a branch that can
potentially be taken.    (You can edit the structure so that there is a smaller or larger number
of branches.)
When IconAuthor finds the Branches icon it goes to the first If icon, labeled "1" and checks to
see if a condition is true.    If the condition is true, execution flows downward from that icon.   
If the condition is false, execution flows to the right and IconAuthor checks to see if the
condition in the second If icon, labeled "2" is true.    The process continues until one of the
branches is executed, or until all of the Branch conditions have been tested.
If one of the Branch conditions is true, that branch executes.    When it finishes, execution
flows to the icon just below the composite Branches icon.    If none of the Branch conditions
is true, no branch is executed, and execution flows to the icon just below the composite
Branches icon.
Suggested Uses:
· Display different information depending upon the selection a user makes from a menu.
· Display a particular message or test score based on user performance of a particular task.
· Let the user choose a subject from a menu to learn more about it.

Content Editor Text Boxes:
Condition 1
Test
Condition 2
Condition Type

Related Topics:
Comparing Numbers
Comparing Non-Displayable Characters
Character String Matching

Condition 1
Specify the name of a variable that you want to compare to the value in the Condition 2 text
box.
Drop-down List Box Item:

Variable Selector

Test
Specify the test that you want to use to compare the value in the Condition 1 text box and
the value in the Condition 2 text box. Acceptable Values are: EQ, NE, LT, or GT
Drop-down List Box Items:

EQ - Tests if Condition 1 is equal to Condition 2.
NE - Tests if Condition 1 is not equal to Condition 2.
LT - Tests if Condition 1 is less than Condition 2.
GT - Tests if Condition 1 is greater than Condition 2.

Condition 2
Specify the value to which you want to compare the variable in Condition 1. Acceptable
Values are a numeric value (including negative and decimal numbers), an alphanumeric
character, an alphanumeric string, a non-displayable key (such as the RETURN key), or the
coordinates of a rectangular area.
Drop-down List Box Items:

Area Editor
Object Name Selector
Object Event Selector
Variable Selector

Condition Type
Specify the kind of data being compared. Acceptable Values are: alphabet, numeral,
rectangle, or a variable.
Drop-down List Box Items:

alphabet - Indicates that the values you are comparing are alphanumeric.
numeral - Indicates that the values you are comparing are numeric.
rectangle - Indicates that the values you are comparing are rectangle coordinates.
Variable Selector

Comparing Numbers
When you compare numbers, if the Condition Type is numeral then the number 125 is less
than 1150; if the Condition Type is alphabet then the number 125 is greater than
(alphabetically after) 1150.
Related Topics:
Branches Icon
If Icon

Comparing Non-Displayable Characters
The If icon can test for non-displayable character input to execute a different branch
depending upon the key that the user pressed.
As an example, include an Input icon in your application that will store the string
representing the key the user presses in a variable called @INPUT.    Then use a composite
Branches icon to take a particular path depending on which key is pressed.    The first If icon
might test whether the value in @INPUT is equal to "return", the second If icon can test
whether the value in @INPUT is equal to "ins" for insert, and so on.
Specify alphabet in the Condition Type text box to test for a non-displayable character.    The
non-displayable characters and the strings that they generate are as follows:
Key Name String Key Name String
Backspace bs Pause pause
Cancel cancel Return return
Clear clear Tab tab
Delete del Page Down next
End enter Page Up prior
Enter enter left arrow left
Esc* esc right arrow right
Execute execute up arrow up
Help help down arrow down
Home home function keys f1, f2, ..., f12
Insert ins
* The Esc key is used in the IconAuthor Authoring system to escape from a running application and

return to the IconAuthor window. You can, however, still use the Esc key in your applications. In the
IconAuthor Presentation system, the Esc key functions just like any other non-displayable character.

If Num Lock is on, inputs from the numeric keypad generate the following strings:
Key Name String Key Name String

0 numpad0 5 numpad5
1 numpad1 6 numpad6
2 numpad2 7 numpad7
3 numpad3 8 numpad8
4 numpad4 9 numpad9

Note: The spacebar generates a space character, not the word "space".
The following keys do not generate an input character:
CapsLock Shift
CTRL Alt
Print Screen Scroll Lock
Pause Num Lock
Related Topics:
Branches Icon
If Icon

Character String Matching
An If icon can test whether a string the user enters (assigned to Condition 1) matches the
value in Condition 2.    You can control the precision used in string matching.    For example,
you can require the user to enter a string that 1) matches the Condition 2 string character
for character and/or 2) matches the exact use of upper and lower case in Condition 2.
You can also control string matching so that the user can enter a value that is similar to the
string in Condition 2, and is interpreted as a match.    For example, if the answer to a test
question is the string "blue", you can control string matching so that the string "light blue" is
interpreted as a correct answer.
Switches are used in the value you assign to Condition 2 to control string matching.
The following switches are available:
/$ This switch controls whether or not the string the user

enters is tested for exact matching of upper and
lowercase.
Example: If Condition 2 is /$ABc, the string the user
enters must match the use of case exactly in order for
the condition to be true.

/# This switch follows    /$.    /# resets the matching control
so that another part of the string in Condition 1 does not
have to match the exact use of case in Condition 2.
Example: If Condition 2 is /$F/#red, the first switch
indicates that the following "F" must be uppercase.    The
second switch indicates that the "red" can be either
upper or lowercase.

/? This switch represents a single character wild card.
Example: If Condition 2 is F/?ed, the character between
the "F" and the "e" can be any upper or lower case
character.

/* This switch represents multiple wild card characters.
Example: If Condition 2 is F/*d, any number of characters
can appear between the "F" and the "d".    (The user can
enter "Fred" or "Friend" and a match will still occur.)

/% This switch searches for the group of characters that
follow the /%.
Example: If Condition 2 is /%Fred, any string will be a
match as long as it contains "Fred".    (The user can enter
"Fred", "Mr.    Fred Smith", or "My name is Fred".)

Related Topics:
Branches Icon
If Icon

CD-Audio Icon
The CD-Audio icon is a composite that allows you to play CD-Audio if you are using the
Multimedia Extensions software and a CD-ROM drive.
Hint: An even quicker and easier way to play audio is via the SmartObject Editors Audio
object.
Five MCI icons form the backbone of the CD-Audio composite.    Although you must be
familiar with the MCI syntax in order to fully take advantage of the MCI feature, the CD-Audio
composite already contains some values so that you can quickly start playing CD-Audio as
part of your IconAuthor applications.    Once you become familiar with the MCI syntax you
can customize and vary the commands.    For information on the MCI command syntax open
the help file called MCISTRWH.HLP.
The composite contains a mini-structure of icons:
1. MCI icon: Contains the command open cdaudio alias cd, where: open cdaudio initializes the

device and alias cd specifies the name "cd" as an alternate name for the cdaudio device type.
2. MCI icon: Contains the command set cd time format tmsf which sets the time format for play to

tracks, minutes, seconds, and frames.
3. MCI icon: Contains the command play cd from 1 to 1:00:30 which starts the CD playing track 1 for 30

seconds.
4. Input icon: Causes execution flow to stop at this point and wait for the user to provide input. This icon

specifies that the entire screen is input selectable. That means that the user can click anywhere or
press any key to cause execution flow to continue.

5. MCI icon: When the user clicks, execution flows to this fourth MCI icon which contains the command
pause cd to pause the CD from playing.

6. MCI icon: Contains the command close cd to suspend playback and relinquish access to the device.

Hint: If you want to use this composite to play a CD while some other activity is occurring,
replace the Input icon with one or more alternative icons.    For example, if you use a Display
icon (in place of the Input icon) to run an animation script, the audio will play, the animation
will run, and when the animation completes, the audio will stop.
Content Editor Text Box:
The lead icon in the CD-Audio composite is labeled "CD-Audio" and contains only one text
box "Composite Name".    Enter a different name in this text box to customize the name of
the composite.
Related Topics:
MCI Icon
Input Icon

Circle Icon
The Circle icon dynamically draws a circle.
You can control whether the circle is filled and outlined, or outlined only.    By default, the
outline color is black and the fill color is white.    To create a circle using alternative colors,
precede the Circle icon with a Color icon.    The fill and outline colors you specify are in effect
until you use another Color icon.    (If you use the Color icon to specify a fill color of
TRANSPARENT, the underlying screen display will show through the interior of the circle.)
Suggested Uses:
· Mask a circular area of the screen.
· Create a bullet to emphasize an item on the screen.

Content Editor Text Boxes:
Center Location
Radius
Line Width
Filled or Outline

Center Location
Specify the location of the center of the circle. Acceptable Values are: upper left, a pair of
screen coordinates, separated by a comma; or a variable.
Drop-down List Box Items:

upper left - defines the center of the circle as the upper left corner of the screen.
Location Editor
Variable Selector

Radius
Specify the radius (in pixels) of the circle. Acceptable Values are: any whole number
(including 0) or a variable.
Drop-down List Box Items:

assorted whole numbers - Frequently used line widths.
Variable Selector

Line Width
Specify the width (in pixels) of the border of the circle.    If you are drawing an outlined circle,
use a line width of 1 pixel or more.    If you are drawing a filled circle, use a line width of 0
pixels or more.    (If the line width of a filled circle is equal to 0, it has no border and uses
only a fill color.) Acceptable Values are any whole number (including 0) or a variable.
Drop-down List Box Items:

assorted whole numbers - Frequently used line widths.
Variable Selector

Filled or Outline
Indicate whether the circle is filled and outlined, or outlined only. Acceptable Values are:
filled, outline, or a variable.
Drop-down List Box Items:

filled - Creates a filled circle. If the line width of a filled circle is greater than 0, it uses a fill color and
an outline color. If the line width of a filled circle is equal to 0, it has no border and uses only a fill
color.
outline - Creates an outlined circle. The value entered must be greater than 0.
Variable Selector

Clear Icon

The Clear icon clears the screen to a specified color.
Suggested Uses:
· Clear the screen between SmartObject displays. By default, a SmartObject file has a transparent

background, causing the previous text to appear behind the current text unless you clear the screen
between displays. (Hint: To clear just a small part of the screen, mask that area with a dynamically
generated shape.)

· Clear the screen to the "transparent" color before you display video. Video is visible on the screen
wherever the transparent color occurs. The particular color that is considered transparent is
determined by the video overlay board installed on your system. Refer to the documentation for your
overlay board to determine which color is transparent. (Frequently the transparent color is black.)

· Clear the screen to a color between graphic displays for a different transition effect.

Important: If you display live objects (from a SmartObject file) the Clear icon will not
remove these objects from view. You must use make the objects invisible (using an ObjSet
icon) or you must delete them (using an ObjDelete icon).
Content Editor Text Box:
Clear Screen To

Clear Screen To
Specify the color to which you want to clear the screen. Acceptable Values are a color name,
an RGB (Red Green Blue) value, or a variable.
Drop-down List Box Items:

assorted colors - Frequently used colors such as black, red, etc.
Color dialog box
Variable Selector

Color Icon
The Color icon sets the outline and fill color for dynamic graphics (the Box, Circle, Ellipse,
and Line icons) and sets the color for text displays (the Text and Write icons).
By default, the outline color is black and the fill color is white.    To create a dynamic shape or
text using alternative colors, precede the icon with a Color icon.    The fill and outline colors
you specify are in effect until you use another Color icon.
Suggested Uses:
· Use different colors to fill dynamic shapes, such as circles and rectangles.
· Use different colors when you create dynamic text (the Write icon) or when you generate text from an

ASCII file (the Text icon).
· Create text with a transparent fill color so that the text has color, but the background of the text has no

color. The text appears to lie directly on top of the current display.

Content Editor Text Boxes:
Outline Color
Fill Color

Outline Color
Specify the color you want to use to display text or lines, and to create the border of circles,
rectangles, and ellipses. Acceptable values are a color name, an RGB (Red Green Blue)
value, or a variable.
Drop-down List Box Items:

assorted colors - Frequently used colors such as black, red, etc.
Color dialog box
Variable Selector

Fill Color
Specify the color you want to use to fill dynamically generated circles, rectangles, and
ellipses, and to create the background color for text. Acceptable values are: a color name, an
RGB (Red Green Blue) value, TRANSPARENT, or a variable.
Drop-down List Box Items:

assorted colors - Frequently used colors such as black, red, etc.
TRANSPARENT - Creates no fill color. Causes the underlying screen display to show through the
interior of a dynamically generated shape, or behind text displayed with the Write icon or the Text icon.
Color dialog box
Variable Selector

DDE Icon

The DDE (Dynamic Data Exchange) icon allows IconAuthor to communicate with other
Microsoft Windows programs.    As an example, IconAuthor can use a series of DDE icons to
communicate with a Microsoft EXCEL spreadsheet, inserting values into data cells or to
retrieving values from data cells.
Suggested Uses:
+ Provide data to another program.
+ Retrieve data from another program.
+ Execute commands in another program.

DDE is a communication feature of Microsoft Windows.    When two applications use
Microsoft's DDE mechanism to communicate one is called the client and the other is called
the server.    The client is the program that initiates communication.    The server is the
program that is being called.    DDE can be used to cause the server to open a file, request
data from the server, provide data to the server, or cause the server to close a file.
IconAuthor is DDE-aware and the DDE icon allows it to function as a client. (IconAuthor and
Present can also function as a server.)    Each conversation (communication between
IconAuthor and the other application) is initiated by IconAuthor and is assigned to a unique
channel.    Up to 16 channels can be open at any one time.    If your IconAuthor application
requires more than 16 channels, you must terminate one of the 16 in order to open another.
In order to create a conversation between IconAuthor and another application, the other
application must be running..    (The other program can be running using the Program icon.)   
The first DDE icon initiates the conversation, indicating the application with which you want
IconAuthor to communicate.    You specify an application and a topic.    Valid application and
topic values are determined by the server application.    For example, EXCEL recognizes the
text value EXCEL as its application parameter and it recognizes the text value SYSTEM or
the name of any currently open spreadsheet (for example, SALES.XLS) as its topic
parameter.
Subsequent DDE icons can be used to send or receive information.    In those cases, you
indicate which data you are manipulating by specifying a parameter called item.    Like the
application and topic parameters, valid item identifiers are determined by the server
application.    As an example, a conversation could include a DDE icon that requests a value
from an EXCEL spreadsheet data cell.    You specify REQUEST in the Command field, and
R1C2 (as the item) in the Parameters field to indicate that you want the server to return the
value in the data cell at row 1, column 2.    The value in this cell is returned to the variable
you specify in the Result Variable field.
All data is returned from the server as a text string.    A command returns an error if it is
unsuccessful.    Errors appear in the form ***DDE ERROR x, where x is an error number.    If
no data is returned by the command, and no error occurred, the string ***DDE OK is
returned.   
When communication is complete, a DDE icon terminates the conversation or conversations
that occurred.
Content Editor Fields:
Command

Channel
Parameters
Time Limit
Result Variable

Command
Specify the DDE command you want to give. Acceptable values are: INITIATE, REQUEST,
POKE, TERMINATE, or a variable
Drop-down List Box Items:

INITIATE - Opens a conversation channel. Indicate the application and topic in the Parameters field.
The INITIATE command returns the channel identifier to the variable you specify in the Result Variable
field. Use this variable in future commands that will be part of this conversation. (You do not specify
a value for the Channel field when you give an INITIATE command, because a Channel value has not
yet been assigned.)
Note: The application with which you are initiating a conversation must have already been executed.
The INITIATE command does not execute the application.
EXECUTE - Sends a command (that you specify in the Parameters field) to the server application.
For example, you can use this command to load a spreadsheet after you have initiated a conversation
with EXCEL. When using this command, use the Channel field to specify the variable that contains
the channel identifier for this conversation that was assigned at initiation. Use the Parameters field to
specify the command to send to the server, for example, [open("e:\excel\sales.xls")]. Note that this
command must be surrounded by brackets.
POKE - Sends data to the server application. When you use this command, use the Channel field to
specify the variable that contains the channel identifier for this conversation that was assigned at
initiation. Use the Parameters field to indicate the data item identifier for the data that you want to
send to the server. Acceptable values for items are defined by the server. There is no data value
returned for the POKE command. You can however view the string that is returned, such as ***DDE
OK by including a variable in the Result Variable field. After you run the IconAuthor application, check
the value stored in this variable. To do this, choose Window Contents from the View menu, and
choose User Variables.
REQUEST - requests data from the server. When you specify this command, use the Channel field to
specify the variable that contains the channel identifier for this conversation that was assigned at
initiation. Use the Parameters field to indicate the data item identifier for the data being requested.
Acceptable values for items are defined by the server. The data requested is returned to the variable
you specify in the Result Variable field.
The data you request can be a single value, or a range of values.
TERMINATE - ends the conversation specified in the Channel field. If 16 conversations are already
being conducted, you must terminate one conversation in order to initiate another.
Variable Selector

Channel
The channel determines the conversation to which the command is sent.    It is empty for the
INITIATE command.    Specify the variable that contains the channel identifier of the
conversation.    The channel identifier is assigned to the variable in the Return Variable field
after the INITIATE command.
Drop-down List Box Item:

Variable Selector

Parameters
List the parameters required by the command specified in the Command field.    If a
command requires multiple parameters, separate the parameters by a comma.    If a
command does not require multiple parameters, you can use commas as part of a single
parameter and they are properly interpreted.
Drop-down List Box Item:

Variable Selector

Time Limit
Use the Time Limit field to specify the number of seconds IconAuthor should wait for an
acknowledgement from the server.    The time limit must be less than or equal to 60 seconds.
Drop-down List Box Item:

Variable Selector

Result Variable
Use the Result Variable field to specify a variable that receives the resulting value of the DDE
command given to the server.
All data is returned in the form of a text string.    If the communication is successful and if no
data is returned be the command, the string ***DDE OK is returned.    The command returns
an error if it is unsuccessful.    Errors take the form ***DDE ERROR x, where x is an error
number.   
Drop-down List Box Item:

Variable Selector

The following table describes possible error messages:
Error

Number
Description

22055 Bad channel variable
22056 Bad command field
22057 Null field
22058 Time out
22059 Bad DDE format
22060 Poke failed
22061 Add atom failure
22062 Global lock failed
22063 Global allocation failed
22064 Request failed
22065 No return variable
22066 Unexpected DDE message

Present as a DDE Server
DDE (Dynamic Data Exchange), a communication feature of Microsoft Windows, allows your
IconAuthor applications to communicate with other DDE-enabled Microsoft Windows
programs. For example, your applications can communicate with a Microsoft EXCEL
spreadsheet or a Word for Windows document.
When two programs use Microsoft's DDE mechanism to communicate one is called the
client and the other is called the server.    The client is the program that initiates
communication.    The server is the program that is being called. DDE can be used to cause
the server to open a file, request data from the server, provide data to the server, or cause
the server to close a file. An IconAuthor application can act as a DDE client or server.
IconAuthor/Present as DDE Client
In order to use IconAuthor/Present as a client, use DDE icons in your structure.
Present as DDE Server
Present can act as a DDE server. If Present is running, another DDE-enabled program (acting
as the client) can:

Launch an IconAuthor application.
Set an IconAuthor variable.
Get the contents of an IconAuthor variable.
Close an IconAuthor application.

As an example, you can create an IconAuthor application that provides interactive online
Help for a user working with an EXCEL spreadsheet. With Present running in the background,
when the user needs information, he or she performs an action that causes the spreadsheet
application to initiate communication with Present. Once communication starts, the
spreadsheet can execute the specific IconAuthor application. The application can display
different kinds of information (such as graphics, text, and animation). During the course of
execution, the spreadsheet can set an IconAuthor variable so that a particular course of
action is taken in the IconAuthor application. Or, the spreadsheet can retrieve a value from
the application, that will be used in the spreadsheet.

Conversations with Present as the Server
The DDE communication between two programs is called a conversation. In order to create
a conversation, you must be familiar with 1) how the client application uses DDE, for
example, how do you initiate a conversation from within an EXCEL spreadsheet, and 2)
which application and topic parameters are supported by Present. To learn about the DDE
interface of the client application, see the documentation that accompanies that program.
The following paragraphs describe the commands and parameters (applications and topics)
recognized by Present.

DDE
Initialize:

This command allows a client application to
establish a DDE communication connection
with Present. To establish a connection, the
user must supply the application name   
IAUTHOR and a conversation topic of NULL or
System.

DDE
Request:

This command allows a client application to
extract data from your IconAuthor application. 
The content of the data depends upon the
DDE Item requested.    The following DDE
Items are supported by Present.
SysItems: This Item returns a list of System-
topic items supported by Present. Each item is
delimited by a TAB (hex 09) character. The
last Item in the list is NULL terminated.
ReturnMessage: This Item returns a DDEML
error value for the last DDE transaction.    This
numerical string provides the client
application with a mechanism for determining
DDE transaction failures.    A value other than
zero indicates the failure error number.
Status: This Item returns the current status
of Present.    If a string of "Busy" is returned,
Present is currently executing an application.
A return string of "Ready" indicates that
Present is idle and waiting for an application
file to run.
Formats: This Item returns a list of clipboard
format values Present can process.   
Currently, only CF_TEXT is supported.
IconAuthor Variable:    This item returns the
contents of an IconAuthor variable.    The DDE
client must supply the IconAuthor variable
name as the DDE Request Item.

DDE Poke: This command allows the client application to
set unsolicited data within your IconAuthor
application. The client supplies an IconAuthor
variable name as the Poke Item and the
variable contents as the Poke Data.

DDE Execute: This command allows a client application to
send a command for Present to process. The
following two commands are currently
supported.

[load("filename")]    This command allows
the client application to load and run an
IconAuthor application in Present. The
filename must be a full DOS path to the
application file. If an application file is
currently running, a DDE busy response will
be returned.
[stop]    This command allows the client
application to stop a running application file.   
If the application running is waiting for some
form of user input, the running application will
be terminated after the input has been
acquired or when a time-out has occurred.

DDE
Terminate

Terminates the current client connection with
the Present DDE server.

DllCall Icon

A Dynamic Link Library (DLL) is a special executable file that consists of a "library" of one or
more functions.    These functions can be called by another executable file.    Through two
icons, DllLink and DllCall, your IconAuthor applications can communicate with functions in
DLLs.   
To understand the purpose of the DllCall icon consider how it works in conjunction with the
DllLink icon.    You use the DllLink icon to load a prototype file and (in some cases to pre-load
one or more DLLs).    You then use a DllCall icon to call a function that is described in the
prototype file.    You cannot call a function unless the prototype file that describes that
function has been loaded.
Suggested Uses:

Use a DLL function to display a custom dialog box.
Use a DLL function to support a device not currently supported by IconAuthor.

Prerequisites for Using DLL Icons:
Because working with DLLs requires a sophisticated understanding of programming you
must have the assistance of an experienced programmer in order to use the DLL icons.   
Only a programmer has the ability to locate or create the appropriate DLL to suit the needs
of your application.
Content Editor Text Boxes:
Return Variable
DLL Function

Return Variable
Specify the name of the variable that will receive the value being returned from the called
function.    If the function does not return a value leave this text box empty.
Drop-down List Box Item:

Variable Selector

DLL Function
Specify the function you are calling and the values you are sending to it.    For example:
MessageBox(Null,@MESSAGE,"Demo",3);
This is the function MessageBox which requires four values.    The values being sent must be
listed in the correct order within the parentheses and multiple values must be separated
from one another by a comma.    If the function does not expect any values state the
function name followed by empty parentheses.    End the line with a semi-colon (;).
When you choose OK to close the DllCall icon Content Editor a message will be displayed if
there is a discrepancy between the function you specify and the function description in the
prototype file.    You have the opportunity to go back and correct the Content Editor
information or accept the Content Editor values and edit the prototype file.
Note:    If the programmer has set up an alias for the function name in the prototype file,
optionally, use the alias.

DllLink Icon

The main purpose of the DllLink icon is to load function prototypes so that IconAuthor can
know how to call functions within DLLs.    Also, you can use DllLink icons to pre-load DLLs into
memory.    Typically, you use the DllLink icon to load a prototype file and then use a DllCall
icon to call a function that is described in that file.
The DllLink icon uses two IconAuthor system variables: @_ERROR and @_ERROR_STRING.   
When the DllLink icon executes successfully @_ERROR contains the value 0.    When the
DllLink icon executes and an error occurs @_ERROR contains a non-zero value.    Also,
@_ERROR_STRING is assigned a message that describes the nature of an error that has
occurred.    (While you are authoring, you can view the contents of @_ERROR and
@_ERROR_STRING by choosing Window Contents from the View menu and then choosing
System Variables.)
Suggested Uses:

Use a DLL function to display a custom dialog box.

Use a DLL function to support a device not currently supported by IconAuthor.

Prerequisites for Using DLL Icons
Because working with DLLs requires a sophisticated understanding of programming you
must have the assistance of an experienced programmer in order to use the DLL icons.   
Only a programmer has the ability to locate or create the appropriate DLL to suit the needs
of your application.
Content Editor Text Boxes:
Prototype Filename
Prototype Action
DLL Names
DLL Action

Prototype Filename
Specify the name of the prototype file that identifies and defines the DLL functions that your
application is going to use.
Drop-down List Box Items:

Directory
Variable Selector

Prototype Action
The only action available is to load a prototype file.    If you do not want to load a prototype
file leave this text box empty.   
Drop-down List Box Items:

LoadPrototypes - Loads (declares) function prototype to make them available for calling.
Variable Selector

DLL Names
Optionally, enter the name of the DLL you want to load or free (as specified in the DLL Action
text box).    In most situations you do not need to use this text box.
Drop-down List Box Items:

All - Indicates that all DLLs listed in the prototype file (specified in the Prototype Filename text box) are
to be loaded or freed (as specified the DLL Action text box). If you specify All and do not enter a
filename in the Prototype Filename text box, all DLLs in previously loaded prototype files are loaded or
freed.
Variable Selector

DLL Action
Specify the action to be taken on the file(s) you specified in the DLL Names text box.    You
can either load DLLs or free them from memory.    As expressed under "DLL Name," you
typically do not need to use this text box.
Drop-down List Box Items:

LoadLibrary - Loads one or more DLLs into memory.
FreeLibrary - Frees one or more DLL's from memory.
Variable Selector

Database Icon

The Database icon lets your application create and work with dBASE database files.    Each
Database icon you include in your application can issue a different database command.
Important: As an alternative, the SmartObject Editors Database object allows for
interaction with a greater variety of database file formats. It also provides an optional user
interface for browsing through data.
Content Editor Field:

Database Commands

Related Topic:
Steps for Working with the Database Icons

Steps for Working the Database Icons
There are three steps to perform in order to work with an IconAuthor database:
1. Planning the database.

Sometimes your IconAuthor application uses a database that already exists. Perhaps the database
was previously created either with IconAuthor, or with dBASE III Plus or dBASE IV. Although you
don't have to plan a database that already exists, you have to determine whether the information it
contains meets the needs of your application.

2. Creating the format file that organizes the database.
If your IconAuthor application uses a database that was created using dBASE II Plus or dBASE IV, you
do not need to create a format file.

3. Using Database icons in your application to create the database if necessary, and then access and
manipulate the database.

Database Commands
Use the Database icon to specify a command you want to use to affect the database.    You
can choose a command from the drop-down list box or you can use a variable that contains
a command.    The syntax of most commands requires you to include additional parameters.
Each available database command is available in the drop-down list box:

add command
close command
create command
delete command
exist command
locate command
next command
replace command
store command
use command
Variable Selector

exist command
Syntax: exist database_filename
To begin using a database file, use the exist command to test whether the database file
exists.    The database file may already exist if it was created:
· Using dBASE III Plus or dBASE IV.
· Using IconAuthor when the same application was run previously.
· Using IconAuthor when a different application (that uses the same database) was run previously.

When the Database icon with the exist command is executed, IconAuthor checks your
database file directory.    If the database file is found, the logical constant .T.    is stored in the
system variable @_FOUND.    If the database file is not found, .F.    is stored in @_FOUND.
Structure your application to take different branches depending on the value in @_FOUND.   
If the database does not exist, execution should flow to a Database icon that creates it or
displays a message explaining that the database was not found.    If the database exists,
execution should flow to a Database icon that makes it the current, usable database.
Warning: It is important that the application does not create an IconAuthor database that
already exists.    If you create a database with a filename that already exists, all the data it
contained is erased.
Related Topic:
Database Commands

create command
Syntax: create database_filename with format_filename
Use the create command to create a new database file. You specify both the name you want
to assign to the new database file and the name of the format file on which its structure
should be based.    When the Database icon is executed, IconAuthor searches your format file
directory for the specified format file and creates the new database file in your database file
directory.    Format files have .FMT extensions and database files have .DBF extensions.
Warning: It is important that the application does not create a database that already exists.
If you create a database with a filename that already exists, all the data it contained is
erased.
When a database file is created it is not automatically made current and available for use.   
To make it available, add another Database icon to issue a use command.
Related Topic:
Database Commands

use command
Syntax: use database_filename
The use command makes an existing database file the current database file.    When a
database file is current, subsequent Database commands that search for data or add records
to the database are directed to this database file.
Only one database file can be current at any given time.    It is used until another use
command is issued to make another database file the current database.
Example: use ROSTER.DBF
The use command makes ROSTER.DBF the current database file
Related Topics:
Database Commands

add command
Syntax: add
The add command creates a new blank record at the bottom of the current database.    The
new record becomes the current record.    The add command invalidates the last locate
command because it moves to the end of the file.
Related Topics:
Database Commands

replace command
Syntax: replace field_name with value
The replace command acts on the current record, by replacing the data in the specified field.
Prior to this command, an add, locate, or next command is used to make a record current.
The value you specify must be of the same type as the field in which it is being stored.    For
example, if the field is GRADE, which is a numeric type field, only a numeric value can be
stored in it.    If the field is PASS, which is a logical type field, only a .T.    or an .F.    can be
stored in it.
Note: Do not use the replace command after a use or delete command.    The current record
is unknown, and the replace command may cause the wrong data to be modified.
Related Topics:
Database Commands

locate command
Syntax: locate condition
The locate command searches the database from the beginning, trying to find the first field
whose value meets a specific condition.    If the value is found, the record in which the value
is found is made the current record.
Typically, once a record is made current by a locate command, it is manipulated using
another database command.    For example, a replace command places new data in one of
the fields in the located record.
After a locate command, an application might also use a next command to search down
through the database looking for the next field whose value meets the condition expressed
in the original locate command.    The next command can be used repeatedly.
Each time a locate command (or a next command) is executed, the system variable
@_FOUND is set to either .T.    or .F.    If a value is found that meets the condition, @_FOUND
is set to .T.    and that record is made current.    If a value is not found, @_FOUND is set to .F.   
and there is no current record.
Structure your application so that it takes one branch versus another depending on the
value in @_FOUND.    If a record is found, that contains an appropriate value, the application
should act on the value or another value in that record.    If a record is not found, a message
can be displayed that indicates that a record was not found.
The locate command is always used with an expression that describes the condition you are
trying to find.    The expression must include the name of the field being searched and can
contain one or more operators, constants, and/or variables.
Note: When you type an expression, be sure to use a space before and after any operator.
The following relational operators can be used in expressions:

= equal to
<= less than or equal to
< less than
> greater than
>= greater than or equal to
<> or # not equal to

The following logical operators can be used in expressions:
.AND. both conditions are true
.OR. at least one of the conditions is true
.NOT. the negative of the condition is true

Related Topics:
Database Commands

next command
Syntax: next
The next command is a continuation of the locate command.    The locate command
searches the database from the beginning, trying to find the first field whose value meets a
specific condition.    If the value is found, the record in which the value is found is made the
current record.    A subsequent Database icon with a next command continues to search
down through the database, for the next record that satisfies the condition in the original
locate command.
Often, once a record is made current by a locate or a next command, it is manipulated using
another database command.    For example, a record is made current and then a Database
icon with a replace command replaces a value in one of the fields of the current record.
Each time a next command (or a locate command) is executed, the system variable
@_FOUND is set to either .T.    or .F.    If a value is found that meets the condition, @_FOUND
is set to .T.    and that record is made current.    If a value is not found, @_FOUND is set to .F.   
and there is no current record.
Structure your application so that it takes one branch versus another depending on the
value in @_FOUND.    If a record is found, that contains an appropriate value, the application
should act on the value or another value in that record.    If a record is not found, another
branch can be taken, such as one where a message is displayed that indicates that there are
no more matching records to be found.
Related Topics:
Database Commands

store command
Syntax: store field_name to variable
After a record is made current (with either a locate or next command) the store command is
used to store a piece of data from the specified field in the specified IconAuthor variable.    If
the variable does not already exist, the store command creates it.
Note: Do not use the store command after a use or delete command.    The current record is
unknown, and the store command may cause the wrong data to be modified.
Related Topics:
Database Commands

delete command
Syntax: delete
After a record is made current with either a locate or next command, the delete command
deletes the current record from the database.
After a delete command, the last locate command is no longer valid.    Therefore, you cannot
use a next command to find the next record that meets the previously specified condition.   
The locate command must be given again.
After a delete command, the value of the system variable @_FOUND is .T.    if there is
another record in the database.    If the last record has been deleted and the database is
empty, the value in @_FOUND is .F.
Related Topics:
Database Commands

close command
Syntax: close
The close command closes the current database.
Note: For dBASE III Plus and dBASE IV users, when a database is closed, any records that
were marked DELETE, are physically removed from the file.    Any records that were marked
for deletion through the dBASE application are also deleted.    The IconAuthor close
command automatically does a dBASE PACK command.
Related Topics:
Database Commands

Date&Time Icon

The Date&Time icon stores current time information for use in your application.    You can
store the current date, the current time, or the time elapsed since the start of the
application.
Suggested Uses:
· Inform the user of the current date and/or time at some time during the course of execution, for

example at login.
· Store the current date in a database.
· Measure how long it takes a user to complete a course.
· When developing an application, measure how long it takes an event to complete (compare the

effectiveness of using one type of structure for a task versus another).

Content Editor Text Boxes:
Time Variable
Type

Time Variable
Specify the name of the variable in which you want to store the date/time information.
Drop-down List Box Items:

Variable Selector

Type
Specify the type of date or time information you want to store in the Time Variable text box.
Acceptable values are: date, dbdate, elapsed, time, or a variable.
Drop-down List Box Items:

date - Stores the current date. Uses the format Fri Mar 10 1991
dbdate - Stores the current date. Uses the format yyyymmdd, used by the IconAuthor Database icon.
March 10, 1991 is 19910310
elapsed - Stores the whole number that represents the elapsed time in seconds since the start of the
application
time - Stores the local time in the format hh:mm:ss. An example of this format is 18:22:35.
Variable Selector

Display Icon

Use the Display icon to create one of several kinds of screen displays.    Each Display icon
you use can display a bitmap graphic, an animation script, or a SmartObject file.    The
Display icon is also used to pre-load graphics into memory which will increase the speed at
which they are displayed.
Suggested Uses:
· Display a SmartObject file that contains live objects with which the user can interact. Some examples

of live objects are Push Buttons, Audio Buttons, Movie objects, Text objects, and List Boxes. (Audio
objects play MIDI, Wave audio, or CD-audio and Movie objects play digital video or third party
animations.)

· Use two Display icons to display a graphic file and then a SmartObject file with text, on top of it. The
SmartObject file has a transparent background so it appears superimposed on the graphic. This
technique, of creating text and graphics in separate files, lets you use the graphic file repeatedly with
different text. For example, your application can use a graphic of a menu made of buttons several
times with different SmartObject files.
Preload multiple graphic files into memory and optimize the speed at which they are displayed.

· Enhance courses and presentations with animation scripts.
Content Editor Text Boxes:
File Type
File Name
Location
Parameters

File Type
Specify the type of file you want to display. Acceptable values are: animate, bitmap,
SmartObject, or a variable.
Drop-down List Box Items:

animate - Indicates that you want to run an IconAnimate animation script.
bitmap - Indicates that you want to display a bitmap graphic, such as a file created with Paintbrush.
Select this item if you are displaying a graphic with one of the following formats:

.BMP .FIF .KFX .PSD .XPM

.CAL .GIF .LV .RAS .XWD

.CGM .GX2 .MAC .RLE

.CLP .ICA .MSP .TGA

.CUT .ICO .PCD .TIF

.DCX .IFF .PCT .WMF

.DIB .IMG .PCX .WPG

.EPS .JPG .PIC .XBM
SmartObject - Indicates that you want to display a SmartObject file, created with the SmartObject
Editor. The file extension is .SMT
Variable Selector

Filename
Specify the name of the file you want to display. Acceptable values are a variable or a
filename that has one of the following formats:

.BMP .FIF .KFX .PSD .XPM

.CAL .GIF .LV .RAS .XWD

.CLP .GX2 .MAC .RLE

.CUT .ICA .MSP .TGA

.DCX .ICO .PCD .TIF

.DIB .IFF .PCT .WMF

.EPS .IMG .PCX .WPG
.JPG .PIC .XBM

Drop-down List Box Items:
Directory
SmartObject Editor
Animation Editor
Variable Selector

Location
Specify the location of the file you want to display.    The Location text box actually lets you
choose coordinates for the upper left corner of the file being displayed.    If the file is smaller
than the full screen, you can choose coordinates that place the file anywhere on the screen. 
The default, 0,0 places the file in the upper left corner of the screen.    You can use other
coordinates, such as "centered, centered" that center the file; or have it appear in a
particular corner.   
If you choose negative coordinates for upper left corner of the file, or extremely large
coordinates, part or all of the file may not appear on the screen.    Negative coordinates may
place the file very high (off the screen) or to the left (off the screen).    Large coordinates
may place the file very low (off the screen) or to the right (off the screen).
Acceptable values are a pair of screen coordinates or a variable.
Drop-down List Box Items:

Location Editor
Variable Selector

Parameters
Use this text box to assign parameters to the file being loaded or displayed.
Acceptable values are a SmartObject page, a display effect, a load command, or a variable.
Drop-down List Box Items:

load - Pre-loads graphic.
load discardable - Pre-loads graphic and removes from memory immediately after display.
remove - Removes graphic from memory.
remove all - Removes all graphics from memory.
Effect Selector - Lets you select a special effect to use when displaying a graphic file.
Page List - Lets you select the SmartObject page you want to display.
Variable Selector

This text box performs differently depending on the kind of file you are displaying.
Acceptable values: are a SmartObject page (for a SmartObject file), a display effect (for a
graphic file), a pre-load command, or a variable.
Displaying a SmartObject Page:
If you are displaying a page in a SmartObject file, use this text box to specify the page
name.    To select the appropriate page name, choose Page List from the drop-down list box.   
A dialog box appears which lists all of the saved pages created under the filename specified
in the Filename text box.    Double-click on the page you wish to display.
Or, you can use a variable in this text box. Type a variable name or choose Variable Selector
from the drop-down list box.
Displaying a Graphic File:
If you are displaying a bitmap graphic file, specify the special effect you want to use.   
IconAuthor allows you to specify a single effect or a double effect.    A single effect occurs in
one screen pass.    A double effect occurs in two screen passes.    When a double effect is
used, on the first pass, the new graphic is merged with the existing graphic.    On the second
pass, the new graphic replaces the existing graphic.    To specify the effect, click on the drop-
down arrow of the Parameters text box and choose the Effect Selector.   
Preloading a Graphic File:
In addition to displaying graphic files, you can use the Display icon to load a graphic into
memory.    If you are loading a graphic which you will use repeatedly, use the load command.
The load command keeps the graphic in memory until either a remove command is issued,
or the application finishes.    The number of graphics you can load into memory is limited
only by the amount of memory in your (and your end-user's) computer.    If you are loading a
graphic which will not be used repeatedly throughout the application, use the load
discardable command.    When the load discardable parameter is used, you are telling
IconAuthor to remove the graphic, after it is displayed, to make room for the loading of
another graphic.    The remove command will remove (unload) the graphic file specified in
the Filename text box from memory.    Remove all will remove all graphic files from memory.
The drop-down list box contains frequently used special effects and the Variable Selector.

Input Icon
The Input icon allows the user to use a keyboard, mouse, or touchscreen to provide
information to the application.    For example, an Input icon can let a student type an answer
to a question, or allow a customer to enter a name, an address, a telephone number, or a
date.
Important: Do not use the Input icon if you are using live objects in your application. Live
objects are displayed via SmartObject files. SmartObject files also allow user input, but use
different methods and different icons.
When you add content to an Input icon, you provide information such as the name of the
variable in which the user's response is stored, the kind of input the user is allowed to
provide, and whether there is a time limit on the user's response.
The icon below the Input icon is not executed until either the user makes a response or a
specified time-out period expires.    When an Input icon is executed, key information is stored
in the system variables @_USERTIME, @_TIMEOUT and @_SELECTION.
Content Editor Text Boxes:
Variable Name
Input Type
Time Limit

@_USERTIME
@_USERTIME keeps track of the amount of time (in hundredths of a second) a user takes to
respond to an Input or InputMenu icon.    This can be useful information if your application is
a test and you want to know how long it takes a user to answer each question.

@_TIMEOUT
@_TIMEOUT keeps track of whether a user responds to an Input or InputMenu icon before
timeout occurs.    When the user responds before timeout, @_TIMEOUT = 0.    When the user
does not respond before timeout, @_TIMEOUT = 1.
The information stored in @_TIMEOUT is particularly important if a user response does not
occur because a system is left unattended.    If a user does not respond, you may want
execution to automatically flow back out to a main menu.
Regardless of whether the user responds to the input screen, when the timeout occurs,
execution flows to the next icon.    Below the Input icon, use an If icon to test the value in
@_TIMEOUT.    If @_TIMEOUT = 0, the user responded before timeout and execution can flow
to the next part of the structure.    For example, after this icon, another input icon may
request further information, or a Branches composite may evaluate the user's response.    If
@_TIMEOUT = 1, the user did not respond before timeout.    A branch can be executed that
causes an exit to occur from this part of the application.

@_SELECTION
@_SELECTION stores the terminate key used to end input.

Variable Name
Specify the name of the variable in which the user's input is stored.
Drop-down List Box Item:

Variable Selector

Input Type
Specify a string of parameters that defines the type of input the user can provide.
Hint: Rather than constructing this string by typing in the blank Input Type text box, use the
Input Selection Editor to generate the string automatically.
Acceptable values are: a default string of parameters, a custom string of parameters, or a
variable.
Drop-down List Box Items:

Input Selection Editor
Variable Selector

Related Topics:
Using the Input Selection Editor
Input Icon

Time Limit
Specify whether or not there is a limit to the amount of time a user can take to respond to
the input screen.    If you do not want a time limit, specify 0 or leave the text block blank.    If
you do want a time limit, enter a numeric value.
If you enter a time limit and the user does not provide input within the specified time, the
icon below the Input icon is executed.    When the Input icon is executed, two system
variables are set.    @_TIMEOUT = 1 if timeout occurred before the user responded.   
@_TIMEOUT = 0 if the user responded before timeout.    Also, the @_USERTIME contains the
number of one-hundredths of a second it took the user to respond.
Acceptable values are: any positive real number (such as 10 or 10.5) or a variable.
Drop-down List Box Item:

Variable Selector

Using the Input Selection Editor
The Input Selection Editor appears when you choose that item from the drop-down list box of
the Input Type text box.    Select the general category of input you want the user to enter:
Text, Mouse, Numeric, or Date.

Text - The user enters a string or a character using the keyboard.
Mouse - The user selects a single point on the screen using a mouse or touchscreen.
Numeric - The user enters a numeric value using the keyboard.
Date - The user enters a date.

To accept the default parameters for the selected input type, choose OK.    The dialog box is
closed, and the default parameters are automatically entered in the Input Type text box.   
To create a custom parameter string for the selected input type, choose Options...
A different dialog box appears depending on the input type you are defining: the Text Input
dialog box appears for text input, the Mouse Input dialog box appears for mouse input, and
so on.
Related Topics
Using the Text Input Dialog Box
Using the Mouse Input Dialog Box
Using the Numeric Input Dialog Box
Using the Date Input Dialog Box

Using the Text Input Dialog Box
When you select Text and choose Options...    from the Input Selection Editor dialog box, the
Text Input dialog box appears and contains the following components:
Result box
Initialize Input Variable check box
Display area
Format area
Input Termination area
Options >> button

Result Box
Initially, the default parameter string for the general input type you selected appears in this
box.    As you change parameters by making different selections, the new parameters appear
in this box.
When you close the dialog box, the parameters in the result area are returned to the Input
Type text box from which the Input Selection Editor was accessed.    Each parameter is
separated from the next by a semicolon.
The result box is scrollable from left to right.    To view hidden parameters, click inside the
box and use either the right or left arrow key, the Home key or the End key to see another
part of the string.
Related Topics:
Using the Text Input Dialog Box
Using the Mouse Input Dialog Box
Using the Numeric Input Dialog Box
Using the Date Input Dialog Box

Initialize Input Variable check box
Specify whether the Input Variable is initialized when the input screen appears.    (X =
initialize, blank = do not initialize).    If you do not initialize the input variable and it contains
a value, that value appears on the screen, and the user has the option of editing it.   
If you initialize the input variable, the input area on the screen is blank.    The user must
enter new input that will be stored in the input variable.
Related Topics:
Using the Text Input Dialog Box
Using the Numeric Input Dialog Box
Using the Date Input Dialog Box

Display area
Specify whether the input is displayed on the screen.

On - Turns input display on. All displayable characters entered from the keyboard are echoed on the
display screen during input.
Off - Disables input display. Key input is stored in the memory buffer only.
Masked - Masks the input being displayed. The default mask character is #. The mask character is
displayed in place of the key pressed from the keyboard during input.

Location text box
Specify the starting location of input on the screen.    Display Location is only available if
Display Input is set to On or Masked.
upper left - Defines the starting location of input as the upper left corner of the screen.
Location Editor
Variable Selector

Caret text box
Specify the shape of the cursor that is displayed during input.    The choices are:

underline - A flashing underline appears where characters or numbers will appear. As the user types,
the underline is pushed to the right.
vertical line - A flashing vertical line appears where characters or numbers will appear. As the user
types, the line is pushed to the right.
solid block - A flashing block appears where characters or numbers will appear. As the user types, the
block is pushed to the right.
grey block - A flashing grey block appears where characters or numbers will appear. As the user
types, the block is pushed to the right.
none - There is no cursor as text is entered.

Note: If you choose not to display the input on the screen, the cursor you select in the Caret
text box is disregarded.
Related Topics:
Using the Text Input Dialog Box
Using the Numeric Input Dialog Box
Using the Date Input Dialog Box

Format Area
Style text box
Specify the kind of characters that the user can enter from the keyboard.

Standard - This is the default. Accepts all characters, numbers, and symbols from the keyboard in
either uppercase or lowercase.
Uppercase - Accepts all characters, numbers, and symbols. Converts all characters (a through z) to
uppercase. The conversion occurs before the character is displayed on the screen. This means that
although the user may press "a," an "A" appears on the screen.
Lowercase - Accepts all characters, numbers, and symbols. Converts all characters (A through Z) to
lowercase. The conversion occurs before the character is displayed on the screen. This means that
although the user may press "A," an "a" appears on the screen.
Logical - Accepts only a logical .T. or .F. entry. The user enters "T" or "F" and the results are stored
with a period before and after the character. If the character is entered in lowercase, the system
converts it to uppercase before the results are displayed on the screen. If the user tries to enter an
invalid character, the system beeps.
Y or N - Accepts only "Y" or "N" from the keyboard. The user can type the input in uppercase or
lowercase. If the character is entered in lowercase, the system converts it to uppercase before the
results are displayed on the screen. If the user tries to enter an invalid character, the system beeps.

String Length text box
Specify the maximum number of characters that the user can enter.    If the user attempts to
enter more than the allowable number of characters, the system beeps.
The default value is 1, which indicates single character input.    The range is 1 to 256.    This
field is disabled if the Logical or Y/N text formats are selected because Logical and Y/N
formats require only 1 character.
Picture text box
Predefine the specific kinds of characters that are allowed for each position in an input field. 
For example, if the input is intended to let the user enter a zip code, you can specify that the
input field only accepts five numbers.    The number of characters you specify as part of the
Picture must match the number you specify for the Maximum Length of Text.    If the user
tries to press a terminate key before entering the number of characters in the picture, the
system beeps.
Use the following characters to create a picture:

9 - Numeric characters only (0 - 9)
Z - Numeric characters, leading zeros, and blank positions
A - Alphabetical characters only (a - z, A - Z)
X - Alphabetical or numeric characters (a - z, A - Z, 0 - 9)
S - Any alphabetical or symbol (including spaces)
B - Any alphabetical or numeric character, or symbol (including spaces)

Any other characters you specify as part of the picture become part of the input.
Related Topic:
Using the Text Input Dialog Box

Input Termination Area
Confirm Input check box
Specify whether the user confirms that input is complete before execution flows to the next
icon. If this option is toggled on, the user has to press one of the keys specified in the
Terminate Key box to proceed. If this option is toggled off, the user enters the character or
string, and execution automatically flows to the next icon when the maximum number of
characters have been entered.
Allow Null check box
Specify whether blank input entries are allowed.    This feature is useful when you want to
allow the user to bypass entering input.
If this option is on, the user can press a terminate key and execution flows to the next icon.
If this option is off, the user must enter a character or string before execution can flow to the
next icon.
Termination Keys box
Specify the keys you want the user to be able to press to indicate that they are finished
providing input.    You can specify as many as 25 keys or multi-key combinations.    The
default is the RETURN key.
There are two ways to enter acceptable terminate keys into the Terminate Key box:
· Click on the Record button to automatically record keys and multi-key combinations as you press

them. Once the Record button is selected, its label changes to Stop. Each key or key combination
is entered into the list box as it is pressed. When you are finished defining terminate keys, click on
the Stop button (its label changes to Record). You cannot close the Text Input dialog box while the
button is labeled Stop.

· Type the terminate key or multi-key combinations into the list box.
The following keys are available as single key selection labels:
A through Z keys HOME (Home key)
0 through 9 keys INS (Insert key)
0 through 9 (keypad) TAB (Tab key)
BS (Back Space key) NEXT (Page Down key)
DEL (Delete key) PRIOR (Page Up key)
END (End key) LEFT (left arrow key)
RETURN (Enter key) RIGHT (right arrow key)
ESC (Esc Key)* UP (up arrow key)
F1... F12 (F1 through F12) DOWN (down arrow key)

PAUSE (pause/break key)

* The Esc key is used in the IconAuthor Authoring system to escape from a running application and
return to the IconAuthor window. However, you can use the Esc key in your applications because
Esc is interpreted as a standard non-displayable character by the IconAuthor Presentation system.
The only case in which Esc is not available for use is if it is the designated break key for the
Presentation system. To determine which key or multi-key combination is reserved as the break key
for the Presentation system, look at the BreakKey= entry in the IconAuthor section of your
PRESENT.INI file.

To specify a multi-key combination for a selectable area use one or any combination of
SHIFT, CONTROL, or ALT followed by one of the valid single keys described previously.    Use a
hyphen to separate one key from another if they are all part of a multi-key combination.    For
example, CONTROL-SHIFT-F7, or ALT-F4 are valid selection labels.
When the user presses a terminate key, the value of the terminate key is stored in the
system variable @_SELECTION.    For example, if the user enters a string and presses the
Delete key, @_SELECTION = DEL.    The value in @_SELECTION can be evaluated in a
subsequent icon to determine the next sequence of events in the application.    For example,
you might want to evaluate the value in @_SELECTION so that TAB lets the user proceed to
the next input field, and PRIOR lets the user work with the last input field.
Related Topics:

Using the Text Input Dialog Box
Using the Numeric Input Dialog Box
Using the Date Input Dialog Box

Options>> Button
When you choose Options>>, the input dialog box is extended and you can create
expressions in the validation area to validate the user's input before it is accepted. If the
user enters a response that is not valid, the system beeps, and the user must enter a new
value.
Validation view box -    The validation view box is the large box at the top of the validation
area used to create the validation expressions.    There are two ways to create an expression
in the validation view box.    You can type an expression directly into the validation view box. 
Or, you can use the features in the bottom part of the validation area to automatically
generate the parts of the expression in the validation view box.    If the expression you are
entering is longer than one line, the expression automatically wraps to the next line.    Do not
attempt to include carriage returns.
Input Variable button -    Within an expression, the value in the input variable is compared
with one or more strings or numeric values represented as constants or variables.    The
input variable is always represented by @@.    Click on the Input Variable button to
automatically insert an @@ in the validation view box.
operator area - The operator area contains 16 buttons that represent the operators
necessary to create an expression.    Click on an operator button to automatically insert that
operator (=, +, etc.) in the validation view box.
freetype entry box - The freetype entry box is the text box below the validation view box.   
When you want to include a string, number or a variable as part of an expression, type it
into the freetype entry box and press Return.    The number or variable is automatically
inserted in the validation view box with surrounding quotes if necessary, and a space before
and after.
Note: When you use the buttons and freetype entry box to create an expression, IconAuthor
automatically inserts the necessary space before and after the various parts of the
expression.    When you type an expression directly into the validation view box, remember
to include spaces as necessary, for example, before and after an operator.
Related Topics:
Text Validation Rules
Numeric Validation Rules
Date Validation Rules
Using the Text Input Dialog Box
Using the Numeric Input Dialog Box
Using the Date Input Dialog Box

Text Validation Rules
When you choose Options>> from the Text Input dialog box you can create an expression in
the validation area.    The expression you create evaluates the user's input to determine
whether it is acceptable.    As an example, consider the case where the user is answering the
question, "What screen color do you want?" You include the following expression in the
validation view box:
@@ $ "RED,BLUE,GREEN"
When the user types a response, the input is validated according to this expression.    If the
input is equal to RED, BLUE, or GREEN, it is accepted.    If it is some other value, the system
beeps and the user must re-enter input.
After you enter all of the input validation information, choose OK.    The validation area is
removed.    Choose OK again to close the remaining portion of the Text Input dialog box.
Character Operators
In the validation view box, you can specify an expression that uses one of the following
character operators to manipulate character strings:
& operator
EXTRACT(start,len,str) operator
UPPER(str) and LOWER(str) operators

Relational Operators and Character Strings
You can specify a validation expression that uses a relational operator to compare character
strings.
Operator Meaning
< less than
<= less than or equal to
= equal to
> greater than
>= greater than or equal

to
<> or # not equal to
$ contained in
When character strings are compared, they are evaluated by the position of each character
in the standard ASCII table.    The first character in one string is compared to the first
character in the other string.    If the two are equal, the second characters are compared and
so on.
Character strings are identified with quotation marks.    If the text input is being compared to
a string within a variable, the STRING operation must be done on one of the variables.
Example: STRING(@@) = @B
Logical Operators
You can specify an expression that uses one or more logical operators (.AND., .OR.,
and .NOT.) to compare expressions that contain numbers, character strings, and the logical
constants .T.    and .F.

.AND. asserts that both expressions are true.

.OR. asserts that at least one of the comparisons is true.

.NOT. asserts that the negative of the comparison is true.

Related Topics:
Using the Text Input Dialog Box

& operator
The character operator "&" concatenates (adds) one string to another.
Example:    @@ = ("Hello " & "George")
In this example a user is asked to enter "Hello George".    This expression tests whether the
input is equal to the string "Hello George".
Related Topics:
Text Validation Rules

Extract(start,len,str) operator
The character operator EXTRACT() extracts a portion of a string.    The syntax for this
operator is EXTRACT(start,len,str), where:

start is the position of the first character you want to extract
len is the length of the portion you want to extract
str is the name of the variable being manipulated

Example: EXTRACT(1,3,@@) = "603" where @@ = "603-555-1234"
In this example, a user is asked to enter a telephone number (with a 603 area code).    The
expression extracts the first three characters of the input and tests whether they are equal
to the string "603".    To extract "603" for comparison, specify 1 which is the position of the
"6", specify 3 which is the number of characters being extracted, and specify @@ which is
the input variable being acted upon.   
Related Topics:
Text Validation Rules

Upper(str) and Lower(str) operators
The character operator UPPER() converts a string specified within the parentheses to
uppercase.    The character operator LOWER() converts the string to lowercase.    If the Text
Format is set to Standard the Text Input dialog box, the user enters text input as it appears
on the screen and is stored.    For example, if the user types "Red", the value "Red" is stored
in the input variable.    Use UPPER() or LOWER() to convert the value in the input variable to
upper or lower case when it is compared to a string for validation.
Example: UPPER(@@) = "RED"
This expression converts the input string to uppercase and compares it to "RED".    It stores it
as "Red", which the user typed.
When you use a case conversion operator it converts the input string for the validation, but
does not permanently change it.
Related Topics:
Text Validation Rules

Numeric Validation Rules
When you choose Options>> from the Numeric Input dialog box you can create an
expression in the validation area.    The expression you create evaluates the user's input to
determine whether it is acceptable.    As an example, consider the user response to: "Enter a
number between 1 and 100."    The expression in the validation view box for this case is:
@@ >= 1 .AND.    @@ <= 100
The user input is validated according to this expression.    If it is greater than or equal to 1
and less than or equal to 100, it is accepted.    If it is some other value, the system beeps
and the user must re-enter input.
After you enter all of the input validation information, choose OK.    The validation area is
removed.    Choose OK again to close the remaining portion of the Numeric Input dialog box.
Numeric Operators
In the validation view box, you can specify an expression that uses one or more numeric
operators.   
The following table describes the operations that are supported.   

Operator Meaning Example
+ addition 2.3 + 2 = 4.3
- subtraction 6 - 1 = 5
* multiplication 4 * 3 = 12
/ division 12 / 4 = 3
** or ^ exponent 2 ^ 3 = 8
SQRT(x) square root SQRT(4) = 2
ABS(x) absolute value ABS(-52) = 52
INT(x) integer value INT(2.3) = 2

INT(2.8) = 2
INT(2.854) = 2

ROUND(x) round off value ROUND(2.3) = 2
ROUND(2.8) = 3
ROUND(2.3333) = 2

SIN(x) sine value SINE(30) = 0.5
COS(x) cosine value COS(60) = 0.5
TAN(x) tangent value TAN(0) = 0.0
LOG(x) natural

logarithm
LOG(1.0) = 0.0

LOG10(x) logarithm base
10

LOG10(10) = 1.0

+ positive +2.3 = 2.3
- negative -3 = -3

You can use these numeric operations individually, or you can combine them.    Normal
mathematical and left-to-right precedence rules apply, unless parentheses are used.    For
example, while 2 * 3 + 4 = 10, whereas 2 * (3 + 4) = 14.
Relational Operators and Numbers
You can specify an expression that uses a relational operator, such as the = sign, to compare
numbers.

Operator Meaning Examples
< less than @@ < 4
<= less than or equal to @@ <= 1
= equal to @@ * 2 = 4
> greater than @@ > 4
>= greater than or equal

to
@@ >= 3

<> or # not equal to @@ * 3 <> 4

Logical Operators
You can specify a validation expression that uses one or more logical operators (.AND., .OR.,
and .NOT.).    These expressions can contain numbers, character strings, and the logical

constants .T.    and .F.
.AND.    asserts that both expressions are true.
.OR.    asserts that at least one of the comparisons is true.
.NOT.    asserts that the negative of the comparison is true.

Related Topics:
Using the Numeric Input Dialog Box

Using the Mouse Input Dialog Box
When you select Mouse and choose Options...    from the Input Selection Editor dialog box,
the Mouse Input dialog box appears and contains the following components:
Result box
Mouse Format area
Mouse Button area
Cursor Shape text box
Input Validation check box
Input Area text box

Mouse Format area
Specify the action the user must perform to use the mouse to select a point.
Mouse Down - Pressing the mouse button down (clicking) selects a point.    (This is the
default.)
Mouse Up - Releasing the mouse button selects a point.
Double Click - Pressing the mouse button down twice in quick succession selects a point.   
(The double-click rate is set in the Windows Control Panel.)
Related Topics:
Using the Mouse Input Dialog Box

Mouse Button area
Specify which mouse button is active.
Left - Only the left mouse button is active. (This is the default.)
Right - Only the right mouse button is active.
All - All mouse buttons are active.
Related Topics:
Using the Mouse Input Dialog Box

Cursor Shape
Specify the cursor shape.    Your options are:
Arrow - Standard arrow cursor. (This is the default.)
Indexed Hand - Closed hand with index finger pointed upward.
Left Arrow - Arrow cursor pointing left.
Right Arrow - Arrow cursor pointing right.
Up Arrow - Arrow cursor pointing up.
Down Arrow - Arrow cursor pointing down.
Crosshair - Large plus sign
I Beam - Text I-beam cursor.
None - A cursor is not displayed. Use this option for touch input.

Related Topics:
Using the Mouse Input Dialog Box

Input Validation check box
The Input Validation option lets you select an active area of the screen where the mouse
action can occur.    If Input Validation is selected, the selected cursor shape only occurs in the
active area.    When the mouse cursor is moved within the non-active areas, the default
arrow cursor displays.
If the Input Validation option is not selected, the Input Area box is greyed out.    When you
select Input Validation, you can enter data in the Input Area box to define an area on the
screen where a user is permitted to select a point.    Anywhere outside of this area, the
mouse cursor appears as an arrow shape.    If the user tries to select a point outside the valid
area, the system beeps.
Related Topics:
Using the Mouse Input Dialog Box

Input Area text box
The data you enter in the Input Area box consists of four numbers.    The first two numbers
are the x,y coordinates of the upper left corner of the area.    The second two numbers are
the width and height of the area.    The Area Editor is available from the drop-down list box of
the Input Area box to allow you to visually select an area of the screen.    When you close the
editor, the data that defines the area you selected is returned to the Input Area box.
Related Topics:
Using the Mouse Input Dialog Box

Using the Numeric Input Dialog Box
When you select Numeric and choose Options...    from the Input Selection Editor dialog box,
the Numeric Input dialog box appears and contains the following components:
Result box
Initialize Input Variable check box
String Variable Name
Display area
Format area
Input Termination area
Options >> button

String Variable Name
A user's numeric input is stored in the Input Variable.    Optionally, use the String Variable
Name text box to specify the variable in which you want to store the string value of the
numeric input.
The corresponding drop-down list box lets you access the Variable Selector.    Use the
Variable Selector to select a variable.
When a string value is saved to this variable, commas and decimal points that are part of
the picture are also saved.    The string that you save can be useful, for example, if you want
to redisplay the number at some later time, with the proper punctuation.
Related Topics:
Using the Numeric Input Dialog Box

Format area
Type options
Specify the kind of numbers that the user can enter from the keyboard.
Real - The user can enter a real number.    If Real is selected, the Number of Decimal Places
box is active.    The acceptable range for real numbers is 0.0000000000 to
99,999,999,999.9999999999
Integer - The user can enter an integer.    The acceptable range for integers is -
99,999,999,999 to +99,999,999,999
Decimal Places
If Real is selected as the Number Format, specify the number of positions you want to be to
the right of the decimal point.    For example, if the input is intended to be numbers such as
143.24 or 1.06, specify 2 for the Number of Decimal Places.    The acceptable range of values
for the Number of Decimal Places is 0 to 10.
Maximum Length
Specify the length of the input the user can provide.    The acceptable range for input length
is 1 to 22 for real numbers, and 1 to 11 for integers.    When you are specifying a length for
real numbers, include the decimal point position in your count.
Picture
Predefine where the commas and decimal point appear in numeric input.    Pictures consist of
9s, Zs, commas, and a decimal point.    The length of the picture (including punctuation)
must match the Input Length value and the position of the decimal point must match the
Number of Decimal Places value.
9 - Means the user must provide a digit for this position. For example, if a picture is defined as 999.99

the user must type 5 digits. The user can type a 0 in any of these positions. If the user types a 0 in
one or more leading or trailing positions, such as the 034.20, the 0s are saved as part of the numeric
value. (This means the number stored in the input variable is 034.20)

Z - Means the user can optionally provide a digit for this position. For example, if a picture is defined as
ZZZ.ZZ the user can type from 0 to 5 digits. The user can type a 0 in any of these positions. If the
user types a 0 in one or more leading or trailing positions, such as 034.20, the 0s are not saved as
part of the numeric value. (This means the number stored in the input variable is 34.20)

, (comma) - Means a comma appears on the screen as part of the display. However, the comma is a
special character that is not saved as part of the numeric value stored in the input variable.

. (decimal point) - Marks the position of the decimal point.
Note: If a picture uses both Zs and 9s.    Zs can occupy only leading or trailing positions.   
Z99.9Z is valid.    Z9Z.99 is not valid.    (The Z, which represents an optional digit position
cannot occur in the middle of the number.)
Related Topics:
Using the Numeric Input Dialog Box

Using the Date Input Dialog Box
When you select Date and choose Options...    from the Input Selection Editor dialog box, the
Date Input dialog box appears and contains the following components:
Result box
Initialize Input Variable check box
String Variable Name
Display area
Format area
Input Termination area
Options >> button

String Variable Name
There are two ways to store a date.    You can store it in one form in the variable you
specified in the Input Variable text box of the Input icon.    You can store it in another form in
a variable you specify in the String Variable Name text box of the Date Input dialog box.
In the Input Variable text box, the entered date is always treated as a character string and is
automatically converted to database format.    (Database format is CCYYMMDD.    An example
of a database formatted date is 19910123, which is January 23, 1991.)
In the String Variable Name text box you can store the date exactly as it appears on the
screen.    This way, when the user enters a date such as Jan 23, 1991, the date is stored to
the string variable @DATE in the form "Jan 23, 1991".
The corresponding drop-down list box for String Variable Name lets you access the Variable
Selector.    Use the Variable Selector to select a variable.    When you exit the Variable
Selector, the selected variable is returned to the String Variable Name text box.
Related Topics:
Using the Date Input Dialog Box

Format area
Date
Specify the order in which the user can enter date information from the keyboard.    Select
one of the following options:

Month Day Year (This is the default.)
Day Month Year
Year Month Day

Month
Specify the format for the month portion of the date.

MM - The month is represented by two digits (01, 02, etc.). (This is the default.)
MMM - The month is represented by three characters (Jan, Feb, etc.).

Year
Specify the format for the year portion of the date.

YY - The year is represented by two digits (91,92,etc.). (This is the default.)
CCYY - The year is represented by four digits (1991,1992, etc.).

Separator
Specify the symbol used to separate one part of the date from the next.    These symbols are
not entered by the user.    They are automatically displayed on the screen during input.    The
following options are available:

/ Example: 12/22/91 (This is the default.)
. Example: 12.22.90
, Example:      Jan 12, 1991
- Example: 03-22-92
a space Example: Jan 04 1991

Note: The comma date separator only applies when MMM and YY are selected or when CCYY
is selected.    The comma is only displayed after the day element.

Date Validation Rules
When you choose Options>> from the Date Input dialog box, you can create an expression
in the validation area that evaluates the user's input to determine whether it is acceptable.   
As an example, consider response to: "On what date did a human first walk on the moon?"
The answer is July 20, 1969; therefore, the following expression is included in the validation
view box:

@@ = "19690720"
When the user types a response, the input is validated according to this expression.    If the
input is 19690720, it is accepted.    If it is any other date, the system beeps and the user
must re-enter input.    Remember, the value stored in the input variable is automatically
converted to database format.    This means that in a validation expression (as in the
previous example), @@ must be compared to dates in database format.
After you enter all of the input validation information, choose OK.    The validation area is
removed.    Choose OK again to close the remaining portion of the Numeric Input dialog box.
The EXTRACT() Operator and Dates
The character operator EXTRACT() extracts a portion of a string.    The syntax for this
operator is EXTRACT(start,len,str), where:

start is the position of the first character you want to extract
len is the length of the portion you want to extract
str is the name of the variable being manipulated

The STRING() Function and Dates
Dates are stored and evaluated as character strings.    Therefore the dates that they are
compared to must be strings that are identified with quotation marks.    If the date you are
comparing input to is represented by a variable, the STRING operation must be done on one
of the variables.
Example: STRING(@@) = @DATE
Relational Operators and Dates
When character strings are compared, they are evaluated by the position of each character
in the standard ASCII table.    The first character in one string is compared to the first
character in the other string.    If the two are equal, the second characters are compared and
so on.    (See Appendix B for an ASCII conversion table.)
Example: @@ = "19910215" evaluates to true if @@ contains "19910215".
Example: @@ = "19910215" evaluates to false if @@ contains "19810215", because the
first two characters are equal and the third characters "9" and "8" are not equal in the ASCII
table.

Operator Meaning Examples
< less than @@ < "19910214"
<= less than or equal to @@ <= "19910214"
= equal to @@ = "19910214"
> greater than @@ > "19910214"
>= greater than or equal to @@ >= "19910214"
<> or # not equal to @@ <> "19910214"

Logical Operators
You can specify a validation expression that uses one or more logical operators (.AND., .OR.,
and .NOT.).    These expressions can contain numbers, character strings, and the logical
constants .T.    and .F.

.AND.    asserts that both expressions are true.

.OR.    asserts that at least one of the comparisons is true.

.NOT.    asserts that the negative of the comparison is true.
Example: A user is asked to enter a date between Jan 15, 1991 and Jan 15, 1992.    The
validation expression is as follows:

@@ < "19920115" .AND.    @@ > "19910115"

InputMenu Icon
The InputMenu icon is used to get input from the user.    Specifically, it lets the user choose
from one of two or more options on the screen. These options are usually menu choices or
multiple choice answers to a question.
Important: Do not use the InputMenu icon if you are using live objects (available through
the SmartObject Editor) in your application. The SmartObject Editor lets you use interactive
objects to create menus.
Although the InputMenu icon is a separate icon in the library and can be built into other
types of structures; it is frequently used as part of the Menu composite.    In the Menu
composite, a Display icon typically precedes an InputMenu icon.    The Display icon displays
the menu (a graphic file or a SmartObject file) on the screen.    In addition to selection areas,
the screen may provide directions such as "Click in an area to select an activity."
The purpose of the InputMenu icon is to take the image on the screen, and make portions of
it selectable.    The icon below the InputMenu icon is not executed until either the user makes
a response or a specific time-out period expires.
When you add content to an InputMenu icon, you define which areas on the screen you want
to be selectable, and the action the user must take in order to select an area. When you
define selectable areas, each area is assigned a number according to the order in which it is
defined.
When a user responds to an InputMenu icon by an action such as clicking on or touching an
area of the screen, the number associated with the area the user selects is automatically
stored in the system variable @_SELECTION.
As in the Menu composite, an InputMenu icon is frequently followed by a Branches
composite.    The Branches composite contains several If icons, each of which compares the
value in @_SELECTION to a number such as 1, 2, 3, etc.    If @_SELECTION = 1, the first If
icon tests true and the branch below is executed.    If @_SELECTION = 2, the second If icon
tests true and the branch below is executed, and so on.
In addition to @_SELECTION, the InputMenu icon uses @_USERTIME, @_TIMEOUT, and
optionally, @_TEXT_AREAS.
Content Editor Text Boxes:
Selection Areas
Time Limit
Selection Indicator
Feedback
Selection Labels

@_TEXT_AREAS
In the InputMenu icon, you define the selectable areas in a screen display in the Selection
Areas text box.    When you display a graphic file you typically use the Input Template Editor
(through the InputMenu icon) to identify selectable areas. This editor returns data that
describes size and location of each selectable area to the Selection Areas text box. You can
use this same method to identify selectable areas in a page of a SmartObject file, or, if you
already identified certain areas (or objects) in a page as selectable within the SmartObject
Editor, you can specify @_TEXT_AREAS in the Selection Areas text box.
When you create a SmartObject page, text, graphic and OLE objects that are not live can be
designated it as selection areas.    Also within the SmartObject Editor, you identify the
number associated with each selection area.
When a Display icon displays a SmartObject page with selection areas, the coordinates of
these areas are automatically placed in @_TEXT_AREAS.    Therefore, when you follow the
Display icon with an InputMenu icon, you can include @_TEXT_AREAS in the Selection Areas
text box, to directly reference the selectable areas in the SmartObject page.

Selection Areas
Specify the areas on the screen that you want to be selectable.    The order in which the
areas are listed in the Selection Areas text box is important because each area is assigned a
number (1,2,3,etc.) according to this order.
Acceptable values are: one or more groups of 4 numbers, @_TEXT_AREAS, or a variable.
It is likely that you will use the Input Template Editor to automatically generate groups of
numbers each of which defines a rectangular, selectable area on the screen.    The numbers
within a group are separated by commas, the groups of numbers are separated by
semicolons.    The first two numbers in every group are the x,y coordinates of a rectangular
area.    The second two numbers in every group are the width and height of a rectangular
area.
Drop-down List Box Items:

Input Template Editor
Variable Selector

Time Limit
Specify whether or not there is a limit to the amount of time a user can take to respond to
the input screen.    If you do not want a time limit, specify 0.    If you do want a time limit,
enter a numeric value.
If you do enter a time limit and the user does not provide input within the specified time, the
icon below the InputMenu icon is executed.    When the InputMenu icon is executed, two
system variables are set.    @_TIMEOUT is set to 1 if timeout occurred before the user
responded.    @_TIMEOUT is set to 0 if the user responded before timeout occurred.    Also,
the system variable @_USERTIME contains the number of 100ths of a second it took the user
to respond.
Acceptable values are: a positive real number (such as 4 or 4.3) or a variable.
Drop-down List Box Items:

Variable Selector

Selection Indicator
Specify the kind of action the user must take in order to select an area.
Although each option in the drop-down list box gives the user the ability to make a selection
by a different means, such as clicking a mouse, or touching the screen, each option also lets
the user make a selection by partially or exclusively using the keyboard.    The arrow keys
are always active for an input screen and you can designate a key or multi-key combination
for each selectable area.    To designate keyboard actions, include a key or multi-key
combination in the Selection Labels text box for each selectable area.
Acceptable values are: move, press, return, touch, or a variable.
Drop-down List Box Items:

move - The user can make a selection in two ways: 1) move the mouse pointer into an area, or 2)
press a key or multi-key combination. The different key or multi-key combination the user can press
for each area is designated in the Selection Labels text box.
press - The user can make a selection in two ways: 1) click the mouse button on an area, or 2) press a
key or a multi-key combination. The different key or multi-key combination the user can press for
each area is designated in the Selection Labels text box.
return - The user can make a selection in two ways: 1) click the mouse button on an area and press
RETURN, or 2) press a key or a multi-key combination and press RETURN. The different key or multi-
key combination the user can press for each area is designated in the Selection Labels text box.
touch - The user can make a selection in two ways: 1) touch the screen, or 2) press a key. The
different key or multi-key combination the user can press for each area is designated in the Selection
Labels text box.
Variable Selector

Feedback
Specify a visual effect that you want to be part of the menu.    For example, when you specify
press for a selection indicator, and block flash for feedback, when the menu appears, the
first area (associated with the number 1) is highlighted automatically.    As the user cycles
through the selection areas, by moving the mouse pointer or using the arrow keys, the
current selection area is highlighted.    When the user actually clicks or presses the
designated key or multi-key combination, the current highlighted area flashes, and the
InputMenu icon is executed.
Acceptable values are: block, block flash, box, box flash, none, or a variable
Drop-down List Box Items:

block - When the menu appears the first area is automatically highlighted. If a user changes focus to
a different area (via the mouse or arrow keys), the new area is highlighted instead.
block flash - When the menu appears the first area is highlighted automatically. If a user changes
focus to a different area (via the mouse or arrow keys), the new area is highlighted instead. When the
user actually selects an area by clicking, pressing a designated key, etc., the selected highlighted area
flashes three times.
box - When the menu appears the first area is automatically enclosed in a box. If a user changes
focus to a different area (via the mouse or arrow keys), the new area is enclosed in a box instead.
box flash - When the menu appears the first area is automatically enclosed in a box. If a user
changes focus to a different area (via the mouse or arrow keys), the new area is enclosed in a box
instead. When the user actually selects an area by clicking, pressing a designated key, etc., the box
surrounding the selected area flashes three times.
none - No visual effect occurs.
Variable Selector

Selection Labels
Although each selection indicator option gives the user the ability to make a selection by a
different means, such as a clicking a mouse, or touching the screen, each option also lets
the user make a selection by partially or exclusively using the keyboard.
Each selectable area has multiple keys associated with it by default.    For example, if you do
not specify any selection labels, when a user presses the F1 key, the 1 key, the keypad 1
key, or the A key, the first area is selected.    When the user presses the F2 key, the 2 key,
the keypad 2 key, or the B key, the second area is selected, and so on.
If you do not want to use these default keys, you can optionally, use the Selection Labels
text box to designate a different key or multi-key combination for each selectable area.    The
first key you specify corresponds to the first area, the second key corresponds to the second
area, etc.    Use a comma to separate each key label from the next.
Note: When you specify any keys or multi-key combinations in the Selection Labels text
box, the default keys for the selection areas are disabled.
The following keys are available as single key selection labels:
A through Z keys HOME (Home key)
0 through 9 keys INS (Insert key)
0 through 9 (keypad) TAB (Tab key)
BS (Back Space key) NEXT (Page Down key)
DEL (Delete key) PRIOR (Page Up key)
END (End key) LEFT (left arrow key)
RETURN (Enter key) RIGHT (right arrow key)
ESC (Esc Key)* UP (up arrow key)
F1... F2 (F1 through F12) DOWN (down arrow key)

PAUSE (pause/break key)

* The Esc key is used in the IconAuthor Authoring system to escape from a running application and
return to the IconAuthor window. However, under some circumstances, you can still use the Esc key
in your applications because Esc is interpreted as a standard non-displayable character by the
IconAuthor Presentation system. The only case in which Esc is not available for use is if it is the
designated break key for the Presentation system. To determine which key or multi-key combination
is reserved as the break key for the Presentation system, look at the BreakKey= entry in the
IconAuthor section of your PRESENT.INI file.

To specify a multi-key combination for a selectable area use one or any combination of
SHIFT, CONTROL, or ALT followed by one of the valid single keys described previously.    Use a
hyphen to separate one key from another if they are all part of a multi-key combination.    For
example, CONTROL-SHIFT-F7, or ALT-F4 are valid selection labels.
Acceptable values are: an allowable single key, a multi-key combination, or a variable.
Drop-down List Box Items:

Variable Selector

Line Icon
The Line icon dynamically draws a line.
Use the text boxes in the Line icon Content Editor to specify the endpoints and the width of
the line.
By default the line color is black (the default outline color).    To create a line using an
alternative color, precede the Line icon with a Color icon.    The outline color you specify is in
effect until you use another Color icon.
Suggested Uses:
· Use a line to underline or point to an item or text on the screen
· Use a line to connect one item to another on the screen

Content Editor Text Boxes:
Start Point
End Point
Line Width

Start Point
In order to begin defining the line, specify the coordinates of the start point.
Acceptable values are: a pair of screen coordinates or a variable.
Drop-down List Box Items:

Location Editor
Variable Selector

End Point
To finish defining the line, you specify the coordinates of the end point.
Acceptable values are: a pair of screen coordinates or a variable.
Drop-down List Box Items:

Location Editor
Variable Selector

Line Width
Specify the width (in pixels) of the line.    Make sure to use a line width of 1 pixel or more.
Acceptable values are: any positive integer (greater than 0) or a variable.
Drop-down List Box Items:

assorted numbers - Frequently used line widths.
Variable Selector

LoadVar Icon

The LoadVar icon lets you load several variables into memory from one variable file.
Note: You can also use a Variable object (available through the SmartObject Editor) to load
variables.
A variable file contains one or more single value or indexed application variables with or
without values.    You can create a variable file by creating an ASCII file with a text editor
such as Notepad.    Or you can create a variable file by saving variables in an application to a
file (using the SaveVar icon).
When you use a LoadVar icon and specify the name of a variable file, you load all the
variables in the file into memory at once.    This is more convenient than using a Variable
icon to define and/or assign a value to one variable at a time.
Suggested Uses:
· Load a variable file that contains several single value and indexed variables
· Load a variable file at the beginning of the main application to reset the values of certain variables.

(Unless a variable is initialized in the course of the application it may contain an unwanted value the
next time the application is run.)

Content Editor Fields:
Filename
Control
Variable Name
Related Topic:
Using Variables

Filename
Specify the name of the variable file that contains one or more variables you want to load
into memory.
Acceptable values are: a variable filename or a variable.
Drop-down List Box Items:

Directory
Variable Selector

Control
Indicate whether you want to load all or one of the variables in a variable file.
Acceptable values are: all, single, or a variable.
Drop-down List Box Items:

all - Loads all variables in the specified file .
single - Loads the variables specified in the Variable Name text box. If an array name is specified, the
entire array is loaded into memory.
Variable Selector

Variable Name
If you want to load one variable or an array from a variable file (you entered "single" in the
Control text box), specify the name of the variable.
Acceptable values are: a variable or an array name.
Drop-down List Box Items:

Variable Selector

Loop Icon

The Loop icon is a composite that causes the application to repeatedly execute a particular
group of icons.    A loop can use the same logic over and over again so you don't have to
build the same logic into your structure repeatedly.
Note: The composite Loop icon is different from the composite LoopIndex icon.    Use a
composite Loop icon in your structure where you want the user to control how many times a
group of icons is executed.
The Loop icon is made up of three icons: the Loop icon, the LoopStart icon, and the LoopEnd
icon.    These icons provide the framework for the repetitive part of your structure.
Include the icons that you want to execute repeatedly, between the LoopStart and the
LoopEnd icons.    Only the lead icon in this composite, named Loop, has a Content Editor
which allows you to change the name of the composite.
Related Topics:
Exiting from Loop Composite
Loop Composite versus LoopIndex Composite

Exiting from a Loop Composite
You must include an Exit icon with the icons you build between the LoopStart and LoopEnd
icons.    Otherwise, the icons in the loop will repeat infinitely.    The Exit icon must specify
either "loop", a positive integer that indicates a number of nested loops, or "application" in
the Exit From text box.
If you specify "loop" in the Exit From text box of the Exit icon, the loop is exited and
execution flows to the icon below the lead icon in the Loop composite. If you specify a
number, that number of nested loops are exited, and execution flows to the icon below the
lead icon in the outer Loop composite.    For example, if you specify "2" in the Exit From text
box of the Exit icon, the loop and the loop in which it is nested are exited. If you specify
"application" in the Exit From text box of the Exit icon, this causes an exit from the loop and
the main application.
Related Topics:
Loop Icon
Exit Icon

Loop Composite versus LoopIndex Composite
The composite Loop icon is different from the composite LoopIndex icon.
The composite Loop icon repeats a variable number of times and is used when you want the
user to control how long the loop should continue.    When users want to exit the loop (are
finished with the activity), they choose the path that contains the exit from the loop.
The composite LoopIndex icon repeats a fixed number of times and is used when you want
to control the number of times a group of icons repeats.
Related Topics:
Loop Icon
LoopIndex Icon

LoopIndex Icon

The LoopIndex icon is a composite that causes the application to repeatedly execute a
particular group of icons.    A loop can use the same portion of the structure over and over
again, so you don't have to build it into your application repeatedly.
Note: The composite LoopIndex icon is different from the composite Loop icon.    Use a
composite LoopIndex icon in your structure when you want to control the number of times a
group of icons repeats.
The LoopIndex icon is made up of three icons: the LoopIndex icon, the LoopStart icon, and
the LoopEnd icon.    These icons provide the framework for the part of your structure you
want to repeat.
To use the LoopIndex icon, you include the icons that you want to execute repeatedly,
between the LoopStart and the LoopEnd icons.    In the LoopStart icon Content Editor you
indicate how many times you want the loop to execute.
The loop is exited when it has completed the number of specified repetitions, or when it
reaches an Exit icon.    The Exit icon is not required, however, it is used to give users an
opportunity to exit from the loop if they want.
Only the LoopStart icon requires that you enter values in the Content Editor.

LoopStart Icon
The LoopStart icon is the only icon in the LoopIndex composite that has a Content Editor that
requires values.
LoopStart Icon Content Editor Text Boxes:
Index Variable
Number of Loops
Initialization

Index Variable
Specify the variable that will keep track of the number of times the loop has repeated.    This
variable is called a "counter".    You may want to know how many times the loop has
repeated.    You may store this information in a variable such as @COUNT, and use @COUNT
elsewhere in the application.
Drop-down List Box Items:

Variable Selector

Number of Loops
Specify the number of times you want the loop to repeat.
Acceptable values are: a positive integer (greater than 0) or a variable.
Drop-down List Box Items:

Variable Selector

Initialization
Specify whether you want the variable (in the Index Variable text box) to be initialized (set to
1) the first time the loop is executed.
Acceptable values are: no, yes, or a variable.
Drop-down List Box Items:

no - the variable in the Index Variable text box is not initialized and starts at its current value. If a
variable was not initialized at some other point in the application, it could have an ever-increasing
value each time the application is run. Eventually, if the variable is equal to or greater than the value
in the Number of Loops value, the loop will not execute.
yes - The variable in the Index Variable text box is initialized to 1.
Variable Selector

MCI Icon
The MCI icon provides direct access to MCI (Media Control Interface) which is part of the
Multimedia Extensions software.
Use MCI to interact with the following multimedia elements: CD-Audio, digital audio, MIDI,
and animation.    Each MCI icon executes an MCI command and gets a return code (if any) as
well as an error code and matching error message.
Important: For the quickest and easiest way to take advantage of the multimedia
capabilities of MCI, use the SmartObject Editors Audio and Movie objects instead of the MCI
icon.
Content Editor Text Boxes:
MCI Command
MCI Result
MCI Error Number
MCI Erroor Message
Related Topics:
CD-Audio Composite
MIDI Composite
WaveAudio Composite

MCI Command
Specify an MCI command.
The MCI command can optionally include one or more IconAuthor variables.    A variable can
be used to represent the entire command string or it can be used to represent part of a
command string.    For detailed information on the MCI commands and syntax, open the help
file called MCISTRWH.HLP.
Also, you can issue the IconAuthor command "QUERY ICONAUTHOR WINDOW".    This
command returns the IconAuthor window handle needed by the animation player.
Drop-down List Box Items:

MCI Command Selector
Variable Selector

MCI Result
Specify a variable in which you want to store information returned from MCI.      For example,
your MCI command string can include a status command to check whether a particular
device is ready to be used.    The returned values are listed in the MCI reference.    The
application can take a particular branch based on the value that is returned.
Drop-down List Box Items:

Variable Selector

MCI Error Number
Specify a variable in which you want to store an error number returned from MCI.    The error
number can be used to see if the end user system is functioning as expected.    For example,
it can indicate whether the end user has inserted a CD-Audio disc.
For convenience, the default variable @error_number automatically appears in this text box. 
Use this variable, or specify a different one.
Drop-down List Box Items:

Variable Selector

MCI Error Message
Specify a variable in which you want to store an error message returned from MCI.    This text
box works similarly to the MCI Error Number text box.
For convenience, the default variable @error_message automatically appears in this text
box.    Use this variable, or optionally, specify a different one.
Drop-down List Box Items:

Variable Selector

MCI Command Selector
The MCI Command Selector helps you construct a command string to include in an MCI icon. The selector makes
the building of command strings easier because it automatically provides the basic syntax for a command you decide
to use. The first steps in using the MCI Command Selector require you to choose the desired device and command.
The selector then constructs as complete a string as possible given your selections. It identifies, in square brackets
("[]"), any parameters within the string that need further definition.
Prerequisites to Using the MCI Command Selector
Because you need to make certain basic decisions, such as which device and command to choose, use of the MCI
Command Selector requires that you have basic familiarity with the rules for constructing MCI commands.
Using the MCI Command Selector
To construct a command string
1. From the Device drop-down list, select the device you want to use.

The devices that appear in the list are those that are registered with MCI.
Note: If your system has an MCI device that does not strictly adhere to MCI registration conventions,
the device may not be available via the MCI Command Selector. In this situation, you will not be able
to use the selector for the device, but you will still be able to type a command string directly into the
MCI icon Content Editor.

2. From the Command drop-down list, select the command you want to use.
The list displays the most commonly used commands associated with the selected device. If a
command is not available via the selector, you can still use it by typing a command string directly into
the MCI icon Content Editor.
As soon as you choose a command, two changes occur in the selector. First, the items in the
Command List change to display the most common variations for the selected command. Second, the
MCI Command text box at the top of the dialog box displays the correct syntax given the selected
device, the selected command, and the topmost variation of the chosen command.

3. As necessary, use the Command List to choose a different variation of the selected command.
The MCI Command text box changes again to reflect a different selection from the Command List.
When you finish selecting information from the three list boxes, the MCI Command text box displays
as complete a string as possible given your selections. Any parameters that appear within square
brackets ("[]") need further definition.

4. Complete the command string in the MCI Command text box by providing values for all the bracketed
parameters.
[path/file] - To specify a path and file for a command string, click on the Browse... button. A Browser
dialog box appears. Select the desired file, click OK and the chosen path and filename description
automatically replaces the [path/file] expression in the command string.
[device_name] - To specify a device name for a command string, double-click on [device_name] in the
MCI Command box (to highlight the expression) and type the name of the device. Note that for an
open command, the selector automatically includes the device name for you.
[alias_name] - To specify an alias for a device name, double-click on [alias_name] in the MCI
Command box (to highlight the expression) and type the alias. (Use this alias in subsequent command
strings that refer to the same device.)
[position] - To specify a "from" or "to" position, double-click on [position] in the MCI Command box (to
highlight the expression) and type the position.
When you have replaced all the bracketed parameters with the required values.

5. Click on OK.
The selector closes and the command string is automatically returned to the MCI icon Content Editor.

Important: The MCI Command Selector does not do a validation check on a string before

returning it to the Content Editor. This means that if your string contains one or more errors,
they will not be detected. IconAuthor will only detect an error when you attempt to execute
the icon.

Menu Icon
The Menu icon is a composite that makes it easier for you to create a part of an application
that presents the user with a menu screen.    The menu provides choices of several activities
or options from the menu screen.    The Menu composite is a loop structure.    When the user
makes a choice from the menu, a branch is taken, an action occurs, and then the loop
begins again (the menu is redisplayed).    This process continues until the user exits the loop
(until an Exit icon is reached).
Important: If your application uses live objects (available through the SmartObject Editor)
do not use the Menu composite. Use the ObjMenu composite instead.
To use the Menu composite, you must add information to at least some of the Content
Editors.    In some cases you may not need to add information to a Content Editor, but you
still need to open the Content Editor and choose OK to accept the current text box values.
The Menu composite is a framework.    You need to add other icons to the structure to make
it perform as required.    For example, by default, there are four If icons, labeled 1, 2, 3, and
4 in the Menu composite.    Your application may need a smaller or larger number of
branches.    You can cut, copy, paste, and edit the content of If icons to create the required
number of branches.
Also, you must add the icons that cause a particular event to occur when a branch is taken
to this framework.    Under each If icon, you add a series of icons to fulfill the user's selection.
For example, if the first choice is selected from a menu, labeled "Tutorial", the icons in the
first branch must present a tutorial.
Suggested Uses:
· Create a menu or nested menu within your application
· Present data with user selection buttons for advancing or displaying previous information (page-

turning)

The following icons make up the Menu composite:
Menu Icon - Marks the beginning of the Menu composite. The Content Editor contains only a
Composite Name text box to let you customize the name of the composite.
LoopStart Icon - Marks the beginning of the loop within the Menu composite. Does not have a
Content Editor.
Display Icon - Displays a graphic file or SmartObject file that is the menu screen.
Input Menu - Lets you make areas on the screen selectable. These areas correspond to the choices
in the previously displayed graphic or SmartObject file. You can specify how the user responds to
the screen (clicking, pressing RETURN, etc.). The value associated with the selection made is stored
in the system variable @_SELECTION. For example, if the user clicks on the first area you made
input selectable, @_SELECTION = 1, if the user clicks on the second area @_SELECTION = 2, and
so on.
Choices Icon - Marks the beginning of the Choices composite within the Menu composite. The
Choices composite is similar to the composite Branches Icon because it causes the application to take
a particular branch or path of execution depending upon the selection made by the user. The
Choices composite is only different from the Branches composite because the Content Editor of each
If icon (labeled 1 through 4) at the top of each branch already contains values.
1,2,3, and 4 Icons - These are the four If icons built into the Menu composite. Each of these icons
marks the beginning of a different branch. After the user chooses a selectable area on the screen,
the 1 icon compares the value of @_SELECTION to the number 1. If @_SELECTION = 1, the
condition is true, and execution flows downward to any icons built into the first path. If
@_SELECTION ¹ 1, execution flows to the right to the 2 icon. Each of the numbered If icons makes
a similar comparison until one of the conditions is true.
If the 1 icon, 2 icon, or 3 icon test true, the corresponding branch is executed. After the branch
completes, the loop begins again and the menu is redisplayed. If the 4 icon is the one that tests true,

the corresponding branch (the Exit icon) is executed.
Exit Icon - This is the only icon in the fourth branch of the Menu composite. It allows the user to exit
from the menu composite. (Without an explicit exit, the Menu composite loop, like the composite
Loop icon, would execute infinitely.) "Loop" is specified in the Exit From text box. When this icon is
executed, execution flows out of the loop to the icon below the lead icon in the Menu composite
(labeled Menu).
LoopEnd Icon - This marks the end of the loop within the Menu composite. This icon is executed if
one of the first three branches (icon 1, icon 2, or icon 3) is executed. After the LoopEnd icon,
execution returns to the beginning of the loop within the Menu composite.

MIDI Composite
The MIDI icon is a composite that allows you to play Musical Instrument Digital Interface
(MIDI) files if you are using the Multimedia Extensions software and an audio card such as
the SoundBlaster (Creative Labs) or the Pro Audio Spectrum (Media Vision).
Important: For the quickest and easiest way to take advantage of the multimedia
capabilities of MCI, use the SmartObject Editors Audio and Movie objects instead of the MCI
icon.
Three MCI icons form the backbone of the MIDI composite.    Although you must be familiar
with the MCI syntax in order to fully take advantage of the MCI feature, the MIDI composite
already contains some values (that require minimal editing) so that you can quickly start
playing MIDI files as part of your IconAuthor applications.    Once you become familiar with
the MCI syntax you can customize and vary the commands.    For information on the MCI
command syntax open the help file called MCISTRWH.HLP.
The composite contains the a mini-structure of icons:
1. MCI icon: Contains the command open c:\iauthor\audio\filename.mid type sequencer alias midi,

where: open initializes the device and c:\iauthor\audio\filename.mid represents the path and
filename of the MIDI file to be played. You must change this information so that it indicates the
specific path and filename you are playing. The type sequencer parameter is the type of device and
alias midi specifies the name "midi" as an alternate name for the sequencer device type.

2. MCI icon: contains the command play midi which starts the MIDI file playing.
3. Input icon: Causes execution flow to stop at this point and wait for the user to provide input. This icon

specifies that the entire screen is input selectable. That means that the user can click anywhere or
press any key to cause execution flow to continue.

4. MCI icon: When the user clicks, execution flows to the third MCI icon which contains the command
close midi to suspend playback and relinquish access to the device.

Hint: If you want to use this composite to play a MIDI file while some other activity is
occurring, replace the Input icon with one or more alternative icons.    For example, if you use
a Display icon (in place of the Input icon) to run an animation script, the audio will play, the
animation will run, and when the animation completes, the audio file will be closed.
Content Editor Text Box:
The lead icon in the MIDI composite is labeled "MIDI" and contains only one text box
"Composite Name".    Enter a different name in this text box to customize the name of the
composite.
Related Topics:
MCI Icon
Input Icon

Module Icon

The Module icon is an empty composite icon that you can use to help design and organize
your application.    Each Module icon used in an application can label a separate major part
of the structure.    This approach, called top down authoring, uses Module icons to build an
outline of the planned structure.    Once the Modules have been built into an outline of the
application, structures that make up each module are created.
The Module icon is the lead icon in a composite that you create.    It has only one field
labeled Composite Name.    This field allows you to customize the name of the module.
As you build an outline out of Module icons, you can rename them to represent the different
parts of the application.    For example, if part of your application will be a test, you can
rename that module "Test".    If another part of your application will be a demonstration, you
can rename that module "Demo".
When the outline is complete, you build structures to the right of each Module icon, just like
you do in other composites.    At first, a Module icon appears yellow.    As soon as you build
icons to the right of it, it appears green.    (These color specifications assume you are using
the IconAuthor default color scheme.)
Suggested Uses:
· Use Module icons to do top down authoring.
· Use Module icons and hide the icons in each Module composite so that at a glance, others will

understand the overall logic behind your application's structure.
· Hide the icons in any module that is finished so that at a glance you can tell if a particular module still

needs work.
· Use the Find command from the Edit menu to search for the name of a module to jump to an area of

the structure more quickly.

MsgBox Icon

The MsgBox icon lets you display a message box as part of your IconAuthor application.    You
define key information such as the message content, the kinds of buttons that appear, and a
variable in which to store the user's selection.    For example, your message box can ask "Do
you want to continue?" and present the user with two buttons labeled "Yes" and "No."    If the
user clicks on the Yes button, the string "Yes" is placed in the variable specified in the
Variable Name text box.
Content Editor Fields:
Message
Title
Buttons
Icon
Variable Name

Message
Specify the message you want to display.    If you type a particularly long message, the
words will wrap onto the next line and the message box will appear taller. Acceptable values
are a string or a variable.
Drop-down List Box Items:

Variable Selector

Title
Specify the text you want to appear in the title bar of the message box. Acceptable values
are a string or a variable.
Drop-down List Box Items:

Variable Selector

Buttons
Specify a keyword that controls which buttons appear in the message box. Acceptable
values are keyword or a variable.
Drop-down List Box Items:

Ok
OkCancel
YesNo
YesNoCancel
RetryCancel
AbortRetryCancel
Variable Selector

Icon
Specify the symbol you want to appear in the message box.    As an example, if you specify
Stop a Stop sign is displayed within the box along with the message.    By Windows
convention, each symbol is intended to provide immediate visual information to the user
about the nature of the message.    For example, the Stop Sign indicates an important
message such as a warning, whereas the Information symbol indicates that the message is
informational.
Acceptable values are keyword or a variable.
Drop-down List Box Items:

exclamation - Generates a circle with an exclamation point.
information - Generates a circle with an "I."
question - Generates a circle with an question mark.
stop - Generates a circle with a stop sign.
Variable Selector

Variable Name
Specify the name of the variable in which you want to store the user's response to the
message box.    When the user clicks on a button, the name of that button is assigned to the
variable.
Drop-down List Box Items:

Variable Selector

Note Icon

The Note icon is for the author only. Use this icon to document the development of your
application and to keep track of comments and ideas while you are authoring. You can have
as many Note icons in your application as you want because they do not have any effect on
how the application will run.
Note
Type your note in this field.
Acceptable Values:
Any keyboard characters are valid.
Drop-down List Box Item:
Note Editor - Accesses the Note Editor which lets you enter as many lines of text as you
need. Click in the text box to type your note. Click OK when you are finished.

ObjDelete Icon

The ObjDelete icon deletes live objects when your application no longer has a need for them.
This icon cannot delete static objects, the window object, or the system object.    Deleting an
object at runtime does not affect the original object in the SmartObject file.    However, once
the object has been deleted from memory, you need to re-display the file in order to create
the object again.
Suggested Uses:
· Create and display a SmartObject page that has a live object. When your application no longer needs

the object, use an ObjDelete icon to delete the object.

· Create a SmartObject page that has several objects. Assign one family name to the objects that are
required by your application at all times. Assign a different family name to those objects that are not
required for the long term. Display the page. When your application no longer needs the objects
whose purpose is short term, use an ObjDelete icon to delete the entire family of objects.

Content Editor Field:
Scope
Name

Scope
Specify the scope of objects that you want to delete.    Any objects that fall within the
specified scope are deleted permanently except those that have their DeleteProtected
property set to True.
Acceptable values are: Object, Class, Family, Page, All, or a variable.
Drop-down List Box Items:

Object - Indicates that you want to delete a single object.
Class - Indicates that you want to delete an entire class of objects, for example, all buttons or all OLE
objects.
Family - Indicates that you want to a family of objects, for example, all objects that have their
FamilyName property set to Color Buttons.
Page - Indicates that you want to delete all the live objects on a particular page.
All - Indicates that you want to delete all live objects.
Variable Selector

Name
Specify the name of the object, class, or family you want to delete.    Leave this text box
blank if you specified a scope of All.    If you are deleting a class of objects, use the drop-
down list box to access the Object Class Selector.   
Acceptable values are an object name, a class, a family name, a page name, or a variable.
Drop-down List Box Items:

Object Class Selector - Accesses the Object Class Selector which lets you select the name of a class
for this text box. Click on the class you want to delete and choose OK. The class is automatically
returned to the Name text box.
Object Name Selector

Variable Selector

ObjEvent Icon

Use the ObjEvent icon to control how and when your application waits for events.    An event
is an action that is recognized by your application.    Some events are generated by a user
(such as a mouse click) and some are generated by an object (such as a Timer count down
that reaches 0).    If an ObjEvent icon detects that an event has occurred, it stores
information about the event in system variables so that subsequent icons in your application
can evaluate what has happened.
There are three basic ways to use the ObjEvent icon:

In many situations, you set up the ObjEvent icon so that it waits indefinitely for an event to occur. For
example, a Display icon displays a SmartObject page and then an ObjEvent icon is defined to wait for
an unlimited amount of time. This gives the user as much time as is needed to respond to the display.
This is particularly useful if you consider that without the ObjEvent icon, the page would be displayed
and execution would proceed immediately. The user would have little or no opportunity to respond to
the display.
You can also use the ObjEvent icon to give the user a specific amount of time to respond to the
display. For example, define the icon to give a user 30 seconds to answer a multiple choice question
and then choose OK. If the user doesn't respond in time, the ObjEvent icon times out and execution
flows down anyway.
In a more complex application, you might define the ObjEvent icon so that it checks to see if an event
has occurred. If an event has occurred, it processes the event and execution flows downward. If no
event has occurred, execution simply flows downward.

Content Editor Text Boxes:
command
timeout

Events
Many actions can occur with live objects, but only those that are recognized by your
application are events.    For example, a user has the ability to click on an OK button with the
left or right mouse button, but by default, only the left mouse click is recognized as an
event.
Every event has a name.    For example, one event is called ClickLeft for when a user clicks
the left mouse button.    When an event occurs, the name of the event is stored in the
system variable @_Object_Event.    Also, the name of the object involved in the event is
stored in the variable @_Object_Name.    As an example, if a user left mouse clicks on a
button called OkButton, the string ClickLeft is stored in @_Object_Event and the string
OkButton is stored in @_Object_Name. If the objects ObjectData property has previously
been set, it is stored in @_Object_Data.
Once an event occurs, execution can flow beyond the ObjEvent icon and other icons can
evaluate the event (via the values stored in the system variables) and branch accordingly.
Most often, events occur when a user interacts with a live object.    For example, an event
can occur when a user left mouse clicks on a button or when a user double clicks on an OLE
object.    In other cases, an event is triggered by a live object all on its own.    For example,
when a Timer object counts down from 30 to 0 seconds, an event occurs when the count
reaches 0.
User-Generated Events
In most situations you determine which actions generate events by setting certain
properties for each live object.    Most objects have properties that have the prefix "NotifyOn"
that let you specify whether IconAuthor should be notified if a particular action occurs.    For
example, a button has two properties called NotifyOnClickLeft and NotifyOnClickRight.    By
default, these properties are set to True and False, respectively.    This means that an event
occurs when a user left clicks on a button but an event does not occur when a user right
clicks on a button.    The text that follows "NotifyOn" in the property name is always the
string that is stored in @_Object_Event when an event occurs.   
Object-Generated Events
In some situations, an object triggers an event without the help of the user.    The best
example of this is the Timer object.    A Timer object can be set to count up or down, to go off
periodically, or to go off at a particular time of day.    Whenever a Timer goes off an event
occurs.    The event always causes the string "Alarm" to be stored in the system variable
@_Object_Event and the name of the Timer (its ObjectName) is stored in @_Object_Name.
Related Topic:
Event Queuing

Event Queuing
When an ObjEvent icon executes it looks at a single event and places the appropriate values
in the system variables.    Because several events can occur before the next ObjEvent icon
executes, IconAuthor needs to keep track of these events.    Behind the scenes, IconAuthor
makes sure that no events are lost by storing them, in the order in which they occur, in the
event queue.The event queue is essential to those situations where you define an ObjEvent
icon to check for an event.      Remember that in this situation, the icon either finds an event,
handles it, and proceeds or it doesn't find an event and proceeds anyway.    For example, you
can put the ObjEvent icon in a loop where a series of icons executes repeatedly and flow
continually returns to the ObjEvent icon to check for an event.    A user or an object (such as
a Timer) may generate an event; regardless of the source, each time an event occurs it is
placed in the queue.    Every time the ObjEvent icon executes it takes the oldest event off the
queue, stores the appropriate information in the system variables and continues execution.

Command
Specify whether the ObjEvent icon should wait for an event to occur by using either a Wait or
No Wait command.    Acceptable values are: Wait, No Wait, or a variable.
Drop-down List Box Items:

Wait - Indicates that you want the icon to wait (either indefinitely or for a particular period of time) for an
event to occur before execution flows to subsequent icons.
No Wait - Indicates that you want the icon to check to see whether it detects an event. If it finds that
an event has occurred, it stores information about that event in the system variables and execution
flows downward. If it does not find an event, execution simply flows downward.
Variable Selector

Timeout
If you specified Wait as the Command, use this text box to indicate how long the icon should
wait for an event to occur. Acceptable values are: 0, a positive integer, or a variable.
Specifying 0 means that you want the ObjEvent icon to wait indefinitely for an event.   
Specifying an integer indicates the number of seconds you want the icon to wait for an
event.
Drop-down List Box Item:

Variable Selector

ObjGet Icon

The ObjGet icon retrieves the current setting of an object's property and stores that value in
a variable.    The object can be a live object created and displayed via a SmartObject file or it
can be the window object.
Retrieving the Property of an Object
In most situations, the ObjGet icon is used to retrieve the property setting of a specific
object.    For example, if a user types text into a text block, the input becomes the setting for
the Text property of that object.    Use an ObjGet icon to retrieve that property setting and
store it in a variable.    Your structure can evaluate the value stored in the variable and
branch accordingly.
Retrieving the Property of a Family of Objects
There is one situation where you use the ObjGet icon to retrieve a property shared by an
entire family of objects.    This property is called CheckedRadioButton.    When the family is
made up of a group of radio buttons you use an ObjGet icon to retrieve the
CheckedRadioButton of the family to determine which option the user selected.
Suggested Uses:
· Give the user the opportunity to type text in a text block. The text that the user types becomes the

current setting of the Text property for that text block. Use an ObjGet icon to retrieve the Text property
setting and store it in a variable. You can now display, manipulate, and/or evaluate the text input that
is stored in the variable.

· Give the user the opportunity to select one of several items (for example, colors) from a list box.
When a user clicks on an item (such as the color blue) the SelectedItemData property of the list box is
set to that selection (blue). Use an ObjGet icon to retrieve that property setting (blue) and store it in a
variable such as @color. Your structure can evaluate the value stored in @color and branch
accordingly.

Content Editor Fields:
Scope
Name
Property
Variable Name

Scope
Specify whether you want to retrieve a property of one object or a family of objects.   
Acceptable values are: Object, Family, or a variable.
Drop-down List Box Items:

Object - Indicates that you want to get the property of a single object.
Family - Indicates that you want to get the property (CheckedRadioButton) for a family of objects.
Variable Selector

Name
Specify the name of the object or family (or a variable).
Drop-down List Box Items:

Object Name Selector
Variable Selector

Property
Specify the property you want to retrieve.    Choose Object Property Selector from the drop-
down list box to help you find the property you want.    Click on the drop-down list box of the
Properties box to display the list of object classes.    Choose the appropriate class.    The list
box below shows the properties available for the chosen class.    Choose a property and
choose OK to return the property to the Content Editor.
Drop-down List Box Items:

Object Property Selector - Accesses the Object Property Selector which lets you select a property for
this text box. In the drop-down list box at the top of the dialog box, choose the appropriate object
class. For example, if you are getting a list box property, choose List Box. Once you choose a class
the selection of properties in the list box below changes to reflect your selection. Click on the
property you want to get and choose OK. The property is automatically returned to the Content Editor
text box.
Variable Selector

Variable Name
Specify the variable in which you want to store the current property setting.
Drop-down List Box Items:

Variable Selector

ObjMenu Icon

The ObjMenu icon is a composite that makes it easier for you to use live objects to create a
part of an application that presents the user with a menu screen. The menu displays live
objects (via a SmartObject file) that represent several activities or options.    Once the
objects are displayed a loop structure executes and an ObjEvent icon awaits the user's
interaction. When the user makes a choice from the menu, a branch is taken, an action
occurs, and then the loop begins again. This process continues until the user exits the loop
(until an Exit icon is reached).
The ObjMenu composite is a framework.    In most cases you would need to edit the content
of the icons, and minimally, you would need to add other icons to the structure to make it
perform usefully.    As an example, by default there are four If icons, labeled 1, 2, 3, and Exit
in the composite.    Your application may need a smaller or larger number of branches.    You
can cut, copy, paste, and edit the content of If icons to create the required number of
branches.
Also, you must add the icons that cause a particular action to occur when a branch is taken.
Under each If icon, you add a series of icons to fulfill the user's selection.    For example, if
the first choice is labeled "Tutorial" and is selected from a menu, the icons in the first branch
must present a tutorial.
The following list describes the function of each icon in the ObjMenu composite:
1. ObjMenu icon: Marks the beginning of the ObjMenu composite. The Content Editor contains only a

Composite Name text box to let you customize the name of the composite.
2. Display icon: Displays the SmartObject page that is the menu. By default, the composite assumes the

following:
+ The display consists of four live objects (one for each If icon in the Branches composite).
+ Each object on the page has an ObjectName. Three objects have the names "1," " 2," and "3,"

respectively and the fourth object is called "Exit."
+ Each object also has a Notify- property set to True so that when the user interacts with the object,

IconAuthor will be notified. For example, if one of the objects is a Push Button and its
NotifyOnClickLeft property is True, IconAuthor will be notified when the user clicks left on the object.

3. LoopStart icon: Marks the beginning of the loop within the ObjMenu composite. Does not have a
Content Editor.

4. ObjEvent icon: Causes the application to wait for the user to interact with one of the live objects. As
soon as a user interacts, the name of the selected object is stored in @_Object_Name and the name
of the event that occurs is stored in @_Object_Event. For example, if the user clicks left on a button
called Exit, @_Object_Name = Exit and @_Object_Event = ClickLeft.

5. Branches Icon: Marks the beginning of the Branches composite within the ObjMenu composite. The
Branches composite causes the application to take a particular branch or path of execution depending
upon the object the user activated.

6. 1, 2 3, and Exit icons: The four If icons built into the ObjMenu composite. Each of these icons
marks the beginning of a different branch. After the user interacts with a live object, the 1 icon
compares the value of @_Object_Name to the number 1. If @_Object_Name = 1, the condition is
true, and execution flows downward to any icons built into the first path. If @_Object_Name ¹ 1,
execution flows to the right to the 2 icon. Each of the numbered If icons makes a similar comparison
until one of the conditions is true.
If the 1 icon, 2 icon, or 3 icon test true, the corresponding branch is executed. After the branch

completes, the loop begins again. The live objects that were displayed via the Display icon (prior to the
loop) are still displayed. They continue to be displayed until they are deleted or hidden. If the Exit icon
tests true, the corresponding branch (the Exit icon) is executed.

7. Exit Icon: This is the only icon in the fourth branch. It allows the user to exit from the loop composite.
(Without an explicit exit, this ObjMenu composite loop, like the composite Loop icon, would execute
infinitely.) "Loop" is specified in the Exit From text box. When this icon is executed, execution flows
out of the loop to the ObjDelete icon.

8. LoopEnd icon: Marks the end of the loop. This icon is executed if one of the first three branches
(icon 1, icon 2, or icon 3) is executed. After the LoopEnd icon, execution returns to the beginning of
the loop within the Menu composite.

9. ObjDelete Icon: This icon is executed only when the user interacts with the object called Exit. It deletes
all the live objects from memory.

ObjQueue Icon

Use the ObjQueue icon to control the event queue.    An event is an action, involving live
objects, that is recognized by your application.    An example of an event is a mouse click on
a button or a Timer count down that reaches 0.    IconAuthor keeps track of events by storing
them, in the order in which they occur, in the event queue. In some situations, it is important
that every event is stored in the queue.    For example, an ObjEvent icon in a loop can be
defined to look for events generated by a user and/or by a Timer.    In this situation, if the
user clicks and the Timer goes off, you want both events to go in the queue so they can be
handled, each in their turn, by the ObjEvent icon.
There are other cases where you would use the ObjQueue icon to remove the events
currently in the event queue.    In effect, you are clearing or flushing the queue so that it
starts over empty.    As an example, when your application begins, it may be important to
store all events in the event queue.    At some point, a sub-application is called by the main
application.    When the sub-application runs, it displays another SmartObject page and then
an ObjEvent icon waits for an event.    You don't want any "left over" events that are still in
the queue to be processed in conjunction with the new objects.    Therefore, the first icon in
the sub-application is an ObjQueue icon with an Empty command.
Content Editor Fields:
Scope

Scope
Specify the action you want to affect the event queue.    Acceptable values are Empty or a
variable.
Drop-down List Box Items:

Empty - Indicates that you want to clear all events from the event queue.
Variable Selector

ObjSet Icon

Use the ObjSet icon to change the property of an object, a class of objects, a family of
objects, or All objects.    An object is a live object created and displayed via a SmartObject
file or the window object.
Suggested Uses:
· Your application can provide the user with a button labeled "Start" for starting a video. As soon as the

video begins playing, use an ObjSet icon to change the Text property of that same button to "Stop."
Now let the user click on the Stop button to stop the video at any time.

· Your application can contain a graphic object that initially shows a picture of one view of an
automobile. When the user clicks on a button to indicate that they want to change to a different view,
an ObjSet icon can change the Filename value of the graphic object so that a different picture is
displayed.

· If your application frequently uses an OK button and Cancel button, always together, make them one
family called OkCancel. At runtime when your application is not using these buttons, use an ObjSet
icon to make the Visible property of every object in the OkCancel family not visible.

Content Editor Fields:
Scope
Name
Property
Value

Scope
Specify whether you want to set the property of one object, a family or class of objects, or All
objects.    Acceptable values are: Object, Family, Class, All, or a variable.
Drop-down List Box Items:

Object - Indicates that you want to set a property for a single object.
Family - Indicates that you want to set a property for a family of objects, for example, all objects that
have their FamilyName property set to ColorButtons.
Class - Indicates that you want to set a property for an entire class of objects, for example, all buttons
or all OLE objects.
Page - Indicates that you want to set a property for an entire page of objects.
All - Indicates that you want to set a property for all live objects.
Variable Selector

Name
Specify the name of the object, class, or family (or a variable) for which you want to set a
property.
Drop-down List Box Items:

Object Name Selector
Object Class Selector - Accesses the Object Class Selector which lets you select the name of a class
for this text box. Click on the class for which you want to set a property and choose OK. The class is
automatically returned to the Name text box.
Variable Selector

Property
Specify the property you want to set (or a variable).    Choose Object Property Selector from
the drop-down list box to help you find the property you want to use.
Drop-down List Box Items:

Object Property Selector - Accesses the Object Property Selector which lets you select a property for
this text box. In the drop-down list box at the top of the dialog box, choose the appropriate object
class. For example, if you are setting a list box property, choose List Box. Once you choose a class
the selection of properties in the list box below changes to reflect your selection. Click on the
property you want to set and choose OK. The property is automatically returned to the Content Editor
text box.
Variable Selector

Value
Specify the value to which you want to set the specified property.    The drop-down list box
provides frequently used values, such as True and False.    It also lets you access a number of
editors and dialog boxes to select a value such as a color, font, or screen location.
Drop-down List Box Items:

True - Use this value to set a property such as Enable or Visible to true.
False - Sets a property such as Enable or Visible to false.
Area Editor - Accesses the Area Editor which lets you visually select an area on the screen. When
you close the Area Editor, values that define the selected area are returned to the Content Editor.
Location Editor - Accesses the Location Editor which lets you visually select a location (a point) on the
screen. When you close the Location Editor, the coordinates of the selected point are returned to the
Content Editor.
Directory - Accesses a Directory file selection dialog box. Use this dialog box to select a filename.
When you choose OK the dialog box is closed and the filename is automatically returned to the
Content Editor.
Color Editor - Accesses the Colors dialog box where you can select a color or create a custom one.
This dialog box is used in several capacities by IconAuthor and its Editors.
Solid Color Editor - Accesses the Solid Color dialog box where you can select a solid color. When you
choose OK, the color is automatically returned to the Content Editor.
Font Editor - Accesses the Font dialog box which lets you choose a font, size, and color for text. This
dialog box is used in several capacities by IconAuthor and its Editors.
Variable Selector

Parse Icon

The Parse icon parses (breaks down) a string into its individual words or characters, and
places the words or characters into an array.
Suggested Uses:
· Parse a user's response to a question to determine if it includes the word that is the correct answer
· Parse different pieces of information previously stored in an indexed variable where each piece of

information is separated by a specific delimiter.
· Parse a string, change some of the characters or words in each parsed element, and use a Variable

icon to concatenate the changed characters or words back into a string.

Content Editor Fields:
String To Parse
Word Count Variable
Word Delimiter
Array Name

String To Parse
Specify the variable that contains the string you want to parse.    (You can also specify a fixed
value for this field, such as "Hello George", although most often you will want to parse a
value stored in a variable.)
Drop-down List Box Items:

Variable Selector

Word Count Variable
Specify the variable in which you want to store the number of elements the parsed string is
broken down into.    For example, if you parse "Hello George" into separate words, and
specify @WORD_COUNT in the Word Count variable text box, @WORD_COUNT will contain
the value 2 after the parse icon is executed.    As another example, if you parse "Hello
George" into separate characters, and specify @CHAR_COUNT in the Word Count variable
text box, @CHAR_COUNT will contain the value 12 (for the 11 letters and 1 space in "Hello
George").
Drop-down List Box Items:

Variable Selector

Word Delimiter
Specify how you want to break down the string being parsed.    If you want to parse the
string into words, specify the characters IconAuthor should interpret as delimiters.    For
example, if the string being parsed is a sentence, include basic punctuation characters in
this text box (,.?,!;:).     
In some situations, the string being parsed is several pieces of information that are
deliberately stored in a variable using a specific delimiter, such as a tilde (~).    In this case,
you can specify the known delimiter in the Word Delimiter text box.
If you want to parse the string into individual characters (instead of words), specify
"character" in the Word Delimiter text box.
Acceptable values are: a punctuation mark (for example .?,!:;~), a space, any other
displayable character or characters, or a variable.
Note: If you want to use a space as a delimiter, simply press the space bar to enter a blank
space in this field.
Drop-down List Box Items:

character - Causes the string to be parsed into individual characters.
Variable Selector

Array Name
Specify the name of the array (indexed variable) that will store the resultant elements when
the string is parsed.    (Specify array variables without brackets.)    For example, if the string
"Hello George" is parsed into words, and @ELEMENT is specified in the Array Name text box,
@ELEMENT[1] = Hello and @ELEMENT[2] = George, after the Parse icon is executed.    If
"Hello George" is parsed into individual characters, @ELEMENT[1] = H, @ELEMENT[2] = e,
and so on.
Drop-down List Box Items:

Variable Selector

Pause Icon

The Pause icon causes execution to pause for a specified period of time.
Number of Seconds field:
Specify the number of seconds for which you want to pause execution.
Acceptable values are: a real number greater than 0, such as 3 or .5; or a variable.
Drop-down List Box Items:

Variable Selector

Print Icon

The Print icon prints a file or a current screen display. It uses the printer currently selected
through Microsoft Windows.
Suggested Uses:
· Allow the user to create an image on the screen and print a copy of the image.
· Create a course that provides instruction to the user, and give the user the option of producing a

printed copy of portions of the course.
· Let the user choose an image to be printed, for example a coupon or flyer on a particular product.
· Provide the user with a printed receipt.

Content Editor Fields:
File Type
Filename
Location
Page

File Type
Specify the information that you want to print.    This can be a file or the current screen.
Acceptable values are: bitmap, screen, smartobject, formatted text, or a variable.
Drop-down List Box Items:

bitmap - Indicates that you want to print a bitmap graphic, such as a file created with Paintbrush.
Select this item if you are printing a graphic with one of the following formats:

.BMP .FIF .KFX .PSD .XPM

.CAL .GIF .LV .RAS .XWD

.CLP .GX2 .MAC .RLE

.CUT .ICA .MSP .TGA

.DCX .ICO .PCD .TIF

.DIB .IFF .PCT .WMF

.EPS .IMG .PCX .WPG
.JPG .PIC .XBM

screen - Indicates that you want to print the current screen.
formatted text - Indicates that you want to print a formatted text file with an .FTT, .RTF, or .TXT
extension.
Note: IconAuthor (via the SmartObject Editor) supports only rudimentary .RTF file formatting, such as
font, font size, and font color information. If you attempt to display an .RTF file with more complex
formatting information, such as tables, columns, or embedded graphics, the SmartObject Editor will
not display this information. For example, any text that is part of a table will not display.
SmartObject - Indicates that you want to print a SmartObject file, created with the SmartObject Editor.
Variable Selector

Filename
If you are printing a file, specify the name of the file you want to print.    If you are printing
the current screen, leave this text box blank.
Drop-down List Box Items:

Directory
SmartObject Editor
Variable Selector

Location
Specify the location of the file you want to print.    The Location text box lets you choose
coordinates for the upper left corner of the file being printed.    If the file is smaller than the
full screen, you can choose coordinates that place the file anywhere on the printed page.   
The default, 0,0 places the file in the upper left corner of the page.    You can use other
coordinates that center the file, or have it appear in a particular corner of the page.   
If you choose negative coordinates for upper left corner of the file, or extremely large
coordinates, part or all of the file may not appear on the page.    Negative coordinates may
place the file very high (off the page) or to the left (off the page).    Large coordinates may
place the file very low (off the page) or to the right (off the page).
Note: IconAuthor uses dimension information contained in a file to place the file on the
page.    Windows Metafiles do not contain dimension information, therefore, .WMF files that
you print may not appear as expected.    Run an application that contains .WMF files to check
to see whether each file is printed satisfactorily.   
Acceptable values are: a pair of screen coordinates or a variable.
Drop-down List Box Items:

Location Editor
Variable Selector

Page
If you are printing a page in a SmartObject file, use this text box to specify page name or
number.

Program Icon

The Program icon runs an external program from your IconAuthor application.    When the
new program finishes execution, the icon below the Program icon is executed.
When the other program is running, one of two things can happen:
+ The program being executed is in complete control of the system; IconAuthor has no control until the

user deliberately exits the program and control is passed back to IconAuthor.
+ The program and IconAuthor have control of the system simultaneously and IconAuthor can continue

to run regardless of the status of the program.
If the Program icon runs a program such as Calculator, users can manipulate the calculator
in the normal manner.    When they are finished using the calculator, they must choose Exit
from the File menu of the Calculator window or double-click on the Control Menu box to exit
from the application.
When the new program is run, you can specify that IconAuthor remain in view (as a full
screen background for the new program).    If the IconAuthor application is being run in a
window, you can specify that it remain on the screen in the current window.    You can
remove IconAuthor from the screen completely, or you can cause only a small area of the
current IconAuthor application screen to be visible.
Warning: If IconAuthor remains as a full screen background when the new program runs,
the user must not minimize the new program.    If the new program is minimized, the user
must press ALT + ESC to open the Windows Task List, select the program that they
minimized, and choose OK.    The program is redisplayed and once again available for use.   
It must be exited by the normal exit procedure in order to return control to the IconAuthor
application.
Suggested Uses:
· Create an IconAuthor application that teaches a user to use another application, such as dBASE or

Excel. Use the Program icon to run the application being taught, to let the user gain practical
experience.

· Create an IconAuthor application that lets users access other applications to accomplish certain tasks
(for example, use a Calculator, or a database).

Content Editor Fields:
Program Name
Window Size
Snapshot?
Wait Until done?

Program Name
Specify the path and the name of the program you want to run from IconAuthor.    For
example, if you want to run the Windows Notepad text editor and it is located in the
WINDOWS directory of your C: drive, specify C:\WINDOWS\NOTEPAD.EXE.
Optionally, you can also specify the name of a particular file to be opened when the new
program is run.    For example, if you specify C:\WINDOWS\NOTEPAD.EXE MYFILE.TXT, the
Program icon will run Notepad and open the file MYFILE.TXT.
Acceptable values are: a filename specification (including directory path, executable
filename, and optionally, a data filename), or a variable.
Note: If a path is not specified, the IconAuthor install directory is used.
Drop-down List Box Items:

Directory
Variable Selector

Window Size
Specify the size of the window in which the IconAuthor application appears when the new
program runs.
Note: This setting does not control the size and position of the new program you are
running.    These factors are controlled by Windows.
Acceptable values: current size, full screen, remove, 4 numbers (separated by commas)
that define a rectangular area on the screen (the first 2 numbers are the x, y coordinates of
the upper left corner of the area, the second 2 numbers are the width and height of the
area), or a variable.
Drop-down List Box Items:

current size - The IconAuthor application remains in the its current window size and position, even if its
current size is full screen.
full screen - The IconAuthor application remains a full screen background for the new program
remove - The IconAuthor application is removed from the screen. Note that unless the new program
comes up full screen, the IconAuthor window or other portions of the Windows environment are visible
in the background.
Area Editor
Variable Selector

Snapshot?
Specify whether you want the IconAuthor application context to be restored after the user
exits the program run by the Program icon.    The application context is the information
displayed on the screen, the current video frame number, the audio channels, and the
overlay mode.
Acceptable values are: no, yes, or a variable.
Drop-down List Box Items:

no - The context is not saved. When the new program is exited, the IconAuthor application continues
with the screen, video, and audio settings as they are.
yes - The context is saved. When the new program is exited, the IconAuthor application resumes with
the screen, video, and audio settings as they were before the Program icon was executed.
Variable Selector

Wait Until Done?
Specify whether you want the IconAuthor application to continue executing while the new
program is executing.
Acceptable values are: no, yes, or a variable.
Drop-down List Box Items:

no - The IconAuthor application will continue executing while the new program is executing.
yes - The IconAuthor application stops executing, resuming only when the new program finishes.
Variable Selector

RS-232 Icon

The RS-232 icon permits the system on which an IconAuthor application is running to
communicate with a peripheral device such as a modem, videodisc player, mainframe,
mouse, or printer.    By issuing commands through a series of RS-232 icons you can open,
configure, send data and receive data through an RS-232 communications port.
Each RS-232 icon issues a command string through the Control text box.    You can combine
several commands within one string, however, a command that sends data must be issued
in a separate icon from one that receives data.    If the command sends data through the
port, the Transmit Data text box can contain a string to be transmitted or a variable whose
value will be transmitted.    If the command specifies data received through the port, the
received information is stored in a variable you enter in the Receive Variable text box.
Before you can send or receive information, you have to open a port (with a /p command).   
If the port is not open, all transmitted information is discarded.
Also, before your system can communicate with a peripheral device, you may have to set
communication parameters for the port so that it meets the requirements of the peripheral
device.    The default communication parameters are:

Speed 1200 bits per second
Parity None
Data bits 8
Stop bits 1

To determine whether you need to reset these parameters, refer to the documentation that
accompanies the peripheral device you are using.
Content Editor Fields:
Control
Transmit Data
Receive Variable

Control
Specify the command string that controls how data is sent or received.    Use commands to
open a port (/p), set communications parameters for a port (/c), send data through a port (/S
or /s), and receive data through a port (/R or /r).    Another command, the timeout command
(/t), can set the period of time in which data can be received.
Acceptable values are: a command string (send and receive commands must be issued in
separate RS-232 icons), or a variable.
The following table describes the available commands:
command

and syntax
purpose

/Sxx... Sends the characters following the /S out the port.    The characters are sent in
a hexadecimal format.    This means for example, that if you want to send the
character "A", specify 41.

/s Sends the characters in the "Transmit Data" text box out the port.    The
character format is ASCII.    If you specify "Hello George", the ASCII equivalent
of each character in the phrase will be sent.

/R## Receives ## (decimal) characters from the port and stores them in the
variable specified in the    "Receive Variable" text box.    Characters are
accepted until the maximum receive time (see the    /t command) is reached.   

/rxx Receives characters from the port and stores them in the variable specified in
the "Receive Variable" text box.    Characters are accepted until the
hexadecimal character cc is received.

/t## Controls the default receive time out period.    If unspecified, its value is 1
second.    The maximum allowable value is 32767.    Each /r and /R command
will receive information for no longer than the timeout period.

/p# Specifies the port.    /p1 sets the port to COM1 and /p2 sets the port to COM2.   
In all cases, if the specified port is not already opened and if the port is
available, the port is opened.    (If the port is not available because it is not
present or already in use, all subsequent commands fail.)

/c####,$,
%,&

Sets the communications parameters.    When the port is first opened, it is set
to 1200 bits per second, no parity, 8 data bits, and 1 stop bit.
(the baud rate) can be 150, 300, 600, 1200, 2400, 4800, or 9600.
$ (the parity) can be n (for none), e (for even), or o (for odd)
% (the number of data bits) can be 5,6,7, or 8.
& (the number of stop bits) can be 1 or 2.

Drop-down List Box Items:
Variable Selector

Transmit Data
Specify the data you want to transmit through the port if you are using a /s "send" command
in the Control text box.    (If you use a /S "send" command in the Control text box, the data
being sent is expressed in hexadecimal format as part of the command string.)
Acceptable values are: a character string or a variable.
Drop-down List Box Items:

Variable Selector

Receive Variable
Specify the variable to which you want to store data that is received through a port when
you use a /r or /R "receive" command in the Control text box.
Drop-down List Box Items:

Variable Selector

Random Icon

The Random icon generates a random number, from within a specified range, and stores it
to a variable.
Suggested Uses:
· When a file used by a training course contains several questions, and you only want to use one, use a

Random icon to randomly choose one question
· Create a guessing game that lets a user guess a randomly selected number
· Use a Random icon as part of an "attractor loop". An attractor loop is designed to attract a user's

attention. For example, an application can let a user choose to view any of four demonstrations. If
however the system is unattended for more than 15 seconds, a Random icon automatically picks one
of the four demonstrations, and that part of the application is executed.

Content Editor Fields:
Variable Name
Start Range
End Range

Variable Name
Specify the variable to which you want to assign the randomly generated number.
Drop-down List Box Item:

Variable Selector

Start Range
Specify the low end of the range from which you want a number to be randomly generated.
Acceptable values are: an integer (positive or negative), or a variable.
Drop-down List Box Item:

Variable Selector

End Range
Specify the high end of the range from which you want a number to be randomly generated.
Acceptable values are: an integer (positive or negative), or a variable.
Drop-down List Box Items:

Variable Selector

SaveVar Icon

The SaveVar icon lets your application save one or more application variables and the values
they contain to a variable file.    A variable file is an ASCII file.    After it is created, the
variable file can be used by another IconAuthor application, or it can be viewed through a
text editor, such as Notepad.    (At some later point, to load the variables you have saved
using a SaveVar icon, use the LoadVar icon.)
The information you save using the SaveVar icon can be quickly retrieved at a later point in
time.    The SaveVar icon is therefore particularly useful when you want to save a small
amount of information without creating a database.   
When you use a SaveVar icon, you can:
· Save all the application variables currently in memory to the variable file.
· Add an application variable to the end of the variable file.
· Save one application variable to a variable file (erase any other information if the file existed

previously).
· Update the value of an application variable in an existing variable file.
The format for variable files is the variable name on one line, and the value assigned to the
variable on the next line.
Content Editor Fields:
Filename
Control
Variable Name

Filename
Specify the name of the file to which you want to save one or more variables.    The file may
or may not already exist.    If it does not exist, it is created.
Acceptable values are: a filename with a .VAR extension, or a variable.
Drop-down List Box Items:

Directory
Variable Selector

Control
Specify whether you want to save all or one of the current application variables, or if you
want to update the value of an existing variable.
Acceptable values are: all, append, single, update, or a variable.
Drop-down List Box Items:

all - Saves all the current application variables to the file specified in the Filename text box.
append - Appends one variable to the end of the file specified in the Filename text box. Note that the
variable is not inserted in alphabetical order, but is added to the end of the file. Also, if you append
the same variable twice, the file contains two occurrences of that variable. If the variable file that you
are appending to was created with the Notepad text editor, be sure to check that a carriage return
follows the last variable entry. An invalid variable entry is created if there is no carriage return.
single - Saves one variable to the file specified in the Filename text box. The file has just one variable
after the operation. The previous contents of the file are erased.
update - Updates the value of a variable specified in the Filename text box. If the variable is not in the
file prior to this operation, it is added to the file. After the operation, all the variables in the file are in
alphabetical order. (If the file contains two or more variables with the same name, all are deleted
except for the first one in the variable list.)
Variable Selector

Variable Name
Specify the name of the variable you want to save when you use a single, append, or update
command in the Control text box.
Drop-down List Box Items:

Variable Selector

Shuffle Icon

The Shuffle icon randomly rearranges the contents of an indexed variable.
Suggested Uses:
· Shuffle 20 questions when you only want to ask the user 3 of them. Each element of an indexed

variable called @QUESTION contains a question. Shuffle the contents of the array, and ask the user
@QUESTION[1], @QUESTION[2], and @QUESTION[3].

· As part of a game or test, use the Shuffle icon to jumble the order of letters in a word, or words in a
sentence.

· In an application that uses a deck of cards, use the Shuffle icon to shuffle the deck.

Shuffle Array field:
Specify the name of the indexed variable whose contents you want to shuffle.
Drop-down List Box Items:

Variable Selector

Snapshot Icon
Include a Snapshot icon (set to "on") as the first icon in a Help application.    This icon takes a
"snapshot" of the screen context (information such as the current video frame, graphic
display, etc.) when the Help application is called.    When a user is finished using a Help
application and chooses to return to the main application, the Snapshot icon restores the
context of the application.
Take Snapshot text box:
Specify whether you want the snapshot feature on or off.
When using the Snapshot icon, set it to "on" before you do a full-page display, so that the
screen will be refreshed properly. When testing an application, it is helpful to set the Take
Snapshot text box to "off" because it takes a little longer to restore the screen context if it is
on.
Acceptable    values are: on, off, or a variable.
Drop-down List Box Items:

on - The Snapshot icon takes a snapshot.
off - The Snapshot icon does not take a snapshot.
Variable Selector

Related Topic:
Help Icon

Startup Icon

The Startup icon is a special authoring tool that enhances your ability to run an application
from a selected icon.    It does not have a Content Editor.    IconAuthor's Run menu contains
the "Application from Selected" command.    When you select an icon in the structure and
choose this command the application begins executing from the selected icon.    (The right
Run button on the function ribbon provides this same functionality.)
If you include a Startup icon as the first icon in your application you can use it to identify key
icons that you always want to execute, even if you are running the application from a
selected icon further down in the structure.    Regardless of the position of the selected icon,
the icons marked by the Startup icon are always executed first.
Although the Startup icon is a composite (green), when you build it into your structure notice
that it does not yet have icons to the right of it.    It is your job to build icons into the empty
Startup composite.    Build the first icon to the right of the Startup icon.    Build subsequent
icons below that first icon.
Note: Although the Startup icon is a tool for enhancing the authoring process it does not
affect the performance of an application when it is run with the Presentation System.    That
means that it is not necessary to remove or alter the Startup composite before distributing
your application to end-users.
The following icons are useful items to include within a Startup composite:
Window icon
Help icon
DllLink icon
Note: You can put any icon you want in the Startup composite; even another composite.

SubApp Icon

The SubApp icon lets the main application use another IconAuthor application.    Depending
on the command you specify in the SubApp icon Action text box, another IconAuthor
application is loaded into memory, executed, or removed from memory.
The SubApp icon gives global read and write capability to both the main application and the
called application.    The variables defined by either application can be used by both.    When
the called application finishes executing, the application from which it was called resumes
executing with the icon below the SubApp icon.
Note: If your application executes multiple sub-applications, subroutines, and loops that are
not returned from, you must use the SubApp icon's restart command in the Action text box
to prevent errors in execution of your application.
Suggested Uses:
· Create modular applications that call other applications where necessary
· Create an application that suits a particular need, and that application can be called by several

different main applications
· Create modular applications using a team development style. Different applications used by the main

application can be created by different developers.

Content Editor Fields:
Filename
Action

Related Topic:
Exiting from a Called Application

Filename
Specify the name of the application you want to load, execute, or remove from memory.   
The called application can have a .IW extension like any other IconAuthor application.
Acceptable values are: a filename or a variable.
Drop-down List Box Items:

Directory
Variable Selector

Action
Specify the action you want to perform on the specified filename.
Acceptable values are: execute, load, remove, restart, or a variable.
Drop-down List Box Items:

execute - Loads the specified file into memory (if it is not already loaded) and executes it immediately.
At the end of execution, the file remains in memory until it is removed with another SubApp icon.
When the called application finishes executing, the application from which it was called resumes
executing with the icon below the SubApp icon.
load - Loads the specified file into memory. This option lets you load a called application at the
beginning of the main application. The called application is then available for later use and remains in
memory until it is removed with another SubApp icon.
remove - Removes the specified file from memory.
restart - Resets system memory to prevent a stack overflow.
Variable Selector

Exiting from a Called Application
There are two ways to exit from a called application.    The called application can simply
complete execution when it runs out of icons, or it can contain one or more Exit icons
If you specify    "subapp" in the Exit From text box of the Exit icon, execution returns to the
main application from which the other application was called.    The main application
resumes execution with the icon below the SubApp icon.
If you specify "application" in the Exit From text box of the Exit icon, this causes an exit from
the called application and the main application.
Related Topics:
SubApp Icon
Exit Icon

SubAssign Icon

The SubAssign icon is the first icon in a subroutine.
In the Accept List field of the SubAssign icon, you specify the variable or variables in which
you want to receive the information being passed from the Subroutine icon in the main
application.    The number of parameters being passed from the Subroutine icon must match
the number of parameters being received in the SubAssign icon.
Content Editor Field:
Accept List

Accept List
Specify the variable or variables that will accept the values passed from the Subroutine icon
in the main application.    These are the values that are manipulated within the subroutine.
The parameters passed from the main application are accepted in the order in which they
are passed.    For example, you can specify @STUDENT,17 in the Parameter List text box of
the Subroutine icon (where @STUDENT contains "Bob Smith"), and you can specify
@NAME,@NUM in the Accept List text box of the SubAssign icon.    The result is that within
the subroutine, @NAME contains "Bob Smith" and @NUM contains the literal "17".
The number of parameters being accepted in the SubAssign icon must match the number of
parameters being passed from the Subroutine icon.    For example, if you enter the three
parameters "@NAME,@NUM,6" in the Parameter List text box of the Subroutine icon, the
Accept List text box of the SubAssign icon must contain a three item entry such as
@EMPLOYEE,@NUM,@MONTHS".
Acceptable values are: one or more variables.
Drop-down List Box Item:

Variable Selector

Related Topic:
Subroutine Icon

Subroutine Icon

The Subroutine icon allows an IconAuthor application to use a subroutine.
Content Editor Fields:
Filename
Parameter List
Receive List
Action

Related Topics:
Loading, Executing and Removing Subroutines
Subroutine Execution

Loading, Executing, and Removing Subroutines
Use Subroutine icons to accomplish the following:
· Load the subroutine into memory.
· Execute the subroutine.
· Remove the subroutine from memory.
A subroutine can be loaded into memory and stay resident until it is used (using a "load"
command), or it can be loaded into memory and used immediately (using an "execute"
command).    If a subroutine is already loaded into memory, it can be executed using an
"execute" command.   
When a subroutine is a small structure, it is typically loaded and executed immediately the
first time it is required by the application.    However, when a subroutine is large, it is
recommended that it be loaded at the beginning of the application.    Because a larger
subroutine may cause a delay of up to several seconds when it loads, it is less intrusive
when the delay occurs at the beginning of the application, rather than in the middle.
When the application no longer needs a subroutine, you can use another Subroutine icon to
remove a subroutine from memory.    When you remove a subroutine from memory, you also
remove the variables referenced by that subroutine.
Variables in Subroutines
The variables of the subroutine and the main application are separate.    The subroutine can
use variables of the same name as those in the main application, and yet the values of the
variables in the main application are unaffected.
Related Topic:
Subroutine Icon

Subroutine Execution
When a Subroutine icon specifically executes a subroutine, the icon acts as the sender of
information.    If the subroutine passes any values back to the main application, the same
Subroutine icon also acts as a receiver of information.
The subroutine itself contains a SubAssign icon that accepts information from the Subroutine
icon in the main application.    Other icons in the subroutine manipulate the data accepted by
the SubAssign icon.    Ultimately, the subroutine also contains at least one Exit icon that
when executed, returns the flow of execution to the main application.    If the subroutine is
passing information back to the main application, the Exit icon is the icon that passes that
information.
In the Parameter List text box of the Subroutine icon, you specify the information you want
to send to the subroutine.    This information can be a single value application variable, an
indexed variable, or a literal (a word, letter or number with no spaces).
The first icon in the subroutine being executed is a SubAssign icon.    In the Accept List text
box of the SubAssign icon, the variable or variables that will receive the information being
passed from the main application are specified.    The number of parameters being passed
from the Subroutine icon must match the number of parameters being received in the
SubAssign icon.
When the subroutine has performed its task, it is exited via an Exit icon that contains
"subroutine" in the Exit From text box.    Also, the Return List text box of the Exit icon,
contains the variables used to pass values back to the main application.    (Note that some
subroutines do not pass values back to the main application.    A value may already be
calculated and displayed within the subroutine itself, and its value may not be important to
the main application.)
If the Exit icon does pass one or more variables back to the main application, those values
are received by the variables in the Receive List text box of the Subroutine icon.    The
number of parameters being passed from the Exit icon must match the number of
parameters being received by the Subroutine icon (in the main application).
Subroutines may be nested up to a depth of ten.    Up to 64 subroutines can be in memory at
any given time.
Hint: Once you create a subroutine, you can test it by supplying it with simple values which
will produce an obvious result.    After you know the subroutine works properly you can use it
repeatedly.   
Related Topic:
Subroutine Icon

Filename
Specify the name of the subroutine you want to load, load and execute, execute, or remove.
Acceptable values are: a filename or a variable.
Drop-down List Box Items:

Directory
Variable Selector

Parameter List
Specify the parameters you want to pass to the subroutine.    Each piece of information you
specify must be separated from the next by a comma.    The parameters can be any
combination of single value variables, a single indexed variable or an entire array, or literal
values (a word, letter, or number, with no spaces).
The parameters passed through this text box are accepted and placed in the variables in the
Accept List text box of the SubAssign icon (in the subroutine).    The parameters are accepted
in the order in which they are passed.    For example, you can specify @STUDENT,17 in the
Parameter List text box (where @STUDENT contains "Bob Smith"), and you can specify
@NAME,@NUM in the Accept List text box of the SubAssign icon.    The result is that within
the subroutine, @NAME contains "Bob Smith" and @NUM contains the literal "17".
The number of parameters being passed from the Subroutine icon must match the number
of parameters being accepted in the SubAssign icon.    For example, if you enter the three
parameters "@NAME,@NUM,6" in the Parameter List text box of the Subroutine icon, the
Accept List text box of the SubAssign icon must contain a three item entry such as
"@EMPLOYEE,@NUM,@MONTHS".
In the preceding example the value passed in @NAME is received by a variable with a
different name, @EMPLOYEE, and the value passed in @NUM is received by a variable of the
same name, @NUM.    Remember, although you can use the same variable names in the
subroutine that you use in the main application, these variables are separate from the
variables of the same name in the main application.    In order to affect a variable in the
main application, you must pass the value back to the main application (through the Exit
icon Return List text box).
To pass an entire indexed variable to a subroutine, specify only the name of the variable.   
For example, if an indexed variable called @NAME in the main application, is made up of
@NAME[1], @NAME[2], and @NAME[3], and you want to pass all of these elements to a
subroutine, specify @NAME in the Parameter List text box.    In the Accept List text box of the
SubAssign icon, specify the name of the indexed variable you want to accept these
elements.    For example, if the indexed variable @NAME is passed to a SubAssign icon that
contains @STUDENT in its Accept List text box, the SubAssign icon automatically creates
@STUDENT[1], @STUDENT[2], and @STUDENT[3].
To pass individual elements of an indexed variable to a subroutine, specify the name and
index of the variable in the Parameter List text box.    For example, to pass @COLOR[1] and
@NUM[3] to a subroutine, specify these elements (including their name and index).    In the
Accept List text box of the SubAssign icon, specify the variable you want to accept these
values.    Because you are passing individual values that are part of an indexed variable, the
values can be accepted in a variable that has a name and an index, or in a single value
variable name.    For example, @COLOR[1] can be accepted in @SHADE[1], @SHADE[6], or
@SHADE.
Acceptable values are: a literal (a word, letter, or number with no spaces), or a variable.
Drop-down List Box Item:

Variable Selector

Receive List
If one or more values are going to be returned to the main application from the subroutine,
specify the name of the variables in which the values will be received.
If a subroutine passes values back to the main application, they are specified in the Return
List text box of the Exit icon (within the subroutine).    The number of parameters being
passed from the Exit icon must match the number of parameters being received by the
Subroutine icon (in the main application).    If this text box contains more than one variable,
separate each variable from the next with a comma.
Acceptable values are: one or more variables.
Drop-down List Box Item:

Variable Selector

Action
Specify whether you want the Subroutine icon to load a subroutine into memory, execute a
subroutine, or remove a subroutine from memory.
Acceptable values are: execute, load, remove, or a variable.
Drop-down List Box Items:

execute - Executes the subroutine specified in the Filename text box. If the specified subroutine was
not previously loaded into memory, it is loaded and then executed immediately. After it completes
execution, the icon below the Subroutine icon is executed. The subroutine remains in memory until it
is removed with another Subroutine icon.
load - Loads the subroutine specified in the Filename text box. This option lets you load the
subroutine at the beginning of the application and include another Subroutine icon later in your
structure to execute the subroutine. The subroutine remains in memory until it is removed with
another Subroutine icon.
remove - Removes the subroutine specified in the Filename text box. This option is helpful if your
system has memory limitations.
Variable Selector

Text Icon
The Text icon displays the contents of an ASCII text file on the screen.
To set the font type and/or font size that are used to generate the characters on the screen,
precede the Text icon with a Font icon.    If you do not use a Font icon, the system default
font and size are in effect.
Note: When you use the Font icon, the new settings are in effect until you use a subsequent
Font icon.
Content Editor Text Boxes:
Filename
Upper Left Corner
Lower Right Offset

Related Topics:
Font Icon

Filename
Specify the name of the ASCII file you want to display.
Acceptable values are: a filename or a variable.
Drop-down List Box Items:

Directory
Variable Selector

Upper Left Corner
Specify the location of the upper left corner of the file when it appears on the screen.
Acceptable values are: upper left, a pair of coordinates (separated by commas) that define
the upper left corner of a rectangular area on the screen, or a variable.
Drop-down List Box Items

upper left - Defines the upper left corner of the file as the upper left corner of the screen.
Area Editor
Variable Selector

Lower Right Offset
Specify the width and height of the area where the file appears on the screen.
If the area selected is not large enough to display the entire ASCII file specified in the
filename text box, the text is truncated on the screen.      It is not scrolled.
Note: A value automatically appears in this text box if you use the Area Editor to specify the
upper left corner of the area where the file appears.
Acceptable values are: lower right, 2 numbers (separated by commas) that define the
width and height of the area where the file appears, or a variable.
Drop-down List Box Items

lower right - Defines the width and height of the area where the file appears, so that the lower right
corner of the file appears in the lower right corner of the screen.
Variable Selector

V:Audio Icon

The V:Audio icon controls whether a specific audio channel of the video source is on while a
video is playing.
Most videodiscs and videotapes provide sound for two audio channels.    This allows for two-
channel applications such as those that use stereo, provide music on one channel and voice
on another, or those that use different channels for different languages.
In the case of a videodisc player, when both channels are on, each one typically plays
through a different audio output jack on the rear of the player.    If you turn one channel off,
the other channel is played through both audio output jacks.
In the case of a videotape player, it is possible that only one of the channels is available for
audio because the other is used for data communications between the player and your
system.    Note that if you are using a videotape player, the use of channels varies from one
machine to another.    Refer to the documentation for your videotape player for information
on how to use the available channels.
If your source is a digital video file, it may or may not have audio.    If the file has audio, turn
both channels on to play the audio.
If you do not include a V:Audio icon in your application, all audio channels are set to on.   
However, you can use one or more V:Audio icons to control which channels are on, and
when.    Each V:Audio icon can specify an instruction to control one audio channel.    For
example, you can use one icon to turn one channel off, and then use another icon to turn the
other channel off.    Subsequent icons can turn the channels on and off again as necessary.
Your application may only require one channel to play at a time, particularly if it uses
different languages on different channels.    In other situations, you might want to turn the
audio off completely.      For example, you might not want any audio accompaniment, or you
might want to show a video and play audio that is different from the audio that comes with
the disc or tape.
Content Editor Fields:
Audio Channel
On or Off

Audio Channel
Specify the audio channel you want to turn on or off.
Acceptable values are: 1, 2, or a variable.
Drop-down List Box Item:

Variable Selector

On or Off
Specify whether you want the channel on or off.
Acceptable values are: on, off, or a variable.
Drop-down List Box Items

Variable Selector

V:Frame#? Icon

The V:Frame#? icon determines the current video source frame number and stores it in a
specified variable.
The V:Frame#? icon is particularly useful when you are building an application that lets the
user control the video.    For example, an application allows a user to stop viewing the video,
move to another activity, and resume viewing at a later time.    When the user makes a
selection to quit the video, the V:Frame#? icon can store the current frame number in a
variable,    called @RESUME_FRAME.    Later in the application, when the user wants to view
the video again, a V:Still icon is used to move the video player to the specified frame
number.      The value in the Frame Number text box of the V:Still icon is @RESUME_FRAME.   
When the video begins playing again, it plays from the frame number stored in
@RESUME_FRAME by the V:Frame#? icon.
Variable Name Field:
Specify the variable in which you want to store the current frame number.
Drop-down List Box Item:

Variable Selector

Note:    When using a videotape, if a V:Frame#? icon is executed and the videotape player is
still in search mode, the string "NOT ARRIVED" is stored to the variable specified in the
Variable Name text box.

V:Overlay Icon

The V:Overlay icon has two primary functions.    It lets you take advantage of the features of
the video overlay card installed in your system.    It also lets you specify the name of a file if
your video source is a digital video file.    (See the source command for the Overlay
Command text box for more information on digital video files.)
The overlay card controls how video appears on the screen and in some cases, it controls
how audio that accompanies video is heard through your system's speakers.    When you
send commands to the overlay card, you are not affecting the video source, you are
affecting the way video and/or audio appears or sounds.    For example, depending on its
capabilities, an overlay card might let you freeze an image on the screen.    Although the
video image appears as a still image on the screen until you issue an unfreeze command,
the video player continues to play.
Each V:Overlay icon you use lets you issue a separate command to the overlay card.   
Different video overlay cards have support for different commands.    Refer to the
documentation that came with your overlay card for more information on its capabilities.
If you do not include a V:Overlay icon in your application, the overlay mode is set to graph,
as if a graph overlay command had been given.    Graph means that only graphics are
displayed, therefore, in this mode, video is not shown, but the audio that accompanies video
is heard.
Depending on the commands supported by your overlay card, you can use a V:Overlay icon
to issue either a super or video command so that video is displayed on the screen.   
Subsequent V:Overlay icons can switch to different overlay modes as necessary.
Content Editor Fields:
Overlay Command
Transparent Color
Parameter 1
Parameter 2

Overlay Command
Specify the command you want to issue to the overlay card.    Syntax varies for different
commands.    For some commands, you only have to enter the command name.    For other
commands you must provide additional information in the Parameter 1 and Parameter 2 text
boxes.    The drop-down list box contains some of the available commands.    You can also
enter a different command in this text box, if it is supported by your overlay card.    Refer to
the documentation for your particular overlay card to determine which of these commands it
supports.
Acceptable values are: an overlay command or a variable.
Drop-down List Box Items:

audio - Turns one or two audio channels on or off. Requires Parameters 1 and 2. Specify on or off in
the Parameter 1 text box. Specify 1, 2, or both in the Parameter 2 text box to indicate which audio
channel you want to affect. (If your overlay card does not support this command, IconAuthor also lets
you control the audio channels through the V:Audio icon.)
capture - Captures the current video frame and stores it to a file. Requires only Parameter 1.
Specify the filename in the Parameter 1 text box. Refer to the documentation for your overlay card to
learn about file naming conventions for captured files, and to learn about the acceptable entries for file
type.
compress - Compresses a portion of the video. Requires Parameter 1 only. Use the Parameter 1
text box to define the area into which you want to compress the video. To do this, enter four numbers
separated by commas: the X,Y coordinates of the upper left corner of the area as the first two, and the
width and height of the area as the third and fourth respectively.
copy - Copies the current video frame and stores it in a buffer. Requires Parameter 1 only. Use the
Parameter 1 text box to define the area of the screen you want to copy. To do this, enter four
numbers separated by commas: the X,Y coordinates of the upper left corner of the area, and the width
and height of the area. This command is used before a paste command.
crop - Crops a portion of the video. Requires Parameter 1 only. Use the Parameter 1 text box to
define the area of the video you want to remain after the cropping is complete. To do this, enter four
numbers separated by commas: the X,Y coordinates of the upper left corner of the area, and the width
and height of the area.
fade audio - Fades the audio from the current level to a new level. Requires Parameters 1 and 2.
Use the Parameter 1 text box to specify the time period (in hundredths of seconds) during which the
fade occurs. Use the Parameter 2 text box to enter a value, indicating the level to which the audio
should fade (0-100).
fade video - Fades the video from the current level to a new level. Requires Parameter 1 and 2. Use
the Parameter 1 text box to specify the time period (in hundredths of seconds) during which the fade
occurs. Use the Parameter 2 text box to enter a value, indicating the level to which the video should
fade (0-100).
freeze - Freezes the current frame on the screen. Leave Parameter 1 and 2 blank.
graph - Displays only graphics, not video. Use this command to hide the video, and use only the
audio. Leave Parameters 1 and 2 blank.
paste - Pastes the video frame currently stored in the buffer, by a copy command, on the screen.
Requires Parameter 1 only. Use the Parameter 1 text box to specify the X,Y coordinates of the point
on the screen that where you want the upper left corner of the video to appear.
restore - Displays a video frame from a file (previously captured) to the screen. Requires Parameter 1
only. Specify the filename in the Parameter 1 text box. Refer to the documentation for your overlay
card to learn about file naming conventions for captured files, and to learn about the acceptable
entries for file type.
source - Switches between the available video sources. For example, switch between two players, or
a player and a camera. Requires Parameter 1. Specify the number of the video source to which you

want to switch. (If your overlay card supports this command, you would have previously defined the
source number that corresponds to each video source.)
Also, use the source command to specify a digital video file. Leave the Transparent Color and
Parameter 1 box blank. In Parameter 2, specify the full path and filename of the digital video file to
play.
super - Displays video over graphics, everywhere that the transparent color is used on the screen.
Use this command to display video and graphics simultaneously. Leave Parameters 1 and 2 blank.
Specify the color you want to designate as transparent in the Transparent Color text box.
unfreeze - Unfreezes the video on the screen, by displaying the current frame on the screen. If you
use a freeze command to freeze the current video image, that frame appears as a still frame on the
screen, and the video player continues to play. When you unfreeze, the video resumes playing at a
different point on the disc or tape. Leave Parameter 1 and 2 blank.
video - Displays video only. (Graphics will not appear until a graph or super command is given.)
Leave parameter 1 and 2 blank.
Variable Selector

Transparent Color
Specify the color you want to use for the transparent color.    This text box is only used when
you specify the super command as the Overlay Command.    Video appears everywhere that
the transparent color appears on the screen.
Acceptable values are: a valid transparent color or a variable.
Drop-down List Box Items:

assorted colors - These are the colors you can designate as the transparent color.
Variable Selector

Parameter 1
When necessary, specify the first parameter for an overlay command.    Refer to a specific
overlay command to determine whether or not it requires information in this text box, and
what kind of information it requires.
Drop-down List Box Items:

Area Editor
Variable Selector

Parameter 2
When necessary, specify the second parameter for an overlay command.    See a specific
overlay command to determine whether or not it requires information in this text box.
Drop-down List Box Items:

Area Editor
Directory
Variable Selector

V:PlayTo Icon

The V:PlayTo icon plays a video segment from the current frame to the frame number you
specify in the Ending Frame field.
Content Editor Fields:
Ending Frame
Wait Until Done?

Ending Frame
Specify the frame number to which you want the video source to play.
Acceptable values are: a frame number or a variable.
Drop-down List Box Items:

Video Editor
Variable Selector

Wait Until Done?
Indicate whether you want icons to continue executing immediately after the video starts
playing, or if IconAuthor should wait until the video is done.
Acceptable values are: no, yes, or a variable.
Drop-down List Box Items:

no - The icon immediately below the V:PlayTo icon is executed immediately after the video begins
playing. Once the video is running, subsequent icons can perform many tasks, such as running an
animation routine or displaying a graphic slide show along side of the video. Or, subsequent icons
can load subroutines and/or sub-applications that will be executed later in the main application. This
is a way of loading them into memory without any noticeable delay to the user. As an example, a
V:PlayTo icon can start the video playing. It is followed by a Subroutine icon that loads a subroutine
into memory for later use (while the video is playing). Next, a V:Player icon with a wait command
causes icons to stop executing until the video segment finishes playing.
yes - The icon below the V:PlayTo icon is not executed until the video segment finishes playing.
Variable Selector

V:Player Icon

The V:Player icon controls the video source.
Each V:Player icon can send a different command to a video source.    For example,    users
can control the video they are viewing.    If they select one menu item, labeled FAST
FORWARD, a V:Player icon with a fastf command can be executed.    If they select another
menu item, labeled PLAY, a V:Player icon with a playf command can be executed.
Content Editor Fields:
Control
Receive Data

Control
Specify the command to send to the video source.
Acceptable values are: a command or a variable.
Drop-down List Box Items:

stepf - The first stepf command that is given pauses the source. Each subsequent stepf command
steps the source forward one frame.
stepr - The first stepr command that is given pauses the source. Each subsequent stepr command
steps the source in reverse one frame.
slowf - Plays forward in slow motion.
slowr - Plays in reverse in slow motion.
playf - Plays forward.
playr - Plays in reverse.
fastf - Plays fast forward.
fastr - Plays fast in reverse.
load - Stops the execution of icons and stops the source to allow for the disc or tape to be checked or
changed by the user. Use this command if you want the user to load a tape or disc into a video
player. When a load command is executed, a dialog box displays the message, "Please load the
video and close the door." The user must load the tape or disc, and respond to the dialog box (by
pressing Enter, etc.). The application resumes the execution of icons.
Note: This command may not be supported by your video player.
wait - Stops the execution of icons until the video finishes playing. Use this command if you want to
start video, execute one or more icons, and then wait for the video to finish before executing any other
icons. For example, in one application a V:PlayTo icon starts the video playing and specifies that it
plays until a particular frame. The video shows a person speaking. Next, a Pause icon pauses
execution for 2 seconds, although the video is still playing. Then a Display icon displays a graphic
over the bottom of the screen that shows the speaker's name. The next icon is a V:Player icon with a
wait command. This causes execution of icons to stop and wait for the video to play until the
specified ending frame.
Note: This command causes execution of icons to stop until the video finishes playing. Even the
designated Escape or Break key cannot interrupt the video.
stop - Stops the video source.
source 1 - If your system is using two video sources, this makes source 1 current. All subsequent
V:Player commands are directed to the current video source.
source 2 - If your system is using two video sources, this makes source 2 current. All subsequent
V:Player commands are directed to the current video source.
Variable Selector

Receive Data
The Receive Data field is used if your video device is a BCD tape player and is used to
receive the value of the tape ID.    When a variable is entered in the Receive Data field, a
tape ID command is sent to the video tape player and its value, a six digit number is
returned to the variable.
Acceptable value: a variable.
Drop-down List Box Item:

Variable Selector

V:Segment Icon

There are two basic ways to create video: use a V:Segment icon, or use a combination of the
other IconAuthor video icons. The V:Segment icon plays a video segment until it is finished
and does not allow other functions, such as graphic display, to occur while it is playing.   
Optionally you activate a video interrupt feature to give the user limited control over the
material being viewed. The video interrupt feature is a small, on-screen "stop" button the
user can select.    When the button is selected, it displays a control panel for searching
forward or rewinding the segment.   
Because the segment played by the V:Segment icon does not allow any other icons to
execute until it is finished, it should only be used when a specific portion of your application
is dedicated to video.    Use the other video icons if you want to display graphics or
animation, or load subroutines or other applications, while the video segment is running.
The V:Segment icon Content Editor lets you specify many of the parameters that you would
otherwise have to define by using several other icons.    Using the V:Segment icon is the
fastest and easiest way to include video in your application.    However, in some situations,
you may want to use the other method of creating video, by building a combination of other
IconAuthor video icons into your structure.    You might use the other video icons to create
your video display if you want to provide the users with custom controls to let them control
the video.    If you use V:Segment, the on screen buttons and slidebar are fixed and you
either use them, or you don't.
Content Editor Fields:
Audio
Overlay Mode
Play From
Play To
Video Interrupt

Related Topic:
Using Video Interrupt

Audio
Specify which audio channels on the video player are active while the video is playing.
Most videodiscs and videotapes provide sound for two audio channels.    This allows for two-
channel applications such as those that use stereo, provide music on one channel and voice
on another, or those that use different channels for different languages.    Digital video files
may or may not have one channel audio.
In the case of a videodisc player, when both channels are on, each one typically plays
through a different audio output jack on the rear of the player.    If you turn one channel off,
the other channel is played through both audio output jacks.
In the case of a videotape player, it is possible that only one of the channels is available for
audio because the other is used for data communications between the player and your
system.    If you are using a videotape player, the use of channels varies from one machine
to another.    Refer to the documentation for your videotape player for information on how to
use the available channels.
Your application may only require one channel to play at a time, particularly if it uses
different languages on different channels.    In other situations, you might want to turn the
audio off completely.
Acceptable values are: 1, 2, both, off, or a variable.
Drop-down List Box Items:

1 - Turns channel 1 on (turns channel 2 off)
2 - Turns channel 2 on (turns channel 1 off)
both - Turns both channels on.
off - Turns both channels off.
Variable Selector

Overlay Mode
Specify how you want the image to appear on the screen.    The value you enter is a
command that is sent to the video overlay card installed on your system. When the video
segment finishes playing, the overlay mode that was in effect prior to the V:Segment icon is
automatically reinstated.
Note: Different video overlay cards support different commands.    Refer to the
documentation that came with your overlay card for more information on its capabilities.
Acceptable values are: super, video, graph, or a variable.
Drop-down List Box Items:

super - Displays video over graphics everywhere that the transparent color is used on the screen. By
default, the transparent color is black. (If you want to specify a different transparent color, precede
the V:Segment icon with a V:Overlay icon, specifying a different color in the Transparent Color text
box.)
Use super overlay mode if you want to display graphics or text on the screen and then show video
around the previously displayed material. For example, a Display icon displays a full screen graphic
file that is completely black except for a title that appears in white text at the bottom of the screen.
Next, a V:Segment icon plays a video segment. The segment appears everywhere on the screen
except where the title (white text) appears. Note that if the transparent color does not appear
anywhere on the screen, the video segment does not appear, although the audio can be heard.
video - Displays video only.
graph - Displays graphics only. When the segment plays, the audio portion of the recording is heard,
but the video is not seen.
Variable Selector

Play From
Specify the starting frame number in the segment you want to play.    When the V:Segment
icon is executed, the video source seeks the specified frame number and plays when it is
found.
Sometimes, it takes a videotape player a significant amount of time to find the starting
frame.    In this situation, it is recommended that at some point in the structure (prior to the
V:Segment icon), you use a V:Still icon to pre-search for the starting frame.    This prevents
the pause that would occur when the V:Segment icon is looking for the correct frame and the
video player is waiting to play the segment.
Acceptable values are: a frame number or a variable.
Drop-down List Box Items:

Video Editor
Variable Selector

Play To
Specify the ending frame number in the segment you want to play.
Acceptable values are: a frame number or a variable.
Drop-down List Box Items:

Video Editor
Variable Selector

Video Interrupt
Specify whether you want the user to be able to interrupt the video segment.
Acceptable values are: no, yes, or a variable.
Drop-down List Box Items:

no - The video segment plays from beginning to end and the user cannot pause, quit, or otherwise
interrupt the video. Even the designated Break or Escape key is disabled while the segment plays.
yes - Causes a STOP button to appear in the lower right corner of the screen as the video plays.
Depending on the available input device, the user can select the STOP button by clicking the mouse
cursor on it, touching it, or pressing RETURN or the spacebar. When the STOP button is selected, a
button and scrollbar appear that allow the user to control the video or quit viewing.
Variable Selector

Related Topic:
V:Segment Icon
Using Video Interrupt

Using Video Interrupt
When the user selects the STOP button during a video segment, the video pauses on the
current frame, and the video interrupt buttons and slidebar are displayed:
Buttons
The way in which the user manipulates the buttons depends on the input device being used.
If a mouse or touch screen is being used, the user clicks on a button or touches it,
respectively, to choose it.    If a keyboard is being used, a button must be pre-selected before
the user can choose it.    When a button is pre-selected, it has a blinking underscore within a
darkened boundary.    By default, the Continue button is pre-selected.    To pre-select a
different button, the user presses Tab to advance to the next button.    When the appropriate
button is pre-selected, the user presses RETURN or the spacebar to choose it.
Continue - Starts the video segment from the current frame.    (The current frame can be
changed using the slide bar.)
Quit - Terminates the video segment.    The icon below the V:Segment icon is executed.
Help - Accesses the current Help application.   
Related Topic:
Creating a Help Application
Slide Bar
The slidebar allows the user to advance or rewind the video source.    The way in which the
user manipulates the slide bar depends on the input device being used.
If a mouse is used, each time the user clicks on the right arrow, the video steps forward one
frame.    Each time the user clicks on the left arrow, the video steps backward one frame.   
The user can drag the small white block to the left to rewind or to the right to fastforward.   
Dragging all the way to the left displays the first frame in the segment.    Dragging all the
way to the right displays the last frame in the segment.
If a touch screen is used, each time the user touches the right arrow, the video steps forward
one frame.    Each time the user touches the left arrow, the video steps backward one frame.
If a keyboard is used, each time the user presses the right arrow key, the video steps
forward one frame.    Each time the user presses the left arrow key, the video steps backward
one frame.

V:Still Icon

The V:Still icon causes the video source to seek to a specified frame number.    At a later
point in the structure, a V:PlayTo or V:Player icon (with a playf command) causes the video
source to play from this frame.
This icon can be used differently, depending on the type of video source you are using.
Videodisc Players
When the V:Still icon is executed the videodisc player begins seeking, and subsequent icons
are executed immediately.    Do not place the V:Still icon too close in the structure to the icon
that causes the video to play.    If the video plays before the frame is found, it will play from
whatever frame is current and disregard the V:Still icon.    In other words, if you know the
videodisc player has a long way to seek before it finds the frame, or if your videodisc player
is relatively slow, place the V:Still icon far enough ahead of the icon that plays the segment,
so that the starting frame is found before the play command is given.
Videotape Players
Videotape players typically take a longer amount of time to seek to a specified frame.    You
can use the Wait Until Done? feature to prevent an icon that gives a play command (in a
V:Player or V:PlayTo icon) from being executed until the appropriate frame is found.
Even if you set Wait Until Done? to yes, it is recommended that you place the V:Still icon that
searches for a still frame, as far ahead of the icon that plays the video as is logically
possible.    This prevents the pause that will occur if the V:Still icon is still looking for the
correct frame when a V:PlayTo or V:Player icon is waiting to run the video.
Another suggestion is that, whenever possible, plan the videotape so that the material it
contains appears in the order in which it is used by the application.    This also cuts down the
amount of time it takes the V:Still icon to find the appropriate starting frame for a segment.
Content Editor Fields:
Frame Number
Wait Until Done?

Frame Number
Specify the frame to which you want the video player to advance.
Acceptable values are: a frame number or a variable.
Drop-down List Box Item:

Variable Selector

Wait Until Done?
This text box is for videotape players only.    If you are using a videotape player, you can use
the Wait Until Done? text box to prevent a play command (in a V:Player or V:PlayTo icon)
from being executed until the appropriate frame is found.    This feature is useful because
videotape players typically take a longer amount of time to seek to a specified frame.
Acceptable values are: yes, no, or a variable.
Drop-down List Box Items:

yes - Causes the player to begin seeking, and the subsequent icons are executed immediately, unless
a V:PlayTo icon or a V:Player icon (with a playf command) is encountered. If either of these icons is
encountered, IconAuthor waits until the appropriate frame is found before execution continues. Note
that if any other V:Player icon is encountered (with a command other than playf), or if a second V:Still
icon is encountered, it is disregarded, and execution flows to the next icon.
no - The V:Still icon executes the same way it executes when you are using a videodisc player. The
player begins seeking, and the subsequent icons are executed immediately.
Variable Selector

Variable Icon

The Variable icon lets you manipulate variables.    You can use a Variable icon to define a new
variable, or to assign a new value to an existing variable.
Content Editor Fields:
Variable Name
Assign Contents

Variable Name
Specify the name of the variable you want to define or to which you want to assign a new
value.
The first character of every variable you create must be the @ symbol.    Use upper and
lower case letters, numbers, and the underscore symbol to name your variables.    The
maximum length of a variable name (including the @ symbol) is 19 characters.
Note: Do not create an application variable that begins with @_ This convention is reserved
for system variables.    Only reference a variable name that begins with @_ if you are
deliberately changing the value in a system variable, an operation intended for advanced
users.
Acceptable values are: a variable (a user variable, such as @COLOR, @NUM[1], a system
variable such as @_GRAPHICS_PATH), or the expression Clear All.
Drop-down List Box Item:

Clear All - Clears all variables from memory.
Variable Selector

Assign Contents
Specify the value you want to assign to the variable in the Variable Name text box.    You may
enter several kinds of information in this text box.    In general, information in the Assign
Contents text box is a single value or an expression that manipulates or compares multiple
values.
Acceptable values are:
· A real number (a number with a decimal point must have a digit to the left of the decimal point. For

example, 0.9 and 0.23 are legitimate, but .9 and .23 are not.)
· 4 numbers that define an area on the screen (the first two are the x,y coordinates of the upper left

corner of the area, the second two are the width and height of the area).
· A character string.
· A variable.
· A logical constant (.TRUE. or .FALSE., or more commonly, .T. or .F.).
· Expressions that contain numeric, relational, and/or logical operators.

Drop-down List Box Items:
Area Editor
Location Editor
Input Template Editor
Variable Selector

Related Topics:
Single Values in Assign Contents
Expressions in Assign Contents
Variable Icon

Single Values in Assign Contents
The single values that you can use are a number, a character string, a variable, or a logical
constant (.TRUE.    or .FALSE.).    (.T.    and .F.    are legitimate abbreviations for .TRUE.   
and .FALSE.)    Character strings must be surrounded by double quotation marks.
Related Topics:
Assign Contents
Variable Icon

Expressions in Assign Contents
You can use different kinds of operators to manipulate and/or compare different kinds of
data in the Assign Contents text box.    Use the following kinds of operators:

numeric operators
character operators
relational operators
logical operators

The kind of operators you use in the expression determine the kind of value that is stored in
the Variable Name text box.
Related Topics:
Variable Icon
Assign Contents
Expressions in Assign Contents

Numeric Operators
You can specify an expression that uses one or more numeric operators.    If you use this kind
of expression, a number is returned to the variable in the Variable Name text box.    Make
sure to use a space before and after a numeric operator.    For example, enter 5 + 5, not
5+5.
All numerical operations are done using real numbers.    The following table describes the
operations that are supported.    Although the examples use numbers, variables can be used
in place of any of these numbers.    For example, in the case of addition, the Assign Contents
text box could contain an expression like 2.3 + 2 or it could contain an expression like
@HOURS + @MIN.
EXAMPLES:
Operator Meaning "Assign

Contents"
"Variable

Name"
+ addition 2.3 + 2 4.3
- subtraction 6 - 1 5
* multiplication 4 * 3 12
/ division 12 / 4 3

** or ^ exponent 2 ^ 3 8
SQRT(x) square root SQRT(4) 2
ABS(x) absolute value ABS(-52) 52
INT(x) integer value INT(2.3)

INT(2.8)
INT(2.854)

2
2
2

ROUND(x) round off value ROUND(2.3)
ROUND(2.8)
ROUND(2.3333)

2
3
2

SIN(x) sine value SIN(30) 0.5
COS(x) cosine value COS(60) 0.5
TAN(x) tangent value TAN(0) 0.0
LOG(x) natural logarithm LOG(1.0) 0.0

LOG10(x) logarithm base 10 LOG10(10) 1.0
+ positive +2.3 2.3
- negative -3 -3

You can use these numerical operations individually within the Assign Contents text box, or
you can combine them.    For example, you can specify 2 * 3 + 4 (which causes "10" to be
assigned to the variable in the Variable Name text box).    Normal mathematical and left-to-
right precedence rules apply, unless parentheses are used.    For example, while 2 * 3 + 4 =
10, 2 * (3 + 4) = 14.
Related Topics:
Variable Icon
Assign Contents
Expressions in Assign Contents

Character Operators
You can specify an expression that uses one of the following character operators to
manipulate character strings:

&
$
EXTRACT(start,len,str)
UPPER(str)
LOWER(str)

The character operator "&" concatenates (adds) one string to another and places the result
in the variable in the Variable Name text box.    To include a space between two strings being
concatenated, add a space to the end of the first string.
The character operator "$" evaluates whether the first argument is included within the
second and returns a value of .T. or .F. to the variable in the Variable Name text box.
The character operator EXTRACT() extracts a portion of a string and places it in the variable
in the Variable Name text box.    The syntax for this operator is EXTRACT(start,len,str), where:

start is the position of the first character you want to extract
len is the length of the portion you want to extract
str is the name of the variable being manipulated

The character operator UPPER() converts a string specified within the parentheses to
uppercase.    The character operator LOWER() converts the string to lowercase.    If you use
one of these case conversion operators alone in the Assign Contents text box, it changes the
value of the variable in the Variable Name text box.
Note: If you use a case conversion operator as part of a comparison in the Assign Contents
text box, the value being converted is only converted for the comparison.

EXAMPLES:
Operator Meaning "Assign Contents" "Variable Name"
& concatenate "Hello " & "Joe" "Hello Joe"
$ inclusive "A" $ "ABC" .T.
EXTRACT() extract part of a

string
EXTRACT(1,4,@DAT
E)

"1991"

UPPER() convert to
uppercase

"abc" "ABC"

LOWER() convert to
lowercase

"ABC" "abc"

Related Topics:
Variable Icon
Assign Contents
Expressions in Assign Contents

Relational Operators
Relational Operators and Numbers
You can specify an expression that uses a relational operator to compare numbers.    When
you do a comparison of numbers in the Assign Contents text box, a logical result .T.    (for
true) or .F.    (for false) is stored in the variable in the Variable Name text box.
Use a space before and after a comparison operator.    For example, enter @NUMBER > 5,
not @NUMBER>5.
The items you are comparing can contain mathematical operations.    Normal mathematical,
and left to right precedence rules apply, unless parentheses are used.

EXAMPLES
:

Operator Meaning "Assign Contents" "Variable Name"
< less than 2 < 4 .T.

<= less than or equal to 2 <= 1 .F.
= equal to 2 * 2 = 4 .T.
> greater than 2 > 4 .F.

>= greater than or equal
to

3 >= 3 .T.

<> or # not equal to 2 * 3 <> 4 .T.

Relational Operators and Character Strings
You can specify an expression that uses a relational operator to compare character strings.   
When you do a comparison of character strings in the Assign Contents text box, a logical
result .T.    (for true) or .F.    (for false) is stored in the variable in the Variable Name text box.
Use a space before and after a comparison operator.    For example, enter "JANE" = "Jane",
not "JANE"="Jane".
Character strings are identified with quotation marks.    If a character string comparison is
being done on strings within variables, the STRING operation must be done on one of the
variables.
When character strings are compared, they are evaluated in terms of the position of each
character in the standard ASCII table.    The first character in one string is compared to the
first character in the other string.    If the two are equal, the second characters are compared
and so on.   

EXAMPLES
:
Operator Meaning "Assign

Contents"
"Variable Name"

< less than "A" < "a" .T.
<= less than or equal to "ABC" <= "ABCD .T.
= equal to "ABC" = "ABC" .T.
> greater than "ABCD" = "abcd" .F.
>= greater than or equal

to
"ABC" >= "DEF" .F.

<> or # not equal to "ABC" <> "abc" .T.
$ contains "a" $ "abc" .T.

Logical Operators
You can specify an expression that uses one or more logical operators (.AND., .OR.,
and .NOT.) to compare expressions that contain numbers, character strings, and the logical
constants .T.    and .F.    When you use logical operators to evaluate expressions in the Assign
Contents text box, a Logical result .T.    (for true) or .F.    (for false) is stored in the variable in
the Variable Name text box.
Use a space before and after a logical operator.    For example, enter @WIDTH > 80 .AND.   
@HEIGHT > 60, not @WIDTH>80.AND.@HEIGHT>60.

.AND. asserts that both expressions are true.

.OR. asserts that at least one of the comparisons is true.

.NOT. asserts that the negative of the comparison is true.

WaveAudio Icon
The WaveAudio icon is a composite that allows you to play wave audio files if you are using
the Multimedia Extensions software and an audio card such as the SoundBlaster (Creative
Labs) or the Pro Audio Spectrum (Media Vision).
Suggested Use:
· Play a wave audio file to provide feedback to a user, such as "Please press any key to continue."
Three MCI icons form the backbone of the WaveAudio composite.    Although you must be
familiar with the MCI syntax in order to fully take advantage of the MCI feature, the
WaveAudio composite already contains some values (that require minimal editing) so that
you can quickly start playing wave files as part of your IconAuthor applications.    Once you
become familiar with the MCI syntax you can customize and vary the commands.    For
information on the MCI command syntax open the help file called MCISTRWH.HLP.
The composite contains a mini-structure of icons:
1. MCI icon: Contains the command open c:\iauthor\audio\filename.wav type waveaudio alias

sound, where: open initializes the device and c:\iauthor\audio\filename.wav represents the path
and filename of the wave audio file to be played. You must change this information so that it indicates
the specific path and filename you are playing. The type waveaudio parameter is the type of device
and alias sound specifies the name "sound" as an alternate name for the waveaudio device type.

2. MCI icon: contains the command play sound which starts the wave audio file playing.
3. Input icon: Causes execution flow to stop at this point and wait for the user to provide input. This icon

specifies that the entire screen is input selectable. That means that the user can click anywhere or
press any key to cause execution flow to continue.

4. MCI icon: When the user clicks, execution flows to the third MCI icon which contains the command
close sound to suspend playback and relinquish access to the device.

Hint: If you want to use this composite to play a wave audio file while some other activity is
occurring, replace the Input icon with one or more alternative icons.    For example, if you use
a Display icon (in place of the Input icon) to run an animation script, the audio will play, the
animation will run, and when the animation completes, the audio file will be closed.
Content Editor Text Box:
The lead icon in the WaveAudio composite is labeled "WaveAudio" and contains only one
text box "Composite Name".    Enter a different name in this text box to customize the name
of the composite.
Related Topics:
MCI Icon
Input Icon

Window Icon

The Window icon lets you run your IconAuthor application in a window. When you run
IconAuthor in a window, you give the user the ability to run other applications
simultaneously. For example, if your application is teaching a user how to use another
application, the tutorial created with IconAuthor can run in a window. It can instruct the user
on the application running in another window.
You can specify the window size, window title, the background color of the window, and
whether the window is resizable.
Use of the Window icon is optional. If you do not use a Window icon in your application,
IconAuthor uses default settings to display the application. The default settings cause the
application to appear full screen with a white background. You can change the default
settings by choosing Default Window Setup... from the Run menu of the IconAuthor window.
The Default Window Setup dialog box appears and lets you specify settings for the size, title,
re-sizability, and color of a window.
Note: In many situations, a Window icon is one of the first icons in your structure. If you
choose to run the application from a selected icon (and the Window icon is not included in
the icons that are executed), the default window settings in the Default Window Setup dialog
box are used.
You can include one or more Window icons in your application, although only one IconAuthor
window can exist at one time.
The Window Object
Technically, any application that displays information to the screen runs in a window. The
window in which the application runs is actually an object. Like the other objects available in
IconAuthor, the Window object can be manipulated at runtime. For example, you use an
ObjSet icon to change the background color of the window by re-setting its ColorBackground
property.
Content Editor Fields:
Window Size
Window Title
Window Re-size
Window Color

Related Topics:
Using the Window Object
Changing Window Properties
Window Properties

Window Size
Specify the size of the client area of the window. The client area is the area of the window
exclusive of the title bar and window borders.
You can make the application appear full screen or you can specify dimensions so that the
application appears in a window. If you specify a size that is the same as the screen
resolution (for example, 640 x 480) the application appears full screen. If you specify a size
that is smaller than the screen resolution in either the X or Y dimension, the window is
movable. If you specify a size that is larger than the screen resolution in either the X or Y
dimensions, the window is not movable, does not have a title bar, and is centered on the
screen.
Acceptable values are: full screen, 4 numbers (separated by commas) that define a
window's area on the screen (the first two numbers are the x,y coordinates of the upper left
corner of the window, the second two numbers are the width and height of the window), or a
variable.
Drop-down List Box Items:

full screen - Causes the IconAuthor application to appear full screen on the monitor. The application
has no title bar and is not resizable.
Area Editor
Variable Selector

Window Title
Specify the text you want to appear in the title bar of the window.
Note: If you specified full screen as the window size, do not specify a window title.    If you
do specify a title, it is ignored.
Acceptable values are: text that represents a title, or a variable.    The number of characters
you can enter depends on the size of the window.
Drop-down List Box Item:

Variable Selector

Window Re-Size
Specify whether you want the window to be resizable.
Note: If you specified full screen as the window size, do not specify a value in this text box.   
Any value you specify is ignored.
Acceptable values are: no, yes, or a variable.
Drop-down List Box Items:

no - The window is movable, but not resizable. It cannot be minimized to an icon.
yes - The window is movable, resizable, and it can be minimized to an icon. When the user minimizes
the application, execution halts. Execution resumes when the application is restored or maximized.
Variable Selector

Window Color
Specify the background color of the window.   
Acceptable values: are a color name, an RGB value, or a variable.
Drop-down List Box Items:

assorted colors - Frequently used colors such as white, black, red, etc.
Color Editor
Variable Selector

Write Icon
The Write icon dynamically displays text or the value stored in a variable on the screen.   
The Write icon can display numbers or strings, however, only one line of characters can be
displayed by each Write icon.    The number of characters that you can display in one line
depends on your system, and the font type and font size you are using.
Suggested Uses:
· Display a brief question or message on the screen.
· Display the content of a variable on the screen.
The Write icon is useful for debugging applications because you can display the contents of
variables on the screen, during execution.    For example, you may create an application that
contains an indexed loop.    You intend for the loop to execute three times, however, it
appears to execute only two times.    To test whether the index variable is incrementing
properly, place a Write icon under the Loop Start icon.    The Text to Display text box is
@COUNT.    Next, place a Pause icon below the Write icon to display the current value of
@COUNT at the location specified.
To set the font type, font size, and/or color that are used to generate the characters on the
screen, precede the Write icon with a Font icon and/or a Color icon.    If you do not use these
icons, the system default font, size, and color are in effect.
Note: When you use the Font and Color icons, the new settings are in effect until you use
subsequent Font or Color icons.
Content Editor Text Boxes:
Text To Display
Location
Related Topics:
Font Icon

Text To Display
Specify the text or variable you want to display.    You cannot use one Write icon to display
both text and the contents of a variable.    If you are displaying text, do not enclose the text
in quotation marks unless you want the text to appear on the screen within quotation marks.
Acceptable values are: a text string or a variable.
Drop-down List Box Item:
Variable Selector

Related Topic:
Write Icon
Font Icon

Location
Specify the location where you want the text or the contents of the variable to appear on the
screen.    Indicate the location by specifying the coordinates of a point on the screen.    This
point is the upper left corner of the area occupied by the characters displayed on the screen.
This means that if you select a point, the text is displayed below and to the right of that
point.
Acceptable values are: a pair of coordinates (separated by commas) that define the upper
left corner of the area where text will appear on the screen, or a variable.
Drop-down List Box Items:

Location Editor
Variable Selector

File Menu
New... command
Starts a new application or text window.
Related Topics:
Starting New Applications
Starting to Create ASCII Text Files
Open... command
Opens a previously created application file, graphic file, ASCII text, or SmartObject file.
Related Topics:
Opening Existing Applications
Opening Existing ASCII Text Files
Opening Graphic Files in the IconAuthor Work Area
Opening SmartObject Files in the IconAuthor Work Area
Save command
Saves changes to an existing application file.
Related Topics:
Saving Applications
Saving ASCII Text Files
Save As... command
Saves and names an application file for the first time.    Or saves and renames an existing
application file.
Related Topics:
Saving Applications
Saving ASCII Text Files
Properties
Displays a cascading menu of commands specific to preparing files for distribution via the
Resource Manager.

Register Resources
Allows you to register resources for an application.
File Type...
Allows you to specify whether a file is a main application or a sub-application.

Library command
Displays a cascading menu of File menu commands that apply specifically to library files.

Open... command
Loads a different library file.
Save command
Saves changes to an existing library file.
Save As... command
Saves and names a library file for the first time.    Or saves and renames an existing
library file.

Delete...
Deletes an application, graphic, ASCII text, or SmartObject file.
Page Setup...
Sets the top, bottom, left, and right margins and specifies information to be included in the
header and footer of a printed page.
Related Topic:
Using Page Setup
Print...
Print an application, graphic, ASCII text, or SmartObject page.
Related Topic:
Printing
Printer Setup...

Selects a printer driver and a printer connection
Exit
Exits IconAuthor.    Gives you the opportunity to save changes to application and ASCII text
files.

Edit Menu
Cut command
Deletes the selected icon(s) from an application, or deletes the selected text from a text
window.    The cut item is placed on the Clipboard.
Related Topics:
Cutting Icons
Editing ASCII Text Files
Copy command
Copies the selected icon(s) from an application, or copies the selected text from a text
window.    The item is placed on the Clipboard.
Related Topics:
Copying Icons
Editing ASCII Text Files
Paste command
In an application file, causes the cursor to appear as the Clipboard symbol.    The Clipboard
can then be dragged and dropped to a position in the structure.    In a text window, inserts
the text on the Clipboard at the current insertion point.
Related Topics:
Pasting Icons
Editing ASCII Text Files
Clear command
Clears the selected icon(s) from a structure or clears the selected text from a text window.   
Cleared items are permanently removed and are not placed on the Clipboard.
Related Topics:
Clearing Icons
Editing ASCII Text Files
Select All command
In an application, selects every icon in the structure.    In a text window, selects all the text.
Related Topic:
Selecting Icons
Copy To... command
Copies selected icon or icons to a new application file.
Related Topic:
Copying Part of a Structure to a New File
Paste From... command
Allows you to insert the structure of another application into the structure in the active
application window.
Related Topic:
Inserting Another Application into the Current Structure
Find... command
Locates an icon, of a particular name, in the structure
Related Topic:
Jumping to Icons in a Large Structure
Find Next command
Locates the next icon, of a particular name, in the structure.    Used after the Find...   
command.
Related Topic:
Jumping to Icons in a Large Structure
Application command
Displays a cascading menu of Edit menu commands that apply only to application files.

Compress Composite command
Hides all the icons in a composite, except the lead icon.
Related Topic:
Compressing Icons in a Composite
Make Composite... command
Makes a selected range of icons into a composite.
Add Composite to Library command
Adds a composite to the Custom folder of the icon library.
Disable Selection command
Makes a selected icon or a selected range of icons temporarily un-executable.
Related Topic:
Disabling and Enabling Icons
Enable Selection command
Makes a selected icon or a selected range of icons executable.    Undoes the Disable
Selection command.
Related Topic:
Disabling and Enabling Icons
Enable All command
Enables all icons in a structure.    Undoes the Disable Selection command.
Related Topic:
Disabling and Enabling Icons
Add Content... command
Opens the Content Editor of a selected icon in the structure.
Related Topic:
Opening Content Editors

Library command
Displays a cascading menu of Edit menu commands that apply specifically to library files.

Expand Categories command
Opens all library folders.
Compress Categories command
Closes all library folders.
Add Content...command
Opens the Content Editor of a selected icon in the icon library.
Build command
Causes the cursor to appear as the currently selected icon in the library.    Move the
cursor to a position in the structure and click to build.
Related Topic:
Building Structures
Remove Icon command
Removes the selected icon from the library.

Variables command
Displays a cascading menu of Edit menu commands that apply specifically to variables.

Clear Application Variables command
Clears any application variables previously generated when an application was run.
Set Path From File...command
Allows you to use another .PTH file to reset the path variable values in the .PTH file that
corresponds to the current application.
Related Topics:
Understanding IconAuthor Path Files
Customizing the Directory Structure

Run Menu
Application From Top command
Runs all enabled icons in the application from the Start icon.
Related Topics:
Running an Application
General Execution Rules
Disabling and Enabling Icons
Application From Selected command
Runs all the enabled icons in the application from a selected icon.
Related Topics:
Running an Application
General Execution Rules
Disabling and Enabling Icons
Debug command
Displays a cascading menu of commands for debugging applications using IAScope.

Set Stop Point... command
Sets debug stop points.
Clear Stop Point command
Clears currently selected stop point.
Clear All Stop Points command
Clears all stop points.

Default Windows Setup... command
Designates the way in which an application appears when executed, for example, in a
resizable window, or full screen.
Related Topics:
Default Window Setup
Editors command
Displays a cascading menu of commands that run various IconAuthor editors and other
external programs.

Animation... command
Runs IconAnimate, the IconAuthor animation editor.    Lets you create and save
animation files.
IAScope... command
Runs the IAScope, the IconAuthor visual debugging program. Lets you debug your
IconAuthor application.
Resource Manager...
Runs the IconAuthor Resource Manager. Lets you organize and distribute your
applications.
ImageLab... command
Runs the IconAuthor graphics utility, ImageLab.
SmartObject... command
Runs the IconAuthor object-oriented text editor.    Lets you create SmartObject files.
Video... command
Runs the IconAuthor Video Editor.    Lets you view material from a videodisc, videotape,
or digital video file.
Paintbrush
Runs the graphics editor, Paintbrush.
Calculator
Runs the Calculator.
Clipboard
Runs (shows the contents of) the Clipboard.
Notepad
Runs Notepad, the text editor.

Options Menu
Structure Setup... command
Allows for customizing the characteristics of icons in the structure.    For example, icons can
be displayed with or without labels.
Library Setup... command
Allows for customizing how icons appear in the library.    For example, folders can be open or
closed.
Color Scheme... command
Allows for customizing the colors used to indicate the current state of icons.    For example,
whether they are selected.
Auto Save...
Accesses the Autosave feature which can be set to automatically save application files after
a specified number of edits have been performed. By default, this feature is turned off.
Video Setup... command
Allows for setup of a specific videoplayer.    For more information, see the IconAuthor Getting
Started book.
Overlay Setup... command
Allows for setup of a specific video overlay card.    For more information, see the IconAuthor
Getting Started book.
Audio Setup... command
Allows for setup of a specific audio card.    For more information, see the IconAuthor Getting
Started book.
Add Content On Build
When this option is toggled on the Content Editor will be automatically opened each time an
icon is added to the structure.
Related Topic:
Adding Content
Backup Structure On Save command
When this option is toggled on, IconAuthor creates a backup file of the application file
currently being save.    The backup file has a .BAK extension.
Confirm Clear command
Causes IconAuthor to ask you to confirm whether you want to clear icons when you use the
Clear command from the Edit menu or drag an icon to the trashcan.
Related Topic:
Clearing Icons

View Menu
Library command
When this option is toggled on, the Icon Library is visible.
Ribbon command
When this option is toggled on, the ribbon bar is visible.
Status command
When this option is toggled on, the status bar is visible.
Zoom command
Displays a cascading menu of commands that zoom or un-zoom the structure.
Related Topic:
Zooming the Structure

25% command
Zooms the structure to 25%.
50% command
Zooms the structure to 50%.
75% command
Zooms the structure to 75%.
100% command
Zooms the structure to 100%.

Window Contents command
Displays a cascading menu of commands that change the current view in a active
application window.

Structure command
Displays the structure of an application.
User Variables command
Displays the user variables associated with an application.
System Variables command
Displays the system variables associated with an application.
Path Variables command
Displays the path variables associated with an application.

Window Menu
Tile command
Rearranges the currently open document windows so that all are visible within the work
space.
Cascade command
Causes the currently open document windows to overlap so that each title bar is visible.
Close All command
Closes all of the currently open document windows.    Asks if you want to save a file if it
contains unsaved changes.
Related Topic:
Closing Files
Duplicate command
Makes a duplicate of the active document window.    If you make changes to information in a
duplicate window, the changes are also made to the original and any other duplicates of that
window.
Related Topics:
Editing Between Windows
Show File Path command
When this option is toggled on, full paths are displayed for document window title bars and
minimized document windows.

Help Menu
Index command
Displays a list of Help topics.
Keyboard command
Displays a table of accelerators for performing some tasks with the keyboard instead of the
mouse.
Commands command
Displays an explanation of commands.
Procedures command
Displays a description of how to use IconAuthor.
Using Help command
Displays a short tutorial and other information about using online Help.
About IconAuthor... command
Displays IconAuthor copyright and version information.

Area Editor
The Area Editor is accessed from one of several Content Editor drop-down list boxes.    Use
the Area Editor to select an area on the screen.    When you close the Area Editor, the
coordinates of the area that you selected are returned to one or more appropriate text
boxes.
When you access the Area Editor the screen background becomes black and the Area Editor
appears.
Before you select an area, you can optionally display a bitmap graphic, SmartObject page, or
video frame on the background to simulate how the screen will look at runtime.    If you
choose to display a graphic, SmartObject page, or video frame, the appropriate check boxes
are turned on.    The next time you access the Area Editor, those display mechanisms are still
set to on.    To stop displaying a graphic, etc., de-select the appropriate check box.
To select an area:
1. Position the pointer at the location that you want to be the upper left corner of the box-shaped area you

are selecting.
2. Press the mouse button and drag down and to the right to draw a box-shaped area.

If you decide to stop selecting an area, click on the right mouse button.
3. When you are satisfied with the size of the area, release the mouse button.

The numbers in the Coordinates text box are fixed and reflect the upper left corner, width, and height
of the box. If you want to select a different area, repeat steps 1 through 3 as many times as
necessary. Each time you begin selecting an area, the previously selected area disappears.

4. Click OK.
Key coordinates of the area you selected are returned to one or more appropriate Content Editor text
boxes.

Related Topics:
Displaying a Bitmap in the Editor
Displaying a SmartObject Page in the Editor
Displaying a Video Frame in the Editor

Displaying a Bitmap Graphic in the Editor
1. Select Display Graphics.

A File Open dialog box appears.
2. Double click on the file you want to display.

The file is displayed with its upper left corner located at the upper left corner of the screen.

Displaying a SmartObject Page in the Editor
1. Select Display Text.

A File Open dialog box appears.
2. Double click on the file you want to display.

A SmartObject page Selection dialog box appears.
3. Double click on the page you want to display.

The page is displayed with its upper left corner located at the upper left corner of the screen.

Displaying a Video Frame in the Editor
To display the current video frame:
· Select Video Overlay.

The current video frame is displayed.

Note: The Video Editor is only available if you have installed and configured the necessary
video hardware and software.
To use the Video Editor to display a frame:
· Choose Video Editor.

The Video Editor appears and you can use the Video Editor control panel to display a specific frame.
Close the Video Editor and that frame is displayed while you use the Area Editor.

Note: The Video Editor is only available if you have installed and configured the necessary
video hardware and software.

Location Editor
The Location Editor is accessed from one of several Content Editor drop-down list boxes.   
Use the Location Editor to select a point on the screen.    When you close the Location Editor,
the coordinates of the point that you selected are returned to the appropriate text box.
When you access the Location Editor the screen background becomes black and the
Location Editor appears.
Before you select an area, you can optionally display a bitmap graphic, SmartObject page, or
video frame on the background to simulate how the screen will look at runtime.
If you choose to display a graphic, SmartObject page, or video frame, the appropriate check
boxes are turned on.    The next time you access the Location Editor, those display
mechanisms are still set to on.    To stop displaying a graphic, etc., de-select the appropriate
check box.
To select a location:
1. Move the mouse cursor to the point you want to select.
2. Click on the location that you want to select.

A small rectangle appears at the selected point. The coordinates of the point appear in the Location
Editor's Coordinates text box. If you want to select a different location, repeat steps 1 and 2 as many
times as necessary. Each time you select a location, the coordinates of the new location appear in
the Coordinates text box.

3. Click OK.
The coordinates of the location you selected are returned to the appropriate Content Editor text box.

Related Topics:
Displaying a Bitmap in the Editor
Displaying a SmartObject Page in the Editor
Displaying a Video Frame in the Editor

Input Template Editor
Typically, you access the Input Template Editor from a drop-down list box of the InputMenu
icon Content Editor.    You can also access this editor through the Variable icon.    Use the
editor to create a template of selectable areas on the screen.    Optionally, you can save this
information to a template file so that you can easily use the same selectable areas for
another InputMenu or Variable icon.    When you close the editor the coordinates of the areas
you specified are returned to the appropriate text box.
When you access the Input Template Editor the screen background becomes black and the
Input Template Editor appears.
Before you select an area, you can optionally display a bitmap graphic, SmartObject page, or
video frame on the background to simulate how the screen will look at runtime.
To select input template areas:
1. Position the pointer at the location that you want to be the upper left corner of a selectable area. (If the

Input Template Editor obstructs the point you want to select you can drag it out of the way.)
2. Press the mouse button and drag down and to the right to draw a box-shaped area.

When you press the mouse button four numbers separated by commas appear in the editor's
Coordinates area. The first two numbers are the coordinates of the upper left corner of the area you
are selecting. The second two numbers are 0,0, and represent the current width and height of the
area. As you drag down and to the right, the second two numbers change to reflect the current
width and height.
If you want to cancel your selection, click on the right mouse button.

3. When you are satisfied with the size of the area, release the mouse button and the numbers are
recorded as the first template.
If you want to create more areas, repeat steps 1 through 3 as many times as necessary. Each time
you define a new area, the template number is incremented by one. The number recorded for the
template corresponds to the branch number in the InputMenu composite icon.
The numbers in the Coordinates text box are fixed. If you want to delete the area, click on it and
choose Delete.

4. Click OK.
The coordinates of the selectable areas are returned to the appropriate Content Editor text box.

To resize a template area:
1. Click on the template area you wish to resize. Eight resizing blocks are displayed around the

template area.
2. Position the cursor over the resizing block. It will become a double headed arrow.
3. Press the left mouse button and drag the cursor.

To move a template area:
1. Click on the template you wish to move to select it.
2. With the cursor positioned anywhere within the area, press the left mouse button and drag the mouse

pointer to move the template area to the new location.
Related Topics:
Working with Template Files
Displaying a Bitmap in the Editor
Displaying a SmartObject Page in the Editor
Displaying a Video Frame in the Editor

Working with Template Files
IconAuthor also gives you the option of saving templates in files, so that you can easily use
them in other InputMenu and Variable icons.    If you decide to save a template as a file,
name it with a .TEM extension and store it in your INPUT subdirectory.
To save a new template file:
1. Choose Save As... from the File menu of the editor.

A File Save As dialog box appears.
2. Type the name of the new template file in the Filename text box.
3. Choose OK.

If you want to begin creating another new template file, choose New from the File menu of the editor,
specify the selectable areas, and choose Save again.

To save changes to a template file:
· Choose Save from the File menu of the editor.

The template file is automatically saved.

To open an existing template file:
1. Choose Open... from the File menu of the editor.

The File Open dialog box appears.
2. Select a file from the Files list box.
3. Choose OK.

The file you chose is opened and the selectable areas it specifies are visible in the editor window. To
return the coordinates of these areas to the Content Editor, choose OK.

Displaying a Bitmap Graphic in the Input Template Editor
1. Choose Graphics File... from the Show menu.

A File Open dialog box appears.
2. Double click on the file you want to display.

The file is displayed with its upper left corner located at the upper left corner of the screen.

Displaying a SmartObject Page in the Input Template
Editor
1. Choose Text File... from the Show menu.

A File Open dialog box appears.
2. Double click on the file you want to display.

A SmartObject Page Selection dialog box appears.
3. Double click on the page you want to display.

The page is displayed with its upper left corner located at the upper left corner of the screen.

Displaying a Video Frame in the Input Template Editor
Note: Video is only available if you have installed and configured the necessary video
hardware and software.
To display the current video frame:
· Choose Overlay from the Show menu.

The current video frame is displayed.

To use the Video Editor to display a frame:
· Choose Video Editor... from the Show menu.

The Video Editor appears and you can use the Video Editor control panel to display a specific frame.
Close the Video Editor and that frame is displayed while you use the Input Template Editor. For
information on how to use the Video Editor, see Chapter 12.

Color Dialog Box
The Color dialog box is accessed from one of several Content Editor drop-down list boxes.   
Use the Color dialog box to select a color or create a custom color.    When you access the
Color dialog box through a Content Editor, work with it, and close it, the last selected color is
returned to the appropriate text box in the form of a keyword or an RGB (red green blue)
value.
Related Topics:
Selecting a Basic Color
Creating a Custom Color

Selecting a Basic Color
To choose a basic color:
1. Select one of the 48 color cells in the Basic Colors palette.
2. Choose OK to accept the change or choose Cancel to dismiss the dialog box without accepting

changes.

Creating a Custom Color
To create a custom color:
1. Click on the Define Custom Colors... button in the Colors dialog box.

The Color is extended to show the custom color selector.
2. Click on an empty cell in the Custom Colors area.
3. Drag the color refiner cursor to the area of the color refiner box that shows the color you want to use.

Then drag the arrow next to the vertical luminosity bar up or down to adjust the luminosity.
As you change the color, the new color is displayed on the left side of the Color/Solid box. The right
side of the box displays the solid color closest to your choice. If you want to select the solid color,
double-click on the right side of the box.

4. When you are satisfied with the color, click on the Add to Custom Colors button.
The color is added to the selected cell.

5. Define any other colors you want to add to the palette and choose OK to accept the changes and close
the Colors dialog box.

Variable Selector
Access the Variable Selector from any Content Editor drop-down list box.    Use the Variable
Selector to select an application or system variable.    When you close the Variable Selector,
the variable you selected is returned to the appropriate text box.    Using the Variable
Selector reduces the chance of typing errors.
System Variables automatically appear in the Variable Selector regardless of whether they
have values.    Application variables only appear in the Variable Selector after an application
has been run.
To use the Variable Selector:
1. Choose Variable Selector from a drop-down list box of a Content Editor.

The Variable Selector appears.
2. Select a variable from the list.

If the application has been run and contains application variables, those variables appear in
alphabetical order at the beginning of the list. System variables appear at the end of the list.

3. Choose OK.
The Variable Selector is closed and the selected variable is returned to the appropriate text box.

Directory
The Directory item lets you search for the name of a file to enter in a Content Editor text
box. To access the Directory, select that item from the list box.    A Directory file selection
dialog box appears.
The Directory dialog box varies depending on the type of file for which you are searching.   
For example, when you use the Directory item from the Display icon and have indicated you
are searching for a bitmap graphic file type, the dialog box comes up with the *.BMP, *.RLE,
and *.PCX filters and searches your graphic file subdirectory for matching files.
Select the filename you want and choose OK. The Directory dialog box is closed and the
filename is entered in the Filename text box.

Font Dialog Box
To change font information:
1. Select the font you want to use from the Font list box.

The fonts that are available are those that are currently loaded in Windows. A sample of the font that
you select appears in the Sample area.

2. As necessary, adjust the Font Style and Size.
The available options vary depending on the currently selected font.

3. As necessary, click on the Strikeout and Underline options in the Effects area.
4. Use the drop-down list in the Color area to change the color of text.
5. When you are satisfied with the font as it appears in the Sample area, choose OK to close the Font

dialog box.

Object Name Selector
Use the Object Name Selector dialog box to easily locate an Object Name to return to the
Content Editor. The Object Name Selector dialog box gives you a way of viewing
ObjectNames without running the SmartObject Editor and opening the correct file and page.
1. Choose Object Name Selector from the Name drop-down list box of an object icon. It is also available

from the If icon's Condition 2 text box.
2. Select the SmartObject file that you want to access.

The File drop-down list shows a history of the last five files selected. To choose a different file, click on
the Browse... button. When the Open dialog box appears, locate and double-click on the desired file.

3. Use the Page drop-down list to select a Page in the specified file.
The Page drop-down list box shows all the pages in the file.

4. Use the Name drop-down list to select an ObjectName.
The Name list shows all the objects on the selected page. If an object is unnamed, it is represented by
the expression "[empty]."

5. Choose OK to close the ObjectName Selector.

After you use the Object Name Selector to find an ObjectName for an ObjSet or ObjGet icon,
the Property drop-down list conveniently displays the properties specific to the selected
object. In the ObjSet icon, the Value drop-down list also displays the potential values that are
appropriate for the selected property. The value to which the property was initially set in the
SmartObject Editor is preceded by an asterisk ("*").

Object Event Selector
Use the Object Event Selector to select an event that you want to use in the If icon's
Condition 2 text box. This tool is convenient when an If icon is testing whether the value in
@_Object_Event is equal to a particular event.
To use the selector:
1. Choose the appropriate object class from the drop-down list.

All possible events for the selected class appear in the list box.
2. Choose an event.
3. Click on OK to close the selector.

Icons
Icons are the building blocks of an IconAuthor application. Each icon is a small picture that
represents a function that can be performed. As an example, a Display icon allows your
application to display a file (such as a graphic) on the screen.
Related Topics:
Icon Library
Building with Icons
Defining How Icons Perform
Icons:
Beep Icon
Box Icon
Branches Icon
CD-Audio Icon
Circle Icon
Clear Icon
Color Icon
DDE Icon
DllCall Icon
Dll Link Icon
Database Icon
Date&Time Icon
Display Icon
Ellipse Icon
Exit Icon
Font Icon
Help Icon
If Icon
Input Icon
InputMenu Icon
Line Icon
LoadVar Icon
Loop Icon
LoopIndex Icon
MCI Icon
Menu Icon
MIDI Icon
Module Icon
MsgBox Icon
Note Icon
ObjDelete Icon
ObjEvent Icon
ObjGet Icon
ObjMenu Icon
ObjQueue Icon
ObjSet Icon
Parse Icon
Pause Icon
Print Icon
Program Icon
RS-232 Icon
Random Icon
SaveVar Icon
Shuffle Icon
Snapshot Icon

Startup Icon
SubApp Icon
SubAssign Icon
Subroutine Icon
Text Icon
V:Audio Icon
V: Frame #? Icon
V: Overlay Icon
V:PlayTo Icon
V:Player Icon
V:Segment Icon
V:Still Icon
Variable Icon
WaveAudio Icon
Window Icon
Write Icon

Working with Objects
Objects are as essential to applications as icons. While icons make up the structure of your
application, controlling which action takes place in what order, objects also play a key role in
determining the appearance and performance of your application. The following objects are
available for use in your applications:
Audio
Button
Combo Box
Database
Graphic
HTML
IconAnimate
Keyboard
List Box
Menu
Movie
OLE
Palette
Table
Text
Timer
Transparent
Variable

You use IconAuthors SmartObject Editor to create a file that contains these kinds of
objects. In the editor you position the objects exactly where you want them and you
customize their appearance so that they look just right. For example, first you draw a
Button, then you move it and resize it, then you can set its label so that is says OK.
Three additional live objects are automatically available in every application. Unlike the
other objects, you do not create these objects in the SmartObject Editor.
Application
System
Window
Defining how objects look and perform is called setting properties. Every object has
properties (characteristics) that you can set. For example, in order to turn a Button object
into an OK button, you set the objects Label property to OK.
All the objects are live by default. When an object is live, the user can interact with it at
runtime. For example, a Button object is live and therefore a user can click on it. Also, when
an object is live, your application can manipulate it. For example, if a Button object is live
you can use an icon to change its Label property at runtime so that it changes from a Play
button to a Pause button.
You have the option of making a small number of objects static instead of live. However,
once static objects are displayed, they behave as if they are part of the background. Your
application cannot set properties of static objects at runtime.

Building Structures
To begin building a structure you must first use a command in the File menu to open an
application window. You can start a new application (using the New... command) or open an
existing one (using the Open... command). Once the application window is open, you begin
building by:
1. Finding the appropriate icon in the Icon Library.

2. Dragging the icon to the desired position in the structure.

3. Dropping the icon into position.

Related Topics:

Finding Icons in the Icon Library
Jumping to an Icon in the Library
Dragging and Dropping Icons

Finding Icons in the Icon Library
When you first open IconAuthor, the icon library displays the contents of the IAUTHOR.LIB
file. To see more of the library contents, use the scroll bar to scroll up or down. The
IAUTHOR.LIB library file contains the most frequently used IconAuthor icons arranged
alphabetically. If you prefer to have all the IconAuthor icons available, load the library file to
IAFULL.LIB.

Jumping to an Icon in the Library
Instead of scrolling through the library to find an icon, you can use a special feature to
automatically jump to a particular alphabetical portion of the library.
To jump to an icon in the library:
1. Click on any icon in the library.

2. On the keyboard, press the first letter of the icon you want to find.

The library jumps to and highlights the next icon that begins with the chosen letter. If you press the
letter again, IconAuthor finds the next icon that begins with that letter. When it reaches the end of the
library, IconAuthor loops back to search from the beginning of the library.

Dragging and Dropping Icons
The technique you use to move icons from the library into a structure is called drag and
drop. When you build an icon from the library into a structure you actually use a copy of
that icon. The original icon remains unchanged and available for use in the Icon Library.
To drag and drop an icon into a structure:
1. Position the arrow-shaped mouse pointer over an icon in the library.

2. Press and hold the left mouse button.

The icon is selected and appears indented as though it is a button that has been pushed in.

3. Continuing to hold the mouse button down, drag the icon to the point in the structure where you want
to build it.

As soon as you drag, the mouse cursor assumes the shape of the selected icon. The original icon in
the library remains unchanged and you are now dragging a copy of the icon into the application
window. If this is the first icon you are building, drag the icon until it is just below the Start icon. If there
are already other icons in the structure, you can drag the icon to a point just below one of the icons or
between two icons.

Most icons can only be built just below or just above another icon. However, some icons, such as the If
icon can also be built just to the right of an icon in the structure.

4. Drop the icon into the structure by releasing the mouse button.

Icons can only be dropped in the following valid positions: the structure, the Clipboard, and the Trash
Can. If the icon is dragged to an invalid position the cursor changes from the icon shape to a red circle
with a diagonal bar through it. If you drop the icon in an invalid position, the drop is aborted. When you
re-enter valid areas the cursor changes back to the icon cursor.

If you drop the icon into the structure in a valid position, the icon becomes part of the structure and the
cursor reverts to the shape of the hand holding the pen.

Note: Most often, when you build an icon from the Icon Library into a structure, the icon, as it
appears in the library, is added to the structure in the window. The exception to this rule is
the composite icon. A composite icon is one icon in the library that actually represents a
mini-structure of several icons in the structure.
You can build as many icons as you like into the structure. At any time, you can move on to
other tasks such as adding content to the icons you have built into your application or
editing the application structure.

Composite Icons
A composite icon is one icon in the library that actually represents a mini-structure of several
icons. Composites provide a way for saving groups of icons that represent a portion of a
structure that is commonly used in many applications or repeatedly used in one. IconAuthor
contains some composite icons in the initial library. You can also create and save your own
composites which become part of the icon library and can be used in multiple applications.
When you select a composite from the library and build it into your structure, the icon
structure of the composite will appear in your structure, allowing you to add content to each
of the icons in the composite.
Icons in the library that are composites are:
Branches Icon
Loop Icon
LoopIndex Icon
ObjMenu Icon
As an example, when you find the Loop icon (a composite) in the library and build it into the
structure, a mini-structure of 3 icons appears. The first icon in a composite (in this case, the
one labeled "Loop") is called the lead icon.

Adding Content
After the structure is built, you add content to each of the icons in the structure. Through a
series of dialog boxes, you specify what the application will do when it is executed. Every
icon has its own dialog box associated with it called a Content Editor. For example, there is
a Display icon Content Editor, a Pause icon Content Editor, and so on.
Related Topics:

Content Editors
Icon Colors
Naming Icons
Entering Values
Accessing Editors or other Dialog Boxes

Editing Applications
As you create your application, you can run and check it at any time. The process of
detecting and fixing errors in the structure or content is called debugging. You can debug
your application by simply running it and checking each piece of functionality or you can run
the application in conjunction with IconAuthors visual debugging tool called IAScope.
IAScope lets you run the application and view the content of each icon as it executes. If
something unexpected occurs during execution, you can take a look at the IAScope viewer
to see which icon is the source of the problem.
As you check your application, you can edit either the structure, the content, or both. When
you edit the structure you perform tasks like copying icons and inserting them elsewhere in
the structure, and deleting icons from the structure. When you edit the content of the
application you re-open an icon's Content Editor and change the values. You can change
only the values in the dialog box, or the underlying content file (such as a graphic or
animation) that the Content Editor invokes.
Related Topics:
Editing Structures
Running an Application
General Execution Rules
Debugging

The IconAuthor Window
The IconAuthor window contains the following the major components:
Title Bar
The IconAuthor title bar contains the name of the application, "IconAuthor."
Menu Bar
The IconAuthor menu bar has seven pull-down menus. The menus allow you to create, edit,
and manage your applications, tailor the appearance of your IconAuthor window, and access
online Help.
Ribbon Bar
The ribbon bar is a graphic bar across the top of the IconAuthor window. You can click on
these buttons to quickly perform some of the more frequently used IconAuthor tasks. All of
the functions in the ribbon bar are also available through the commands in the menu bar.
Work Area
The work area is where you open the window in which you create applications. Initially, the
work area contains a graphic image of the IconAuthor logo.    As soon as you pull down any
menu in the menu bar the logo disappears and the work area is cleared.
Icon Library
The Icon Library (also referred to as simply the "library") contains the icons that you use to
build a structure within an application window. The most frequently used icons appear in the
library by default, and are contained in a library file called IAUTHOR.LIB. Additional icons are
available in an alternative library file called IAFULL.LIB.
Status bar
The status bar displays information about the icon on which the cursor is currently
positioned. For example, when the cursor is over the Start icon the status bar shows the
message 1,1:Start. This indicates that the icon is in the first row of the first column of icons
and it's name is Start. When you add content to an icon, the data you provide also appears
in the status bar.

Starting an Application
The first time you begin work on an application you must open a new application window.
To open a new application window:
1. Choose New... from the File menu.

The New dialog box appears with the Application Window option selected.

2. Choose OK to open a new application window.

A blank, untitled application window appears.

The new application window automatically contains a Start icon in the top left corner. The
Start icon is not in the Icon Library because it is built into every structure.    It cannot be
moved, removed, or otherwise edited. Once you open a new application window you will also
notice that the shape of the mouse cursor changes depending on its location. When the
mouse cursor is within the application window it appears as a hand holding a pen.    When
the mouse cursor is anywhere other than the application window it appears as an arrow.

Audio Objects
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X

Audio objects can play wave (.WAV) files, MIDI (.MID) files, and CD audio.
Note: The Audio object uses MCI to play audio. You must have the Multimedia Extensions
software to use the Audio object. In order to play .WAV and .MID files your system also
requires a sound card that supports MCI, such as SoundBlaster. In order to play CD, your
system requires a CD-ROM drive.
The following list shows all of the Audio object properties.
Command
CommandOnCreation
DeleteProtected
Enabled
FamilyName
Filename
Information
Layer
Length
NotifyOnComplete
NotifyOnError
ObjectData
ObjectName
PageName
PlayCount
PositionCurrent
PositionEnd
PositionSeek
PositionStart
Result
ResultString
Status
TrackCount
TrackLength
TrackNumber
WindowHandle

Button Objects
Button objects are Push Button style by default. When you right mouse click on a Button
object you can choose the Button Styles... option to show the following list of available
styles:
Push Button
Check Box
Radio Button
Group Box
Picture Push Button
The selection of properties varies depending on the style of button you have chosen.

Push Buttons
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X

A Push Button is the conventional type of button that you would use for an OK or Cancel
button. You can also use Push buttons as Menu options. The following list shows all of the
Push Button object properties.
Area
Bottom
ClipSiblings
ControlCommand
ControlObjectName
CursorName
DeleteProtected
Enabled
FamilyName
Filename
FilenameDisabled
Focus
Font
Height
KeyboardTabStop
Label
LabelType
Layer
Left
Location
NotifyOnClickLeft
NotifyOnClickMiddle
NotifyOnClickRight
NotifyOnEnter
NotifyOnGetFocus
NotifyOnLeave
NotifyOnLoseFocus
ObjectData
ObjectName
PageName
Rectangle
Right
Size
Style
Top
Visible
Width
WindowHandle

Picture Push Buttons
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X

Picture Push Buttons are similar to Push Buttons that display graphics. However, the graphic
in a Picture Push Button can cause the button to appear in three different states. The
following list shows all of the Picture Push Button object properties.
Area
Bottom
ButtonStates
ClipSiblings
ControlCommand
ControlObjectName
CursorName
DeleteProtected
Enabled
FamilyName
Filename
FilenameDisabled
Focus
Height
KeyboardTabStop
Layer
Left
Location
NotifyOnClickLeft
NotifyOnClickMiddle
NotifyOnClickRight
NotifyOnEnter
NotifyOnGetFocus
NotifyOnLeave
NotifyOnLoseFocus
ObjectData
ObjectName
PageName
Rectangle
Right
Size
Style
Top
Visible
Width
WindowHandle

Check Boxes
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X

Users switch Check Boxes on and off by clicking on them. Check Boxes work independently
of each other. For example, if you present users with three check boxes, they can switch any
number of them on or off. The following list shows all of the Check Box object properties.
Area
Bottom
Checked
ClipSiblings
ColorBackground
ColorText
CursorName
DataChanged
DataFieldName
DataObjectName
DataValueChecked
DataValueUnChecked
DeleteProtected
Enabled
FamilyName
Focus
Font
Height
KeyboardTabStop
Label
Layer
Left
Location
NotifyOnClickLeft
NotifyOnClickMiddle
NofifyOnClickRight
NotifyOnEnter
NotifyOnGetFocus
NotifyOnLeave
NotifyOnLoseFocus
ObjectData
ObjectName
PageName
Rectangle
Right
Size
Style
Top
Visible
Width
WindowHandle

Radio Buttons
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X

Like Check Boxes, Radio Buttons switch On and Off when a user clicks on them. Unlike Check
boxes, Radio buttons act as a group. For example, a group of three Radio Buttons can let the
user choose among Red, Blue and Green. The user cannot select more than one option. The
way to identify Radio Buttons as a group is to assign them the same FamilyName in the
SmartObject Editor. The following list shows all of the Radio Button object properties.
Area
Bottom
Checked
CheckedRadioButton
ClipSiblings
ColorBackground
ColorText
CursorName
DataChanged
DataFieldName
DataObjectName
DataValueChecked
DeleteProtected
Enabled
FamilyName
Focus
Font
Height
KeyboardTabStop
Label
Layer
Left
Location
NotifyOnClickLeft
NotifyOnClickMiddle
NofifyOnClickRight
NotifyOnEnter
NotifyOnGetFocus
NotifyOnLeave
NotifyOnLoseFocus
ObjectData
ObjectName
PageName
Rectangle
Right
Size
Style
Top
Visible
Width
WindowHandle

Group Box
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X

Use a Group Box to visually organize other objects such as check boxes and push buttons.
The Group Box is different from the other button styles because users don't actually select it.
Rather, it is a tool for organizing other objects in a visually helpful way. The following list
shows all of the Group Box object properties.
Area
Bottom
ClipSiblings
ColorBackground
ColorText
DeleteProtected
Enabled
FamilyName
Focus
Font
Height
Label
Layer
Left
Location
ObjectData
ObjectName
PageName
Rectangle
Right
Size
Style
Top
Visible
Width
WindowHandle

Combo Box Objects
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X

A Combo Box is a combination of a text box and a list box (open or drop-down). You can
make the text box editable or display-only. The Combo Box serves three basic purposes:
First, a Combo Box always displays a list from which a user can select an item. Second, if the
text box is editable, the user can type a value. Third, if your application uses a database (via
a Database object) the Combo Box can display a value from a database record. The following
list shows all of the Combo Box properties.
Area
Bottom
ClipSiblings
ColorBackground
ColorSpacer
ColorText
CursorName
DataChanged
DataFieldName
DataObjectName
DeleteProtected
Enabled
FamilyName
Focus
Font
Height
ItemList
KeyboardTabStop
Layer
Left
Location
NotifyOnEnter
NotifyOnGetFocus
NotifyOnLeave
NotifyOnLoseFocus
NotifyOnSelect
NotifyOnSelectChange
ObjectData
ObjectName
PageName
Rectangle
Right
SelectedItemData
SelectedItemNumber
ShowPartialItems
Size
Sort
TextBoxData
Top
Visible
Width
WindowHandle

Graphic Objects
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X

A Graphic object allows you to display a graphic on the SmartObject page. The graphics can
be actual size, stretched or compressed, or tiled within a particular area. Graphic objects can
be also be live or static. If you make a Graphic object live it can be changed at runtime via
object icons in IconAuthor. If you make it static, it behaves as if it is part of the background
and cannot be changed at runtime. The selection of properties varies depending on whether
the object is live or static.
The following lists show all of the Graphic object properties.
Live Graphic Properties:
Area
Bottom
Border
ClipSiblings
ColorTransparent
Command
CursorName
DeleteProtected
Dragable
DragAction
DragBringToTop
Drag Cursor
DragGraphicNo
DragGraphicYes
DragMode
DragReturnOnFail
DragTargetName
DragTransparentColor
DragType
DrawStyle
DropPosition
DropType
Effect
EmbeddedType
FamilyName
FileName
Height
HotWordFileName
ImagePosition
Layer
Left
Location
NotifyOnClickLeft
NotifyOnClickMiddle
NofifyOnClickRight
NofifyOnDoubleClick
NotifyOnDragAbort
NotifyOnDragDrop
NotifyOnDragFail
NotifyOnEnter
NotifyOnGetFocus
NotifyOnLeave
NotifyOnLoseFocus
NotifyOnPressLeft
NotifyOnPressRight
ObjectData
ObjectName
PageName
Rectangle
Right
ScrollBarHorizontal
ScrollBarVertical

Size
Top
Visible
Width
WindowHandle
Zoom

Static Graphic Properties:
Border
DrawStyle
Effect
EmbeddedType
FileName
SelectionArea

IconAnimate Objects
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X

IconAnimate objects let you play animation scripts previously created with IconAnimate. You
can choose to play the animation on a background bitmap or in a window. Playing an
IconAnimate animation on a background bitmap makes the animation part of the
background. Playing an IconAnimate animation in a window allows you to control the playing
of the animation as well as the size and location of the window.
IconAnimate objects use the following properties:
Area
Bottom
ClipSiblings
Command
CommandOnCreation
ControlBar
CursorName
DeleteProtected
FamilyName
FileName
Height
Layer
Left
Location
NotifyOnComplete
NotifyOnEnter
NotifyOnError
NotifyOnLeave
ObjectData
ObjectName
PageName
PlayCount
Rectangle
Result
ResultString
Right
Size
Status
Top
Visible
Width
WindowHandle

Keyboard Objects
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X

The Keyboard object lets you specify one or more keys or key combinations that the user can
press to interact with the application. The Keyboard object is never visible at runtime. The
following list shows all of the Keyboard object properties.
DeleteProtected
Enabled
FamilyName
KeyboardForward
KeyboardKeyPressed
KeyboardList
NotifyOnKeyDown
NotifyOnKeyUp
ObjectData
ObjectName
PageName
WindowHandle

List Box Objects
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X

List Box objects serve two basic purposes. First, a list box always displays a list from which a
user can select an item. Second, if your application uses a database (via a Database object)
the List Box can display a value from a database record.
The following list shows all of the List Box object properties.
Area
Bottom
ClipSiblings
ColorBackground
ColorText
CursorName
DataChanged
DataFieldName
DataObjectName
DeleteProtected
Enabled
FamilyName
Focus
Font
Height
ItemList
KeyboardTabStop
Layer
Left
Location
NotifyOnEnter
NotifyOnGetFocus
NotifyOnLeave
NotifyOnLoseFocus
NotifyOnSelect
NotifyOnSelectChange
ObjectData
ObjectName
PageName
Rectangle
Right
SelectedItemData
SelectedItemNumber
ShowPartialItems
Size
Sort
Top
Visible
Width
WindowHandle

Menu Objects
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X

Menu objects allow you to include Windows-style menus in your applications. Although the
Menu object always appears as a small icon within the SmartObject Editor, it displays as a
menu at runtime. Menu objects can be top-level style or floating pop-up style. Click the right
mouse button on a Menu object and choose Menu Styles... from the pop-up menu to display
the choices for the different kinds of menus.
Menu object properties:
Accelerator
Caption
Checked
DeleteProtected
Enabled
FamilyName
MenuItemCount
MenuItemList
ObjectData
ObjectName
PageName
Style
Visible
WindowHandle

Floating Pop-Up Style Menu objects also use:
Alignment
AutoTrack
MouseButton
Menu Item Object Properties:
Caption
Checked
Enabled
FamilyName
ObjectData
ObjectName
Visible

Movie Objects
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X

The Movie object lets you play digital video and third-party animation files. For example, you
can play:
Video for Windows digital video files
QuickTime for Windows digital video files
Autodesk animations
Gold Disk animations
Note: The Movie object uses MCI to play video and animation. You must have the Windows
Multimedia Extensions software (which comes with Windows 3.1) to use the Movie object.
You must have the proper drivers that enable the digital video and third-party animation files
to run in MCI.    If you are playing video or animation that uses sound, your system also
requires a sound card that supports MCI, such as SoundBlaster.
The following list shows all of the Movie object properties.
Area
Bottom
ClipSiblings
Command
CommandOnCreation
ControlBar
CursorName
DeleteProtected
FamilyName
FileName
Height
Information
Layer
Left
Length
Location
NotifyOnComplete
NotifyOnEnter
NotifyOnError
NotifyOnGetFocus
NotifyOnLeave
NotifyOnLoseFocus
ObjectData
ObjectName
PageName
PlayCount
PositionCurrent
PositionEnd
PositionSeek
PositionStart
Rectangle
ResizeToFile
Result
ResultString
ReturnToStart
Right
size
status
Top
Visible
Width
WindowHandle

OLE Objects
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X

This section describes the OLE class of objects. OLE objects take advantage of the Microsoft
Windows OLE (Object Linking and Embedding) feature.    From within the SmartObject Editor
you can access any Microsoft Windows application that is OLE-ready (called a server) and
create data that eventually becomes an object within your IconAuthor application. The
following list shows all of the OLE object properties.
Live OLE Properties:
Area
Bottom
ColorBackground
CursorName
DefaultAction
DeleteProtected
DrawStyle
FamilyName
Height
Left
Location
NotifyOnComplete
NotifyOnEnter
NotifyOnLeave
NotifyOnStart
ObjectData
ObjectName
PageName
Rectangle
Right
Size
State
Top
TransparentBackground
Visible
Width
WindowHandle

Static OLE Properties:
ColorBackground
DrawStyle
SelectionArea
TransparentBackground

Timer Objects
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X

Timers allow you to use time to control your application.    For example, a Timer can count up
from 0 to measure how long it takes a user to perform a task. Or, a Timer can count down
from a specified number of seconds to limit the amount of time a user has to perform a task.
The following list shows all of the Timer object properties.
DeleteProtected
Enabled
FamilyName
ObjectData
ObjectName
PageName
Style
TimerData
WindowHandle

System Object
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X

The System object provides your application with key information about the kind of system
the application is running on. This information is extremely valuable because the application
can be running on systems with different capabilities (such as varying screen resolutions) or
on systems running different operating/windowing systems.
Use the System object to find out specific information about the system the application is
running on and then branch your application accordingly. For example, if your application
runs on Windows and Macintosh, you can create one master application and two
subapplications, one for Windows and one for Macintosh. At the beginning of the master
application, an ObjGet can query the System object to find out which system the end-user is
using and call the appropriate platform specific subapplication.
Besides the operating system, the System object can also find out other information about
the end-users system. The following table shows the information you can get and the
appropriate property to use to get it:

Information you want: Property to use:
Number of Colors Available ScreenColors
Capability to play audio and video MultiMediaDevices
Cursor Position CursorPostionScreen
Resolution ScreenHeight,

ScreenWidth
Which audio and video files are
compatible with the system

CanPlay-

System objects use the following properties:
CanPlayCD
CanPlayMIDI
CanPlayMovie
CanPlaySound
CursorPositionProgram
CursorPositionScreen
HasMouse
HasPen
MultiMediaDevices
MultiMediaDeviceNames
ObjectData
ObjectName
OSType
OSVersion
ProgramType
ProgramVersion
ScreenColors
ScreenHeight
ScreenPaletteEntries
ScreenWidth
WindowHandle

Transparent Objects
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X

The Transparent object is not visible at runtime. The object allows you to set up an area of
the screen to respond to different kinds of user interaction, without changing the
appearance of the information that is displayed beneath it. Typically for example, the
Transparent object overlays other visual information such as a static Text, static OLE, or
static Graphic object. Two common uses for the Transparent object are as a transparent Push
Button and as a drop target for a dragable live Graphic object. The following list shows all of
the Transparent object properties.
Area
Bottom
ClipSiblings
CursorName
DeleteProtected
DropPosition
DropType
Enabled
FamilyName
Height
Left
Location
NotifyOnClickLeft
NotifyOnClickMiddle
NofifyOnClickRight
NofifyOnDoubleClick
NotifyOnEnter
NotifyOnLeave
NotifyOnPressLeft
NotifyOnPressRight
ObjectData
ObjectName
PageName
Rectangle
Right
Size
Top
Visible
Width
WindowHandle

Variable Objects
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X

Variable objects let you define one or more variables and their values. As soon as the
SmartObject file is loaded into memory, the variables defined in the Variable object are
loaded and available for use. Although the Variable object has no visible appearance at
runtime, the SmartObject file can optionally contain other objects that do appear, such as
Text or Graphic objects. As an example, a Variable object might load the following:
@NUMBER_OF_GRAPHICS
3
@COLOR
blue
@CORRECT_MESSAGE
Yes. That is correct.
@INCORRECT_MESSAGE
No. That is incorrect. Try again.
As soon as the SmartObject file is loaded into memory, the variables defined in the Variable
object are also loaded and available for use. This method is efficient in two ways. First, it lets
you use one Display icon instead of four Variable icons. Second, it lets you load variables
that are associated with a particular SmartObject display.
Variable Objects use the following properties:
Command
CommandOnCreation
DeleteProtected
FamilyName
FileName
ObjectData
ObjectName
PageName
VariableName
WindowHandle

Text Objects
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X

Text objects allow you to display text on the page. The objects can be display-only or
interactive.
Related Topic:
Setting Hotwords at Runtime
Live Text Object Properties:
AlignHorizontal
Area
AutoLoad
BaseLine
Bottom
CharacterCurrency
CharacterDecimal
CharacterFalse
CharacterThousands
CharacterTrue
ClipSiblings
ColorBackground
ColorFill
ColorFrame
ColorHighlight
ColorShadow
ColorText
CommandOnCreation
CursorName
CursorNameHotword
DataChanged
DataFieldName
DataObjectName
DecimalPlaces
DeleteProtected
Editable
Enabled
FamilyName
FileName
Focus
Font
FttPageName
Height
Hotword
HotwordActivate
HotwordColor
HotwordHighlight
HotwordIndex
InputLimit
InputLimitBeep
InputTerminationRequired
KeyboardTabStop
Layer
Left
LightSource
LineSpace
Location
Mask
MultipleLines
NotifyOnClickHotword
NotifyOnClickLeft
NotifyOnClickMiddle
NofifyOnClickRight
NotifyOnComplete

NotifyOnDoubleClick
NotifyOnEnter
NotifyOnEnterHotword
NotifyOnError
NotifyOnGetFocus
NotifyOnInput
NotifyOnInputLimit
NotifyOnLeave
NotifyOnLeaveHotword
NotifyOnLoseFocus
NotifyOnPressLeft
NotifyOnPressRight
ObjectData
ObjectName
PageName
Rectangle
Right
SaveFileType
ScrollBarVertical
Size
Text
TextCase
TextDragable
TextFormatted
TextLength
Top
Visible
Width
WidthEdge
WidthFrame
WindowHandle

Static Text Object Properties:
FileName
SelectionArea

The Window Object
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X

The window in which your IconAuthor application runs is actually an object, similar to the
objects that are available in the SmartObject Editor.
Like the SmartObjects, the Window object has properties that your application can
manipulate at runtime via object icons. The way in which the Window object is different is
that you do not have to explicitly create it and you cannot delete it. As an example, the
Window object has a property called TitleBarText that controls the text that appears in the
Window's title bar. Although you can use a Window icon to initially set the title of the
window, if you want your application to change the title at some later point, you use an
ObjSet icon to set the new value of the TitleBarText property.
Note: Your application can only contain one Window object. This is different from the other
objects available in the SmartObject Editor. For example, while your application can contain
multiple button and List Box objects, it can only contain one Window object.
Related Topics:

Changing Window Properties
Window Appearance
Window Interactivity
Window Object Properties

Changing the Window Properties
There are several ways in which you can manipulate the Window object at runtime. First, be
aware that you can successfully create an application without manipulating the properties of
the Window object. However, knowing about the Window properties can help you create a
more sophisticated application. For example, you can change the color of the window,
change the cursor appearance, or change the appearance of the icon when the application is
minimized.
The only way to retrieve or set a Window property is to use the ObjGet and ObjSet icons at
runtime. Note that the Window doesn't have to exist in order to set a property. For example,
the first icon in your application (even before a Window has been created) can be an ObjSet
icon that sets the cursor to an I-beam. As soon as an icon executes that displays information
on the screen the Window is created and the new cursor property is in evidence.

Window Appearance
The CursorName property controls how the cursor appears over the window background. By
default, the cursor is set to appear as an arrow. Set the CursorName property to make the
cursor appear. The CursorName property can be set independently for the Window object
and for SmartObjects, allowing you to vary how the cursor appears depending on the item it
is positioned over.
The ColorBackground property lets you set the color of the window. Re-setting this property
has the same effect as using a Clear icon to paint the display. The TitleBarText property lets
you set the text that appears in the window's title bar. Control the way the window looks
when it is iconized via the IconFileName property.
Use the Maximized and Minimized properties to control the state of the window. For
example, by setting Minimized to True, you can cause the window to be iconized.
Set the ClipChildren property to True if live objects appear to flash when information is
displayed on the Window object. In order to set ClipChildren to True, you must include an
ObjSet icon and a Window icon in your structure. The ObjSet icon sets the property and the
Window icon creates the window.
Each live object you display via a SmartObject page is, by Windows definition, a window in
itself. Specifically, these objects are called child windows because they are the "children" of
the Window object on which they are displayed. Whenever possible, IconAuthor
automatically clips child windows. When a child window is clipped, it means that the area is
unaffected by information being displayed on the rest of the background. As a result, for
example, if a Button object displays and then a Display icon fades a graphic onto the
Window background, the Button is unaffected by the fade because it is clipped. If the Button
was not clipped, it would flash repeatedly as it attempted to re-draw itself in the wake of the
fade-in graphic display.
In most situations IconAuthor recognizes when it has to clip child windows. There are
however, some situations where child windows are not automatically clipped. In these cases,
you need to explicitly set the ClipChildren property to True. (The property is False by
default.)
IconAuthor does not automatically recognize and clip child windows when third party
program information is displayed in the window. For example, if your application displays a
Button object and then displays a Gold Disk animation file on the background, the Button
flashes. The Button flashes because it is not automatically clipped and it is re-drawing itself
to remain in view on top of the animation. In this same scenario, if you set ClipChildren to
True, the Button does not flash because it is clipped.

Window Interactivity
Like a button, the Window object has NotifyOnClickLeft, -Middle, and -Right properties that
let your application detect when a user clicks on the window background. The object also
has the NotifyOnPressLeft property which lets your application detect when the user presses
the left mouse button on the background. If you are designing your application for a touch
screen, this same property also generates an event when the user touches the window
background.
Properties such as NotifyOnMinimize and NotifyOnSize generate an event when the state of
the window changes. For example, if NotifyOnMinimize is True and the user minimizes the
window, a "Minimize" event occurs.

Window Object Properties
The Window object uses the following properties.
Area
Bottom
ClipChildren
ColorBackground
CursorName
Enabled
FitToWindow
Focus
Height
IconFileName
Left
Location
Maximized
Minimized
NotifyOnClickLeft
NotifyOnClickMiddle
NofifyOnClickRight
NotifyOnMaximize
NotifyOnMinimize
NotifyOnPressLeft
NotifyOnSize
ObjectName
Rectangle
Right
Size
TitleBarText
Top
Width
WindowHandle

HTML objects
Cross-Platform Availability
Win OS/2 UNIX Mac

X X

HTML objects let you display documents created with HTML (HyperText Markup Language)
Level 2.0. HTML is a tag language used to create documents.
HTML objects use the following properties:
Area
AutoTraverseLinks
Bottom
ClipSiblings
ColorBackground
ColorFrame
ColorHighLight
ColorShadow
Command
CursorName
CursorNameLink
DeleteProtected
Enabled
FamilyName
FileName
Height
History
HistoryCount
HistoryLimit
Layer
Left
LightSource
LinkFileName
LinkType
Location
NotifyOnClickLeft
NotifyOnClickLink
NotifyOnClickMiddle
NotifyOnClickRight
NotifyOnDoubleClick
NotifyOnEnter
NotifyOnEnterLink
NotifyOnError
NotifyOnLeave
NotifyOnLeaveLink
NotifyOnUnsupportedFile
ObjectData
ObjectName
PageName
Rectangle
Result
ResultString
Right
Size
StyleFileName
StylePageName
Top
Visible
Width
WidthEdge
WidthFrame
WindowHandle

Palette objects
Cross-Platform Availability
Win OS/2 UNIX Mac

X X

The Palette object allows you to manipulate palettes used by graphics and movies. The
Palette object has two primary uses. First, the Palette object lets graphics and movies share
palettes in order to avoid palette shifts. Palette shifts are color distortions that occur when
multiple images (that use different palettes) are displayed side by side. The object also lets
you perform palette animations on graphics. In a palette animation, the illusion of
animation occurs when colors cycle through multiple, consecutive positions in the palette.
Both palette sharing and palette animation can be performed by one Palette object.
Although you can have as many Palette objects in your application as you want, only one
can be enabled at a time.
Palette objects use the following properties:
AnimationEntries
AnimationPlayCount
AnimationSpeed
ClearEntries
Command
CommandOnCreation
DeleteProtected
Enabled
FamilyName
FileName
NotifyOnComplete
ObjectData
ObjectName
PageName
PaletteCompression
PaletteSharing
PaletteSource
PaletteStaticRemap
WindowHandle

Table objects
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This section describes the Table class of objects. Table objects can display rows and columns
of information that the end-user can view and edit if you choose. You can also display
information from a database recordset by binding the Table object to a Database object.
Once you draw a Table object, double-click on it to enter edit mode.
Table objects use the following properties:
Area
AutoAppend
AutoBind
AutoUpdate
Bottom
Cell
CellData
CellDataLength
ColorBackground
Column
ColumnAlignment
ColumnCount
ColumnData
ColumnDataLimit
ColumnFieldName
ColumnLabel
ColumnWidth
Command
CurrentCell
CursorName
DataChanged
DataObjectName
DeleteProtected
Editable
Enabled
FamilyName
Focus
Font
GridLines
HeightColumnLabels
HeightRows
HideSelection
Left
Location
MultiSelection
NotifyOnCellDataChange
NotifyOnClickLeft
NotifyOnClickMiddle
NotifyOnClickRight
NotifyOnDoubleClick
NotifyOnEnter
NotifyOnGetFocus
NotifyOnLeave
NotifyOnLoseFocus
NotifyOnPressLeft
NotifyOnPressMiddle
NotifyOnPressRight
NotifyOnSelectChange
ObjectData
ObjectName
PageName
PreviousCell
Rectangle
ResizeableColumns
ResizeableRows
Right

Row
RowCount
RowData
ScrollBarHorizontal
ScrollBarVertical
SelectedRange
ShowDisabledScrollBar
Size
Top
UpdateDisplay
Visible
VisibleColumnLabels
VisibleRowLabels
Width
WidthRowLabels
WindowHandle

Application objects
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X

The Application object lets you control how your application displays on your end-users
system. The Application object lets you simulate a screen resolution to ensure that your
applications and SmartObjects scale correctly, regardless of the resolution of the end-users
system.

When your application displays a SmartObject page within a window, you must perform
certain tasks to ensure that the objects display properly. The reason that objects may not
appear as you intended is that, by default, the SmartObject page does not conform to the
size of the window. Instead, it automatically scales to the full screen resolution. This may
cause a problem, for example, if you created your SmartObject pages in a resolution of
640x480 and your application is running on a system with a resolution of 1024x768. The
SmartObjects scale to the 1024x768 resolution causing them to appear smaller. Use the
LogicalScreenWidth and LogicalScreenHeight properties of the Application object to control
the scaling. By default, these properties are set to the width and height of the current
system. For example, on a system running in 1024x768, LogicalScreenWidth is set to 1024
and LogicalScreenHeight is set to 768. You can set these properties to the width and height
of the system used to create the SmartObject pages or to whatever resolution you want. In
the previous example, you would set LogicalScreenWidth to 640 and LogicalScreenHeight to
480 to ensure that your application always displays correctly.
Related Topics:
SmartObject Display Concepts
Application Object Properties

Application Object Properties
The Application object uses the following properties:
LogicalScreenHeight
LogicalScreenWidth
ObjectName
WindowHandle

SmartObject Display Concepts
The SmartObject Editor stores information about the position and size of each object as a
percentage of the screen width and height on which the SmartObject page was authored.
For example, if you create an object that is half the width and half the height of the screen,
the editor will record the width as 50% and the height as 50%. Similarly, if the upper left
corner of the object is centered on the screen, the editor records the position of the object as
50% over and 50% down. The following figure shows how the previously described object
would appear in the SmartObject Editor.

If you run your application fullscreen in the same resolution that you used to create the
SmartObject file, the objects will appear in the exact position and size in which you created
them. This default behavior is fine if you intend for your end-users to run in the same
resolution and fullscreen. However, there are several other situations (such as running in a
window or in a different resolution) where you need to provide the application with more
information about how to display the file so that the objects appear as intended.
Related Topic:
Display the SmartObject Page in a Window at Runtime

Display the SmartObject Page in a Window at Runtime
When your application displays a SmartObject page within a window, you must perform
certain tasks to ensure that the objects display properly. The reason that objects may not
appear as you intended is that, by default, the SmartObject page does not conform to the
size of the window. Instead, it automatically scales to the full screen resolution. For example,
consider the following figure that shows how a SmartObject page might appear in the
SmartObject Editor.

The next figure shows the size of the window that the Window icon creates at runtime.

The next figure shows, by default, how little of the SmartObject file appears within the
window.

Only the top left corner of the original page appears because the page is attempting to
display in an area much larger than the window. The following figure shows the part of the
page that cannot be seen because of the window size.

IconAuthor provides two mechanisms for controlling how SmartObject pages scale: the
FitToWindow property and the
Application object.

Displaying SmartObject Pages using the Application Object
For greater control of scaling than is possible with the FitToWindow property, there is an
Application object. The Application object is automatically created when your application is
run. By default, SmartObject pages scale to the resolution of the current system. You can use
the Application object to set a virtual screen resolution to be used when scaling. The
Application object has two properties that let you set the height and width of the virtual
screen resolution: LogicalScreenHeight and LogicalScreenWidth. The Application object is
useful if you created your SmartObject page using only a portion of the screen.
The following figure shows a SmartObject page created in a 640x480 resolution using a
600x400 section of the screen.

The next figure shows how the page scales when FitToWindow is True and the run window is
600x400.

Even though the run window is set to the portion of the screen used in the SmartObject
Editor, the FitToWindow property causes the entire SmartObject page to scale in the
600x400 window. This effect may not be desired because of the excess white space on the
right and bottom sides of the display. The Application object lets you display only the
SmartObjects thereby eliminating the excess white space. This is shown in the next
example.
The following figure shows how the Application object is used to display only the 600x400
section of the page with the correct scaling. To do this, the FitToWindow property is set to
False and the Application object is set up to simulate a resolution of 640x480.

By setting the LogicalScreenHeight and LogicalScreenWidth properties to 640 and 480,
respectively, you are creating a virtual screen resolution of 640x480. Simulating a resolution
of 640x480 and setting the run window to 600x400 ensures that only the part of the screen
that you want to display is shown and that the objects scale correctly. Using the Application
object ensures that your SmartObject pages scale correctly on all resolutions.
Note: Setting FitToWindow to True supersedes the use of the Application object. The
SmartObject page will scale to the run window regardless of what the Application object
properties are set to.
Setting the LogicalScreenHeight and LogicalScreenWidth properties to the width and height
of the run window produces the same scaling as setting FitToWindow to True. The Application
object is a good solution when your application uses a portion of a SmartObject page when it
is created and your application is run in a window.

Displaying SmartObject Pages using the FitToWindow
Property
When set to True, the Window objects FitToWindow property causes SmartObject pages to
scale to the size of the run window. The following figure shows the previous example when
FitToWindow is True and the run window is 640x480.

The following figure shows the same example (FitToWindow is True) but the run window is
800x600. Note that the objects on the SmartObject page are larger.

FitToWindow is a good solution when your application uses the entire SmartObject page
when it is created and your application is run in a window.

Setting Hotwords at Runtime
In addition to setting Hotwords within the SmartObject Editor, you can also set Hotwords at
runtime. By setting Hotwords at runtime, you do not have to manipulate the text in a Text
object. This allows you to create a text file using a word processor, such as Microsoft Word
for Windows, apply it to a Text object and set Hotwords outside of the SmartObject Editor. By
doing this, you do not have to touch the text in the Text object. To set Hotwords at runtime,
you simply create a Hotword file (.HWD) that contains a list of your Hotwords and apply the
file to the Text object.
Related Topics:
Creating Hotword Files
Applying a Hotword File at Runtime

Creating Hotword Files
Minimally, the .HWD file contains a list of Hotwords. For example, the file that sets "lion,"
"tiger," and "bear" would appear as follows.
lion
tiger
bear
This would set all instances of these words to an index of 1 and the default Hotword style. As
necessary, you can include more information in the file to specify the index you want the
Hotword to use, and the Hotword style you want to use. The syntax for a Hotword file
specification is: Hotword,Index#,HotwordStyle.
As an example, the following file sets Hotwords, indexes and styles.
vehicle,2,Hotword
bus,3,HotwordBlue
car,3,HotwordBlue
canoe,4,HotwordRed
rowboat,4,HotwordRed
You must list a Hotword. The index and style are optional. Here are some examples:

Specification Result
canoe Sets the Hotword "canoe" to the default index 1

and the default Hotword style.
canoe,3 Sets the Hotword "canoe" to index 3, using the

default Hotword style.
canoe,,HotwordBlue Sets the Hotword "canoe" to the default index 1,

using the style HotwordBlue.
canoe,3,HotwordRed Sets the Hotword "canoe" to index 3 using the

style HotwordRed.

Applying a Hotword File at Runtime
Use the HotWordFileName property to attach the information in an .HWD file to a Text object.
Then use the Command property to set the Apply HotWords command to the Text object.

To apply a Hotword file:
1. Use an ObjSet icon to set the HotWordFileName property of the Text object to the .HWD file.

2. Use another ObjSet icon to set the Command property of the Text object to Apply HotWords.

The specifications in the file are automatically applied to the Text object.

If you want to remove all Hotwords, use an ObjSet icon to set the Command property to Remove
HotWords.

Content Editors
Every icon has a dialog box associated with it called a Content Editor. Adding content to an
icon is the process of entering the information requested by its Content Editor. You can add
content to the Content Editor of an icon in the structure or in the library. If you add content
to an icon in the structure you change only that instance of the icon. If you add content to an
icon in the library each subsequent time you build a copy of it into the structure, that copy
has the edited characteristics.
Note: When you add content to an icon in the library it does not affect any instances of that
icon that you have previously built into the structure.
Adding content is a flexible part of the authoring process. You can add content to an icon
before you build it into the structure (while it is still in the library). You can add content to an
icon immediately after you build it into the structure. Or, you can build several icons into the
structure and add content to them later.
Related Topics:
Opening Content Editors
Closing Content Editors
Naming Icons
Entering Values
Accessing Editors or Dialog Boxes
Types of Content Editor Values

Opening Content Editors
There are three general techniques for opening Content Editors.
Using the Mouse
To open a Content Editor with the mouse:
+ Double-click on the icon.

Using Menu Commands
To open a Content Editor with menu commands:
1. Click on the icon (in the library or the structure) to select it.

2. Pull down the Edit menu.

3. Choose Library or Application.

4. Choose Add Content...

Opening Automatically upon Building
To open a Content Editor automatically when an icon is built into the structure:
+ Choose Add Content On Build from the Options menu.

The feature is toggled on. Until you choose the Add Content On Build command again to toggle it off,
every time you build an icon into a structure, its Content Editor is automatically opened.

Note: You can only open one Content Editor at a time. If a Content Editor is open you cannot
perform any other activities in IconAuthor until you close it.
When you open an icon, its Content Editor is displayed. The dialog box contains a number of
text boxes that you fill in to define the icon content. Some of the text boxes contain default
values which will be used if you do not specify alternatives.

Closing Content Editors
When you finish adding content to an icon, you close its Content Editor.
Closing and Accepting Changes
To close a Content Editor and accept the values:
+ Choose OK.

Your changes will be saved and the icon will be changed to grey when it is not selected
unless it is the lead icon in the composite.
Closing and Cancelling Changes
If you decide not to enter values or not to accept values that you have entered into text
boxes, you can close the Content Editor without accepting any changes.
To close a Content Editor without accepting changes:
+ Choose Cancel.

Closing a Composite
If the icon you are adding content to is the lead icon in a composite, when you choose
Cancel, the Content Editor of the next icon in the composite is automatically opened. To
close that Content Editor, choose Cancel again. Each time you choose Cancel, until you
reach the last icon in the composite, the next Content Editor in the composite is opened.
To stop adding content to all composites in a range:
+ Choose Exit Range.

Icon Colors
If IconAuthor runs in black and white on your display, an icon is highlighted when you select
it. If you are running IconAuthor in color, icons appear in different colors. The color of an icon
varies depending upon whether it is selected, whether it has content added to it, and
whether it is a single icon or a composite. Use the icon colors to help you keep track of the
icons to which you have added content.
This icon
color:

Means:

blue The icon is selected

gray The icon has content and is not selected

yellow The icon does not have content and is not
selected.

green The icon is the lead icon in a composite and
is not selected.

black The icon is disabled and is not selected.

Naming Icons
All single icon Content Editors have an Icon Name text box. The value in the Icon Name text
box is the label that appears below the icon in the structure. Initially, the value is the generic
name of the icon.
You can type a new icon name that is more meaningful to you. For example, you might
include a Pause icon in your structure that causes the application to pause for 2 seconds
before executing the next icon. Initially, the icon is named "Pause". You can use the Icon
Name text box to rename the icon "2 Sec". At a glance, when you see the icon in the
structure you will be reminded of its function.
Similarly, composite icons contain a Composite Name text box that allows you to name a
composite anything you'd like. As an example, if your composite is several icons that
together allow a user to log into your application, you can rename the composite "Login."

Entering Values
There are three ways to enter values into Content Editor fields. You can type them, or
frequently, you can use drop-down list boxes.
Typing Values
If you know the value you want to enter in an empty text box you can simply click in the text
box and type the value. If the text box already contains a value, select the existing value by
double-clicking on it (if its not already selected) and begin typing the new value. As you
begin typing, the old value is automatically removed.
Using Drop-Down List Boxes
Most Content Editor text boxes have corresponding drop-down list boxes from which you can
select an item.
To use a drop-down list box:
1. Click on the small down arrow detached and to the right of the text box.

The drop-down list is displayed.

The default value, if there is one, is highlighted. If there are more items than can fit in the list box, the
list box has a scroll bar.

2. Click on the item you want to select.

The drop-down list box closes and the selected item appears in the text box. The result produced
when you select an item depends on whether the item is a value or an editor or dialog box.

Accessing Editors or Dialog Boxes
Some Content Editor list box items access one of several tools (either an editor or
specialized dialog box) to help you locate or create a value for the text box. An example of a
drop-down list box item is the SmartObject Editor. When you choose this item the
SmartObject Editor appears, allowing you to create or edit a file to display in your
application.
Special editors and dialog boxes are available through certain icons where appropriate. For
example, one of the functions of the Display icon is to display a SmartObject file, therefore
the Display icons Content Editor lets you access the SmartObject Editor. Whenever an item
accesses an editor or special dialog box, the item name is followed by ... (as in for example,
SmartObject Editor...).
Use an editor or dialog box to create or edit values for the Content Editor field. When you
close the editor or dialog box, the value that you chose is automatically returned to the
Content Editor text box. Several editors, like the Animation Editor, return a filename to a
Content Editor text box. Other editors, including the Color Editor, return other kinds of values
to a Content Editor text box, such as the number that represents the selected color.

Values for Content Editor Fields
The following kinds of values are typically used by Content Editor fields:
Numbers
Strings
Coordinates
Filenames
Keywords
Colors
Variables

Numbers
Several Content Editor fields require a numeric value. Consider the Pause icon which pauses
execution for a specified period of time. It has a field called Number of Seconds in which you
enter a number to denote how seconds the pause should last. Fields that require numbers
typically have a default value and a selection of frequently used values in the drop-down list.
You also have the option of typing a number of your own choosing.

Strings
Strings are values such as names, address, descriptions, words and sentences that are made
up of alphanumeric characters. Here are some examples: green, George Watkins, and 31
Maple Street. Although strings can contain numbers, they are not intended for calculations.
As an example, consider the MsgBox icon which is designed to display a message on the
screen. It has a field called Message in which you specify a string that you want to appear.

Coordinates
Several Content Editor fields require you to specify a position on the screen where you want
something to occur or display. Consider the Display icon which is used for displaying graphic,
animiation or SmartObject files. The Display icon has a field called Location that you use to
indicate exactly where you want the file to appear.
To specify a position on the screen, you need to understand that your screen is actually
made up of tiny dots called pixels. When you see an image on the screen, the effect is the
result of different patterns and colors of pixels. Different screens are made up of different
numbers of pixels. The more pixels, the sharper the display of an image can be. This degree
of sharpness is called the resolution of the screen. Resolution is expressed as the number
of horizontal dots (in a single row) by the number of rows. For example, if each row of your
screen is made up of 640 pixels and it has 480 rows, your screen resolution is 640 x 480.
When you need to specify a location on the screen, you describe that point by giving its X
and Y coordinates. The X coordinate indicates how far to the right the point is and the Y
coordinate indicates how far down the point is. The top, left corner of the screen is 0,0.
Going back to the Display icon example, if you specify a Location of 0,0 the file will appear in
the top left corner of the screen. If you specify 100,100 the file will appear exactly 100 pixels
down (from the top) and 100 pixels over (from the left side) of the screen.

Filenames
Some Content Editors require a filename. For example, the Display icon requires the name of
the file to display and the Program icon requires the name of the program file to execute.
You can type a filename or use the Directory item from the drop-down list to find a filename.
The Directory item is a special dialog box that lets you search through drives and directories
to find the correct file. When you find the file you want to use, you double-click on it and the
filename is automatically returned to the appropriate Content Editor field.

Keywords
Many Content Editor fields will only accept a specific variety of values called keywords. For
example, the Beep icon (which generates a beep sound) lets you choose between the values
High or Low depending on the type of sound you want to use. In these situations, you can
type a value or select one from the drop-down list.

Colors
When a Content Editor field requires a color, it accepts the value in two basic forms. You can
specify a keyword, such as green, white or yellow or you can specify an RGB value. An RGB
value is made up of three numbers separated by commas, such as 0,255,127. Each number
represents the level of intensity of red, green, and blue, respectively, that make up the
resulting color. RGB values allow you to use a large number of colors that are subtle
variations on the limited colors represented by keywords. For example, while the yellow that
is represented by the keyword yellow has an RGB value of 255,255,0, you could specify a
shade of yellow that has slightly more blue in it with the value 255,255,10.
Content Editor fields that require a color value let you access a Color Editor. Because the
editor lets you choose from all possible color variations, it automatically returns an RGB
value to the Content Editor field.

Editing Structures
When you edit the structure of your application, you select icons within the structure,
remove them, or copy them, and insert them elsewhere in the structure, or in a different
structure. By dragging and dropping icons you can cut or copy them to the Clipboard. The
Clipboard is an off-screen holding area represented by the Clipboard on the ribbon bar. The
appearance of the Clipboard varies depending on whether it contains an icon.
If the Clipboard contains one or more icons you can drag a copy of the Clipboard from the
ribbon bar to paste the previously cut or copied icon(s) elsewhere in the structure. The
Clipboard can only hold one icon or one group of icons at a time. When you cut or copy an
icon (or group of icons) to the Clipboard it replaces the icon (or group) that was there
previously.
You can cut, copy, and paste all within one application window, or you can open another
application window and use these editing functions between different windows. For example,
you can open an existing application and a new application in the work area at the same
time. If you are satisfied with a part of the existing structure and want to use it in the new
structure, you can simply copy those icons and not recreate them.
Related Topics:
Selecting Icons
Cutting Icons
Copying Icons
Pasting Icons
Clearing Icons
Inserting Another Application into the Current Structure
Copying a Part of a Structure to a New File

Selecting Icons
Selecting a Single Icon
To select an icon:
+ Click on the icon.

If IconAuthor    is running in color a selected icon is blue. If it is running in black and white
the icon is highlighted.
Selecting a Range of Icons
To edit a range of icons you first select the range. After the range is selected you can
perform editing tasks such as cutting an icon, just as if you were working with only one icon.
To select a range of icons:
1. Click on the first icon in the range you want to select.

2. Hold down SHIFT while you click on the icon you want to be last in the selected range.

Note: To select a range of icons that makes up a composite, click on the lead icon. The other
icons in the composite are automatically selected.
If IconAuthor is running in black and white a selected range of icons is highlighted. If it is
running in color a selected range is blue.

Cutting Icons
When you cut icons you remove them from the structure and place a copy on the Clipboard.
To cut icons from the structure:
1. Position the mouse pointer over an icon or a range of selected icons.

The cursor is shaped like a hand holding a pen.

2. Press and hold the mouse button.

3. Drag to the Clipboard.

As you drag toward the Clipboard the cursor often appears as a red circle with a diagonal bar through
it. Whenever the cursor appears in this form it means that the current position is not a valid drop
location.

4. Position the cursor over the Clipboard.

If you are dragging a single icon the cursor appears in the form of the cut icon. If you are dragging a
range of icons the cursor appears as cascading icons.

5. Release the mouse button.

The icon or icons are removed from the structure and copied to the Clipboard. A small square appears
on the Clipboard to indicate that the Clipboard has an item in it.

Note: You can also use a menu command to cut icons. Select the icon or range of icons and
choose Cut from the Edit menu.

Copying Icons
When you copy an icon (or a group of icons) it is unchanged in the structure and a copy of it
is placed on the clipboard.
To copy icons from the structure:
1. Position the mouse pointer over the icon or over a range of selected icons.

2. Press and hold the CTRL key and press and hold the mouse button.

3. Drag to the Clipboard.

4. Position the cursor over the Clipboard.

If you are copying a single icon the cursor appears in the form of the copied icon. If you are copying a
range of icons the cursor appears as cascading icons.

5. Release the mouse button.

The icon or icons are copied to the Clipboard. A small square appears on the Clipboard to indicate that
the Clipboard has an item in it.

Note: You can also use a menu command to copy icons. Select the icon or range of icons
and choose Copy from the Edit menu. A copy of the icon or range of icons is automatically
placed on the Clipboard.

Pasting Icons
When you paste an icon (or a group of icons) you insert a copy of the icon(s) stored in the
Clipboard, into the structure. You can only paste an item if it was previously cut or copied. A
small square (that represents an icon) appears on the Clipboard to indicate that the
Clipboard has an item in it.
To paste one or more icons:
1. Press and hold the mouse cursor on the Clipboard.

The cursor appears in the shape of the Clipboard.

2. Drag to the position in the structure where you want to paste.

When you drag to a valid drop position the cursor again appears as the Clipboard.

3. Release the mouse button.

A copy of the icon(s) currently stored in the Clipboard is inserted into the structure.

Note: You can also use a menu command to paste icons. Choose Paste from the Edit menu.
The cursor appears in the form of the Clipboard. Move the cursor to a valid drop position in
the structure and click.
Typically, you paste below an existing icon in the structure. However, in some cases, as with
the If icon, the Module icon, or any lead icon in a composite, you can also paste to the right.

Clearing Icons
When you clear an icon you permanently remove it from the structure by dragging it to the
trash can on the ribbon bar. A copy of the icon is not placed on the Clipboard. Use this
function with care because icons that are cleared from the structure are not recoverable.
To clear icons from the structure:
1. Position the mouse pointer over the icon or over a range of selected icons.

2. Press and hold the mouse button.

3. Drag to the trash can.

The cursor appears in the form of the icon.

4. Release the mouse button.

A dialog box appears that asks you to confirm the clear action.

5. Choose Yes to continue or choose No to cancel the action.

When you choose Yes the icon is removed from the structure.

Note: You can also use a menu command to clear icons. Select the icon or range of icons
and choose Clear from the Edit menu. The selected icons are automatically removed from
the structure.
The dialog box that asks you to confirm the clear is optional. When IconAuthor is first
installed, the feature is selected and a check mark precedes it on the menu. If you do not
want the dialog box to appear choose Confirm Clear from the Options menu. The check mark
will be removed and the feature is de-selected.

Inserting Another Application into the Current Structure
IconAuthor lets you insert all of the icons from another application into the current
application.
To insert one application structure into another:
1. Choose Paste From... from the Edit menu.

The Paste From dialog box appears.

2. Use the dialog box to select the application file you want to insert.

3. Choose OK.

The Paste From dialog box is closed. The active window reappears. The cursor appears in the shape
of the Clipboard.

4. Move the cursor to the location where you want to insert the icons.

5. Click to insert the icons.

Note: The structure you pasted was also copied to the Clipboard. It remains there until you
copy something else over it. By dragging the Clipboard to a position in the structure and
releasing, you can re-insert the same structure of icons repeatedly.

Copying Part of the Current Structure to a New File
You can copy (and save) part of the current application to a new file.
To copy icons and save them to a new file:
1. Select one icon, a range of icons, or all the icons in a structure.

To select all the icons, choose Select All from the Edit menu.

2. Choose Copy To... from the Edit menu.

The Copy To dialog box appears.

3. Enter the name of the file you want to create (and to which you want the icons copied).

4. Choose OK.

The new file is created (not opened).

Note: If you select a file name that already exists, the range of icons copied will replace the
previous contents of the file.

Running an Application
To determine whether your application is performing as you intend, run it. You can run all or
part of the application, including an individual icon. You can also disable icons in the
structure and run the application without them.
The IconAuthor window is hidden when an application runs. When an application finishes
running the IconAuthor window comes back into view. If your application has an error in logic
that causes it to loop endlessly, press ESC to return to the IconAuthor window.
Related Topics:
Run Techniques
Hints for Running from a Selected Icon
General Execution Rules

Run Techniques
Use the run buttons on the ribbon bar to run the application. The left run button is grey and
runs the application from the top. The right run button is light blue if you are using the
IconAuthor default color scheme and runs the application from a selected icon.
Note: It is strongly recommended that you save your application before you run it
Running the Entire Application
To run an entire application:
+ Click on the left run button in the ribbon bar.

Running from a Selected Icon
To run the application from a selected icon:
1. Click on an icon to select it.

Note that if you click on a lead icon in a composite, the entire composite is selected. Even so, the
application will run from the lead icon (the first selected icon).

2. Click on the right run button in the ribbon bar.

Note: You can also use the Run menu commands to run the application. Choose Run From
Top or select an icon and choose Run From Selected.
Halting a Running Application
To stop an application from running:
+ Press ESC.

Hints for Running from a Selected Icon
If you run your application from a selected icon, you may find that certain icons (above the
selected icon in the structure) that are critical to the application are not executed. For
example, consider the Window icon which lets you define what kind of window the
application will run in. Many applications use a Window icon as one of the first in the
structure to specify whether the application should run full screen or in a smaller window. If
you run from a selected icon and the Window icon (or another critical icon) is not executed,
your application may not run as expected.
Related Topics:
The Startup Icon
The Default Window Setup

The Startup Icon
If you include a Startup icon as the first icon in your application you can use it to identify key

icons that you always want to run, even if you are running from a selected icon further
down in the structure. Regardless of the position of the selected icon, the icons marked
by the Startup icon are executed first.

To use a Startup icon:
1. Build the Startup icon into the top of the structure.
2. Build an icon that you always want to execute first, to the right of the Startup icon.
3. Build any other icons that you want to execute first, below the icon in step 2.
The figure to the left shows an example of a Startup icon that directs an application to execute a Window
icon and a Help icon (to make online Help available) even if you run from a selected icon further down in
the structure.

The Default Window Setup
The Default Window Setup option is another way to avoid missing a critical Window icon
when you run from a selected icon further down in the structure. It lets you specify, for
example, whether the application should run full screen or in a particular size window.
Set up the Default Windows Setup to match the performance of the Window icon at the
beginning of your structure. This way, your application will run properly even when the
Window icon does not execute.
Important: The Default Window Setup only controls how the application runs when you are
editing in IconAuthor. If you want the application to run in a window (versus full screen)
when you distribute it to end-users, you must use a Window icon.
To change the defaults for how an application appears when it runs:
1. Choose Default Window Setup... from the Run menu.

The Default Window Setup dialog box appears.

2. Use the Size text box to change the size of the window.

Use the drop-down list to select Full Screen or access the Area Editor to define the area of a window
you prefer to use.

3. Use the Title text box to assign a title to the window.

If you specified Full Screen as the size of the window, a value in the Title text box is disregarded. (Full
screen applications do not have title bars.)

4. Turn on the Re-size option if you want the window to be resizable.

If you specified Full Screen as the size of the window, the Re-size option is disregarded.

5. Change the background color of the screen.

The drop-down list box provides a selection of colors and also lets you access the Color Editor to
create or choose an alternative color.

6. Choose OK to accept changes to the dialog box, or choose Cancel to close the dialog box without
accepting changes.

General Execution Rules
Execution flow is the order in which icons are executed when you run an application. There
are several general rules that you should be familiar with in order to understand why your
application executes as it does. Many of these rules are related to the way specific icons
behave, particularly the icons that are in the Icon Librarys Flow folder.
Rules:
Simple Downward Execution Flow
Composite Execution Flow
Application Completion
Calling Other IconAuthor Applications
Exceptions to Basic Execution Flow

Simple Downward Execution Flow
If there is an icon below the current icon, and there is no icon to the right, execution
flows downward to the next icon.

Composite Execution Flow
A composite is a single icon in the library that typically creates a mini-structure of icons
when you build it into a structure. Composites are convenient because they consist of icons
that are commonly used together. The first icon in a composite (the one that appears in the
library) is always green and is called the lead icon. When IconAuthor encounters a lead icon
it always executes the icon to the right next.
As an example, in the figure to the left, the LoopIndex icon is the lead icon in the LoopIndex
composite. First, execution flows downward from the Start icon to the LoopIndex icon.
Second, instead of immediately continuing downward to the Display icon, execution flow
automatically takes a right turn to the LoopStart icon. From the LoopStart icon, execution
once again flows downward to the Display icon and the LoopEnd icon. When all the icons in a
composite have finished executing, execution flows to the icon below the lead icon in the
composite. In the example to the left, after the icons in the composite complete, the Display
icon executes.

Application Completion
You can build a deliberate exit into your application using an Exit icon. However, if
IconAuthor runs out of icons to execute, the application will automatically end. For
example, in the preceding figure (used to demonstrate Composite Execution Flow) if
there are no icons below the Display icon (below the LoopIndex icon), the application
ends.

Calling other IconAuthor Applications
Your application is sometimes referred to as a main application because it can use several
icons (for example, SubApp, Subroutine and Help) to run other IconAuthor applications.
When IconAuthor executes one of these icons, it interrupts the typical flow of execution by
jumping to an entirely different file (and structure). If the called application returns control to
the main application, execution flow continues downward from the icon that was last
executed. In the example on the left, a SubApp icon runs a another application (called a sub-
application). When the sub-application completes, execution flow returns to the main
application.
Note that this is a simple example. As shown in the following figure, the user could exit the
application entirely via the sub-application (if you give them the opportunity). In this
situation execution flow never returns to the main application.
Also, in an even more complex situation, one sub-application may call another. If your
application uses this kind of logic you must be careful to keep track of the various sub-
applications. As execution flows from one sub-application to another, these files are loaded
into memory. If the application flows to but never returns from too many (over 99) sub-
applications, an error occurs.

Exceptions to Basic Execution Flow
There are several icons that represent some of the most common exceptions to the typical
rules of execution flow.
Exit Icon
Loop and LoopIndex Composites

If Icons

Exit icon
When IconAuthor encounters an Exit icon, execution does not flow in a simple downward
direction. This icon lets execution flow back out of a part of a structure. For example,
depending on how you set up its content it can let execution flow from a sub-menu back to a
main menu, from a sub-application back to a main application or from a main application out
to the windowing environment.

Loop and LoopIndex Composites
You can create a loop in your application using either the Loop composite or the
LoopIndex composite. A loop is part of your structure that executes repeatedly. All the
icons that you build within a loop execute repeatedly. The figure on the left shows
how a Loop composite appears when you first build it into a structure.
The figure on the right shows how the same composite looks when it is set up to
execute a Clear and Display icon repeatedly.
Use the Loop when you want the user to control how many times the structure
repeats; use the LoopIndex when you want to control how many times the structure
repeats.

Like the Exit icon, the Loop and LoopIndex composites vary from the typical execution flow.
Execution flows normally except for the LoopEnd icon. When IconAuthor encounters a lead
Loop or LoopIndex icon execution flows immediately to the right. From the LoopStart icon,
execution then flows downward. When the LoopEnd icon is executed, instead of going back
up to the lead icon and dropping down, execution flows back to the LoopStart icon.

If Icon
An If icon gives your application the opportunity to branch, that is, take one path versus
another. Each If icon is set up to test whether a specific condition is true. (For example, it
can contain content that, in effect, asks the question, Is the user over 20 years of age?)
When IconAuthor encounters an If icon it evaluates whether the stated condition is true.
From the If icon, execution either flows downward if the condition evaluates to True or to the
right if the condition evaluates to False. This is illustrated in the figure on the left.

Debugging
When you debug an application, you detect and correct errors in its structure and/or content.
IconAuthor lets you debug all or part of your application as you are developing it.
The following tools are useful for debugging in IconAuthor:
Temporarily excluding (disabling) icons from execution
Understanding error messages
Viewing the contents of variables
Hints for debugging large structures

Important: You can also use the IAScope viewer to debug an application. For more
information see the IAScope program.

Disabling and Enabling Icons
IconAuthor lets you disable and enable icons to help you debug your application. If your
application contains a bug and you are not sure of the source of the problem, disabling icons
can be helpful. As an example, you can disable all but one icon or a small group of icons.
Run the application to be certain this limited part of the structure is performing correctly. If it
is, enable more icons and eventually determine the source of the bug. Use the disable and
enable buttons in the ribbon bar.
To disable icons:
1. Select one icon or a range of icons.

2. Click on the disable selected icons button.

To enable selected icons:
1. Select one disabled icon or a range of disabled icons.

2. Click on the enable selected icons button.

To enable all icons in a structure:
+ Click on the enable all icons button.

Using Error Messages
In some situations an error in structure or content may cause IconAuthor to display an error
message. If this occurs, refer to the description of error messages in the IconAuthor
Reference Manual.

Viewing and Editing Variables
Variables, which can lend great flexibility to your applications, can also serve as a powerful
tool in debugging. After running an application, simply viewing the contents assigned to a
variable provides an indication of what's happening "behind the scenes." In addition to
viewing the structure of an application, IconAuthor lets you run an application and then view
all of the variables (and their values) used by the application.
As an example of how this might be useful, consider an application that is supposed to let
the user input his or her name, store it in a variable called @NAME, and then redisplay the
name (the contents of @NAME) later in the application. Perhaps you find when you run the
application that the users name does not appear as expected. In this case, you could begin
tracking down the problem by viewing the applications variables and seeing whether
@NAME is being used at all, and if so, whether the correct value is being assigned to it.
Related Topics:
Types of Variables to View
Changing the Window View
Viewing Structures and Variables Simultaneously
Editing Variables
Clearing Variables

Types of Variables
IconAuthor lets you view three different kinds of variables: user, system and path. User
variables are those that you specifically create for your application, like @NAME or @COLOR.
System and path variables are reserved for special functions and are assigned values by
IconAuthor during execution. For example, a path variable called @_GRAPHIC_PATH is always
set to the path and directory where IconAuthor can find the graphics for the current
application. @_GRAPHIC_PATH would therefore contain a value similar to C:\IAUTHOR\
GRAPHICS. Like the user variables, it is often useful to be able to view the contents of
system and path variables.

Changing the Window View
By default, the application window shows the structure. You can change the view so that it
displays a type of variable used by the application instead.
To view the variables of an application:
1. Ensure that your application window is active by clicking anywhere on it.

2. Choose Window Contents from the View menu or click on the Window Contents button in the ribbon
bar.

3. Choose the desired command from the menu.

The application window changes to display the appropriate list of variables and their current
values. Note that user variables appear in the list only after you have run the application
during this editing session and they contain values.

Viewing Structure and Variables Simultaneously
You may find it even more helpful to view several perspectives of one application
simultaneously. IconAuthor lets you duplicate a window and then change the view presented
in that window. For example, you can create a structure in an application window, duplicate
the window, and use the previously described procedure to change the view of the duplicate
window to show the system variables for that application. You can then tile the windows so
that they appear side by side.
To duplicate a window:
1. Click on the window you want to duplicate to make it active.

2. Choose Duplicate from the Window menu.

A duplicate of the active window is created. The duplicate window has the same name in the title bar
as the original window, except that the name is preceded by "Duplicate:"

3. Use the Window Contents commands in the View menu (or the Window Contents button) to change
the perspective of the duplicate window.

If at any time you want to find out exactly which document windows you have open, pull
down the Window menu. The bottom of the menu lists the currently open windows. The
active window is preceded with a check mark.

Editing Variables
You can change the value currently assigned to a variable by highlighting the variable,
typing a new value in the box at the top of the window, and pressing the RETURN key.

Clearing Variables
It is often useful to be able to clear all of the application variables used by an application.
For example, you might run your application and then view its variables to see what they
contain. Typically, in fine-tuning and debugging your application you will make some
changes to the structure. Before running the application again, you have the option of re-
setting all the application variables to their original state (so that they do not contain
values).
To clear application variables:
1. Click on the Variables button in the ribbon bar.

A pop-up menu appears.

2. Choose Clear Application Variables.

The variables of the currently active application are re-set to their original state.

Debugging a Large Structure
There are several features that are part of the IconAuthor interface that help you to edit a
particularly large structure that cannot be viewed all at once.
Related Topics:
Zooming the Structure
Compressing Composites
Jumping to Icons in a Large Structure

Zooming the Structure
When you first run IconAuthor the size of the icons is considered 100%. You can zoom the
icons in the structure (not in the library) so that you view them smaller at 75%, 50%, or
25%.
To change the zoom level of icons in the structure:
1. Press and hold the mouse on the zoom button in the ribbon bar.

2. Drag to select a zoom level.

Note: You can also use the View menu to change the zoom level. Choose Zoom from the
View menu. Choose a zoom level percentage.
You can add additional zoom percentages to your menu. For instructions on how to do so,
refer to the section on IAUTHOR.INI in Appendix C.

Compressing Icons in a Composite
Another way to see more of the structure at once is to compress (hide) the icons in selected
composites.
To compress the icons in a composite:
1. Select the lead icon in the composite.

2. Click on the compress/expand composite button in the ribbon bar.

The composite is compressed. (Select the icon and click the compress/expand composite button again
to show the icons in the composite.)

Jumping to Icons in a Large Structure
Instead of scrolling through the IconAuthor window to find a part of the structure you want to
edit, you can use a search feature to automatically jump to a particular icon and select it.
To jump to an icon and select it:
1. Choose Find from the Edit menu of the IconAuthor window.

The Find Icon dialog box appears.

2. Enter the name of the icon in the Icon Label text box and choose OK.

If the icon you specified appears in the structure (below or to the right of the currently
selected icon), IconAuthor locates the icon and selects it. You can now copy or cut the icon
or move on to another building or editing task. If you do not customize the names of your
icons, it is likely that you will have several icons with the same name in your application.
IconAuthor will find the first instance of that icon name the first time you search. To find the
next one, choose Find Next from the Edit menu or press F3.

Managing Files
Use the following procedures to manage files when you work with IconAuthor:
General Procedures
Naming Files
Organizing Files
Using Page Setup
Printing
Exiting from IconAuthor
Application Files
Opening Existing Application Files
Auto Saving Application Files
Distributing Applications
Saving Applications
ASCII Text Files Files
Opening Existing ASCII Text Files
Starting to Create ASCII Text Files
Saving ASCII Text Files
Graphic Files
Opening Graphic Files in the IconAuthor Work Area
SmartObject Files
Opening SmartObject Files in the IconAuthor Work Area

Editing between Windows
Each new or existing file you open and work with is contained in its own document window.   
You can therefore open and work with as many files as necessary at the same time.    For
example, you can create an application window and begin building a structure.    You can
open an existing application in another application window and perform structural edits
between the two windows.    While the application windows are still open you can open a text
window and do some work on a Variable file (an ASCII text file).    At a later point, when you
are considering which graphic to include in a Display icon, you can open several graphic files
to view them.
Manipulate document windows (similar to the way you work with application windows) by
moving them, resizing them, or minimizing them within the IconAuthor work area.    When
you minimize a document window the icon is different depending on the type of file the
window contains.    For example, the icon for a minimized application window is a hand using
a pen to create a structure.    The name of the file in the document appears below the icon.   
You can also show path names for minimized files, by choosing Show File Path from the
Window menu.
Related Topics:
Editing Applications

Naming Files
IconAuthor expects authors to use the following file naming conventions:
· Main application files have an .IWM extension.
· Sub-application, Subroutine, and Help files have an .IW extension.
· ASCII Text files have a .VAR, .PTH, or .TXT extension.
· SmartObject files have an .SMT, .FTT, or .TXT extension.
· Graphic files have one of the following extensions:

.BMP .FIF .KFX .PSD .XPM

.CAL .GIF .LV .RAS .XWD

.CGM .GX2 .MAC .RLE

.CLP .ICA .MSP .TGA

.CUT .ICO .PCD .TIF

.DCX .IFF .PCT .WMF

.DIB .IMG .PCX .WPG

.EPS .JPG .PIC .XBM
Related Topic:
Organizing Files

Organizing Files
IconAuthor provides a default directory structure to help you organize the files that make up
your applications.    Store application files in one subdirectory, graphic files in another, etc.   
It is important to understand this directory structure to make the most effective use of
IconAuthor.    For example, if you use this system to store a file such as a graphic file,
IconAuthor will readily know where to find that file when it is time to include it in an
application at runtime.
During installation, IconAuthor automatically creates a main directory called IAUTHOR unless
you specify a different name, such as, MYWORK.    For simplicity,we assume that your main
IconAuthor directory is called IAUTHOR.    The IAUTHOR directory contains all the files that
allow IconAuthor to run.   
Also at installation, IconAuthor creates subdirectories below the IAUTHOR directory.    These
subdirectories are used when you save and open files.    For example, save application files
in the ICONWARE subdirectory and graphic files in the GRAPHICS subdirectory.    It's
important that you put your files in these subdirectories unless you want to enter path
information each time you enter a file name or change your path file to reflect the location
of the files.    That is where IconAuthor expects to find them.    As an example, you might
indicate in a Display icon Content Editor that at runtime IconAuthor should display
EAGLE.PCX.    Even though you don't specify a path for the graphic file, IconAuthor expects to
find EAGLE.PCX in the GRAPHICS subdirectory.
The following list describes where to save various types of files:

ANIMATE Iconanimate animation files
AUDIO audio files
DATABASE database files
FORMAT database format files
GRAPHICS graphic files
ICONWARE application files
INPUT input menu template files
LIBRARY icon library files
MOVIE digital video and third-party animation files
TEXT ASCII & SmartObject files
VARIABLE variable files

Starting to Create ASCII Text Files
The IconAuthor File menu lets you create new ASCII text files.
Note: You can also use a text editor such as Notepad to create and edit ASCII text files.    To
access Notepad from within IconAuthor, choose Editors from the Run menu and then choose
Notepad.    For information on using Notepad, refer to your Microsoft Windows
documentation.
To open a new application or text window:
1. Choose New... from the File menu.

The New dialog box appears.
By default, the Main Application option is selected.

2. If necessary, select the Text Window option.
3. Choose OK to open a new window.

An untitled window appears with a vertical bar in the upper left corner to indicate where text appears
when you begin to type. Use the keyboard to create the contents of the text file.

Related Topic:
Editing ASCII Text Files

Editing ASCII Text Files
Your application may require that you create or edit one or more of the following types of
ASCII text files:
· variable files (used by the LoadVar Icon and SaveVar Icon)
· straight text files (used by the Text Icon)
· database format files (used by the Database Icon)
· path files (used by IconAuthor to find the files used by your application)

You can edit a text file in an IconAuthor text window or in another editor such as Windows
Notepad.
Using Notepad
You can access Notepad from within IconAuthor by choosing Notepad from the Run menu.   
For information on using Notepad, refer to your Notepad documentation.
Using an IconAuthor Text Window
When you open an IconAuthor text window, a vertical bar appears in the upper left corner to
indicate where text appears when you begin to type.    Use the keyboard to create the
contents of the text file.    Press RETURN to start a new line.    (Text does not automatically
wrap to the next line.)
When you want to change existing text, backspace to remove text one character at a time.   
You can also use the mouse to select any quantity of text and use the Cut, Copy, Paste, and
Clear commands from the Edit menu.    When you cut or copy text it is placed on the
Clipboard.    Previously cut or copied text can then be pasted into a new position in the text
window.
Related Topics:
Creating ASCII Text Files
Saving ASCII Text Files

Opening Existing Application Files
When you open an existing application    file, the file is placed in a new document window.   
You can edit the structure and content of an application file.    If two application files are open
at the same time, you can edit between them.    For example, you can perform editing tasks
such as copying an icon from one structure to another.    You can also print application files.
.To open an existing file:
1. Choose Open... from the File menu.

The Open dialog box appears.
By default, the main application option is selected and an *.IWM filter causes any matching files to
appear in the FileName list box.

3. If necessary, use the Directories list box to select the directory from which you want to open the file.
4. Select a filename from the FileName list box.
5. Choose OK.

The file is opened.

IconAuthor makes it easy to open several of the same type of files simultaneously.    Follow
the procedure that describes opening one file, except, at step 4, instead of selecting one
filename from the Files list box, select several filenames.    If you want to open all files,
choose Select All.
Related Topics:
Editing between Windows

Opening Existing ASCII Text Files
When you open an existing text file, the file is placed in a new document window.    You can
edit the text in a text file.    If two text files are open at the same time, you can edit between
them.    For example, you can copy text from one file and paste it into another.    You can also
print text files.
To open an existing file:
1. Choose Open... from the File menu..

The Open dialog box appears.
2. Choose Text from the List Files of Type drop-down list.

The filter in the FileName text box changes to display text file filters.
3. If necessary, use the Directories list box to select the directory from which you want to open the file.
4. Select a filename from the FileName list box.
5. Choose OK.

The file is opened.

Related Topics:
Editing between Windows

Opening Graphic Files in the IconAuthor Work Area
When you open a graphic file through the IconAuthor File menu, the file appears in a new
document window.    The graphic file is available for viewing and printing only.    You can
move or resize the window in which the graphic is displayed, but you cannot edit the image. 
If you want to create and/or edit a graphic file, you must use a graphics editor.    To access
the IconAuthor Graphics Editor, choose Editors from the Run menu.    Then choose Graphics...
.
.To open an existing file:
1. Choose Open... from the File menu..

The Open dialog box appears.
2. Choose Graphic from the List Files of Type drop-down list.

The filter in the FileName text box changes to display graphic file filters.
3. If necessary, use the Directories list box to select the directory from which you want to open the file.
4. Select a filename from the FileName list box.
5. Choose OK.

The file is opened.

Opening SmartObject Files in the IconAuthor Work Area
When you open a SmartObject file through the IconAuthor File menu, the specified page
appears in a new document window.    These are available for viewing only and you many
print them, or move or resize the window they are displayed in.    If you want to create and/or
edit a SmartObject file, you must use the SmartObject Editor.    To access the SmartObject
Editor choose Editors from the Run menu.    Then choose SmartObject...
.To open an existing file:
1. Choose Open... from the File menu..

The Open dialog box appears.
2. Choose SmartObject from the List Files of Type drop-down list.

The filter in the FileName text box changes to display the .SMT, .FTT, and .TXT file filters.
3. If necessary, use the Directories list box to select the directory from which you want to open the file.
4. Select a filename from the Files list box.
5. Choose OK.

The file is opened in a new document window that has a Page drop-down list box at the top.
6. Use the Page drop-down list box to select the name of the page you want to view..

Saving ASCII Text Files
The first time you save a file you also name it.   
Saving a file for the first time:
1. Choose Save As... from the File menu.

The Save As dialog box appears.
2. If necessary, use the Directories list box to select the directory in which you want to save the file.
3. Enter a filename in the FileName text box.

If you do not use an extension, IconAuthor automatically adds the default .TXT extension.
4. Choose OK.

The dialog box is closed and the new name of the file appears in the window title bar.

Saving changes to existing files:
· Choose Save from the File menu.

The changes are saved automatically.

Saving and Renaming Files:
It is sometimes useful to save a file and rename it at the same time.    For example, you
might want to change an existing text file but still want to keep a copy of it in its original
state.    When you save and rename the original file you have two identical files with different
names.    Make as many changes as you like to the copy and you will still have the original.
To save and rename a file:
1. Choose Save As... from the File menu.

The Save As dialog box appears with the existing filename highlighted in the Filename text box.
2. Edit the filename or enter a new filename.
3. If necessary, use the Directories list box to select the directory in which you want to save the file.
4. Choose OK.

The dialog box is closed and the new name of the file appears in the file window title bar.

Auto Saving Application Files
The Auto Save feature only applies to IconAuthor application files.    It allows you to tell
IconAuthor to automatically save an application, after a certain number of edits.    If there is
a power failure or a system malfunction while you are working with your application, a fairly
up to date copy of your work will have been saved.    When you begin working with
IconAuthor, Auto Save is not in effect.
To turn on Auto Save:
1. Choose Auto Save... from the Options menu.

The Auto Save dialog box appears.
2. In the Number of Edits text box, enter the number of edits after which you want IconAuthor to

automatically save your work.
An edit is any editing or building operation you perform such as building an icon into the structure or
cutting an icon from the structure.

3. Choose OK.
The dialog box is removed and Auto Save is in effect.

To turn off Auto Save:
· Perform the same procedure as is described for turning Auto Save on, however, enter 0 in the Number

of Edits text box in the Auto Save dialog box.

Related Topics:
Saving Application Files

Using Page Setup
When you print a file, you can use the default margin and header/footer settings.    Or, you
can use the page setup procedure to customize the layout of the page.    Customizing the
page setup involves using the Page Setup dialog box.
To open the Page Setup dialog box:
· Choose Page Setup... from the File menu.

The dialog box appears

Current margin settings are indicated in the four boxes to the top, bottom, left, and right of
the page symbol in the Margins area.    The default margin settings are 0.5".
To reset margins:
1. Click in the appropriate box in the Margins area and enter a new value.
2. Choose OK.

When you setup headers and footers, you specify the kind of information to be included and
how that information will be formatted.    For example, you might include today's date, and
right justify it in the header.    Headers and footers are always printed within the top and
bottom margins, respectively.    By default, the current filename appears as the header, and
the word "Page" followed by a page number appears as the footer.    Both items are centered
on the page.   
To setup headers and footers:
· Use the Header and Footer text boxes to enter text and/or any codes you want to appear at the top

and bottom of each page.
For example, you can type the word "Date" followed by a space and &d in the Header text box. This
generates text such as "Date 12/15/91" at the top of the printed page. (Include spaces in your
definition if you want them to appear between items.)

Use the following codes to generate and format information in the Header and Footer text
boxes:

&d Generates the current date.
&p Generates page numbers.
&f Generates the current filename.
&l Justifies the text that follows at the left margin.
&r Justifies the text that follows at the right margin.
&c Centers the text that follows.
&t Generates the current time.

Printing
Printing an application enables you to view its entire structure all at once.    It also lets you
share your design ideas with other authors.    You can produce a hard copy of the structure
and content of an application, and information about the variables it uses.
IconAuthor also lets you print any ASCII text or graphic file, or any SmartObject page.
To print an application file:
1. Choose Print... from the File menu.

The Print dialog box appears
2. In the What to Print area, select the aspects of the application that you want to print.
3. In the Icon Structure Print Options area, select the way you want the structure printed.

If you select the Range option, you must enter the coordinates of the icons that you want to print. Use
the Upper left boxes to enter the X,Y coordinates of the first icon in the range. Use the Lower right
boxes to enter the X,Y coordinates of the last icon in the range.
Optionally, you can use the Zoom box to change the zoom level used for printing. By default,
IconAuthor uses the current zoom level of the window being printed.
If you want to print the coordinates of the icons, select Print Coordinates.

4. In the Icon Content Print Options area, select the way you want the content printed.
By default, icon content is printed by column. This means that the content of icons in the first column
is printed on as many pages as necessary, and a page break is automatically generated as soon as
the content of icons in the second column begins printing. If you select Page break at new X, icon
content is printed by row.

5. Choose OK to close the dialog box and begin printing.

To print an ASCII text file, a SmartObject page, or a graphic file:
1. Open the file and make its window the active window
2. Choose Print...

The file is printed.

Closing Files
You can close files by double-clicking on the Control-menu boxes of the individual document
windows in which the files appear.    If you try to close a file that contains unsaved changes
IconAuthor displays a message that the file has changed and asks if you want to save
current changes.    Choose Yes to save the changes, No to close without saving changes, or
Cancel to stop the close process.
You can also close files by exiting IconAuthor.    If you try to exit IconAuthor when one or
more open files contain unsaved changes, IconAuthor displays a message asking you if you
want to save changes for each document window containing unsaved edits.   
When you choose Yes to save changes to a file that is being closed, the next action that
IconAuthor takes depends on whether the file has previously been named.    If the file has
been saved before, it is saved automatically with the same name.    If the file is untitled, a
Save As dialog box appears.

Distributing Applications
You can distribute applications to other users who have an IconAuthor Authoring system and
you can distribute them to end-users who have an IconAuthor Presentation system.
Within IconAuthor you create a resource file that keeps track of all the files used by a main
application. When you are ready to distribute the application, you run IconAuthor's Resource
Manager and open the application's resource file. This allows you to review all the files that
are used by the application. At this point, you may choose to omit certain files from the
distribution process or you may decide to include additional files, such as documentation or
readme files.
During distribution, the Resource Manager can compress files and it can also split them
across disks for maximum efficiency. You can also set parameters so that a setup program
and Present are distributed with the application.
The Resource Manager ultimately produces a disk or set of disks that are distribution-ready.
These disks contain the setup program which the end-user (or system administrator) simply
runs to install the application.

Saving Application Files
As with any computer application, it is important to save your work often.
Even in the early stages of creating an application, at the point at which you have just begun
to build some icons into a structure, you should save your work in an application file.    Do
not wait until you finish working to save your work.
Note: It is strongly recommended that you save an application file before you attempt to
run it.
The first time you save an application you also name it.
To save an application for the first time:
1. Choose Save As... from the File menu.

The Save As dialog box appears.
2. Enter a filename of up to eight characters in the Filename text box.

Optionally, include an .IWM extension with the filename. If you do not use an extension, IconAuthor
automatically adds the default .IWM extension.

3. Choose OK.
The dialog box is closed and the new name of the application appears in the application window title
bar.

Saving additional changes to an existing application is simpler because the application is
already named.
To save additional changes to a named application:
· Choose Save from the File menu.

The changes are saved automatically.

Related Topic:
Auto Saving Application Files

Exiting from IconAuthor
When you are ready to end your work session, you can exit IconAuthor.
To exit from IconAuthor:
· Choose Exit from the File menu.

If you try to exit IconAuthor when multiple open files contain unsaved changes, IconAuthor displays a
message such as "4 files have changed. Save current changes?" Choose Yes to make available the
option to save changes, No to exit without saving changes, or Cancel to stop the exit process.
If you choose Yes, a message appears for each file that contains unsaved changes, asking if you want
to save that file. Choose Yes to save the changes, No to close without saving changes, or Cancel to
stop the exit process.
When you choose Yes to save changes to a file, the next action that IconAuthor takes depends on
whether the file has been saved and named previously. If the file has been saved before, it is saved
automatically with the same name. If the file is untitled, a Save As dialog box appears.

Multimedia
Your applications can include the following types of multimedia:
Audio
Animation
Graphics
SmartObjects
Text
Video

Working with Graphics
Graphic images are invaluable in making your presentations and courses more informative
and more appealing. Your application can display a graphic so that it takes up a part of the
screen or the entire screen.    Special effects can display images in a variety of ways, such as
having them appear all at once, having them fade in gradually, or having them sweep
horizontally or vertically on and off the screen. Graphics can be display-only or they can be
an interactive feature that the user can click on to cause an action to occur.
Create graphics for display in your applications using any graphics editor that uses the file
formats supported by IconAuthor.
Related Topics:
Live versus Static Graphics
Displaying Live Graphics
Displaying Static Graphics
Graphic File Formats
Image Size
Image Color

Live versus Static Graphics
The role that a graphic plays is largely controlled by whether it is live or static. A live graphic
(available via the SmartObject Editors Graphic object displays on the screen and can change
at runtime. This is because a live graphic has properties that you can manipulate via
"object" icons. Here are some examples of how live graphics can perform at runtime:
+ Use an ObjSet icon to re-set a live Graphic objects FileName property at runtime, thereby changing

the graphic that it displays.

+ Set up the NotifyOnClickLeft property of a live Graphic object so that the user can click on the graphic
to cause some other action to occur.

+ Set up the Drag- properties of a live Graphic object so that the user can drag and drop the graphic
elsewhere on the display.

A static graphic displays on the screen and behaves as if it is part of the background. The
only way to make a static graphic interactive is to use an InputMenu icon to make areas of
the screen "hotspots" after the graphic is displayed. As soon as you display other
information on top of a static graphic, the static graphic is replaced by the new information.

Displaying Live Graphics
Create a SmartObject file that contains a live Graphic object and then display the file with a
Display icon. In addition to graphics, the SmartObject file can also display a variety of other
objects such as Push Buttons, Text, List Boxes, and Movies.

Displaying Static Graphics
There are two basic ways to display static graphic files within your applications. Both
methods involve the Display icon.
First, you can use a Display icon to independently display a static graphic file. The Display
icon can vary the position of the graphic on the screen and vary the special effects used for
display.
Second, you can include a static graphic as part of a SmartObject file. Although Graphic
objects are live by default, you have the option of making them static. A static graphic has a
small number of properties (characteristics) that you can set. For example, you set the
FileName property to specify which file should be displayed in the object. When a Graphic
object is static, its properties cannot change at runtime.

Graphic File Formats
The information in a graphic file is organized using one of several graphic file formats. The
format is the specification for the structure of the file. When you use a graphics editor to
create and save a file, the file is saved using one of the available formats of that particular
editor.
The two primary format families are bitmap graphic and vector graphic. IconAuthor
supports a variety of bitmap formats. These formats are so named because they are made
up of a "map" or pattern of bits.    Each bit is called a pixel and is, in effect, a dot, the
smallest unit of a bitmap. Bitmaps tend to display more quickly than complex vector
graphics but they also tend to be larger in file size because they have to describe every
pixel.
IconAuthor supports the following graphic file formats:

.BMP .CUT .FIF .ICO .KFX .PCD .PSD .TIF .XPM

.CAL .DCX .GIF .IFF .LV .PCT .RAS .WMF .XWD

.CGM .DIB .GX2 .IMG .MAC .PCX .RLE .WPG

.CLP .EPS .ICA .JPG .MSP .PIC .TGA .XBM
Note: All of these formats are bitmap except for .CGM files which are vector format.

Image Size
The size of a graphic image (called the image resolution) is its width and height measured
in pixels. As an example, a common image resolution for a graphic is 640 pixels wide by 480
pixels high. A graphic of this size would be made up of 307,200 pixels because 640 x 480 =
307,200.
Screen resolution is the total area of the computer screen and is also measured in pixels.
Different systems support different screen resolutions. For example, two popular screen
resolutions are 640 x 480 and 1024 x 768.
Because screen resolution can vary, you need to take certain measures to ensure that your
application displays as intended on the end-users system. For example, if you design your
application to run full screen in a 640 x 480 screen resolution, on a 1024 x 768 system a 640
x 480 graphic (originally intended to appear full screen) would not fill the screen.

Here are several solutions to common problems that can occur:
+ Distribute your application with multiple sets of graphics to accommodate different systems. At the

beginning of the application use the System object to determine the screen resolution of the users
system. Based on the results, have the application use the appropriate set of graphics. Because you
are distributing a larger number of files, this method is more efficient if your application is being
distributed on CD.

+ If you want the application to run fullscreen on any system, use an ObjSet icon to set the Window
objects FitToWindow property to True. Any graphics that are displayed independently will be scaled to
fit correctly in the window. If the application uses live Graphic objects, set their DrawStyle property to
Scale or SizeByGraphic, whichever is optimal.

+ Create your graphics assuming a screen resolution of 640 x 480. Include a Window icon at the
beginning of your application to cause your application to always display in a window that is 640 x 480.
Use an ObjSet icon to set the Window objects FitToWindow property to True. In this case, the graphics
will not scale at all.

+ Distribute your application with one set of graphics and make the system requirements clear to the
end-user clear. For example, if you plan to use graphics appropriate for display in 640 x 480 screen
resolution, let the user know (via packaging) that his or her system must meet these requirements.

Related Topic:

SmartObject Display Concepts

Image Color
Each pixel in a bitmap graphic can have a color value. In a black and white bitmap, for
example, black bits have a value of 0. White bits have a value of 1. In addition to
monochrome, color graphics are typically 16-color, 256-color, or true color.
Similar to screen resolution, different systems use different graphics cards and they
therefore support different color capabilities. For example, if a system supports 256-color
graphics, it will correctly display a 16-color graphic. However, if a system supports only 16-
color graphics, it will not correctly display a 256-color graphic. It will try to make the best
possible color matches but the quality of the images will be reduced.
As a result, when you create or choose graphics for an application, you need to consider
what kind of graphics card your end-users will have. If you are creating an application for
kiosk systems where you know exactly what kind of systems will be used, you can choose
your graphics correctly. However, if you are distributing a course to end-users who may have
a variety of hardware configurations, you will need to plan for a greater number of
possibilities.
Here are some solutions:
+ Make the requirements to the end-user clear. For example, if you plan to use 256-color graphics, let

the user know (via packaging) that his or her system must support 256 colors.

+ Create the application using files that will be supported by any users system, namely, 16-color images.

+ Distribute the application with multiple sets of graphics, such as one set of 256-color graphics and
another set of the same graphics in 16 colors. At the beginning of the application use the System
object to determine the color support provided on the users system. Based on the results, have the
application use the appropriate set of graphics. Because you are distributing a larger number of files,
this method is more efficient if your application is being distributed on CD.

16-Color Graphics
16-color graphics can use up to 16 specific solid colors called the system colors. Additional
colors can be created by mixing two or more colors. The mixing of colors is referred to as
dithering. For example, pink is the result of alternating solid red and magenta pixels. These
graphics do not suffer any distortion upon display because any color system will be able to
display the limited number of colors correctly.

256-Color Graphics
In contrast to 16-color graphics, 256-color graphics are slightly more complex. However,
they also offer much more diversity and richness. This subsection explains the basic
structure of a 256-color bitmap and how to troubleshoot any problems that may arise.
Each 256-color bitmap you display has a palette associated with it. The palette identifies all
the colors (up to 256) that are used in the image. The team member responsible for the
graphics in your course must have an understanding of how palettes work. Specifically, this
person needs to know how to view and edit palettes.
The role of the palette is crucial to the performance of your application. As an example, one
of the most common problems that can occur is a distortion of color when two or more
graphics that use different palettes are displayed side by side. The person providing your
graphics must make sure that graphics that are displayed on the same frame use the same
palette.
Related Topics:
256-Color Graphics and Palettes
The System Palette
Identity Palettes
Palette Troubleshooting

256-Color Graphics and Palettes
Each color in a palette has a numerical index from 0 to 255. The first color is index 0, the
second is 1 and so on.   

The actual bitmap file you create contains a color table that lists each color index in the
palette and its corresponding RGB (Red Green Blue) value. An RGB value is made up of
three numbers (from 0 to 255) that describe the level of intensity of red, green, and blue
that compose the color. For example, 0,0,0 is the RGB value for the color black which is
made up of 0% intensities of red, green, and blue. White, with an RGB of 255, 255, 255 is at
the opposite end of the range because it is made up of 100% intensities of red, green, and
blue.
As an example, one bitmap files color table may set color 23 to RGB    0,129,0 (a shade of
green) and color 24 might equal 232,0,0 (a shade of red). After the color table, the bitmap
file lists each pixel and its corresponding color index. When the bitmap is displayed, the
pixels are colored, in paint-by-number style, using the corresponding indexes.

The System Palette
When you work in Windows, you are using a system palette. The system palette has 20
reserved colors called system colors. The system colors automatically occupy the first ten
and last ten positions in the palette.
The following figure shows how a representation of the contents of the system palette might
appear.

When IconAuthor displays a bitmap, the bitmaps palette is realized (mapped) into the
system palette. Because the first ten and last ten positions are reserved for pre-set system
colors, you are actually limited to selecting 236 (rather than 256) colors when you create
your bitmap. Because the first ten positions (0-9) are reserved, at realization, the first color
in the bitmaps palette is mapped to position 10. The second color is mapped to position 11
and so on. Because the last ten positions are reserved, if a bitmap uses more than 236
colors, any colors at the end of the palette are lost.

Identity Palettes
An identity palette is a variation of the conventional palette that is part of a 256-color
bitmap. When you make a palette into an identity palette, you pre-assign the 20 system
colors to the first ten and last ten reserved positions in the palette. When the bitmaps
identity palette is realized into the system palette, the first color in the bitmaps palette is
mapped to position 1. The second color is mapped to position 2 and so on.
The easiest way to create an identity palette for a bitmap is to use a graphic utility tool such
as ImageLab that has an explicit Create Identity Palette... command. The command lets you
automatically create an identity palette.

Palette Troubleshooting
The following topics describes common problems (and solutions) that can occur when using
256-color images:
Color Distortion with Side by Side Bitmaps
Color Distortion with Consecutively Display Graphics
Color Distortion with Graphics and Movies

Color Distortion with Side by Side Bitmaps
In some situations, a color distortion can occur when you display two (or more) 256-color
bitmaps on the screen side by side. The first bitmap displays correctly but when the second
bitmap displays (also correctly), the colors in the first bitmap are distorted. There are two
likely reasons for this problem to occur.
+ First, the distortion can occur if the first bitmaps palette differs from that of the second bitmap. For

example, whereas the first bitmap may use Green in position 23, the second bitmap may use Purple in
position 23. This kind of color distortion is called a palette shift. With the display of the second bitmap,
the palette values shift positions and are no longer accurate for the first bitmap.

+ Second, the distortion can occur if one or both of the bitmaps dont use an identity palette. When
IconAuthor displays a graphic that does not have an identity palette, Windows immediately attempts to
compress the palette. Colors shift positions when they are realized into the system palette and a
distortion is likely to occur.

To avoid palette shift for all bitmaps that will be displayed side by side, follow two basic
practices:
+ Make sure that the bitmaps use the same palette.

+ Make sure that the bitmaps all have an identity palette.

Color Distortion with Consecutively Displayed Graphics
Graphics that are displayed one after the other must also use a common palette and an
identity palette. The same shift that occurs for side by side graphics will occur, for example,
if you display one background graphic and then replace it with another that has a different
palette.
If the graphics use different palettes, the first graphic displays correctly. When the second
graphic displays, its colors are immediately distorted because Windows is still using the
palette from the first graphic. As soon as the second graphics palette is realized into the
Windows system palette the color distortion is corrected. Although in this kind of situation
the palette shift is typically brief, it can be a distraction and a detriment to an applications
performance.
The severity of this problem depends on the speed of the machine on which the application
is running. If you are using a slower machine, the distortion will be prominent. If you are
using a relatively fast machine, the distortion may happen so quickly that it is not
discernible to you. Because most developers do not have complete control over the speed of
the end-users machine speed, remember to use a common palette that is an identity palette
for all the graphics in a course.

Color Distortion with Graphics and Movies
The SmartObject Editor lets you use the Movie object to include movies in your application.
Be aware that when the application plays a movie and accompanying graphics must use
only the 20 system colors.
Movies use the 20 system colors and up to 236 other colors. If you try to display a graphic
that uses colors other than those used by the movie, a palette shift will occur.

True Color Graphics
The two basic advantages to using true color graphics are their photographic quality and the
fact that they do not cause any of the color distortions that can occur with 256-color
graphics. However, the files are very large (three times the size of 256-color graphics) and
therefore take up more storage space and are slower to display. Also, because true color
represents the latest in color technology, end-users are less likely to have the necessary
graphics card.

Working with Animation
Animations bring exciting and informative motion to your applications. Your application can
play an animation that takes up a part of the screen or the entire screen. There are several
ways to create animations and a variety of ways to play them.
One way to create animations is to use IconAnimate, IconAuthors animation editor. You can
then run the animation in the following ways:
+ Play the animation in a live IconAnimate object available through the SmartObject Editor.

+ Play the animation using the Display icon.

The other way to create animations is to use a third-party tool such as AutoDesk Animator.
Once you create the file you can play it in a live Movie object available through the
SmartObject Editor.

Working with Text
Text is one of most basic tools you can use in your visual displays. Like a graphic, it can be
generated from a file or it can be generated at runtime. You can display anything from a
single character to a full screen of text. If you need to display more text than will fit on the
screen at once, you can display the text in a scrollable box or you can change the text when
the user is ready to move on.
Text can be display-only or it can be interactive. There are several basic ways in which text
can be interactive. One common situation is where text is intended for the user to edit. Or,
in other cases, a rectangular area of text can serve as a button that a user can click on to
cause some other action to occur.
Related Topics:
Live versus Static Text
Displaying Live Text
Displaying Static Text
Creating Text Files

Live Versus Static Text
The role that text plays is largely controlled by whether it is live or static. Live text (available
via the SmartObject Editors Text object) displays on the screen and can change at runtime.
This is because live text has properties that you can manipulate via "object" icons. Here are
some examples of how live text can perform at runtime:
+ Use an ObjSet icon to re-set a live Text objects FileName property at runtime, thereby changing the

text file that it displays.

+ Set up the NotifyOnClickLeft property of a live Text object so that the user can click anywhere on the
text to cause some other action to occur.

+ Include one or more Hotwords (interactive words) in a Text object. When the user clicks on a Hotword,
you can cause a specific action to occur based on the selected word.

+ Use a live Text object to let the user browse database records at runtime.

In contrast, static text displays on the screen and behaves as if it is part of the background.
There are several ways to display static text such as via a static Text object, the Write icon,
or the Text icon. The only way to make static text interactive is to use an InputMenu icon to
make areas of the screen "hotspots" after the text is displayed. As soon as you display other
information on top of a static text, the text is replaced by the new information.

Displaying Live Text
You can create a SmartObject file that contains a live Text object and then display the file
with a Display icon. When you use live objects you can change their properties at runtime
via object icons.
There are three ways to enter text in a live Text object. First, you (the author) can type in it
within the SmartObject Editor. You set several characteristics of the text such as formatting,
line spacing, and paragraph alignment. If there is more text than can be displayed at one
time, you can make the text scrollable.
Second, you can set the object's FileName property to the particular file you want it to
display. When you do this you also need indicate whether the text file should be embedded
in or linked to the SmartObject file. When you embed a file, it has the same effect as pasting
the text into the file. When you link a text file, it is still a separate file that is called by the
SmartObject file at runtime.
Third, you can make the object editable (by setting its Editable property to True) and thereby
allow the user to type in the object at runtime.
In addition to allowing user input, because the Text object is live, there are other ways in
which it can perform interactively. For example, it can be set up to cause execution to flow
down a particular branch when the user finishes providing input. Or, the object can be set up
to act as a button, which when clicked upon, causes some other action to occur.

Displaying Static Text
Use the following basic techniques to display static text within your applications:
Use a static Text object in a SmartObject file
Use a Write icon
Use a Text icon
Use an Input Icon

Static Text Objects
The SmartObject Editor lets you use a Text object to display static text. Like other available
objects such as the Graphic object and Push Button, the Text object is live by default. As
necessary, you must explicitly make it static.
There are two ways to enter text in a static Text object. You can type in it, setting several
characteristics such as formatting, line spacing, and paragraph alignment. Or, you can
specify the name of a text file that will serve as the contents of the object. The text file can
be formatted (with different color and font information) or it can be an unformatted ASCII
file.
A static Text object has a small number of properties (characteristics) that you can set. For
example, you can use the FileName property to specify the particular text file you want to
use. You can also set the object's SelectionArea property if you plan to make the object a
hotspot at runtime (with an InputMenu icon).    When a Text object is static, its properties
cannot change at runtime.

Static Text via the Write Icon
One common way to display up to one line of text is to use the Write icon. You specify the
text string (or a variable that contains a string) within the Content Editor and the string is
displayed at runtime.
Precede the Write icon with a Color icon to control the color of text. If you do not use a Color
icon, IconAuthor uses the system default values for black text on a white background.
Precede the Write icon with a Fonts icon to control the font style and size used for text.

Static Text Files via the Text Icon
Use a Text icon to display a static unformatted text file. The user cannot interact with text
displayed via the Text icon. You can create an ASCII file with an IconAuthor Text window, the
SmartObject Editor, or a text editor such as Notepad. Use the Font icon to control the overall
appearance of text displayed with the Text icon.    By default, if you do not use the Fonts
icon, the smallest available size of the System type font is in effect for text displays. Text is
black by default. Precede the Text icon with a Color icon to change the color of text.

Displaying Static User Input: The Input Icon
If your application does not use live objects, use the Input icon to allow the user to input
different types of information, including text, numbers, or a date. The Content Editor of the
Input icon lets you access the Input Selection Editor. This editor allows you to specify exactly
how and where you want the user's input to appear on the screen. For example, you can
specify that input is displayed on the screen exactly as it is entered or that it is masked by a
character for security purposes.    (You can also choose not to have input appear on the
screen at all.)
Like the Write icon, the style, size and color of text generated through the Input icon are
controlled by the Font and Color icons.

Creating Text Files
The following table outlines the different ways to create text files for your IconAuthor
applications.

Editors:
File
Formats: Display Options in IconAuthor:

SmartObject Editor -
Formatted Text mode

.FTT Use the SmartObject Editors Text
object.

SmartObject Editor -
ASCII Text mode

.TXT Use the SmartObject Editors Text
object or a Text icon.

IconAuthor Text
window

.TXT Use the SmartObject Editors Text
object or a Text icon.

External ASCII Text
Editor such as
Notepad

.TXT Use the SmartObject Editors Text
object or a Text icon.

External Word
Processor

.RTF Open the file in the SmartObject
Editor and save as .FTT. (Many
aspects of .RTF formatting, such
as color, font and simple table
features, are supported. Complex
tables and embedded graphics are
not.) Link to a SmartObject Editor
Text object.

Working with Audio
Audio is one of the most effective presentation techniques you can use.    It can accompany
and enhance any one of the other media you are including in your application such as
graphics, video, and animation. Audio is a unique and powerful way of involving the user in
the application.    You can use voice, high quality musical recordings, and special effects to
make your applications more appealing and more informative.
In an application created for educational purposes, audio can provide valuable voice
instruction as well as feedback in test situations.    For example, audio can describe what is
going on in an instructional video or graphic display.    Or, a user's correct answer can be
responded to with a voice message such as "That answer is correct.    Please press any key
to move on to the next question." Also, audio is a key part of multimedia language lesson
applications that teach skills such as listening, reading, and speaking.
In a presentation or kiosk environment, voice audio is also useful to enhance and describe
the visual information.    Music and special effects play a crucial role in making the
application richer, more enjoyable, and even more alluring.    Remember, even if a user is not
yet viewing the monitor, effective audio can be a powerful way of attracting one's attention.
Related Topics:
How Audio Works
Supported File Formats
The Display Icon and Audio Objects
MCI Icons
Movies that use Audio
Beeps

How Audio Works
Although adding audio to your application can be as simple as drawing and defining an
Audio object in the SmartObject Editor, it is important that you understand the power behind
the audio.
IconAuthor applications play audio files through the Media Control Interface (MCI). MCI is a
feature that comes with your windowing software. In effect, MCI is a channel of
communication between IconAuthor and an audio device. Any device that supports MCI can
be manipulated by your applications.
To play audio files, your system (and your end-users systems) must be equipped with an
MCI-compatible sound card (such as the SoundBlaster). You can also use a CD-ROM drive to
play sounds. Note that in order to hear the audio, systems should also be equipped with
speakers or headphones.

Audio File Formats
You can include two types of audio files in your applications: wave audio and MIDI
(Musical Instrument Digital Interface). Wave audio (.wav) files are well-suited for voice
recordings such as a person welcoming the user to the course or providing feedback by
saying That is correct. MIDI (.mid) files play music or special audio effects.
Sometimes the sounds you want to play are contained in discrete files. For example, That is
correct is in correct.wav and That is incorrect is in WRONG.WAV. However, in other situations,
one file may contain multiple sounds.
Be sure to inform the person who creates your sound files that it is easiest if each sound clip
is contained in a unique file. If a file contains just one sound clip you will only have to specify
to play the file from beginning to end. Otherwise, you will have to specify the precise
starting and ending positions (in seconds) of the portion of the file that you want to play.

The Display Icon and Audio Objects
The simplest way to play audio is to create SmartObject files that play Audio objects when
displayed via the Display icon. Audio object can play wave audio files, MIDI files, or CD audio
selections. These features are available because, behind the scenes, IconAuthor is sending
commands to MCI. When you use the Audio object you do not have to explicitly construct
MCI commands. You simply set properties for the object. IconAuthor takes care of the
commands for you.
The Audio object you use can perform in one of two ways. It can be invisible but play
automatically when a Play command is issued to it. Or, you can set up a Button object to
control the audio. To have the audio object be invisible but play automatically, set its
CommandOnCreation property to Play. It will play audio as soon as the SmartObject page
displays. Otherwise, at some other point after display, you can make the object play by
using an ObjSet icon to set the objects Command property to Play.
To control the audio via a Button object, set the Button objects ControlObjectName property
to the ObjectName of the audio object and its ControlCommand property to the appropriate
audio command. The user will then be able to click on the Button object to play the audio.

MCI Icons
The MCI icon also allows your IconAuthor applications to take advantage of the enhanced
audio features (and any other multimedia features) of MCI. Each MCI icon can send a
different command to a supported sound card or CD-ROM drive. Therefore unlike the Audio
object, if you plan to use MCI icons, you need to be familiar with the MCI commands and
syntax.
Note: Most authors will find that the Audio object is not only easier to use than MCI icons,
but is also versatile enough to fulfill all of their audio needs.
Although the MCI icon itself does not contain any default values, IconAuthor comes with
three composites that make learning about MCI easier. These composites, called CD-Audio,
MIDI, and WaveAudio, are primarily made up of MCI icons. The MCI icons that comprise these
composites already contain commands that require little or no editing to be ready for play.
For example, if you build a WaveAudio composite into your structure you only have to
specify the path and filename of the wave audio file you want to play.

Movies with Audio
The visual images provided by digital or analog video are often accompanied by audio. For
example, when you use the Movie object to play a Video For Windows (.AVI) file, it frequently
plays audio as well. The same is true if your application uses Video icons to play video from
a videodisc player.

Beeps
Use the Beep icon when you want a system to emit a simple low or high tone. You can use
one Beep icon to create a single tone, or you can create a series of beeps, by using several
Beep icons (or a Beep icon within a loop).    For example, a beep can be useful in notifying
the user that a response is correct (a high tone) or incorrect (a low tone). Note that the Beep
icon does not require any additional hardware.

Working with Video
The easiest way to play video in your IconAuthor applications is through the Movie object.
The Movie Object
Although adding video to your application can be as simple as drawing and defining a Movie
object in the SmartObject Editor, it is important that you understand how video works
The Movie object plays video files through the Media Control Interface (MCI). MCI is a feature
that comes with your windowing software. In effect, MCI is a channel of communication
between IconAuthor and a video device and/or video software. Any device that supports MCI
can be manipulated by your applications.
Prerequisites
To play video files, your system (and your end-users systems) must be equipped with MCI-
compatible video software and/or hardware. Some MCI video support is software-only. That
is, you and your end-users only need special software, not hardware. An example of this is
the Video For Windows driver for MCI which comes with IconAuthor. Some other kinds of MCI
video support require special software and hardware.
Note: If you plan to play video files that use sound, your system also requires a sound card
that supports MCI.
Related Topic:
Playing the Movie Object

Playing the Movie Object
The simplest way to play video is to create a SmartObject file that plays a Movie object when
displayed via the Display icon. When you play a Movie object, behind the scenes IconAuthor
is sending commands to MCI. You do not have to explicitly construct MCI commands. You
simply set properties for the object. IconAuthor takes care of the commands for you.
The Movie object can perform in one of three ways. If you set the objects ControlBar
property to True, it appears with controls that allow the user to play the video at will. The
second way to play a movie is to explicitly set the object to play. If you set the objects
CommandOnCreation property to Play, it will play the video as soon as the SmartObject
page displays. Otherwise, at some other point after display, you can make the object play by
using an ObjSet icon to set the objects Command property to Play. The third way to play the
movie object is via a Button object. You can set up a Push Button or Picture Push Button style
Button object to control the playing of a movie. Set the ControlObjectName property of the
button object to the ObjectName of the movie object. Also, set the ControlCommand
property to the appropriate movie command. The user will then be able to click on the
button to play the movie.

Understanding IconAuthor Path Files
By default, IconAuthor uses a main directory and subdirectories that are set up during
installation.    IconAuthor uses the subdirectories to open and save files.    It expects to find
specific file types in each subdirectory.    Files IconAuthor looks for are:
Subdirectory File Type
ANIMATE IconAnimate Animation
AUDIO Audio
DATABASE Database format
FORMAT Format
GRAPHICS Graphic
HELP Help
ICONWARE Main and Sub-Application
INPUT Input menu template
MOVIE Digital Video and third-party animations
LIBRARY Icon library
TEXT SmartObject, ASCII
VARIABLE Variable

IconAuthor has a special path file that contains the names of the subdirectories and the
extensions of the files that are stored there.    The path file is in the IAUTHOR directory and is
called IAUTHOR.PTH.    IAUTHOR.PTH contains the following path variables and values:
@_ANIMATE_PATHC:\IAUTHOR\IANIMATE
@_GRAPHIC_PATH C:\IAUTHOR\GRAPHICS
@_ICONWARE_PATH C:\IAUTHOR\ICONWARE
@_VARIABLE_PATH C:\IAUTHOR\VARIABLE
@_TEXT_PATH C:\IAUTHOR\TEXT
@_FORMAT_PATH C:\IAUTHOR\FORMAT
@_DATA_PATH C:\IAUTHOR\DATABASE
@_LIBRARY_PATH C:\IAUTHOR\LIBRARY
@_MOVIE_PATH C:\IAUTHOR\MOVIE
@_USER_PATH C:\IAUTHOR\USER
@_INPUT_PATH C:\IAUTHOR\INPUT
When you create and save applications, IconAuthor creates a unique path file for each
application.    IAUTHOR.PTH is a master that is used to create the application path file.    The
first time you save an application file, a path file of the same name is automatically created
with a .PTH extension.    The path file is saved in the same place as the application file.    For
example, when you save DEMO1.IWM, IconAuthor automatically creates DEMO1.PTH.   
A path file is a list of path variables.    Path variables are always assigned values that are
paths.    For example, if you installed IconAuthor on the C drive, the path variable called
@_GRAPHICS_PATH is assigned the value C:\IAUTHOR\GRAPHICS.
Related Topic:
Customizing the Directory Structure
Path Variables

Customizing the Directory Structure
Advanced computer users may want to change the default directory structure.    Instead of
storing files the way IconAuthor is originally set up to store them, you may want to store all
files for an application in the same directory.    Or, you may want to have a different set of
directories for each application you create.    You can create a custom directory structure by
changing the path file.
Before changing the path information, use a utility such as DOS or the Windows File Manager
to create the directories and subdirectories.    Then edit the .PTH file of your application file
to reflect the new directories and subdirectories you just created.
To edit the .PTH file of an application:
1. Open the application.
2. Choose Window Contents from the View menu.
3. Choose Path Variables.

The contents of the application window changes to reflect the path variables and values in the
application's path file.

4. Select the path you want to change.
5. Type a new path in the box at the top of the window.
6. Press RETURN.

The new path value is assigned to the appropriate variable. Continue to change path values as
necessary.

Hint: You can easily set multiple path variables to the same path. While pressing and holding
the CTRL key, click on the items you want to reset. Type the new value and press RETURN. Or,
drag across consecutive items to select them.
You can also make changes to a .PTH file by using the information in another existing .PTH
file.
To use another .PTH file to change .PTH settings:
1. Open the application whose .PTH you want to change.
2. Choose Variables from the Edit menu.
3. Choose Set Path From File...

The window where your application structure was visible changes to show the corresponding path
variables. A File Open dialog box appears.

4. Double click on the .PTH file you want to use.
The path variable values for the current application are changed to match the path variable values of
the file you chose.

When you save the application file, the changes to the path file are automatically saved.    To
change the view back to the application structure, choose Window Contents from the View
menu again, and choose Application Structure.
If you do not plan to use IconAuthor's default directory structure, you can edit the master
IAUTHOR.PTH file.    If you change IAUTHOR.PTH, the new IAUTHOR.PTH file will be used to
create the path file for each subsequent application that you save.    IAUTHOR.PTH is an
ASCII text file that can be edited in Notepad or in an IconAuthor text window.
Warning: Do not change the name of the IAUTHOR.PTH file or any of the application path
files.

Variables
When you enter a fixed value (such as a number or a color) in a Content Editor field, every
time you run the icon it performs in exactly the same manner. The alternative to using fixed
values is to use variables. While a fixed value causes an icon to do the same thing every
time, a variable can cause the icon to execute differently (vary) on different occasions.
A variable is similar to a container. Like a container that can hold oil on one occasion and
water on another, a variable can contain one value at one time and hold a different value
later. Unlike a physical container, a variable is an expression like @NAME, @NUMBER, or
@COLOR that you enter in a Content Editor field. As an example, if you enter the variable
@COLOR in the Clear Screen To field of the Clear icon, on one occasion, @COLOR can contain
the value blue and later it can contain green.
Related Topics:
How Does a Value Get in a Variable
Types of Variables

Types of Variables
IconAuthor lets you use the following types of variables:
User Variables
Indexed Variables
System Variables
Path Variables

How Does a Value Get in a Variable?
When you use a variable in an application, the variable must contain a value to perform
properly. There are several ways that a value gets stored in a variable.
You (the Author) Assign a Value
A common way to set a variable is to use a Variable icon. This icon lets you specify the name
of the variable and the value you want it to contain. As an example, a Variable icon at the
beginning of your application could set @COLOR=blue. As a consequence, anywhere in your
application where the variable @COLOR appears, it will use the color blue.
It may seem trivial to set @COLOR to use it in one Clear icon. However, consider what would
happen if you had a large application that used several Clear icons (and other icons) that
used @COLOR. In order to change @COLOR globally you would only have to edit the value in
one Variable icon.
The user can assign a value to a variable.
Applications often let the user enter information, such as a name or number, via the mouse
or keyboard. In order to let different users enter different information, your application stores
the input in a variable. For example, your application can contain a Display icon that displays
a SmartObject file. One of the items that displays could be a Text object in which the user is
instructed to type his or her name. After the user enters the name, the value can be stored
in a variable called @NAME.
Using variables to capture a user's input and store it in a variable is extremely powerful.
Once the value is stored in a variable, the variable can be used elsewhere in the application.
The user can input many different kinds of information such as test responses, order
information, or personal information.
An Icon Automatically Assigns a Value
A small number of icons actually place values into a variable for you. The Random icon is a
good example of this practice. This icons Content Editor requires you to specify the name of
a variable (such as @NUMBER) and a range of numbers (such as 1-10). At runtime, the icon
randomly picks a number in the specified range and assigns it to the variable.

Some Basic Rules for User Variables
A variable can hold one or more numbers, sets of coordinates, text strings, or filenames.
All variables must begin with the @ symbol and can contain up to alphanumeric 19
characters, including the @ symbol. Do not begin a variable with @_. This convention is
reserved for special system variables.
Valid characters for naming a variable are numbers, letters (upper or lowercase), and the
underscore (_) symbol.     
Variables can store numeric values from    -2.1 billion to +2.1 billion.
Application variables can store text strings up to 256 characters in length.
Within one application, do not use the same name for a single variable and an indexed
variable.    For example, do not use @VAR and @VAR[1], @VAR[2], etc.

User Variables
Each variable you create must have a unique name. It is helpful to name variables in a way
that indicates their use. For example if you create a variable that is intended to store a
user's last name, you can call it @LAST_NAME.
The information stored in a variable can be a text string like "hello there" or "George", a
number like 47, a coordinate point like 200,10, or a filename, like DOGS.PCX. The first
character of every variable name you create must be the @ symbol. In addition to the @
symbol, use up to 18 upper and lower case letters, numbers, and the underscore symbol to
name your variables. Variable names are not case sensitive. Do not begin a variable with
"@_". This convention is reserved for special system variables.
Related Topics:
Capturing User Responses
Performing Concatenation
Performing Real Number or Integer Arithmetic Operations
Evaluating Input
Loading Multiple Variables

Capturing User Responses
Your application can let a user type information and store it in a variable. Once the data is in the variable,
you can manipulate it in several different ways. For example, you can display a name, evaluate a test
response, or save order information.

One of the most common ways to capture user input is to display a SmartObject file with an editable Text
object. A Text object is a box designed to display text. If you make it editable, the user can type in it..(To
make a Text object editable, you set its Editable property to True in the SmartObject Editor.)

When a user finishes typing in a field (an editable Text object), your application can store the input in a
variable by using an ObjGet icon. In effect, the ObjGet icon gets the value currently associated with the
objects Text property (this is simply the text that the user typed) and assigns it to a variable.

Performing Concatenation
You can link together the contents of two or more variables that contain character strings. This process is
called concatenation and is done via the Variable icon. As an example, you can create an application
that lets a user enter his or her name and re-displays the name as part of a personalized greeting.

Use the & operator to concatenate. For example, if @GREETING=Hello and @NAME=Fred, you can
concatenate the two values in a Variable icon to construct the message Hello Fred. In the Variable Name
field, specify the name of the variable (such as @MESSAGE) in which you want to store the result of the
concatenation. In the Assign Contents field, specify @GREETING & @NAME. Be sure to include a space
before and after any operators in the Variable icon.

In this example, as a result of the concatenation @MESSAGE will equal Hello Fred.

Perform Real Number or Integer Arithmetic Operations
If the information assigned to a variable is numeric you can perform arithmetic operations on it. You you
can set up a Variable icon that adds, substracts, divides, multiplies, determines square roots, and so on.
You can specify a simple operation such as @NUMBER1 + @NUMBER2 or you can specify more
complex, multi-operator expressions, such as (@NUMBER1 + @NUMBER2) / @NUMBER3.

Remember to leave spaces before and after any operators. Parentheses ensure that an enclosed
operation is done before other operations.

Evaluating Input
Once an application captures user input, it often evaluates the input and branches (executes one series of
icons versus another) based on the evaluation. One of the most common ways to evaluate input is via the
If icon.

Consider an application that lets a user enter a response to the question What is 50 + 25? The user
enters a response which is stored in @ANSWER. You use an If icon to compare the users input to the
number 75 (the correct answer). The If icon acts as a traffic controller by determining whether the
response was correct, and directing execution flow in a particular direction.

Loading Multiple User Variables
Although the Variable icon is useful for assigning a value to a variable, if you are assigning
values to several variables, it may be more efficient to load them into memory
simultaneously. This can be done via the Display icon or by the LoadVar icon. Many types of
applications can require you to load a group of variables at once.
As an example, consider an application that must display in one of several languages.
Instead of fixed values, all of your icons that display information (such as bitmaps and
SmartObject files) would use variables. For example, Display icons that show bitmaps would
be set up to display @BITMAP1, @BITMAP2, and so on. At the beginning of the application a
display can present the user with a selection of languages (such as English and Espanol).
After the user makes a selection, the application can evaluate the result and load the
appropriate group of variables and values. For example, one group assigns @BITMAP1 and
@BITMAP2 filenames that display English information while another group assigns these
variables using filenames that display Spanish information.
Related Topics:
The Display Icon and the Variable Object
The LoadVar Icon and Variable Files

The Display Icon and the Variable Object
To load several variables into memory at once, you can use the Display icon to load a
SmartObject file with a Variable object. Use the Variable object to define one or more
variables and their values. Although the Variable object has no visible appearance at
runtime, the SmartObject file can optionally contain other objects that do appear, such as
Text or Graphic objects.
As an example, a Variable object might load the following:
@NUMBER_OF_GRAPHICS
3
@COLOR
blue
@CORRECT_MESSAGE
Yes. That is correct.
@INCORRECT_MESSAGE
No. That is incorrect. Try again.
As soon as the SmartObject file is loaded into memory, the variables defined in the Variable
object are also loaded and available for use. This method is efficient in two ways. First, it lets
you use one Display icon instead of four Variable icons. Second, it lets you load variables
that are associated with a particular SmartObject page.

The LoadVar Icon and Variable Files
The LoadVar icon also lets you load a group of variables into memory simultaneously. The
variables you load with the LoadVar icon come from a variable file which is an ASCII text
file. The file contains any number of variables and can be created with a text editor such as
Notepad, or using a text editing window within IconAuthor. When you name a variable file,
use a .VAR extension. Include a carriage return at the end of the last line in a variable file.
Elements listed in a variable file are not required to have values. The values can be assigned
to the elements later in the execution of the application. For example, the application can
capture user input to assign values to the elements.
To access Notepad from IconAuthor:
+    Choose Notepad from the Run menu.

Indexed Variables
Unlike user variables which can contain only one piece of information, indexed variables
are user variables that can contain several pieces of related information. For example, an
indexed variable might contain all the answers to a quiz or it might contain all the graphics
to display as part of a presentation.
Each piece of information in an indexed variable is contained in its own element. For
example, you can store the names of six graphic files that are part of one presentation in an
indexed variable with 6 elements.
An element name has two parts to it: the variable name and the index. @PIC[1], @PIC[2],
and @PIC[3] are examples of elements in one indexed variable. @PIC is the variable name,
and [1], [2], and [3] are the indexes. @PIC[1] is an element that can contain the name of
one graphic file, @PIC[2] can contain another, and so on. The index part of an indexed
variable element can be a fixed value or a variable. For example, @PIC[1] uses a fixed value
for the index. @PIC[@COUNT]    uses a variable for an index.
Do not use the same variable name for a single variable and an indexed variable. For
example, do not use @NUMBER and @NUMBER[1], @NUMBER[2], etc.
Note: Unless otherwise directed, always use the full name (variable name and index) to
refer to an indexed variable. Do not, for example, refer to @PIC without an index.
Each element of an indexed variable can contain the same kind of information that a single
value user variable can contain, such as a number or a character string, or another variable.
The indexed variable elements can also be used in the same manner as single value
application variables. That is, they can be used to capture user responses, perform
arithmetic procedures, and so on.
Related Topics:
Indexed Variables and Loops
Indexed Variables and Parsing

Indexed Variables and Loops
In many situations, applications manipulate the elements of an indexed variable in
sequence. Each element is used in order, according to the number of its corresponding
index. If an indexed variable contains the elements @PIC[1], @PIC[2], and @PIC[3], an
application is likely to be designed to manipulate @PIC[1] first, then @PIC[2], and then
@PIC[3].
This use of indexed variables is illustrated by how the elements of the variable work within a
loop. A loop is a group of icons in your structure that is executed more than once because
execution flows around in a circular fashion. Rather than building the same logic into your
structure repeatedly, a loop is efficient because it uses the same logic, or, the same portion
of the structure over and over again.
Each time through a loop your application can use a different element of an indexed
variable.

Indexed Variables and Parsing
In IconAuthor, parsing means breaking down a value in a variable into its smaller
components. One of the most common uses of parsing is to store related pieces of
information in one variable and at runtime, to parse the components into discrete, usable
pieces of data. Use a Parse icon as the foundation for a parsing routine in your application.

System Variables
Unlike user variables, which you create as part of your applications, system variables are
created and assigned values by IconAuthor. System variables are reserved for certain
standard functions. All system variables begin with the characters @_. Although you can
change the values stored in system variables, you cannot change the system variable
names. Each system variable serves a unique purpose.
System Variables

@_ERROR This variable is set when a DllLink
icon executes.    When the icon
executes successfully this variable
contains the value 0.    When the
icon executes and an error occurs,
the variable contains a non-zero
value.

@_ERROR_STRING This variable is set when a DllLink
icon executes.    If an error occurs
during execution this variable
contains a message that describes
the nature of the error.

@_FOUND This variable is set when a
Database icon is executed with a
LOCATE, NEXT, or EXIST command.
It is set to .T. if IconAuthor finds a
valid database or database record. 
It is set to .F. if IconAuthor does not
find a valid database or database
record.

@_NUM_AREAS This variable is set when a
SmartObject file is displayed.    It
contains the number of selectable
areas on the screen.

@_OBJECT_DATA This variable is set when your
application uses live objects.   
(Applications can use live objects
that are created as part of
SmartObject file.)    When a live
object event occurs (such as a
button being clicked), the setting
of the objects ObjectData property
is stored in this variable.     

@_OBJECT_EVENT This variable is set when your
application uses live objects.   
(Applications can use live objects
that are created as part of
SmartObject file.)    When a live
object event occurs (such as a
button being clicked), the name of
the event is stored in this variable. 

@_OBJECT_NAME This variable is set when your
application uses live objects.   
When a live object event occurs
(such as a button being clicked),
the name of the object is stored in

this variable.
@_RUN_WND This variable is set to the window

handle of the window in which
your IconAuthor application is
running.    This variable can be
passed to DLL functions that
require a window handle.

@_SELECTION This variable is set if a user makes
a selection from an input screen
generated by an InputMenu icon.   
It contains the number assigned to
the chosen selection area.    This
variable is also used to store the
key used to terminate input with
the Input icon.

@_TEXT_AREAS This variable is set when a
SmartObject file is displayed.    It
contains the coordinates for the
selectable areas on the screen.

@_TIMEOUT This variable is set when an Input
or InputMenu icon is executed.    It
is set to 1 if timeout occurs before
the user responds to the input
screen.    It is set to 0 if the user
responds before timeout.

@_USERTIME This variable is set when an Input
or InputMenu icon is executed.    It
is assigned the number of 100ths
of a second it took the user to
respond to the input screen.

Path Variables
Path variables are a specialized type of system variables because they are created and
assigned values by IconAuthor. Like other system variables, they begin with the characters
@_.
The way in which path variables differ is that they are always assigned values that are
paths. For example, by default the path variable called @_GRAPHICS_PATH is assigned a
value similar to the following: C:\IAUTHOR\GRAPHICS. The purpose of path variables is to tell
an application where to find its files (such as graphics, animations, and other application
files).
There is a different path variable for each type of file that your application uses.

@_ANIMATE_PATH Contains the path for IconAnimate
animation files, for example, C:\
IAUTHOR\ANIMATE.

@_AUDIO_PATH Contains the path for audio files,
for example, C\IAUTHOR\AUDIO.

@_DATA_PATH Contains the path for database
files, for example, C:\IAUTHOR\
DATABASE.

@_FORMAT_PATH Contains the path for database
format files, for example, C:\
IAUTHOR\FORMAT.

@_GRAPHIC_PATH Contains the path for graphic files,
for example, C:\IAUTHOR\

GRAPHICS.
@_ICONWARE_PATH Contains the path for application

files, for example, C:\IAUTHOR\
ICONWARE.

@_INPUT_PATH Contains the path for input
template files, for example, C:\
IAUTHOR\INPUT.

@_LIB_PATH Contains the path for library files,
for example, C:\IAUTHOR\LIBRARY.

@_MOVIE_PATH Contains the path for digital video
files and third-party animation
files, for example, C:\IAUTHOR\
TEXT.

@_TEXT_PATH Contains the path for SmartObject
files and ASCII text files intended
for display, for example, C:\
IAUTHOR\TEXT.

@_USER_PATH Contains the path for user files, for
example, C:\IAUTHOR\USER.    User
files are created and used only by
Present.

@_VARIABLE_PATH Contains the path for variable files,
for example, C:\IAUTHOR\
VARIABLE.

Database Objects
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X

A database is an organized collection of information that your application can access and
use. One application can use several databases and one database can be used by several
applications. When do you use a database? When you want your application to efficiently
keep track of large amounts of information. Even though the database may be very large,
containing information on many customers, students or products for example, only a small
piece of it is loaded into memory at one time.
The most powerful way to access a database is through the Database object which is
available through the SmartObject Editor. This object allows you to take advantage of the
Open Database Connectivity (ODBC) interface. ODBC lets your application use Structured
Query Language (SQL) to access a variety of different database formats including:
Access
Btrieve
dBASE
Foxpro

Oracle
Paradox
SQL Server

Sybase
A control bar can provide the user with tools for easy navigation through the database.
Records are displayed in Text objects that are bound (associated) with the Database object.
Once a record is retrieved the user can perform key operations such as adding, deleting and
updating records.
Database Objects use the following properties:
Area
AutoErrorDisplay
AutoNavigate
Bottom
ClipSiblings
Command
CommandOnCreation
ConnectExclusive
ConnectString
CursorName
DataSources
DeleteProtected
EnableFirst
EnableLast
EnableNext
EnablePrev
EnableUpdate
FamilyName
FieldCount
FieldNames
Height
Layer
Left
Location
NotifyOnRecordFirst
NotifyOnRecordLast
NotifyOnRecordNext
NotifyOnRecordPrev
NotifyOnRecordUpdate
ODBCConnectionHandle
ODBCStatementHandle
ObjectData
ObjectName
OpenType
PageName
PositionCurrent
PositionSeek
RecordCount

RecordData
RecordStatus
Rectangle
Result
ResultString
Right
Size
SQLText
Status
TableCount
TableNames
Top
Visible
VisibleFirst
VisibleLast
VisibleNext
VisiblePrev
VisibleUpdate
ValidationList
Width
WindowHandle

Ellipse Icon
The Ellipse icon dynamically draws an ellipse.
You can control whether the ellipse is filled and outlined, or outlined only.    By default, the
outline color is black and the fill color is white.    To create an ellipse using alternative colors,
precede the Ellipse icon with a Color icon.    The fill and outline colors you specify are in
effect until you use another Color icon.    (If you use the Color icon to specify a fill color of
TRANSPARENT, the underlying screen display will show through the interior of the ellipse.)
Suggested Uses:
· Create an ellipse that is a border around part of the screen
· Mask an ellipse-shaped area of the screen

Content Editor Text Boxes:
Upper Left Corner
Lower Right Offset
Line Width
Filled or Outline

Upper Left Corner
To position the ellipse, you actually describe the imaginary rectangle that surrounds the
ellipse.    Use the Upper Left Corner text box to position the ellipse on the screen by
specifying the location of the upper left corner of the imaginary rectangle. Acceptable values
are: upper left, a pair of screen coordinates, or a variable.
Drop-down List Box Items:

upper left - Defines the upper left corner of the imaginary rectangle as the upper left corner of the
screen.
Area Editor
Variable Selector

Lower Right Offset
Specify the width and height (in pixels) of the imaginary rectangle that surrounds the ellipse.
Note: A value automatically appears in this text box if you use the Area Editor to specify the
value in the Upper Left Corner text box.
Acceptable values are: lower right, two numbers that represent the width and height
respectively (separated by a comma), or a variable.
Drop-down List Box Items:

lower right - Defines the width and height of the imaginary rectangle so that its lower right corner is
located at the lower right corner of the screen.
Variable Selector

Line Width
Specify the width (in pixels) of the border of the ellipse.    If you are drawing an outlined
ellipse, use a line width of 1 pixel or more.    If you are drawing a filled ellipse, use a line
width of 0 pixels or more.    (If the line width of a filled ellipse is equal to 0, it has no border
and uses only a fill color.)
Acceptable values are: any whole number (including 0) or a variable.
Drop-down List Box Items:

assorted whole numbers - Frequently used line widths.
Variable Selector

Filled or Outline
Indicate whether the ellipse is filled and outlined, or outlined only.
Acceptable values are: filled, outline, or a variable.
Drop-down List Box Items:

filled - Creates a filled ellipse. If the line width of a filled ellipse is greater than 0, it uses a fill color and
an outline color. If the line width of a filled ellipse is equal to 0, it has no border and uses only a fill
color.
outline - Creates an outlined ellipse. Do not use a line width of 0 to create an outlined ellipse.
Variable Selector

Exit Icon

The Exit icon is key to controlling the flow of execution in your application.    Depending on
how you use the Exit icon, it can cause execution flow to exit from one of the following types
of structures:
· a composite icon, such as a Menu icon, or a composite that you create
· a loop
· a series of 2 or more nested loops
· a Help application
· a subroutine
· a sub-application
· a main application
· Windows

Content Editor Fields:
Exit From
Return List

Exit From
Specify the type of structure being exited.
Acceptable values are: application, windows, composite, help, subapp, loop,
subroutine, any number greater than 2, or a variable.
Drop-down List Box Items:

application - Causes an exit from the entire application. Even if this kind of exit occurs from within a
Help application (that was accessed from the main application), both the Help application and the main
application are exited.
composite - Causes an exit from a composite. If the Exit icon is executed, execution flows to the icon
below the lead icon in the composite.
Windows - Causes an exit from the application and Windows.
subapp - Causes an exit from a sub-application that was called from the main application. If the Exit
icon is executed, execution returns to the main application from which the sub-application was called.
The main application resumes execution with the icon below the SubApp icon.
help - Causes an exit from a Help application. If the Exit icon is executed, execution returns to the
main application from which Help was accessed. Execution resumes with the icon that was current
when Help was accessed.
loop - Causes an exit from a loop (a composite Loop icon or a composite LoopIndex icon). If the Exit
icon is executed, execution flows to the icon below the lead icon in the loop composite.
subroutine - Causes an exit from a subroutine. The main application resumes execution with the icon
below the Subroutine icon.
2 - Causes an exit from two loops. This means that the exit occurs from within the inner (second
level) loop and execution flows to the icon below the lead icon in the outer (first level) loop composite.
Note: The Exit From text box can contain any positive integer.    The result is an exit from
the specified number of nested loops.
Variable Selector

Return List
Use the Return List text box if you specified subroutine in the Exit From text box.
When a Subroutine icon causes a subroutine to execute, parameters can be passed to the
subroutine.    In turn, when the subroutine is exited, it can pass values back to the main
application.    The Exit icon in the subroutine passes one or more fixed values and/or values
stored in variables, back to the Subroutine icon (that initially called the subroutine) in the
main application.    When the values are returned to the Subroutine icon they are assigned to
variables.
Use the Return List text box of the Exit icon to specify the names of the values and variables
you want to pass back to the main application.    The values of the variables you list in the
Return List text box of the Exit icon are assigned, in the order they are listed, to the
variables listed in the Subroutine icon.
The variable values returned to the main application can be single value variables or
indexed variables.    If the variable being returned is indexed, then the receiving variable
becomes an indexed variable.    For example, the value of the variable @LETTERS is returned
to the main application.    @LETTERS is an indexed variable with three elements
(@LETTERS[1]=A, @LETTERS[2]=B, and @LETTERS[3]=C).    The variable listed in the
Receive List text box of the Subroutine icon also becomes an array.    If the Receive List text
box variable is @VAR, then @VAR[1]=A, @VAR[2]=B, and @VAR[3]=C.
Acceptable Values are: any positive or negative decimal or integer number, or a variable.
Drop-down List Box Item:

Variable Selector

Related Topics:
Subroutine Icon

Font Icon
The Font icon lets you access the Font Editor dialog box to set the font, style, size and color
of the characters generated by the Text icon (an ASCII file) and the Write icon (dynamically
generated text). It also lets you control the font, style, size and color of characters displayed
when a user types a response to an Input icon. The Font icon does not control the display of
text within SmartObject or Graphic files.
If you do not use a Font icon, the smallest available size of the System type font is in effect
for text displays. The fonts that are currently loaded in your windowing system are the fonts
(and sizes) that are available for use with IconAuthor.
Choose Font Editor... from the drop-down list to access the Font Editor. This is the same Font
Editor that appears at other times in IconAuthor except that there are two extra fields:
Escapement and Orientation.
Escapement
Specify the angle at which you want each entire text line to appear. This feature is only
available for vector type fonts. Examples of vector fonts are Modern, Roman and Script.
Orientation
Specify the angle at which you want each character in a text line to appear. This feature is
also only available for vector type fonts.

Help Icon
Use the Help icon to allow users to use a Help application (online Help) while they use your
application.    The Help icon specifies the name of the Help application the user can access,
and the action the user must take in order to access the Help application.
Important: Do not use this icon if your application uses live objects (created via the
SmartObject Editor.)
Place the Help icon as the first icon in the main application to initialize the help function.   
When you enter information in the Content Editor text boxes, you indicate 1) the name of
the Help application, and 2) how the user accesses Help.
Content Editor Text Boxes:
Help Filename
Help Escape Type
Help Escape
Help Variable (reserved for future use)
Related Topics:
Creating a Help Application

Help Filename
Specify the name of the Help application.    The Help application should have a .IW extension
like any other IconAuthor sub-application.
Only one Help application can be active at one time.
Acceptable values are: a filename with a .IW extension or a variable.
Drop-down List Box Items:

Directory
Variable Selector

Help Escape Type
Specify the kind of action the user must perform to execute (escape to) the Help application.
There are three general kinds of actions you can let users perform to access Help.    They can
press a key, click on an area of the screen, or touch an area of the screen (if they are using a
touch screen).
Regardless of the kind of action you let users perform, they can only press a key, click on the
screen, or touch the screen when IconAuthor is waiting for input.    When an Input icon or an
InputMenu icon is executed, IconAuthor is waiting for a response from the user.    It is at this
point that the user can access Help.    A user cannot access Help when IconAuthor is
executing icons.    For example, Help is not accessible while an animation script is running or
while a graphic is being slowly displayed on the screen.
Acceptable values are: all mouse, char, L mouse down, R mouse down, touch, or a
variable
Drop-down List Box Items:

all mouse - The user clicks any mouse button to execute the Help application.
char - The user presses any single character key, such as F1 to execute the Help application.
L mouse down - The user presses the left mouse button to execute the Help application.
R mouse down - The user presses the right mouse button to execute the Help application.
touch - The user touches an area of an active touch screen to execute the Help application.
Variable Selector

Help Escape
Specify the key or screen area that the user presses, clicks on, or touches, to execute
(escape to) the Help application.
The Help Escape must match the Help Escape Type.    For example, if the Help Escape Type is
L mouse down, the Help Escape must be a selectable area of the screen.    If the Help Escape
Type is char, the Help Escape must be a key such as F1.
If you specify a key or an area of the screen as the Help Escape, it is reserved for the entire
application and cannot be used for any other purpose.    For example, if you specify F1 as the
Help Escape key, it cannot be used for any other purpose within the main application.   
If you have chosen a key as the Help Escape, it is helpful to have a reminder on each display
that appears when IconAuthor is waiting for input, such as "Press F1 for Help".
If you have chosen an area as the Help Escape, it is helpful to have a button labeled Help on
each display that appears when IconAuthor is waiting for input.
Note: If you select an area of the screen as the Help Escape, the user clicks on it to access
the Help application.    It is not necessary to redefine that area as "hot" or "selectable" at
another point in the application.    When you use an InputMenu icon to make several areas of
the screen input selectable, do not include the Help Escape area.    It is already selectable.
Acceptable values are: 4 numbers, separated by commas, that define a rectangular area on
the screen, the name of a key (such as F1), or a variable.    If you specify 4 numbers, the first
two digits are the x,y coordinates of the upper left corner of the area, the second two digits
are the width and height of the area.
Drop-down List Box Items:

Area Editor
Variable Selector

Creating a Help Application
The Help icon should be the first icon in your main application.    When the application runs,
the help function is initialized.
Note: Only one Help application can be active at a time.    If another Help icon is executed
later in the main application, it replaces the previous Help icon.
The first icon in a Help application is a Snapshot icon.    The Snapshot icon saves the context
of the main application when the Help application is first called.    The context is restored
when control is passed back to the main application.    (For more information see "Snapshot
icon".)
You can make your Help application "context sensitive" by using variables.    Context
sensitive help provides the user access to different information depending on what part of
the main application they are using when they access Help.
For example, an application can contain two modules, a tutorial and a test.    At the
beginning of the tutorial, a Variable icon sets @HELP_BRANCH equal to 1.    At the beginning
of the test, another Variable icon sets @HELP_BRANCH equal to 2.    When the user accesses
help, the Help application uses a composite Branches icon to test whether @HELP_BRANCH
is equal to 1 or 2.    If @HELP_BRANCH is equal to 1, the first branch is executed and the user
accesses information on how to use the tutorial.    If @HELP_BRANCH is equal to 2, the
second branch is executed and the user accesses information on how to use the test.
To give the user an opportunity to return to the main application, use one or more Exit icons
in your Help application.    Specify "help" in the Exit From text box of the Exit icon.    When an
Exit icon is executed, execution flow returns to the main application at the point at which
Help was accessed.    The Input icon or an InputMenu icon that was awaiting a response
(when the user accessed the Help application) is still the current icon.    The Snapshot icon at
the beginning of the Help application restores the screen context when control is returned to
the main application.
Note: If you specify "application" in the Exit From text box of the Exit icon, both the Help
application and the main application are terminated.

If Icon

The If icon controls the execution flow of an application.    Because the If icon forms a type of
branch in the structure, unlike most other icons, you can build or paste an icon to the right
of the If icon.
The If icon compares two values and checks whether a condition is true or false.    For
example, it can check whether two values are equal.    If they are, the icon below the If icon
(the true path) is executed.    If they are not, the icon to the right of the If icon (the false
path) is executed and then the icon below the If icon (the true path) is executed.
When an Exit icon is built into the false path of an If icon, the false path of the If icon can be
executed, without being followed by the true path.
Note: A single If icon behaves differently from the If icons that are contained in the
composite Branches icon. In an If icon within a Branches composite, if the condition is true,
the true path is executed.    If a condition is false, only the false path is executed.
You can take a single If icon, and build it into the existing series of If icons in Branches
composite.    However, when you add an If icon in this way, it performs in the same manner
as the four If icons that are initially part of every Branches composite.
The single If icon is well suited to some very specific tasks.    As an example, it is particularly
useful to check the existence of a database before attempting to recreate it.
Content Editor Fields:
Condition 1
Test
Condition 2
Condition Type
Related Topics:
Comparing Numbers
Comparing Non-Displayable Characters
Character String Matching

Condition 1
Specify the name of a variable that you want to compare to the value in the Condition 2 text
box.
Drop-down List Box Items:

Variable Selector

Test
Specify the test that you want to use to compare the value in the Condition 1 text box and
the value in the Condition 2 text box.
Acceptable values are: EQ, NE, LT, or GT
Drop-down List Box Items:

EQ - Tests if Condition 1 is equal to Condition 2.
NE - Tests if Condition 1 is not equal to Condition 2.
LT - Tests if Condition 1 is less than Condition 2.
GT - Tests if Condition 1 is greater than Condition 2.

Condition 2
Specify the value to which you want to compare the variable in Condition 1.
Acceptable values are: a numeric value (including negative and decimal numbers), an
alphanumeric character, an alphanumeric string, a non-displayable key (such as the RETURN
key), or the coordinates of a rectangular area.
Drop-down List Box Items:

Area Editor
Object Name Selector
Object Event Selector
Variable Selector

Condition Type
Indicate kind of data being compared.
Acceptable values are: alphabet, numeral, rectangle, or a variable.
Drop-down List Box Items:

alphabet - Indicates that the values you are comparing are alphanumeric characters.
numeral - Indicates that the values you are comparing are numeric.
rectangle - Indicates that the values you are comparing are the rectangle coordinates.
Variable Selector

Accelerator Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property is only available via the Menu object's Menu Design dialog box within the
SmartObject Editor. It sets the accelerator key for a Menu Item.

AlignHorizontal Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
Resets the horizontal alignment of all text in a Text object. Set this property to Left, Right, or
Center. This property is available at runtime only.

Alignment Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
If the AutoTrack property is True, the Alignment property sets the position where a pop-up
menu appears relative to the cursor position. Set this property to Left, Right, or Center. For
example, if you set the property to Left, when the pop-up menu appears, the cursor is on its
left. (This property is available for Windows 3.1 only.)

AnimationEntries Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property lets you select the palette entries you wish to animate in a graphic. Choose
Palette Entries... from the drop-down list to view the Palette Entries dialog box. See the
description of the Palette object in Chapter 7 for information on using the Palette Entries
dialog box. Use the AnimationPlayCount and AnimationSpeed properties to determine how
many times and how fast the animation occurs.
Note: The PaletteSharing property must be set to True in order to perform palette
animations.

AnimationPlayCount Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property controls how many times a palette animation is performed. Enter a number in
this field or choose Infinite from the drop-down list. If you choose Infinite, the animation will
play continuously until the object is deleted. Use the AnimationEntries property to determine
which palette entries are animated. Use the AnimationSpeed property to control how fast
the animation occurs.

AnimationSpeed Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property controls how fast a palette animation occurs. Choose a keyword from the drop-
down list or enter a number. If you select veryfast, the animation is performed as quickly as
possible. Other keywords execute the animation more slowly (fast, medium, slow and veryslow.)
A number represents the delay in milliseconds between palette changes during the
animation. The number of times the animation plays is determined by the
AnimationPlayCount property.

Area Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
Resets the area of the object. This property is available at runtime only. Specify four
numbers separated by commas to describe the screen coordinates of the object's upper left
corner and the object's width and height.
Example: 100,100,50,50 specifies that the object's upper left corner is at 100,100 and the
object is 50 x 50 pixels.

AutoAppend Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property, set to True or False, controls whether a new row is appended to the table when
the user presses the down arrow key and moves past the last row or scrolls past the last row.
When set to True, a new row will be appended. When set to False, the user will not be able to
move past the last row.

AutoBind Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property, set to True or False, controls whether the table will automatically bind its rows
and columns to the bound database data. This property must be set to True in order to bind
the Table to a Database object. If set to True, the table will reflect exactly what is in the
database with the correct number of columns and records. If set to False, the table will
display the data entered in the SmartObject Editor, not what is in the database.

AutoErrorDisplay Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property, set to True or False, suppresses error messages from the ODBC driver. If the
property is set to True, error messages from the ODBC driver will display as necessary. If the
property is set to False, all error messages from the ODBC driver will be suppressed.

AutoLoad Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, controls how text files are loaded into or saved from an
object. AutoLoad plays a key role in the feature that allows you to save text from an object
into a text file so that the file can later be printed or redisplayed.
If the default (True) is in effect, a file is automatically loaded into the object when the objects
PageName or FileName property is set. If you plan to use a command (for example, to save
text that a user has typed in the object) set the AutoLoad property to False. This allows the
object to respond to a command that you set via the Command or CommandOnCreation
properties.

AutoNavigate Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property, set to True or False, controls whether the control bar buttons let the user
navigate through the Database records. If True, the control bar buttons are automatically set
up to allow record navigation. If False, the control bar buttons will not allow record navigation
unless you set the Notify- commands to True.

AutoTrack Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, controls where a pop-up menu appears. If True, the menu
appears where the mouse click occurred. If False, the menu appears where you positioned
the Menu object on the SmartObject page.

AutoTraverseLinks Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True by default, controls whether links are automatically loaded when a
user clicks on them. If True, links are loaded and displayed as soon as the user clicks on
them. If False, links are not loaded and your application can await an event to evaluate the
contents of the link.
If AutoTraverseLinks is set to False and NotifyOnClickLink is True, your application gets a
ClickLink event when the user clicks on a link. LinkFileName is set to the URL or filename of
the link and LinkType is set to the extension of the filename. Your application can use an
ObjGet icon on the LinkType property and store it to a variable. Your application can evaluate
the contents of LinkType and branch accordingly.
For example, if LinkType equals .HTM, set the FileName property of the HTML object to the
contents of the LinkFileName property. The .HTM file will display. If LinkType equals a file
extension other than .HTM, you can use another SmartObject to display the file. For
example, if LinkType equals .BMP, you can set up a Graphic object to display the contents in
the LinkFileName property.

AutoUpdate Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, controls whether the bound database will be automatically
updated on a row or focus change. When set to True, the database will be updated. When set
to False, it will not be.

BaseLine Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, controls whether an underline appears in the object to
indicate how many spaces are available for input.
Example: If an object has an input style of Currency, BaseLine is True, and InputLimit is set
to 10, the underline will extend out to 10 positions to show the user how many digits can be
specified.

Border Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property, set to True or False, controls whether a border appears around the graphic.

Bottom Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property is the distance (in pixels) from the top of the page to the bottom of the object.
Example: 100.
This property can only be manipulated at runtime via the IconAuthor object icons.

ButtonStates Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property lets you choose how you many states your Picture Push Button will have. The
choices are: Up (1 state), UpDown (2 states) or UpDownDisabled (3 states.) Your graphic file
needs to have the corresponding    number of graphics in it.

CanPlayCD Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property, returning True or False, indicates whether the system IconAuthor or Present is
running on can play CD selections.

CanPlayMIDI Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property, returning True or False, indicates whether the system IconAuthor or Present is
running on can play MIDI files.

CanPlayMovie Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property, returning True or False, indicates whether the system IconAuthor or Present is
running on can play digital video and animation files.

CanPlaySound Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property, returning True or False, indicates whether the system IconAuthor or Present is
running on can play sound.

Caption Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property resets the menu item appearance within a menu. Type a simple command
name such as "Copy" or "Change Color..." Or use one of the following special formatting
characters.
& Preceding a character with the "&" symbol causes that

character to appear underlined. Following convention, if a
Menu Item that is a menu heading (in top level menu) contains
an underlined character, the user can press and hold the Alt key
and type the underlined character to select the menu. Also, if a
Menu Item that is a command contains an underlined character,
the user can select the menu and then press the underlined
character to choose the command.

For example: &File generates "File".

\t These characters generate a Tab within the caption. A Tab
typically separates the name of a command from an accelerator
key combination.

For example: &Cut\tCtrl+C generates "Cut Ctrl+C"

\a These characters cause any characters that follow to be right
justified on a Top-Level menu bar.

For example: \a&Help generates a Help command that is at the
far right side of the menu bar.

- The hyphen character causes a horizontal separator to appear in
a menu.

Cell Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
Set this property to the index number of the cell that you want to affect with the CellData
and CellDataLength properties.
Example: The user types text in cell 1,1 in the table. You want to find out what the user
typed. You first use an ObjSet icon to set the Cell property to 1,1. Then use an ObjGet icon
on the CellData property to get the text in cell 1,1 and store it to a variable.

CellData Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
The CellData property is set to the text in a particular cell. To retrieve or set the text, you
need to first set the Cell property to designate the cell. Your application can use an ObjGet
icon to retrieve the text in the cell or an ObjSet icon to set the text in the cell. You can also
use the CellDataLength property to retrieve the number of characters within a cell.
Example: The user types text in cell 1,1 in the table. You want to find out what the user
typed. You first use an ObjSet icon to set the Cell property to 1,1. Then use an ObjGet icon
on the CellData property to get the text in cell 1,1 and store it to a variable.

CellDataLength Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property is set at Runtime to the number of characters in a particular cell. To retrieve
this number, you need to first set the Cell property to designate the cell. Then use on ObjGet
icon on the CellDataLength property to get the number of characters.

CharacterCurrency Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property controls the character used to indicate a particular unit of currency. The
default is the "$" symbol.

CharacterDecimal Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property controls the character used to denote a decimal point. The default is the "."
symbol.

CharacterFalse Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property controls the single character a user must enter to indicate a false or negative
response. The default is the "F" character. This property is used in conjunction with the
CharacterTrue property.

CharacterThousands Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property controls the character used to separate every group of three digits to the left
of the decimal point. The default is the "," character. Example: 1,000,000.00.

CharacterTrue Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property controls the single character a user must enter to indicate a true or positive
response. The default is the "T" character. This property is used in conjunction with the
CharacterFalse property.

Checked Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, lets you control whether the object is checked by default.
At runtime, your application can use the Checked property to learn whether a user turned a
Menu Item or Check Box on or off. An ObjGet icon can retrieve the current setting of the
object's Checked property. Your application can branch accordingly.
Note: Because Radio Buttons act as a group, you must use a different property to learn
whether a Radio Button is On or Off. For a Radio Button, you must use the
CheckedRadioButton property

CheckedRadioButton Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property identifies the ObjectName of the specific Radio Button (in a group of Radio
Buttons) that has been selected by the user. Remember, unlike Check Boxes, the user
cannot select more than one button in a group of Radio Buttons. In order to be recognized as
belonging to the same group, the Radio Buttons must all have the same FamilyName setting.
This property is a runtime, "get-only" property.

ClearEntries Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property lets you specify up to ten entries in the current palette to clear to black.
Choose Palette Entries... from the drop-down list to access the Palette Entries dialog box.
This dialog box is similar to the one used by the AnimationEntries property except that it
does not have a Direction Data area.

ClipChildren Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
When this property is set to True, the child window is clipped. You may need to set this
property to True if live objects appear to flash when information is displayed in the Window
object. In order to set ClipChildren to True, you must include a Window icon and an ObjSet
icon in your structure. The Window icon creates the window and the ObjSet icon sets the
property.
In most situations IconAuthor recognizes when it has to clip child windows. There are
however, some situations where child windows are not automatically clipped. In these cases,
you need to explicitly set the ClipChildren property to True. (The property is False by default.)
IconAuthor does not automatically recognize and clip child windows when third party
program information is displayed in the window. For example, if your application displays a
Button object and then displays a Gold Disk animation file on the background, the Button
flashes. The Button flashes because it is not automatically clipped and it is re-drawing itself
to remain in view on top of the animation. In this same scenario, if you set ClipChildren to
True, the Button does not flash because it is clipped.
Important: Do not use live Graphic objects that have a transparent color (set via the
ColorTransparent property) if ClipChildren is set to True. The entire object, including the area
designated as transparent, will be clipped. Incorrect information will be displayed in the
transparent area.

ClipSiblings Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
ClipSiblings works similarly to ClipChildren. When this property is set to True, the object is
clipped. You may need to set this property to True if live objects appear to flash when
information is displayed. In order to set ClipSiblings to True, you must include an ObjSet icon
in your structure.

ColorBackground Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property controls the background color of the object. The drop-down list for this
property lets you use the Color Editor to select the color you want to use.

ColorFill Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, available at runtime only, controls the color of the background of all text in a
Text object. The drop-down list for this property lets you use the Color Editor to select the
color you want to use.

ColorFrame Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, available at runtime only, controls the color used for the border frame of the
object. The drop-down list for this property lets you use the Color Editor to select the color
you want to use.

ColorHighlight Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, available at runtime only, controls the color of the border highlight of the
object. The drop-down list for this property lets you use the Color Editor to select the color
you want to use.

ColorShadow Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, available at runtime only, controls the color of the border shadow of the
object. The drop-down list for this property lets you use the Color Editor to select the color
you want to use.

ColorSpacer Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property controls the color of the space between the editable box and the drop-down
arrow. If you want to keep color consistency, set this property to the same color as the
ColorBackground property. The drop-down list box lets you use the Color Editor to select a
color or create a custom color.

ColorText Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property controls the color of all text in the object. The drop-down list box lets you use
the Solid Colors dialog box to select a color or create a custom color.

ColorTransparent Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property lets you specify a color, used in the graphic, that you want to appear
transparent at runtime. Any transparent part of the graphic is no longer considered an active
part of the object. The drop-down list for this property lets you use the Color Editor to select
the color you want to use.
Example: You can create a small, square bitmap that looks like a round, grey button on a
black background. By setting the Graphic object's ColorTransparent property to black, the
user only sees the round button at runtime.

Column Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
Set this property to the index number of the column that you want to affect with any of the
following properties: ColumnAlignment, ColumnData, ColumnDataLimit, ColumnFieldName,
ColumnLabel, and ColumnWidth.

ColumnAlignment Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property is set at Runtime to the text alignment of a particular column. To retrieve or
set the alignment, you need to first set the Column property to designate the column. The
possible alignment settings are left, center and right.

ColumnCount Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property returns the number of columns in the table. Your application can use an ObjSet
icon to change the number of columns in the table. If the number you enter is bigger than
the current number of columns, the extra columns are added to the right of the table. If the
number is smaller, the appropriate number of columns will be deleted from the right.

ColumnData Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property is set to the text in a particular column. To retrieve or set the text, you need to
first set the Column property to designate the column. An application can use an ObjGet icon
to retrieve the current setting of the column or an ObjSet icon to set the text in the column
via a semicolon delimited list. You can also use the CellDataLimit property to retrieve the
number of characters a column supports.
Example: To set this property via a semicolon delimited list, separate each item from another
with a semicolon (;). For example, red;blue;green;yellow will set the top four cells in the
column, in the specified order. If you want to have a semicolon appear as an actual part of
the column data, precede it with a \. However, remember to include the semicolons that are
required as separators. As an example, red\;;blue\;;green\;;yellow\; appears as follows in the
Table:

ColumnDataLimit Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property is set at Runtime to the number of characters a particular column supports. To
retrieve this number, you need to first set the Column property to designate the column.
Then use an ObjGet icon on the ColumnDataLimit property to get the number of characters.

ColumnFieldName Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property is set at Runtime to the field name to which a particular column is bound. To
retrieve or set the field name, you need to first set the Column property to designate the
column. Your application can use an ObjGet icon to retrieve the field name or an ObjSet icon
to set the fieldname.

ColumnLabel Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property is set at Runtime to the label of a particular column. Labels can only be seen if
VisibleColumnLabels is set to True. To retrieve or set a label, you need to first set the Column
property to designate the column. Your application can use an ObjGet icon to retrieve the
column label or an ObjSet icon to set the label.

ColumnWidth Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property is set at Runtime to the width, in pixels, of a particular column. To get or set
this number, you need to first set the Column property to designate the column.

Command Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, available at runtime only, resets the command for an object. Use these
commands to manipulate the following objects through IconAuthor's ObjSet and ObjGet
icons:
Audio
Database
Graphic
HTML
IconAnimate
Movie
Palette
Table
Text
Variable
Note: This property is not available for Graphic objects on UNIX or Macintosh.

Audio and Movie Object Commands
Close Closes the object and any files associated

with it.
Cue Optional command to prepare the object

for play. Potentially reduces delay prior to
the Play command.

Open Prepares the object for play.
Pause Pauses play.
Play Plays the object.
Resum
e

Resumes play of a paused object.

Seek Seeks to the location in a file (or on a CD)
that was previously specified via the
PositionSeek property.

Stop Stops the object from playing.

Database Object Commands
DataSourceConfig Allows dynamic data source registration.

Uses the SQLText property for the text
string that represents the data source
information.

DataSourceConnect Connects to a data source using the
ConnectString property.

DataSourceDisconnec
t

Disconnects from the data source.

DataSourceExecuteS
QL

Directly executes an SQL statement
without creating a recordset. Uses the
SQL string set in the SQLText Property

RecordsetClose Closes the recordset and frees resources
RecordsetOpen Opens a recordset by performing the

query based on the SQL string set in the
SQLText Property

RecordsetRefresh Refreshes any non-grid bound controls.
RecordsetRequery Runs the recordsets query again to

refresh the records.
RecordDelete Deletes the current record from the

recordset.
RecordSeekFirst Positions the current record on the first

record in the recordset.
RecordSeekLast Positions the current record on the last

record in the recordset.
RecordSeekNext Positions the current record on the next

record in the recordset.
RecordSeekPrev Positions the current record on the

previous record in the recordset.
RecordSeekTo Seeks to the record in the recordset that

was previously specified via the
PositionSeek property.

Graphic Object Commands

DrawToBackground Draws the graphic to the background
bitmap. For live graphic objects, this allows
you to display the graphic with an effect,

using the Effect property.

HTML Object Commands
Next Displays the next link in the history

list.
Previous Displays the previous link in the

history list.
Reload Attempts to reload a document.

IconAnimate Object Commands
Close Closes the object and any

files associated with it.
Open Prepares the object for play.
Pause Pauses play.
Play Plays the object.
Resume Resumes play of a paused

object.
Stop Stops the object from playing.

Palette Object Commands
Play Plays the palette animation.
ClearAll Clears all of the 236 non-static entries in the current palette to

black.
Clear Clears all of the palette entries designated in the ClearEntries

property to black.
Pause Pauses the animation.
Resume Resumes play of a paused object.
Stop Stops the object from playing.

Table Object Commands
ColumnAppend Appends a column to the table.
ColumnDelete Deletes the column specified by the Column property.
ColumnInsert Inserts a column to the left of the column specified by the

Column property.
DatabaseUpdat
e

Updates the bound database with the contents of the row
specified by the Row property.

RowAppend Appends a row to the table.
RowDelete Deletes the row specified by the Row property.
RowInsert Inserts a row above the row specified by the Row property.

Text Object Commands

Append Appends the text currently displayed in the object to an existing file.
ApplyHotWords Applies the Hotword file (.HWD) specified in the HotWordFileName property

to the object.
Load Loads the text from a file into the object.
RemoveHotWords Removes all Hotwords specified in the Hotword file (.HWD) named in the

HotWordFileName property.
Save Saves the text currently displayed in the object to a file.

Variable Object Commands
ClearAll Clears the variable data within the Variable

object.
ClearArray Clears the specified variable array within

the Variable object.
ClearSingle Clears the specified variable within the

Variable object.
GetAll Stores the information from the Variable

object into the IconAuthor variable table.
GetArray Stores the specified variable array from the

Variable object into the IconAuthor variable
table.

GetSingle Stores the specified variable from the
Variable object into the IconAuthor variable
table.

PutAll Stores the variable data from IconAuthor
variable table into the Variable object.

PutArray Appends or updates the specified variable
set in the VariableName property from the
IconAuthor variable table and loads it into
the Variable object.

PutSingle Appends or updates the specified variable
array set in the VariableName property from
the IconAuthor variable table and loads the
elements of that array into the Variable
object.

CommandOnCreation Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property executes an objects command as soon as it is created at runtime (when the
SmartObject page displays). Note that the Audio and Movie objects use MCI to play.
Audio objects:

Open Prepares the object for
play.

Play Plays the object.
Database objects:

DataSourceConnec
t

Connects to a data source using the
ConnectString property.

RecordsetOpen Opens a recordset by performing the query
based on the SQL string set in the SQLText
Property

IconAnimate objects:
Open Prepares the object for

play.
Play Plays the object.
Palette objects:

ClearAll Clears all of the 236 non-static entries in the current palette to
black.

Clear Clears all of the palette entries designated in the ClearEntries
property to black.

Text Objects:

Append Appends the text currently displayed in the object to an existing file.
Load Loads the text from a file into the object.
Save Saves the text currently displayed in the object to a file.

Variable objects:
GetAll Stores the information from the Variable

object into the IconAuthor variable table.
GetArray Stores the specified variable array from the

Variable object into the IconAuthor variable
table.

GetSingle Stores the specified variable from the
Variable object into the IconAuthor variable
table.

PutAll Stores the variable data from the
IconAuthor variable table into the Variable
object.

PutArray Appends or updates the specified variable
set in the VariableName property from the
IconAuthor variable table and loads it into
the Variable object.

PutSingle Appends or updates the specified variable
array set in the VariableName property
from the IconAuthor variable table and
loads the elements of that array into the
Variable object.

ConnectExclusive Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property, set to True or False, makes an exclusive data source connection for the
DataSourceConnect command. If True, the data source can only be used by that Database
object.

ConnectString Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property lets you choose a data source from a drop-down list. To connect to a data
source, the ConnectionString property must be filled in using the following format:
Datasource<;UserID><;Password><;Options>
Datasource represents the name of an installed ODBC data source. At edit time the connect
string field will contain a list of all installed data sources in the drop-down list. Only those
database files that you have added as data sources via the ODBC Administrator will appear
in this list.
UserID is an optional user id.
Password is an optional password.
Options is any other connection information required by the data source.
See the section on Database Objects in Chapter 9 for information on adding data sources.

ControlBar Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, sets whether a control bar appears below an IconAnimate
or Movie object. The control bar lets the user control how the video or animation plays.
These controls also let you, the author, preview the movie within the SmartObject Editor.

ControlCommand Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property lets you set the Command property for Audio, Database, Graphic,
IconAnimate, Movie and Variable objects. This property works in conjunction with the
ControlObjectName property. The ControlObjectName property needs to be set to the
ObjectName of the object you want to control.
Example: You want an audio file to play when the SmartObject page displays. Create an
Audio object and set the FileName property to the appropriate filename. Set the ObjectName
property to audio. Create a Push Button object that the user can click on to play the audio
file. Set the ControlCommand property to Play. Set the ControlObjectName property to audio.

ControlObjectName Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property lets you set the name of the SmartObject you want to control with the Button
object. This property works in conjunction with the ControlCommand property. Once you
have set the ControlObjectName property, you can set the ControlCommand property to the
appropriate command.
Example: You want an audio file to play when the SmartObject page displays. Create an
Audio object and set the FileName property to the appropriate filename. Set the ObjectName
property to audio. Create a Push Button object that the user can click on to play the audio
file. Set the ControlCommand property to Play. Set the ControlObjectName property to audio.

CurrentCell Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property is set at Runtime to the index of the cell that is currently selected. Your
application can use an ObjGet icon to retrieve this value and store it in a variable.

CursorName Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property controls the way the cursor appears at runtime when it is over the object. The
default setting is the arrow-shaped cursor. The drop-down list box lets you select one of the
available cursors such as Indexed Hand, I Beam, and Crosshair.

CursorNameHotword Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to a type of cursor, controls how the cursor appears over a hotword in the
Text object.

CursorNameLink Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property, set to a type of cursor, controls how the cursor appears over a link in an HTML
object.

CursorPositionProgram Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property lets you get and set an X,Y coordinate of the cursor location on the active
window.

CursorPositionScreen Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property lets you get and set an X,Y coordinate of the cursor location on the screen.

DataChanged Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property, set to True or False, lets you check to see if any updates have been made to
the database file. Use an ObjGet icon on the DataChanged property and assign it a variable
name. You can then choose to display any way you want.

DataFieldName Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
To bind an object to the Database object, set this property to the name of the field you want
the object to display. The object will then be bound to that field. Select the Field Browser
from the drop-down list to access the field names.

DataObjectName Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
To bind an object to the Database object, set this property to the same name as the
Database objects ObjectName.

DataSources Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property displays a delimited list of all installed data sources. This is particularly useful
if you want the user to be able to choose a data source. You could use an ObjGet icon to get
the DataSources property and give it a variable name such as @datasources. You could then
use an ObjSet icon to set the ItemList property to display the data sources list in a list box.
The user would then be able to select a data source from the list box.

DataValueChecked Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
The database value you enter here will determine when the button will be checked or
selected. You must enter the value exactly as it appears in your database file. Setting this
property to a value that exists in a database field tells IconAuthor to compare the field
contents to the contents of this property. If they match, IconAuthor will check or select the
button.

DataValueUnChecked Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
The database value you enter here will cause the button to become unchecked when that
value is displayed. You must enter the value exactly as it appears in the database record.
Setting this property to a value that exists in a database field tells IconAuthor to compare
the field contents to the contents of this property. If they match, IconAuthor will uncheck
button.

DecimalPlaces Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property controls the number of digits that can appear to the right of the decimal point.
The default is 0.

DefaultAction Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X
This property controls the action that occurs when an OLE object executes (for example,
when a user double-clicks on it). By default, this property is set to Server Default. Every
server application has its own default behavior, for example, you play sound data and you
edit Microsoft Word documents.
Optionally, you can set the DefaultAction to a value other than the server default. For
example, a Sound object that contains MIDI data actually has three available actions: play,
edit, and none. Setting DefaultAction to play plays the sound data when the object executes.
If you set it to edit, the Microsoft Windows Sound Recorder appears, enabling the user to edit
the data. If you set the property to none, the object does nothing.
An OLE object has different actions depending on the type of data it contains. After you
insert data into an object, open the Properties dialog box, and use the drop-down list for the
DefaultAction property to view the available actions.

DeleteProtected Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, indicates whether (at runtime) the object can be deleted
by an ObjDelete icon. An ObjDelete icon has a text box called Scope that lets you specify
which objects to delete: one object, a class of objects, a family of objects, or All objects.

Dragable Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, controls whether the object can be dragged by the user.
The default is False.

DragAction Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to Click or Drag, defines the action required by the end user to grab an
object so that it can be moved. The value Click lets the user click the left mouse button on a
dragable object, move the cursor to move the object, and click the left mouse button to drop
the object. The value Drag lets the user press and hold the left mouse button on the object,
drag the object to a new position, and release the left mouse button to drop the object. The
default is Drag.

DragBringToTop Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, controls how the object appears in relation to other live
objects on the screen. Whenever a user clicks or drags an object to move it, the object
automatically comes to the top screen layer. After the object has been dropped (or the move
has been aborted), if this property is True, the object remains on top of all other live objects.
If this property is set to False, when the object is dropped (or the move has been aborted) it
returns to its original layering position. This means that the object may be partially or
entirely obscured if other live objects are closer to the top screen layer and are located in
the same region.

DragCursor Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, determines whether a cursor is visible on top of the object
as it is dragged. If you specify True, the default cursor for the object you are dragging
appears (this is set via the CursorName property). If you specify False, no cursor appears.

DragGraphicNo Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property lets you specify the form you want a dragged object to take when it is not
positioned over a valid drop target. You can set this property to a graphic filename. The
drop-down list box lets you use the Browser to find the name of the file you want to use. This
file must have the same dimensions as the file you specify for the DragGraphicYes property.
If you do not specify a filename, the object's primary graphic (assigned to the FileName
property) is used by default.

DragGraphicYes Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property lets you specify the form you want a dragged object to take when it is
positioned over a valid drop target. You can set this property to a graphic filename. The
drop-down list box lets you use the Browser to find the name of the file you want to use. This
file must have the same dimensions as the file you specify for the DragGraphicNo property. If
you do not specify a filename, the object's primary graphic (assigned to the FileName
property) is used by default.

DragMode Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to Move or Copy, controls what happens to the appearance of the original
object when a user takes action on a dragable object. Move causes the original object to be
moved to the new location as the user drags. Copy causes the original object to remain in its
location; a copy of the object is dragged.
Note: A copy can be dragged away from the original object but a new object is not created.
When the user drops the copy of the object, it disappears.

DragReturnOnFail Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, determines whether the object returns to its previous
location if it is dropped in an invalid position. If set to True, the object snaps back to its
original location if the user drops it in an invalid position. If set to False, the object remains in
the new position when it is dropped.

DragTargetName Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property is get-only. It is automatically set to the ObjectName of the target, when the
DropType property of the target and the DragType property of the dragged object match, or
when the DropType property is ALL. After a successful drop, your structure can use an
ObjGet icon to retrieve the current setting of the DragTargetName property to learn exactly
where the drop occurred.

DragTransparentColor Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
Use this property to make a color in the DragGraphicNo and/or DragGraphicYes graphics
transparent. Set this property to a color or none. This allows the dragged graphics to have a
transparent background. The drop-down list box lets you use the Solid Colors dialog box to
select a color.

DragType Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property lets you identify where a dragable object can be dropped. A dragable object
has a DragType value and a target object has a DropType value. Only if one object's
DragType value matches another object's DropType value can the dragable object be
dropped there.
Set the DragType property to a string (such as red), a semi-colon delimited list of strings
(such as apple;pear;plum), or the keyword all. A single text string such as red, means the
object can only dropped on a target object with a DropType that includes the text string red
(for example red or the list red;blue;green). A list of strings means that the object can be
dropped on a target object with a DropType that includes any of the items in the list. If an
object has a DragType set to all, it can be dropped on any live Graphic object.

DrawStyle Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property determines how information appears in the object. Possible values for the
property vary depending on the object class.
Related Topics:
DrawStyle Property and Graphic Objects
DrawStyle Property and OLE Objects

DrawStyle Property and Graphic Objects
The drop-down list options are: Scale, Clip, Tile, and Size By Graphic.
Scale The graphic is resized to fit precisely into the

available object. If the size of the object is
not in proportion to the original graphic, the
graphic may be stretched or compressed
either horizontally or vertically.

Clip The object contains as much of the graphic
as is possible. If the object is smaller than
the graphic some of the graphic will be
hidden from view. If the object is larger than
the graphic some white space will be visible
where the graphic doesn't fill the object.

Tile The graphic is taken in its original size, and
is repeated as many times as necessary to
fill the area of the object.

Size By Graphic The object size automatically changes so
that it precisely surrounds the entire graphic.

DrawStyle Property and OLE Objects
For an OLE object, this property determines whether the server or the SmartObject Editor
controls the size of an OLE object. You can set this property to Size By Server or Size By
Object.
Size By Server The data you embed in the object

controls the size of the object. Example: 
A chart created with Microsoft Graph will
be the same size as it is in the server
application.

Size By Object The size of the object controls how the data
appears regardless of how the data appeared
in the server.

DropPosition Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to centered or none, defines how a dragged object is positioned on the
target object when it is dropped. If you specify centered, a dropped object is automatically
centered on the target. If you specify none, a dropped object lands wherever it is positioned
by the user.
Note: This property is not available for Transparent objects on UNIX.

DropType Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property lets you identify where a dragable object can be dropped. A dragable object
has a DragType value and a target object has a DropType value. Only if one object's
DragType value at least partially matches another object's DropType value can the dragable
object be dropped there.
Set the DropType property to a string (such as red), a semi-colon delimited list of strings
(such as apple;pear;plum), or the keyword all. A single text string such as red, means that
only objects whose DragType includes the text string red (for example red or the list
red;blue;green) can be dropped on the target. A list of strings such as apple;pear;plum
means that only objects whose DragType includes one of these three text strings can be
dropped on the target. If an object has a DropType set to all, any dragable object can be
dropped on it.

Editable Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, controls whether a user can edit the text in a Text object.
The default is False.

Effect Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property lets you choose the effect to be used when the object displays. Static Graphic
objects can de drawn into the background with an effect. Live Graphic objects can have their
graphic drawn to the background with an effect (via the DrawToBackground setting of the
Command property) but the objects Visible property must first be set to False. After the
bitmap is drawn to the screen using the effect, set the Visible property to True to enable
standard live object functionality. Choose Effect Selector... from the drop-down list to access
the Effect Selector dialog box.

EmbeddedType Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
When you embed a graphic file, this property lets you specify what format the graphic
information will be saved in within the SmartObject file. IconAuthor supports the following
embedded graphic formats:
.BMP
.GIF
.RLE
.JPEG
.PCT

Enabled Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, determines whether an object is enabled. When an object
is enabled a user can interact with it. For example, if you disable a Push Button a user
cannot click on it. Similarly, if you disable a List Box a user cannot scroll it or make a
selection from it. When you disable an object any text labels it contains are greyed.

EnableFirst Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property, set to True or False, controls whether the Control Bar button that returns the
first record when clicked is enabled.

EnableLast Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property, set to True or False, controls whether the Control Bar button that returns the
last record when clicked is enabled.

EnableNext Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property, set to True or False, controls whether the Control Bar button that returns the
next record when clicked is enabled.

EnablePrev Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property, set to True or False, controls whether the Control Bar button that returns the
previous record when clicked is enabled.

EnableUpdate Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property, set to True or False, controls whether the Update Control Bar button is
enabled.

FamilyName Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property allows you to optionally specify a family (group) to which an object belongs. If
you make an object part of a family, at runtime, you can use an ObjSet icon to change a
property of multiple objects simultaneously by specifying the change to effect a scope of
family. You can also use an ObjDelete icon to delete a group of objects that belong to the
same family.
Note: The FamilyName property provides special functionality for Radio Buttons (Button
objects with Radio Button style). When you want a quantity of Radio Buttons to act as one
group (where only one can be selected at any time), make sure to give each button the
same FamilyName.

FieldCount Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property returns a count of the fields in the recordset. You can use an ObjGet icon on
the FieldCount property and give it a variable name such as @fieldcount. Your application
can evaluate the variable and branch accordingly.

FieldNames Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property returns a list of the field names in the recordset. You can use an ObjGet icon on
the FieldNames property and assign it a variable name.

FileName Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property specifies the name of the file used by the object. The drop-down list box lets
you use the Browser to find the name of the file you want to use. Files are automatically
linked to Audio, Movie, Button and IconAnimate objects. Linked files remain separate from
the SmartObject file. You have a choice of linking or embedding files for Graphic and Text
objects. Embedded files become part of the SmartObject file. After you select a file for a
Graphic or Text object, a File Access dialog box appears. Click on Link or Embed and choose
OK to close the dialog box.

FileNameDisabled Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property lets you enter the filename containing the disabled graphic image for the
button.

FileTitle Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property is set to the text designated as the file title in the .HTM file. File titles are
assigned by the <TITLE> tag and can be displayed using the TitleBarText property of the
Window object.
Example: Use an ObjGet icon to retrieve the contents of the FileTitle property and set it to a
variable. Then use an ObjSet icon to set the TitleBarText property of the Window object to
the contents of the variable. The file title displays in the title bar of the window.

FitToWindow Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, controls how information is displayed within a window. If
True, information is scaled to fit in the available window. If False, information is not scaled.

Focus Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, available at runtime only, allows you to set the focus to a particular object.
When an object has focus it is the object that responds to any valid keyboard actions. For
example, if a button has focus and the user presses the RETURN key, that button will be
activated. This means that if one object has focus and you give focus to a second object, the
first object no longer has focus.
Note: This property is not available for the Window object on UNIX or Movie objects on
Macintosh.

Font Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, available at runtime only, specifies the font characteristics of text. The drop-
down list lets you use the Font Editor dialog box to select the font characteristics you want
to use.

FttPageName Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
Use this property to specify the page to display in the Text object. This property can only be
set when a .ftt file is specified in the FileName property. Choose the Page Selector from the
drop-down list for a list of pagenames in the .ftt file.

Gridlines Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property, set to Solid or None, controls how gridlines in the table appear. If set to Solid,
the gridlines appear as gray. If set to None, the gridlines do not display.

HasMouse Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property, set to True or False, indicates if the system IconAuthor or Present is running on
has a mouse. You can use an ObjGet icon on the HasPen property and give it a variable
name. Your application can evaluate the variable and branch accordingly.

HasPen Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property, set to True or False, indicates if the system IconAuthor or Present is running on
has a pen. You can use an ObjGet icon on the HasPen property and give it a variable name.
Your application can evaluate the variable and branch accordingly.

Height Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
Resets the height of the object in pixels. Specify a whole number greater than 0. This
property is available at runtime only.

HeightColumnLabels Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property controls the height of all the column labels in the table. Enter a number (up to
2000) that represents the height in pixels. By default, the height is set to 20 pixels. Columns
labels can only be seen if VisibleColumnLabels is set to True.

HeightRows Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property controls the height of all the rows in the table. Enter a number (up to 2000)
that represents the height in pixels. By default, the height is set to 20 pixels.

HideSelection Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property, set to True or False, controls whether the selected area will show if the table
loses focus.

History Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property keeps a semicolon delimited list of the links that have been displayed. It only
lists a link once regardless of the number of times it was displayed. The number of links that
this property keeps track of is determined by the HistoryLimit property.

Example: You want to provide your user with a list of the links that he or she has visited so
that he or she can click visit a link again by clicking on it in a list. Use an ObjGet icon on the
History property and set it to a variable. Set a ListBox objects ItemList property to the
variable. The list of links appears in the ListBox. You can set up your application so that when
the user clicks on the name of a link, an HTML object displays it.

HistoryCount Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property returns the number of links that are currently listed in the History property. The
number of links that the History property keeps track of is determined by the HistoryLimit
property.

HistoryLimit Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
Set to 10 by default, the HistoryLimit property determines how many links the HistoryLimit
property keeps track of. You can enter any number you wish.

Hotword Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
The SmartObject Editor lets you can designate a character, word, or phrase in a Text object
as a Hotword. This get-only property lets your application detect which Hotword a user
clicked on in a Text object. If NotifyOnClickHotword is True, when a user clicks on a Hotword
at runtime, a "ClickHotword" event is generated. Your structure can include an ObjEvent icon
to await a "ClickHotword" event. Once the event occurs, an ObjGet icon can retrieve the
current setting of the Hotword property and store it in a variable. Your application can
evaluate the user's Hotword selection and branch accordingly.

HotWordActivate Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property is available for Text objects via the ObjSet icon. It works in conjunction with the
HotWordColor Property. When you set the HotWordActivate property to a hotword index, all
hotwords assigned that hotword index in the specified object(s) are automatically set to the
color specified in the HotWordColor property.

HotWordColor Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to a solid color, causes a hotword in the object to change to the specified
color when the user clicks on it. The drop-down list box lets you access the Solid Color Editor
to choose a color value from a drop-down list.

HotWordFileName Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to a Hotword file (.HWD) loads the file in memory. Use the Command
property to send the Apply HotWords command to a Text object. This command causes all
hotwords specified in the .HWD file of the HotWordFileName property to become active in
the Text object. All hotwords are automatically set to the color specified in the HotWordColor
property.

HotWordHighlight Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
Set this property to True to cause a hotword within the object to be reverse highlighted when
the cursor is over it.

HotwordIndex Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This get-only property lets your application detect the index of the Hotword a user clicked
on. Within the SmartObject Editor you can assign a numerical index to a Hotword and the
same index can be shared by other Hotwords. This is particularly useful in cases where you
want the same action to occur for multiple Hotwords. For example, the Hotwords "car" and
"bus" can both have an index of 2 and the Hotwords "canoe" and "rowboat" can have an
index of 3. When your application detects that a "ClickHotword" event has occurred, it
retrieves the current setting of the HotwordIndex property and stores it in a variable. Your
application can evaluate the index number and branch accordingly.

IconFileName Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property controls the file used for an Icon style button. The drop-down list lets you use
the Browser option to select the .ICO file you want to use.

Information Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This get-only property lets your application detect what kind of device is associated with an
object. For example, you can use an ObjGet on an Audio object and store the name of the
device (e.g. MIDI Sequencer) in a variable. The Audio and Movie objects use MCI to play. The
Information property represents the MCI Info command.
Note: This property is not available for Movie objects on UNIX.

InputLimit Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property specifies the maximum number of characters a user can enter via the
keyboard.

InputLimitBeep Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, controls whether a system beep occurs if a user attempts
to exceed the maximum number of characters allowable in an editable Text object. (The
maximum number is set via the InputLimit property.)

InputTerminationRequired Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, controls whether a user is required to press RETURN (when
typing input) in order to generate a "Complete" event. Be aware that the NotifyOnComplete
property must be set to True for the object in order for "Complete" event to occur. Given that
NotifyOnComplete is True, when InputTerminationRequired is set to True, the user must press
Enter. In the same situation when InputTerminationRequired is False, a "Complete" event is
generated as soon as the user types the number of characters specified by the InputLimit
property.

ItemList Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property sets the items that appear in a list box (open or drop-down). Separate one
item from another with a semicolon (";"). For example, aqua;blue;green;purple will set the
list to those items, in the specified order. If you want to have a semicolon appear as an
actual part of a list item, precede it with a "\". However, remember to include the semicolons
that are required as separators. As an example, blue\;;red\;;green\; appears as follows in the
List Box at runtime.
Note: Within the SmartObject Editor you can also right click on an object and choose Item
List... to enter list items via a dialog box.

KeyboardForward Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, controls whether the keyboard information (the name of
the key that was pressed) is "forwarded" to any other object as well. If KeyboardForward is
False (this is the default) the other object does not get the keyboard information. If
KeyboardForward is True, the other object does get the information.

KeyboardKeyPressed Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
When a user's action generates a "KeyDown" or "KeyUp" event, this property is reset to the
name of the key. Once your application detects that a "KeyDown" or "KeyUp" event has
occurred, an ObjGet icon can retrieve the current setting of the KeyboardKeyPressed
property and store it in a variable. The application can then take action based on the user's
selection.

KeyboardList Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
Set this property to specify the keys that the user can press. Use a semi-colon to separate
one key or key combination from another.

KeyboardTabStop Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, indicates whether a user can use the TAB key to set focus
on this object at runtime.

Label Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property lets you specify the text that labels a button. The default is Button.   

LabelType Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property lets you specify either Text or Graphic for the button label. If you choose Text,
use the Label property to set the text. If you choose Graphic, two additional properties will
appear in the properties list: FileName and FileNameDisabled. Enter the name of the graphic
file in the FileName property. Enter the name of the disabled graphic file in the
FileNameDisabled property.

Layer Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property lets you specify the layer hierarchy of an object. The Window object is always
0. Each object above the Window object is 1 greater than the previous object. Except for the
System object, all live objects, including invisible live objects, have a layer value. You can set
the Layer property at runtime with the following values:

A number greater than
0

Sets the object layer to that value.

+(number), example
+3

Increases the layer by 3.

-(number), example -3 Decreases the layer by 3.
Bottom Sets the layer to 1.
 Top Sets the layer so that the object is

on top.

Left Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
Resets the distance (in pixels) from the left side of the page to the left side of the object.
Specify a whole number greater than 0. This property is available at runtime only.

Length Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This get-only property lets your application detect the length of a file (in milliseconds) or a
CD (in Tracks:Minutes:Seconds:Frames). For example, you can use an ObjGet on an Audio
object and store the length of the specified wave audio file in a variable. The Audio and
Movie objects use MCI to play. The Length property represents the MCI Status command with
the Length argument.
Note: This property is not available for Movie objects on UNIX.

LightSource Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property, available at runtime only, controls the imaginary light source that lends
shadows to a Text object. Set LightSource to one of four directional values: NW, NE, SE, or
SW.

LineSpace Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, available at runtime only, controls the line spacing in a Text object. Set
LineSpace to one of three values: 1 (for single spacing), 1.5 (for one and one-half spacing),
or 2 (for double spacing).

Link Property
Cross-Platform Availability

Win OS/2 UNIX Mac
X X

This property is set to the URL or filename of the link that the cursor
is currently over.

Example: Use an ObjGet icon to get the contents of this property and store it to a variable.
You could then set up a Text object to display the contents of the variable. This allows the
user to see the URL or filename of a link without having to click on it.

LinkFileName Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property is set to the filename of a link when the AutoTraverseLinks property is set to
False and the user clicks on a link.
Example: If AutoTraverseLinks is set to False and the user clicks on a link, use an ObjGet icon
on the LinkType property to determine the extension of the link. If LinkType returns an .HTM
extension, set the HTML objects FileName property to the contents of the LinkFileName
property. If LinkType returns an extension other than .HTM, use the appropriate SmartObject
to display the file. For example, if the extension is .WAV, set up an Audio object to play the
file.

LinkIndex Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property lets your application detect the index of a link when the cursor is over it. Index
numbers are automatically assigned to links in the order they appear on the screen, starting
with 1.

LinkType Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property is set to the filename extension of a link when the AutoTraverseLinks property
is set to False and the user clicks on a link.
Example: If AutoTraverseLinks is set to False and the user clicks on a link, use an ObjGet
icon on the LinkType property to determine the extension of the link. If LinkType returns
an .HTM extension, use the HTML object to display the file using the contents of the
LinkFileName property. If LinkType returns an extension other than .HTM, use the appropriate
SmartObject to display the file. For example, if the extension is .WAV, set up an Audio object
to play the file.

Location Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
Resets the pixel coordinates of the upper left corner of the object. Specify two numbers
separated by a comma, for example: 250,125. This property is available at runtime only.

LogicalScreenHeight Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
Lets you simulate a different screen resolution by resetting the screen height of the display
in which your application runs. By default, this property is set to the actual screen height of
the current system. In most cases you will set this property to the screen height of the
system you used to create your application.
Example: SmartObjects automatically scale to the screen resolution of the current system.
If you create your application in a 640x480 screen resolution and your end-user runs it in a
1024x768 screen resolution, your SmartObjects appear smaller because of the differing
resolutions. Use the Application object to set the screen resolution of the display your
application runs on to be the same as the display your application was created on.
To do this using the previous example, use an ObjSet icon to set the LogicalScreenHeight
property to 640 to simulate a screen width of 640. Use another ObjSet icon to set the
LogicalScreenWidth property to 480. By setting these properties to the same resolution as
the system you created your application on, you are ensuring that your application will
always display correctly regardless of the end-users screen resolution.

LogicalScreenWidth Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
Lets you simulate a different screen resolution by resetting the screen width of the display in
which your application runs. By default, this property is set to the actual screen width of the
current system. In most cases you will set this property to the screen width of the system
you used to create your application.
Example: SmartObjects automatically scale to the screen resolution of the current system.
If you create your application in a 640x480 screen resolution and your end-user runs it in a
1024x768 screen resolution, your SmartObjects appear smaller because of the differing
resolutions. Use the Application object to set the screen resolution of the display your
application runs on to be the same as the display your application was created on.
To do this using the previous example, use an ObjSet icon to set the LogicalScreenHeight
property to 640 to simulate a screen width of 640. Use another ObjSet icon to set the
LogicalScreenWidth property to 480. By setting these properties to the same resolution as
the system you created your application on, you are ensuring that your application will
always display correctly regardless of the end-users screen resolution.

Mask Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
Set this property to a series of special characters that strictly controls which characters a
user can enter and how many. Use the following reserved characters to create a mask:
9 - a number
A- any alphabetical character or space
X - any alphabetical character, number, or space
DD - a two-digit sequence that represents a day (a value from 01-31)
MM - a two-digit sequence that represents a month (a value from 01-12)
YY - a two-digit sequence that represents a year (01-99)
YYYY - a four-digit sequence that represents a year (0001-9999)
B - any character or symbol
! - any character or symbol where any alphabetical character is converted to uppercase
You can also use any character other than the above reserved characters as part of the
mask. These characters will not be editable. Example: in the mask (999)999-9999, the
parentheses and hyphen will not be editable. The characters the user types will appear only
in the positions where there are 9s.
Note: If you need to use one of the reserved characters as part of a mask, precede the
character with a \ symbol.

Maximized Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property, set to True or False, controls whether a Window object is maximized (full
screen).

MenuItemCount Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property returns the total number of menu items in a menu.

MenuItemList Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property returns a semicolon separated list of the Menu Item object names in a Menu
object.

Minimized Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property, set to True or False, controls whether a Window object is minimized to an icon.

MouseButton Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to Left or Right, controls which mouse button the user employs to select a
menu item from a pop-up menu. If you set it to Left, the user must left click to select an item
from the menu. If you set it to Right, the user can either right click or left click. (This
property is available for Windows 3.1 only.)

MultiMediaDeviceNames Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property displays a list of the multimedia product device names that are supported on
the system that is running IconAuthor or Present. Use an ObjGet icon on the
MultiMediaDevices property and assign it to a variable. Your application can then evaluate
the contents of the variable and branch accordingly.

MultiMediaDevices Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property returns a list of the multimedia devices that are supported on the    system that
is running IconAuthor or Present.

MultipleLines Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False within the SmartObject Editor, controls whether an object
can contain multiple lines of text. The default (True) causes text to wrap down vertically onto
the next line when the cursor reaches the right side of the object. If this property is set to
False, text does not wrap to the next line. Rather, it scrolls horizontally out of view when the
Text object becomes full. The user can press the arrow keys to bring text back into view.

MultiSelection Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property, set to True or False, controls whether the user will be able to click and drag to
select multiple cells. Set to True by default, the user can select multiple cells.

NotifyOnCellDataChange Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property, set to True or False, controls whether an event occurs when the user changes
the text in a cell and then presses enter, tab or clicks on a different cell. When an ObjEvent
icon detects that an event has occurred, it places the string CellDataChange in the system
variable @_OBJECT_EVENT. Also, the name of the object is placed in @_OBJECT_NAME.

NotifyOnClickHotWord Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
Use the NotifyOnClickHotword property to detect when a user clicks on a Hotword. The
SmartObject Editor lets you designate a character, word, or phrase in a Text object as a
Hotword. You can also assign a numerical index to a Hotword and the same index can be
shared by other Hotwords. This is particularly useful in cases where you want the same
action to occur for multiple Hotwords. If NotifyOnClickHotword is True, when a user clicks on
a Hotword at runtime, a "ClickHotword" event is generated. Your structure can include an
ObjEvent icon to await the event. Once the event occurs, an ObjGet icon can retrieve the
current setting of the Hotword property or the HotwordIndex property and store it in a
variable. Your application can evaluate the user's selection and branch accordingly.

NotifyOnClickLeft Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, controls whether an event occurs when a user left clicks
on an object. If the property is True and a user clicks left on the object, a "ClickLeft" event
occurs. If it is False, no event occurs.
After your application displays an object upon which the user can click left, the structure
typically contains an ObjEvent icon that waits to detect and record the result of the event.
When an ObjEvent icon detects that an event has occurred it places the string "ClickLeft" in
the system variable @_OBJECT_EVENT. Also, the name of the object is placed in
@_OBJECT_NAME.

NotifyOnClickLink Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
Use the NotifyOnClickLink property to detect when a user clicks on a link. (AutoTraverseLinks
must be set to False.) If NotifyOnClickLink is True, when a user clicks on a link at Runtime, a
"ClickLink" event is generated. Your structure can include an ObjEvent icon to await the
event. Once the event occurs, an ObjGet icon can retrieve the current setting of the LinkType
property or the LinkFileName property and store it in a variable. Your application can
evaluate the user's selection and branch accordingly.

NotifyOnClickMiddle Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property performs almost identically to the NotifyOnClickLeft property with two
exceptions: 1) it applies to clicking the middle (rather than left) mouse button, and 2) it
places the string "ClickMiddle" (rather than "ClickLeft") in the system variable
@_OBJECT_EVENT.

NotifyOnClickRight Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property performs almost identically to the NotifyOnClickLeft property with two
exceptions: 1) it applies to clicking the right (rather than left) mouse button, and 2) it places
the string "ClickRight" (rather than "ClickLeft") in the system variable @_OBJECT_EVENT.

NotifyOnClose Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property, set to True or False, controls whether IconAuthor is alerted when the Window
object is closed. When the Window is closed and this property is True, the string "Close" is
assigned to the system variable @_OBJECT_EVENT. Note that even if this property is set to
false, a Window object may be closed; but IconAuthor is not alerted.

NotifyOnComplete Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, controls whether a "Complete" event is generated by an
object. When NotifyOnComplete is True, Audio, IconAnimate, Movie, Palette and OLE Objects
generate a "Complete" event when the object finishes playing. For a Text object, a
"Complete" event is generated when a user presses the termination key while typing/editing
text in an editable Text object. By default, the terminator key is Enter. When an ObjEvent icon
detects that an event has occurred, it places the string "Complete" in the system variable
@_OBJECT_EVENT. Also, the name of the object is placed in @_OBJECT_NAME.

NotifyOnDoubleClick Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property performs almost identically to the NotifyOnClickLeft property with two
exceptions: 1) it applies to double-clicking the left mouse button, and 2) it places the string
"DoubleClick" (rather than "ClickLeft") in the system variable @_OBJECT_EVENT. For more
information see the NotifyOnClickLeft property.

NotifyOnDragAbort Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property set to True or False, controls whether an event occurs when a user clicks the
right mouse button to abort the move or copy of a dragable object. When an ObjEvent icon
detects that an event has occurred, it places the string "DragAbort" in the system variable
@_OBJECT_EVENT. Also, the name of the object is placed in @_OBJECT_NAME. Note that if
this property is set to False, a user can abort a drag operation but an event does not occur.

NotifyOnDragDrop Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property set to True or False, controls whether an event occurs when a user drops a
dragable object on a valid target. When an ObjEvent icon detects that an event has
occurred, it places the string "DragDrop" in the system variable @_OBJECT_EVENT. Also, the
name of the object is placed in @_OBJECT_NAME. Note that if this property is set to False, a
user may be able to drop an object in a valid position; but an event does not occur.

NotifyOnDragFail Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property set to True or False, controls whether an event occurs when a user drops a
dragable object on an invalid target. When an ObjEvent icon detects that an event has
occurred, it places the string "DragFail" in the system variable @_OBJECT_EVENT. Also, the
name of the object is placed in @_OBJECT_NAME. Note that if this property is set to False, a
user may be able to drop an object in an invalid position; but an event does not occur.

NotifyOnEnter Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, controls whether an "Enter" event occurs when a user
moves the cursor over an object. This property is often used with the NotifyOnLeave
property. (The NotifyOnLeave property generates a "Leave" event when the user moves the
cursor off of an object.)
Example: You can set up your application so that when the user moves the cursor over a
button, an "Enter" event occurs. When the application detects the event, a status bar at the
bottom of the screen displays the purpose of the button. When the user moves the cursor off
of the button, a "Leave" event occurs. When the application detects the "Leave" event, the
status bar message disappears.

NotifyOnEnterHotWord Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, controls whether an "Enter" event occurs when a user
moves the cursor over an object. This property is often used with the NotifyOnLeave
Property (The NotifyOnLeave property generates a "Leave" event when the user moves the
cursor off of an object.)

NotifyOnEnterLink Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
Use this property to make links within an HTML object cursor-sensitive. This property, set to
True or False, controls whether an "Enter" event occurs when a user moves the cursor over a
link. If NotifyOnEnterLink is True for an HTML object, an event called EnterLink occurs when
the user moves the cursor over any link in the object. This property is often used with the
NotifyOnLeaveLink Property (The NotifyOnLeaveLink property generates a "LeaveLink" event
when the user moves the cursor off of a link.)

NotifyOnError Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, controls whether an "Error" event occurs when an Audio or
Movie object generates an MCI error message, when an IconAnimate, Graphic or Text object
generates an IconAuthor error message, or when an HTML object generates a HyperText
Transfer Protocol(HTTP) error.
If this property is True for Audio and Movie objects and an error occurs, the Result property is
set to the MCI error number and the ResultString property is set to the description of the MCI
error. For IconAnimate and Text objects, the Result property is set to the IconAuthor error
number and the ResultString property is set to the description of the IconAuthor error. For
Graphic objects, the ResultString property is set to the description of the IconAuthor error.
For HTML objects, the Result property is set to the number of the HTTP (HyperText Transfer
Protocol) error and the ResultString property is set to its description.

NotifyOnGetFocus Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, controls whether a GetFocus event occurs when the focus
is set to the object. The user sets focus to the object by clicking on it or tabbing to it. This
property is often used with the NotifyOnLoseFocus Property.

NotifyOnInput Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, controls whether an event occurs when a user enters text
in a Text object. When an ObjEvent icon detects that an event has occurred, it places the
string "Input" in the system variable @_OBJECT_EVENT. Also, the name of the object is
placed in @_OBJECT_NAME.

NotifyOnInputLimit Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, controls whether an event occurs when a user is entering
text in a Text object and reaches the input limit. The input limit is set via the InputLimit
property. When an ObjEvent icon detects that an event has occurred, it places the string
"InputLimit" in the system variable @_OBJECT_EVENT. Also, the name of the object is placed
in @_OBJECT_NAME.

NotifyOnKeyDown Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False controls whether a "KeyDown" event is generated when
the user presses a key that is defined in the KeyboardList property. Your application can
include an ObjEvent icon to await the user's interaction. When the user interacts, the
"KeyDown" event is stored in @_OBJECT_EVENT and name of the Keyboard object is stored in
@_OBJECT_NAME. A Branches composite can test these values to detect when a user
activates a key. Use the KeyboardKeyPressed property to learn which key was activated.

NotifyOnKeyUp Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False controls whether a "KeyUp" event is generated when the
user releases a key that is defined in the KeyboardList property. Your application can include
an ObjEvent icon to await the user's interaction. When the user interacts, the "KeyUp" event
is stored in @_OBJECT_EVENT and name of the Keyboard object is stored in
@_OBJECT_NAME. A Branches composite can test these values to detect when a user
activates a key. Use the KeyboardKeyPressed property to learn which key was activated.

NotifyOnLeave Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, controls whether a "Leave" event occurs when a user
moves the cursor off of an object. This property is often used with the NotifyOnEnter
property. (The NotifyOnEnter property generates an "Enter" event when the user moves the
cursor onto an object.)

NotifyOnLeaveHotWord Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
Use this property to make hotwords within a Text object cursor-sensitive. This property, set
to True or False, controls whether a "Leave" event occurs when a user moves the cursor off of
a hotword. If NotifyOnLeaveHotWord is True for a Text object, an event called LeaveHotWord
occurs when the user moves the cursor off of any hotword in the object. This property is
often used with the NotifyOnEnterHotWord Property.

NotifyOnLeaveLink Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
Use this property to make links within an HTML object cursor-sensitive. This property, set to
True or False, controls whether a "LeaveLink" event occurs when a user moves the cursor off
of a link. If NotifyOnLeaveLink is True for an HTML object, a LeaveLink occurs when the user
moves the cursor off of any hotword in the object. This property is often used with the
NotifyOnEnterLink Property.

NotifyOnLoseFocus Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, controls whether a LoseFocus event occurs when the focus
is removed from the object. This property is often used with the NotifyOnGetFocus Property.

NotifyOnMaximize Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property, set to True or False, controls whether IconAuthor is alerted when the Window
object is maximized. When the Window is maximized and this property is True, the string
"Maximize" is assigned to the system variable @_OBJECT_EVENT. Note that even if this
property is set to false, a Window object may be maximized; but IconAuthor is not alerted.

NotifyOnMinimize Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property, set to True or False, controls whether IconAuthor is alerted when the Window
object is minimized. When the Window is minimized and this property is True, the string
"Minimize" is assigned to the system variable @_OBJECT_EVENT. Note that even if this
property is set to false, a Window object may be minimized; but IconAuthor is not alerted.

NotifyOnPressLeft Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
Use this property, set to True or False, to 1) allow users to interact with touch screens and 2)
set up an object as press and hold sensitive. When the property is True and the user touches
the object or presses the left mouse button on the object, the event "PressLeft" is generated.
Your application can use an ObjEvent icon to await the user's interaction. When the user
interacts, "PressLeft" is stored in @_OBJECT_EVENT and the name of the affected object is
stored in    @_OBJECT_NAME.
Note: This property is not available for IAText objects on UNIX.

NotifyOnPressRight Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property works similarly to the NotifyOnPressLeft property. Use this property, set to True
or False, to set up an object as press and hold sensitive. When the property is True and the
user touches the object or presses the right mouse button on the object, the event
"PressRight" is generated. Your application can use an ObjEvent icon to await the user's
interaction. When the user interacts, "PressRight" is stored in @_OBJECT_EVENT and the
name of the affected object is stored in    @_OBJECT_NAME.

NotifyOnRecordFirst Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property, set to True or False, controls whether an event occurs when the user clicks on
the First Control Bar button. The event RecordFirst is stored in the variable
@_OBJECT_EVENT.

NotifyOnRecordLast Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property, set to True or False, controls whether an event occurs when the user clicks on
the Last Control Bar button. The event RecordLast is stored in the variable
@_OBJECT_EVENT.

NotifyOnRecordNext Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property, set to True or False, controls whether an event occurs when the user clicks on
the Next Control Bar button. The event RecordNext is stored in the variable
@_OBJECT_EVENT..

NotifyOnRecordPrev Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property, set to True or False, controls whether an event occurs when the user clicks on
the Previous Control Bar button. The event RecordPrev is stored in the variable
@_OBJECT_EVENT.

NotifyOnRecordUpdate Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property, set to True or False, controls whether an event occurs when the user clicks on
the Update Control Bar button. The event RecordUpdate is stored in the variable
@_OBJECT_EVENT.

NotifyOnSelect Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, controls whether an event occurs when a user makes a
final selection from the object. If the property is True and the user does one of the following,
a "Select" event occurs.
Combo Box The user types in the text box and presses

Return.

 Combo Box The user clicks on an item.

Combo Box The user presses the arrow keys to change
the highlighted list item and presses Return.

List Box The user double-clicks on an item.

List Box The user selects an item and presses the
Return key.

When an ObjEvent icon detects that an event has occurred, it places the string "Select" in
the system variable @_OBJECT_EVENT. Also, the name of the object is placed in
@_OBJECT_NAME. Note that if this property is set to False, a user may be able to make a
selection from a list box; but an event does not occur.

NotifyOnSelectChange Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, controls whether an event occurs when a user changes
the currently highlighted item in the object. If the property is True and the user does one of
the following, a "SelectChange" event occurs.
Combo Box The user presses the arrow

keys.
List Box The user presses the arrow

keys.
List Box The user clicks on a different

item.
When an ObjEvent icon detects that an event has occurred, it places the string
"SelectChange" in the system variable @_OBJECT_EVENT. Also, the name of the object is
placed in @_OBJECT_NAME. Note that if this property is set to False, a user may be able to
change the highlighted item, but an event does not occur.

NotifyOnSize Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property controls whether IconAuthor is alerted when the Window object is resized. The
drop-down list lets you set NotifyOnSize to True or False. When the Window is resized and this
property is true, the string "Size" is assigned to the system variable @_OBJECT_EVENT. Note
that even if this property is set to false, a Window object may be resized; but IconAuthor is
not alerted.

NotifyOnStart Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X
This property, set to True or False, controls whether a "Start" event is generated by an
object. If NotifyOnStart is True an OLE Object generates a "Start" event when the object
begins its action. When an ObjEvent icon detects that an event has occurred, it places the
string "Start" in the system variable @_OBJECT_EVENT. Also, the name of the object is placed
in @_OBJECT_EVENT.

NotifyOnUnsupportedFile Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property, set to True or False, controls whether an "UnsupportedFile" event is generated
by an object. If NotifyOnUnsupportedFile is True, an HTML Object generates an
"UnsupportedFile" event when the LinkFileName property contains a file that IconAuthor
does not support.

ObjectData Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
Use this property to enter any information you want on the object. This property is only
available for live objects and is only necessary if you plan to reference the object in
IconAuthor icons.
At Runtime, when a user acts on an object (for example, clicks on a Button) the data of the
object that was affected is automatically placed in the system variable @_OBJECT_DATA. This
information is extremely valuable because your application can use If icons to evaluate the
contents of @_OBJECT_DATA and branch accordingly.
Note: This property is not available for the System object on UNIX.

ObjectName Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property is the unique name that you assign to an object within the SmartObject editor.
This property is only available for live objects and is only necessary if you plan to reference
the object in IconAuthor icons. For example, at runtime, if you want to change (set) or
retrieve (get) the current property of an object, you will need to specify the object name in
the ObjSet or ObjGet icon Content Editor.
Also at runtime, when a user acts on an object (for example, clicks on a Button) the name of
the object that was affected is automatically placed in the system variable @_OBJECT_NAME.
This information is extremely valuable because your application can use If icons to evaluate
the contents of @_OBJECT_NAME and branch accordingly.
Note: This property is not available for the System object on UNIX.

ODBCConnectionHandle Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This get-only property returns the ODBC internal number associated with the individual
connection to the Database object.

ODBCStatementHandle Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This get-only property returns the ODBC internal number associated with an individual
recordset.

OpenType Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property controls whether the recordset can be read, appended or updated by the end-
user. The Default setting lets the user read, append and update. The Append setting lets the
user read and append but not modify the recordset. The Read setting lets the user read the
recordset only.

OSType Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property indicates the systems OS type that is running IconAuthor or Present.

OSVersion Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property indicates the OS version of the system that is running IconAuthor or Present.

PageName Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property displays the name of the SmartObject page the object is on. The PageName
property lets you group and manipulate objects at runtime in the same way as the
FamilyName and ObjectName properties. You can enter the keyword pagename in the Scope
field on any of the Obj- icons. This way you can set, get, or delete a property for all objects
on a SmartObject page using one icon.

PaletteCompression Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property, set to True or False, determines whether palette compression is enabled. The
default, False, does not enable palette compression.

PaletteSharing Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property, set to True or False, determines whether palette sharing is enabled. Palette
sharing lets two or more graphics or movies share a palette thereby eliminating palette
shifts. The PaletteSharing property works in conjunction with the PaletteSource and FileName
properties. The PaletteSource property lets you determine whether the system palette or a
filename is used as the palette source. If you choose Filename as the palette source, the
FileName property needs to be completed.
Note: If you want to perform palette animations (via the AnimationEntries property), the
PaletteSharing property must be set to True.

PaletteSource Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property lets you specify either System or File for the palette source. If you choose
System, the current system palette will be used. If you choose File, an additional property
needs to be set: FileName property. Enter the name of the palette or graphic file in the
FileName property. The PaletteSharing property needs to be set to True in order to use this
property.

PaletteStaticRemap Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property, set to Default, Always or Off, controls how static color remapping is performed
in your application. Default first determines if the graphic has an identity palette. If it does,
IconAuthor will remap the static colors. If it does not, IconAuthor will not remap the static
colors. Always determines that static color remapping will always be performed. IconAuthor
will not check if identity palettes are being used. Therefore to avoid palette shifts, you
should only use this setting if all of your graphics and movies are using identity palettes. Off
disables static color remapping.

PauseOnMinimize Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property, set to True or False, causes your application to pause when the Window object
is minimizes. When set to True, the application will pause. When set to False, the application
will keep running.

PlayCount Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property set to a positive integer, controls how many times the specified file or CD
selection plays. The default is 1.

PositionCurrent Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, available at runtime only, is automatically set to the current position in a file
or on a CD. Your application can use an ObjGet icon to retrieve the setting of this property
and store it in a variable for subsequent display or manipulation. The format for this value is
milliseconds for audio files, frames for movie and animation files, and
Track:Minutes:Seconds:Frames for CD.

PositionEnd Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property sets the beginning position for playing a file or a CD selection. The format for
this value is milliseconds for audio files, frames for movie and animation files, and
Track:Minutes:Seconds:Frames for CD.

PositionSeek Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property sets the seek position for a file or a CD selection. Once you set the seek
position you can set the Command property to Seek, thereby causing the object to find the
specified position. The format for the PositionSeek value is milliseconds for audio files,
frames for movie and animation files, and Track:Minutes:Seconds:Frames for CD.

PositionStart Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property sets the beginning position for playing a file or a CD selection. The format for
this value is milliseconds for audio files, frames for movie and animation files, and
Track:Minutes:Seconds:Frames for CD.

PreviousCell Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property is set at Runtime to the index of the cell that was previously selected. Your
application can use an ObjGet icon to retrieve this value and store it in a variable.
You can then find out what the user typed in the cell by setting the Cell property to the
index. This allows you to use an ObjGet icon on the CellData property to retrieve the text in
the cell.

ProgramType Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property indicates the type of the system (i.e. UNIX, MAC, OS/2, Win16) that is running
IconAuthor or Present.

ProgramVersion Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property indicates the version of the system that is running IconAuthor or Present.

RecordCount Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property displays the number of records in the recordset.

RecordData Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property lets you get and set data for the current record using the ObjGet and ObjSet
icons. For updates, this causes the current records data or a field in the current records data
to be replaced with the new data.

RecordStatus Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property displays the status of the current record. The status can be: Success, Updates,
Deleted or Error.

Rectangle Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
Resets the area of the object. This property is available at runtime only. Specify four
numbers separated by commas to describe the screen coordinates of the object's upper left
corner and the object's lower right corner.
Example: 50,50,100,100 specifies that the object's upper left corner is at 50,50 and the
object's lower corner is at 100,100.

ResizeableColumns Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property, set to True or False, controls whether the columns can be resized. Set to True
by default, the columns are resizeable.

ResizeableRows Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property, set to True or False, controls whether the rows can be resized. Set to True by
default, the rows are resizeable.

ResizeToFile Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, controls the size of a Movie object. When the property is
True (the default), the object automatically resizes itself to the appropriate dimensions for
the specified file. When the property is False, the object maintains its original size (as
drawn). Note that this may cause some of the image to be out of view if the object is not
large enough.

Result Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
For Audio, IconAnimate, and Movie objects, this property is set, when appropriate, to the
number of an MCI (or IconAnimate) error message. For Database objects, this property is set,
when appropriate, to the number of an ODBC error. For HTML objects, this property is set,
when appropriate to the number of an HTTP (HyperText Transfer Protocol) error.

ResultString Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, is set when appropriate, to the description of an IconAnimate, HTTP, MCI, or
ODBC error message.

ReturnToStart Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, re-sets the frame number to the first frame when the
movie is finished playing.

Right Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
Resets the distance (in pixels) from the left side of the page to the right side of the object.
Specify a whole number greater than 0. This property is available at runtime only.

Row Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
Set this property to the index number of the row that you want to affect with the RowData
property.

RowCount Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property is set at Runtime to the number of rows in the table. Your application can use
an ObjSet icon to change the number of rows in the table. If the number you enter is bigger
than the current number of rows, the extra rows are added to the bottom of the table. If the
number is smaller, the appropriate number of rows will be deleted from the bottom.

RowData Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property is set to the text in the row designated by the Row property. To retrieve or set
the text, you need to first set the Row property to designate the row. An application can use
an ObjGet icon to retrieve the current setting of the row or an ObjSet icon to set the text in
the row via a semicolon delimited list.
Example: To set this property via a semicolon delimited list, separate each item from another
with a semicolon (;). For example, red;blue;green;yellow will set the first four cells in the row, in
the specified order. If you want to have a semicolon appear as an actual part of the row
data, precede it with a \. However, remember to include the semicolons that are required as
separators.

SaveFileType Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
If you are saving the contents of the object to a file at runtime, set this property to FTT or
ASCII to indicate the format of the file. Note that if you are saving to an .FTT file, you must
also set the FttPageName property.

ScreenColors Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property returns the number of colors the system IconAuthor or Present is running on
supports.

ScreenHeight Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property returns the screen height of the system that is running IconAuthor or Present.

ScreenPaletteEntries Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property returns the number of palette entries the system IconAuthor or Present is
running on supports.

ScreenWidth Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property returns the screen width of the system that is running IconAuthor or Present.

ScrollBarHorizontal Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
Set to True or False, this property controls whether the object has a horizontal scrollbar. Note
that if the ScrollBarVertical property is set to True for a Graphic object, the graphic cannot
have an transparent colors.

ScrollBarVertical Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
Set to True or False, this property controls whether the object has a scroll bar. Note that if the
ScrollBarVertical property is set to True, the object cannot have a transparent background or,
in the case of the Graphic object, transparent colors.
Note: This property is not available for Graphic objects on UNIX and Macintosh.

SelectedItemData Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property is set to the item that the user selects (or possibly types in a Combo Box). An
application can use an ObjGet icon to retrieve the current value assigned to this property
and store it in a variable. This get-only property is available at runtime only.

SelectedItemNumber Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property is set to the number of the item that is currently selected. You can set this
property to a pre-selected item number in the SmartObject Editor. Also, this property is set
at runtime when the user makes a selection (or possibly types a value in a Combo Box). The
first (topmost) item in a list is 1, the second item is 2, and so on. An application can use an
ObjGet icon to retrieve the current value assigned to this property and store it in a variable.

SelectedRange Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
Set this property to a cell or range of cells that you want to appear highlighted.

SelectionArea Property
This property lets you assign a unique number to an object to identify it as a selection area
(hotspot) on which the user can click the left mouse button at runtime. When you create
pages that contain objects that are selection areas, you use the Menu composite which
includes the InputMenu icon (versus object icons) to:
1. Display the page.
2. Allow the user to click on an area.
3. Store the area number in @_Selection.
4. Evaluate the contents of @_Selection and branch according to the user's choice.

ShowDisabledScrollBar Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property, set to True or False, controls whether the vertical scrollbar displays even when
it is disabled. Set to False by default, a disabled scrollbar does not display, If set to True, the
ScrollBarVertical property must also be set to True otherwise no vertical scrollbars will be
displayed.

ShowPartialItems Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False controls whether items in a list box scroll by partial items
or by whole items. If the property is True, items appear gradually, similar to the numbers
that gradually rotate into view on an odometer. If the property is False, each whole item
pops into view in its entirety.

Size Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
Resets the width and height of the object (in pixels). Specify two numbers separated by a
comma. For example: 200,56 means that the object is 200 pixels wide and 56 pixels tall.
This property is available at runtime only.

Sort Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False within the SmartObject Editor, controls whether the items
in a list box are sorted alphabetically.

SQLText Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property lets you enter a SQL string. The SQL string is a query that tells the database
what information to search for and display. The SQL string is then executed by the
RecordsetOpen command. A table of special keyterms has been provided for advanced users
at the end of this section.
You can also use this property to register data sources on the fly. This is useful if you want to
provide a complete installation for your customers. Enter the data source information in this
property using the following format: ODBC driver description, list of driver specific attributes.
Each driver specific attribute should be followed by a backslash and the character zero. You
can examine the ODBC.INI file to see what valid attributes are used by a particular driver.
Also driver documentation may provide this information.

State Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X
This runtime only property lets you set the state of an OLE object to Executing or Idle. If the
state of the object is Executing the object's default action (set via the DefaultAction
property) occurs. If the state is Idle, no action occurs.
Example: Your application displays a page with a non-visible OLE object that is defined to
play a wave audio file. A user cannot double-click on the object to play it, however, an
ObjSet icon can set the object's State property to Executing and the sound file plays.

Status Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, available at runtime only, is automatically set to the current status of the
object, for example, playing, opened, or closed. Your application can use an ObjGet icon to
retrieve the current setting of the Status property and store it in a variable. As an example, if
an audio object is playing and an ObjGet icon retrieves its status, the status will be
expressed as "playing."
Note: This property is not available for Movie objects on UNIX.

Style Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property, available at runtime only, changes the style of an object. A Button object can
be set to Push Button, Radio Button, Check Box, Icon Button, or Group Box style. A Timer can
be set to Periodic, Count Down, Count Up, or Alarm style.

StyleFileName Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property lets you specify the name of the .FTT style file to be used by the HTML object.
The drop-down list box lets you use the Browser to find the name of the file you want to use.
The StylePageName property lets you designate a page in the .FTT style file.

StylePageName Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property lets you specify the page name of the .FTT style file designated in the
StyleFileName property. Choose the Page Selector from the drop-down list for a list of
pagenames in the .FTT file.

TableCount Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property displays the number of tables in the data source. An ObjGet icon needs to get
the TableNames property data first. Then you can use a second ObjGet icon on the
TableCount property and store the number of tables to a variable.

TableNames Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property returns a list of the table names in the data source. Use an ObjGet icon on the
TableNames property and assign the table names to a variable. This property will close the
recordset in the Database object if it is open.

Text Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to the text that the Text object currently contains, has two common uses.
First, you can use an ObjSet icon to reset the Text property, thereby resetting the text that
appears in the object. If you are typing characters into the ObjSet icon in order to set the
Text property, the limit is 256 characters. If you are specifying a variable (that contains text
characters) in the ObjSet icon, the limit is 2000 characters.
Second, you can use this property in an ObjGet icon to retrieve the value that a user typed
in a Text object. For example, if a user types the word blue into an editable Text object, the
Text property is set to blue. Your application can use an ObjGet icon to take the current Text
property value and store it in a variable.

TextBoxData Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property lets you set the string of text you want to display in the edit field or get the
string of text entered by the user.

TextCase Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to MixedCase, UpperCase, or LowerCase, controls the case used for
alphabetical characters. MixedCase leaves the text in the case in which it was entered.
UpperCase converts all text to uppercase. LowerCase converts all text to lowercase.

TextDragableProperty
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property, set to True or False, controls whether the user can move the text around in an
editable Text object.

TextFormatted Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property allows you to retrieve text from a Text object, including formatting such as
carriage returns.
Example: A user types text (including carriage returns) into a small Text object. An ObjGet
icon retrieves the TextFormatted setting for the input and stores it in @input. An ObjSet icon
re-displays the text in another larger Text object (by setting the Text property to @input).
Although the second Text object is larger, the text displays with the original formatting
information.

TextLength Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property is set at runtime to the number of characters in a Text object. You can use an
ObjGet icon to learn how many characters a user entered.

TimerData Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property lets you specify the data used by the Timer object. For a Periodic timer, this
setting is the amount of time between alarm events. Example: 01:00:30. For a Count Up
timer this is 0 (the starting point in time). For a Count Down timer this is the amount of time
that passes before the alarm event occurs. Example: 00:00:10. For an Alarm timer this is the
specific time of day at which the event should occur. Example: 14:00:00.

TitleBarText Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property lets you set the text that appears in the title bar of the window.

Top Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
Resets the distance (in pixels) from the top of the page to the top of the object. Specify a
whole number greater than 0. This property is available at runtime only.

TrackCount Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, available at runtime only, is automatically set to the number of tracks on the
current CD. Your application can use an ObjGet icon to retrieve the setting of this property
and store it in a variable for subsequent display or manipulation.

TrackLength Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, available at runtime only, is automatically set to the length of the current
track. Your application can use an ObjGet icon to retrieve the setting of this property and
store it in a variable for subsequent display or manipulation. The format for this value is
Track:Minutes:Seconds:Frames.

TrackNumber Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, available at runtime only, is automatically set to the number of the current
track on the current CD. Your application can use an ObjGet icon to retrieve the setting of
this property and store it in a variable for subsequent display or manipulation. The format for
this value is Track:Minutes:Seconds:Frames.

TransparentBackground Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property, set to True or False, controls whether the background color of the object is
solid or transparent. This is particularly useful when you display data such as a Microsoft
Paintbrush image.
Note: This property is only available for IA Text objects on UNIX.

ValidationList Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property returns a list of bound objects whose data has changed. The DataChanged
property has to be set to True to be able to access the validation list.

VariableName Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
Enter the name of a variable you assigned using the Variable object. You can then
manipulate the specified variable using the PutSingle command. Or, if you entered a
variable array in the Variable object, enter the name you assigned the array. You can then
manipulate the array using the PutArray command.

Visible Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, set to True or False, indicates whether an object can be seen. When an object
is not visible it still exists and can be made visible at some later time. Many object classes
that have a Visible property, except for example OLE and Audio objects, are effectively
disabled when you make them invisible. Example: If the user cannot see a Push Button or a
List Box, he or she cannot click or double-click on it.
Keep in mind that it is faster to make an object visible than it is to delete the object and then
re-display the entire page again. You may find it useful to create a page with more objects
than you initially need in your display. Objects that are intended for later use can simply be
set so they are not visible. As necessary, at runtime, an ObjSet icon can be used to change
the property to visible.
Related Topics:
Visible Property and Transparent Objects

Visible Property and Transparent Objects
Even a Transparent object has a Visible property. Although even when visible, Transparent
objects cannot be seen, this property can be useful because of its disabling capability.

VisibleColumnLabels Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property, set to True or False, controls whether the column labels are visible. Set to True
by default, the column labels are visible.

VisibleFirst Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property, set to True or False, controls whether the First control bar button is displayed.

VisibleLast Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property, set to True or False, controls whether the Last control bar button is displayed.

VisibleLines Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property, set to True or False, controls whether the horizontal lines are visible.

VisibleNext Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property, set to True or False, controls whether the Next control bar button is displayed.

VisiblePrev Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property, set to True or False, controls whether the Previous control bar button is
displayed.

VisibleRowLabels Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property, set to True or False, controls whether the row labels are visible. Set to True by
default, the row labels are visible.

VisibleUpdate Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X
This property, set to True or False, controls whether the Update control bar button is
displayed.

Width Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
Resets the width of the object in pixels. Specify a whole number greater than 0. This
property is available at runtime only.

WidthEdge Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, available at runtime only, controls the width of an HTML or Text object's
border edge. Set WidthEdge to the desired number of pixels.

WidthFrame Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property, available at runtime only, controls the width of an HTML or Text object's
border frame. Set WidthFrame to the desired number of pixels.

WidthRowLabels Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property controls the width of the row labels in the table. Enter a number (up to 2000)
that represents the width in pixels. By default, the width is set to 100 pixels.

WindowHandle Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property returns the Window Handle of the specified object. Every object has a unique
window handle. Your application can use an ObjGet icon to get this value and store it to a
variable. A program icon can then run a program, referencing this variable (window handle).
The result is that the program runs within the object.

ImagePosition Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X

This property lets you control which part of the graphic displays. Set to 0,0 by default, this
property lets you specify the x,y coordinates for the starting point of the graphic. If you
change this property, the graphic will display using the specified coordinates as its starting
point. For example, the following figures show a graphic of a sun. Both graphics have a   
DrawStyle of SizeByGraphic. The Image Position of the graphic on the left is 0,0. Since this is
the top, left corner of the graphic the entire graphic displays. The Image Position of the right
graphic is 100,100. Therefore, the graphics starting point is 100,100. Because the DrawStyle
is SizeByGraphic, the object is automatically resized to fit the new image.

The x,y coordinates of this
graphic are 195,185.

The x,y coordinates of this graphic are 295,285.
The following figure shows what the same graphic would look like if its DrawStyle was Clip
and its ImagePosition 100,100.

The object does not automatically resize to fit the new image. It is up to you to resize
it using the mouse.

Zoom Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X

The Zoom property lets you zoom in and out of a graphic. You can specify a number that
represents the zoom percentage.
Note: The Zoom property only works with graphics that have a DrawStyle of either Clip or
SizeByGraphic. It does not work with the DrawStyle set to Scale or Tile.

UpdateDisplay Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X
This property, available at runtime only, lets you control when edits are made to the Table
object at runtime. If set to True, the Table object is automatically updated with edits as soon
as they are made. If set to False, you can evaluate edits before the Table object is updated.

NotifyOnPressMiddle Property
Cross-Platform Availability
Win OS/2 UNIX Mac

X X X X
This property works similarly to the NotifyOnPressLeft property. Use this property, set to True
or False, to set up an object as press and hold sensitive. When the property is True and the
user touches the object or presses the middle mouse button on the object, the event
"PressMiddle" is generated. Your application can use an ObjEvent icon to await the user's
interaction. When the user interacts, "PressMiddle" is stored in @_OBJECT_EVENT and the
name of the affected object is stored in    @_OBJECT_NAME.

Authoring for the Internet
Making use of the Internet in your applications lets you access files from a computer that is
remotely located. You can put your content files (or even entire applications) on your
Internet site. You could create your files locally and then put them on your Internet site. This
allows your end-users worldwide to access them. In addition to putting files up on your own
site, you can access files from other sites. Millions of computers have files of information
that you can use. These files range from digitized pictures and full-motion video to text on
almost anything imaginable. For example, a computer at NASA (National Aeronautics and
Space Administration) headquarters in Washington, DC, may have some great graphics of
Earth taken from outer space that you want to display in your application. You can display
them via Graphic objects. Or, you may want to include a specific U.S. Supreme Court verdict.
You could display this via a Text object. Because there is a tremendous amount of
information available to you through the Internet, the possibilities for including this
information in your applications are endless.
Another powerful feature of authoring for the Internet is that if you keep files on your own
Internet site, you can update files on the fly. This means, for example, you could store .FTT
text files that your application uses on the Internet and update them as necessary. This
ensures that your end-users will always have the latest version without you having to
redistribute your application. Suppose you have a New Employee training application. You
can keep certain files on your Internet site that change periodically, like an employee roster
file, and link this file to your application. The end-user will always be guaranteed of having
the most current information, provided that you have updated the files on the Internet.
The following SmartObjects can display Internet files:

Audio Movie
Graphic Push Button
HTML Picture Push Button
IconAnimate Text

The following IconAuthor icons can display Internet files:
Display SubApp
LoadVar Subroutine
Print Text

The following IconAnimate icons can display Internet files:
File Graphic

Related Topics:
Accessing Internet Files

Accessing Internet Files
In order to access files on the Internet, you (and your end-users) need to first be connected
to the Internet via a TCP/IP connection. A TCP/IP connection (Transmission Control
Protocol/Internet Protocol) lets your computer communicate with other computers that are
connected to the Internet. If you are on a network, check with your Network Administrator to
find out how you can access the Internet. If youre not on a network, your computer must
have a modem that connects to your phone line. You also must have access to the Internet
through an Internet service provider.
Once you are connected to the Internet, the easiest way to find files is to use a browser.
There are many Internet browsers to choose from and most are freeware or shareware. Two
of the more popular browsers are NetScape and Mosaic. A browser lets you access the World
Wide Web, the hypermedia version of the Internet commonly known as WWW. Information
on the WWW is in hypermedia format, which means the text, graphics, audio and video can
be linked in multiple ways within a document and to other documents.
What you do with information on the Internet is up to you. For example, you can display
graphics via the Graphic object or Display icon, text via the Text object or digital video via
the Movie object.
Be aware that files accessed from the Internet typically take longer to display than files
accessed from a CD, for example.

Related Topic:
URL Syntax

URL Syntax
A URL (Uniform Resource Locator) is a unique address for a file on the Internet. To use
Internet files in your applications, you need to tell IconAuthor the URL of the information you
want. You can enter a URL in the FileName property of a SmartObject or in the File field of an
IconAuthor or IconAnimate icon. (For more information on entering URLs, see the section
URL Fields.) Just like an absolute path, for example C:\IAUTHOR\GRAPHICS\SUN.BMP, a URL
has certain specifications that you need to follow in order for the Internet to understand it.
These specifications involve three parts: protocol, computer name, directory (if necessary)
and filename. The following subsections describe the three parts of a URL.

Related Topics:
Protocols
Computer Names
Filenames
Sample URL
Entering URLs in Path Files
Entering a URL in a SmartObject
Entering a URL in an IconAuthor or IconAnimate Icon

Protocols
The first part of a URL is the protocol. The protocol is a set of rules, that two computers
agree on, for transferring files. These rules tell your computer how to get a file from another
computer or vice versa. IconAuthor supports two protocols: HTTP and FTP. HTTP stands for
HyperText Transfer Protocol and FTP stands for File Transfer Protocol. Although these two
protocols have different user environments, they work identically within IconAuthor in
retrieving files from the Internet. In a URL, the protocol needs to be followed by a colon and
two forward slashes, for example http://

Computer Names
The second part of a URL is the computer name. Each computer connected to the Internet
has a unique name. For example, the name of the NASA computer that contains graphic
images of Earth is nssdc.gsfc.nasa.gov. To obtain these files, you need to know the computer
name. In the United    States, the rightmost part of the name is called its zone. In other
countries, the rightmost part is the country code. In the previous example, the zone is gov,
which means it is a government site as opposed to educational (edu), commercial (com),
military (mil) or other kind of zone. The part to the left of the zone is the organization or
company name, in this case nasa. The part to the left of nasa is the name of the individual
computer at NASA that stores the Earth graphic files, in this case nssdc.gsfc.

When you know a computers name, you can connect to it and get information from it. To
access the Earth graphics, you would tell your computer the name of the computer at NASA
and the graphic filenames.

Filenames
The third part of a URL is the directory (if necessary) and filename. Any filename that you
enter must be an IconAuthor supported file format. Filenames can be up to 234 characters
long but be aware that IconAuthor will truncate the filename to eight characters and the
extension to three characters.
You also must make sure that the files will be available. Normally, Internet sites are updated
regularly and sometimes files are taken off of a site or moved. You need to make sure that
the files are always available. If the files used in your application are located on your
Internet site, it will be easier to ensure this.

Sample URL
When you put the protocol, computer name, directory (if necessary) and filename together,
you have a URL. The following is an example of a URL:

.

Entering URLs in Path Files
You can enter a URL as a path in your path file. This is useful, for example, if all of your
graphics are located in one directory on the Internet. You can update the graphics as
necessary so your end-users always have the most current version. For example, you could
create your graphics locally and then store them on your Internet site. To enable IconAuthor
to access the files, change the path of the path variable @_GRAPHIC_PATH to the URL where
the graphics are stored. Then instead of having to enter the URL each time you want to
access a graphic, you simply enter the filename.
The following figure shows the path variables for an untitled application. The graphic path
variable is set to a URL.

Entering a URL in a SmartObject
URLs can be entered in the FileName property of the following SmartObjects: Audio, Graphic,
HTML, IconAnimate, Movie, Push Button, Picture Push Button and Text. URLs need to be
typed in manually; you cannot browse for them. Therefore you need to know the exact URL
before you enter it in a FileName property.
The following figure shows a Graphic objects Properties box with a URL in the FileName
property.

The URL extends beyond the FileName property field. The full URL is:
http://nssdc.gsfc.nasa.gov/image/planetary/earth/apollo17_earth.jpg

This URL is for a graphic file of Earth taken from the Apollo 17 shuttle on December 7, 1972.
It is one of NASAs most requested pictures of Earth.
When you enter a URL in a SmartObject, you have the option of copying the file to the
appropriate directory. If you choose to do this, the URL is stripped to just the filename and
the file is downloaded into the appropriate directory. The file is no longer connected to the
Internet. It runs locally off of your computer. If you do not copy the file, it remains as a full
URL link but is downloaded temporarily to your temp directory, for example, C:\TEMP
directory. When you close IconAuthor and all of its executables (SmartObject Editor,
IconAnimate, Present, ImageLab and IAScope), the file is deleted from your \TEMP directory.

Entering a URL in an IconAuthor or IconAnimate Icon
You can enter a URL in the Filename field of the following IconAuthor icons: Display, LoadVar,
Print, SubApp, Subroutine and Text and in the following IconAnimate icons: File and Graphic.
URLs need to be typed in manually; you cannot browse for them. Therefore you need to
know the exact URL before you enter it in a Filename field.
The following figure shows the Content Editor of a Display icon with a URL in the Filename
field.

Note: While your application is running, the file is downloaded to your temp directory, for
example, C:\TEMP. When you close all of the executables that come with IconAuthor
(SmartObject Editor, IconAnimate, Present, ImageLab, and IAScope), the files in your \TEMP
directory are deleted.

Sample URL
When you put the protocol, computer name, directory (if necessary) and filename together,
you have a URL. The following is an example of a URL:

