
EMPLOYEES.FirstName,

EMPLOYEES.LastName

FROM CARS LEFT JOIN EMPLOYEES

ON CARS.CarNo = EMPLOYEES.CarNo;

attempts to put text and numeric data into
the same field and should fail. (In practice,
some RDBMSs
will allow this and
convert the
resulting field to
the lowest
common
denominator,
such as text.)

However, the
result shown in
Fig 1 (page 269)
may not be
particularly
meaningful.

The first
example I gave
for UNION
(combining a
LEFT and RIGHT
join) serves as an
excellent example. However, it isn’t the
only way in which it can be used. Suppose
that you have another table of sales people
who, for whatever reason, are stored in a
separate table from the other employees.
Take a look at the following:

SALESPEOPLE
EmployeeNo FirstName LastName CarNo
1 Fred Williams 1
2 Sarah Watson 4
3 James Hatlitch 6
4 Simon Webaston
5 Sally Harcourt
6 Martin Boxer
7 Trevor Wright 7

You want to throw a party for all the
employees, and to include those sales
people with company cars (because they

ended last month’s tutorial by
illustrating that while you can
have all of the cars some of the

time, and all of the people some of the time
(in your SQL statement), what you really
want to know is: can we have all of the
people all of the time? The answer is “yes”
but you need to make use of UNION.

UNION returns all of the records from
two queries and displays them, minus any
duplicates, in a single table. Thus:
SELECT CARS.Make, CARS.Model,

EMPLOYEES.FirstName,

EMPLOYEES.LastName

FROM CARS RIGHT JOIN EMPLOYEES

ON CARS.CarNo = EMPLOYEES.CarNo

UNION

SELECT CARS.Make, CARS.Model,

EMPLOYEES.FirstName,

EMPLOYEES.LastName

FROM CARS LEFT JOIN EMPLOYEES

ON CARS.CarNo = EMPLOYEES.CarNo;

produces:
Make Model FirstName LastName

John Greeves
Aston Martin DB Mk III
Bentley Mk. VI Bilda Groves
Ford GT 40
Ford Mustang
Jaguar D Type
Shelby Cobra Sally Smith
Triumph Spitfire
Triumph Stag Fred Jones

Clearly, the two answer tables that are
produced by the separate SELECT
statements must be compatible in order for
the UNION to combine them sensibly. So:
SELECT CARS.CarNo, CARS.Model,

EMPLOYEES.FirstName,

EMPLOYEES.LastName

FROM CARS RIGHT JOIN EMPLOYEES

ON CARS.CarNo = EMPLOYEES.CarNo

UNION

SELECT CARS.Make, CARS.Model,

have volunteered to drive the employees
home afterwards).

You can use:
SELECT FirstName, LastName

FROM EMPLOYEES

UNION

SELECT FirstName, LastName

FROM SALESPERSON

WHERE SALESPERSON.CarNo Is Not

Null;

to yield;
FirstName LastName
Bilda Groves
Fred Jones
Fred Williams
James Hatlitch
John Greeves
Sally Smith
Sarah Watson
Trevor Wright

You can also use UNION to produce a
list of all employees and sales people who
have company cars:
SELECT DISTINCTROW

VALUES

(SELECT

FROM SALES2

WHERE SaleNo > 200);

The table SALES2 looks like that shown
in Fig 5, and this SQL statement will add the
five records for which [SaleNo] is greater
than 200 to the SALES table.

Closure is important here because the
statement within the brackets:
(SELECT

FROM SALES2

WHERE SaleNo > 200);

generates a table in its own right which is
then INSERTED into SALES.

SQL is not always as standard as it
should be. As another example, the syntax
for this statement in Access is:
INSERT INTO SALES

SELECT *

FROM SALES2

WHERE SaleNo > 200;

UPDATE
The UPDATE command allows you to alter
the values in fields. The general format is:
UPDATE tablename

SET Fieldname(s) = value

WHERE fieldname = value

although the WHERE condition is optional.
Thus:
UPDATE SALES

SET Customer =”Smith”;

will change Fig 6 to Fig 7.
As you might imagine, this command

can be a little devastating in the wrong
hands. The WHERE command generally
limits its scope. So:
UPDATE SALES

SET Customer =”Smith”

WHERE Customer = “Simpson”;

will act on the same initial table to produce
that shown in Fig 8.

It is quite possible to use different fields
in the SET and WHERE clauses. Thus:
UPDATE SALES

SET Customer =”Smith”

WHERE SaleNo < 5;

produces Fig 9.
Other variations are possible, and indeed

common. For example:
UPDATE SALES

SET AMOUNT = AMOUNT * 1.1;

will update all the values in SALES.[Amount]
by 10 percent, as in Fig 10. This sort of
variant is particularly useful.

DELETE
The DELETE command allows you to alter

Hands OnWorkshop: SQL

SALESPEOPLE.FirstName,

SALESPEOPLE.LastName, CARS.Make,

CARS.Model

FROM

(CARS INNER JOIN SALESPEOPLE

ON CARS.CarNo = SALESPEOPLE.CarNo)

UNION

SELECT DISTINCTROW

EMPLOYEES.FirstName,

EMPLOYEES.LastName, CARS.Make,

CARS.Model

FROM

(CARS INNER JOIN EMPLOYEES

ON CARS.CarNo = EMPLOYEES.CarNo);

FirstName LastName Make Model
Bilda Groves Bentley Mk. VI
Fred Jones Triumph Stag
Fred Williams Triumph Spitfire
James Hatlitch Ford Mustang
Sally Smith Shelby Cobra
Sarah Watson Ford GT 40
Trevor Wright Aston Martin DB Mk III

SELECT summary
Suppose you import a table of data like this:

InvoiceNo Foo
1 King
2 Baby Blue
3 Royal
2 Crested
5 Humbolt
2 Jackass

into a database and then try to make the
field InvoiceNo into a primary key (the Foo
field is simply a shorthand representation of
the boring information that would usually be
displayed in an invoice). This should fail
because the field contains duplicate values.
In this tiny table we can see them, but what
if it had 50,000 records? With a little
imagination, a query will find the errant
records for us.
SELECT InvoiceNo, Count(InvoiceNo)

AS NoOfDuplications

FROM INVOICES

GROUP BY [InvoiceNo]

HAVING Count([InvoiceNo])>1;

InvoiceNo NoOfDuplications
2 3

INSERT
Firstly, a brief note about the sample
Access database which is provided. It is
tempting to open each query as an SQL
view, read it, and then look at the answer
table by pressing the “Datasheet View
button”. This works for most of the
examples provided but not for the INSERT
queries. Press the “Run” button instead.

It is also worth bearing in mind that these

Personal Computer World • January 1997 • 267266 • Personal Computer World • January 1997

Hands On Workshop: SQL

State of the union
In the final part of our four-part tutorial, Mark Whitehorn covers UNION, insert, update
and delete commands.

I

queries will update the base tables, so you
should be working on a copy of the
database. In addition, remember that the
tables have primary keys, so if you run the
same INSERT query twice without deleting
the additional record, the query will fail to
run the second time.

As if all that weren’t enough, please also
note that I have encountered what appear
to be “software anomalies” in using these
queries in Access 2.0. The first example of
an SQL INSERT statement will only run two
or three times. Thereafter, even if the new
record is dutifully deleted from the target
table, the query will generate the error
message shown in the screenshot, Fig 3.
This is despite the fact that it hasn’t been
edited, or even opened for editing. Once
this error message appears, the only way to
get the query to run again is to delete the
existing query, open a new one and type
the SQL statement again.

SELECT is undoubtedly the most
commonly used SQL statement, but we
shouldn’t forget the other members of the
Data Manipulation Language (DML),
INSERT, UPDATE and DELETE.

INSERT is used to add rows to a table.
Thus the statement:
INSERT INTO SALES

VALUES (8, 1, “Jones”, “Sofa”,

“Harrison”, 235.67);

This is not the only allowable
construction. Indeed, Access will run this
syntactical construction, but if you save the
query, Access converts it to :
INSERT INTO SALES

SELECT 8, 1, “Jones”, “Sofa”,

“Harrison”, 235.67;

Both constructions will add this record to
the SALES table shown in Fig 2.

A slightly more verbose form is possible:
INSERT INTO SALES (SaleNo,

EmployeeNo, Customer, Item,

Supplier, Amount)

SELECT 8, 1, “Jones”, “Sofa”,

“Harrison”, 235.67;

which has exactly the same result. We can
also add to specific fields:
INSERT INTO SALES (SaleNo,

EmployeeNo, Customer, Amount)

SELECT 9, 1, “Jones”, 235.67;

which adds a single record as shown in Fig 4.
But don’t forget closure. Any operation

that we perform on a table (or tables) in a
relational database must have, as its result,
another table. So suppose we write an
INSERT statement like this:
INSERT INTO SALES

p268 ➢

Fig 3 Error message generated when the first INSERT command is used
too frequently!

Personal Computer World • January 1997 • 269

Hands OnWorkshop: SQL

Fig 1
Car No Model First Name Last Name

John Greeves
2 Mk. VI Bilda Groves
3 Stag Fred Jones
5 Cobra Sally Smith

Aston Martin DB Mk III
Bentley Mk. VI Bilda Groves

Ford GT 40
Ford Mustang
Jaguar D Type
Shelby Cobra Sally Smith

Triumph Spitfire
Triumph Stag Fred Jones

Fig 2
Sale No Employee No Customer Item Supplier Amount

8 1 Jones Sofa Harrison £235.67

Fig 3
SaleNo EmployeeNo Customer Item Supplier Amount

1 1 Simpson Sofa Harrison £235.67
2 1 Johnson Chair Harrison £453.78
3 2 Smith Stool Ford £82.78
4 2 Jones Suite Harrison £3,421
5 3 Smith Sofa Harrison £235.67
6 1 Simpson Sofa Harrison £235.67
7 1 Jones Bed Ford £453
8 1 Jones Sofa Harrison £235.67
9 1 Jones £235.67

Fig 2
Sale No Employee No Customer Item Supplier Amount

3 2 Smith Stool Ford £82.78
5 3 Smith Sofa Harrison £235.67

213 3 Williams Suite Harrison £3421
216 2 McGreggor Bed Ford £453
217 1 Williams Sofa Harrison £235.67
218 3 Aitken Sofa Harrison £235.67
225 2 Aitken Chair Harrison £453.78

Fig 6 — will change to…
Sale No Employee No Customer Item Supplier Amount

1 1 Simpson Sofa Harrison £235.67
2 1 Johnson Chair Harrison £453.78
3 2 Smith Stool Ford £82.78
4 2 Jones Suite Harrison £3,421
5 3 Smith Sofa Harrison £235.67
6 1 Simpson Sofa Harrison £235.67
7 1 Jones Bed Ford £453

…Fig 7
Sale No Employee No Customer Item Supplier Amount

1 1 Smith Sofa Harrison £235.67
2 1 Smith Chair Harrison £453.78
3 2 Smith Stool Ford £82.78
4 2 Smith Suite Harrison £3,421
5 3 Smith Sofa Harrison £235.67
6 1 Smith Sofa Harrison £235.67
7 1 Smith Bed Ford £453

Fig 9
Sale No Employee No Customer Item Supplier Amount

1 1 Smith Sofa Harrison £235.67
2 1 Smith Chair Harrison £453.78
3 2 Smith Stool Ford £82.78
4 2 Smith Suite Harrison £3,421
5 3 Smith Sofa Harrison £235.67
6 1 Simpson Sofa Harrison £235.67
7 1 Jones Bed Ford £453

Fig 11
Sale No Employee No Customer Item Supplier Amount

Fig 12
Sale No EmployeeNo Customer Item Supplier Amount

1 1 Simpson Sofa Harrison £235.67
2 1 Johnson Chair Harrison £453.78
5 3 Smith Sofa Harrison £235.67
6 1 Simpson Sofa Harrison £235.67
7 1 Jones Bed Ford £453

Fig 14
Sale No Employee No Customer Item Supplier Amount
225 2 Aitken Chair Harrison £453.78
218 3 Aitken Sofa Harrison £235.67
217 1 Williams Sofa Harrison £235.67
216 2 McGreggor Bed Ford £453
213 3 Williams Suite Harrison £3,421

Fig 15
‘SaleNo>200’ ‘Emp AND Sale’ EmployeeNo SaleNo Customer
-1 -1 3 213 Williams
-1 -1 2 216 McGreggor
-1 -1 1 217 Williams
-1 -1 3 218 Aitken
-1 -1 2 225 Aitken

Fig 13 — the correct answer
Sale No Employee No Customer Item Supplier Amount

217 1 Williams Sofa Harrison £235.67
216 2 McGreggor Bed Ford £453
225 2 Aitken Chair Harrison £453.78
213 3 Williams Suite Harrison £3,421
218 3 Aitken Sofa Harrison £235.67

Fig 10
Sale No Employee No Customer Item Supplier Amount

1 1 Simpson Sofa Harrison £259.24
2 1 Johnson Chair Harrison £499.16
3 2 Smith Stool Ford £91.06
4 2 Jones Suite Harrison £3,763.10
5 3 Smith Sofa Harrison £259.24
6 1 Simpson Sofa Harrison £259.24
7 1 Jones Bed Ford £498.30

Fig 8
Sale No Employee No Customer Item Supplier Amount

1 1 Smith Sofa Harrison £235.67
2 1 Johnson Chair Harrison £453.78
3 2 Smith Stool Ford £82.78
4 2 Jones Suite Harrison £3,421
5 3 Smith Sofa Harrison £235.67
6 1 Smith Sofa Harrison £235.67
7 1 Jones Bed Ford £453

Figs 1-15

Examples to accompany part four of the SQL tutorial,
covering the UNION, INSERT, UPDATE and DELETE
commands, and the associated brainteaser.

the values in fields.
The general format of the command is:

DELETE FieldName(s)

FROM tablename

WHERE fieldname = value

although the WHERE condition is optional.
Thus:
DELETE *

FROM SALES;

is a particularly powerful (not to say
dangerous) statement since the output
table looks like Fig 11. To be more specific,
this command deletes the entire contents of
the SALES table. Please be aware of the
consequences of any injudicious use of this
command.

More commonly (and less alarmingly) the
command is used like this:
DELETE *

FROM SALES

WHERE [EmployeeNo] = 2;

which deletes two records and produces
the table in Fig 12. Of course, closure
comes into its own and we can write
statements like:
DELETE *

FROM EMPLOYEES

WHERE EmployeeNo IN

(SELECT EmployeeNo

FROM SALES

GROUP BY EmployeeNo

HAVING COUNT (*) < 2);

which is neither friendly nor amiable, but
effective in database terms. It deletes all
employees from the EMPLOYEES table
who have made fewer than 2 sales. The

SALES table is unaffected, but one of our
employees disappears from EMPLOYEES.

Bear in mind that this statement will try
to remove employees who have performed
badly, but the data dictionary may in fact
prevent this deletion in order to preserve
data integrity. This will depend upon
whether Cascade Delete has been set
between the two tables. In the sample
database, the query will complete.

Summary
SQL is great, and if you spend any time at
all with databases, it repays the effort
required to learn it. One of the best ways to
learn is to practise using it, which is why the
sample database has 70 sample queries.
However, you might also like to wile away
your time on this brainteaser:
■ Question (and a free SQL diagnostic tool)
The two SQL statements below are
perfectly legal. Both will run. The question
is, which will be sensible? One of them will
find all the records where the SaleNo is
>200 and order the answer table by
EmployeeNo and SaleNo. The other won’t.
Q1
SELECT *

FROM SALES2

WHERE SaleNo>200

ORDER BY EmployeeNo, SaleNo;

or is it…
Q2
SELECT *

FROM SALES2

WHERE SaleNo>200

ORDER BY EmployeeNo AND SaleNo;

The only difference, to save you wasting
time comparing them, is in the ORDER BY
statement.
Answer: Q1 is correct and returns the table
shown in Fig 13. Q2 returns the table in Fig
14 because it has a very odd construction:
ORDER BY EmployeeNo AND SaleNo

Despite appearances, this does NOT say
“order the records by EmployeeNo and
then by SaleNo”. Instead, it says “evaluate
the expression ‘EmployeeNo AND SaleNo’
for truth (the answer will come back as -1
[True] or 0 [False]) and then stack the
records based on this value.” You can
prove this by adding the expressions which
are being evaluated to the list of information
that you want to see. Thus:
SELECT SaleNo>200 AS

[‘SaleNo>200’],

EmployeeNo AND SaleNo AS [‘Emp AND

Sale’],

EmployeeNo, SaleNo, Customer

FROM SALES2

WHERE SaleNo>200

ORDER BY EmployeeNo AND SaleNo;

produces Fig 15. In all the records, the
expression ‘EmployeeNo AND SaleNo’
happens to evaluate to -1, so the sorting
has no effect.

If and when you come across an
intractable SQL statement that runs but
doesn’t give you the answer you expect,
then you can use SQL’s own ability to show
you the results of expressions as a
diagnostic tool.

268 • Personal Computer World • January 1997

Hands On Workshop: SQL

