
operations such as creating tables, but it
remains true that the most common usage
of the language is to ask questions of a
database. This part of the language
comprises the Data Manipulation Language
(DML) statements of SQL.

DML statements are, by convention,
written in UPPERCASE. The first ones we’ll
look at are SELECT, FROM, DISTINCT and
WHERE. The sample tables shown in Fig 1
will be used for the examples.

■ SELECT & FROM
The first statement, SELECT, is used to
extract a collection of fields from a given
table. FROM simply directs attention to the
table in question. Therefore, the statement
SELECT SaleNo, Item, Amount

FROM SALES;

will yield the following;
SaleNo Item Amount
1 Sofa £235.67
2 Chair £453.78

QL stands for Structured Query
Language, which is referred to
either as its individual letters or is

called “Sequel”. It appears as if the former
reference is more common in the UK and
the latter in the US, but as the two are
interchangeable don’t let it be a cause of
anxiety. 

Despite many similarities to C, Pascal,
BASIC et al, SQL is not a programming
language. It is a data access language or
data sub-language. As such, it is a very
restricted language which deals only with
how tables of data can be manipulated. It
lacks many of the other features (such as
the ability to write information to a particular
place on the screen) which characterise a
full programming language. 

Using SQL
SQL is often described as a standard, but
when you actually start using it you find
that, like many standards, it’s not as
standard as all that. 

The examples given here are in a
generic form of SQL: you may well
find discrepancies depending on the
actual version used. For example, the
generic DISTINCT becomes
DISTINCTROW in Microsoft’s
Access. Having said that, the
differences are not great, and should
not pose serious problems.

The name itself (“SQL”) is
somewhat misleading as it implies
that this sub-language is concerned
exclusively with querying. In fact, the
language is sufficiently rich to allow
the user to perform many other

3 Stool £82.78
4 Suite £3,421.00
5 Sofa £235.67
6 Sofa £235.67
7 Bed £453.00
SQL doesn’t eliminate duplicates by

default, so:
SELECT Item, Amount

FROM SALES;

will yield

Item Amount
Sofa £235.67
Chair £453.78
Stool £82.78
Suite £3,421.00
Sofa £235.67
Sofa £235.67
Bed £453.00

■ DISTINCT
You can force SQL to remove the
duplicates by using the statement
DISTINCT, which dictates that all rows in
the answer table must be unique. The query
SELECT DISTINCT Item, Amount

FROM SALES;

produces:
Item Amount
Bed £453.00
Chair £453.78
Sofa £235.67
Stool £82.78
Suite £3,421.00

■ WHERE
SELECT lets you choose the fields with
which to work, and WHERE lets you
choose the records.
SELECT Item, Amount

FROM SALES

WHERE Item = ‘Sofa’;

produces
Item Amount
Sofa £235.67
Sofa £235.67
Sofa £235.67

while
SELECT Item, Amount

FROM SALES

WHERE Item = ‘Sofa’ AND Customer = 

‘Smith’;

yields
Item Amount
Sofa £235.67
All sorts of variations are already

possible, combining SELECT and WHERE
statements: as you can see from the last
example, WHERE clauses can contain
conditions.

sofas for sale numbers greater than six; 
SELECT Item, Amount

FROM SALES

WHERE Item = ‘Sofa’ AND SaleNo > 6;

There are none.
This next statement asks for all records

for sofas, suites and beds, regardless of
sale number:
SELECT Item, Amount

FROM SALES

WHERE Item IN (‘Sofa’, ‘Suite’, 

‘Bed’);

Item Amount
Sofa £235.67
Suite £3,421.00
Sofa £235.67
Sofa £235.67
Bed £453.00

and this one adds a condition which
specifies records for the same three pieces
of furniture with sale numbers greater than
six:
SELECT Item, Amount

FROM SALES

WHERE Item IN (‘Sofa’, ‘Suite’, 

‘Bed’) AND SaleNo > 6; 

Item Amount
Bed £453.00
Conditions are nothing if not logical, and

rendering a series of conditions into plain
English is a good way of understanding
what it will do in practice.

■ ORDER BY
Another useful command is ORDER BY. It
gives you control over the order in which

records appear in the answer table
generated by the query. You specify the
field by which you want records ordered, as
in the following statement:
SELECT Item, Amount

FROM SALES

WHERE Item = ‘Sofa’ 

ORDER BY SaleNo;

where the records are ordered by the
number of each sale, with the default being
in ascending order. If you feel you want to
specify this, the command is ASC, as
shown below:
SELECT Item, Amount

FROM SALES

WHERE SaleNo > 6

ORDER BY Item ASC;

It’s a perfectly acceptable statement, but
it’s tautological. The next statement:
SELECT Item, Amount

FROM SALES

WHERE SaleNo > 6

ORDER BY Item DESC;

will produce exactly the same data but will
be sorted differently, as DESC, as you’ll
have gathered, sorts records in descending
order. You can use sorts in both directions: 
SELECT Item, Customer, SaleNo, 

Amount

FROM SALES

WHERE SaleNo > 0

ORDER BY Customer ASC, Amount DESC;

Note that Amount doesn’t have to be in
the SELECT statement to be used for
sorting the records in the answer table,
although this would often be the case.

This will sort the customer records in
ascending order, with the amounts each
customer has spent shown in descending
order.
Item Customer SaleNo Amount
Chair Johnson 2 £453.78

p254 ➢

Hands OnWorkshop

Conditions
We’ll digress here to cover the range of
Conditions that are acceptable within a
WHERE clause. Conditions typically consist
of logical expressions which can be
evaluated for truth; in other words, they are
checked to discover whether they are true
or false.

Thus if we use the SQL statement
SELECT EmployeeNo, FirstName, 

LastName, DateOfBirth, DateEmployed

FROM EMPLOYEES

WHERE EmployeeNo = 2;

then we can expect the RDBMS to examine
every record in the EMPLOYEE table, and
place in the answer table only those records
for which the condition
WHERE EmployeeNo = 2

is true. As you’d hope, this is only true for
one record (Fig 2).

A condition is constructed from
operators such as those shown in Fig 3.

The logical operators in Fig 4 have a
lower priority than those above and are
therefore processed after them, unless
brackets are used to alter precedence.

The following SQL statement asks for a
table of the items and amounts from the
Sales table for sale numbers greater than
six:
SELECT Item, Amount

FROM SALES

WHERE SaleNo > 6;

Item Amount
Bed £453.00

while this one only wants to see records for

Personal Computer World • October 1996 • 253252 • Personal Computer World • October 1996 

Hands On Workshop

Question time
Which database querying tool is text-based and
reactionary, yet immensely adaptable and even a boon in
some social circles? Why, SQL of course. In the first part of
our new tutorial, Mark Whitehorn introduces the basics. 

S

Fig 3 Operators
Symbol Meaning Example Notes Records returned from

Employee table

= Equal to EmployeeNo = 2 1

> Greater than EmployeeNo > 2 2

< Less than EmployeeNo < 2 1

<> Not equal to EmployeeNo <> 2 3

>= Greater than or Equal to EmployeeNo >= 2 3

<= Less than or Equal to EmployeeNo <= 2 2

IN Equal to a value within a collection EmployeeNo IN (2, 3, 4) 3
of values

LIKE Similar to LastName LIKE “Gr*” Finds Greeves and Groves. 2
Uses wildcards. Wild cards vary 
between SQL implementations.

BETWEEN…AND Within a range of values, including EmployeeNo 
the two values which define the limits BETWEEN 2 AND 4 Equivalent to: EmployeeNo IN (2, 3, 4) 3

IS NULL Field does not contain a value DateEmployed IS NULL 0

Fig 2 One record found
EmployeeNo FirstName LastName Date of Birth DateEmployed

2 John Greeves 21 March 1967 01 January 1990

Fig 1 The sample files used in my examples

In association with In association with



Suite Jones 4 £3,421.00
Bed Jones 7 £453.00
Sofa Simpson 6 £235.67
Sofa Simpson 1 £235.67
Sofa Smith 5 £235.67
Stool Smith 3 £82.78

Wild cards
Wild cards are used in SQL much as they
are used elsewhere, for occasions where
you want a range of data that fits a certain
pattern. The variation below is not
uncommon:
SELECT *

FROM SALES

WHERE SaleNo > 1;

In this case, the * symbol is used as a
wild card, meaning “all Fields”.

Sub-queries
The use of conditions can be expanded into
sub-queries to add further refinement to
queries. In the following example:
SELECT Customer

FROM SALES

WHERE EmployeeNo IN

(SELECT EmployeeNo

FROM EMPLOYEES

WHERE DateEmployed > 12/5/89);

the statement inside brackets is known as a
sub-query and would work perfectly happily
as a query all on its own. (Incidentally, this is
a good case where dialects of SQL differ.
Access requires that the date be wrapped
up in # symbols, thus the last line would
read as 
WHERE DateEmployed > #12/5/89#)

Any operation
performed on a table
(or tables) results in
another table — one
containing the answer.
This is termed “closure”
and it is an invariable

rule. The aforementioned sub-query
produces an answer table, shown here:

EmployeeNo
2
3
4

By looking at the answer table generated
by the sub-query, we can see that the
original statement in its full form can be
simplified to:
SELECT Customer

FROM SALES

WHERE EmployeeNo IN (2,3,4)

and the records from the SALES table for
which this is true are shown in Fig 5. 

So the query actually yields:
Customer

Smith
Jones
Smith

We can eliminate the duplicate records
by adding the word Distinct to the first line
of the SQL command.
■ There will be more on honing your SQL
skills in part 2 of this workshop next month.

254 • Personal Computer World • October 1996 

Hands On Workshop

Fig 5 Records from SALES table
Sale No. Employee No. Customer Item Supplier Amount

3 2 Smith Stool Ford £82.78

4 2 Jones Suite Harrison £3,421.00

5 3 Smith Sofa Harrison £235.67

Fig 4 Logical operators
Symbol Meaning Example Notes Records returned

from Sales table

AND Both expressions must be true in SaleNo > 3 AND AND is evaluated before OR 1
order for the entire expression Customer = “Smith”
to be judged true 

OR If either or both expressions are SaleNo > 3 OR AND is evaluated before OR 5
true, the entire expression is Customer = “Smith”
judged to be true

NOT Inverts Truth SaleNo NOT IN (just as well it isn’t available 4
(2, 3, 4) for the real world!)

In association with


