
The only difference between these tables
and the way they appeared in last month’s
issue is that John Greeves has lost his
licence, so he is no longer allocated a
company car. (This does not affect any of
the examples shown in previous months.)

Note that in order to maintain
consistency with my previous article, the
first SQL statement this month is labelled as
“Multi-Table 3” (not “Multi-Table 1”) in the
Access database provided on the cover-
mounted CD-ROM. Last month, we looked
at SQL which worked across multiple
tables. The statement we finished with was:
SELECT SALES.Customer,

EMPLOYEES.LastName, SALES.Amount

FROM SALES, EMPLOYEES

WHERE SALES.EmployeeNo =

EMPLOYEES.EmployeeNo;

ast month I promised to continue
dealing with the subject of
working with multiple tables and

how to use the SELECT statement to draw
data from more than one. This month, I’ll
look at how it works and what it’s doing.

The sample tables and the joins between
them are shown in the two screenshots
(Figs 1 & 2). In the sample Access
database, which is included on our cover-
mounted CD, I have removed the joins.
Some of the SQL commands alter the
sample tables so I have included extra
versions of those, stored with the word
SAFE after the name. Once you have run
the SQL statement, you can delete the
altered table and replace it with a copy of
the “safe” version. This replacement
process is easier if the joins are removed.

which yields:
Customer LastName Amount
Simpson Groves £235.67
Johnson Groves £453.78
Simpson Groves £235.67
Jones Groves £453
Smith Greeves £82.78
Jones Greeves £3,421
Smith Smith £235.67

In order to see how this is working, we
can add the EmployeeNo fields, from the
two tables, into the answer table and
remove the WHERE statement. (I’ve used
synonyms for the tables to reduce the size
of the table headings.)
SELECT S.Customer, E.LastName,

S.Amount, S.EmployeeNo,

E.EmployeeNo

FROM SALES S, EMPLOYEES E;

See the table in Fig 3 (page 258).
Without a WHERE clause, the answer

table contains every record in the SALES
table matched against every record in the
EMPLOYEE table, giving 4 x 7 = 28
records. The WHERE clause ensures that
we see in the answer table only those
records in which the EmployeeNo in SALES
matches the EmployeeNo in EMPLOYEES.
This is logically reasonable since we are
using the value in SALES.EmployeeNo to
indicate which employee made the sale.

It is possible to join more than two tables
by adding to the WHERE clause. For
example:

unique values (I am using the term “unique”
to mean that the values are found in one
table but not the other) then the join ignores
the records that are associated with these
values. Thus, the table CARS has a
delightful Aston Martin, CarNo = 7, but
since there is no corresponding value in
EMPLOYEES.CarNo, this fine automobile
never appears in the answer table.

So instead of a Natural join, what you
need to use here is an Unnatural join. Okay,
I admit it, that was just to see if you were
awake. It is really known as an “Outer” join.

Outer joins
There are two distinct types of Outer join,
Left and Right.

The following SQL statement
SELECT CARS.Make, CARS.Model,

EMPLOYEES.FirstName,

EMPLOYEES.LastName

FROM CARS LEFT JOIN EMPLOYEES

ON CARS.CarNo = EMPLOYEES.CarNo;

yields:
Make Model FirstName LastName
Triumph Spitfire
Bentley Mk. VI Bilda Groves
Triumph Stag Fred Jones
Ford GT 40
Shelby Cobra Sally Smith
Ford Mustang
Aston Martin DB Mk III
Jaguar D Type

Hands OnWorkshop: SQL

SELECT SALES.Customer,

EMPLOYEES.FirstName, CARS.Make,

CARS.Model

FROM CARS, EMPLOYEES, SALES

WHERE EMPLOYEES.EmployeeNo =

SALES.EmployeeNo

AND EMPLOYEES.CarNo = CARS.CarNo;

Customer FirstName Make Model
Simpson Bilda Bentley Mk. VI
Johnson Bilda Bentley Mk. VI
Simpson Bilda Bentley Mk. VI
Jones Bilda Bentley Mk. VI
Smith Sally Shelby Cobra

Note that this query is finding the car
driven by the sales person who dealt with a
given customer, so it isn’t supposed to
present particularly meaningful information.

The most recent ISO standard for SQL
(SQL-92) includes a new way of expressing
joins such that:
SELECT SALES.Customer,

EMPLOYEES.LastName, SALES.Amount

FROM SALES, EMPLOYEES

WHERE SALES.EmployeeNo =

EMPLOYEES.EmployeeNo;

Customer LastName Amount
Simpson Groves £235.67
Johnson Groves £453.78
Simpson Groves £235.67
Jones Groves £453
Smith Greeves £82.78
Jones Greeves £3,421
Smith Smith £235.67

can be replaced by:
SELECT SALES.Customer,

EMPLOYEES.LastName, SALES.Amount

FROM SALES INNER JOIN EMPLOYEES

ON EMPLOYEES.EmployeeNo =

SALES.EmployeeNo;

This produces the same answer table
and is generally considered to be more
readable. However, it does raise another
question: what is this INNER business?

Inner (natural) joins
Suppose your boss says: “Give me a list of
all the cars and the sales person to whom

Personal Computer World • December 1996 • 257256 • Personal Computer World • December 1996

Hands On Workshop: SQL

Practical joinery
In part III of our SQL tutorial, Mark Whitehorn explains how multiple tables work together
and highlights the distinction between left, right, inner and outer joins.

L

each is currently allocated.”
You are immediately tempted to use the

SQL statement:
SELECT CARS.Make, CARS.Model,

EMPLOYEES.FirstName,

EMPLOYEES.LastName

FROM CARS INNER JOIN EMPLOYEES

ON CARS.CarNo = EMPLOYEES.CarNo;

but this will give the answer:
Make Model FirstName LastName
Bentley Mk. VI Bilda Groves
Triumph Stag Fred Jones
Shelby Cobra Sally Smith

which doesn’t list all the cars because that
delectable D-type Jaguar, for instance,
hasn’t been allocated to anyone.

In fact, your boss has phrased the
question badly, since the original question
assumes that every car is allocated to an
employee and this is not the case.
However, voicing your opinion about the
inexact use of English is likely to be a CLM
(Career Limiting Move). Better to keep quiet
and find a query that will list all the cars and
show what has been allocated to which
lucky employees.

But before that, we’ll have a look at
what’s wrong with the query shown above.
By default, a join combines the two tables
via fields that have identical values. This is
known as a “Natural” or “Inner” join.
However, if one or both of the fields contain

Fig 1 The tables used in the examples. I have

set the dates to show four-digit years in

response to email from readers worried about

the coming of the millennium. In fact, Access

stores all dates as four-digit years: it is just the

default format which doesn’t show them

Fig 2 Two tables used in a couple of the later

examples.The Foo field is simply a shorthand

representation of the boring information that

would usually be displayed in an invoice

p258 ➢

Essentially, the substitution of LEFT JOIN
for INNER JOIN has made all the difference.

The other sort of outer join is RIGHT,
which simply ensures that every record in
the table on the right-hand side of the join is
included in the answer table, so
SELECT CARS.Make, CARS.Model,

EMPLOYEES.FirstName,

EMPLOYEES.LastName

FROM CARS RIGHT JOIN EMPLOYEES

ON CARS.CarNo = EMPLOYEES.CarNo;

yields:
Make Model FirstName LastName

John Greeves
Bentley Mk. VI Bilda Groves
Triumph Stag Fred Jones
Shelby Cobra Sally Smith

It is important to note that
SELECT CARS.Make, CARS.Model,

EMPLOYEES.FirstName,

EMPLOYEES.LastName

FROM EMPLOYEES LEFT JOIN CARS

ON CARS.CarNo = EMPLOYEES.CarNo;

produces exactly the same answer table,
namely:

Make Model FirstName LastName
John Greeves

Bentley Mk. VI Bilda Groves
Triumph Stag Fred Jones
Shelby Cobra Sally Smith

In other words, the LEFT and RIGHT simply
refer to the tables as named in the SQL
statement. So
FROM EMPLOYEES LEFT JOIN CARS

and
FROM CARS RIGHT JOIN EMPLOYEES

will include all the
employees and some
of the cars:
FROM CARS LEFT

JOIN EMPLOYEES

and
FROM EMPLOYEES

RIGHT JOIN CARS

will include all the
cars and some of the
employees.

The upshot is that
you can have all of
the cars some of the
time, and indeed, you
can have all of the
people some of the
time. But what you
really want to know
is, can we have all of
the cars and all of the
people all of the
time?

The answer, not
surprisingly, is “Yes”.
But in order for that
to happen, we need
to make use of
UNION and I’ll be
covering this and
other topics in next
month’s column.

■ You will find the Access sample file in the
Resources section on this month’s
cover-mounted CD.

258 • Personal Computer World • December 1996

Hands On Workshop: SQL

Fig 3
Customer LastName Amount S.EmployeeNo E.EmployeeNo

Simpson Groves £235.67 1 1

Johnson Groves £453.78 1 1

Smith Groves £82.78 2 1

Jones Groves £3,421 2 1

Smith Groves £235.67 3 1

Simpson Groves £235.67 1 1

Jones Groves £453 1 1

Simpson Greeves £235.67 1 2

Johnson Greeves £453.78 1 2

Smith Greeves £82.78 2 2

Jones Greeves £3,421 2 2

Smith Greeves £235.67 3 2

Simpson Greeves £235.67 1 2

Jones Greeves £453 1 2

Simpson Smith £235.67 1 3

Johnson Smith £453.78 1 3

Smith Smith £82.78 2 3

Jones Smith £3,421 2 3

Smith Smith £235.67 3 3

Simpson Smith £235.67 1 3

Jones Smith £453 1 3

Simpson Jones £235.67 1 4

Johnson Jones £453.78 1 4

Smith Jones £82.78 2 4

Jones Jones £3,421 2 4

Smith Jones £235.67 3 4

Simpson Jones £235.67 1 4

Jones Jones £453 1 4

Mark Whitehorn welcomes readers’
correspondence. He is at
m.whitehorn@dundee.ac.uk

●PCW Contacts

