
H A N D S O N ● V I S U A L P R O G R A M M I N G

3 0 3
P E R S O N A L C O M P U T E R W O R L D

S E P T E M B E R 1 9 9 6

from Visual Components, best
known for the Visual Develop-
ers Suite. Again it is a VB data-
base application, but is a
standalone program rather
than an add-in. The idea is that
all your re-usable routines are
stored in the CodeBank data-
base. When you want to make
use of them, you ask Code-
Bank to create a new, empty
.BAS module, and add the
required routines. Finally, the
generated module is added to
your Visual Basic project in the
normal way.

CodeBank has a tidy,
effective interface. Proce-
dures are shown in a tree, which can be
sorted by category, author, name or type
(procedure or function). Each routine can
have substantial information stored with it,
including short and long descriptions, an
example of use, maintenance history, and
links to any declarations or other routines
that are required. Codebank is intelligent
about these links: if a particular procedure
makes use of a user-defined Type, the
generated Basic module will include the
declaration as well as the procedure itself.

The bonus is that CodeBank includes a
library of 160 routines, with the emphasis
on economy and performance. Many of
them use VB code to emulate what might
normally be done with a VBX or OCX con-
trol: for example, the outline used by
CodeBank is drawn entirely using VB
code. Another example is a procedure
which shows text next to a control by print-
ing directly to the controls’ container,
avoiding the need for a conventional label
control. These routines are impressive, let-
ting you create sophisticated graphic
effects without the perfor-
mance and size penalty of
adding lots of components.
Anyone interested in efficient
VB coding will enjoy them.

CodeBase 6.0
If the idea of distributing
applications on a single flop-
py disk appeals to you, you
will like CodeBase. Very
small executables can be
built in C, while VB or Delphi
applications require a 500Kb
runtime DLL, much smaller
than either JET or the Bor-
land Database Engine. Well-
established in the xBase
community, CodeBase is a C
library for handling database

32-bit DLL is available on
request. Pascal documenta-
tion is more complete than in
previous releases, but
examples are in the form
of short routines rather
than a full demonstration
application.

No effort has been made to create Delphi
units or components to simplify use of
CodeBase, which is a missed opportunity,
bearing in mind the large number of
migrants from Clipper, dBase and FoxPro
now using Delphi. Successware, with its
xBase product called Apollo, has done more
to appeal to the Delphi community.

It is worth persevering, for the sake of
fast performance on modest hardware, as
long as you are willing to get your hands
dirty with mysterious functions like
“relate4createslave” and “code4initundo.”
While it is fine for both single and multi-
user databases, it is harder to see the
benefits for client-server work, unless you
have an existing CodeBase system to
upgrade. It is competing with many other
advanced SQL-based systems, as well as
another Sequiter product, the ODBC-
compatible CodeSQL.

Code Complete makes a splash
Seasoned VB developers will know the
story. A bemused user calls and says, “I

tried to run your appli-
cation. A message
came up saying,
‘Wrong version of
SOMESTUFF.VBX’,
and then it quit.” Win-
dows is highly vulner-
able to this kind of
problem, and increas-
ing use of OLE, which
has its own myriad
support libraries, will
only make things
worse.

Microhelp has a
solution in the form of
the Splash Wizard.
From its name, you
would think this is just
a way of creating

tables in .DBF format, which are either
FoxPro, Clipper or dBase IV compatible.
Sequiter now provides versions for C++,
Visual Basic and Delphi. The new version
bundles the lot onto a single CD-ROM,
which is convenient if you use more than
one of these languages.

Other significant changes in version 6.0
are limited 32-bit support, the addition of
client-server support via a new CodeBase
database service application, and new
transaction processing functions that will
be useful in both standalone and client-
server applications.

There are rough edges in this product.
Although a 32-bit DLL is supplied for Visual
Basic, the data-aware CodeControls are
VBX only. An error in one of the main VB
examples prevents it from running. Delphi
support is currently only 16-bit, although a

H A N D S O N ● V I S U A L P R O G R A M M I N G

3 0 2
P E R S O N A L C O M P U T E R W O R L D
S E P T E M B E R 1 9 9 6

One of the keys to developing efficient,
robust software, especially if you

want to do so quickly, is to re-use code.
Ways to do this include creating Delphi
components, C++ classes, or using VBX
or OCX controls in Visual Basic.

Dynamic Link Libraries (DLLs) are the
foundation of Windows, and a great way
to create functions that you can call from
any programming language. You cannot
create old-style DLLs with VB, but version
4.0 introduced OLE DLLs, allowing VB
code to be called from other applications
via OLE automation.

These are good ways to re-use code,
but there is still a place for the oldest and
crudest technique, which is cutting and
pasting routines from one application to
another. Programmers are lazy and will
happily ransack old but working code to
save time and avoid errors.
For example, a common requirement in
VB database applications is to export a
query as a .DBF table, the most universal
format for mail merge, or transfer to other
applications. JET’s SQL supports a
SELECT ... INTO clause that creates a
new table from a query. If the database in
question is an Access MDB, this only
creates a new table in .MDB format. To get
round this, I use this technique:
1. Output the query to a temporary table.
2. Copy the structure of the table to a new
.DBF.
3. Copy the records in the temporary table
to the .DBF.

This works well, and I have no intention
of rewriting the code, which gets popped
into applications as required. Only the sec-
ond step takes more than a single SQL

module. A better solution is to write your
own database application, storing each
procedure in its own memo field.

Alternatively, there are utilities that aim
to make it easier to manage your code
library. One is Sheridan’s VB Assist, now
at version 4.0a. VB Assist loads as an
add-in, and includes Code Assistant.
Code Assistant has two main elements.
One is a visual clipboard, a text window to
which clipboard output can be redirected.
The other is a code database, called Code
Librarian, which is actually a VB front-end
to an MDB. You can create groups within
which to store your routines, and add key-
words for easy search and retrieval.

Code Librarian is a good idea, but it’s
not as well implemented as it should be.
The way the database is structured sug-
gests an outline tree for navigation, rather
than the drop-down combos actually used.
It is silly that keywords can be no more
then ten characters long. You can edit
code within the Assistant or Librarian, but
it’s not a good environment for coding, with
no syntax highlighting or search-and-
replace facility. But it’s better than nothing.

CodeBank
Unlike Code Assistant, which is part of VB
Assist, CodeBank is a separate product

A break from the old
routine
Tim Anderson makes a splash with Visual Basic,
and studies a slimline alternative to the Microsoft
or Borland database engines.

Part of Sheridan’s VB Assist, Code

Assistant lets you create libraries of

code, and copy routines either direct to

your application or to an intermediate

clipboard

Codebank comes with a

generous library of routines

for slimline VB program-

ming. No, there is not a tab

control on this dialogue —

it’s all done with Basic

CodeBase can be integrated with your

preferred visual tools, but not without

some nitty-gritty coding

command, so this is wrapped in a re-
usable function declared like this:
Sub CopyStructureToDBF(MDBName As
String, TableName As String, DBFPath
As String, DBFName As String)

It is vital that no paths or field names
are hard-coded into the routine as this
would wreck its re-usability.

The DIY solution
Once you have built up a library of rou-
tines, the next question is where to store
them. Simplest is to have a directory full of
.BAS files, but this is awkward to manage.
It can also lead to the inefficient and
unsafe strategy of including many unused
routines in your project, for the sake of
one or two that happen to be in the same

H A N D S O N ● V I S U A L P R O G R A M M I N G

3 0 4
P E R S O N A L C O M P U T E R W O R L D
S E P T E M B E R 1 9 9 6

fancy welcome screens, but this is sec-
ondary. The Splash Wizard creates a new
executable which does comprehensive
version-checking before launching your
application. That way, problems can be
identified before your application tries to
load. Another possibility is to check for a
valid user name and serial number. You
can configure things so that your applica-
tion can only run after the splash exe-
cutable gives the OK.

Splash Wizard is a good idea, but I
was not convinced by its implementation.
It is fiddly to use, particularly since the
wizard only operates from scratch. If you
want to amend an existing splash exe-
cutable, you have to tweak its resource
file by hand, or by using a resource editor.
Finally, in a simple test run, I tried out the

Wizard took a finger-tapping fifteen seconds
to report the problem; the VB application
on its own took two or three seconds.

Code Complete comes with three other
components. The Assistants automate the
creation of common dialogues, message
boxes, and allocating help IDs to VB con-
trols, this last one being the most useful.
Code Analyst will analyse and cross-refer-
ence Visual Basic projects, commenting
on unused code and identifying deviations
from standards you specify. For example,
you can check that all modules include
Option Explicit, or that error handling is
enabled in all procedures.

If you have problems, the fourth com-
ponent, AutoCoder, may help you out. A
template-based system, it can automati-
cally edit your code by adding error han-
dlers for example. Another useful trick is to
add temporary timing functions so that you
can profile the application, discovering
which routines are slowing down your soft-
ware and need tweaking.

And finally...
Keep honing those Visual Basic skills.
Microsoft is licensing the next version of
the VBA engine to third-parties, so expect
to see it in new versions of applications
including Photoshop, AutoCAD and Visio.

Splash Wizard by deliberately deleting a
.DLL needed by a VB application. The

Delphi 2 Tutor, by Mike McKelvy
Ironically, the software which runs this
Delphi tutor is written in Visual Basic 4.0,
assisted by Lotus ScreenCam. It is the
opposite to Delphi Unleashed. Introductory
and shallow, the excuse is that it is for
complete beginners. The special feature is
that each lesson has several screen
demonstrations with explanatory voiceovers;
seeing something done is certainly a help,
but in this case it is not well implemented.
The interface for the tutorial application is
poor, a shame in a teaching tool, and the
reference section is skimpy and inadequate.
While Mike McKelvy’s accompanying book
has clear explanations of basic
programming concepts, there is not enough
information here to build real applications of
any substance. A better approach would be
to take the reader step-by-step through
creating an example project. Video
demonstrations are counter-productive
unless they encourage hands-on experience
as well.

Visual Programming: read all about it

PCWDetails
Contemporary Software
07000 422224
(VB Assist 4.0a, £135; Code Complete,
£175) Visual Components
01892 834343 (Codebank, £99)
Highlander Software 0181 316 5001
(CodeBase 6.0, £225)

Books
Books from Computer Manuals
0121 706 6000
Delphi 2 Unleashed (Sams). Book and
CD, £54.95 (inc VAT)
Delphi 2 Tutor (Que). Book and CD
£46.99 (inc VAT)

Delphi 2 Unleashed, by Charles Calvert
The first edition of Delphi Unleashed estab-
lished itself as one of the best titles for seri-
ous Delphi developers. The author works
for Borland and is well placed to uncover
Delphi’s inner workings. This is no cosmetic
rewrite: the new edition has over 1,400
pages, and more than half of this bulky vol-
ume is completely new. For example, you
get 50 pages on multithreading, 250 pages
on databases, 150 pages on OLE, and 200
pages on multimedia development. It is an
enormously useful resource, clearly written,
with sound explanations of both Object Pas-
cal and the Windows API. The sheer
amount of material makes it an intimidating
volume, both physically and otherwise.
Some will be glad to know how to create
windows without using Delphi’s Visual
Component Library; others will wonder why
we need to be told. Overall, not for the faint-
hearted or beginners, but still a great com-
panion to Delphi’s inadequate manuals and
online help.

Splash

Wizard is an

expert

version

checker, but

can be slow

Delphi 2 Tutor

includes plenty

of video

sequences, but

neither the

presentation

nor the content

is inspiring

