
$control: 1

descriptor:

/collection = yes

{

data-table: _df

/num-records=1

/max-records=1

{

Header information for partition management

constant: _DBVERSION text "vdk11"

fixwidth: _DDDSTAMP 4 date

varwidth: _DOCIDX _dv

fixwidth: _PARTDESC 32 text

fixwidth: _SPARE1 16 text

fixwidth: _SPARE2 4 signed-integer

}

data-table: _df

/offset=64

(… and lots more.)

The historical
roots of Topic lie
in UNIX and
from this spring
a couple of
characteristics
that I find
valuable.

Firstly, unlike
all the “personal
text retrieval”
products I’ve
used in the past,
it’s died-in-the-
wool client-
server software.
Secondly, it is
configured and
administered
through an
initially baffling
collection of
plain ASCII files
riddled with
Unixy black magic incantations. “He thinks
this is good?”, you mutter. Yup. And the
reason I do is the reason I write this column.

Topic, as I mentioned here last year,
runs under DOS, OS/2, Unix and a number
of other operating systems. What I didn’t
mention is that thanks to its client-server
design, Topic can also run under a
combination of these environments. For
example, you could do the indexing under
Unix, run the search engine on Windows NT
and have OS/2 handling the client software.

In my time with Topic, I’ve used
combinations of DOS, OS/2, Unix and
Windows NT to prepare and serve the data,
each part of the work being handled by the
operating system best equipped to do the
job. The appeal of the arcane text files that

ast year I mentioned the text
retrieval system I use on my
network here, a product called

Topic, from Verity. It looks after a database
of practically everything I’ve written since
the early eighties, together with snippets of
useful stuff scanned in or collected
electronically from the outside world.

Five years ago, Topic was the centre of
my computer writing activity. But the arrival
of the web, with its comprehensive search
engines, has shifted the balance somewhat.
At one stage, I came round to thinking that
an in-house text retrieval system risks
becoming close to irrelevant under the
sheer weight of information available in
cyberspace. I neglected Topic, and began
keeping my current output in a number of
Digital Library files, a vastly more simple text
retrieval mechanism built into NeXTStep.

I still had Topic as a method of searching
the Bidmead legacy archives, but my
access to it was through ageing character-
based OS/2 client software that even in its
day was somewhat clunky. In comparison
with the NeXTStep user interface, it looked
like something out of the ark.

But I was wrong about the value of the
web. There’s a ton of stuff out there and it’s
a valuable on-going education. But free text
searching can waste an awful lot of time
when the raw material can be just any old
junk put up by anyone who wants to build a
web page. Democracy is a fine thing but if
you throw open the Opera House to anyone
who fancies a sing-song, you can’t expect
La Traviata.

The web is no substitute for a carefully
qualified and managed in-house text
retrieval database. Clearly, I had to start
cleaning the rust off my Topic
implementation and getting it back to work.

control Topic is harder to explain. After
three years of neglect, I had to delve back
into configuration files which looked like
Fig 2. Each text database, or “collection” as
Verity calls it, is controlled by a directory
tree stuffed with a variety of files like this. I
won’t go into details here, but the general
principle is that the stream of your
documents coming into the index system is
filtered into plain ASCII, examined for
particular patterns to pull out fixed fields (I
use Title, Source, Date and Author in my
standard collections) and then an inverted
index is created of all the text in the body of
each document.

Many simple text retrieval packages just
index which words are in which document
but don’t bother to log exactly where each

retrieval engine which would certainly be
nice and simple, but would inevitably restrict
the possibilities. Topic launches from the
command line (obviously under Windows
NT you can knock up a few icons backed
by batch files if you want to make it look
pretty) and uses command line parameters
and this nest of plain ASCII config files to
define exactly what you want to happen.
How the text is broken into fields, what to
do with those fields, where the main
document starts and stops, what kind of
filters to apply, how to tune the indexing and
so on are all defined by the config files.

I haven’t said anything about the client
end, which is the bit the user sees. Verity
has traditionally offered a choice of
client-end packages to cover all the main
operating systems and inevitably they’ve all
worked slightly differently and been out of
phase in their versions. The solution Verity
has come up with is, as far as I’m
concerned, near Nirvana and The Future of
Computing. Many software and hardware
manufacturers are doing it now in various
ways. It works, it’s simple and it’s
delightfully cross-platform. I’m talking about
web browsers, of course.

There’s at least one for every operating
environment these days (NeXT has a choice
of four or five but that’s because browsers
were invented on NeXT!). Forget the
browser wars as Netscape and Microsoft
haggle over advanced features. Keep it
simple: stick to basic HTML 2 conventions

and the network is your oyster. What this
latest implemention of Topic does is offer an
extension at the server end that works
alongside your regular web server. I’m using
Microsoft’s Internet Information Server but
any server with a common gateway
interface (CGI) can do the job.

You create an HTML query form which
can be squirted across the network, collect
the query through any browser on any
operating system and return the result list
as a second HTML page. The result list
contains skeleton details about each hit,
combined with an HREF pointer to the
document itself. Like the server, these client
pages are all capable of being tailored via
ASCII files. The neat thing is that all the
gubbins is kept together at the server end.
No complicated client software or configs to
distribute to each workstation. All each
client needs to know is the web address
that gets the initial query page started. I’ve
gone on about this at some length, partly
because I’m in the heady throes of getting it
up and running (extraordinarily painlessly, as
it happens), but also because I’m sure
we’re going to hear more about this “thin
client” style of computing in the near future.

Linux kernel compilation while-u-wait
Here’s another twist on the browser: use it
to compile your Linux kernel! Probably the
most alarming thing that migrants from off-
the-peg operating systems like Windows
have to face when they install Linux for the
first time is the suggestion they recompile
the kernel. This is because a typical Linux
startup will come stuffed full of drivers for all
sorts of peripherals and bus connectors you
don’t actually need.

What you’ll see on the console at boot
time is a warning to the effect that memory
is tight. You probably don’t need to do
anything about this straight away but
eventually you’ll want to slim down the
kernel to only those features you need. You
might also want to recompile so as to bring
your kernel up to a later version. (You can
check the kernel version by running
“uname -a” from the command line. But if it
is earlier than 1.2.13, then it’s a little long in
the tooth.)

I was impressed (read “terrified” !) when
first presented with this kernel compiling
challenge: building an entire operating
system from source code isn’t something
you take lightly. But tens of thousands of
Linux users have done it, many on a regular
basis. It’s actually easy because the whole

word is (the offset into the text). NeXT’s own
Digital Librarian works like this, which
means it won’t allow you to do “proximity
searches” (find “relational” within ten words
of “Codd”), search for whole phrases, or
weigh the relevancy of a returned document
on the basis of how many times a particular
word or phrase occurs. Topic does all this
and more — Boolean searches of course
(“marsupial OR reptile”) — but the name of
the product derives from the way it can also
search on “topics”, complex clusters of
words and phrases representing concepts.

The words and topics are related to one
another hierarchically in family trees of
topics, sub-topics, and sub-sub-topics
extended as far as necessary to define the
particular family of ideas on which you are
trying to home in. Very useful if you regularly
need to profile a sea of electronic
documents into predetermined subjects in
which you’re interested.

My chief use for Topic has always
focused on the basics, like being able to
combine fixed field searches with free text
searches (“Linus Torvalds and source =
PCW”). Fundamental to any text retrieval
system, in my humble opinion, is the ability
to search on one or more date fields, a
feature that’s often seriously neglected.

Currently, the server end of my Topic
system is running on my Windows NT box
but fundamentally it’s still UNIX software at
heart. Windows software would use a GUI
to launch and configure the indexing and

Personal Computer World • December 1996 • 271270 • Personal Computer World • December 1996

Hands On Unix

Hot Topic
The weight of useful, and useless, data available on the web prompts Chris Bidmead to dust
off his Topic text retrieval system. And, a web site which compiles your kernel to order.

L

Fig 1 Topic Internet Server is the Verity search engine linked into the web

server of your choice. The result is a ubiquitous text retrieval system that

can be accessed across the network from a variety of different machines.

This is how it looks from Caldera

Hands OnUnix

Fig 2 — delving into config files

process is driven by a configuration file you
submit to the UNIX “make” utility. Your
system will arrive with the configuration file
already written for you, and it will carefully
trot you through a Q&A session to find out
what kind of kernel you need. Fill in the
answers and “make” will proceed to create
your new kernel on the spot.

A couple of bright Linux hackers have
taken this all a step further with a system
that allows you to compile a hand-tailored
kernel even though you’re not running
Linux. Ed Mackey and John Early have
devised the “Early Custom Linux Kernel
Generator”, a web page that supplies you
with a collection of radio buttons and tick
boxes to collect details of the configuration

272 • Personal Computer World • December 1996

Hands On Unix

Chris Bidmead is a consultant and commentator
on advanced technology. He can be contacted at
bidmead@cix.compulink.co.uk

●PCW Contacts

SCO Open Server opens up
Damn, I’m out of space and I did want to
say something about SCO making its Open
Server version of UNIX freely available for
educational purposes. This isn’t quite the
Free Software Foundation flavour of
freeness that you get with distributions like
Linux because Open Server comes with
restrictions (you can’t use the free version
commercially) and it isn’t supplied complete
with source code.

Even so, it’s a really big deal that this
pioneering company, the first to put UNIX
on Intel chips, has seen the light, or at least
glimpsed the dawn. You can find all the
details on the SCO web page at
www.sco.com and download the software
from there, or get it on CD-ROM for a
(small) handful of dollars. More about this
next month, by which time I hope I’ll have
got hold of it and installed it.

Fig 3 The Early Access Web Site at

linux.early.com/linux is another cross-platform

web proposition which allows you to build

yourself a Linux kernel to your own

specification over the internet from any

machine capable of running a simple browser,

in this case my NeXT machine

Readers write…

Sevan Janiyan emailed me from Hove last month with several questions that come up often
enough to air them here: “I’m 16 and very interested in Linux. I installed Linux from your cover CD
a while back but I’m having problems running my Pioneer quad-speed CD-ROM drive. Is there
any ftp or www site from where I could download the drivers for it? The second problem is using
the mcopy and mdir commands. I can view directory listings of floppy disks in MSDOS format but
how do I switch to the floppy drive? Is there any way of upgrading Linux by downloading the
kernels or something like that?”

Sevan doesn’t say which model of Pioneer drive he has. As far as I know, the SCSI versions
of the Pioneer drives are Sony-compatible and should be catered for in the standard kernels.
Anyway, the best place to look for details is in the Linux CD-ROM How To which you can pick up
from www.caldera.com/LDP/HOWTO/. The LDP, or Linux Documentation Project should be the
first port of call for this (or practically any) kind of advice about Linux.

The DOS drives question comes up all the time. DOS and Windows users expect to get to
the floppy drive straightaway, but in Linux, as in Unix generally, you need to mount a device
before you can access it, although this can be set up as an automatic mount once you know
what you’re doing. The mounting process can be quite complicated, depending on the device,
but mounting is one of the keys to the immense flexibility of the Unix family of OSs.

Beginners will need to learn about devices and, of course, about the mount command. The
floppy disk device is generally called fd0 (or fd1 etc., depending on how many fd drives you
have). The place to start learning about that is the “man fd” command. Similarly, “man mount”
will give you the basics of the mount command, although this is tricky stuff and you’ll probably
need to delve into those How To’s.

Generally speaking, you won’t expect to get the very latest versions of Linux on a cover-
mounted CD, not because the magazine production people are trying to short-change you but
because the process of making CDs and preparing them for distribution takes time. The place to
look for the latest kernels on the internet is www.crynwr.com/kchanges/, which is where kernel
evolution has traditionally been tracked from. But a less academic approach for beginners is
www.gulf.net/~spatula/linux/kernel.html, which will lead you to full information on where the
latest kernels are and what you need to do to build them.

There’s a pointer to the Easy Access site from there, too. One of the reassurances that
makes compiling a new kernel less than totally terrifying is the fact that you can have several
different kernels lying about on your system, with a choice of which one you boot into at any one
time (via a boot loader like Lilo). Provided you can always get back to a standard kernel, this can
make experimentation with new versions fairly painless. My personal tip for Sevan and others is:
don’t get involved with the very latest experimental kernels unless you want to experiment with
them. I settle for older, known kernels that work and support the hardware I use. Then I can get
on with the stuff I want to do and don’t lose any sleep about the code that’s holding it all up.

Windows wisdom

I seem to get an inordinate number of emails
asking about Windows problems. Dear
people, this isn’t fair. I come here to get away
from Windows. It’s all summed up by a sig I
came across recently in the comp.sys.be
Usenet conference:
Customer: “I’m running Windows 95.”
Tech Support: “Yes…”
Customer: “My computer isn’t working now.”
Tech Support: “Yes, you said that.”

you want. The web site then compiles your
kernel to order and delivers to your system.
Look for the Early Access page at
linux.early.com/linux.

