
strengths and weaknesses of each of the
other three, together with approximate
performance and size estimates.

This is a complex area. The decision to
choose one of these alternatives will be
based upon the interaction of many factors,
including response time required, number
of users, file size,
file number, data
size, available
resources
(including
hardware,
software and
money) and type
of data access

would like a discussion of the
relative merits of a client/server
database and a networked

database application in which there is a
server. When working on database
applications, I am always considering small
standalone systems for one PC. Most of our
work so far has been in-house and thus
manageable. As time goes by and we are
involved in increasingly big projects, I am
beginning to worry that the one-PC
approach will fall on its face.

I believe I have two options:
1). Put my data on a big server running
something like NT and run multiple copies
of my Paradox application all pointing at the
tables on the server. Then let Paradox
handle the problems. I realise I’d have to be
careful about record locking and the like.
2). Up-size my data to a client /server
application using something like Interbase
running on a server (UNIX?) and do it all
through SQL, although my knowledge here
is very hazy.”

Alasdair Macdonald

I received this email and it seems a broad
enough question, to warrant some
expansion. After all, it is one of the biggest
decisions that you are likely to make, and is
an area where mistakes are both common
and expensive. There are essentially four
database models you can employ:
1). Everything on a standalone PC.
2). PC front-end — data on file server.
3). Client server using a database server as
the back end.
4). Mainframe

The fourth seems inappropriate for
discussion in a PC magazine, so we’ll
ignore it. What I can do here is to outline the

required (read only, read write).
These factors interact in complex ways.

Suppose that your system definition makes
multi-user access to the data essential: you
can instantly rule out a standalone PC. If the
number of users is guaranteed to be small
(say, three), then on a given hardware

reasonably rapidly.
If the data is
constantly
updated, the
indices will slow
down the
updating, and yet
removing them will
slow down the
querying! In a

nutshell, if the data is rarely updated, heavily
indexed, and you have very impressive
hardware, you can go above this limit. With
a 286 with 640Kb, don’t even think about it.

The major advantage of this sort of
system is that it is cheap, and easy to
manage. A database can be thought of as
four different parts:
1). User interface section.
2). Data processing engine.
3). Conflict resolution section (to deal with
conflicts introduced by multiple users
accessing the data at the same time).
4). The data itself.

In a standalone PC-based database
there is only one user, so the conflict
resolution section isn’t required and the
other three appear as a single, seamless
entity to the user. Simple. In fact, it is so
simple, why would you ever want to go to
anything more complex?

One of the major reasons for moving to a
more complex database model is that this
one cannot handle multiple users. For one
thing, there is only one keyboard, so we can
expect fist-fights if we try for multi-user.
Also, this model doesn’t allow for conflicts
between the requirements of different users
to be resolved. If you need more than one
user to access the data at the same time, it
is time to split up the components
described above and partition them
between different machines. This leads us
to the second database model, which we’ll
cover in the next issue.
Target, aim, fire!
“Suppose we have one table, called
Source, containing new records, and
another table called Target. We wish to
insert into Target the records in Source that
are not already in Target, and update those
records which are already in both tables to

p276 ➢

platform you could allow those users to
access a greater volume of data than if
there were 50 of them. If the number of
users did then increase, the system might
still work, but the response time would
drop.

To make matters worse, the interactions
between these factors are often non-linear:
for example, doubling the number of users
on a given system might have little impact
on response time. Doubling it again might
bring the same system to its knees.

It’s easier not to give any actual figures,
but this is likely to leave you gnashing your
teeth and wondering “What exactly counts
as ‘lots’? Three? Twenty five? Five
hundred?” On the other hand, if I do quote
hard figures, like saying that you shouldn’t
consider using a standalone PC for more
than 1Gb of data, there’ll be someone out
there happily using a 200MHz P6 with
1024Mb RAM to access 1.5 Gb.

I will quote figures because it seems far
more useful to do so, but please just regard
them as general figures from which to start
discussions. Please don’t take them as
gospel, and please don’t build your entire
database strategy around them alone.

Work alone on a standalone
The simplest database model is to install
everything on a standalone PC. You use an
RDBMS like Access, Paradox, dBase and
FoxPro to manipulate the data.

Only one person can use it at a time, and
I wouldn’t use this sort of system for more
than about 1Gb. Factors which affect this
figure are the hardware (more memory
equals larger data files) and the manner in
which the data is used. For example, if it’s
rarely updated, then it can be heavily
indexed and queries should run against it

Personal Computer World • November 1996 • 275274 • Personal Computer World • November 1996

Hands On Databases

One is not enough
A reader worries that as the work gets too big for his company’s current database system
to handle, which way now? Mark Whitehorn is on hand to dispense this, and other, advice.

I

Hands OnDatabases

(Fig 1, top right) The

update query

described by Paul

[see page 276]. The

two tables are the

same

(Fig 2, right) Here I

have made changes

to both of the

tables, but have yet

to run the query. (I

have also altered

the view of the

query to show it in

SQL)

(Fig 3) The state of

the tables after the

query has been run

the values of the records as in Source.
Instinctively, programmers will achieve

this by two queries:
1). Update
2). Insert

In Access it can be achieved with a
single Update query with a LEFT JOIN.
UPDATE SOURCE

LEFT JOIN TARGET ON

SOURCE.ID = TARGET.ID

SET TARGET.ID = SOURCE.ID,

TARGET.Field1 = SOURCE.Field1;

Note that both tables have fields called
ID and Field1, and both are of the same
data dimensions in each table. Remember
that if ID is a counter field in
Source, it must be a long integer
in Target. This works, since
Access matches those records
in Source which are not in
Target with a Null Record in
Target which can then be
updated. From an SQL point of
view, this technique may not

work in other DBMS but is jolly useful in
Access 2.0 and Access 7.0.

I enclose a sample Access 2.0 database
[on the cover disk as pdbdemo.mdb] which
demonstrates this. To see it in action, play
around with appending/changing records in
Source and then run the query to see the
effects in Target. The uses of this technique
are numerous, and variations on the query
to supply selection criteria make it powerful.”

Peter Blackburn

It is worth noting that this query will not
delete records from Target which have been

deleted from Source. This is not a criticism.
If it did delete those records, it would
effectively be replacing Target with a copy
of Source. It is simply a characteristic of this
type of query. I can’t help feeling that this
might help in the solution of last month’s
problem concerning Mark Squire’s problem
about Customers and Items.

Currency codes: help wanted
“Your July column covered the formatting
options for dates in Access.

It is often overlooked that the Format
property in Table, Query, Form and Report
design is not restricted to just those formats
on the list. The variety of codes available is
the same as those used in Excel’s Format,
Cells, Number dialogue box.

Thus, a code of dd/mm/yyyy will show
dates with century, $#,##0 will show
amounts with dollar signs, “DM”#,##0 will
show amounts in deutschmarks. This latter
is especially useful since Access picks up
the default currency format from Control
Panel. It can then be overridden to show
different currencies on a single Form, etc.

The ability to override the currency
format has an additional benefit. Since
currency fields are held to a fixed four
decimal places internally, they are likely to
be more precise than single or double
numbers which can give puzzling rounding
errors. As you know, Access has no exact
equivalent to the =Round function in Excel.
Currency fields used for other than currency
can be formatted as #,##0, or #,##0.00 if
two decimal places are required.

Incidentally, to get round the lack of an
=Round equivalent, I use the Format$
function. This converts numbers to text, but
rounds properly as we know it. With a
representative sample of nearly 3,000
records, the following nesting of functions
gave correct rounding when calculating VAT:
RoundNo = Val(Format$(CCur

(Number), “0.00”))

where RoundNo is the result and Number is
the number or calculation to be rounded.
Do you know of a better way of doing this?”

Paul le Gassick

The answer is that I don’t. Anyone else?
(See Figs 1-5.)

276 • Personal Computer World • November 1996

Hands On Databases

Mark Whitehorn welcomes readers’
correspondence and ideas for the Databases
column. He’s on m.whitehorn@dundee.ac.uk

●PCW Contacts

Database Systems
by Paul Beynon-Davies

This book looked promising. Many of the subjects covered are of interest, and the style, while a
little formal for my tastes, is perfectly respectable. However, reading it in more depth reveals a
series of unnerving flaws. For a start, the book is heavily cross-referenced. I like cross-
references, but I do like the references to point to the correct place. Far too many here do not.
Exactly half of the cross-references in chapter six, for example, are incorrect. With a failure rate
like that, they are too frustrating to use. And it is not only the cross-references that are flawed.

The same chapter covers SQL and the author demonstrates retrieval, ordering and grouping
for which he uses a base table, eight SQL samples and eight answer tables. Amazingly, three
out of eight answer tables are incorrect, a state of affairs likely to induce severe confusion in a
novice reader.

This book is aimed at students, but cannot be recommended to them or anyone else, which
is sad because in many ways it’s a fine book. It is simply crying out for a careful revision.
Hopefully the next edition will be improved, but steer clear of this one.
MacMillan Press ISBN 0-333-63667-8. £19.99

(Fig 4, right top) Here I have used

some of the formats suggested by

Paul, and his rounding mechanism

(Fig 5, right bottom) And here is

how the data appears. Notice that

the value shown by the rounding

mechanism is still a number; it can

be mathematically manipulated as

shown in the lowest “text” box.

This form is also in the sample

database on the cover disk

