
Hands OnDatabases

potential conflicts which suddenly arise
when more than one person accesses the
same data simultaneously. 

Now is not the time to go into all such
conflicts but consider a simple example.
You and I both work for the same company
and we are trying to update the company’s
customer records. I open up the record for
A Smith to increase his credit rating from
£2,000 to £3,000. While I am doing so, you
delete his record. What happens to his
record when I finish editing it and send it
back to the file server?

The answer to this question depends on
the RDBMS you are using. Access, for
instance, maintains a lock file in the same

ast month, we started to look at
three “database models” you can
employ:

1. Everything on a stand-alone PC;
2. PC front end with data on file server;
3. Client-server using a database server as
the back end.

In this context it is useful to think of a
database as having four different parts:
1. User interface section;
2. Data processing engine;
3. Conflict resolution section (to deal with
conflicts introduced by multiple users
accessing the data at the same time);
4. The data itself.

We looked, last month, at the pros and
cons of the first model. As I wrote at the
time, I will give size estimates where
appropriate but please don’t take them as
gospel. (See last month’s Hands On
Databases for other qualifications). 

PC front end with data on file server
If you have a need for multiple users to
access the same data, then it is not beyond
the realms of possibility that you already
have a network. Given a network, you have
the option of moving to our second
database model.

In this model, much is left the same as
before. You would still run Access,
Paradox, or the RDBMS of your choice on
your PC so the data processing engine bit
of the database stays there. 

Only two things change. One is that the
data files are moved to a file server and the
second is that the individual RDBMSs
running on the individual PCs need to
communicate with each other. They need to
do this in order to resolve the multitude of

directory as the data file and this is used to
store information about who is doing what
at a particular time. Thus, if I had opened
the record to update it before you tried to
delete it you would receive a message
saying that the record was in use by “Mark”
and that you wouldn’t be able to update
the record until I had finished with it. Other
RDBMSs use other mechanisms, some
less efficient then others, for dealing with
these potential conflicts.

The important point is that with this
database model the control of the user
interface and the data processing engine
remain on the PC while the data and
conflict resolution are moved to the file

Hands On

Modelling job
Where did you put that data? Where did you put that file? Mark Whitehorn looks at the pros

and cons of database modelling.

L

Delphi Programming for Dummies 
by Neil J. Rubenking

Delphi is a multi-purpose programming tool and is commonly used for the generation of user
interfaces to databases. This book is one of a series and if you’ve seen any of the “* for
Dummies” books you’ll already have a good idea of what this one is like. 

It has lots of diagrams, some very silly cartoons and lots of icons in the margins to
identify Technical Stuff, Warnings, Tips and so on. It is also written in a style which doesn’t
display the correct reverence for what is a serious programming tool — which is just fine by
me. It’s not that I don’t respect Delphi but books without a sense of humour can be really
tedious. This one is fun. 

The database section is pretty skimpy, comprising a mere 22 of the 376 pages. It would
be impossible to recommend this book to a database-naïve user who wanted to learn how to
create databases in Delphi but that description doesn’t fit most of the readers of this column.
If you are happy that you understand the database end of things, this is an excellent
introduction to Delphi.

One of the examples used in the book is a function called Hailstone. Given a seed
number, this function generates a series of numbers which bounce up and down “like
hailstones in storm winds” before converging on the number 1. Apparently there is no way of
either predicting how long a given seed number will take to reach 1, or proving that all
numbers will eventually reach 1. I was so intrigued that I modified it to run in Access and it is
included in the main part of my column for your amusement (see Hailstones). 

By the way, I saw one of this series in a bookshop in France: “Windows pour les Nuls”; a
gift of a translation for any of the series connected with databases!
■ Delphi Programming for Dummies. IDG Books £18.99 (ISBN 1-56884-200-7). 

Personal Computer World • December 1996 • 285



only three meters and so 666 per meter, so
the query is doing 66 times the work!

Perhaps there are lessons to be learnt
here in problems of scaling. There is no
such thing as good SQL per se, the query
must be written to fit the data, or the data
structured to fit the query!”

I agree. It is un-nerving to realise how
many factors we need to consider when
working with databases. Still, it keeps us all
in employment!

Case-sensitive joins
Andrzej Glowinski writes: “I have recently
started using MS ACCESS (Win 3.1) at
work, developing applications in the areas
of large medical (clinical) information
resources. We also use an Oracle server
and my systems work fine using this but as

soon as I try to build stand-alone versions
all hell breaks loose. This is because some
ACCESS designer/implementer, in their
wisdom, has forced all internal joins to be
case insensitive — and there is NO
MECHANISM for altering this behaviour!” 

I replied to this as follows: “I hate to be
contentious, but Access does provide a
mechanism which allows joins to be case
sensitive. 

Assume that we have two tables:
NAMES and ORDERS. Each table has a
field called NAME which contains case
sensitive data. We thus have two fields:
NAMES.Name

ORDERS.Name

which need to be joined. 
Create a query containing both tables,

join them within the query (not in the

relationships editor) and run the query.
Precisely as you suggest, the data in the
tables is joined in a case insensitive manner.

Now add a field to the query:
CaseCompare: StrComp([NAMES].

[Name],[ORDERS].[Name],0)

This uses the function StrComp which
can be rendered case sensitive by setting the
third argument to be 0. 

The function returns 0 if the strings match
in case as well as letter order, so if you set
the Criteria for that field to be 0 and re-run
the query, the join is now case sensitive. The
SQL version reads as:
SELECT DISTINCTROW NAMES.Name, 

ORDERS.Name, NAMES.Foo, ORDERS.

Baa, StrComp([NAMES].[Name],

[ORDERS].[Name],0) AS CaseCompare

FROM NAMES INNER JOIN ORDERS ON 

NAMES.Name = ORDERS.Name

WHERE (((StrComp([NAMES].[Name],

[ORDERS].[Name],0))=0));

I am aware that this doesn’t allow you to
sort case-sensitive material, although it
would almost certainly be possible to write a
function to do this. Rather more interestingly,
it doesn’t allow you to apply referential
integrity or set a primary key on material
which is case-sensitive (since Access treats
‘PENGUIN’ and ‘Penguin’ as equivalent in a
primary key). However, it does at least allow
you to perform the join.” (A copy of this is
available in the MDB file on the PCW
cover-mounted disk).

To which I received Andrew’s reply:
“Thanks for your message about ACCESS.
We have explored the mechanism you
propose quite extensively, both on local
(native) ACCESS tables and on attached
ones, primarily ORACLE. The performance
hit is just unacceptable — I’m talking of joins
across tables with 200,000++ items in them,
so the total loss of indexing (which,
effectively, is what you get) is very significant.
You can mess around with the order of
execution of the query but it is just too
unpredictable to be of much use.”

I can’t argue with any of this. Indeed,
depending on how large the records are, this
database may be getting to the size where a
move to another model is inevitable. One
question is, do any other PC-based
RDBMSs have a better way of supporting

Personal Computer World • December 1996 • 287

Hands OnDatabases

server. 
The big advantage of this model is that it

provides multi-user access to the same
data at relatively low cost. The big
disadvantage is that the model is inefficient
in two main ways. Firstly, it tends to load the
network, soaking up bandwidth like a
sponge. Remember that the data is at one
end of the wire and the processing is at the
other. Every time you query the data, it has
to be moved to the client since that is where
it is crunched. In a badly designed system
this can mean that every query against a
100Mb table requires the entire table to be
shipped to the client. Intelligent indexing
can reduce this considerably (since the
indexes can be shipped for searching and
only the relevant records sent out to the
client) but in practice, the effectiveness of
this depends on the particular RDBMS.

Secondly, the processing is at the client
end, so each client needs sufficient
resources to cope with the data. If you
decide that an increase in the database size
warrants an increase in memory of 16Mb,
you will need to add that to all the clients:
given ten clients, that’s 160Mb.

These restrictions mean that the number
of simultaneous clients and the size of the
data are relatively restricted. Think in terms
of ten clients and 1Gb.

Client server model
This model is simply a modification of the
previous one. The user interface stays on
the PC: the data, the processing and the

conflict resolution moves to a server. This is
typically not a file server but a server
dedicated to running applications like
RDBMSs, hence they are generically known
as application servers. Machines which are
dedicated to running RDBMSs are often
called database servers or SQL servers. 

But wait. Why go to the expense of a
dedicated database server when you have
that nice NetWare 3.x file server already in
place? Can’t you run a database engine on
that as well? The answer is that you can,
but you probably don’t want to. The reason
lies in the NOS (network operating system). 

NOSs like NetWare 3.x are optimised for
File+Print. Application servers run a NOS
which is optimised for running multi-user
applications. This doesn’t mean that you
can’t do it, just that performance will be
compromised, so a dedicated database
server is generally considered to be better. If
you really want to run one server for both
application and File+Print, then NT is
probably better than NetWare, all things
considered.

The Client-Server model is typically not
limited by bandwidth. Since the processing
and data are now snuggled together in one
place, queries no longer mean that masses
of data have to move across the network.
Instead when the GUI, running on the client,
is used to construct a question only an SQL
description of that query is shipped across
the network to the server. 

This SQL will typically be a very short
ASCII string. The database engine on the

server processes the query and simply sends
the answer (rather than the entire table) to
the client. Conflict resolution is also handled
centrally, with associated benefits in terms of
speed and sophistication. Centralising the
processing means that the whole system is
easier and usually cheaper to update. If the
database slows down you can throw
hardware (memory and processors) at the
server. You don’t have to add it to the clients
because they are simply handling the user
interface.

On the ticklish subject of size, this model
will typically support as many clients and as
much data as you can afford. To put that
another way, consider this model seriously if
you think you will need more than ten clients
or >1Gb of data in the foreseeable future.

Hailstones 
The hailstones algorithm is very simple and
most easily expressed in pseudo code.
Start with a seed number

Repeat

If the number is even, 

divide by two

Else multiply by 3 and add 1

Until number = 1

I can offer no justification for implementing
this in Access except that it is fun and that
the behaviour is really wacky. Give it a
number like 26 and it takes a mere ten
iterations to get down to one. But 27 takes a
monstrous 111 iterations, and 28 a more
reasonable 18. A copy of this is in the MDB
file on our cover-mounted disk this month.
(See also, the Delphi Programming for
Dummies panel on p285).

More on meters
The meter problem (which was discussed
earlier this year) resulted in my publishing, on
our PCW cover disk, a database with several
of the solutions and a kit which allowed you
to test any other solutions against the
published ones. 

I asked only for solutions which were
genuinely faster. None have arrived but Paul
Bloomfield, a supplier of one of the original
solutions, contacted me to say that he had
got very different answers from those
published. It turned out that he hadn’t got
the PCW cover disk, so had built his own
database for test purposes. I sent him the
one I had used and this is his reply:

“Our speed differences are down to one
factor: the data. My test database had 2,000
records from 200 meters (i.e. average ten
readings per meter), whereas I see yours had

286 • Personal Computer World • December 1996 

Hands On Databases

Mark Whitehorn welcomes readers’
correspondence and ideas for the Databases
column. He’s on m.whitehorn@dundee.ac.uk

●PCW Contacts

Fig 2 (above) 

The tables

used to

demonstrate

the case

sensitive join,

and the query

itself

Fig 3 (left)

The results of

a case

insensitive

(top) and

case

sensitive join

(bottom)

Fig 1 The “Hailstones” algorithm in action


