blitz

blitz

] COLLABORATORS
TITLE :
blitz
ACTION NAME DATE SIGNATURE
WRITTEN BY December 31, 2022
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

blitz i

Contents

1 blitz 1
L1 blitz.doc 1
1.2 blitz.library/AddTokenUpdate() e e 2
1.3 blitz.library/AllocXtra() e e e 3
1.4 blitz.library/DelTokenUpdate() o 0 e e e e e 3
1.5 blitz.library/DetokeLine() o L e e e e e 4
1.6 blitz.library/DetokeMem() e e e 4
1.7 blitz.library/FindToken() o e e e e e 5
1.8 blitz.library/FreeBlitzLibs() L e 5
1.9 blitz.library/FreeTokeMem() e 6
1.10 blitz.library/FreeXtra() o o e e e 6
1.11 blitz.library/GetBlitzLibInfo() 7
1.12 blitz.library/GetFirstToken() o e e e 8
1.13 blitz.library/GetLineHeaderSize() e 8
1.14 blitz.library/GetObjectMaximum() o i e e e e e e e 9
1.15 blitz.library/GetObjectName() o i i e e e e e e e e 10
1.16 blitz.library/GetVersion() o e e e e e e 11
1.17 blitz.library/LoadBlitzLibs() o e 11
1.18 blitz.library/LoadFile() e e e e 12
1.19 blitz.library/LoadXtra() o o e e e e e e e e 12
1.20 blitz.library/LockBlitzLibs() e 13
1.21 blitz.library/NewDetokeLine() e 14
1.22 blitz.library/NumMaximums() oot ot e e e e e e e e e e e e e e 15
1.23 blitz.library/SaveXtra() o L e e e 15
1.24 blitz.library/SetObjectMaximum() vt e e e e e e e e e e e 16
1.25 blitz.library/SortTokens() o o e e e e e e 16
1.26 blitz.library/TokeLine() e e e e 17
1.27 blitz.library/TokeMem() L e e 17
1.28 blitz.library/UnLockBlitzLibs() e e 18

blitz

1/19

Chapter 1

blitz

1.1

blitz.doc

AddTokenUpdate ()
AllocXtra()
DelTokenUpdate ()
DetokeLine ()
DetokeMem ()
FindToken ()
FreeBlitzLibs ()
FreeTokeMem ()
FreeXtra()
GetBlitzLibInfo ()
GetFirstToken ()
GetLineHeaderSize ()
GetObjectMaximum ()
GetObjectName ()
GetVersion ()
LoadBlitzLibs ()
LoadFile ()

LoadXtra ()

blitz.library

blitz 2/19

LockBlitzLibs ()
NewDetokeLine ()
NumMaximums ()
SaveXtra ()
SetObjectMaximum ()
SortTokens ()
TokeLine ()
TokeMem ()

UnLockBlitzLibs ()

1.2 blitz.library/AddTokenUpdate()

NAME
AddTokenUpdate —-- install a notification hook for command-library updates.

SYNOPSIS
AddTokenUpdate (functionPtr);
AQ

FUNCTION
This command lets you automatically have a function called whenever the
blitz command libraries are updated (i.e. calls to
FreeBlitzLibs ()

4

LoadBlitzLibs ()
etc) .

Any registers may be treated as scratch registers.

INPUTS
functionPtr - address of routine to call

RESULT
NONE

BUGS
A maximum of 16 notification hooks can be installed. No checking is
performed to ensure that the limit is not exceeded.

SEE ALSO

DelTokenUpdate ()

blitz

3/19

1.3 blitz.library/AllocXtra()

NAME
AllocXtra —— allocate and initialise a valid BlitzXtra structure.
SYNOPSIS
xtraFile = AllocXtra();
DO

struct BlitzXtra * AllocXtra (VOID);
FUNCTION
This command allocates a new BlitzXtra structure, filling fields

with default values.

INPUTS
NONE

RESULT
xtraFile - an initialized BlitzXtra structure, or NULL on failure.

SEE ALSO

FreeXtra ()
, <libraries/blitz.h>, <libraries/blitz.i>

1.4 Dblitz.library/DelTokenUpdate()

NAME
DelTokenUpdate —-—- remove a previously created notification hook for
command-library updates.

SYNOPSIS

DelTokenUpdate (functionPtr);

AQ

FUNCTION

This command removes a notification request, as created by a previous

call to

AddTokenUpdate ()

INPUTS

functionPtr - address of routine to remove from notification list
RESULT

NONE
SEE ALSO

AddTokenUpdate ()

blitz

4/19

1.5 blitz.library/DetokeLine()

NAME
DetokelLine —-- detokenise a line containing valid tokenised Blitz source
code.
SYNOPSIS
success = DetokelLine (tokenSource,asciiDest);
DO A0 Al

BOOL = Detokeline (char * tokenSource, char * asciiDest);

FUNCTION
This command will convert a line containing tokenised source into its
detokenised equivalent, placing the resulting string in the destination

buffer.
INPUTS
tokenSource - a pointer to a line containing tokenised source
(NOTE: the line should not contain any headers)
asciiDest - a pointer to a line buffer where the detokenised line is to
be placed
RESULT
success - indication of success or failure
NOTES

asciiDest should be at least 128 bytes in size. This routine will not
create a detokenised string of more than 128 bytes.

1.6 Dblitz.library/DetokeMem()

NAME
DetokeMem -- detokenise a block of memory containing valid tokenised
Blitz source code.

x THIS FUNCTION IS NOT YET IMPLEMENTED =x=

SYNOPSIS
success = DetokeMem (tokenSource,asciiDest, length);
DO A0 Al DO
BOOL =
DetokeLine
(char » tokenSource, char x asciiDest, ULONG length);
FUNCTION

This function will detokenise a block of memory into its detokenised
ASCII equivalent, placing the resultant data in the destination buffer.

INPUTS

tokenSource - a pointer to a block of memory containing tokenised source

blitz 5/19

asciiDest - a pointer to the destination ASCII buffer. This must be at
least as big as numlines * 128 in size

length - the size of the source block

RESULT
success — indication of success or failre

NOTES
x THIS FUNCTION IS NOT YET IMPLEMENTED =x%

1.7 Dblitz.library/FindToken()

NAME
FindToken —-- retrieve the location inside the Blitz command libraries
of a given token.
SYNOPSIS
tokenptr = FindToken (token);
A3 DO:16

struct BlitzToken * tokenptr = FindToken (UWORD token);

FUNCTION
This function will traverse the Blitz command libraries. If the given

token is found, the address of the token is returned - else a standard
ERROR token.

INPUTS
token - a 2 byte token number

RESULT
tokenptr - a pointer to the token (or an ERROR token)

1.8 blitz.library/FreeBlitzLibs()

NAME
FreeBlitzLibs —-- free memory allocated to Blitz libraries

SYNOPSIS
FreeBlitzLibs () ;

FUNCTION
This function will free memory allocated by a previous call to

LoadBlitzLibs ()
INPUTS
NONE

blitz 6/19

RESULT
NONE

NOTES
This call may fail if the Blitz libraries are currently locked.
Programs which installed a notification hook will NOT be notified of

this change, and are removed from the notification list.

This function is typically only called by the librarie’s Expunge ()
function, and not by applications.

SEE ALSO

LoadBlitzLibs ()

1.9 blitz.library/FreeTokeMem()

NAME
FreeTokeMem —-- free memory allocated by a previous call to
TokeMem ()
SYNOPSTIS
FreeTokeMem (tokeMem) ;
AQ
FUNCTION
This function will free any memory allocated by a call to
TokeMem ()
INPUTS
tokeMem - a pointer to a block of tokenised source, as returned by the
call to
TokeMem ()
RESULT
NONE
NOTES
It is necessary for an application to keep a track of values returned
by
TokeMem ()

and similar functions, since the library does not perform
any garbage collection upon expunge.

SEE ALSO

TokeMem ()

1.10 blitz.library/FreeXtra()

blitz 7/19

NAME
FreeXtra —-- free memory allocated by the functions
AllocXtra ()
and

LoadXtra ()
SYNOPSIS
FreeXtra (xtraFile);
A0

void FreeXtra(struct BlitzXtra = xtraFile);

FUNCTION
This function will free any memory allocated by a call to
AllocXtra ()
or
LoadXtra ()
INPUTS
xtraFile - a pointer to a valid BlitzXtra structure, as returned by
either
AllocXtral()
or
LoadXtra ()
RESULT
NONE
NOTES
It is necessary for an application to keep a track of values returned
by
AllocXtra ()
14
LoadXtra ()

and similar functions, since the library does
not perform any garbage collection upon expunge.

SEE ALSO
AllocXtra()

4

LoadXtra ()

1.11 blitz.library/GetBlitzLibInfo()

NAME
GetBlitzLibInfo —-- fill out an applications BlitzLibComData structure with
relevant information
SYNOPSIS
success = GetBlitzLibInfo (comData);
DO A0

BOOL success = GetBlitzLibInfo(struct BlitzLibComData = comData);

blitz 8/19

FUNCTION
Following a call to
LoadBlitzLibs ()
, the Blitz compiler requires certain
information around the structure of the libraries. This function fills out
a structure with this information.

INPUTS
comData - a pointer to a previously created instance of a BlitzLibComData
structure
RESULT
success — an indication of success or failure
NOTES

This routine is typically only required by the Blitz compiler
SEE ALSO

LoadBlitzLibs ()
, <libraries/blitz.h>, <libraries/blitz.i>

1.12 blitz.library/GetFirstToken()

NAME
GetFirstToken —-—- obtain the address of the first token in the library list
SYNOPSIS
token = GetFirstToken();
DO

struct BlitzToken = token = GetFirstToken (VOID) ;

FUNCTION
This function returns the address of the first token in the library list,
as created by a previous call to

LoadBlitzLibs ()
INPUTS
NONE
RESULT
DO - a pointer to the first token in memory, or NULL for failure
SEE ALSO
LoadBlitzLibs ()
4
FindToken ()

1.13 blitz.library/GetLineHeaderSize()

blitz 9/19

NAME
GetLineHeaderSize —-- get the size of the header prepended to Blitz source
code
SYNOPSIS
size = GetLineHeaderSize();
DO

UWORD size = GetLineHeaderSize (VOID);

FUNCTION
The standard Blitz line structure was fixed at 9 bytes. This consisted of
the usual Previous and Next pointers, as well as a byte indicating how
many characters are on the line. From v2.2 onwards, an extra control field
was inserted to allow procedure folding. To improve backwards compatibility
or programs it is necessary to know how large this header is. It can be
assumed that the following fields remain static

NEXT 0

PREVIOUS 4

NUMCHARS HEADERSIZE-1
CHARS HEADERSIZE

This allows additional fields to be inserted without risking <
incompatibility
with older software.

INPUTS
NONE

RESULT
size - the number of bytes which make up the line header

1.14 blitz.library/GetObjectMaximum()

NAME
GetObjectMaximum —-- get the maximum number of instances for a given Blitz
object
SYNOPSIS
maximum = GetObjectMaximum(xtraFile, libNum);
DO AO D0:16

WORD maximum = GetObjectMaximum (struct BlitzXtra » xtraFile, UWORD libNum) ;

FUNCTION

Each blitz library can have an associated ’object’. When compiling programs <
4

it is necessary for the compiler to allocate a fixed size object buffer. To
achieve this, a user-definable limit is set on the number of instances that
can be created for any given object. This information is stored in the
Blitz .xtra file. This function, when passed a valid library number and
BlitzXtra structure can return the maximum instances for the library’s

blitz 10/19

associated object.

INPUTS
xtraFile - a pointer to a valid BlitzXtra structure, as returned by a call
to either
AllocXtra()

or
LoadXtra ()
1ibNum — the library’s identification number
RESULT
maximum - the maximum number of instances that can be created for the
library’s associated object (-1 indicated that no object
is associated with the given library)
SEE ALSO
GetObjectName ()
14
AllocXtra()
14
LoadXtra ()

, <libraries/blitz.h>,
<libraries/blitz.i>

1.15 blitz.library/GetObjectName()

NAME
GetObjectName —-- get the name for a library’s associated object
SYNOPSIS
name = GetObjectName (xtraFile, 1libNum);
DO AQ D0:16

char * name = GetObjectName (struct BlitzXtra » xtraFile, UWORD libNum) ;

FUNCTION
Each blitz library can have an associated 'object’. Each object has a <+
unique
name, which is used when a programmer wishes to access a particular <
instance

of the object, or adjust the maximum instances of the object. This function
returns the name of the object associated with the given library.

INPUTS
xtraFile - a pointer to a valid BlitzXtra structure, as returned by a call
to either
AllocXtra ()
or
LoadXtra ()
1ibNum - the library’s identification number

RESULT
name — a pointer to the object’s name (or NULL if the library does not

blitz 11/19

have an associated object)

BUGS
The memory used to return the string is shared. This means that
should two applications call this function together, the result is

unpredictable
SEE ALSO
GetObjectMaximum ()
14
AllocXtral()
4
LoadXtra ()

, <libraries/blitz.h>,
<libraries/blitz.i>

1.16 blitz.library/GetVersion()

NAME

GetVersion —-- obtain a string indicating the version of the library
SYNOPSIS

version = GetVersion|();

DO

char % version = GetVersion (VOID);

FUNCTION
This function simply returns the version of the library as a string.

INPUTS
NONE

RESULT
version - a pointer to a null terminated version string

NOTES
This function is primarily designed to be called by SuperTED - enabling

the version of the compiler to be adjusted.

Do NOT modify the contents of the string - make a copy if you need to

1.17 blitz.library/LoadBlitzLibs()

NAME
LoadBlitzLibs —- load available Blitz libraries from disk

SYNOPSIS
success = LoadBlitzLibs () ;

blitz

12/19

DO
BOOL success = LoadBlitzLibs (VOID) ;

FUNCTION

This function will allocate memory for and read all available command
libraries from disk. The token and library tables are created. If the
libraries have already been loaded by a previous call, then this
function effectively does nothing.

INPUTS
NONE

RESULT
success - an indication of success or failure

NOTES
This function will fail if the libraries have been locked.

SEE ALSO

FreeBlitzLibs ()

1.18 blitz.library/LoadFile()

NAME

LoadFile —-- load a source code file into memory
SYNOPSIS

filePtr = LoadFile (fileName) ;

DO A0

struct BlitzFile * filePtr = LoadFile(char » fileName);

FUNCTION
This function will load a file into memory. Memory required to store the
file is allocated by this function. This function can read ASCII files
as well as the standard Blitz tokenised source files. Tokenisation is
performed if required.

INPUTS

fileName - a pointer to a null-terminated string holding the name of the
file to load

RESULT
filePtr - a pointer to a BlitzFile structure (or NULL for failure)

1.19 blitz.library/LoadXtra()

blitz 13/19

NAME

LoadXtra -- load a source file’s .xtra file into memory
SYNOPSIS

xtraFile = LoadXtra (fileName) ;

DO AQ

struct BlitzXtra * xtraFile = LoadXtra(char x fileName);

FUNCTION
This function will allocate memory for and load into this memory a Blitz
.xtra file.

INPUTS
fileName - a pointer to a null-terminated string holding the name of the
.xtra file to load

RESULT
xtraFile - a pointer to the associated BlitzXtra structure (or NULL for
failure)
NOTES

No checking is made to ensure that the file passed is a valid .xtra file

1.20 Dblitz.library/LockBlitzLibs()

NAME
LockBlitzLibs —-—- prevent access or modification to the Blitz command
libraries in memory
SYNOPSIS
success = LockBlitzLibs (accessMode) ;
DO DO

BOOL success = LockBlitzLibs (WORD accessMode) ;

FUNCTION
This function, given the appropriate access mode, will lock the Blitz
command libraries to prevent another task from either

a) Accessing them
b) Modifying them

INPUTS
accessMode - a valid access mode. Can be one of either
LIBS_ACCESS_EXCLUSIVE
LIBS_ACCESS_READ
RESULT

success — TRUE or FALSE if the lock was successful. FALSE indicates either <+

blitz 14 /19

An EXCLUSIVE lock was present
A READ lock was present and you requested an EXCLUSIVE lock

BUGS

No validation is performed on the accessMode. Therefore, invalid <>
accessModes
will result in unpredictable behaviour

SEE ALSO
UnlockBlitzLibs ()

1.21 Dblitz.library/NewDetokeLine()

NAME
NewDetokeLine —-- an experimental command design to make line detokenisation
more flexible
SYNOPSIS
success = NewDetokelLine (srcToken, destNonToken, destToken);
DO A0 Al A2
BOOL success = NewDetokelLine (char * srcToken, char * destNonToken,
char % destToken);
FUNCTION

This function is a prototype command designed to be used by the new version
of SuperTED, currently in development. In order to speed up the text <

displays,
a new approach to detoking lines was developed. The tokenised source line
is detoked into two buffers - one containing non-token source, the other

containing token-source (the latter which should be displayed in a ’special
’
colour) .
For example
NPrint "This is a Test" : MouseWait

would be detokenised to

"This is a test" : ; non—-token source
NPrint MouseWait ; token source

INPUTS
srcToken - a pointer to the NULL terminated tokenised line of source code

destNonToken - a pointer to the buffer to be used to store non-token source

destToken - a pointer to the buffer to be used to store token source
RESULT
success — an indication of the commands success. This function will return

FALSE if the command libraries have not been loaded.

blitz 15/19

NOTES
Since this function is in prototype stage, it is not recommended that
application developers use this function.

1.22 blitz.library/NumMaximums()

NAME

NumMaximums —-- return the number of objects in the library list
SYNOPSIS

nummaxs = NumMaximums () ;

DO

UINT nummaxs = NumMaximums (VOID) :
FUNCTION
Although slightly misleading by name, this function will return the total

number of objects associated with the various Blitz command libraries.

INPUTS
NONE

RESULT
nummaxs - the number of objects in the library list

BUGS
At preset (v2.2) this command ignores the Lock status of the libraries.

1.23 blitz.library/SaveXtra()

NAME
SaveXtra —-- save a .xtra file to disk
SYNOPSIS
success = SaveXtra (fileName, xtraFile);
DO AQ Al
BOOL success = SaveXtra(char » fileName, struct BlitzXtra x xtraFile);
FUNCTION

This function will save a valid BlitzXtra structure to disk in the form
of a standard Blitz .xtra file.

INPUTS
fileName - a null-terminated string containing the name of the .xtra file
to save

xtraFile - a pointer to a valid BlitzXtra structure

RESULT

blitz 16/19

success — an indication of success or failure
SEE ALSO
AllocXtra()
14
FreeXtra ()
4
LoadXtra ()

, <libraries/blitz.h>, <libraries/blitz.i>

1.24 blitz.library/SetObjectMaximum()

NAME
SetObjectMaximum —-- set the maximum number of instances for a library’s
associated object

SYNOPSIS
SetObjectMaximum (1libNum, xtraFile);
D0:16 AQ

void SetObjectMaximum (UINT 1libNum, struct BlitzXtra * xtraFile);

FUNCTION
Similar in operation to
GetObjectMaximum ()
, this function will set the
limit.
INPUTS

1ibNum - the library ID which the object is associated with
xtraFile - a pointer to a valid BlitzXtra structure

RESULT
NONE

SEE ALSO

GetObjectMaximum ()

1.25 blitz.library/SortTokens()

NAME
SortTokens ——- create a sorted list of all Blitz command tokens

SYNOPSIS
SortTokens () ;

blitz 17 /19

void SortTokens (VOID);

FUNCTION
This will create a sorted list of all Blitz comman tokens - used to improve
the speed of the tokenisation / detokenisation commands.

INPUTS
NONE

RESULT
NONE

NOTES

This function is designed to be called by SuperTED, and is not intended for
general use by applications.

1.26 blitz.library/TokeLine()

NAME

TokeLine () - tokenise a line of ASCII source into Blitz tokens
SYNOPSIS

success/len = TokelLine (srcAscii, destBuffer);

DO D1 A0 Al

BOOL success = TokeLine (char % srcAscii, char x destBuffer);
FUNCTION

This function takes a standard null terminated line of ASCII text and
attempts to produce a tokenised version of it.

INPUTS
srcAscii - a null terminated string containing ASCII characters

destBuffer - the destination buffer to store the tokenised source in

RESULTS
success - an indication of whether the command was successful or not

len - the length of the tokenised line

NOTES
This command returns information in TWO registers, DO and D1, and as
such the second argument can only be accessed by assembly code. C
programmers must calculate the length of the tokenised string themselves
(hunt for a 0 byte). This restriction may change in the future.

SEE ALSO
TokeLine ()

1.27 blitz.library/TokeMem()

blitz 18/19

NAME
TokeMem - tokenise a block of text into Blitz tokens

SYNOPSIS
tokeBlock = TokeMem(srcAscii,maxBlockSize);

UINT = TokeMem(char = srcAscii, UINT maxBlockSize);

FUNCTION
This command takes a block of ASCII text (with each line terminated by
a LF, ASCII code 10) and creates a block of tokenised lines. The length
of the block is specified in the function call.

INPUTS

srcAscii - a pointer to a LF terminated block of ASCII text

maxBlockSize - the size of memory to allocate to hold the tokenised text
RESULT

tokeBlock - a pointer to the tokenised text block (or NULL for failure)
SEE ALSO

DetokeMem ()

1.28 blitz.library/UnLockBlitzLibs()

NAME
UnLockBlitzLibs — release a lock on the Blitz command libraries

SYNOPSIS
UnLockBlitzLibs () ;

void UnLockBlitzLibs (VOID) ;

FUNCTION
Following a successful call to
LockBlitzLibs ()
, the application must
release the lock when access is not required. This should be done at the
earliest opportunity to enable access for other applications.

INPUTS
NONE

RESULT
NONE

NOTES
This function does not attempt to check if the application already has
an open lock - care must be taken to ensure that calls to
LockBlitzLibs ()
and UnLockBlitzLibs () are paired.

blitz 19/19

SEE ALSO

LockBlitzLibs ()

	blitz
	blitz.doc
	blitz.library/AddTokenUpdate()
	blitz.library/AllocXtra()
	blitz.library/DelTokenUpdate()
	blitz.library/DetokeLine()
	blitz.library/DetokeMem()
	blitz.library/FindToken()
	blitz.library/FreeBlitzLibs()
	blitz.library/FreeTokeMem()
	blitz.library/FreeXtra()
	blitz.library/GetBlitzLibInfo()
	blitz.library/GetFirstToken()
	blitz.library/GetLineHeaderSize()
	blitz.library/GetObjectMaximum()
	blitz.library/GetObjectName()
	blitz.library/GetVersion()
	blitz.library/LoadBlitzLibs()
	blitz.library/LoadFile()
	blitz.library/LoadXtra()
	blitz.library/LockBlitzLibs()
	blitz.library/NewDetokeLine()
	blitz.library/NumMaximums()
	blitz.library/SaveXtra()
	blitz.library/SetObjectMaximum()
	blitz.library/SortTokens()
	blitz.library/TokeLine()
	blitz.library/TokeMem()
	blitz.library/UnLockBlitzLibs()

