
MACRO for Tera Term
Mar 10, 1998
T. Teranishi

Copyright (C) 1994-1998 T. Teranishi
All Rights Reserved.

MACRO (TTPMACRO.EXE) is an interpreter of the macro language "Tera Term
Language (TTL)", which controls Tera Term and provides various functions like
auto dialing, auto login and so on.

Usage
How to run a macro file
Command line
How to associate "TTL" files with MACRO

Tera Term Language (TTL)

TTL command reference

Appendixes

How to run a macro file

The executable file TTPMACRO.EXE should be placed in the directory in which
TTERMPRO.EXE exists.

There are two ways to run a macro file.

1) From Tera Term.

To start MACRO, select the [Control] Macro command and then the macro file
in the Open Macro dialog box.

2) From MACRO.

The macro file can be specified as a parameter of the command line
(shortcut link) of TTPMACRO.EXE. For example, if you want to run the macro
file "DIALUP.TTL", specify the command line (shortcut link) like:

TTPMACRO DIALUP.TTL

You can omit the file name extension ".TTL". If you omit the file name, the
Open Macro dialog box appears. It's convenient to install icons (shortcuts) for
the macro files you use frequently.

If you choose method 2), you can run Tera Term, after starting the MACRO, by
using the "connect" command in the macro file.

While the macro is running, you can pause it, restart it, and stop it by
pressing the appropriate buttons in the MACRO dialog box.

Command line

TTPMACRO.EXE [/I] [/V] [<macro file> [<second param>] [<third
param>]]

where:
/I Start MACRO in

iconized state.
/V Start MACRO in

hidden (invisible)
state.

<macro file> Macro filename.
<second
param>

Character string
stored in the system
variable "param2".

<third param> Character string
stored in the system
variable "param3".

See "Variables" for the system variables "param2" and "param3".

How to associate "TTL" files with MACRO

To associate the file extention ".TTL" with MACRO, do the following steps.

a) In Windows 95 or Windows NT 4.0
a-1) Execute the [View] Options command of Explorer.

a-2) Select the "File Types" tab.

a-3) Click the "New Type" button and specify items like the following.
Description of type: Tera Term macro files
Associated extention: TTL

a-4) Click the "New" button and specify items like the following.
Action: Execute
Application used to perform action:

"C:\Program Files\TTERMPRO\ttpmacro.exe" "%1"
(If Tera Term Pro is installed in C:\Program Files\TTERMPRO.)

a-5) Close all the dialog boxes by clicking "OK" buttons.

b) In Windows NT 3.51
b-1) Execute the [File] Associate command of File Manager.

b-2) Specify items like the following and click the "OK" button.
Files with extention: TTL
Associate with:

"C:\TTERMPRO\TTPMACRO.EXE" "%1"
(If Tera Term Pro is installed in C:\TTERMPRO.)

Tera Term Language (TTL)

TTL is a simple interpreted language like BASIC. To learn TTL quickly, study
the sample macro files in the distribution package and the command
reference.

Types
Formats of constants
Identifiers and reserved words
Variables
Expressions and operators
Line formats

Types

TTL have two kinds of data types:

Integer
Signed 16 bit, from -32767 to 32768, in case of TTMACRO.EXE for
Windows 3.1.
Signed 32 bit, from -2147483648 to 2147483647, in the case of
TTPMACRO.EXE for Windows 95/NT.

Character string
A sequence containing any character except NUL. The maximum length
of a string is 255.

Formats of constants

1) Integer-type constants

A integer-type constant is expressed as a decimal number or a
hexadecimal number which begins with a "$" character..

Example:
123
-11
$3a
$10F

Note on negative integer constants

2) String-type constants

There are two ways of expressing a string-type constant.

a) A character string quoted by ' or " (both sides must be same).

Example:
'Hello, world'
"I can't do that"

b) A single character expressed as a "#" followed by an ASCII code
(decimal or hexadecimal number). Note: Strings can not contain NUL
(ASCII code 0) characters.

Example:
#65 The character

"A".
#$41 The character

"A".
#13 The CR

character.

ASCII code table

Format a) and b) can be combined in one expression.

Example:
'cat readme.txt'#13#10

abc'#$0d#$0a'def'#$0d#$0a'ghi'

Identifiers and reserved words

1) Variable identifiers

The first character must be an alphabetic (A-Z, a-z) or an underscore
character "_". Subsequent characters can be alphabetic, underscore or
numeric (0-9). Variable identifiers are not case sensitive. The maximum
length is 32.

Example:
VARIABLE
_flag

2) Label identifiers

Label identifiers consist of alphabetic, underscore or numeric characters,
and are not case sensitive. The maximum length is 32.

Example:
label1
100

3) Reserved words

The following words are reserved:

[Command]
bplusrecv, bplussend, changedir... (see the command list)

[Operator]
and, not, or, xor

[System variable]
inputstr, param2, param3, result, timeout

Variables

1) User variables

Defined by user. The type of a variable is determined when a value (integer
or string) is assigned to it for the first time. Once the type of the variable is
determined, values of a different type can not be assigned to it.

2) System variables

Each system variable has a predefined type and value. Used with particular
commands.

Variabl
es

Type Initial
value

Related
commands

inputs
tr

string "" recvln, waitln,
waitrecv,
passwordbox,
inputbox

param
2

string *1 *1

param
3

string *1 *1

result integer 0 bplussend,
bplusrecv,
kmtfinish,
kmtget, kmtrecv,
kmtsend,
quickvanrecv,
quickvansend,
recvln, wait,
waitevent,
waitln, waitrecv,
xmodemrecv,
xmodemsend,
zmodemrecv,
zmodemsend,
str2int,
strcompare,
strlen, strscan,
filereadln,
filesearch,
filestrseek,

yesnobox
timeo
ut

integer 0 recvln, wait,
waitevent,
waitln, waitrecv

*1 The second and third command line parameter of MACRO. The
first parameter is the macro file name. See "Command line".

Expressions and operators

Expressions consist of constants, variables, operators, and parentheses.
Constants and variables must be of the integer type. The value of an
expression is also an integer. The value of a relational expression (formed
using relational operators) is 0, if it is true, or 1 if false.

The following are operators:

Category Precedence Operators

unary 1, high not
multiplicativ
e

2 * / %

additive 3 + - or xor
relational 4, low = <> < >

<= >=

Note: the value of expression A % B is the remainder of A / B.

Example:
1 + 1
4 - 2 * 3 The value is -2.
15 % 10 The value is 5.
3 * (A + 2) A is an integer

variable.
A and not B
A <= B A and B are integer

variables. The value
is 0, if the expression
is true, or 1 if false.

Line formats

There are four kinds of line formats for macro files. Any line can contain a
comment which begins with a ";" character. Comments give no effect on the
execution of MACRO.

1) Empty lines

Lines which have no character or contain only space or tab characters or a
comment. They give no effect on the execution of the macro.

Example:

; Tera Term Language

2) Command lines

Lines containing a single command with parameters.

Format:
<command> <parameter> ...

Example:
connect'myhost'
wait 'OK' 'ERROR'
if result=2 goto error
sendln 'cat'
pause A*10
end

3) Assignment lines

Lines which contain an assignment statement.

Format:
<Variable> = <Value (constant, variable, expression)>

Example:
A = 33
B = C C must already have

a value.
VAL = I*(I+1)
A=B=C The value of B=C (0

for false, 1 for true) is
assigned to A.

Error=0<J
Username='MYNAME'

4) Label lines

Lines which begin with a ':' character followed by a label identifier.

Format:
:<Label>

Example:
:dial
:100

TTL command reference

Command index

Communication commands
bplusrecv changed
bplussend changed
changedir
clearscreen new
closett
connect changed
disconnect
enablekeyb new
flushrecv
gettitle
kmtfinish new
kmtget new
kmtrecv changed
kmtsend changed
loadkeymap
logclose
logopen
logpause
logstart
logwrite
quickvanrecv changed
quickvansend changed
recvln
restoresetup
send
sendbreak
sendfile
sendkcode new
sendln
setecho
setsync
settitle
showtt changed
testlink new
unlink
wait
waitevent
waitln

waitrecv
xmodemrecvchanged
xmodemsend changed
zmodemrecv changed
zmodemsend changed

Control commands
call
end
execcmnd
exit
for, next
goto
if, then, elseif, else, endif
include
pause
return
while, endwhile

String operation commands
code2str new
int2str
str2code new
str2int
strcompare
strconcat
strcopy
strlen
strscan

File operation commands
fileclose
fileconcat
filecopy
filecreate
filedelete
filemarkptr new
fileopen
filereadln
filerename
filesearch
fileseek
fileseekback new

filestrseek
filestrseek2 new
filewrite
filewriteln
findfirst, findnext, findclose new
getdir new
makepath new
setdir new

Password commands
delpassword
getpassword
passwordbox

Miscellaneous commands
beep
closesbox
exec
getdate
getenv
gettime
inputbox
messagebox
setdate
setdlgpos
setenv removed
setexitcode new
settime
show
statusbox
yesnobox

bplusrecv changed

Format:
bplusrecv

Causes Tera Term to receive a file from the host with the B-Plus protocol.
Pauses until the end of the file transfer.
If the file is transferred successfully, the system variable "result" is set to 1.
Otherwise, "result" is set to zero.

bplussend changed

Format:
bplussend <filename>

Causes Tera Term to send the file <filename> to the host with the B-Plus
protocol. Pauses until the end of the file transfer.
If the file is transferred successfully, the system variable "result" is set to 1.
Otherwise, "result" is set to zero.

Example:
bplussend 'readme.txt'

changedir

Format:
changedir <path>

Changes the current directory for Tera Term to <path>.

Note: the setdir command changes the current directory for MACRO. File
names specified for the communication commands (e.g. kmtsend) are based
on the current directory for Tera Term. File names specified for other
commands (e.g. fileopen) are based on the current directory for MACRO.

Example:
changedir 'c:\'

clearscreen new

Format:
clearscreen <int>

Causes Tera Term to erase the screen of VT window if <int> is 0.
Causes Tera Term to erase the scroll buffer and screen of VT window if <int>
is 1.
Causes Tera Term to erase the screen of TEK window if <int> is 2.

Example:
clearscreen 0

closett

Format:
closett

Closes Tera Term and enters the unlinked state.
In the unlinked state, the "connect" command can open a new Tera Term
window and link MACRO to it.

See also:
"connect"
"disconnect"
"testlink"
"unlink"

Example:
closett
connect 'host'

connect changed

Format:
connect <command line parameters>

If MACRO is not linked to Tera Term, this command runs Tera Term with
<command line parameters>, and links it to MACRO.

If MACRO has already been linked to Tera Term and Tera Term is not
connected to the host, this command causes Tera Term to connect to the
host specified by <command line parameters>.

See Tera Term help for the format of <command line parameters>.

If MACRO has already been linked to Tera Term and Tera Term has already
been connected to the host, this command is ignored.

As a result of this command, the system variable "result" is set to one of the
following values depending on the link and connection status:

Value Status

0 Link to Tera Term
has not been
made.

1 Connection to
the host has not
been made, but
link to Tera Term
has been made.

2 Both connection
and link have
been made.

To test the current link and connect status before executing the "connect"
command, use the "testlink" command.

Communication commands except "connect" and "testlink" can not be
executed before the link is established.

See also:
"closett"
"disconnect"

"testlink"
"unlink"

Example:
connect '' No command line

parameter

connect '/C=2' Run Tera Term with
parameter "/C=2"

connect
'foohost.foo.foo.jp'

CommandLine =
'111.111.11.11'
connect CommandLine

disconnect

Format:
disconnect

Closes the communication between Tera Term and the host.
If Tera Term is not terminated by this command, the link between Tera Term
and MACRO is kept.

See also:
"closett"
"connect"
"testlink"
"unlink"

enablekeyb new

Format:
enablekeyb <flag>

Enables or disables keyboard input of Tera Term. The value of <flag> should
be 1 for enabling and 0 for disabling.

Example:
enablekeyb 0

flushrecv

Format:
flushrecv

Clears received characters in the buffer of MACRO.

Characters received from the host are transferred to MACRO. MACRO stores
the characters in the buffer. Character-reading commands, such as the "wait"
command, read out them from the buffer. Characters in the buffer are kept
until character-reading commands process them or the buffer overflows or
the flushrecv command clears the buffer.

The "flushrecv" command can be used to avoid unexpected results of
character-reading commands caused by old characters in the buffer.

gettitle

Format:
gettitle <strvar>

Retrieves the title text of Tera Term and stores it in the string variable
<strvar>.

Example:
gettitle titletext

kmtfinish new

Format:
kmtfinish

Causes Tera Term to execute the Kermit Finish command.
Pauses until the end of the Finish command.
If the command is executed successfully, the system variable "result" is set
to 1. Otherwise, "result" is set to zero.

kmtget new

Format:
kmtget <filename>

Causes Tera Term to get the file <filename> from the host by using the
Kermit Get command. The host should be in the server state. Pauses until the
end of the file transfer.
If the file is transferred successfully, the system variable "result" is set to 1.
Otherwise, "result" is set to zero.

Example:
kmtget '*.*'

kmtrecv changed

Format:
kmtrecv

Causes Tera Term to receive a file from the host with the Kermit protocol.
Pauses until the end of the file transfer.
If the file is transferred successfully, the system variable "result" is set to 1.
Otherwise, "result" is set to zero.

kmtsend changed

Format:
kmtsend <filename>

Causes Tera Term to send the file <filename> to the host with the Kermit
protocol. Pauses until the end of the file transfer.
If the file is transferred successfully, the system variable "result" is set to 1.
Otherwise, "result" is set to zero.

Example:
kmtsend 'readme.txt'

loadkeymap

Format:
loadkeymap <filename>

Causes Tera Term to load a keyboard setup file specified by <filename>.

Example:
loadkeymap 'keyboard.cnf'

logclose

Format:
logclose

Causes Tera Term to close the log file.

logopen

Format:
logopen <filename> <binary flag> <append flag>

Causes Tera Term to start logging. Received characters are written to the file
<filename>.

If <binary flag> is zero, received new-line characters are converted (CR ->
CR/CRLF) and escape sequences are stripped out. If <binary flag> is non-
zero, received characters are written without any modifications.

If <append flag> is non-zero and the file <filename> already exists, received
characters are appended to it. If <append flag> is zero and the file
<filename> already exists, the file is overwritten.

Example:
logopen 'myhost.log' 0 0

logpause

Format:
logpause

Causes Tera Term to pause logging. Received characters are discarded while
logging is paused.

logstart

Format:
logstart

Causes Tera Term to restart the logging, if paused.

logwrite

Format:
logwrite <string>

Appends a <string> to the log file of the Tera Term.

This command is valid only while Tera Term is logging. The <string> can be
written even while logging is paused.

Example:
logwrite 'LOG FILE'#13#10

quickvanrecv changed

Format:
quickvanrecv

Causes Tera Term to receive a file from the host with the Quick-VAN protocol.
Pauses until the end of the file transfer.
If the file is transferred successfully, the system variable "result" is set to 1.
Otherwise, "result" is set to zero.

quickvansend changed

Format:
quickvansend <filename>

Causes Tera Term to send the file <filename> to the host with the Quick-VAN
protocol. Pauses until the end of the file transfer.
If the file is transferred successfully, the system variable "result" is set to 1.
Otherwise, "result" is set to zero.

Example:
quickvansend 'readme.txt'

recvln

Format:
recvln

Retrieves a line of received characters from the host and stores it in the
system variable "inputstr".

This command waits until a line is received or the communication between
Tera Term and the host is terminated or the timeout occurs. If the system
variable "timeout" is greater than zero, the timeout occurs when <timeout>
seconds have passed. If the "timeout" is less than or equal to zero, the
timeout never occurs.

If the line is received successfully, the system variable "result" is set to 1.
Otherwise, "result" is set to zero.

Example:
fileopen file 'log.txt' 0 open the log file
setsync 1 enter synchronous

mode
result=1
while result=1
    recvln receive one line
    filewriteln file inputstr write it to the log file
endwhile
setsync 0 enter asynchronous

mode

See also "setsync" for the synchronous mode.

restoresetup

Format:
restoresetup <filename>

Causes Tera Term to load a Tera Term setup file specified by <filename>.

Example:
restoresetup 'teraterm.ini'

send

Format:
send <data1> <data2>

Causes Tera Term to send characters to the host.

If <data> is a string, the string is sent to the host. If <data> is an integer, its
lowest-order byte (0-255) is regarded as an ASCII code of the character, and
the character is sent to the host.

Example:
send 'ABC'

send    65 66 67 Send "ABC". (ASCII
code of the character
"A" is 65.)

myname='Tera Term'
send 'My name is '
myname '.'

sendbreak

Format:
sendbreak

Causes Tera Term to send a break signal to the host.

sendfile

Format:
sendfile <filename> <binary flag>

Causes Tera Term to send the file <filename> to the host. Pauses until the
end of the file transfer.

If <binary flag> is non-zero, the file is sent without any modifications.
If <binary flag> is zero, new-line characters are converted (CR -> CR/CRLF)
and control characters except TAB, LF and CR are stripped out.

Example:
sendfile 'data.dat' 1

sendkcode new

Format:
senkcode <key code> <repeat count>

Causes Tera Term to perform a function defined for pressing a key or key
combination. The key or key combination is specified by its <key code>,
which is defined by KEYCODE.EXE. The function is performed <repeat count>
times.

Usually the function means sending a character string to the host. The
function can be defined in the keyboard setup file of Tera Term. See
KEYCODE.TXT.

Example:
sendkcode 336 3 Simulate pressing the

down-arrow key three
times. The key code
of the down-arrow
key is 336 for the IBM
PC keyboard.

sendln

Format:
sendln <data1> <data2>

Causes Tera Term to send characters followed by a new-line character to the
host.

Format of <data> is the same as the "send" command.

Example:
sendln Only a new-line

character is sent.

sendln 'abc'

Password='mypassword'
sendln Password

setecho

Format:

setecho <echo flag>

Changes the local echo status of Tera Term.
If <echo flag> is non-zero, the local echo is turned on.
If <echo flag> is zero, the local echo is turned off.

Example:
setecho 1 local echo on

setsync

Format:
setsync <sync flag>

Enters the synchronous communication mode if <sync flag> is non-zero, or
enters the asynchronous communication mode if <sync flag> is zero.

Tera Term transfers received characters from the host to MACRO. MACRO
stores the characters in the buffer. The character-reading commands, such as
the "wait" command, read out the characters from the buffer.

Initially, MACRO is in the asynchronous mode. In this mode, the buffer may
overflow if no character-reading command is executed for a long time, or the
receiving speed is too fast.

In the synchronous mode, the buffer never overflows. If the buffer becomes
full, Tera Term stops receiving characters from the host and stops
transferring them to MACRO. When the buffer regains enough space, Tera
Term restarts receiving and transferring.

Enter the synchronous mode only when it is necessary and re-enter the
asynchronous mode when the synchronous operation is no longer needed.

For a macro operation which requires reliability, something like processing
lines of received characters without loss of data, you need to enter the
synchronous mode. However, the synchronous mode makes Tera Term slow
in speed of receiving characters and causes Tera Term freeze if no character-
reading command is executed for a long time. On the other hand, a simple
macro operation, such as auto login, works with almost no problem in the
asynchronous mode, because the buffer size is large enough (4096 bytes)
and
all received characters are processed by character-reading commands before
the buffer overflows.

See also "flushrecv" for clearing the buffer.

Example:
setsync 1 enter the

synchronous mode
setsync 0 enter the

asynchronous mode

settitle

Format:
settitle <title>

Changes the title text of Tera Term to <title>.

Example:
settitle 'Tera Term'

showtt changed

Format:
showtt <show flag>

Hides the VT window of Tera Term if <show flag> is -1.
Minimizes the VT window of Tera Term if <show flag> 0.
Restores the VT window Tera Term if <show flag> is 1.

Hides the TEK window of Tera Term if <show flag> is 2.
Minimizes the TEK window of Tera Term if <show flag> 3.
Open/restores the TEK window of Tera Term if <show flag> is 4.
Closes the TEK window of Tera Term if <show flag> is 5.

Example:
showtt 0 Minimize Tera Term.
showtt 1 Restore Tera Term.
showtt -1 Hide Tera Term.

testlink new

Format:
testlink

Reports the current link and connection status.
The system variable "result" is set to one of the following values depending
on the link and connection status:

Value Status

0 Link to Tera Term
has not been
made.

1 Connection to
the host has not
been made, but
link to Tera Term
has been made.

2 Both connection
and link have
been made.

See also:
"closett"

"connect"
"disconnect"
"unlink"

Example:
testlink
if result=0 connect 'host' If MACRO is not

linked to Tera Term,
execute the connect
command.

unlink

Format:
unlink

Terminates the link between the current Tera Term window and MACRO.
MACRO enters the unlinked state and can not controll the Tera Term window
any more.

In the unlinked state, the "connect" command can open a new Tera Term
window and link MACRO to it.

See also:
"closett"
"connect"
"disconnect"
"testlink"

Example:
connect 'host1' open a Tera Term

window and link
MACRO to it

unlink terminate the link
connect 'host2' open another Tera

Term window and link
MACRO to it

wait

Format:
wait <string1> <string2> ...

Pauses until one of the character strings is received from the host, or until

the timeout occurs. Maximum number of the strings is 10.

If the system variable "timeout" is greater than zero, the timeout occurs
when <timeout> seconds have passed. If the "timeout" is less than or equal
to zero, the timeout never occurs.

The "wait" command returns one of the following values in the system
variable "result":

Value Meaning

0 Timeout. No
string has
received.

1 <string1> has
received.

2 <string2> has
received.

. .

. .

Example:
timeout = 30 The timeout limit is

30 sec.
Wait 'OK' 'ERROR'
if result=0 goto timeout If timeout occurs, go

to ":timeout".
If result=1 goto ok If "OK" has received,

go to ":error".
If result=2 goto error If "ERROR" has

received, go to
":error".

wait #10'>'
'complete.'#13

Wait a line beginning
with the ">" or a line
ending with the
"complete.". (ASCII
code of LF is 10, and
CR is 13.)

waitevent

Format:
waitevent <events>

Pauses until one of the events specified by <events> occurs.

<events> can be combination of the following event identifiers.

Event Event
identifier

timeout 1
unlink 2
disconnection 4
connection 8

The timeout event occurs when <timeout> seconds have passed.
<timeout> is the value of the system variable "timeout".
If <timeout> is less than or equal to zero, this event never occurs.

The unlink event occurs when Tera Term is closed.

The disconnection (connection) event occurs when the communication
between Tera Term and the host is closed (opend).

The "waitevent" command returns the identifier of the actual event in the
system variable "result".

Example:
waitevent 4 Wait the

disconnection event

waitevent 2 or 8 Wait the unlink or
connection events

if result=2 goto label1 The unlink event
occured

if result=8 goto label2 The connection event
occured

waitln

Format:
waitln <string1> <string2> ...

Pauses until a line which contains one of the character strings is received
from the host, or until the timeout occurs. Maximum number of the strings is

10.

If the system variable "timeout" is greater than zero, the timeout occurs
when <timeout> seconds have passed. If the "timeout" is less than or equal
to zero, the timeout never occurs.

The "waitln" command returns the received line in the system variable
"inputstr" and one of the following values in the system variable "result":

Value Meaning

0 Timeout.
1 A line which

contains
<string1> has
received.

2 A line which
contains
<string2> has
received.

. .

. .

waitrecv

Format:
waitrecv <sub-string> <len> <pos>

Pauses until a string, which satisfies a condition, is received from the host, or
until the timeout occurs.

The condition is:
The length of the string is <len>, and the string contains
the <sub-string> beginning at the <pos>th character.

For example, if <sub-string> is "def" and <len> is 9 and <pos> is 4, the
string "abcdefghi" satisfies the condition.

If such a string is received, it is saved in the system variable "inputstr".

If the system variable "timeout" is greater than zero, the timeout occurs
when <timeout> seconds have passed. If the "timeout" is less than or equal
to zero, the timeout never occurs.

The "waitrecv" command returns one of the following values in the system
variable "result":

Value Meaning

-1 A string, which contains
the <sub-string>
beginning at the <pos>th
character, has been
received, and saved in the
"inputstr", but its length is
less than <len> because
of the timeout.

0 Timeout. No string, which
satisfies the condition,
has been received.

1 A string, which satisfies
the condition, has been
received, and saved in the
"inputstr".

xmodemrecv changed

Format:
xmodemrecv <filename> <binary flag> <option>

Causes Tera Term to receive the file <filename> from the host with the
XMODEM protocol. Pauses until the end of the file transfer.
If the file is transferred successfully, the system variable "result" is set to 1.
Otherwise, "result" is set to zero.

If the file is a binary file, <binary flag> must be non-zero. If the file is a text
file, <binary flag> must be zero.

<option> specifies the XMODEM option, and can be one of the following:

<optio
n>

XMODEM option

1 Checksum
2 CRC
3 1K
others Checksum

Example:

xmodemrecv 'readme.txt'
0 2

XMODEM receive,
text file, CRC

xmodemsend changed

Format:
xmodemsend <filename> <option>

Causes Tera Term to send the file <filename> to the host with the XMODEM
protocol. Pauses until the end of the file transfer.
If the file is transferred successfully, the system variable "result" is set to 1.
Otherwise, "result" is set to zero.

<option> specifies the XMODEM option, and can be one of the following:

<optio
n>

XMODEM option

1 Checksum
2 CRC
3 1K
others Checksum

Example:
xmodemsend
'readme.txt' 1

XMODEM send,
checksum

zmodemrecv changed

Format:
zmodemrecv

Causes Tera Term to receive files from the host with the ZMODEM protocol.
Pauses until the end of the file transfer.
If the file is transferred successfully, the system variable "result" is set to 1.
Otherwise, "result" is set to zero.

zmodemsend changed

Format:
zmodemsend <filename> <binary flag>

Causes Tera Term to send the file <filename> to the host with the ZMODEM
protocol. Pauses until the end of the file transfer.
If the file is transferred successfully, the system variable "result" is set to 1.
Otherwise, "result" is set to zero.

If the file is a binary file, <binary flag> must be non-zero. If the file is a text
file, <binary flag> must be zero.

Example:
zmodem 'readme.txt' 0

call

Format:
call <label>

Calls a subroutine beginning with the <label> line.

Example:
messagebox "I'm in
main." "test"
call sub Jump to ":sub".
messagebox "Now I'm in
main" "test"
end

:sub Start of the
subroutine.

    messagebox "Now I'm
in sub" "test"
    return Go back to the main

routine.

end

Format:
end

Quits the execution of the macro. MACRO is also closed.

execcmnd

Format:
execcmnd <statement>

Executes a TTL statement expressed by the string <statement>.

Example:
execcmnd "send 'abc'" Execute the

statement "send
'abc'".

execcmnd "a=1"

exit

Format:
exit

Exits the include file and returns to the main file.

Example:
See "include".

for, next

Format:
for <intvar> <first> <last>
    ...
    ...
next

Repeats the statements between "for" and "next" until the integer variable
<intvar> has the value <last> at the 'next' statement.

The initial value of the <intvar> is <first>. If <last> is greater than <first>,
<intvar> is incremented by 1 at the 'next' line. If <last> is less than <first>,
<intvar> is decremented by 1 at the 'next' line.

Example:
for i 1 10 Repeat ten times.
    sendln 'abc'
next

for i 5 1 Repeat five times.
    sendln 'abc'
next

goto

Format:
goto <label>

Moves control to the next line of the <label>.

Example:
goto label Jump to the next line

of the ':label'.
...
...
...
:label
send 'abc'

if, then, elseif, else, endif

1) Format:
if <int> <statement>

Executes a <statement>, if <int> is non-zero.

Example:
if A>1 goto label If A>1, jump to

':label'.

if result A=0 If result<>0, assign 0
to A.

2) Format:
if <int 1> then

...
(Statements for the case:    <int 1> is true (non-zero).)
...

[elseif <int 2> then]
...
(Statements for the case:    <int 1> is false (zero) and <int 2>
is true.)
...

[elseif <int N> then]
...
(Statements for the case:    <int 1>, <int 2>,... and <int N-1>
are all false, and <int N> is true.)
...

[else]
...
(Statements for the case:    all the conditions above are false
(zero).)
...

endif

'if' and 'elseif' statements must end with 'then'.
'elseif' and 'else' can be omitted.
'endif' can not be omitted.

Examples:
if a=1 then
    b = 1
    c = 2
    d = 3
endif

if i<0 then
    i=0
else
    i=i+1
endif

if i=1 then
    c = '1'
elseif i=2 then
    c = '2'
elseif i=3 then
    c = '3'
else
    c = '?'
endif

include

Format:
include <include file name>

Moves control to the include file.

Example:
----- Main file "main.ttl" ------

i=10
:loop
include 'sub.ttl' Move to the include

file.
if i>=0 goto loop
end

----- End of "main.ttl" ---------

----- Include file "sub.ttl" ----
if i<0 then
    messagebox 'error!'
'sub'
    exit Go back to the main

file.
endif
i = i - 1 Go back to the main

file.
----- End of "sub.ttl" ----------

pause

Format:
pause <time>

Pauses for <time> seconds.

Example:
pause 10 Pause for 10 seconds.

pause Time

return

Format:
return

Exits the subroutine and returns to the main routine.

Example:
See "call".

while, endwhile

Format:
while <int>
    ...
    ...
    ...
endwhile

Repeats the statements between 'while' and 'endwhile' while <int> is non-
zero.

Examples:
i = 10
while i>0
    i = i - 1 Repeat ten times.
endwhile

code2str new

Format:
code2str <strvar> <ASCII code>

If the integer value <ASCII code> is 1-255, this command copies a character
with the <ASCII code> to the string variable <strvar>,

This command converts an ASCII code sequence expressed by <ASCII code>
to a character string and copies it to <strvar>. The non-zero highest-order
byte of <ASCII code> is regarded as the first byte of the ASCII code
sequence. If <ASCII code> is zero, <strvar>.is set to null (""). The maximum
length of the character string is 2 for TTMACRO.EXE and 4 for
TTPMACRO.EXE.

Example:
code2str str $41 The character "A" is

stored in the variable
"str". The ASCII code
for "A" is $41.

code2str str $4142 The character string
"AB" is stored in the
variable "str". The
ASCII code $41 is for
"A" and $42 for "B".

int2str

Format:
int2str <strvar> <integer value>

Converts <integer value> to its string expression, and returns it in the string
variable <strvar>.

Example:
int2str valstr 123 The string "123" is

assigned to the
variable "valstr".

str2code new

Format:
str2code <intvar> <string>

If the <string> consists of one character, this function copies the ASCII code
for the character to the integer variable <intvar>.

If the length of <string> is longer than one, this function converts <string>
to its ASCII code sequence and copies it to <intvar>. The variable <intvar>
can store n ASCII codes at maximum, where n is 2 for TTMACRO.EXE and 4
for TTPMACRO.EXE. If the length of <string> is longer than n, the last n bytes
of ASCII code sequence is copied to <intvar>.

Example:
str2code val 'A' val=65 (ASCII code

for "A")

str2code val 'AB' val=65*256+66

str2int

Format:
str2int <intvar> <string>

Converts the <string> which represents a decimal number to its numeric
value.
The value is returned in the integer variable <intvar>. If the string is
converted successfully, the system variable "result" is set to 1. Otherwise,
"result" is set to zero.

Example:
str2int val '123' val=123, result=1

str2int val '123abc' result=0

strcompare

Format:
strcompare <string1> <string2>

Compares two strings. Depending on the relation between them, one of the
following result code is returned in the system variable "result":

Relation Result

<string1> <
<string2>

-1

<string1> =
<string2>

0

<string1> >
<string2>

1

Example:
strcompare 'abc' 'def' result = -1

strcompare command
'next'
if result=0 goto label
strcompare command
'end'
if result=0 end

strconcat

Format:
strconcat <strvar> <string>

Appends a copy of <string> to the end of the string variable <strvar>.

Example:
filename = 'c:\teraterm\'
strconcat filename 'test.txt'

strcopy

Format:
strcopy <string> <pos> <len> <strvar>

Copies a substring of <string> to the string variable <strvar>.
The substring begings at the <pos>th character in <string>, and its length
is <len>.

Example:
strcopy 'tera term' 6 4
substr

substr='term'

strlen

Format:
strlen <string>

Returns the length of <string> in the system variable "result".

Example:
strlen 'abc' result = 3

strscan

Format:
strscan <string> <substring>

Searches for <substring> in <string>.
If <substring> is found, its position is returned in the system variable
"result". If <string> contains more than one occurrence of <substring>, the
position of the first one is returned. If <substring> is not found, "result" is set
to zero.

Example:
strscan 'tera term' 'term' result = 6

fileclose

Format:
fileclose <file handle>

Closes the file specified by <file handle>.
<file handle> is no longer valid after this command.

Example:
fileclose fhandle

fileconcat

Format:
fileconcat <file1> <file2>

Appends a copy of file <file2> to the end of file <file1>.
<file1> and <file2> must not be same.

Example:
fileconcat 'test.dat' test2.dat'

filecopy

Format:
filecopy <file1> <file2>

Copies file <file1> to file <file2>.
If <file2> already exists, it is overwritten. <file1> and <file2> must not be
same.

Example:
filecopy 'test.dat' test2.dat'

filecreate

Format:
filecreate <file handle> <filename>

Creates and opens a new file specified by <filename>.
The file pointer is set to the beginning of the file. If file <filename> already
exists, its size is truncated to zero. If the file is successfully created and
opened, the file handle is returned in the integer variable <file handle>.
Otherwise, <file handle> is set to -1.

Example:
filecreate fhandle 'data.dat'

filedelete

Format:
filedelete <filename>

Deletes the file specified by <filename>.

Example:
filedelete 'temp.log'

filemarkptr new

Format:
filemarkptr <file handle>

Marks the current file pointer for an opened file specified by <file handle>.
The marked pointer can be recalled by the "fileseekback" command.

Example:
filemarkptr fhandle
See also the example of "filestrseek2" command.

fileopen

Format:
fileopen <file handle> <file name> <append flag>

Opens a file specified by <file name>.

If the file does not exist, it is created and then opened. If the file is
successfully opened, the file handle is returned in the integer variable <file
handle>. Otherwise, <file handle> is set to -1.

If <append flag> is zero, the file pointer is set to the beginning of the file. If
<append flag> is non-zero, the file pointer is set to the end of the file.

Example:
fileopen fhandle 'data.dat' 0

fileopen fhandle 'data.dat' 1

filereadln

Format:
filereadln <file handle> <strvar>

Reads a line from the file specified by <file handle>.
The line is written into the string variable <strvar>. The file pointer is moved
to the beginning of the next line. If the file pointer reaches the end of the file
while reading the line, the system variable "result" is set to 1. Otherwise,
"result" is set to zero.

Example:
fileopen fhandle 'test.txt'
0

Open a file.

:loop
filereadln fhandle line Read a line from the

file.
if result goto fclose
messagebox line
'test.txt'

Display the line.

goto loop Repeat until the end
of the file.

:fclose
fileclose fhandle Close the file.

filerename

Format:
filerename <file1> <file2>

Renames <file1> to <file2>.
<file1> and <file2> must not be same.

Example:
filerename 'test.dat' test2.dat'

filesearch

Format:
filesearch <filename>

Searches for the file specified by <filename>.
If it is found, the system variable "result" is set to 1. Otherwise, "result" is set
to zero.

Example:
filesearch 'readme.txt'
if result=0 messagebox 'File not found.' 'error'

fileseek

Format:
fileseek <file handle> <offset> <origin>

Moves the pointer for the file specified by <file handle>.
With this command, the file pointer is moved <offset> bytes from:

the beginning of the file, if <origin> is 0.

the current position, if <origin> is 1.

the end of the file, if <origin> is 2.

Example:
fileseek fhandle 0 0 Move to the

beginning of file.

fileseek fhandle 10 1 Move 10 bytes from
the current position.

fileseek fhandle 0 2 Move to the end of
file.

fileseek fhandle 0-10 2 Move to the position
10 bytes backward
from the end of file.

fileseekback new

Format:
fileseekback <file handle>

Moves the file pointer for an opened file to the position marked by the
"filemarkptr" command. The file is specified by <file handle>.

Example:
fileseekback fhandle
See also the example of "filestrseek2" command.

filestrseek

Format:
filestrseek <file handle> <string>

Searches for <string> in the file specified by <file handle>.
The search is done forward and started from the current position of the file
pointer.
For the backward search, use the "filestrseek2" command.

If <string> is found, the file pointer is moved to the next character of the
string and the system variable "result" is set to 1. If <string> is not found,
the file pointer is not moved and "result" is set to zero.

Example:
fileopen fhandle
'teraterm.log' 0
filestrseek fhandle 'abc' Search for the string

"abc" in the file
"teraterm.log".

if result=0 goto
not_found
filereadln fhandle str Read characters from

the next of "abc" to
the end of the line.

:not_found
fileclose fhandle

filestrseek2 new

Format:
filestrseek2 <file handle> <string>

Searches for <string> in the file specified by <file handle>.
The search is done backward and started from the current position of the file
pointer.
For the forward search, use the "filestrseek" command.

If <string> is found, the file pointer is moved to the position of the character
just before the string and the system variable "result" is set to 1. If <string>
is not found, the file pointer is not moved and "result" is set to zero. If the file
pointer is already zero before the execution of this command, "result" is set
to zero.

Example:
fileopen fhandle
'teraterm.log' 1

Open the file
"teraterm.log". The
file pointer is set to
the end of file.

:next
filestrseek2 fhandle 'abc' Backward search for

the string "abc"
if result=0 goto
not_found
filemarkptr fhandle mark the file pointer
filereadln fhandle str Read characters from

the character just
before    "abc" to the
end of the line.

fileseekback fhandle recall the file pointer
goto next search for the next

word
:not_found
fileclose fhandle

filewrite

Format:
filewrite <file handle> <string>

Writes <string> to the file specified by <file handle>.

Example:
filewrite fhandle '---------cut here---------'#13#10

filewriteln

Format:
filewriteln <file handle> <string>

Writes <string> and the new-line characters (CR+LF) to the file specified by
<file handle>.

Example:
filewriteln fhandle '---------cut here---------'

findfirst new

Format:
findfirst <dir handle> <file name> <strvar>

The findfirst command searches for the first file matching the specified file
name <file name>. If the file is found, this command returns the directory
handle in <dir handle>, returns the first file name in <strvar> and sets the
system variable "result" to 1. Otherwise, <dir handle>, <strvar> and "result"
are set to    -1, "" and 0, respectively.

If the findfirst command find the first file successfully, the directory handle
can be used for the findnext command to search for the next file matching
the specified <file name>. The directory handle should be released by
the findclose command.

findnext new

Format:
findnext <dir handle> <strvar>

The findnext command searches for the next file matching the file name
specified in the findfirst command. The integer value <dir handle> should be
the directory handle returned by the findfirst command. If the next file is
found, the file name is returned in <strvar> and "result" is set to 1.
Otherwise, <strvar> and "result" are set to "" and 0, respectively.

findclose new

Format:
findclose <dir handle>

The findclose command releases the directory handle <dir handle> returned
by the findfirst command. This command should be executed if the findfirst
command is executed successfully.

Example:
findfirst dh '*.txt' filename
while result
    messagebox filename '*.txt'
    findnext dh filename
endwhile
findclose dh

getdir new

Format:
getdir <strvar>

Returns the current working directory for MACRO (not for Tera Term) to the
string variable <strvar>.

See also:
"setdir"

Example:
getdir dir

makepath new

Format:
makepath <strvar> <dir> <name>

Creates the full path name from the directory name <dir> and file name
<name>. The full path name is stored in the string variable <strvar>. If
necessary, '\' is inserted between <dir> and <name>.

Example:
makepath path 'c:\
teraterm' 'test.txt'

path = "c:\teraterm\
test.txt"

setdir new

Format:
setdir <dir>

Changes the current working directory for MACRO to <dir>.

Note: the changedir command changes the current directory for Tera Term.
File names specified for the communication commands (e.g. kmtsend) are
based on the current directory for Tera Term. File names specified for other
commands (e.g. fileopen) are based on the current directory for MACRO.

Example:
setdir 'c:\'

delpassword

Format:
delpassword <filename> <password name>

Deletes a password specified by <password name> in the password file
<filename>. If <password name> is a blank string, all passwords in the file
are deleted.

See "getpassword" for the password file.

Example:
delpassword 'password.dat' 'mypassword'

getpassword

Format:
getpassword <filename> <password name> <strvar>

Retrieves an encrypted password identified by <password name> from the
password file <filename>. Decrypts the password and stores it into the
string variable <strvar>.

If the specified file does not exist, it is newly created.
If the specified password is not stored in the file, the password dialog box
appears and the entered password is stored in <strvar>. At the same time,
the new password is encrypted and written in the file with the identifier
<password name>.

A password file can contain multiple passwords. Each of them is identified by
the password identifier.

Example:
getpassword 'password.dat' 'mypassword' password
connect 'myhost'
wait 'login:'
sendln 'myname'
wait 'password:'
sendln password

passwordbox

Format:
passwordbox <message> <title>

Displays a dialog box prompting the user to input a password.

The <message> is displayed in the dialog box. The <title> is displayed as
the dialog box title. The password typed by the user is not displayed as is.
Instead, asterisks are displayed. The password is returned in the system
variable "inputstr".

Example:
passwordbox 'Enter password' 'Login'

beep

Format:
beep

Makes a beep sound.

closesbox

Format:
closesbox

Closes the status dialog box opend by the "statusbox" command.

Example:
See "statusbox".

exec

Format:
exec <command line>

Runs an application specified by <command line>.

Format:
exec 'notepad
readme.txt'

Run "Notepad".

getdate

Format:
getdate <strvar>

Returns the current date in the string variable <strvar>, with the format
"YYYY-MM-DD".

Example:
getdate datestr

getenv

Format:
getenv <envname> <strvar>

Retrieves the value of an environment variable specified by <envname> and
stores it in the string variable <strvar>.

Example:
getenv 'TEMP' env

gettime

Format:
gettime <strvar>

Returns the current time in the string variable <strvar>, with the format
"HH:MM:SS".

Example:
gettime timestr

inputbox

Format:
inputbox <message> <title>

Displays a dialog box prompting user to input a string.

The <message> is displayed in the dialog box. The <title> is displayed as
the dialog box title. The string entered by the user is returned in the system
variable "inputstr".

Example:
inputbox 'Password:' 'Login'
sendln inputstr

messagebox

Format:
messagebox <message> <title>

Displays a dialog box with <message> and <title>.

Example:
messagebox ErrorMessage 'Error'

setdate

Format:
setdate <date>

Sets the system date to <date>. The format of <date> should be "YYYY-MM-
DD".

Example:
setdate '1997-06-30'

setdlgpos

Format:
setdlgpos <x> <y>

Changes the initial position for dialog boxes opend by the "inputbox",
"messagebox", "passwordbox" and "statusbox" commands. If the status
dialog box is displayed, the "setdlgpos" command also moves the dialog box.

<x> and <y> specify the position (x,y) in the screen coordinate.
The origin (0,0) is upper left corner of the screen.

Example:
setdlgpos 0 0
messagebox 'Message'
'Title'

Message box at the
upper left corner.

setdlgpos 0 200 Open the status box.
statusbox 'Message'
'Title'
for i 0 200
    setdlgpos i 200 Moves the status box.
next

setexitcode new

Format:
setexitcode <exit code>

Sets the exit code of MACRO to the integer value <exit code>.

For Windows 3.1: There is no way to utilize the exit code of MACRO
because MACRO can not be run by a batch file. This command is provided
just for compatibility with the 32-bit version of MACRO.

For Windows 95: If MACRO is run from a batch file by the command line
"start /w ttpmacro <ttl filename>" (the option /w is necessary), the exit code
can be tested by the DOS command "if errorlevel n".

For Windows NT: If MACRO is run from a batch file by the command line
"ttpmacro <ttl filename>", the exit code can be tested by the DOS command
"if errorlevel n".

Example:
----- Batch file "test.bat" for Win 95 ------

start /w ttpmacro test.ttl Run MACRO using the
"start /w" command.

if errorlevel 1 echo Error! Display message if
the exit code is
greater than 0.

----- End of "test.bat" ---------

----- Batch file "test.bat" for Win NT ------
ttpmacro test.ttl Run MACRO. No need

to use the "start"
command.

if errorlevel 1 echo Error! Display message if
the exit code is
greater than 0.

----- End of "test.bat" ---------

----- Macro file "test.ttl" ----
setexitcode 1 Set the exit code to

1.
----- End of "test.ttl" ----------

settime

Format:
settime <time>

Sets the system time to <time>. The format of <time> should be
"HH:MM:SS".

Example:
settime '01:05:00'

show

Format:
show <show flag>

Minimizes MACRO, if <show flag> is zero.
Restores MACRO, if <show flag> is greater than zero.
Hides MACRO, if <show flag> is less than zero.

Example:
show 0 Minimize MACRO.
show 1 Restore MACRO.
show -1 Hide MACRO.

statusbox

Format:
statusbox <message> <title>

Displays the status dialog box if it has not been displayed yet.
Changes the message to <message> and title to <title>.

The "setdlgpos" command changes the position of status
dialog box.
The "closesbox" command closes the status dialog box.

Example:
setdlgpos 200 200 Set the initial

position.
statusbox 'Message'
'Title'

Display the status
dialog box.

pause 3
setdlgpos 0 0 Move the dialog box.
pause 3
closesbox Close the dialog box.

yesnobox

Format:
yesnobox <message> <title>

Displays a dialog box with the <message>, <title>, "Yes" button and "No"
button.

If the user clicks on the "Yes" button, the system variable "result" is set to 1.
If the user clicks on the "No" button, "result" is set to zero.

Example:
yesnobox 'Try agian?' 'Tera Term'
if result goto retry
end

Appendixes

Error messages
About new-line characters
Note on negative integer constants
ASCII code table

Error messages

Error message Meaning

Can't call sub. Cannot call the
subroutine, the subroutine
is located in a different
file.

Can't link macro. Failure to establish the
link between MACRO and
Tera Term.

Can't open file. The include file does not
exist, or there are too
many nested include files.

")" expected. A closing parenthesis
does not exist where it
should.

Link macro first. The command cannot be
executed before the link
between MACRO and Tera
Term is established.

Divide by zero. The expression attempts
to divide by zero.

Invalid control. Invalid use of "else",
"elseif" or "endif".

Label already
defined.

Duplicate use of the label.

Label required. The label is not defined.
Stack overflow. There are too many

nested subroutines, "for-
next" loops or "while-
endwhile" loops.

Syntax error. The format of the
statement is invalid.

Too many labels. MACRO can not handle
more than 256 labels.

Too many variables. MACRO cannot handle
more than 128 integer
variables and 128 string
variables.

Type mismatch. The type of the constant
or variable is invalid.

Variable not
initialized.

The variable must be
initialized before it is

referenced.

About new-line characters

New-line characters (CR or CR+LF) received from the host are converted to
CR+LF pairs by Tera Term, and then Tera Term sends them to MACRO.

You should use the pair (CR+LF) as a new-line character to send to Tera Term.

ASCII code 13 (decimal) is for CR, and 10 is for LF.

Example:
send 'abc'#13#10 Same as the

statement "sendln
'abc'". The actual
new-line character to
be sent to the host is
determined by Tera
Term.

Wait #10'abc' 'def'#13 Waits for a line
beginning with "abc"
or a line ending with
"def".

Logwrite 'abc'#13#10 Writes line "abc" to
the log file.

Note on negative integer constants

Using a negative integer constant may cause a problem like the following:

For example,

for i -10 0

causes the syntax error, because the second parameter is regarded as "i-10"
instead of "i". To avoid this problem, take one of the following solutions:

1) Put "0" before "-".
for i 0-10 0

2) Assign the negative constant to a variable.
A = -10

for i A 0

ASCII code table

For example, the ASCII code for "A" is 65 in decimal or $41 in hexadecimal.

Char Code Char Code Char Code Char Code

NUL
(^@)

0
$00

DLE
(^P)

16
$10

SPAC
E

32
$20

0 48
$30

SOH
(^A)

1
$01

DC1
(^Q)

17
$11

! 33
$21

1 49
$31

STX
(^B)

2
$02

DC2
(^R)

18
$12

" 34
$22

2 50
$32

ETX
(^C)

3
$03

DC3
(^S)

19
$13

35
$23

3 51
$33

EOT
(^D)

4
$04

DC4
(^T)

20
$14

$ 36
$24

4 52
$34

ENQ
(^E)

5
$05

NAK
(^U)

21
$15

% 37
$25

5 53
$35

ACK
(^F)

6
$06

SYN
(^V)

22
$16

& 38
$26

6 54
$36

BEL
(^G)

7
$07

ETB
(^W)

23
$17

' 39
$27

7 55
$37

BS
(^H)

8
$08

CAN
(^X)

24
$18

(40
$28

8 56
$38

HT
(^I)

9
$09

EM
(^Y)

25
$19

) 41
$29

9 57
$39

LF
(^J)

10
$0A

SUB
(^Z)

26
$1A

* 42
$2A

: 58
$3A

VT
(^K)

11
$0B

ESC
(^[)

27
$1B

+ 43
$2B

; 59
$3B

FF
(^L)

12
$0C

FS
(^\)

28
$1C

, 44
$2C

< 60
$3C

CR
(^M)

13
$0D

GS
(^])

29
$1D

- 45
$2D

= 61
$3D

SO
(^N)

14
$0E

RS
(^^)

30
$1E

. 46
$2E

> 62
$3E

SI
(^O)

15
$0F

US
(^_)

31
$1F

/ 47
$2F

? 63
$3F

Char Code Char Code Char Code Char Code

@ 64
$40

P 80
$50

` 96
$60

p 112
$70

A 65
$41

Q 81
$51

a 97
$61

q 113
$71

B 66
$42

R 82
$52

b 98
$62

r 114
$72

C 67
$43

S 83
$53

c 99
$63

s 115
$73

D 68
$44

T 84
$54

d 100
$64

t 116
$74

E 69
$45

U 85
$55

e 101
$65

u 117
$75

F 70
$46

V 86
$56

f 102
$66

v 118
$76

G 71
$47

W 87
$57

g 103
$67

w 119
$77

H 72
$48

X 88
$58

h 104
$68

x 120
$78

I 73
$49

Y 89
$59

i 105
$69

y 121
$79

J 74
$4A

Z 90
$5A

j 106
$6A

z 122
$7A

K 75
$4B

[91
$5B

k 107
$6B

{ 123
$7B

L 76
$4C

\ 92
$5C

l 108
$6C

| 124
$7C

M 77
$4D

] 93
$5D

m 109
$6D

} 125
$7D

N 78
$4E

^ 94
$5E

n 110
$6E

~ 126
$7E

O 79
$4F

_ 95
$5F

o 111
$6F

DEL 127
$7F

