
Lexical elements
See also
These topics provide a formal definition of the C++Builder lexical elements. They describe the different
categories of word-like units (tokens) recognized by a language.
See the topics listed under See Also to learn about lexical elements.
The tokens in C++Builder are derived from a series of operations performed on your programs by the
compiler and its built-in preprocessor.
A C++Builder program starts as a sequence of ASCII characters representing the source code, created
by keystrokes using a suitable text editor (such as the C++Builder editor). The basic program unit in C+
+Builder is the file. This usually corresponds to a named file located in RAM or on disk and having the
extension .C or .CPP.
The preprocessor first scans the program text for special preprocessor directives (see Preprocessor
directives for details). For example, the directive #include <inc_file> adds (or includes) the contents of
the file inc_file to the program before the compilation phase. The preprocessor also expands any
macros found in the program and include files.
In the tokenizing phase of compilation, the source code file is parsed (that is, broken down) into tokens
and whitespace.

Whitespace
See also
Whitespace is the collective name given to spaces (blanks), horizontal and vertical tabs, newline
characters, and comments. Whitespace can serve to indicate where tokens start and end, but beyond
this function, any surplus whitespace is discarded. For example, the two sequences
int i; float f;
and
int i;
 float f;
are lexically equivalent and parse identically to give the six tokens:
 int
 i
 ;
 float
 f
 ;
The ASCII characters representing whitespace can occur within literal strings, in which case they are
protected from the normal parsing process (they remain as part of the string). For example,
char name[] = "Borland International";
parses to seven tokens, including the single literal-string token "Borland International"

Line splicing with \
A special case occurs if the final newline character encountered is preceded by a backslash (\). The
backslash and new line are both discarded, allowing two physical lines of text to be treated as one unit.
"Borland \
International"
is parsed as "Borland International" (see String constants for more information).

Comments
See also
Comments are pieces of text used to annotate a program. Comments are for the programmer's use
only; they are stripped from the source text before parsing.
There are two ways to delineate comments: the C method and the C++ method. Both are supported by
C++Builder, with an additional, optional extension permitting nested comments. If you are not compiling
for ANSI compatibility, you can use any of these kinds of comments in both C and C++ programs.
You should also follow the guidelines on the use of whitespace and delimiters in comments discussed
later in this topic to avoid other portability problems.

C comments
A C comment is any sequence of characters placed after the symbol pair /*. The comment terminates at
the first occurrence of the pair */ following the initial /*. The entire sequence, including the four comment-
delimiter symbols, is replaced by one space after macro expansion. Note that some C implementations
remove comments without space replacements.
C++Builder does not support the nonportable token pasting strategy using /**/. Token pasting in C+
+Builder is performed with the ANSI-specified pair ##, as follows:
#define VAR(i,j) (i/**/j) /* won't work */
#define VAR(i,j) (i##j) /* OK in C++Builder */
#define VAR(i,j) (i ## j) /* Also OK */
In C++Builder,
int /* declaration */ i /* counter */;
parses as these three tokens:
int i;
See Token Pasting with ## for a description of token pasting.

C++ comments
C++ allows a single-line comment using two adjacent slashes (//). The comment can start in any
position, and extends until the next new line:
class X { // this is a comment
... };
You can also use // to create comments in C code. This is specific to C++Builder.

Nested comments
ANSI C doesn't allow nested comments. The attempt to comment out a line
/* int /* declaration */ i /* counter */; */
fails, because the scope of the first /* ends at the first */. This gives
i ; */
which would generate a syntax error.
By default, C++Builder won't allow nested comments, but you can override this with compiler options.

Delimiters and whitespace
In rare cases, some whitespace before /* and //, and after */, although not syntactically mandatory, can
avoid portability problems. For example, this C++ code:
int i = j//* divide by k*/k;
+m;
parses as int i = j +m; not as
int i = j/k;
+m;

as expected under the C convention. The more legible
int i = j/ /* divide by k*/ k;
+m;
avoids this problem.

Tokens
See also
Tokens are word-like units recognized by a language. C++Builder recognizes six classes of tokens.
Here is the formal definition of a token:
 keyword
 identifier
 constant
 string-literal
 operator
 punctuator (also known as separators)
As the source code is scanned, tokens are extracted in such a way that the longest possible token from
the character sequence is selected. For example, external would be parsed as a single identifier, rather
than as the keyword extern followed by the identifier al.
See Token Pasting with ## for a description of token pasting.   

Keywords
See also
Keywords are words reserved for special purposes and must not be used as normal identifier names.
See the:

Alphabetical list of keywords.
Table of C++ Keywords
Table of C++Builder Register Pseudovariables

If you use non-ANSI keywords in a program and you want the program to be ANSI compliant, always
use the non-ANSI keyword versions that are prefixed with double underscores. Some keywords have a
version prefixed with only one underscore; these keywords are provided to facilitate porting code
developed with other compilers. For ANSI-specified keywords there is only one version.
Note: Note that the keywords _ _try and try are an exception to the discussion above. The keyword try

is required to match the catch keyword in the C++ exception-handling mechanism. try cannot be
substituted by _ _try. The keyword _ _try can only be used to match the _ _except or _ _finally
keywords. See the discussions on C++ exception handling and C-based structured exceptions for
more information.

Table of C++ Specific Keywords
There are several keywords specific to C++. They are not available if you are writing a C-only program.
The keywords specific to C++ are:
asm mutable this
bool namespace throw
catch new true
class operator try
const_cast private typeid
delete explicit protected reinterpret_cast
dynamic_cast public using
false __rtti virtual
friend static_cast wchar_t
inline template typename

Table of C++Builder register pseudovariables
See also

_AH _CL _EAX1 _ESP
_AL _CS _EBP1 _FLAGS
_AX _CX _EBX1 _FS
_BH _DH _ECX1 _GS1

_BL _DI _EDI1 _SI
_BP _DL _EDX1 _SP
_BX _DS _ES _SS
_CH _DX _ESI1

1 These pseudovariables are always available to the 32-bit compiler. The 16-bit compiler can use
these only whe you use the option to generate 80386 instructions.

All but the _FLAGS register pseudovariable are associated with the general purpose, segment, address,
and special purpose registers.
Use register pseudovariables anywhere that you can use an integer variable to directly access the
corresponding 80x86 register.
The 16-bit flags register contains information about the state of the 80x86 and the results of recent
instructions.

C++Builder Keyword Extensions
C++Builder provides additional keywords that are not part of the ANSI Standard.
The C++Builder keyword extensions are:
_asm
__asm
__automated
_cdecl
cdecl
__classid
__closure
__declspec
__except
__export
_export
__fastcall
_fastcall
__finally
_import
__import
__int8
__int16
__int32
__int64
_pascal
__pascal
pascal
__property
__published
__rtti
__thread
__try

Identifiers
See also
Here is the formal definition of an identifier:
identifier:
nondigit
identifier nondigit
identifier digit
nondigit: one of
a b c d e f g h i j k l m n o p q r s t u v w x y z _
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
digit: one of
0    1    2    3    4    5    6    7    8    9

Naming and length restrictions
Identifiers are arbitrary names of any length given to classes, objects, functions, variables, user-defined
data types, and so on. (Identifiers can contain the letters a to z and A to Z, the underscore character "_",
and the digits 0 to 9.) There are only two restrictions:
 The first character must be a letter or an underscore.
 By default, C++Builder recognizes only the first 32 characters as significant. The number of significant
characters can be command-line options, but not increased.

Case sensitivity
C++Builder identifiers are case sensitive, so that Sum, sum and suM are distinct identifiers.
Global identifiers imported from other modules follow the same naming and significance rules as normal
identifiers. However, C++Builder offers the option of suspending case sensitivity to allow compatibility
when linking with case-insensitive languages. With the case-insensitive option, the globals Sum and
sum are considered identical, resulting in a possible. "Duplicate symbol" warning during linking.

An exception to these rules is that identifiers of type _ _pascal are always converted to all uppercase for
linking purposes.

Uniqueness and scope
Although identifier names are arbitrary (within the rules stated), errors result if the same name is used
for more than one identifier within the same scope and sharing the same name space. Duplicate names
are legal for different name spaces regardless of scope rules.

Constants
See also
Constants are tokens representing fixed numeric or character values.
C++Builder supports four classes of constants: integer, floating point, character (including strings), and
enumeration.
Internal representation of numerical types shows how these types are represented internally.
The data type of a constant is deduced by the compiler using such clues as numeric value and the
format used in the source code. The formal definition of a constant is shown in the following table.

Constants: Formal Definitions
constant: nonzero-digit: one of
 floating-constant 1    2    3    4    5    6    7    8    9
 integer-constant
 numeration-constant
 character-constant
floating-constant: octal-digit: one of
 fractional-constant <exponent-part> <floating-suffix> 0    1    2    3    4    5    6    7
 digit-sequence    exponent-part    <floating-suffix>
fractional-constant: hexadecimal-digit: one of
 <digit-sequence> .    digit-sequence 0    1    2    3    4    5    6    7    8    9
 digit-sequence . a    b    c    d    e    f

A    B    C    D    E    F
exponent-part: integer-suffix:
 e    <sign> digit-sequence unsigned-suffix    <long-suffix>
 E    <sign> digit-sequence long-suffix    <unsigned-suffix>
sign: one of unsigned-suffix: one of
 +    - u    U
digit-sequence: long-suffix: one of
 digit l    L
 digit-sequence    digit
floating-suffix: one of enumeration-constant:
 f      l      F      L identifier
integer-constant: character-constant
 decimal-constant    <integer-suffix> c-char-sequence
 octal-constant    <integer-suffix>
 hexadecimal-constant    <integer-suffix>
decimal-constant: c-char-sequence:
 nonzero-digit c-char
 decimal-constant    digit c-char-sequence    c-char

octal-constant: c-char:
 0 Any character in the source character set

 octal-constant    octal-digit except the single-quote ('), backslash
(\), or

newline character escape-sequence.
hexadecimal-constant: escape-sequence: one of the following
 0 x hexadecimal-digit \" \' \? \\
 0 X hexadecimal-digit \a \b \f \n
 hexadecimal-constant    hexadecimal-digit \o \oo \ooo \r

\t \v \Xh... \xh...

Integer constants
See also
Integer constants can be decimal (base 10), octal (base 8) or hexadecimal (base 16). In the absence of
any overriding suffixes, the data type of an integer constant is derived from its value, as shown in C+
+Builder integer constants without L or U.. Note that the rules vary between decimal and nondecimal
constants.

Decimal
Decimal constants from 0 to 4,294,967,295 are allowed. Constants exceeding this limit are truncated.
Decimal constants must not use an initial zero. An integer constant that has an initial zero is interpreted
as an octal constant. Thus,
int i = 10; /*decimal 10 */
int i = 010; /*decimal 8 */
int i = 0; /*decimal 0 = octal 0 */

Octal
All constants with an initial zero are taken to be octal. If an octal constant contains the illegal digits 8 or
9, an error is reported. Octal constants exceeding 037777777777 are truncated.

Hexadecimal
All constants starting with 0x (or 0X) are taken to be hexadecimal. Hexadecimal constants exceeding
0xFFFFFFFF are truncated.

long and unsigned suffixes
The suffix L (or l) attached to any constant forces the constant to be represented as a long. Similarly,
the suffix U (or u) forces the constant to be unsigned. It is unsigned long if the value of the number
itself is greater than decimal 65,535, regardless of which base is used. You can use both L and U
suffixes on the same constant in any order or case: ul, lu, UL, and so on. See the table of Borland
constants.
The data type of a constant in the absence of any suffix (U, u, L, or l) is the first of the following types
that can accommodate its value:

Decimal int, long int, unsigned long int
Octal int, unsigned int, long int, unsigned long int
Hexadecimal int, unsigned int, long int, unsigned long int
If the constant has a U or u suffix, its data type will be the first of unsigned int, unsigned long int that
can accommodate its value.
If the constant has an L or l suffix, its data type will be the first of long int, unsigned long int that can
accommodate its value.
If the constant has both u and l suffixes, (ul, lu, Ul, lU, uL, Lu, LU or UL), its data type will be unsigned
long int.
C++Builder integer constants without L or U summarizes the representations of integer constants in all
three bases. The data types indicated assume no overriding L or U suffix has been used.

Extended integer types
See also
You can specify the size for integer types. You must use the appropriate suffix when using extended
integers.
Type Suffix Example Storage
__int8 i8 __int8 c = 127i8; 8 bits
__int16 i16 __int16 s = 32767i16; 16 bits
__int32 i32 __int32 i = 123456789i32;32 bits
__int64 i64 __int64 big = 12345654321i64; 64 bits
unsigned __int64 ui64 unsigned __int64    hugeInt = 64 bits

          1234567887654321ui64;

C++Builder integer constants without L or U
See also

Decimal constants
0 to 32,767 int
32,768 to 2,147,483,647 long
2,147,483,648 to 4,294,967,295 unsigned long

> 4294967295 truncated

Octal constants
00 to 077777 int
010000 to 0177777 unsigned int
02000000 to 017777777777 long
020000000000 to 037777777777 unsigned long

> 037777777777 truncated

Hexadecimal constants
0x0000 to 0x7FFF int
0x8000 to 0xFFFF unsigned int
0x10000 to 0x7FFFFFFF long
0x80000000 to 0xFFFFFFFF unsigned long

>0xFFFFFFFF truncated

Floating-point constants
See also
A floating-point constant consists of:
 Decimal integer
 Decimal point
 Decimal fraction
 e or E and a signed integer exponent (optional)
 Type suffix: f or F or l or L (optional)
You can omit either the decimal integer or the decimal fraction (but not both). You can omit either the
decimal point or the letter e (or E) and the signed integer exponent (but not both). These rules allow for
conventional and scientific (exponent) notations.
Negative floating constants are taken as positive constants with the unary operator minus (-) prefixed.
Here are some examples:

Constant Value
23.45e6 23.45 106
.0 0
0. 0
1. 1.0 100 = 1.0
-1.23 -1.23
2e-5 2.0 10-5
3E+10 3.0 1010
.09E34 0.09 1034
In the absence of any suffixes, floating-point constants are of type double. However, you can coerce a
floating constant to be of type float by adding an f or F suffix to the constant. Similarly, the suffix l or L
forces the constant to be data type long double. The table below shows the ranges available for float,
double, and long double.

C++Builder floating-point constant sizes and ranges
Type Size (bits) Range
float 32 3.4 10-38 to 3.4 1038

double 64 1.7 10-308 to 1.7 10308

long double 80 3.4 10-4932 to 1.1 104932

Character constants
See also
A character constant is one or more characters enclosed in single quotes, such as 'A', '+', or '\n'. In C,
single-charactrer constants have data type int. The number of bits used to internally represent a
character constant is sizeof(int). In a 16-bit program, the upper byte is zero or sign-extended. In C++, a
character constant has type char. Multicharacter constants in both C and C++ have data type int.
To learn more about character constants, see the following topics.
 Three char types
 Escape sequences
 Wide-character and multi-character constants
Note: To compare sizes of character types, compile this as a C program and then as a C++ program.
#include <stdio.h>
#define CH 'x' /* A CHARACTER CONSTANT */
void main(void) {
 char ch = 'x'; /* A char VARIABLE */
 printf("\nSizeof int = %d", sizeof(int));
 printf("\nSizeof char = %d", sizeof(char));
 printf("\nSizeof ch = %d", sizeof(ch));
 printf("\nSizeof CH = %d", sizeof(CH));
 printf("\nSizeof wchar_t = %d", sizeof(wchar_t));
}
Note: Sizes are in bytes.

Sizes of character types
Output when compiled as C program Output when compiled as C++ program
Sizeof int = 4 Sizeof int = 4
Sizeof char = 1 Sizeof char = 1
Sizeof ch = 1 Sizeof ch = 1
Sizeof CH = 4 Sizeof CH = 1
Sizeof wchar_t = 2 Sizeof wchar_t = 2

The three char types
See also
One-character constants, such as 'A', '\t' and '007', are represented as int values. In this case, the low-
order byte is sign extended into the high bit; that is, if the value is greater than 127 (base 10), the upper
bit is set to -1 (=0xFF). This can be disabled by declaring that the default char type is unsigned, which
forces the high bit to be zero regardless of the value of the low bit.
The three character types, char, signed char, and unsigned char, require an 8-bit (one byte) storage.
In C and C++Builder programs prior to version Borland C++ 4.0 , char is treated the same as signed
char. The behavior of C programs is unaffected by the distinction between the three character types.
Note: To retain the old behavior, use the -K2 command-line option and Borland C++ 3.1    header files

and libraries.
In a C++ program, a function can be overloaded with arguments of type char, signed char, or
unsigned char. For example, the following function prototypes are valid and distinct:
void func(char ch);
void func(signed char ch);
void func(unsigned char ch);
If only one of the above prototypes exists, it will accept any of the three character types. For example,
the following is acceptable:
void func(unsigned char ch);
void main(void) {
 signed char ch = 'x';
 func(ch);
 }

Escape sequences
See also
The backslash character (\) is used to introduce an escape sequence, which allows the visual
representation of certain nongraphic characters. For example, the constant \n is used to the single
newline character.
A backslash is used with octal or hexadecimal numbers to represent the ASCII symbol or control code
corresponding to that value; for example, '\03' for Ctrl-C or '\x3F' for the question mark. You can use any
string of up to three octal or any number of hexadecimal numbers in an escape sequence, provided that
the value is within legal range for data type char (0 to 0xff for C++Builder). Larger numbers generate the
compiler error Numeric constant too large. For example, the octal number \777 is larger than the
maximum value allowed (\377) and will generate an error. The first nonoctal or nonhexadecimal
character encountered in an octal or hexadecimal escape sequence marks the end of the sequence.
Take this example.
printf("\x0072.1A Simple Operating System");
This is intended to be interpreted as \x007 and "2.1A Simple Operating System". However, C++Builder
compiles it as the hexadecimal number \x0072 and the literal string "2.1A Simple Operating System".
To avoid such problems, rewrite your code like this:
printf("\x007" "2.1A Simple Operating System");
Ambiguities might also arise if an octal escape sequence is followed by a nonoctal digit. For example,
because 8 and 9 are not legal octal digits, the constant \258 would be interpreted as a two-character
constant made up of the characters \25 and 8.
The following table shows the available escape sequences.

C++Builder escape sequences
Note: You must use \\ to represent an ASCII backslash, as used in operating system paths.

Sequence Value Char What it does
\a 0x07 BEL Audible bell

\b 0x08 BS Backspace

\f 0x0C FF Formfeed

\n 0x0A LF Newline (linefeed)

\r 0x0D CR Carriage return

\t 0x09 HT Tab (horizontal)

\v 0x0B VT Vertical tab

\\ 0x5c \ Backslash

\' 0x27 ' Single quote (apostrophe)

\" 0x22 " Double quote

\? 0x3F ? Question mark

\O any O=a string of up to three octal digits

\xH any H=a string of hex digits

\XH any H=a string of hex digits

Wide-character and multi-character constants
See also
Wide-character types can be used to represent a character that does not fit into the storage space
allocated for a char type. A wide character is stored in a two-byte space. A character constant preceded
immediately by an L is a wide-character constant of data type wchar_t (defined in stddef.h). For
example:
wchar_t ch = L'AB';
When wchar_t is used in a C program it is a type defined in stddef.h header file. In a C++ program,
wchar_t is a keyword that can represent distinct codes for any element of the largest extended
character set in any of the supported locales. In C++, wchar_t is the same size, signedness, and
alignment requirement as an int type.
A string preceded immediately by an L is a wide-character string. The memory allocation for a string is
two bytes per character. For example:
wchar_t str = L"ABCD";
Multi-character constants
C++Builder also supports multi-character constants. Multi-character constants can consist of as many
as four characters. For example, the constant, '\006\007\008\009' is valid only in an C++Builder
program. Multi-character constants are always 32-bit int values. The constants are not portable to other
C compilers.

String constants
See also
String constants, also known as string literals, form a special category of constants used to handle fixed
sequences of characters. A string literal is of data type array-of-char and storage class static, written as
a sequence of any number of characters surrounded by double quotes:
"This is literally a string!"
The null (empty) string is written "".
The characters inside the double quotes can include escape sequences. This code, for example:
"\t\t\"Name\"\\\tAddress\n\n"
prints like this:
"Name"\ Address
"Name" is preceded by two tabs; Address is preceded by one tab. The line is followed by two new lines.
The \" provides interior double quotes.
If you compile with the -A option for ANSI compatibility, the escape character sequence "\\", is translated
to "\" by the compiler.
A literal string is stored internally as the given sequence of characters plus a final null character ('\0'). A
null string is stored as a single '\0' character.
Adjacent string literals separated only by whitespace are concatenated during the parsing phase. In the
following example,
#include <stdio.h>
int main() {
 char *p;

 p = "This is an example of how C++Builder"
 " will\nconcatenate very long strings for you"
 " automatically, \nresulting in nicer"

 " looking programs.";
 printf(p);
 return(0);
}
The output of the program is
This is an example of how C++Builder will
concatenate very long strings for you automatically,
resulting in nicer looking programs.
You can also use the backslash (\) as a continuation character to extend a string constant across line
boundaries:
puts("This is really \
a one-line string");

Enumeration constants
See also
Enumeration constants are identifiers defined in enum type declarations. The identifiers are usually
chosen as mnemonics to assist legibility. Enumeration constants are integer data types. They can be
used in any expression where integer constants are valid. The identifiers used must be unique within the
scope of the enum declaration. Negative initializers are allowed. See Enumerations and enum
(keyword) for a detailed look at enum declarations.
The values acquired by enumeration constants depend on the format of the enumeration declaration
and the presence of optional initializers. In this example,
enum team { giants, cubs, dodgers };
giants, cubs, and dodgers are enumeration constants of type team that can be assigned to any variables
of type team or to any other variable of integer type. The values acquired by the enumeration constants
are
giants = 0, cubs = 1, dodgers = 2
in the absence of explicit initializers. In the following example,
enum team { giants, cubs=3, dodgers = giants + 1 };
the constants are set as follows:
giants = 0, cubs = 3, dodgers = 1
The constant values need not be unique:
enum team { giants, cubs = 1, dodgers = cubs - 1 };

Constants and internal representation
See also
ANSI C acknowledges that the size and numeric range of the basic data types (and their various
permutations) are implementation-specific and usually derive from the architecture of the host computer.
For C++Builder, the target platform is the IBM PC family (and compatibles), so the architecture of the
Intel 8088 and 80x86    microprocessors governs the choices of internal representations for the various
data types.
The following tables list the sizes and resulting ranges of the data types for C++Builder. Internal
representation of numerical types shows how these types are represented internally.

32-bit data types, sizes, and ranges
Type Size (bits) Range Sample applications
unsigned char 8 0 to 255 Small numbers and full PC character set

char 8 -128 to 127 Very small numbers and ASCII characters

short int 16 -32,768 to 32,767 Counting, small numbers, loop control

unsigned int 32 0 to 4,294,967,295 Large numbers and loops

int 32 -2,147,483,648 to 2,147,483,647 Counting, small numbers, loop control

unsigned long 32 0 to 4,294,967,295 Astronomical distances

enum 32 -2,147,483,648 to 2,147,483,647 Ordered sets of values

long 32 -2,147,483,648 to 2,147,483,647 Large numbers, populations

float 32 3.4 ^ 10-38 to 1.7 ^ 1038 Scientific (7-digit) precision)

double 64 1.7 ^ 10-308 to 3.4 ^ 10308 Scientific (15-digit precision)

long double 80 3.4 ^ 10-4932 to 1.1 ^ 104932 Financial (18-digit precision)

Data Types (32-bit)
See also Keywords

Type Length Range
unsigned char 8 bits 0    to    255
char 8 bits -128    to    127
short int 16 bits -32,768    to    32,767
unsigned int 32 bits 0    to    4,294,967,295
int 32 bits -2,147,483,648    to    2,147,483,647
unsigned long 32 bits 0    to    4,294,967,295
enum 16 bits -2,147,483,648    to    2,147,483,647
long 32 bits -2,147,483,648    to    2,147,483,647
float 32 bits 3.4 x 10-38    to    3.4 x 10+38

double 64 bits 1.7 x 10-308    to    1.7 x 10+308

long double 80 bits 3.4 x 10-4932 to    1.1 x 10+4932

Internal representation of numerical types
See also

32-bit integers

Floating-point types, always

s = Sign bit (0 = positive, 1 = negative) Exponent bias (normalized values):

i = Position of implicit binary point float: 127 (7FH)

1 = Integer bit of significance: double: 1,023 (3FFH)

Stored in long double
Implicit in float, double

long double: 16,383 (3FFFH)

Constant expressions
See also
A constant expression is an expression that always evaluates to a constant (and it must evaluate to a
constant that is in the range of representable values for its type). Constant expressions are evaluated
just as regular expressions are. You can use a constant expression anywhere that a constant is legal.
The syntax for constant expressions is:
constant-expression:
Conditional-expression

Constant expressions cannot contain any of the following operators, unless the operators are contained
within the operand of a sizeof operator:
 Assignment
 Comma
 Decrement
 Function call
 Increment

Punctuators
See also
The C++Builder punctuators (also known as separators) are:
[]
()
{ }
,   
;   
:
...   
*
=
#
Most of these punctuators also function as operators.

Brackets
Open and close brackets indicate single and multidimensional array subscripts:
char ch, str[] = "Stan";
int mat[3][4]; /* 3 x 4 matrix */
ch = str[3]; /* 4th element */
 .
 .
 .

Parentheses
Open and close parentheses () are used to group expressions, isolate conditional expressions, and
indicate function calls and function parameters:
d = c * (a + b); /* override normal precedence */
if (d == z) ++x; /* essential with conditional statement */
func(); /* function call, no args */
int (*fptr)(); /* function pointer declaration */
fptr = func; /* no () means func pointer */
void func2(int n); /* function declaration with parameters */
Parentheses are recommended in macro definitions to avoid potential precedence problems during
expansion:
#define CUBE(x) ((x) * (x) * (x))
The use of parentheses to alter the normal operator precedence and associativity rules is covered in
Expressions.

Braces
Open and close braces { } indicate the start and end of a compound statement:
if (d == z)
{
 ++x;
 func();
}
The closing brace serves as a terminator for the compound statement, so a ; (semicolon) is not required
after the }, except in structure or class declarations. Often, the semicolon is illegal, as in
if (statement)
 {}; /*illegal semicolon*/

else

Comma
The comma (,) separates the elements of a function argument list:
void func(int n, float f, char ch);
The comma is also used as an operator in comma expressions. Mixing the two uses of comma is legal,
but you must use parentheses to distinguish them:
func(i, j); /* call func with two args */
func((exp1, exp2), (exp3, exp4, exp5)); /* also calls func with two args! *
/

Semicolon
The semicolon (;) is a statement terminator. Any legal C or C++ expression (including the empty
expression) followed by a semicolon is interpreted as a statement, known as an expression statement.
The expression is evaluated and its value is discarded. If the expression statement has no side effects,
C++Builder might ignore it.
a + b; /* maybe evaluate a + b, but discard value */
++a; /* side effect on a, but discard value of ++a */
; /* empty expression = null statement */
Semicolons are often used to create an empty statement:
for (i = 0; i < n; i++)
{
 ;
}

Colon
Use the colon (:) to indicate a labeled statement:
start: x=0;
 ƒ
goto start;
Labels are discussed in Labeled statements.

Ellipsis
The ellipsis (...) is three successive periods with no intervening whitespace. Ellipses are used in the
formal argument lists of function prototypes to indicate a variable number of arguments, or arguments
with varying types:
void func(int n, char ch,...);
This declaration indicates that func will be defined in such a way that calls must have at least two
arguments, an int and a char, but can also have any number of additional arguments.
In C++, you can omit the comma before the ellipsis.

Asterisk (pointer declaration)
The asterisk (*) in a variable declaration denotes the creation of a pointer to a type:
char *char_ptr; /* a pointer to char is declared */
Pointers with multiple levels of indirection can be declared by indicating a pertinent number of asterisks:
int **int_ptr; /* a pointer to an integer array */
double ***double_ptr; /* a pointer to a matrix of doubles */
You can also use the asterisk as an operator to either dereference a pointer or as the multiplication
operator:
i = *int_ptr;

a = b * 3.14;

Equal sign (initializer)
The equal sign (=) separates variable declarations from initialization lists:
char array[5] = { 1, 2, 3, 4, 5 };
int x = 5;
In C++, declarations of any type can appear (with some restrictions) at any point within the code. In a C
function, no code can precede any variable declarations.
In a C++ function argument list, the equal sign indicates the default value for a parameter:
int f(int i = 0) { ... } /* Parameter i has default value of zero */
The equal sign is also used as the assignment operator in expressions:
int a, b, c;
a = b + c;
float *ptr = (float *) malloc(sizeof(float) * 100);

Pound sign (preprocessor directive)
The pound sign (#) indicates a preprocessor directive when it occurs as the first nonwhitespace
character on a line. It signifies a compiler action, not necessarily associated with code generation. See
Preprocessor directives for more on the preprocessor directives.
and ## (double pound signs) are also used as operators to perform token replacement and merging
during the preprocessor scanning phase.

Language structure
See also
These topics provide a formal definition of C++ language and its implementation in C++Builder. They
describe the legal ways in which tokens can be grouped together to form expressions, statements, and
other significant units.

Declarations
See also
This section briefly reviews concepts related to declarations: objects, storage classes, types, scope,
visibility, duration, and linkage. A general knowledge of these is essential before tackling the full
declaration syntax. Scope, visibility, duration, and linkage determine those portions of a program that
can make legal references to an identifier in order to access its object.

Objects
See also
An object is an identifiable region of memory that can hold a fixed or variable value (or set of values).
(This use of the word object is different from the more general term used in object-oriented languages.)
Each value has an associated name and type (also known as a data type). The name is used to access
the object. This name can be a simple identifier, or it can be a complex expression that uniquely
references the object. The type is used
 to determine the correct memory allocation required initially.
 to interpret the bit patterns found in the object during subsequent accesses.
 in many type-checking situations, to ensure that illegal assignments are trapped.
C++Builder supports many standard (predefined) and user-defined data types, including signed and
unsigned integers in various sizes, floating-point numbers in various precisions, structures, unions,
arrays, and classes. In addition, pointers to most of these objects can be established and manipulated in
memory.
The C++Builder standard libraries and your own program and header files must provide unambiguous
identifiers (or expressions derived from them) and types so that C++Builder can consistently access,
interpret, and (possibly) change the bit patterns in memory corresponding to each active object in your
program.

Objects and declarations
Declarations establish the necessary mapping between identifiers and objects. Each declaration
associates an identifier with a data type. Most declarations, known as defining declarations, also
establish the creation (where and when) of the object; that is, the allocation of physical memory and its
possible initialization. Other declarations, known as referencing declarations, simply make their
identifiers and types known to the compiler. There can be many referencing declarations for the same
identifier, especially in a multifile program, but only one defining declaration for that identifier is allowed.
Generally speaking, an identifier cannot be legally used in a program before its declaration point in the
source code. Legal exceptions to this rule (known as forward references) are labels, calls to undeclared
functions, and class, struct, or union tags.

lvalues
An lvalue is an object locator: an expression that designates an object. An example of an lvalue
expression is *P, where P is any expression evaluating to a non-null pointer. A modifiable lvalue is an
identifier or expression that relates to an object that can be accessed and legally changed in memory. A
const pointer to a constant, for example, is not a modifiable lvalue. A pointer to a constant can be
changed (but its dereferenced value cannot).
Historically, the l stood for "left," meaning that an lvalue could legally stand on the left (the receiving end)
of an assignment statement. Now only modifiable lvalues can legally stand to the left of an assignment
statement. For example, if a and b are nonconstant integer identifiers with properly allocated memory
storage, they are both modifiable lvalues, and assignments such as a = 1; and b = a + b are legal.

rvalues
The expression a + b is not an lvalue: a + b = a is illegal because the expression on the left is not related
to an object. Such expressions are often called rvalues (short for right values).

Storage classes and types
See also
Associating identifiers with objects requires each identifier to have at least two attributes: storage class
and type (sometimes referred to as data type). The C++Builder compiler deduces these attributes from
implicit or explicit declarations in the source code.
Storage class dictates the location (data segment, register, heap, or stack) of the object and its duration
or lifetime (the entire running time of the program, or during execution of some blocks of code). Storage
class can be established by the syntax of the declaration, by its placement in the source code, or by
both of these factors.
The type determines how much memory is allocated to an object and how the program will interpret the
bit patterns found in the object's storage allocation. A given data type can be viewed as the set of values
(often implementation-dependent) that identifiers of that type can assume, together with the set of
operations allowed on those values. The compile-time operator, sizeof, lets you determine the size in
bytes of any standard or user-defined type. See sizeof for more on this operator.

Scope
See also
The scope of an identifier is that part of the program in which the identifier can be used to access its
object. There are five categories of scope: block (or local), function, function prototype, file, and class
(C++ only). These depend on how and where identifiers are declared.
 Block. The scope of an identifier with block (or local) scope starts at the declaration point and
ends at the end of the block containing the declaration (such a block is known as the enclosing block).
Parameter declarations with a function definition also have block scope, limited to the scope of the block
that defines the function.
 Function. The only identifiers having function scope are statement labels. Label names can be
used with goto statements anywhere in the function in which the label is declared. Labels are declared
implicitly by writing label_name: followed by a statement. Label names must be unique within a function.
 Function prototype. Identifiers declared within the list of parameter declarations in a function
prototype (not part of a function definition) have function prototype scope. This scope ends at the end of
the function prototype.
 File. File scope identifiers, also known as globals, are declared outside of all blocks and classes;
their scope is from the point of declaration to the end of the source file.
 Class (C++). A class is a named collection of members, including data structures and functions
that act on them. Class scope applies to the names of the members of a particular class.Classes and their
objects have many special access and scoping rules; see Classes.
 Condition (C++). Declarations in conditions are supported. Variables can be declared within the
expression of if, while, and switch statements. The scope of the variable is that of the statement. In the
case of an if statement, the variable is also in scope for the else block.

Name spaces
Name space is the scope within which an identifier must be unique. C uses four distinct classes of
identifiers:
 goto label names. These must be unique within the function in which they are declared.
 Structure, union, and enumeration tags. These must be unique within the block in which they are
defined. Tags declared outside of any function must be unique within all.
 Structure and union member names. These must be unique within the structure or union in which
they are defined. There is no restriction on the type or offset of members with the same member name in
different structures.
 Variables, typedefs, functions, and enumeration members. These must be unique within the
scope in which they are defined. Externally declared identifiers must be unique among externally declared
variables.
Note: Structures, classes, and enumerations are in the same name space in C++.

Visibility
See also
The visibility of an identifier is that region of the program source code from which legal access can be
made to the identifier's associated object.
Scope and visibility usually coincide, though there are circumstances under which an object becomes
temporarily hidden by the appearance of a duplicate identifier: the object still exists but the original
identifier cannot be used to access it until the scope of the duplicate identifier is ended.
Note: Visibility cannot exceed scope, but scope can exceed visibility.
 .
 .
 .
{
 int i; char ch; // auto by default
 i = 3; // int i and char ch in scope and visible
 .
 .
 .

 {
 double i;
 i = 3.0e3; // double i in scope and visible
 // int i=3 in scope but hidden
 ch = 'A'; // char ch in scope and visible
 }
 // double i out of scope
 i += 1; // int i visible and = 4
 .
 .
 .
// char ch still in scope & visible = 'A'
}
 .
 .
 .
// int i and char ch out of scope
Again, special rules apply to hidden class names and class member names: C++ operators allow hidden
identifiers to be accessed under certain conditions

Duration
See also
Duration, closely related to storage class, defines the period during which the declared identifiers have
real, physical objects allocated in memory. We also distinguish between compile-time and run-time
objects. Variables, for instance, unlike typedefs and types, have real memory allocated during run time.
There are three kinds of duration: static, local, and dynamic.

Static
Memory is allocated to objects with static duration as soon as execution is underway; this storage
allocation lasts until the program terminates. Static duration objects usually reside in fixed data
segments allocated according to the memory model in force, although in 32-bit development, only the
flat memory model is supported. All functions, wherever defined, are objects with static duration. All
variables with file scope have static duration. Other variables can be given static duration by using the
explicit static or extern storage class specifiers.
Static duration objects are initialized to zero (or null) in the absence of any explicit initializer or, in C++,
constructor.
Don't confuse static duration with file or global scope. An object can have static duration and local scope

Local
Local duration objects, also known as automatic objects, lead a more precarious existence. They are
created on the stack (or in a register) when the enclosing block or function is entered. They are
deallocated when the program exits that block or function. Local duration objects must be explicitly
initialized; otherwise, their contents are unpredictable. Local duration objects must always have local or
function scope. The storage class specifier auto can be used when declaring local duration variables,
but is usually redundant, because auto is the default for variables declared within a block. An object with
local duration also has local scope, because it does not exist outside of its enclosing block. The
converse is not true: a local scope object can have static duration.
When declaring variables (for example, int, char, float), the storage class specifier register also implies
auto; but a request (or hint) is passed to the compiler that the object be allocated a register if possible.
C++Builder can be set to allocate a register to a local integral or pointer variable, if one is free. If no
register is free, the variable is allocated as an auto, local object with no warning or error.
Note: The C++Builder compiler can ignore requests for register allocation. Register allocation is based

on the compiler's analysis of how a variable is used.

Dynamic
Dynamic duration objects are created and destroyed by specific function calls during a program. They
are allocated storage from a special memory reserve known as the heap, using either standard library
functions such as malloc, or by using the C++ operator new. The corresponding deallocations are made
using free or delete.

static
Example Keywords

Syntax
static <data definition> ;
static <function name> <function definition> ;

Description
Use the static storage class specifier with a local variable to preserve the last value between
successive calls to that function. A static variable acts like a local variable but has the lifetime of an
external variable.
In a class, data and member functions can be declared static. Only one copy of the static data exists
for all objects of the class.
A static member function of a global class has external linkage. A member of a local class has no
linkage. A static member function is associated only with the class in which it is declared. Therefore,
such member functions cannot be virtual.
Static member functions can only call other static member functions and only have access to static
data. Such member functions do not have a this pointer.

Translation units
See also
The term translation unit refers to a source code file together with any included files, but less any source
lines omitted by conditional preprocessor directives. Syntactically, a translation unit is defined as a
sequence of external declarations:
translation-unit:
external-declaration
translation-unit external-declaration

external-declaration
function-definition
declaration

word external has several connotations in C; here it refers to declarations made outside of any function,
and which therefore have file scope. (External linkage is a distinct property; see the section Linkage.)
Any declaration that also reserves storage for an object or function is called a definition (or defining
declaration). For more details, see External declarations and definitions.

Linkage
See also
An executable program is usually created by compiling several independent translation units, then
linking the resulting object files with preexisting libraries. A problem arises when the same identifier is
declared in different scopes (for example, in different files), or declared more than once in the same
scope. Linkage is the process that allows each instance of an identifier to be associated correctly with
one particular object or function. All identifiers have one of three linkage attributes, closely related to
their scope: external linkage, internal linkage, or no linkage. These attributes are determined by the
placement and format of your declarations, together with the explicit (or implicit by default) use of the
storage class specifier static or extern.
Each instance of a particular identifier with external linkage represents the same object or function
throughout the entire set of files and libraries making up the program. Each instance of a particular
identifier with internal linkage represents the same object or function within one file only. Identifiers with
no linkage represent unique entities.

External and internal linkage rules
 Any object or file identifier having file scope will have internal linkage if its declaration contains the
storage class specifier static.

For C++, if the same identifier appears with both internal and external linkage within the same file,
the identifier will have external linkage. In C, it will have internal linkage.
 If the declaration of an object or function identifier contains the storage class specifier extern, the
identifier has the same linkage as any visible declaration of the identifier with file scope. If there is no such
visible declaration, the identifier has external linkage.
 If a function is declared without a storage class specifier, its linkage is determined as if the
storage class specifier extern had been used.
 If an object identifier with file scope is declared without a storage class specifier, the identifier has
external linkage.
Identifiers with no linkage attribute:
 Any identifier declared to be other than an object or a function (for example, a typedef identifier)
 Function parameters
 Block scope identifiers for objects declared without the storage class specifier extern

Name mangling
When a C++ module is compiled, the compiler generates function names that include an encoding of the
function's argument types. This is known as name mangling. It makes overloaded functions possible,
and helps the linker catch errors in calls to functions in other modules. However, there are times when
you won't want name mangling. When compiling a C++ module to be linked with a module that does not
have mangled names, the C++ compiler has to be told not to mangle the names of the functions from
the other module. This situation typically arises when linking with libraries or .OBJ files compiled with a
C compiler
To tell the C++ compiler not to mangle the name of a function, declare the function as extern "C", like
this:
extern "C" void Cfunc(int);
This declaration tells the compiler that references to the function Cfunc should not be mangled.
You can also apply the extern "C" declaration to a block of names:
extern "C" {
 void Cfunc1(int);
 void Cfunc2(int);
 void Cfunc3(int);
};
As with the declaration for a single function, this declaration tells the compiler that references to the
functions Cfunc1, Cfunc2, and Cfunc3 should not be mangled. You can also use this form of block
declaration when the block of function names is contained in a header file:

extern "C" {
 #include "locallib.h"
};

Introduction to declaration syntax
See also
All six interrelated attributes (storage classes, types, scope, visibility, duration, and linkage) are
determined in diverse ways by declarations.
Declarations can be defining declarations (also known as definitions) or referencing declarations
(sometimes known as nondefining declarations). A defining declaration, as the name implies, performs
both the duties of declaring and defining; the nondefining declarations require a definition to be added
somewhere in the program. A referencing declaration introduces one or more identifier names into a
program. A definition actually allocates memory to an object and associates an identifier with that object.

Tentative definitions
See also
The ANSI C standard supports the concept of the tentative definition. Any external data declaration that
has no storage class specifier and no initializer is considered a tentative definition. If the identifier
declared appears in a later definition, then the tentative definition is treated as if the extern storage
class specifier were present. In other words, the tentative definition becomes a simple referencing
declaration.
If the end of the translation unit is reached and no definition has appeared with an initializer for the
identifier, then the tentative definition becomes a full definition, and the object defined has uninitialized
(zero-filled) space reserved for it. For example,
int x;
int x; /*legal, one copy of x is reserved */
int y;
int y = 4; /* legal, y is initialized to 4 */
int z = 5;
int z = 6; /* not legal, both are initialized definitions */
Unlike ANSI C, C++ doesn't have the concept of a tentative declaration; an external data declaration
without a storage class specifier is always a definition.

Possible declarations
See also
The range of objects that can be declared includes
 Variables
 Functions
 Classes and class members (C++)
 Types
 Structure, union, and enumeration tags
 Structure members
 Union members
 Arrays of other types
 Enumeration constants
 Statement labels
 Preprocessor macros
The full syntax for declarations is shown in Tables 2.1 through 2.3. The recursive nature of the declarator
syntax allows complex declarators. You'll probably want to use typedefs to improve legibility.
In Borland C++ declaration syntax, note the restrictions on the number and order of modifiers and
qualifiers. Also, the modifiers listed are the only addition to the declarator syntax that are not ANSI C or
C++. These modifiers are each discussed in greater detail in Variable Modifiers and Function Modifiers.

C++Builder declaration syntax
declaration: elaborated-type-specifier:

<decl-specifiers>    <declarator-list>; class-key    identifier
asm-declaration class-key    class-name
function-declaration enum enum-name
linkage-specification class-key: (C++ specific)

decl-specifier: class
storage-class-specifier struct
type-specifier union
function-specifier enum-specifier:
friend (C++ specific) enum <identifier> { <enum-list> }
typedef enum-list:

decl-specifiers: enumerator
<decl-specifiers> decl-specifier enumerator-list , enumerator

storage-class-specifier: enumerator:
auto identifier
register identifier = constant-expression
static constant-expression:
extern conditional-expression

function-specifier: (C++ specific) linkage-specification: (C++ specific)
inline extern string { <declaration-list> }
virtual extern string declaration

simple-type-name: type-specifier:
class-name simple-type-name
typedef-name class-specifier

boolean
char enum-specifier
short elaborated-type-specifier
int const

__int8
__int16
__int32
__int64

long volatile
signed declaration-list:
unsigned declaration
float declaration-list ; declaration
double
void

declarator-list: type-name:
init-declarator type-specifier <abstract-declarator>
declarator-list    ,    init-declarator abstract-declarator:

init-declarator: pointer-operator <abstract-declarator>
declarator <initializer> <abstract-declarator> (argument-declaration-list)

declarator: <cv-qualifier-list>
dname <abstract-declarator> [<constant-expression>]
modifier-list (abstract-declarator)
pointer-operator declarator argument-declaration-list:
declarator (parameter-declaration-list) <arg-declaration-list>

<cv-qualifier-list > arg-declaration-list , ...
(The <cv-qualifier-list > is for C++ only.) <arg-declaration-list> ... (C++ specific)

declarator [<constant-expression>] arg-declaration-list:
(declarator) argument-declaration

modifier-list: arg-declaration-list , argument-declaration
modifier argument-declaration:
modifier-list    modifier decl-specifiers declarator

modifier: decl-specifiers declarator = expression
_ _cdecl (C++ specific)
_ _pascal decl-specifiers <abstract-declarator>

_ _stdcall decl-specifiers <abstract-declarator> =
expression
_ _fastcall (C++ specific)

function-definition:
function-body:

pointer-operator: compound-statement
* <cv-qualifier-list> initializer:

& <cv-qualifier-list> (C++ specific) = expression
class-name :: * <cv-qualifier-list> = { initializer-list }

(C++ specific) (expression-list) (C++ specific)
cv-qualifier-list: initializer-list:

cv-qualifier <cv-qualifier-list> expression
cv-qualifier initializer-list , expression

const { initializer-list <,> }
volatile

dname:
name
class-name (C++ specific)
~ class-name (C++ specific)
type-defined-name

External declarations and definitions
See also
The storage class specifiers auto and register cannot appear in an external declaration. For each
identifier in a translation unit declared with internal linkage, no more than one external definition can be
given.
An external definition is an external declaration that also defines an object or function; that is, it also
allocates storage. If an identifier declared with external linkage is used in an expression (other than as
part of the operand of sizeof), then exactly one external definition of that identifier must be somewhere
in the entire program.
C++Builder allows later re-declarations of external names, such as arrays, structures, and unions, to
add information to earlier declarations. Here's an example:
int a[]; // no size
struct mystruct; // tag only, no member declarators
 .
 .
 .
int a[3] = {1, 2, 3}; // supply size and initialize
struct mystruct {
 int i, j;
}; // add member declarators
C++Builder class declaration syntax (C++ only) covers class declaration syntax. In the section on
classes (beginning with Classes), you can find examples of how to declare a class. Referencing covers
C++ reference types (closely related to pointer types) in detail. Finally, see Using Templates for a
discussion of template-type classes.

C++Builder class declaration syntax (C++ only)
class-specifier: base-specifier:

class-head { <member-list> } : base-list
class-head: base-list:

class-key <identifier> <base-specifier> base-specifier
class-key class-name <base-specifier> base-list , base-specifier

member-list: base-specifier:
member-declaration <member-list> class-name
access-specifier : <member-list> virtual <access-specifier> class-name

member-declaration: access-specifier <virtual> class-name
<decl-specifiers> <member-declarator-list> ; access-specifier:
function-definition <;> private
qualified-name ; protected

member-declarator-list: public
member-declarator conversion-function-name:
member-declarator-list, member-declarator operator conversion-type-name

member-declarator: conversion-type-name:
declarator <pure-specifier> type-specifiers <pointer-operator>
<identifier> : constant-expression constructor-initializer:

pure-specifier: : member-initializer-list
= 0

member-initializer-list: operator-name: one of
member-initializer new    delete    sizeof    typeid
member-initializer , member-initializer-list + - * / % ^

member-initializer: & | ~ ! = <>
class name (<argument-list>) += -= =* /= %= ^=
identifier (<argument-list>) &= |= << >> >>= <<=

operator-function-name: == != <= >= && ||
operator operator-name ++ __ , ->* -> ()

[] .*

Type Specifiers
See also
The type determines how much memory is allocated to an object and how the program interprets the bit
patterns found in the object's storage allocation. A data type is the set of values (often implementation-
dependent) identifiers can assume, together with the set of operations allowed on those values.
The type specifier with one or more optional modifiers is used to specify the type of the declared
identifier:
int i; // declare i as an integer
unsigned char ch1, ch2; // declare two unsigned chars
By long-standing tradition, if the type specifier is omitted, type signed int (or equivalently, int) is the
assumed default. However, in C++, a missing type specifier can lead to syntactic ambiguity, so C++
practice requires you to explicitly declare all int type specifiers.
The type specifier keywords in C++Builder are:
char float signed wchar_t
class int struct
double long union
enum short unsigned

Use the sizeof operators to find the size in bytes of any predefined or user-defined type.

Type categories
See also
The four basic type categories (and their subcategories) are as follows:
 Aggregate
 Array
 struct
 union
 class (C++ only)
 Function
 Scalar
 Arithmetic
 Enumeration
 Pointer
 Reference (C++ only)
 void)
Types can also be viewed in another way: they can be fundamental or derived types. The fundamental
types are void, char, int, float, and double, together with short, long, signed, and unsigned variants
of some of these. The derived types include pointers and references to other types, arrays of other
types, function types, class types, structures, and unions.
A class object, for example, can hold a number of objects of different types together with functions for
manipulating these objects, plus a mechanism to control access and inheritance from other classes
Given any nonvoid type type (with some provisos), you can declare derived types as follows:

Declaring types

Declaration Description
type t; An object of type type
type array[10]; Ten types: array[0] - array[9]

type *ptr; ptr is a pointer to type
type &ref = t; ref is a reference to type (C++)

type func(void); func returns value of type type
void func1(type t); func1 takes a type type parameter

struct st {type t1; type t2}; structure st holds two types

Note: type& var, type &var, and type & var are all equivalent.

void
Example Keywords

Syntax
void identifier

Description
void is a special type indicating the absence of any value. Use the void keyword as a function return
type if the function does not return a value.
void hello(char *name)
{
 printf("Hello, %s.",name);
}
Use void as a function heading if the function does not take any parameters.
int init(void)
{
 return 1;
}

Void Pointers
Generic pointers can also be declared as void, meaning that they can point to any type.
void pointers cannot be dereferenced without explicit casting because the compiler cannot determine
the size of the pointer object.

The fundamental types
See also
The fundamental type specifiers are built from the following keywords:
char __int8 long
double __int16 signed
float __int32 short
int __int64 unsigned
From these keywords you can build the integral and floating-point types, which are together known as
the arithmetic types. The modifiers long, short, signed, and unsigned can be applied to the integral
types. The include file limits.h contains definitions of the value ranges for all the fundamental types.

Integral types
char, short, int, and long, together with their unsigned variants, are all considered integral data types.
Integral types shows the integral type specifiers, with synonyms listed on the same line.

Integral types
char, signed char Synonyms if default char set to signed.
unsigned char
char, unsigned char Synonyms if default char set to unsigned.
signed char
int, signed int
unsigned, unsigned int
short, short int, signed short int
unsigned short, unsigned short int
long, long int, signed long int
unsigned long, unsigned long int

Note: These synonyms are not valid in C++. See The three char types.

signed or unsigned can only be used with char, short, int, or long. The keywords signed and
unsigned, when used on their own, mean signed int and unsigned int, respectively.
In the absence of unsigned, signed is assumed for integral types. An exception arises with char.    C+
+Builder lets you set the default for char to be signed or unsigned. (The default, if you don't set it
yourself, is signed.) If the default is set to unsigned, then the declaration char ch declares ch as
unsigned. You would need to use signed char ch to override the default. Similarly, with a signed
default for char, you would need an explicit unsigned char ch to declare an unsigned char.
Only long or short can be used with int. The keywords long and short used on their own mean long
int and short int.
ANSI C does not dictate the sizes or internal representations of these types, except to indicate that
short, int, and long form a nondecreasing sequence with "short <= int <= long." All three types can
legally be the same. This is important if you want to write portable code aimed at other platforms.
In a C++Builder 32-bit program, the types int and long are equivalent, both being 32 bits. The signed
varieties are all stored in two's complement format using the most significant bit (MSB) as a sign bit: 0
for positive, 1 for negative (which explains the ranges shown in 32-bit data types, sizes, and ranges). In
the unsigned versions, all bits are used to give a range of 0 - (2n - 1), where n is 8, 16, or 32.

Floating-point types
The representations and sets of values for the floating-point types are implementation dependent; that
is, each implementation of C is free to define them. C++Builder uses the IEEE floating-point formats.See
the topic on ANSI implementation-specific.

float and double are 32- and 64-bit floating-point data types, respectively. long can be used with
double to declare an 80-bit precision floating-point identifier: long double test_case, for example.
The table of 32-bit data types, sizes, and ranges indicates the storage allocations for the floating-point
types

Standard arithmetic conversions
When you use an arithmetic expression, such as a + b, where a and b are different arithmetic types, C+
+Builder performs certain internal conversions before the expression is evaluated. These standard
conversions include promotions of "lower" types to "higher" types in the interests of accuracy and
consistency.
Here are the steps C++Builder uses to convert the operands in an arithmetic expression:
1. Any small integral types are converted as shown in Methods used in standard arithmetic conversions.

After this, any two values associated with an operator are either int (including the long and unsigned
modifiers), or they are of type double, float, or long double.

2. If either operand is of type long double, the other operand is converted to long double.
3. Otherwise, if either operand is of type double, the other operand is converted to double.
4. Otherwise, if either operand is of type float, the other operand is converted to float.
5. Otherwise, if either operand is of type unsigned long, the other operand is converted to unsigned

long.
6. Otherwise, if either operand is of type long, then the other operand is converted to long.
7. Otherwise, if either operand is of type unsigned, then the other operand is converted to unsigned.
8. Otherwise, both operands are of type int.
The result of the expression is the same type as that of the two operands.

Methods used in standard arithmetic conversions

Type Converts to Method
char int Zero or sign-extended (depends on default char type)
unsigned char int Zero-filled high byte (always)
signed char int Sign-extended (always)
short int Same value; sign extended
unsigned short unsigned int Same value; zero filled
enum int Same value

Special char, int, and enum conversions
Note: The conversions discussed in this section are specific to C++Builder.
Assigning a signed character object (such as a variable) to an integral object results in automatic sign
extension. Objects of type signed char always use sign extension; objects of type unsigned char
always set the high byte to zero when converted to int.
Converting a longer integral type to a shorter type truncates the higher order bits and leaves low-order
bits unchanged. Converting a shorter integral type to a longer type either sign-extends or zero-fills the
extra bits of the new value, depending on whether the shorter type is signed or unsigned, respectively.

Initialization
See also
Initializers set the initial value that is stored in an object (variables, arrays, structures, and so on). If you
don't initialize an object, and it has static duration, it will be initialized by default in the following manner:
 To zero if it is an arithmetic type
 To null if it is a pointer type
Note: If the object has automatic storage duration, its value is indeterminate.

Syntax for initializers
initializer

= expression
= {initializer-list} <,>}
(expression list)

initializer-list
expression
initializer-list, expression
{initializer-list} <,>}

Rules governing initializers
 The number of initializers in the initializer list cannot be larger than the number of objects to be
initialized.
 The item to be initialized must be an object (for example, an array) of unknown size.
 For C (not required for C++), all expressions must be constants if they appear in one of these
places:
 In an initializer for an object that has static duration.
 In an initializer list for an array, structure, or union (expressions using sizeof are also allowed).
 If a declaration for an identifier has block scope, and the identifier has external or internal linkage,
the declaration cannot have an initializer for the identifier.
 If a brace-enclosed list has fewer initializers than members of a structure, the remainder of the
structure is initialized implicitly in the same way as objects with static storage duration.
Scalar types are initialized with a single expression, which can optionally be enclosed in braces. The
initial value of the object is that of the expression; the same constraints for type and conversions apply
as for simple assignments.
For unions, a brace-enclosed initializer initializes the member that first appears in the union's declaration
list. For structures or unions with automatic storage duration, the initializer must be one of the following:
 An initializer list (as described in Arrays, structures, and unions).
 A single expression with compatible union or structure type. In this case, the initial value of the
object is that of the expression.

Arrays, structures, and unions
You initialize arrays and structures (at declaration time, if you like) with a brace-enclosed list of
initializers for the members or elements of the object in question. The initializers are given in increasing
array subscript or member order. You initialize unions with a brace-enclosed initializer for the first
member of the union. For example, you could declare an array days, which counts how many times
each day of the week appears in a month (assuming that each day will appear at least once), as follows:
int days[7] = { 1, 1, 1, 1, 1, 1, 1 }
The following rules initialize character arrays and wide character arrays:
 You can initialize arrays of character type with a literal string, optionally enclosed in braces. Each
character in the string, including the null terminator, initializes successive elements in the array. For
example, you could declare

char name[] = { "Unknown" };
which sets up an eight-element array, whose elements are 'U' (for name[0]), 'n' (for name[1]), and so

on (and including a null terminator).
 You can initialize a wide character array (one that is compatible with wchar_t) by using a wide
string literal, optionally enclosed in braces. As with character arrays, the codes of the wide string literal
initialize successive elements of the array.
Here is an example of a structure initialization:
struct mystruct {
 int i;
 char str[21];
 double d;
 } s = { 20, "Borland", 3.141 };
Complex members of a structure, such as arrays or structures, can be initialized with suitable
expressions inside nested braces.

Declarations and declarators
See also
A declaration is a list of names. The names are sometimes referred to as declarators or identifiers. The
declaration begins with optional storage class specifiers, type specifiers, and other modifiers. The
identifiers are separated by commas and the list is terminated by a semicolon.
Simple declarations of variable identifiers have the following pattern:
data-type var1 <=init1>, var2 <=init2>, ...;

where var1, var2,... are any sequence of distinct identifiers with optional initializers. Each of the
variables is declared to be of type data-type. For example,
int x = 1, y = 2;
creates two integer variables called x and y (and initializes them to the values 1 and 2, respectively).

These are all defining declarations; storage is allocated and any optional initializers are applied.
The initializer for an automatic object can be any legal expression that evaluates to an assignment-
compatible value for the type of the variable involved. Initializers for static objects must be constants or
constant expressions.
In C++, an initializer for a static object can be any expression involving constants and previously
declared variables and functions
The format of the declarator indicates how the declared name is to be interpreted when used in an
expression. If type is any type, and storage class specifier is any storage class specifier, and if D1 and
D2 are any two declarators, then the declaration
storage-class-specifier type D1, D2;
indicates that each occurrence of D1 or D2 in an expression will be treated as an object of type type
and storage class storage class specifier. The type of the name embedded in the declarator will be
some phrase containing type, such as "type," "pointer to type," "array of type," "function returning
type," or "pointer to function returning type," and so on.

For example, in Declaration syntax examples each of the declarators could be used as rvalues (or
possibly lvalues in some cases) in expressions where a single int object would be appropriate. The
types of the embedded identifiers are derived from their declarators as follows:

Declaration syntax examples       

Declarator syntax Implied type of name Example
type name; type int count;
type name[]; (open) array of type int count[];
type name[3]; Fixed array of three elements, int count[3];

all of type (name[0], name[1], and
name[2]

type *name; Pointer to type int *count;
type *name[]; (open) array of pointers to type int *count[];
type *(name[]); Same as above int *(count[]);
type (*name)[]; Pointer to an (open) array of type int (*count) [];
type &name; Reference to type (C++ only) int &count;
type name(); Function returning type int count();
type *name(); Function returning pointer to type int *count();
type *(name()); Same as above int *(count());
type (*name)(); Pointer to function returning type int (*count) ();

Note the need for parentheses in (*name)[] and (*name)(); this is because the precedence of both the
array declarator [] and the function declarator () is higher than the pointer declarator *. The
parentheses in *(name[]) are optional.
Note: See C++Builderdeclaration syntax for the declarator syntax. The definition covers both identifier

and function declarators.

Storage Class Specifiers
Storage classes specifiers are also called type specifiers. They dictate the location (data segment,
register, heap, or stack) of an object and its duration or lifetime (the entire running time of the program,
or during execution of some blocks of code). Storage class can be established by the declaration
syntax, by its placement in the source code, or by both of these factors.

The keyword mutable does not affect the lifetime of the class member to which it is applied.
The storage class specifiers in C++Builder are:
auto register
__declspec static
extern typedef
mutable

Variable modifiers
See also
In addition to the storage class specifier keywords, a declaration can use certain modifiers to alter some
aspect of the identifier. The modifiers available with C++Builder are summarized in C++Builder
modifiers.

Mixed-language calling conventions
C++Builder allows your programs to easily call routines written in other languages, and vice versa.
When you mix languages , you have to deal with two important issues: identifiers and parameter
passing.
By default, C++Builder saves all global identifiers in their original case (lower, upper, or mixed) with an
underscore "_" prepended to the front of the identifier. To remove the default, you can use the -u
command-line option.
Note: The section Linkage tells how to use extern, which allows C names to be referenced from a C++

program.
Calling conventions summarizes the effects of a modifier applied to a called function. For every modifier,
the table shows the order in which the function parameters are pushed on the stack. Next, the table
shows whether the calling program (the caller) or the called function (the callee) is responsible for
popping the parameters off the stack. Finally, the table shows the effect on the name of a global
function.

Calling conventions

Modifier Push parameters Pop parameters Name change
_ _cdecl1 Right first Caller '_' prepended

_ _fastcall Left first Callee '@' prepended

_ _pascal Left first Callee Uppercase

_ _stdcall Right first Callee No change

1. This is the default.

Note: __fastcall and _ _stdcall are subject to name mangling. See the description of the -VC option.

const

Syntax
const <variable name> [= <value>] ;
<function name> (const <type>*<variable name> ;)
<function name> const;

Description
Use the const modifier to make a variable value unmodifiable.
Use the const modifier to assign an initial value to a variable that cannot be changed by the program.
Any future assignments to a const result in a compiler error.
A const pointer cannot be modified, though the object to which it points can be changed. Consider the
following examples.
 const float pi = 3.14;
 const maxint = 12345; // When used by itself, const is equivalent to
int.

 char *const str1 = "Hello, world"; // A constant pointer
 char const *str2 = "Borland International"; // A pointer to a constant
character string.

Given these declarations, the following statements are illegal.
pi = 3.0; // Assigns a value to a const.
i = maxint++; // Increments a const.
str1 = "Hi, there!" // Points str1 to something else.

Using the const Keyword in C++ Programs
C++ extends const to include classes and member functions. In a C++ class definition, use the const
modifier following a member function declaration. The member function is prevented from modifying any
data in the class.
A class object defined with the const keyword attempts to use only member functions that are also
defined with const. If you call a member function that is not defined as const, the compiler issues a
warning that the a non-const function is being called for a const object. Using the const keyword in this
manner is a safety feature of C++.
Warning: A pointer can indirectly modify a const variable, as in the following:

*(int *)&my_age = 35;
If you use the const modifier with a pointer parameter in a function's parameter list, the function cannot
modify the variable that the pointer points to. For example,
int printf (const char *format, ...);
printf is prevented from modifying the format string.

volatile
See also Keywords

Syntax
volatile <data definition> ;

Description
Use the volatile modifier to indicate that a variable can be changed by a background routine, an
interrupt routine, or an I/O port. Declaring an object to be volatile warns the compiler not to make
assumptions concerning the value of the object while evaluating expressions in which it occurs because
the value could change at any moment. It also prevents the compiler from making the variable a register
variable
volatile int ticks;
void timer() {
 ticks++;
}
void wait (int interval) {
 ticks = 0;
 while (ticks < interval); // Do nothing
}
The routines in this example (assuming timer has been properly associated with a hardware clock
interrupt) implement a timed wait of ticks specified by the argument interval. A highly optimizing compiler
might not load the value of ticks inside the test of the while loop since the loop doesn’t change the value
of ticks.
Note: C++ extends volatile to include classes and member functions. If you’ve declared a volatile

object, you can use only its volatile member functions.

cdecl, _cdecl,    _ _cdecl
Example Keywords

Syntax
cdecl <data/function definition> ;
_cdecl <data/function definition> ;
__cdecl <data/function definition> ;

Description
Use a cdecl, _cdecl, or _ _cdecl modifier to declare a variable or a function using the C-style naming
conventions (case-sensitive, with a leading underscore appended). When you use cdecl, _cdecl, or _
_cdecl in front of a function, it effects how the parameters are passed (last parameter is pushed first,
and the caller cleans up the stack). The _ _cdecl modifier overrides the compiler directives and IDE
options.
The cdecl, _cdecl, and __cdecl keywords are specific to C++Builder.

pascal, _pascal,    _ _pascal
Keywords

Syntax
pascal <data-definition/function-definition> ;
_pascal <data-definition/function-definition> ;
__pascal <data-definition/function-definition> ;

Description
Use the pascal, _pascal, and __pascal keywords to declare a variable or a function using a Pascal-
style naming convention (the name is in uppercase).
In addition, pascal declares Pascal-style parameter-passing conventions when applied to a function
header (first parameter pushed first; the called function cleans up the stack).
In C++ programs, functions declared with the pascal modifer will still be mangled.

_stdcall,    __stdcall
Keywords

Syntax
__stdcall <function-name>
_stdcall <function-name>

Description
The _stdcall and __stdcall keywords force the compiler to generate function calls using the Standard
calling convention. Functions must pass the correct number and type of arguments; this is unlike normal
C use, which permits a variable number of function arguments. Such functions comply with the standard
WIN32 argument-passing convention.
Note: The __stdcall modifier is subject to name mangling. See the description of the -VC option.

_fastcall, _ _fastcall
See also Keywords

Syntax
return-value _fastcall function-name(parm-list)
return-value __fastcall function-name(parm-list)

Description
Use the __fastcall modifier to declare functions that expect parameters to be passed in registers. The
first three parameters are passed (from left to right) in EAX, EBX, and EDX, if they fit in the register. The
registers are not used if the parameter is a floating-point or struct type.
All form class member functions must use the __fastcall convention.
The compiler treats this calling convention as a new language specifier, along the lines of _cdecl and
_pascal
Functions declared using _cdecl or _pascal cannot also have the _fastcall modifiers because they use
the stack to pass parameters. Likewise, the __fastcall modifier cannot be used together with _export.
The compiler prefixes the _ _fastcall function name with an at-sign ("@"). This prefix applies to both
unmangled C function names and to mangled C++ function names.
Note: The __fastcall modifier is subject to name mangling. See the description of the -VC option.

Multithread variables
Keywords
The keyword _ _thread is used in multithread programs to preserve a unique copy of global and static
class variables. Each program thread maintains a private copy of a _ _thread variable for each threaded
process.
The syntax is Type __thread variable__name. For example
 int __thread x;
declares an integer type variable that will be global but private to each thread in the program in which
the statement occurs.
The _ _thread modifier can be used with global (file-scope) and static variables. The modifier cannot be
used with pointers or functions. (However, you can have pointers to _ _thread objects.) A program
element that requires run-time initialization or run-time finalization cannot be declared to be a _ _thread
type. The following declarations require run-time initialization and are therefore illegal.
int f();
int __thread x = f(); // illegal
Instantiation of a class with a user-defined constructor or destructor requires run-time initialization and is
therefore illegal.
class X {
 X();
 ~X();
};
X __thread myclass; // illegal

Function modifiers
See also
This section presents descriptions of the C++Builder function modifiers
You can use the _ _export and _ _import modifiers to modify functions.
In 32-bit programs the keyword can be applied to class, function, and variable declarations
The _ _export modifier makes the function exportable from Windows. The _ _import modifier makes a
function available to a Windows program. The keywords are used in an executable (if you don't use
smart callbacks) or in a DLL.
Functions declared with the _ _fastcall modifier have different names than their non-_ _fastcall
counterparts. The compiler prefixes the _ _fastcall function name with an @. This prefix applies to both
unmangled C function names and to mangled C++ function names.

C++Builder modifiers

Modifier Use with Description
const1 Variables Prevents changes to object.
volatile1 Variables Prevents register allocation and some optimization. Warns

compiler that object might be subject to outside change
during evaluation.

_ _cdecl2 Functions Forces C argument-passing convention. Affects linker and
link-time names.

_ _cdecl2 Variables Forces global identifier case-sensitivity and leading
underscores.

_ _pascal Functions Forces Pascal argument-passing convention. Affects
linker and link-time names.

_ _pascal Variables Forces global identifier case-insensitivity with no leading
underscores.

_ _export Functions/classes Tells the compiler which functions or classes to export.
_ _import Functions/classes Tells the compiler which functions or classes to import.
_ _fastcall Functions Forces register parameter passing convention. Affects the

linker and link-time names.
_ _stdcall Function Forces the standard WIN32 argument-passing

convention.
1. C++ extends const and volatile to include classes and member functions.
2. This is the default.

Pointers
See also
Pointers fall into two main categories: pointers to objects and pointers to functions. Both types of
pointers are special objects for holding memory addresses.
The two pointer classes have distinct properties, purposes, and rules for manipulation, although they do
share certain C++Builder operations. Generally speaking, pointers to functions are used to access
functions and to pass functions as arguments to other functions; performing arithmetic on pointers to
functions is not allowed. Pointers to objects, on the other hand, are regularly incremented and
decremented as you scan arrays or more complex data structures in memory.
Although pointers contain numbers with most of the characteristics of unsigned integers, they have their
own rules and restrictions for assignments, conversions, and arithmetic. The examples in the next few
sections illustrate these rules and restrictions.
Note: See Referencing for a discussion of referencing and dereferencing.

Pointers to objects
See also
A pointer of type "pointer to object of type" holds the address of (that is, points to) an object of type.
Since pointers are objects, you can have a pointer pointing to a pointer (and so on). Other objects
commonly pointed at include arrays, structures, unions, and classes.

Pointers to functions
See also
A pointer to a function is best thought of as an address, usually in a code segment, where that function's
executable code is stored; that is, the address to which control is transferred when that function is
called. The size and disposition of your code segments is determined by the memory model in force,
which in turn dictates the size of the function pointers needed to call your functions.
A pointer to a function has a type called "pointer to function returning type," where type is the function's
return type. For example,
void (*func)();
In C++, this is a pointer to a function taking no arguments, and returning void. In C, it's a pointer to a
function taking an unspecified number of arguments and returning void. In this example,
void (*func)(int);
*func is a pointer to a function taking an int argument and returning void.
For C++, such a pointer can be used to access static member functions. Pointers to class members
must use pointer-to-member operators. See static_cast for details.

Pointer declarations
See also
A pointer must be declared as pointing to some particular type, even if that type is void (which really
means a pointer to anything). Once declared, though, a pointer can usually be reassigned so that it
points to an object of another type. C++Builder lets you reassign pointers like this without typecasting,
but the compiler will warn you unless the pointer was originally declared to be of type pointer to void.
And in C, but not C++, you can assign a void* pointer to a non-void* pointer. See void for details.
Warning: You need to initialize pointers before using them.
If type is any predefined or user-defined type, including void, the declaration
type *ptr; /* Uninitialized pointer */
declares ptr to be of type "pointer to type." All the scoping, duration, and visibility rules apply to the ptr
object just declared.
A null pointer value is an address that is guaranteed to be different from any valid pointer in use in a
program. Assigning the integer constant 0 to a pointer assigns a null pointer value to it.
The mnemonic NULL (defined in the standard library header files, such as stdio.h) can be used for
legibility. All pointers can be successfully tested for equality or inequality to NULL.
The pointer type "pointer to void" must not be confused with the null pointer. The declaration
void *vptr;
declares that vptr is a generic pointer capable of being assigned to by any "pointer to type" value,
including null, without complaint. Assignments without proper casting between a "pointer to type1" and a
"pointer to type2," where type1 and type2 are different types, can invoke a compiler warning or error. If
type1 is a function and type2 isn't (or vice versa), pointer assignments are illegal. If type1 is a pointer to
void, no cast is needed. Under C, if type2 is a pointer to void, no cast is needed.

Pointer constants
See also
A pointer or the pointed-at object can be declared with the const modifier. Anything declared as a const
cannot be have its value changed. It is also illegal to create a pointer that might violate the
nonassignability of a constant object. Consider the following examples:
int i; // i is an int
int * pi; // pi is a pointer to int (uninitialized)
int * const cp = &i; // cp is a constant pointer to int
const int ci = 7; // ci is a constant int
const int * pci; // pci is a pointer to constant int
const int * const cpc = &ci; // cpc is a constant pointer to a
 // constant int
The following assignments are legal:
i = ci; // Assign const-int to int
*cp = ci; // Assign const-int to
 // object-pointed-at-by-a-const-pointer
++pci; // Increment a pointer-to-const
pci = cpc; // Assign a const-pointer-to-a-const to a
 // pointer-to-const
The following assignments are illegal:
ci = 0; // NO--cannot assign to a const-int
ci--; // NO--cannot change a const-int
*pci = 3; // NO--cannot assign to an object
 // pointed at by pointer-to-const
cp = &ci; // NO--cannot assign to a const-pointer,
 // even if value would be unchanged
cpc++; // NO--cannot change const-pointer
pi = pci; // NO--if this assignment were allowed,
 // you would be able to assign to *pci
 // (a const value) by assigning to *pi.
Similar rules apply to the volatile modifier. Note that const and volatile can both appear as modifiers to
the same identifier.

Pointer arithmetic
See also
Pointer arithmetic is limited to addition, subtraction, and comparison. Arithmetical operations on object
pointers of type "pointer to type" automatically take into account the size of type; that is, the number of
bytes needed to store a type object.
The internal arithmetic performed on pointers depends on the memory model in force and the presence
of any overriding pointer modifiers.
When performing arithmetic with pointers, it is assumed that the pointer points to an array of objects.
Thus, if a pointer is declared to point to type, adding an integral value to the pointer advances the
pointer by that number of objects of type. If type has size 10 bytes, then adding an integer 5 to a pointer
to type advances the pointer 50 bytes in memory. The difference has as its value the number of array
elements separating the two pointer values. For example, if ptr1 points to the third element of an array,
and ptr2 points to the tenth element, then the result of ptr2 - ptr1 would be 7.

The difference between two pointers has meaning only if both pointers point into the same array
When an integral value is added to or subtracted from a "pointer to type," the result is also of type
"pointer to type."
There is no such element as "one past the last element," of course, but a pointer is allowed to assume
such a value. If P points to the last array element, P + 1 is legal, but
P + 2 is undefined. If P points to one past the last array element, P - 1 is legal, giving a pointer to the last
element. However, applying the indirection operator * to a "pointer to one past the last element" leads to
undefined behavior.
Informally, you can think of P + n as advancing the pointer by (n * sizeof(type)) bytes, as long as the
pointer remains within the legal range (first element to one beyond the last element).
Subtracting two pointers to elements of the same array object gives an integral value of type ptrdiff_t
defined in stddef.h. This value represents the difference between the subscripts of the two referenced
elements, provided it is in the range of ptrdiff_t. In the expression P1 - P2, where P1 and P2 are of type
pointer to type (or pointer to qualified type), P1 and P2 must point to existing elements or to one past the
last element. If P1 points to the i-th element, and P2 points to the j-th element, P1 - P2 has the value
(i - j).

Pointer conversions
See also
Pointer types can be converted to other pointer types using the typecasting mechanism:
char *str;
int *ip;
str = (char *)ip;
More generally, the cast (type*) will convert a pointer to type "pointer to type."
See C++ specific for a discussion of C++ typecast mechanisms.

C++ reference declarations
See also
C++ reference types are closely related to pointer types. Reference types create aliases for objects and
let you pass arguments to functions by reference. C passes arguments only by value. In C++ you can
pass arguments by value or by reference. See Referencing for complete details.

Arrays
See also
The declaration

type declarator [<constant-expression>]
declares an array composed of elements of type. An array consists of a contiguous region of storage
exactly large enough to hold all of its elements.
If an expression is given in an array declarator, it must evaluate to a positive constant integer. The value
is the number of elements in the array. Each of the elements of an array is numbered from 0 through the
number of elements minus one.
Multidimensional arrays are constructed by declaring arrays of array type. The following example shows
one way to declare a two-dimensional array. The implementation is for three rows and five columns but it
can be very easily modified to accept run-time user input.

/* DYNAMIC MEMORY ALLOCATION FOR A MULTIDIMENSIONAL OBJECT. */
#include <stdio.h>
#include <stdlib.h>

typedef long double TYPE;
typedef TYPE *OBJECT;
unsigned int rows = 3, columns = 5;

void de_allocate(OBJECT);

int main(void) {
 OBJECT matrix;
 unsigned int i, j;

 /* STEP 1: SET UP THE ROWS. */
 matrix = (OBJECT) calloc(rows, sizeof(TYPE *));

 /* STEP 2: SET UP THE COLUMNS. */
 for (i = 0; i < rows; ++i)
 matrix[i] = (TYPE *) calloc(columns, sizeof(TYPE));

 for (i = 0; i < rows; i++)
 for (j = 0; j < columns; j++)
 matrix[i][j] = i + j; /* INITIALIZE */

 for (i = 0; i < rows; ++i) {
 printf("\n\n");
 for (j = 0; j < columns; ++j)
 printf("%5.2Lf", matrix[i][j]);
 de_allocate(matrix);
 return 0;
 }

void de_allocate(OBJECT x) {
 int i;

 for (i = 0; i < rows; i++) /* STEP 1: DELETE THE COLUMNS */
 free(x[i]);

 free(x); /* STEP 2: DELETE THE ROWS. */
 }
This code produces the following output:
0.00 1.00 2.00 3.00 4.00
1.00 2.00 3.00 4.00 5.00
2.00 3.00 4.00 5.00 6.00
In certain contexts, the first array declarator of a series might have no expression inside the brackets.
Such an array is of indeterminate size. This is legitimate in contexts where the size of the array is not
needed to reserve space.
For example, an extern declaration of an array object does not need the exact dimension of the array;
neither does an array function parameter. As a special extension to ANSI C, C++Builder also allows an
array of indeterminate size as the final member of a structure. Such an array does not increase the size
of the structure, except that padding can be added to ensure that the array is properly aligned. These
structures are normally used in dynamic allocation, and the size of the actual array needed must be
explicitly added to the size of the structure in order to properly reserve space.
Except when it is the operand of a sizeof or & operator, an array type expression is converted to a
pointer to the first element of the array.

Functions
See also
Functions are central to C and C++ programming. Languages such as Pascal distinguish between
procedure and function. For C and C++, functions play both roles.
Member functions are sometimes referred to as methods.

Declarations and definitions
See also
Each program must have a single external function named main marking the entry point of the program.
Functions are usually declared as prototypes in standard or user-supplied header files, or within
program files. Functions are external by default and are normally accessible from any file in the
program. They can be restricted by using the static storage class specifier (see Linkage).
Functions are defined in your source files or made available by linking precompiled libraries.
A given function can be declared several times in a program, provided the declarations are compatible.
Nondefining function declarations using the function prototype format provide C++Builder with detailed
parameter information, allowing better control over argument number and type checking, and type
conversions.
Note: In C++ you must always use function prototypes. We recommend that you also use them in C.
Excluding C++ function overloading, only one definition of any given function is allowed. The
declarations, if any, must also match this definition. (The essential difference between a definition and a
declaration is that the definition has a function body.

Declarations and prototypes
See also
In the Kernighan and Ritchie style of declaration, a function could be implicitly declared by its
appearance in a function call, or explicitly declared as follows

<type> func()
where type is the optional return type defaulting to int. In C++, this declaration means <type>
func(void). A function can be declared to return any type except an array or function type. This approach
does not allow the compiler to check that the type or number of arguments used in a function call match
the declaration.
This problem was eased by the introduction of function prototypes with the following declaration syntax:

<type> func(parameter-declarator-list);
Note: You can enable a warning    with the command-line compiler: "Function called without a

prototype."
Declarators specify the type of each function parameter. The compiler uses this information to check
function calls for validity. The compiler is also able to coerce arguments to the proper type. Suppose you
have the following code fragment:
extern long lmax(long v1, long v2); /* prototype */
foo()
{
 int limit = 32;
 char ch = 'A';
 long mval;
 mval = lmax(limit,ch); /* function call */
}
Since it has the function prototype for lmax, this program converts limit and ch to long, using the
standard rules of assignment, before it places them on the stack for the call to lmax. Without the function
prototype, limit and ch would have been placed on the stack as an integer and a character, respectively;
in that case, the stack passed to lmax would not match in size or content what lmax was expecting,
leading to problems. The classic declaration style does not allow any checking of parameter type or
number, so using function prototypes aids greatly in tracking down programming errors.
Function prototypes also aid in documenting code. For example, the function strcpy takes two
parameters: a source string and a destination string. The question is, which is which? The function
prototype
char *strcpy(char *dest, const char *source);
makes it clear. If a header file contains function prototypes, then you can print that file to get most of the
information you need for writing programs that call those functions. If you include an identifier in a
prototype parameter, it is used only for any later error messages involving that parameter; it has no
other effect.
A function declarator with parentheses containing the single word void indicates a function that takes no
arguments at all:
func(void);
In C++, func() also declares a function taking no arguments
A function prototype normally declares a function as accepting a fixed number of parameters. For
functions that accept a variable number of parameters (such as printf), a function prototype can end with
an ellipsis (...), like this:
f(int *count, long total, ...)
With this form of prototype, the fixed parameters are checked at compile time, and the variable
parameters are passed with no type checking.
Note: stdarg.h and varargs.h contain macros that you can use in user-defined functions with variable

numbers of parameters.
Here are some more examples of function declarators and prototypes:
int f(); /* In C, a function returning an int with

 no information about parameters.
This is the K&R "classic style." */

int f(); /* In C++, a function taking no arguments */

int f(void); /* A function returning an int that takes
 no parameters. */

int p(int,long); /* A function returning an int that
accepts two parameters: the first,
 an int; the second, a long. */

int _ _pascal q(void); /* A pascal function returning
an int that takes no parameters at all. */

int printf(char *format,...; /* A function returning an int and
accepting a pointer to a char fixed
parameter and any number of additional
parameters of unknown type. */

int (*fp)(int) /* A pointer to a function returning an int
and requiring an int parameter. */

Definitions
See also
External function definitions gives the general syntax for external function definitions.

External function definitions
file

external-definition

file    external-definition

external-definition:

function-definition

declaration

asm-statement

function-definition:

<declaration-specifiers> declarator <declaration-list>

compound-statement

In general, a function definition consists of the following sections (the grammar allows for more
complicated cases):
1. Optional storage class specifiers: extern or static. The default is extern.
2. A return type, possibly void. The default is int.
3. Optional modifiers: _ _pascal, _ _cdecl, _ _export. The defaults depend on the compiler option

settings.
4. The name of the function.
5. A parameter declaration list, possibly empty, enclosed in parentheses. In C, the preferred way of

showing an empty list is func(void). The old style of func is legal in C but antiquated and possibly
unsafe.

6. A function body representing the code to be executed when the function is called.
Note: You can mix elements from 1 and 2.

Formal parameter declarations
See also
The formal parameter declaration list follows a syntax similar to that of the declarators found in normal
identifier declarations. Here are a few examples:
int func(void) { // no args
int func(T1 t1, T2 t2, T3 t3=1) { // three simple parameters, one
 // with default argument
int func(T1* ptr1, T2& tref) { // A pointer and a reference arg
int func(register int i) { // Request register for arg
int func(char *str,...) { /* One string arg with a variable number
of other

 args, or with a fixed number of args with var
ying types */

In C++, you can give default arguments as shown. Parameters with default values must be the last
arguments in the parameter list. The arguments' types can be scalars, structures, unions, or
enumerations; pointers or references to structures and unions; or pointers to functions or classes.
The ellipsis (...) indicates that the function will be called with different sets of arguments on different
occasions. The ellipsis can follow a sublist of known argument declarations. This form of prototype
reduces the amount of checking the compiler can make.
The parameters declared all have automatic scope and duration for the duration of the function. The
only legal storage class specifier is register.
The const and volatile modifiers can be used with formal parameter declarators

Function calls and argument conversions
See also
A function is called with actual arguments placed in the same sequence as their matching formal
parameters. The actual arguments are converted as if by initialization to the declared types of the formal
parameters.
Here is a summary of the rules governing how C++Builder deals with language modifiers and formal
parameters in function calls, both with and without prototypes:
 The language modifiers for a function definition must match the modifiers used in the declaration
of the function at all calls to the function.
 A function can modify the values of its formal parameters, but this has no effect on the actual
arguments in the calling routine, except for reference arguments in C++.
When a function prototype has not been previously declared, C++Builder converts integral arguments to
a function call according to the integral widening (expansion) rules described in Standard arithmetic
conversions. When a function prototype is in scope, C++Builder converts the given argument to the type
of the declared parameter as if by assignment
When a function prototype includes an ellipsis (...), C++Builder converts all given function arguments as
in any other prototype (up to the ellipsis). The compiler widens any arguments given beyond the fixed
parameters, according to the normal rules for function arguments without prototypes.
If a prototype is present, the number of arguments must match (unless an ellipsis is present in the
prototype). The types need to be compatible only to the extent that an assignment can legally convert
them. You can always use an explicit cast to convert an argument to a type that is acceptable to a
function prototype.
Note: If your function prototype does not match the actual function definition, C++Builder will detect this

if and only if that definition is in the same compilation unit as the prototype. If you create a library
of routines with a corresponding header file of prototypes, consider including that header file
when you compile the library, so that any discrepancies between the prototypes and the actual
definitions will be caught.
C++ provides type-safe linkage, so differences between expected and actual parameters will be
caught by the linker.

Structures
See also
A structure is a derived type usually representing a user-defined collection of named members (or
components). The members can be of any type, either fundamental or derived (with some restrictions to
be noted later), in any sequence. In addition, a structure member can be a bit field type not allowed
elsewhere. The C++Builder structure type lets you handle complex data structures almost as easily as
single variables. Structure initialization is discussed in Arrays, structures, and unions.
In C++, a structure type is treated as a class type with certain differences: default access is public, and
the default for the base class is also public. This allows more sophisticated control over access to
structure members by using the C++ access specifiers: public (the default), private, and protected.
Apart from these optional access mechanisms, and from exceptions as noted, the following discussion
on structure syntax and usage applies equally to C and C++ structures.
Structures are declared using the keyword struct. For example
struct mystruct { ... }; // mystruct is the structure tag
 .
 .
 .
struct mystruct s, *ps, arrs[10];
/* s is type struct mystruct; ps is type pointer to struct mystruct;
 arrs is array of struct mystruct. */

Untagged structures and typedefs
See also
If you omit the structure tag, you can get an untagged structure. You can use untagged structures to
declare the identifiers in the comma-delimited struct-id-list to be of the given structure type (or derived
from it), but you cannot declare additional objects of this type elsewhere
struct { ... } s, *ps, arrs[10]; // untagged structure
It is possible to create a typedef while declaring a structure, with or without a tag:
typedef struct mystruct { ... } MYSTRUCT;
MYSTRUCT s, *ps, arrs[10]; // same as struct mystruct s, etc.
typedef struct { ... } YRSTRUCT; // no tag
YRSTRUCT y, *yp, arry[20];
Usually, you don't need both a tag and a typedef: either can be used in structure declarations.
Untagged structure and union members are ignored during initialization.

Structure member declarations
See also
The member-decl-list within the braces declares the types and names of the structure members using
the declarator syntax shown in C++Builder declaration syntax.
A structure member can be of any type, with two exceptions
 The member type cannot be the same as the struct type being currently declared:
struct mystruct { mystruct s } s1, s2; // illegal
However, a member can be a pointer to the structure being declared, as in the following example:
struct mystruct { mystruct *ps } s1, s2; // OK
Also, a structure can contain previously defined structure types when declaring an instance of a
declared structure.

 Except in C++, a member cannot have the type "function returning...," but the type "pointer to
function returning..." is allowed. In C++, a struct can have member functions.
Note: You can omit the struct keyword in C++.

Structures and functions
See also
A function can return a structure type or a pointer to a structure type:
mystruct func1(void); // func1() returns a structure
mystruct *func2(void); // func2() returns pointer to structure
A structure can be passed as an argument to a function in the following ways:
void func1(mystruct s); // directly
void func2(mystruct *sptr); // via a pointer
void func3(mystruct &sref); // as a reference (C++ only)

Structure member access
See also
Structure and union members are accessed using the following two selection operators:

. (period)
-> (right arrow)

Suppose that the object s is of struct type S, and sptr is a pointer to S. Then if m is a member identifier
of type M declared in S, the expressions s.m and sptr->m are of type M, and both represent the member
object m in S. The expression sptr->m is a convenient synonym for (*sptr).m.

The operator . is called the direct member selector and the operator -> is called the indirect (or pointer)
member selector. For example:
struct mystruct
{
 int i;
 char str[21];
 double d;
} s, *sptr = &s;
 .
 .
 .
s.i = 3; // assign to the i member of mystruct s
sptr -> d = 1.23; // assign to the d member of mystruct s
The expression s.m is an lvalue, provided that s is an lvalue and m is not an array type. The expression
sptr->m is an lvalue unless m is an array type.
If structure B contains a field whose type is structure A, the members of A can be accessed by two
applications of the member selectors
struct A {
 int j;
 double x;
};
struct B {
 int i;
 struct A a;
 double d;
} s, *sptr;
 .
 .
 .
s.i = 3; // assign to the i member of B
s.a.j = 2; // assign to the j member of A
sptr->d = 1.23; // assign to the d member of B
(sptr->a).x = 3.14 // assign to x member of A
Each structure declaration introduces a unique structure type, so that in
struct A {
 int i,j;
 double d;
} a, a1;
struct B {
 int i,j;
 double d;
} b;
the objects a and a1 are both of type struct A, but the objects a and b are of different structure types.
Structures can be assigned only if the source and destination have the same type:

a = a1; // OK: same type, so member by member assignment
a = b; // ILLEGAL: different types
a.i = b.i; a.j = b.j; a.d = b.d /* but you can assign member-by-member */

Structure word alignment
See also
Memory is allocated to a structure member-by-member from left to right, from low to high memory
address. In this example,
struct mystruct {
 int i;
 char str[21];
 double d;
} s;
the object s occupies sufficient memory to hold a 4-byte integer for a 32-bit program, a 21-byte string,
and an 8-byte double. The format of this object in memory is determined by selecting the word
alignment option. Without word alignment, s will be allocated 33 contiguous bytes by the 32-bit compiler.
Word alignment is off by default. If you turn on word alignment, C++Builder pads the structure with bytes
to ensure the structure is aligned as follows:

32-bit compiler alignment
1 The structure boundaries are defined by 4-byte multiples.
2 For any non-char member, the offset will be a multiple of the member size. A short will be at an offset

that is some multiple of 2 ints from the start of the structure.
3 One to three bytes can be added (if necessary) at the end to ensure that the whole structure contains

a 4-byte multiple.
For the 32-bit compiler, with word alignment on, three bytes would be added before the double, making
a 36-byte object.

Structure name spaces
See also
Structure tag names share the same name space with union tags and enumeration tags (but enums
within a structure are in a different name space in C++). This means that such tags must be uniquely
named within the same scope. However, tag names need not differ from identifiers in the other three
name spaces: the label name space, the member name space(s), and the single name space (which
consists of variables, functions, typedef names, and enumerators).
Member names within a given structure or union must be unique, but they can share the names of
members in other structures or unions. For example
goto s;
 .
 .
 .
s: // Label
struct s { // OK: tag and label name spaces different
 int s; // OK: label, tag and member name spaces different
 float s; // ILLEGAL: member name duplicated
} s; // OK: var name space different. In C++, this can only
 // be done if s does not have a constructor.
union s { // ILLEGAL: tag space duplicate
 int s; // OK: new member space
 float f;
} f; // OK: var name space
struct t {
 int s; // OK: different member space
 .
 .
 .
} s; // ILLEGAL: var name duplicate

Incomplete declarations
See also
Incomplete declarations are also known as forward declarations.
A pointer to a structure type A can legally appear in the declaration of another structure B before A has
been declared:
struct A; // incomplete
struct B { struct A *pa };
struct A { struct B *pb };
The first appearance of A is called incomplete because there is no definition for it at that point. An
incomplete declaration is allowed here, because the definition of B doesn't need the size of A.

Bit fields
See also
When you write an application for a 16-bit platform, you can declare signed or unsigned integer
members as bit fields from 1 to 16 bits wide. For 32-bit platforms a bit field can be as much as 32 bits
wide. You specify the bit-field width and optional identifier as follows:
type-specifier <bitfield-id> : width;

where type-specifier is char, unsigned char, int, or unsigned int. Bit fields are allocated from low-
order to high-order bits within a word. The expression width must be present and must evaluate to a
constant integer in the range 1 to 32, depending on the target platform.
If the bit field identifier is omitted, the number of bits specified in width is allocated, but the field is not
accessible. This lets you match bit patterns in, say, hardware registers where some bits are unused. For
example:
struct mystruct
 int i : 2;
 unsigned j : 5;
 int : 4;
 int k : 1;
 unsigned m : 4;
) a, b, c;
produces the following layout:

Integer fields are stored in two's-complement form, with the leftmost bit being the MSB (most significant
bit). With int (for example, signed) bit fields, the MSB is interpreted as a sign bit. A bit field of width 2
holding binary 11, therefore, would be interpreted as 3 if unsigned, but as -1 if int. In the previous
example, the legal assignment a.i = 6 would leave binary 10 = -2 in a.i with no warning. The signed int
field k of width 1 can hold only the values -1 and 0, because the bit pattern 1 is interpreted as -1.
Bit fields can be declared only in structures, unions, and classes. They are accessed with the same
member selectors (. and ->) used for non-bit-field members. Also, bit fields pose several problems when
writing portable code, since the organization of bits-within-bytes and bytes-within-words is machine
dependent
The expression &mystruct.x is illegal if x is a bit field identifier, because there is no guarantee that
mystruct.x lies at a byte address

Unions
See also
Union types are derived types sharing many of the syntactical and functional features of structure types.
The key difference is that a union allows only one of its members to be "active" at any one time. The
size of a union is the size of its largest member. The value of only one of its members can be stored at
any time. In the following simple case,
union myunion { /* union tag = myunion */
 int i;
 double d;
 char ch;
} mu, *muptr=μ
the identifier mu, of type union myunion, can be used to hold a 2-byte int, an 8-byte double, or a
single-byte char, but only one of these at the same time
Note: Unions correspond to the variant record types of Pascal and Modula-2.
sizeof(union myunion) and sizeof(mu) both return 8, but 6 bytes are unused (padded) when mu holds
an int object, and 7 bytes are unused when mu holds a char. You access union members with the
structure member selectors (. and ->), but care is needed:
mu.d = 4.016;
printf("mu.d = %f\n",mu.d); //OK: displays mu.d = 4.016
printf("mu.i = %d\n",mu.i); //peculiar result
mu.ch = 'A';

printf("mu.ch = %c\n",mu.ch); //OK: displays mu.ch = A
printf("mu.d = %f\n",mu.d); //peculiar result
muptr->i = 3;

printf("mu.i = %d\n",mu.i); //OK: displays mu.i = 3
The second printf is legal, since mu.i is an integer type. However, the bit pattern in mu.i corresponds to
parts of the double previously assigned, and will not usually provide a useful integer interpretation.
When properly converted, a pointer to a union points to each of its members, and vice versa.

Anonymous unions (C++ only)
See also
A union that doesn't have a tag and is not used to declare a named object (or other type) is called an
anonymous union. It has the following form:
union { member-list };
Its members can be accessed directly in the scope where this union is declared, without using the x.y
or p->y syntax.

Anonymous unions can't have member functions and at file level must be declared static. In other
words, an anonymous union cannot have external linkage.

Union declarations
See also
The general declaration syntax for unions is similar to that for structures. The differences are
 Unions can contain bit fields, but only one can be active. They all start at the beginning of the
union. (Note that, because bit fields are machine dependent, they can pose problems when writing
portable code.)
 Unlike C++ structures, C++ union types cannot use the class access specifiers: public, private,
and protected. All fields of a union are public.
 Unions can be initialized only through their first declared member:
union local87 {
 int i;
 double d;
 } a = { 20 };
 A union can't participate in a class hierarchy. It can't be derived from any class, nor can it be a
base class. A union can have a constructor.

Enumerations
See also
An enumeration data type is used to provide mnemonic identifiers for a set of integer values. For
example, the following declaration,
enum days { sun, mon, tues, wed, thur, fri, sat } anyday;
establishes a unique integral type, enum days, a variable anyday of this type, and a set of enumerators
(sun, mon,...) with constant integer values
C++Builder is free to store enumerators in a single byte when Treat enums as ints is
unchecked (O|C|Code Generation) or the -b flag is used. The default is on (meaning enums are
always ints) if the range of values permits, but the value is always promoted to an int when used in
expressions. The identifiers used in an enumerator list are implicitly of type signed char, unsigned
char, or int, depending on the values of the enumerators. If all values can be represented in a signed
or unsigned char, that is the type of each enumerator
In C, a variable of an enumerated type can be assigned any value of type int--no type checking beyond
that is enforced. In C++, a variable of an enumerated type can be assigned only one of its enumerators.
That is,
anyday = mon; // OK
anyday = 1; // illegal, even though mon == 1
The identifier days is the optional enumeration tag that can be used in subsequent declarations of
enumeration variables of type enum days:
enum days payday, holiday; // declare two variables
In C++, you can omit the enum keyword if days is not the name of anything else in the same scope
As with struct and union declarations, you can omit the tag if no further variables of this enum type are
required:
enum { sun, mon, tues, wed, thur, fri, sat } anyday;
/* anonymous enum type */
The enumerators listed inside the braces are also known as enumeration constants. Each is assigned a
fixed integral value. In the absence of explicit initializers, the first enumerator (sun) is set to zero, and
each succeeding enumerator is set to one more than its predecessor (mon = 1, tues = 2, and so on).
See Enumeration constants for more on enumeration constants
With explicit integral initializers, you can set one or more enumerators to specific values. Any
subsequent names without initializers will then increase by one. For example, in the following
declaration,
/* Initializer expression can include previously declared enumerators */
enum coins { penny = 1, tuppence, nickel = penny + 4, dime = 10,
 quarter = nickel * nickel } smallchange;
tuppence would acquire the value 2, nickel the value 5, and quarter the value 25.
The initializer can be any expression yielding a positive or negative integer value (after possible integer
promotions). These values are usually unique, but duplicates are legal.
enum types can appear wherever int types are permitted.
enum days { sun, mon, tues, wed, thur, fri, sat } anyday;
enum days payday;
typedef enum days DAYS;
DAYS *daysptr;
int i = tues;
anyday = mon; // OK
*daysptr = anyday; // OK
mon = tues; // ILLEGAL: mon is a constant
Enumeration tags share the same name space as structure and union tags. Enumerators share the

same name space as ordinary variable identifiers:
int mon = 11;
{
 enum days { sun, mon, tues, wed, thur, fri, sat } anyday;
 /* enumerator mon hides outer declaration of int mon */
 struct days { int i, j;}; // ILLEGAL: days duplicate tag
 double sat; // ILLEGAL: redefinition of sat
}
mon = 12; // back in int mon scope
In C++, enumerators declared within a class are in the scope of that class.
In C++ it is possible to overload most operators for an enumeration. However, because the =, [], (), and
-> operators must be overloaded as member functions, it is not possible to overload them for an enum.
See the example on how to overload the postfix and prefix increment operators.

How to overload enum operators
 // OVERLOAD THE POSTFIX AND PREFIX INCREMENT OPERATORS FOR enum
 #include <iostream.h>
 enum _SEASON { spring, summer, fall, winter };
 _SEASON operator++(_SEASON &s) { // PREFIX INCREMENT
 _SEASON tmp = s; // SAVE THE ORIGINAL VALUE
 // DO MODULAR ARITHMETIC AND CAST THE RESULT TO _SEASON TYPE
 s = _SEASON((s + 1) % 4); // INCREMENT THE ORIGINAL
 return s; // RETURN THE OLD VALUE
 }
 // UNNAMED int ARGUMENT IS NOT USED
 _SEASON operator++(_SEASON &s, int) { // POSTFIX INCREMENT
 _SEASON tmp = s;
 switch (s) {
 case spring: s = summer; break;
 case summer: s = fall; break;
 case fall: s = winter; break;
 case winter: s = spring; break;
 }
 return (tmp);
 }
 int main(void) {
 _SEASON season = fall;
 cout << "\nThe season is " << season;
 cout << "\nIncrement the season: "<< ++season;
 cout << "\nNo change yet when using postfix: " << season++;
 cout << "\nFinally:" << season;
 return 0;
 }
This code produces the following output:
The season is 2
Increment the season: 3
No change yet when using postfix: 3
Finally:0

Assignment to enum types
The rules for expressions involving enum types have been made stricter. The compiler enforces these
rules with error messages if the compiler switch -A is turned on (which means strict ANSI C++).
Assigning an integer to a variable of enum type results in an error:
enum color
{
 red, green, blue
};

int f()
{
 color c;
 c = 0;
 return c;
}
The same applies when passing an integer as a parameter to a function. Notice that the result type of
the expression flag1|flag2 is int:
enum e
{
 flag1 = 0x01,
 flag2 = 0x02
};

void p(e);

void f()
{
 p(flag1|flag2);
}
To make the example compile, the expression flag1|flag2 must be cast to the enum type: e
(flag1|flag2).

Expressions
See also
An expression is a sequence of operators, operands, and punctuators that specifies a computation. The
formal syntax, listed in C++Builder expressions, indicates that expressions are defined recursively:
subexpressions can be nested without formal limit. (However, the compiler will report an out-of-memory
error if it can't compile an expression that is too complex.)
Note: C++Builder expressions shows how identifiers and operators are combined to form grammatically

legal "phrases."
Expressions are evaluated according to certain conversion, grouping, associativity, and precedence
rules that depend on the operators used, the presence of parentheses, and the data types of the
operands.The standard conversions are detailed in Methods used in standard arithmetic conversions.
The way operands and subexpressions are grouped does not necessarily specify the actual order in
which they are evaluated by C++Builder (see Evaluation order).
Expressions can produce an lvalue, an rvalue, or no value. Expressions might cause side effects
whether they produce a value or not
The precedence and associativity of the operators are summarized in Associativity and precedence of
C++Builder operators. The grammar in C++Builder expressions, completely defines the precedence and
associativity of the operators

C++Builder expressions
primary-expression:

literal
this (C++ specific)
:: identifier (C++ specific)
:: operator-function-name (C++ specific)
:: qualified-name (C++ specific)
(expression)
name

literal:
integer-constant
character-constant
floating-constant
string-literal

name:
identifier
operator-function-name (C++ specific)
conversion-function-name (C++ specific)
~ class-name (C++ specific)
qualified-name (C++ specific)

qualified-name: (C++ specific)
qualified-class-name :: name

postfix-expression:
primary-expression
postfix-expression    [expression]

postfix-expression    (<expression-list>)
simple-type-name        (<expression-list>) (C++ specific)
postfix-expression    .    name
postfix-expression    ->    name
postfix-expression    ++
postfix-expression    --
const_cast < type-id > (expression) (C++ specific)
dynamic_cast < type-id > (expression) (C++ specific)
reinterpret_cast < type-id > (expression) (C++ specific)
static_cast < type-id > (expression) (C++ specific)
typeid (expression) (C++ specific)
typeid (type-name) (C++ specific)

expression-list:
assignment-expression
expression-list    ,    assignment-expression

unary-expression:
postfix-expression
++ unary-expression
- - unary-expression
unary-operator    cast-expression
sizeof unary-expression
sizeof (type-name)
allocation-expression (C++ specific)
deallocation-expression (C++ specific)

unary-operator: one of & * + - !
allocation-expression: (C++ specific)

<::> new <placement> new-type-name <initializer>
<::> new <placement> (type-name) <initializer>

placement: (C++ specific)
(expression-list)

new-type-name: (C++ specific)
type-specifiers <new-declarator>

new-declarator: (C++ specific)
ptr-operator <new-declarator>
new-declarator [<expression>]

deallocation-expression: (C++ specific)
<::> delete cast-expression
<::> delete [] cast-expression

cast-expression:
unary-expression

(type-name)    cast-expression
pm-expression:

cast-expression
pm-expression .* cast-expression (C++ specific)
pm-expression ->* cast-expression (C++ specific)

multiplicative-expression:
pm-expression
multiplicative-expression    *    pm-expression
multiplicative-expression    /    pm-expression
multiplicative-expression    %    pm-expression

additive-expression:
multiplicative-expression
additive-expression    +    multiplicative-expression
additive-expression - multiplicative-expression

shift-expression:
additive-expression
shift-expression <<    additive-expression
shift-expression    >>    additive-expression

relational-expression:
shift-expression
relational-expression    <      shift-expression
relational-expression    >      shift-expression
relational-expression    <=    shift-expression
relational-expression    >=    shift-expression

equality-expression:
relational-expression
equality expression    ==    relational-expression
equality expression    !=    relational-expression

AND-expression:
equality-expression
AND-expression    &    equality-expression

exclusive-OR-expression:
AND-expression
exclusive-OR-expression ^ AND-expression

inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

logical-OR-expression:
logical-AND-expression
logical-OR-expression || logical-AND-expression

conditional-expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

assignment-expression:
conditional-expression
unary-expression    assignment-operator    assignment-expression

assignment-operator: one of
= *= /= %= += -=
<< => >= &= ^= |=
expression:

assignment-expression
expression , assignment-expression

constant-expression:
conditional-expression

Associativity and Precedence of Operators
Operators
There are 16 precedence categories, some of which contain only one operator. Operators in the same
category have equal precedence with each other.
Where duplicates of operators appear in the table, the first occurrence is unary, the second binary. Each
category has an associativity rule: left to right, or right to left. In the absence of parentheses, these rules
resolve the grouping of expressions with operators of equal precedence.
The precedence of each operator in the following table is indicated by its order in the table.
The first category (on the first line) has the highest precedence. Operators on the same line
have equal precedence.

Operators Associativity
() [] -> :: . left to right
! ~ + - ++ -- & * sizeof new delete right to left
.* ->* left to right
* / % left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== != left to right
& left to right
^ left to right
| left to right
&& left to right
|| right to left
?: left to right
= *= /= %= += -= &= ^= |= <<= >>= right to left
, left to right

Expressions and C++
See also
C++ allows the overloading of certain standard C operators, as explained in Overloading Operator
Functions. An overloaded operator is defined to behave in a special way when applied to expressions of
class type. For instance, the equality operator == might be defined in class complex to test the equality
of two complex numbers without changing its normal usage with non-class data types.
An overloaded operator is implemented as a function; this function determines the operand type, lvalue,
and evaluation order to be applied when the overloaded operator is used. However, overloading cannot
change the precedence of an operator. Similarly, C++ allows user-defined conversions between class
objects and fundamental types. Keep in mind, then, that some of the C language rules for operators and
conversions might not apply to expressions in C++.

Evaluation order
See also
The order in which C++Builder evaluates the operands of an expression is not specified, except where
an operator specifically states otherwise. The compiler will try to rearrange the expression in order to
improve the quality of the generated code. Care is therefore needed with expressions in which a value is
modified more than once. In general, avoid writing expressions that both modify and use the value of the
same object. For example, consider the expression
i = v[i++]; // i is undefined
The value of i depends on whether i is incremented before or after the assignment. Similarly,
int total = 0;
sum = (total = 3) + (++total); // sum = 4 or sum = 7 ??
is ambiguous for sum and total. The solution is to revamp the expression, using a temporary variable:
int temp, total = 0;
temp = ++total;
sum = (total = 3) + temp;
Where the syntax does enforce an evaluation sequence, it is safe to have multiple evaluations:
sum = (i = 3, i++, i++); // OK: sum = 4, i = 5
Each subexpression of the comma expression is evaluated from left to right, and the whole expression
evaluates to the rightmost value
C++Builder regroups expressions, rearranging associative and commutative operators regardless of
parentheses, in order to create an efficiently compiled expression; in no case will the rearrangement
affect the value of the expression
You can use parentheses to force the order of evaluation in expressions. For example, if you have the
variables a, b, c, and f, then the expression f = a + (b + c) forces (b + c) to be evaluated before adding
the result to a.

Errors and overflows
See also
Associativity and precedence of C++Builder operators. summarizes the precedence and associativity of
the operators. During the evaluation of an expression, C++Builder can encounter many problematic
situations, such as division by zero or out-of-range floating-point values. Integer overflow is ignored (C
uses modulo 2n arithmetic on n-bit registers), but errors detected by math library functions can be
handled by standard or user-defined routines.See _matherr and signal.

Operators Summary
See also
Operators are tokens that trigger some computation when applied to variables and other objects in an
expression.
Arithmetic
Assignment
Bitwise
C++ specific
Comma
Conditional
Equality
Logical
Postfix Expression Operators
Primary Expression Operators
Preprocessor
Reference/Indirect operators
Relational
sizeof
typeid
All operators can be overloaded except the following:
. C++ direct component selector

.* C++ dereference

:: C++ scope access/resolution

?: Conditional

Depending on context, the same operator can have more than one meaning. For example, the
ampersand (&) can be interpreted as:

a bitwise AND (A & B)
an address operator (&A)
in C++, a reference modifier

Note: No spaces are allowed in compound operators. Spaces change the meaning of the operator and
will generate an error.

Primary Expression Operators

For ANSI C, the primary expressions are literal (also sometimes referred to as constant), identifier, and (
expression). The C++ language extends this list of primary expressions to include the keyword this,
scope resolution operator ::, name, and the class destructor ~ (tilde).

The primary expressions are summarized in the following list.
primary-expression:
literal
this (C++ specific)

:: identifier (C++ specific)
:: operator-function-name (C++ specific)
:: qualified-name (C++ specific)
(expression)
name

literal:
integer-constant
character-constant

floating-constant
string-literal

name:
identifier
operator-function-name (C++ specific)

conversion-function-name (C++ specific)
~ class-name (C++ specific)
qualified-name (C++ specific)

qualified-name: (C++ specific)
qualified-class-name :: name

For a discussion of the primary expression this, see this (keyword). The keyword this cannot be used
outside a class member function body.

The scope resolution operator allows reference to a type, object, function, or enumerator even though its
identifier is hidden.

The parenthesis surrounding an expression do not change the unadorned expression itself.

The primary expression name is restricted to the category of primary expressions that sometimes
appear after the member access operators . (dot) and –> . Therefore, name must be either an lvalue or
a function. See also the discussion of member access operators.

An identifier is a primary expression, provided it has been suitably declared. The description and formal
definition of identifiers is shown in Lexical Elements: Identifiers.

See the discussion on how to use the destructor operator ~ (tilde).

Postfix expression operators
See also Operators

Syntax
postfix-expression(<arg-expression-list>)
array declaration [constant-expression]
compound statement { statement list }
postfix-expression . identifier
postfix-expression -> identifier

Remarks
() use to group expressions, isolate conditional expressions, indicate function calls and

function parameters
{ } use as the start and end of compound statements
[] use to indicate single and multidimensional array subscripts
. use to access structure and union members
-> use to access structure and union members

The following postfix expressions let you make safe, explicit typecasts in a C++ program.
const_cast< T > (expression)
dynamic_cast< T > (expression)
reinterpret_cast< T > (expression)
static_cast< T > (expression)
To obtain runtime type identification (RTTI), use the typeid() operator. The syntax is as follows:
typeid(expression)
typeid(type-name)

Array subscript operator
See also Operators
Brackets ([]) indicate single and multidimensional array subscripts. The expression
<exp1>[exp2]
is defined as
*((exp1) + (exp2))
where either:

exp1 is a pointer and exp2 is an integer or
exp1 is an integer and exp2 is a pointer

Function call operator
See also Operators

Syntax
postfix-expression(<arg-expression-list>)

Remarks
Parentheses ()

group expressions
isolate conditional expressions
indicate function calls and function parameters

The value of the function call expression, if it has a value, is determined by the return statement in the
function definition.
This is a call to the function given by the postfix expression.
arg-expression-list is a comma-delimited list of expressions of any type representing the actual (or real)
function arguments.

Direct member selector
See also Example Operators

Syntax
postfix-expression . identifier
postfix-expression must be of type union or structure.
identifier must be the name of a member of that structure or union type.

Remarks
Use the selection operator (.) to access structure and union members.
Suppose that the object s is of struct type S and sptr is a pointer to S. Then, if m is a member identifier
of type M declared in S, this expression:
s.m
are of type M, and represent the member object m in s.

Example
struct mystruct {
 int i
 char str[21]
 double d
} s, *sptr=&s
 ...
s.i = 3 // assign to the i member of mystruct s
The expression s.m is an lvalue, provided that s is not an lvalue and m is not an array type.
If structure B contains a field whose type is structure A, the members of A can be accessed by two
applications of the member selectors.

Indirect member selector
See also Example Operators

Syntax
postfix-expression -> identifier
postfix-expression must be of type pointer to structure or pointer to union.
identifier must be the name of a    member of that structure or union type.
The expression designates a member of a structure or union object. The value of the expression is the
value of the selected member it will be an lvalue if and only if the postfix expression is an lvalue.

Remarks
You use the selection operator -> to access structure and union members.
Suppose that the object s is of struct type S and sptr is a pointer to S. Then, if m is a member identifier
of type M declared in S, this expression:
sptr->m
is of type M, and represents the member object m in s.
The expression
s->sptr
is a convenient synonym for (*sptr).m.

-> Example
struct mystruct {
 int I;
 char str[21];
 double d;
} s, *sptr=&s;
 .
 .
 .
sptr->d = 1.23; // assign to the d member of mystruct s
The expression sptr->m is an lvalue unless m is an array type.
If structure B contains a field whose type is structure A, the members of A can be accessed by two
applications of the member selectors.

Increment/Decrement operators
Operators

Increment operator    (++)
Syntax
postfix-expression ++ (postincrement)
++ unary-expression (preincrement)
The expression is called the operand it must be of scalar type (arithmetic or pointer types) and must be
a modifiable lvalue..

Postincrement operator
The value of the whole expression is the value of the postfix expression before the increment is applied.
After the postfix expression is evaluated,the operand is incremented by 1.

Preincrement operator
The operand is incremented by 1 before the expression is evaluated the value of the whole expression
is the incremented value of the operand.
The increment value is appropriate to the type of the operand.
Pointer types follow the rules for pointer arithmetic.

Decrement operator    (--)
Syntax
postfix-expression -- (postdecrement)
-- unary-expression (predecrement)
The decrement operator follows the same rules as the increment operator, except that the operand is
decremented by 1 after or before the whole expression is evaluated.

Unary operators
See also Operators

Syntax
<unary-operator> <unary expression>
OR
<unary-operator> <type><unary expression>

Remarks
Unary operators group right-to-left.
C++Builder provides the following unary operators:
!      Logical negation
*      Indirection
++    Increment
~      Bitwise complement
--    Decrement
-      Unary minus
+      Unary plus

Reference/Dereference Operators
See also Operators

Syntax
& cast-expression
* cast-expression

Remarks
The & and * operators work together to reference and dereference pointers that are passed to functions.

Referencing operator (&)
Use the reference operator to pass the address of a pointer to a function outside of main().
The cast-expression operand must be one of the following:

a function designator
an lvalue designating an object that is not a bit field and is not declared with a register storage

class specifier
If the operand is of type <type>, the result is of type pointer to <type>.
Some non-lvalue identifiers, such as function names and array names, are automatically converted into
“pointer-to-X” types when they appear in certain contexts. The & operator can be used with such
objects, but its use is redundant and therefore discouraged.
Consider the following example:
 T t1 = 1, t2 = 2;
 T *ptr = &t1; // Initialized pointer
 *ptr = t2; // Same effect as t1 = t2
T *ptr = &t1 is treated as
 T *ptr;
 ptr = &t1;
So it is ptr, or *ptr, that gets assigned. Once ptr has been initialized with the address &t1, it can be safely
dereferenced to give the lvalue *ptr.

Indirection operator (*)
Use the asterisk (*) in a variable expression to create pointers. And use the indirect operator in external
functions to get a pointer's value that was passed by reference.
If the operand is of type pointer to function, the result is a function designator.
If the operand is a pointer to an object, the result is an lvalue designating that object.
The result of indirection is undefined if either of the following occur:
1. The cast-expression is a null pointer.
2. The cast-expression is the address of an automatic variable and execution of its block has

terminated.
Note: & can also be the bitwise AND operator.

* can also be the multiplication operator.

Plus and Minus Operators
See also Operators

Unary
In these unary + - expressions
+ cast-expression
- cast-expression
the cast-expression operand must be of arithmetic type.

Results
+ cast-expression Value of the operand after any required integral promotions.
- cast-expression Negative of the value of the operand after any required integral promotions.

Binary
Syntax
add-expression + multiplicative-expression
add-expression - multiplicative-expression
Legal operand types for op1 + op2:
1. Both op1 and op2 are of arithmetic type.
2. op1 is of integral type, and op2 is of pointer to object type.
3. op2 is of integral type, and op1 is of pointer to object type.
In case 1, the operands are subjected to the standard arithmetical conversions, and the result is the
arithmetical sum of the operands.
In cases 2 and 3, the rules of pointer arithmetic apply.

Legal operand types for op1 - op2:
1. Both op1 and op2 are of arithmetic type.
2. Both op1 and op2 are pointers to compatible object types.
3. op1 is of pointer to object type, and op2 is integral type.
In case 1, the operands are subjected to the standard arithmetic conversions, and the result is the
arithmetic difference of the operands.
In cases 2 and 3, the rules of pointer arithmetic apply.
Note: The unqualified type <type> is considered to be compatible with the qualified types const type,

volatile type,and const volatile type.

Arithmetic Operators
See also Operators

Syntax
+ cast-expression
- cast-expression
add-expression + multiplicative-expression
add-expression - multiplicative-expression
multiplicative-expr * cast-expr
multiplicative-expr / cast-expr
multiplicative-expr % cast-expr
postfix-expression ++ (postincrement)
++ unary-expression (preincrement)
postfix-expression -- (postdecrement)
-- unary-expression (predecrement)

Remarks
Use the arithmetic operators to perform mathematical computations.
The unary expressions of + and - assign a positive or negative value to the cast-expression.
+ (addition), - (subtraction), * (multiplication), and / (division) perform their basic algebraic arithmetic on
all data types, integer and floating point.
% (modulus operator) returns the remainder of integer division and cannot be used with floating points.
++ (increment) adds one to the value of the expression. Postincrement adds one to the value of the
expression after it evaluates; while preincrement adds one before it evaluates.
-- (decrement) subtracts one from the value of the expression. Postdecrement subtracts one from the
value of the expression after it evaluates; while predecrement subtracts one before it evaluates.

Binary operators
See also Operators
These are the binary operators in C++Builder:
Arithmetic + Binary plus (add)

- Binary minus (subtract)
* Multiply
/ Divide
% Remainder (modulus)

Bitwise << Shift left
>> Shift right
& Bitwise AND
^      Bitwise XOR (exclusive OR)
|      Bitwise inclusive OR

Logical &&    Logical AND
||    Logical OR

Assignment =      Assignment   
*= Assign product
/=    Assign quotient
%=    Assign remainder (modulus)
+=    Assign sum
-=    Assign difference
<<= Assign left shift
 >>= Assign right shift
&=    Assign bitwise AND
 ^=    Assign bitwise XOR
|=    Assign bitwise OR

Relational <      Less than
>      Greater than
<=    Less than or equal to
>=    Greater than or equal to
==    Equal to
!=    Not equal to

Component selection . Direct component selector
->    Indirect component selector

Class-member :: Scope access/resolution
.*    Dereference pointer to class member
->* Dereference pointer to class member

Conditional ? : Actually a ternary operator for example,
a ? x : y "if a then x else y"

Comma , Evaluate

Multiplicative Operators
Operators

Syntax
multiplicative-expr * cast-expr
multiplicative-expr / cast-expr
multiplicative-expr % cast-expr

Remarks
There are three multiplicative operators:

* (multiplication)
/ (division)
% (modulus or remainder)

The usual arithmetic conversions are made on the operands.
(op1 * op2)    Product of the two operands
(op1 / op2)    Quotient of (op1 divided by op2)
(op1 % op2)    Remainder of (op1 divided by op2)
For / and %, op2 must be nonzero op2 = 0 results in an error. (You can't divide by zero.)
When op1 and op2 are integers and the quotient is not an integer:
1. If op1 and op2 have the same sign, op1 / op2 is the largest integer less than the true quotient, and

op1 % op2 has the sign of op1.
2. If op1 and op2 have opposite signs, op1 / op2 is the smallest integer greater than the true quotient,

and op1 % op2 has the sign of op1.
Note: Rounding is always toward zero.
* is context sensitive and can be used as the pointer reference operator.

Bitwise operators
See also Operators

Syntax
AND-expression & equality-expression
exclusive-OR-expr ^ AND-expression
inclusive-OR-expr exclusive-OR-expression
~cast-expression
shift-expression << additive-expression
shift-expression >> additive-expression

Remarks
Use the bitwise operators to modify the individual bits rather than the number.

Operator What it does
& bitwise AND; compares two bits and generates a 1 result if both bits are 1, otherwise it

returns 0.
| bitwise inclusive OR; compares two bits and generates a 1 result if either or both bits are

1, otherwise it returns 0.
^ bitwise exclusive OR; compares two bits and generates a 1 result if the bits are

complementary, otherwise it returns 0.
~ bitwise complement; inverts each bit.    ~ is used to create destructors.
>> bitwise shift right; moves the bits to the right, discards the far right bit and assigns the left

most bit to 0.
<< bitwise shift left; moves the bits to the left, it discards the far left bit and assigns the right

most bit to 0.
Both operands in a bitwise expression must be of an integral type.

Bit value Results of
E1 E2 E1 & E2 E1 ^ E2 E1 | E2
0 0 0 0 0
1 0 0 1 1
0 1 0 1 1
1 1 1 0 1

Note: &, >>, << are context sensitive. & can also be the pointer reference operator.
>> can also be the input operator in I/O expressions.
<< can also be the output operator in I/O expressions.

Relational Operators
See also Operators

Syntax
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

Remarks
Use relational operators to test equality or inequality of expressions. If the statement evaluates to be
true it returns a nonzero character; otherwise it returns false (0).
> greater than
< less than
>= greater than or equal
<= less than or equal

In the expression
E1 <operator> E2
the operands must follow one of these conditions:
1. Both E1 and E2 are of arithmetic type.
2. Both E1 and E2 are pointers to qualified or unqualified versions of compatible types.
3. One of E1 and E2 is a pointer to an object or incomplete type, and the other is a pointer to a qualified

or unqualified version of void.
4. One of E1 or E2 is a pointer and the other is a null pointer constant.

Equality operators
See also
There are two equality operators: == and !=. They test for equality and inequality between arithmetic or
pointer values, following rules very similar to those for the relational operators.
Note: Notice that == and != have a lower precedence than the relational operators < and >, <=, and >=.

Also, == and != can compare certain pointer types for equality and inequality where the relational
operators would not be allowed.

The syntax is
equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

Logical Operators
Operators

Syntax
logical-AND-expr && inclusive-OR-expression
logical-OR-expr || logical-AND-expression
! cast-expression

Remarks
Operands in a logical expression must be of scalar type.
&& logical AND; returns true only if both expressions evaluate to be nonzero, otherwise returns

false. If the first expression evaluates to false, the second expression is not evaluated.
|| logical OR; returns true if either of the expressions evaluate to be nonzero, otherwise returns

false. If the first expression evaluates to true, the second expression is not evaluated.
! logical negation; returns true if the entire expression evaluates to be nonzero, otherwise returns

false. The expression !E is equivalent to (0 == E).

Conditional Operator
Operators

Syntax
logical-OR-expr ? expr : conditional-expr

Remarks
The conditional operator ?: is a ternary operator.
In the expression E1 ? E2 : E3, E1 evaluates first. If its value is true, then E2 evaluates and E3 is
ignored. If E1 evaluates to false, then E3 evaluates and E2 is ignored.
The result of E1 ? E2 : E3 will be the value of either E2 or E3 depending upon which evaluates.
E1 must be a scalar expression. E2 and E3 must obey one of the following rules:
1. Both of arithmetic type. E2 and E3 are subject to the usual arithmetic conversions, which determines

the resulting type.
2. Both of compatible struct or union types. The resulting type is the structure or union type of E2 and

E3.
3. Both of void type. The resulting type is void.
4. Both of type pointer to qualified or unqualified versions of compatible types. The resulting type is a

pointer to a type qualified with all the type qualifiers of the types pointed to by both operands.
5. One operand is a pointer, and the other is a null pointer constant. The resulting type is a pointer to a

type qualified with all the type qualifiers of the types pointed to by both operands.
6. One operand is a pointer to an object or incomplete type, and the other is a pointer to a qualified or

unqualified version of void. The resulting type is that of the non-pointer-to-void operand.

Assignment Operators
See also Operators

Syntax
unary-expr assignment-op assignment-expr

Remarks
The assignment operators are:
= *= /= %= += -=
<<= >>= &= ^= |=
The = operator is the only simple assignment operator, the others are compound assignment operators.
In the expression E1 = E2, E1 must be a modifiable lvalue. The assignment expression itself is not an
lvalue.
The expression
E1 op= E2
has the same effect as
E1 = E1 op E2
except the lvalue E1 is evaluated only once. For example, E1 += E2 is the same as E1 = E1 + E2.
The expression's value is E1 after the expression evaluates.
For both simple and compound assignment, the operands E1 and E2 must obey one of the following
rules:
1. E1 is a qualified or unqualified arithmetic type and E2 is an arithmetic type.
2. E1 has a qualified or unqualified version of a structure or union type compatible with the type of E2.
3. E1 and E2 are pointers to qualified or unqualified versions of compatible types, and the type pointed

to by the left has all the qualifiers of the type pointed to by the right.
4. Either E1 or E2 is a pointer to an object or incomplete type and the other is a pointer to a qualified or

unqualified version of void. The type pointed to by the left has all the qualifiers of the type pointed to
by the right.

5. E1 is a pointer and E2 is a null pointer constant.
Note: Spaces separating compound operators (+<space>=) will generate errors.

Comma Punctuator and Operator
See also Operators

Syntax
expression , assignment-expression

Remarks
The comma separates elements in a function argument list.
The comma is also used as an operator in comma expressions. Mixing the two uses of comma is legal,
but you must use parentheses to distinguish them.
The left operand E1 is evaluated as a void expression, then E2 is evaluated to give the result and type
of the comma expression. By recursion, the expression
E1, E2, ..., En
results in the left-to-right evaluation of each Ei, with the value and type of En giving the result of the
whole expression.
To avoid ambiguity with the commas in function argument and initializer lists, use parentheses. For
example,
func(i, (j = 1, j + 4), k);
calls func with three arguments (i, 5, k), not four.

C++ Specific Operators
See also Operators
The operators specific to C++ are:
:: Scope access (or resolution) operator

.* Dereference pointers to class members

->* Dereference pointers to pointers to class members

const_cast adds or removes the const or volatile modifier from a type
delete dynamically deallocates memory
dynamic_cast converts a pointer to a desired type
new dynamically allocates memory
reinterpret_cast replaces casts for conversions that are unsafe or implementation dependent.
static_cast converts a pointer to a desired type
typeid gets run-time identification of types and expressions

Use the scope access (or resolution) operator ::(two semicolons) to access a global (or file duration)
name even if it is hidden by a local redeclaration of that name.
Use the .* and ->* operators to dereference pointers to class members and pointers to pointers to class
members.

Statements
See also
Statements specify the flow of control as a program executes. In the absence of specific jump and
selection statements, statements are executed sequentially in the order of appearance in the source
code. C++Builder statements shows the syntax for statements.

C++Builder statements
statement:

labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement
asm-statement
declaration (C++ specific)

labeled-statement:
identifier    :    statement
case    constant-expression    :    statement
default    :    statement

compound-statement:
{    <declaration-list>    <statement-list>    }

declaration-list:
declaration
declaration-list    declaration

statement-list:
statement
statement-list    statement

expression-statement:
<expression> ;

asm-statement:
asm    tokens    newline
asm    tokens;
asm    { tokens; <tokens;>= <tokens;>}

selection-statement:
if    (expression)    statement
if    (expression)    statement else    statement
switch    (expression)    statement

iteration-statement:
while (    expression)    statement
do    statement    while    (expression) ;
for    (for-init-statement <expression>    ;    <expression>) statement

for-init-statement:
expression-statement
declaration (C++ specific)

jump-statement:
goto    identifier ;
continue    ;
break    ;
return    <expression> ;

Blocks
See also
A compound statement, or block, is a list (possibly empty) of statements enclosed in matching braces
({ }). Syntactically, a block can be considered to be a single statement, but it also plays a role in the
scoping of identifiers. An identifier declared within a block has a scope starting at the point of declaration
and ending at the closing brace. Blocks can be nested to any depth.

Labeled statements
See also
A statement can be labeled in two ways:
 label-identifier : statement

The label identifier serves as a target for the unconditional goto statement. Label identifiers have their
own name space and have function scope. In C++ you can label both declaration and non-declaration
statements.

 case constant-expression : statement
default : statement
Case and default labeled statements are used only in conjunction with switch statements.

Expression statements
See also
Any expression followed by a semicolon forms an expression statement:
<expression>;
C++Builder executes an expression statement by evaluating the expression. All side effects from this
evaluation are completed before the next statement is executed. Most expression statements are
assignment statements or function calls
The null statement is a special case, consisting of a single semicolon (;). The null statement does
nothing, and is therefore useful in situations where the C++Builder syntax expects a statement but your
program does not need one.

Selection statements
See also
Selection or flow-control statements select from alternative courses of action by testing certain values.
There are two types of selection statements: the if...else and the switch.

Iteration statements
See also
Iteration statements let you loop a set of statements. There are three forms of iteration in C++Builder:
while, do while, and for loops.

Jump statements
See also
A jump statement, when executed, transfers control unconditionally. There are four such statements:
break, continue, goto, and return

C++ specifics
See also
C++ is an object-oriented programming language based on C. Generally speaking, you can compile C
programs under C++, but you can’t compile a C++ program under C if the program uses any constructs
specific to C++. Some situations require special care. For example, the same function func declared
twice in C with different argument types invokes a duplicated name error. Under C++, however, func will
be interpreted as an overloaded function; whether or not this is legal depends on other circumstances.
Although C++ introduces new keywords and operators to handle classes, some of the capabilities of C+
+ have applications outside of any class context. This topic discusses the aspects of C++ that can be
used independently of classes, then describes the specifics of classes and class mechanisms.
See C++ Exception Handling and C-Based Structured Exceptions for details on compiling C and C++
programs with exception handling.

Namespaces overview
See Also
Most nontrivial applications consist of more than one source file. The files can be authored and
maintained by more than one developer. Eventually, the separate files are organized and linked to
produce the final application. Traditionally, the file organization requires that all names that aren't
encapsulated within a defined namespace (such as function or class body, or translation unit) must
share the same global namespace. Therefore, multiple definitions of names discovered while linking
separate modules require some way to distinguish each name. The solution to the problem of name
clashes in the global scope is provided by the C++ namespace mechanism.
The namespace mechanism allows an application to be partitioned into a number of subsystems. Each
subsystem can define and operate within its own scope. Each developer is free to introduce whatever
identifiers are convenient within a subsystem without worrying about whether such identifiers are being
used by someone else. The subsystem scope is known throughout the application by a unique identifier.
It only takes two steps to use C++ namespaces. The first is to uniquely identify a namespace with the
keyword namespace. The second is to access the elements of an identified namespace by applying the
using keyword.

Defining a namespace
SeeAlso
The grammar for defining a namespace is
      original-namespace-name:
            identifier

      namespace-definition:
          original-namespace-definition
            extension-namespace-definition
            unnamed-namespace-definition

Grammatically, there are three ways to define a namespace with the namespace keyword:
      original-namespace-definition:
                  namespace identifier { namespace-body }

      extension-namespace-definition:
                  namespace original-namespace-name { namespace-body }

      unnamed-namespace-definition:
                  namespace { namespace-body }

The body is an optional sequence of declarations. The grammar is
      namespace-body:
            declaration-seq opt

Example for extending namespaces
// An example for extending namespaces
#include <iostream.h>
 struct S { };
 class C { };

 namespace ALPHA { // ALPHA is an original identifier.
 void g(struct S) {
 cout << "Processing a structure argument" << endl;
 }
 }

 using ALPHA::g; // using-declaration

 /*** After the using-declaration above, subsequent attempts
 to overload the g() function are ignored. ***/
 namespace ALPHA { // Extending the ALPHA namespace
 void g(C&) { // Overloaded version of function
 cout << "Processing a class argument." << endl;
 }
 }

 int main() {
 S mystruct;
 C myclass;

 g(mystruct);

 // The following function call fails at compile-time
 // because there is no overloaded version for this case.
 // g(myclass);
 return 0;
 }

Output:
Processing a structure argument

Declaring a namespace
SeeAlso
An original namespace declaration should use an identifier that has not been previously used as a
global identifier.
 namespace ALPHA { /* ALPHA is the identifier of this namespace. */
 /* your program declarations */
 long double LD;
 float f(float y) { return y; }
 }
A namespace identifier must be known in all translation units where you intend to access it's elements.

Namespace alias
You can use an alternate name to refer to a namespace identifier. An alias is useful when you need to
refer to a long, unwieldy namespace identifier.
 namespace BORLAND_INTERNATIONAL {
 /* namespace-body */
 namespace NESTED_BORLAND_INTERNATIONAL {
 /* namespace-body */
 }
 }

 // Alias namespace
 namespace BI = BORLAND_INTERNATIONAL;

 // Use access qualifier to alias a nested namespace
 namespace NBI = BORLAND_INTERNATIONAL::NESTED_BORLAND_INTERNATIONAL;

Extending a namespace
Example
Namespaces are discontinuous and open for additional development. If you redeclare a namespace, the
effect is that you extend the original namespace by adding new declarations. Any extensions that are
made to a namespace after a using-declaration, will not be known at the point at which the using-
declaration occurs. Therefore, all overloaded versions of some function should be included in the
namespace before you declare the function to be in use.

Anonymous namespaces
Example
The C++ grammar allows you to define anonymous namespaces. To do this,you use the keyword
namespace with no identifier before the enclosing brace.
namespace { // Anonymous namespace
 // Declarations
 }
All anonymous, unnamed namespaces in global scope (that is, unnamed namespaces that are not
nested) of the same translation unit share the same namespace. This way you can make static
declarations without using the static keyword.
Each identifier that is enclosed within an unnamed namespace is unique within the translation unit in
which the unnamed namespace is defined.

Example

In file ANON1.CPP
#include <iostream.h>
extern void func(void);

namespace { // Anonymous
 float pi = 3.14; // Unique identifier known only in this file
 }

void main() {
 float pi = 0.1;
 cout << "pi = " << pi << endl;
 func();
 }

In file ANON2.CPP
#include <iostream.h>

namespace { // Anonymous namespace
 float pi = 10.0001; // Unique identifier known only in this file
 void func(void) {
 cout << "First func() called; pi = " << pi;
 }
 }
 void func(void) {
 cout << "Second func() called; pi = " << pi;
 }

Program output:
pi = 0.1
func() called; pi = 10.0001

Accessing elements of a namespace
There are three ways to access the elements of a namespace: by explicit access qualification, the
using-declaration, or the using-directive. Remember that no matter which namespace you add to your
local scope, identifiers in global scope (global scope is just another namespace) are still accessible by
using the scope resolution operator ::.
Explicit access qualification
Using directive
Using declaration

Accessing namespaces in classes
Example
You cannot use a using directive inside a class. However, the using declarative is allowed and can be
quite useful.

Example
// An example for accessing a namespace within a class.
// This allows us to overload a function which is a base class member.

#include <iostream.h>
 class A {
 public:
 void func(char ch) { cout << "char = " << ch << endl; }
 };

 class B : public A {
 public:
// using namespace A; // ERROR. The using directive isn’t allowed
 void func(char *str) { cout << "string = " << str << endl; }

 // The using declarative
 using A::func; // Overload B::func()
 };

 int main() {
 B b;

 b.func('c'); // Calls A::func()
 b.func("c"); // Calls B::func()
 return 0;
 }

Using directive
Example
If you want to use several (or all of) the members of a namespace, C++ provides an easy way to get
access to the complete namespace. The using-directive specifies that all identifiers in a namespace are
in scope at the point that the using-directive statement is made. The grammar for the using-directive is
as follows.
      using-directive:
            using namespace    :: opt nested-name-specifier opt namespace-name;
The using-directive is transitive. That means that when you apply the using directive to a namespace
that contains using directives within itself, you get access to those namespaces as well. For example, if
you apply the using directive in your program, you also get namespaces A, ONE, and TWO.
 namespace A {
 using namespace ONE; // This has been defined previously
 using namespace TWO; // This also has been defined previously
 }
The using-directive does not add any identifiers to your local scope. Therefore, an identifier defined in
more than one namespace won't be a problem until you actually attempt to use it. Local scope
declarations take precedence by hiding all other similar declarations.

Example
// AN EXAMPLE OF THE using DIRECTIVE
#include <iostream.h>
 namespace F {
 float x = 9;
 }
 namespace G {
 using namespace F;
 float y = 2.0;
 namespace INNER_G {
 float z = 10.01;
 }
 }

 int main() {
 using namespace G; // THIS DIRECTIVE GIVES YOU EVERYTHING DECLARED IN
"G"

 using namespace G::INNER_G; // THIS DIRECTIVE GIVES YOU ONLY
"INNER_G"

 float x = 19.1; // LOCAL DECLARATION TAKES PRECEDENCE
 cout << "x = " << x << endl;
 cout << "y = " << y << endl;
 cout << "z = " << z << endl;
 return 0;
 }

Output:
 x = 19.1
 y = 2
 z = 10.01

Using declaration
Example
You can access namespace members individually with the using-declaration syntax. When you make a
using declaration, you add the declared identifier to the local namespace. The grammar is
      using-declaration:
                    using :: unqualified-identifier;

Example
// An example of the using declaration.
// The function g() is defined in two different namespaces.
#include <iostream.h>

namespace ALPHA { /* ALPHA is the name of this namespace. */
 float f(float y) { return y; }
 void g() { cout << "ALPHA version" << endl; }
 }
namespace BETA { /* BETA is the name of this namespace. */
 void g() { cout << "BETA version" << endl; }
 }

void main(void) {
// The using declaration identifies the desired version of g().
 using ALPHA::f; // Qualified declaration
 using BETA::g; // Qualified declaration
 float x = 0;

 // Access qualifiers are no longer needed.
 x = f(2.1);
 g();
 }

Explicit access qualification
You can explicitly qualify each member of a namespace. To do so, you use the namespace identifier
together with the :: scope resolution operator followed by the member name. For example, to access a
specific member of namespace ALPHA, you write:
 ALPHA::LD; // Access a variable
 ALPHA::f; // Access a function
Explicit access qualification can always be used to resolve ambiguity. No matter which namespace
(except anonymous namespace) is being used in your subsystem, you can apply the scope resolution
operator :: to access identifiers in any namespace (including a namespace already being used in the
local scope) or the global namespace. Therefore, any identifier in the application can be accessed with
sufficient qualification.

New-stye typecasting
This section presents a discussion of alternate methods for making a typecast. The methods presented
here augment the earlier cast expressions (which are still available) in the C language.
Types cannot be defined in a cast.

New-style typecasting
See also
This section presents a discussion of alternate methods for making a typecast. The methods presented
here augment the earlier cast expressions (which are still available) in the C language.
Types cannot be defined in a cast.

const_cast
See also

Syntax
const_cast< T > (arg)

Description
Use the const_cast operator to add or remove the const or volatile modifier from a type.
In the statement, const_cast< T > (arg), T and arg must be of the same type except for const
and volatile modifiers. The cast is resolved at compile time. The result is of type T. Any number of const
or volatile modifiers can be added or removed with a single const_cast expression.
A pointer to const can be converted to a pointer to non-const that is in all other respects an identical
type. If successful, the resulting pointer refers to the original object.
A const object or a reference to const cast results in a non-const object or reference that is otherwise
an identical type.
The const_cast operator performs similar typecasts on the volatile modifier. A pointer to volatile object
can be cast to a pointer to non-volatile object without otherwise changing the type of the object. The
result is a pointer to the original object. A volatile-type object or a reference to volatile-type can be
converted into an identical non-volatile type.

dynamic_cast
See also Example
In the expression, dynamic_cast< T > (ptr), T must be a pointer or a reference to a defined class
type or void*. The argument ptr must be an expression that resolves to a pointer or reference.

If T is void* then ptr must also be a pointer. In this case, the resulting pointer can access any element
of the class that is the most derived element in the hierarchy. Such a class cannot be a base for any
other class.
Conversions from a derived class to a base class, or from one derived class to another, are as follows: if
T is a pointer and ptr is a pointer to a non-base class that is an element of a class hierarchy, the result
is a pointer to the unique subclass. References are treated similarly. If T is a reference and ptr is a
reference to a non-base class, the result is a reference to the unique subclass.
A conversion from a base class to a derived class can be performed only if the base is a polymorphic
type.
The conversion to a base class is resolved at compile time. A conversion from a base class to a derived
class, or a conversion across a hierarchy is resolved at runtime.
If successful, dynamic_cast< T > (ptr) converts ptr to the desired type. If a pointer cast fails, the
returned pointer is valued 0. If a cast to a reference type fails, the Bad_cast exception is thrown.
Note: Runtime type identification (RTTI) is required for dynamic_cast.

// dynamic_cast Example
// HOW TO MAKE DYNAMIC CASTS
// This program must be compiled with the -RT (Generate RTTI) option.
#include <iostream.h>
#include <typeinfo.h>

class Base1
{
 // In order for the RTTI mechanism to function correctly,
 // a base class must be polymorphic.
 virtual void f(void) { /* A virtual function makes the class polymorphic
*/ }

};

class Base2 { };
class Derived : public Base1, public Base2 { };

int main(void) {
 try {
 Derived d, *pd;
 Base1 *b1 = &d;

 // Perform a downcast from a Base1 to a Derived.
 if ((pd = dynamic_cast<Derived *>(b1)) != 0) {
 cout << "The resulting pointer is of type "
 << typeid(pd).name() << endl;
 }
 else throw Bad_cast();

 // Attempt cast across the hierarchy. That is, cast from
 // the first base to the most derived class and then back
 // to another accessible base.
 Base2 *b2;
 if ((b2 = dynamic_cast<Base2 *>(b1)) != 0) {
 cout << "The resulting pointer is of type "
 << typeid(b2).name() << endl;
 }
 else throw Bad_cast();
 }
 catch (Bad_cast) {
 cout << "dynamic_cast failed" << endl;
 return 1;
 }
 catch (...) {
 cout << "Exception handling error." << endl;
 return 1;
 }

 return 0;
}

reinterpret_cast
See also Example

Syntax
reinterpret_cast< T > (arg)

Description
In the statement, reinterpret_cast< T > (arg), T must be a pointer, reference, arithmetic type,
pointer to function, or pointer to member.
A pointer can be explicitly converted to an integral type.
An integral arg can be converted to a pointer. Converting a pointer to an integral type and back to the
same pointer type results in the original value.
A yet undefined class can be used in a pointer or reference conversion.
A pointer to a function can be explicitly converted to a pointer to an object type provided the object
pointer type has enough bits to hold the function pointer. A pointer to an object type can be explicitly
converted to a pointer to a function only if the function pointer type is large enough to hold the object
pointer.

// reinterpret_cast Example
// Use reinterpret_cast<Type>(expr) to replace (Type)expr casts
// for conversions that are unsafe or implementation dependent.

void func(void *v) {
 // Cast from pointer type to integral type.
 int i = reinterpret_cast<int>(v);

 .
 .
 .
}

void main() {
 // Cast from an integral type to pointer type.
 func(reinterpret_cast<void *>(5));

 // Cast from a pointer to function of one type to
 // pointer to function of another type.
 typedef void (* PFV)();

 PFV pfunc = reinterpret_cast<PFV>(func);

 pfunc();
 }

static_cast
See also

Syntax
static_cast< T > (arg)

Description
In the statement, static_cast< T > (arg), T must be a pointer, reference, arithmetic type, or
enum type. The arg-type must match the T-type. Both T and arg must be fully known at compile time.

If a complete type can be converted to another type by some conversion method already provided by
the language, then making such a conversion by using static_cast achieves exactly the same thing.
Integral types can be converted to enum types. A request to convert arg to a value that is not an
element of enum is undefined.
The null pointer is converted to itself.
A pointer to one object type can be converted to a pointer to another object type. Note that merely
pointing to similar types can cause access problems if the similar types are not similarly aligned.
You can explicitly convert a pointer to a class X to a pointer to some class Y if X is a base class for Y. A
static conversion can be made only under the following conditions:

if an unambiguous conversion exists from Y to X
if X is not a virtual base class

An object can be explicitly converted to a reference type X& if a pointer to that object can be explicitly
converted to an X*. The result of the conversion is an lvalue. No constructors or conversion functions
are called as the result of a cast to a reference.
An object or a value can be converted to a class object only if an appropriate constructor or conversion
operator has been declared.
A pointer to a member can be explicitly converted into a different pointer-to-member type only if both
types are pointers to members of the same class or pointers to members of two classes, one of which is
unambiguously derived from the other.
When T is a reference the result of static_cast< T > (arg) is an lvalue. The result of a pointer or
reference cast refers to the original expression.

Run-time type identification (RTTI) overview
See also
Run-time type identification (RTTI) lets you write portable code that can determine the actual type of a
data object at run time even when the code has access only to a pointer or reference to that object. This
makes it possible, for example, to convert a pointer to a virtual base class into a pointer to the derived
type of the actual object. Use the dynamic_cast operator to make run-time casts.
The RTTI mechanism also lets you check whether an object is of some particular type and whether two
objects are of the same type. You can do this with typeid operator, which determines the actual type of
its argument and returns a reference to an object of type const typeinfo, which describes that type.
You can also use a type name as the argument to typeid, and typeid will return a reference to a const
typeinfo object for that type. The class typeinfo provides an operator== and an operator!= that you can
use to determine whether two objects are of the same type. Class typeinfo also provides a member
function name that returns a pointer to a character string that holds the name of the type.

_ _rtti Example
/* HOW TO GET RUN-TIME TYPE INFORMATION FOR POLYMORPHIC CLASSES.*/
#include <iostream.h>
#include <typeinfo.h>

class __rtti Alpha { /* Provide RTTI for this class and */
 /* all classes derived from it */

 virtual void func() {}; /* A virtual function makes */
 /* Alpha a polymorphic class. */
};

class B : public Alpha {};

int main(void) {
 B Binst; // Instantiate class B
 B *Bptr; // Declare a B-type pointer
 Bptr = &Binst; // Initialize the pointer

 // THESE TESTS ARE DONE AT RUN TIME
 try {
 if (typeid(*Bptr) == typeid(B))
 // Ask "WHAT IS THE TYPE FOR *Bptr?"
 cout << "Name is " << typeid(*Bptr).name();
 if (typeid(*Bptr) != typeid(Alpha))
 cout << "\nPointer is not an Alpha-type.";
 return 0;
 }
 catch (Bad_typeid) {
 cout << "typeid() has failed.";
 return 1;
 }
 }

Program Output
Name is B
Pointer is not an Alpha-type.

The typeid operator
See also Example Keywords

Syntax
typeid(expression)
typeid(type-name)

Description
You can use typeid to get run-time identification of types and expressions. A call to typeid returns a
reference to an object of type const typeinfo. The returned object represents the type of the typeid
operand.
If the typeid operand is a dereferenced pointer or a reference to a polymorphic type, typeid returns the
dynamic type of the actual object pointed or referred to. If the operand is non-polymorphic, typeid
returns an object that represents the static type.
You can use the typeid operator with fundamental data types as well as user-defined types.
If the typeid operand is a dereferenced NULL pointer, the Bad_typeid exception is thrown.

_ _rtti and the -RT option
See also Example Keywords
RTTI is enabled by default in C++Builder. You can use the -RT command-line option to disable it (-RT-)
or to enable it (-RT). If RTTI is disabled, or if the argument to typeid is a pointer or a reference to a
non-polymorphic class, typeid returns a reference to a const typeinfo object that describes the declared
type of the pointer or reference, and not the actual object that the pointer or reference is bound to.
In addition, even when RTTI is disabled, you can force all instances of a particular class and all classes
derived from that class to provide polymorphic run-time type identification (where appropriate) by using
the C++Builder keyword _ _rtti in the class definition.
When you use the -RT- compiler option, if any base class is declared _ _rtti, then all polymorphic base
classes must also be declared _ _rtti.
struct __rtti S1 { virtual s1func(); }; /* Polymorphic */
struct __rtti S2 { virtual s2func(); }; /* Polymorphic */
struct X : S1, S2 { };
If you turn off the RTTI mechanism (by using the -RT- compiler option), RTTI might not be available for
derived classes. When a class is derived from multiple classes, the order and type of base classes
determines whether or not the class inherits the RTTI capability.
When you have polymorphic and non-polymorphic classes, the order of inheritance is important. If you
compile the following declarations with -RT-, you should declare X with the _ _rtti modifier. Otherwise,
switching the order of the base classes for the class X results in the compile-time error Can't inherit non-
RTTI class from RTTI base 'S1'.
struct _ _rtti S1 { virtual func(); }; /* Polymorphic class */
struct S2 { }; /* Non-polymorphic class */
struct _ _rtti X : S1, S2 { };
Note: The class X is explicitly declared with _ _rtti. This makes it safe to mix the order and type of

classes.
In the following example, class X inherits only non-polymorphic classes. Class X does not need to be
declared _ _rtti.
struct _ _rtti S1 { }; // Non-polymorphic class
struct S2 { };
struct X : S2, S1 { }; // The order is not essential
Applying either _ _rtti or using the -RT compiler option will not make a static class into a polymorphic
class.

-RT option and destructors

When -xd is enabled, a pointer to a class with a virtual destructor can't be deleted if that class is not
compiled with -RT. The -RT and -xd options are on by default.

Example
class Alpha {
public:
 virtual ~Alpha() { }
};
void func(Alpha *Aptr) {
 delete Aptr; // Error. Alpha is not a polymorphic class type
 }

Referencing
See also
While in C, you pass arguments only by value; in C++, you can pass arguments by value or by
reference. C++ reference types, closely related to pointer types, create aliases for objects and let you
pass arguments to functions by reference. See the following topics for a discussion of referencing.
Simple references
Reference arguments
Reference/Indirect operators
Note: C++ specific pointer referencing and dereferencing is discussed in C++ specific operators.

Simple references
See also
The reference declarator can be used to declare references outside functions:
int i = 0;
int &ir = i; // ir is an alias for i
ir = 2; // same effect as i = 2
Note that type& var, type &var, and type & var are all equivalent.
This creates the lvalue ir as an alias for i, provided the initializer is the same type as the reference. Any
operations on ir have precisely the same effect as operations on i. For example, ir = 2 assigns 2 to i,
and &ir returns the address of i.

Reference arguments
See also
The reference declarator can also be used to declare reference type parameters within a function:
void func1 (int i);
void func2 (int &ir); // ir is type "reference to int"
 .
 .
 .
int sum=3;
func1(sum); // sum passed by value
func2(&sum); // sum passed by reference
The sum argument passed by reference can be changed directly by func2. On the other hand, func1
gets a copy of the sum argument (passed by value), so sum itself cannot be altered by func1.
When an actual argument x is passed by value, the matching formal argument in the function receives a
copy of x. Any changes to this copy within the function body are not reflected in the value of x itself. Of
course, the function can return a value that could be used later to change x, but the function cannot
directly alter a parameter passed by value.
The C method for changing x uses the actual argument &x, the address of x, rather than x itself.
Although &x is passed by value, the function can access x through the copy of &x it receives. Even if the
function does not need to change x, it is still useful (though subject to potentially dangerous side effects)
to pass &x, especially if x is a large data structure. Passing x directly by value involves wasteful copying
of the data structure.
Compare the three implementations of the function treble:

Implementation 1
int treble_1(int n)
{
 return 3 * n;
}
 .
 .
 .
int x, i = 4;
x = treble_1(i); // x now = 12, i = 4
 .
 .
 .

Implementation 2
void treble_2(int* np)
{
 *np = (*np) * 3;
}
 .
 .
 .
treble_2(int& i); // i now = 12

Implementation 3
void treble_3(int& n) // n is a reference type
{
 n = 3 * n;
}

 .
 .
 .
treble_3(i); // i now = 36
The formal argument declaration type& t (or equivalently, type& t) establishes t as type “reference to
type.” So, when treble_3 is called with the real argument i, i is used to initialize the formal reference
argument n. n therefore acts as an alias for i, so n = 3*n also assigns 3 * i to i.

If the initializer is a constant or an object of a different type than the reference type, creates a temporary
object for which the reference acts as an alias:
int& ir = 6; /* temporary int object created, aliased by ir, gets value 6
*/

float f;
int& ir2 = f; /* creates temporary int object aliased by ir2; f converted
 before assignment */
ir2 = 2.0 // ir2 now = 2, but f is unchanged
The automatic creation of temporary objects permits the conversion of reference types when formal and
actual arguments have different (but assignment-compatible) types. When passing by value, of course,
there are fewer conversion problems, since the copy of the actual argument can be physically changed
before assignment to the formal argument.

Scope resolution operator ::
The scope access (or resolution) operator :: (two colons) lets you access a global (or file duration)
member name even if it is hidden by a local redeclaration of that name. You can use a global identifiers
by prefixing it with the resolution operator. To access a nested member name by specifying the class
name and using the resolution operator. Therefore, Alpha::func() and Beta::func() are two
different functions.

operator new
See also Example Operators

Syntax
<::> new <placement> type-name <(initializer)>
<::> new <placement> (type-name) <(initializer)>

Description
The new operator offers dynamic storage allocation, similar but superior to the standard library function
malloc. The new operator must always be supplied with a data type in place of type-name. Items
surrounded by angle brackets are optional. The optional arguments can be as follows:

:: operator, invokes the global version of new.
placement can be used to supply additional arguments to new. You can use this syntax only if

you have have an overloaded version of new that matches the optional arguments. See the discussion of
the placement syntax.

initializer, if present is used to initialize the allocation. Arrays cannot be initialized by the allocation
operator.
A request for non-array allocation uses the appropriate operator new() function. Any request for array
allocation will call the appropriate operator new[]() function. The selection of the allocation operator is
done as follows:
Allocation of arrays of Type:
1. Attempts to use a class-specific array allocator:

Type::operator new[]()
2. If the class-specific array allocator is not defined, the global version is used:

::operator new[]()
Allocation of non-arrays of Type:
1. Attempts to used the class-specific allocator:

Type::operator new()
2. If the class-specific array allocator is not defined, the global version is used:

::operator new()
Allocation of single objects (that are not class-type) which are not held in arrays:
1. Memory allocation for a non-array object is by using the ::operator new(). Note that this allocation

function is always used for the predefined types. It is possible to overload this global operator
function. However, this is generally not advised.

Allocation of arrays:
1. Use the global allocation operator:

::operator new[] ()
Note: Arrays of classes require the default constructor.
new tries to create an object of type Type by allocating (if possible) sizeof(Type) bytes in free store (also
called the heap). new calculates the size of Type without the need for an explicit sizeof operator.
Further, the pointer returned is of the correct type, "pointer to Type," without the need for explicit casting.
The storage duration of the new object is from the point of creation until the operator delete destroys it
by deallocating its memory, or until the end of the program.
If successful, new returns a pointer to the allocated memory. By default, an allocation failure (such as
insufficient or fragmented heap memory) results in the predefined exception xalloc being thrown. Your
program should always be prepared to catch the xalloc exception before trying to access the new object
(unless you use a new-handler).
A request for allocation of 0 bytes returns a non-null pointer. Repeated requests for zero-size allocations
return distinct, non-null pointers.

operator delete
See also Example Operators

Syntax
<::> delete <cast-expression>
<::> delete [] <cast-expression>
delete <array-name> [];

Description
The delete operator offers dynamic storage deallocation, deallocating a memory block allocated by a
previous call to new. It is similar but superior to the standard library function free.
You should use the delete operator to remove all memory which has been allocated by the new
operator. Failure to free memory can result in memory leaks.

Operator new placement syntax
Example
The placement syntax for operator new() can be used only if you have overloaded the allocation
operator with the appropriate arguments. You can use the placement syntax when you want to use and
reuse a memory space which you set up once at the beginning of your program.
When you use the overloaded operator new() to specify where you want an allocation to be placed,
you are responsible for deleting the allocation. Because you call your version of the allocation operator,
you cannot depend on the global ::operator delete() to do the cleanup.
To release memory, you make an explicit call on the destructor. This method for cleaning up memory
should be used only in special situations and with great care. If you make an explicit call of a destructor
before an object that has been constructed on the stack goes out of scope, the destructor will be called
again when the stackframe is cleaned up.

Handling Errors for the new Operator
See also
By default, new throws the xalloc exception when a request for memory allocation cannot be satisfied.
You can define a function to be called if the new operator fails. To tell the new operator about the new-
handler function, use set_new_handler and supply a pointer to the new-handler. If you want new to
return null on failure, you must use set_new_handler(0) .

The Operator new With Arrays
Example
If Type is an array, the pointer returned by operator new[]() points to the first element of the array. When
creating multidimensional arrays with new, all array sizes must be supplied (although the leftmost
dimension doesn't have to be a compile-time constant):
mat_ptr = new int[3][10][12]; // OK
mat_ptr = new int[n][10][12]; // OK
mat_ptr = new int[3][][12]; // illegal
mat_ptr = new int[][10][12]; // illegal
Although the first array dimension can be a variable, all following dimensions must be constants.

The delete Operator with Arrays
Arrays are deleted by operator delete[](). You must use the syntax delete [] expr when deleting an array.
char * p;

void func()
{
 p = new char[10]; // allocate 10 chars
 delete[] p; // delete 10 chars
}
C++ 2.0 code required the array size to be named in the delete expression. In order to allow 2.0 code to
compile, C++Builder issues a warning and simply ignores any size that is specified. For example, if the
preceding example reads delete[10] p and is compiled, the warning is as follows:
Warning: Array size for 'delete' ignored in function func()

operator new
See also
By default, if there is no overloaded version of new, a request for dynamic memory allocation always
uses the global version of new, ::operator new(). A request for array allocation calls ::operator new[]().
With class objects of type name, a specific operator called name::operator new() or name::operator
new[]() can be defined. When new is applied to class name objects it invokes the appropriate
name::operator new if it is present; otherwise, the global ::operator new is used.
Only the operator new() function will accept an optional initializer. The array allocator version, operator
new[](), will not accept initializers. In the absence of explicit initializers, the object created by new
contains unpredictable data (garbage). The objects allocated by new, other than arrays, can be
initialized with a suitable expression between parentheses:
 int_ptr = new int(3);
Arrays of classes with constructors are initialized with the default constructor. The user-defined new
operator with customized initialization plays a key role in C++ constructors for class-type objects.

Overloading the operator new
Example
The global ::operator new() and ::operator new[]() can be overloaded. Each overloaded instance must
have a unique signature. Therefore, multiple instances of a global allocation operator can coexist in a
single program.
Class-specific memory allocation operators can also be overloaded. The operator new can be
implemented to provide alternative free storage (heap) memory-management routines, or implemented
to accept additional arguments. A user-defined operator new must return a void* and must have a
size_t as its first argument. To overload the new operators, use the following prototypes declared in the
new.h header file.

void * operator new(size_t Type_size);        // For Non-array
void * operator new[](size_t Type_size);    // For arrays

The C++Builder compiler provides Type_size to the new operator. Any data type may be substitued for
Type_size except function names (although a pointer to function is permitted), class declarations,
enumeration declarations, const, volatile.

Overloading the Operator delete
Example
The global operators, ::operator delete(), and ::operator delete[]() cannot be overloaded. However, you
can override the default version of each of these operators with your own implementation. Only one
instance of the each global delete function can exist in the program.
The user-defined operator delete must have a void return type and void* as its first argument; a second
argument of type size_t is optional. A class T can define at most one version of each of T::operator
delete[]() and T::operator delete(). To overload the delete operators, use the following prototypes.

void operator delete(void *Type_ptr, [size_t Type_size]); // For
Non-array

void operator delete[](size_t Type_ptr, [size_t Type_size]); // For
arrays
Example of overloading new and delete
#include <stdlib.h>

class X {
 .
 .
 .
public:
 void* operator new(size_t size) { return newalloc(size);}
 void operator delete(void* p) { newfree(p); }
 X() { /* initialize here */ }
 X(char ch) { /* and here */ }

 ~X() { /* clean up here */ }
 .
 .
 .
};

Note: Destructors are called only if you use the -xd compiler option and an exception is thrown.
The size argument gives the size of the object being created, and newalloc and newfree are user-
supplied memory allocation and deallocation functions. Constructor and destructor calls for objects of
class X (or objects of classes derived from X that do not have their own overloaded operators new and
delete) will invoke the matching user-defined X::operator new() and X::operator delete(), respectively.
(Destructors will be called only if you use the -xd compiler option and an exception is thrown.)
The X::operator new(), X::operator new[](), X::operator delete() and X::operator delete[]() operator
functions are static members of X whether explicitly declared as static or not, so they cannot be virtual
functions.
The standard, predefined (global) ::operator new(), ::operator new[](), :: operator delete(), and
::operator delete[]() operators can still be used within the scope of X, either explicitly with the global
scope or implicitly when creating and destroying non-X or non-X-derived class objects. For example,
you could use the standard new and delete when defining the overloaded versions:
void* X::operator new(size_t s)
{
 void* ptr = new char[s]; // standard new called
 .
 .
 .
 return ptr;
}

void X::operator delete(void* ptr)
{
 .
 .
 .
 delete (void*) ptr; // standard delete called
}
The reason for the size argument is that classes derived from X inherit the X::operator new() and
X::operator new[](). The size of a derived class object may well differ from that of the base class.

Classes
See also
C++ classes offer extensions to the predefined type system. Each class type represents a unique set of
objects and the operations (methods) and conversions available to create, manipulate, and destroy such
objects. Derived classes can be declared that inherit the members of one or more base (or parent)
classes.
In C++, structures and unions are considered as classes with certain access defaults.
A simplified, “first-look” syntax for class declarations is
class-key <type-info> class-name
<: base-list> { <member-list> };
class-key is one of class, struct, or union.
The optional type-info indicates a request for run-time type information about the class. You can compile
with the –RT compiler option, or you can use the _ _rtti keyword. See the discussion of class typeinfo
for more information.
The optional base-list lists the base class or classes from which the class class-name will derive (or
inherit) objects and methods. If any base classes are specified, the class class-name is called a derived
class. The base-list has default and optional overriding access specifiers that can modify the access
rights of the derived class to members of the base classes.
The optional member-list declares the class members (data and functions) of class-name with default
and optional overriding access specifiers that can affect which functions can access which members.

VCL class declarations
See also Example Keywords

Syntax
__declspec(<decl-modifier>)

Description
The decl-modifier argument can be one of delphireturn , delphiclass, or    pascalimplementation. These
arguments should be used only with classes derived from VCL classes.

You must use    __declspec(delphiclass) for any forward declaration of classes that are directly or
indirectly derived from TObject.

You must use __declspec(delphireturn) when you make forward declarations of classes that
directly or indirectly derive from Currency, AnsiString, Variant, TDateTime, or Set.

Use the __declspec(pascalimplementation) modifier to indicate that a class has been
implemented in Object Pascal. This modifier appears in a Pascal portability header file with a .hpp
extension.
The delphireturn argument is used to mark C++ classes for VCL-compatible handling in function calls as
parameters and return values.
The delphiclass argument is used to create classes that have the following VCL compatibility.

VCL-compatible    RTTI
VCL-compatible constructor/destructor behavior
VCL-compatible exception handling

A VCL-compatible class has the following restrictions.
No virtual base classes or multiple inheritance is allowed.
Must be dynamically allocated by using the global new operator.
Copy and assignment constructors must be explicitly defined. The compiler does not

automatically provide these constructors for VCL-derived classes.

VCL class names
See also Keywords
The C++Builder IDE expects each VCL class to begin with the letter “T”. Therefore, the first T is always
ignored when assigning the program id. For example, a class Test declaration, results in a program
id without the leading T.

Class names
See also
class-name is any identifier unique within its scope. With structures, classes, and unions, class-name
can be omitted. See Untagged structures and typedefs for discussion of untagged structures.

Class types
See also
The declaration creates a unique type, class type class-name. This lets you declare further class objects
(or instances) of this type, and objects derived from this type (such as pointers to, references to, arrays
of class-name, and so on):
class X { ... };
X x, &xr, *xptr, xarray[10];
/* four objects: type X, reference to X, pointer to X and array of X */
struct Y { ... };
Y y, &yr, *yptr, yarray[10];
// C would have
// struct Y y, *yptr, yarray[10];
union Z { ... };
Z z, &zr, *zptr, zarray[10];
// C would have
// union Z z, *zptr, zarray[10];
Note the difference between C and C++ structure and union declarations: The keywords struct and
union are essential in C, but in C++, they are needed only when the class names, Y and Z, are hidden
(see Class name scope)

Class name scope
See also
The scope of a class name is local. There are some special requirements if the class name appears
more than once in the same scope. Class name scope starts at the point of declaration and ends with
the enclosing block. A class name hides any class, object, enumerator, or function with the same name
in the enclosing scope. If a class name is declared in a scope containing the declaration of an object,
function, or enumerator of the same name, the class can be referred to only by using the elaborated
type specifier. This means that the class key, class, struct, or union, must be used with the class
name. For example,
struct S { ... };
int S(struct S *Sptr);
void func(void) {
 S t; // ILLEGAL declaration: no class key and function S in scope
 struct S s; // OK: elaborated with class key
 S(&s); // OK: this is a function call
}
C++ also allows a forward class declaration:
class X; // no members, yet!
Forward declarations permit certain references to class name X (usually references to pointers to class
objects) before the class has been fully defined. See Structure member declarations for more
information. Of course, you must make a complete class declaration with members before you can
define and use class objects.
Forward declarations cannot be made for typedef classes.
See also the syntax for forward declarations of VCL classes.

Class objects
See also
Class objects can be assigned (unless copying has been restricted), passed as arguments to functions,
returned by functions (with some exceptions), and so on. Other operations on class objects and
members can be user-defined in many ways, including definition of member and friend functions and the
redefinition of standard functions and operators when used with objects of a certain class.
Redefined functions and operators are said to be overloaded. Operators and functions that are restricted
to objects of a certain class (or related group of classes) are called member functions for that class. C++
offers the overloading mechanism that allows the same function or operator name can be called to
perform different tasks, depending on the type or number of arguments or operands.

Class member list
See also
The optional member-list is a sequence of data declarations (of any type, including enumerations, bit
fields and other classes), function declarations, and definitions, all with optional storage class specifiers
and access modifiers. The objects thus defined are called class members. The storage class specifiers
auto, extern, and register are not allowed. Members can be declared with the static storage class
specifiers.

Member functions
See also Example
A function declared without the friend specifier is known as a member function of the class. Functions
declared with the friend modifier are called friend functions.
Member functions are often referred to as methods in Object Pascal and Delphi documentation.
The same name can be used to denote more than one function, provided they differ in argument type or
number of arguments.

Member function access
/* Getting access to member functions of a base class. */
#include <iostream.h>
class X {
public:
      void func1() {cout << "func1" << endl; }
};

class Y : public X {
public:
      void func2()
      {
        cout << "func2" << endl;
        }
};

void main() {
 X myX;
 Y *myY = new Y;
      myX.func1();
      myY ->func2();    // Member function
      myY ->func1();    // Member function in base class
}

The keyword this
See also
Nonstatic member functions operate on the class type object they are called with. For example, if x is an
object of class X and f() is a member function of X, the function call x.f() operates on x. Similarly, if
xptr is a pointer to an X object, the function call xptr->f() operates on *xptr. But how does f know
which instance of X it is operating on? C++ provides f with a pointer to x called this. this is passed as a
hidden argument in all calls to nonstatic member functions.
this is a local variable available in the body of any nonstatic member function. this does not need to be
declared and is rarely referred to explicitly in a function definition. However, it is used implicitly within the
function for member references. If x.f(y) is called, for example, where y is a member of X, this is set to
&x and y is set to this->y, which is equivalent to x.y.

Static members
See also
The storage class specifier static can be used in class declarations of data and function members. Such
members are called static members and have distinct properties from nonstatic members. With
nonstatic members, a distinct copy “exists” for each instance of the class; with static members, only one
copy exists, and it can be accessed without reference to any particular object in its class. If x is a static
member of class X, it can be referenced as X::x (even if objects of class X haven’t been created yet). It
is still possible to access x using the normal member access operators. For example, y.x and yptr->x,
where y is an object of class X and yptr is a pointer to an object of class X, although the expressions y
and yptr are not evaluated. In particular, a static member function can be called with or without the
special member function syntax:
class X {
 int member_int;
public:
 static void func(int i, X* ptr);
};
void g(void); {
 X obj;
 func(1, &obj); // error unless there is a global func()
 // defined elsewhere
 X::func(1, &obj); // calls the static func() in X
 // OK for static functions only
 obj.func(1, &obj); // so does this (OK for static and
 // nonstatic functions)
}
Because static member functions can be called with no particular object in mind, they don’t have a this
pointer, and therefore cannot access nonstatic members without explicitly specifying an object with . or -
>. For example, with the declarations of the previous example, func might be defined as follows:
void X::func(int i, X* ptr)
{
 member_int = i; // which object does member_int
 // refer to? Error
 ptr->member_int = i; // OK: now we know!
}
Apart from inline functions, static member functions of global classes have external linkage. Static
member functions cannot be virtual functions. It is illegal to have a static and nonstatic member function
with the same name and argument types.
The declaration of a static data member in its class declaration is not a definition, so a definition must be
provided elsewhere to allocate storage and provide initialization.
Static members of a class declared local to some function have no linkage and cannot be initialized.
Static members of a global class can be initialized like ordinary global objects, but only in file scope.
Static members, nested to any level, obey the usual class member access rules, except they can be
initialized.
class X {
 static int x;
 static const int size = 5;
 class inner {
 static float f;
 void func(void); // nested declaration
 };
public :
 char array[size];
};

int X::x = 1;
float X::inner::f = 3.14; // initialization of nested static
X::inner::func(void) { /* define the nested function */ }
The principal use for static members is to keep track of data common to all objects of a class, such as
the number of objects created, or the last-used resource from a pool shared by all such objects. Static
members are also used to
 Reduce the number of visible global names
 Make obvious which static objects logically belong to which class
 Permit access control to their names

Inline functions
See also
You can declare a member function within its class and define it elsewhere. Alternatively, you can both
declare and define a member function within its class, in which case it is called an inline function.
C++Builder can sometimes reduce the normal function call overhead by substituting the function call
directly with the compiled code of the function body. This process, called an inline expansion of the
function body, does not affect the scope of the function name or its arguments. Inline expansion is not
always possible or feasible. The inline specifier indicates to the compiler you would like an inline
expansion.
Note: The C++Builder compiler can ignore requests for inline expansion.
Explicit and implicit inline requests are best reserved for small, frequently used functions, such as the
operator functions that implement overloaded operators. For example, the following class declaration of
func:
int i; // global int
class X {
public:
 char* func(void) { return i; } // inline by default
 char* i;
};
is equivalent to:
inline char* X::func(void) { return i; }
func is defined outside the class with an explicit inline specifier. The i returned by func is the char* i of
class X (see Member scope).

Inline functions and exceptions
An inline function with an exception-specification will never be expanded inline by C++Builder. For
example,
inline void f1() throw(int)
 {
 // Warning: Functions with exception specifications are not expanded inli
ne

 }
The remaining restrictions apply only when destructor cleanup is enabled.
Note: Destructors are called by default. See Setting Exception Handling Options for information about

exception-handling switches.
An inline function that takes at least one parameter that is of type ’class with a destructor’ will not be
expanded inline. Note that this restriction does not apply to classes that are passed by reference.
Example:
struct foo {
 foo();
 ~foo();
 };
inline void f2(foo& x) {
 // no warning, f2() can be expanded inline
 }
inline void f3(foo x) {
 // Warning: Functions taking class-by-value argument(s) are
 // not expanded inline in function f3(foo)
 }
An inline function that returns a class with a destructor by value will not be expanded inline whenever

there are variables or temporaries that need to be destructed within the return expression:
struct foo {
 foo();
 ~foo();
 };
inline foo f4() {
 return foo();
 // no warning, f4() can be expanded inline
 }
inline foo f5() {
 foo X;
 return foo(); // Object X needs to be destructed
 // Warning: Functions containing some return statements are
 // not expanded inline in function f5()
 }
inline foo f6() {
 return (foo(), foo()); // temporary in return value
 // Warning: Functions containing some return statements are
 // not expanded inline in function f6()
 }

Member scope
See also
The expression X::func() in the example in Inline functions and exceptions uses the class name X
with the scope access modifier to signify that func, although defined “outside” the class, is indeed a
member function of X and exists within the scope of X. The influence of X:: extends into the body of the
definition. This explains why the i returned by func refers to X::i, the char* i of X, rather than the global
int i. Without the X:: modifier, the function func would represent an ordinary non-class function, returning
the global int i.
All member functions, then, are in the scope of their class, even if defined outside the class.
Data members of class X can be referenced using the selection operators . and -> (as with C
structures). Member functions can also be called using the selection operators (see The keyword this).
For example:
class X {
public:
 int i;
 char name[20];
 X *ptr1;
 X *ptr2;
 void Xfunc(char*data, X* left, X* right); // define elsewhere
};
void f(void);
{
 X x1, x2, *xptr=&x1;
 x1.i = 0;
 x2.i = x1.i;
 xptr–>i = 1;
 x1.Xfunc("stan", &x2, xptr);
}
If m is a member or base member of class X, the expression X::m is called a qualified name; it has the
same type as m, and it is an lvalue only if m is an lvalue. It is important to note that, even if the class
name X is hidden by a non-type name, the qualified name X::m will access the correct class member, m.
Class members cannot be added to a class by another section of your program. The class X cannot
contain objects of class X, but can contain pointers or references to objects of class X (note the
similarity with C’s structure and union types).

Nested types
See also
Tag or typedef names declared inside a class lexically belong to the scope of that class. Such names
can, in general, be accessed only by using the xxx::yyy notation, except when in the scope of the
appropriate class.
A class declared within another class is called a nested class. Its name is local to the enclosing class;
the nested class is in the scope of the enclosing class. This is a purely lexical nesting. The nested class
has no additional privileges in accessing members of the enclosing class (and vice versa).
Classes can be nested in this way to an arbitrary level. Nested classes can be declared inside some
class and defined later. For example,
struct outer
{
 typedef int t; // 'outer::t' is a typedef name
 struct inner // 'outer::inner' is a class
 {
 static int x;
 };
 static int x;
 int f();
 class deep; // nested declaration
};
int outer::x; // define static data member
int outer::f() {
 t x; // 't' visible directly here
 return x;
 }
int outer::inner::x; // define static data member
outer::t x; // have to use 'outer::t' here
class outer::deep { }; // define the nested class here
With Borland C++ 2.0, any tags or typedef names declared inside a class actually belong to the global
(file) scope. For example:
struct foo
{
 enum bar { x }; // 2.0 rules: 'bar' belongs to file scope
 // 2.1 rules: 'bar' belongs to 'foo' scope
};
bar x;
The preceding fragment compiles without errors. But because the code is illegal under the 2.1 rules, a
warning is issued as follows:
Warning: Use qualified name to access nested type 'foo::bar'

Member access control
See also
Members of a class acquire access attributes either by default (depending on class key and declaration
placement) or by the use of one of the three access specifiers: public, private, and protected. The
significance of these attributes is as follows:

public: The member can be used by any function.
private: The member can be used only by member functions and friends of the class it’s declared

in.
protected: Same as for private. Additionally, the member can be used by member functions and

friends of classes derived from the declared class, but only in objects of the derived type. (Derived
classes are explained in Base and derived class access.)
Note: Friend function declarations are not affected by access specifiers (see Friends of classes for

more information).
Members of a class are private by default, so you need explicit public or protected access specifiers to
override the default.
Members of a struct are public by default, but you can override this with the private or protected
access specifier.
Members of a union are public by default; this cannot be changed. All three access specifiers are
illegal with union members.
A default or overriding access modifier remains effective for all subsequent member declarations until a
different access modifier is encountered. For example,
class X {
 int i; // X::i is private by default
 char ch; // so is X::ch
public:
 int j; // next two are public
 int k;
protected:
 int l; // X::l is protected
};
struct Y {
 int i; // Y::i is public by default
private:
 int j; // Y::j is private
public:
 int k; // Y::k is public
};
union Z {
 int i; // public by default; no other choice
 double d;
};
Note: The access specifiers can be listed and grouped in any convenient sequence. You can save

typing effort by declaring all the private members together, and so on.

Base and derived class access
See also
When you declare a derived class D, you list the base classes B1, B2, ... in a comma-delimited base-list:
class-key D : base-list { <member-list> }
D inherits all the members of these base classes. (Redefined base class members are inherited and can
be accessed using scope overrides, if needed.) D can use only the public and protected members of
its base classes. But, what will be the access attributes of the inherited members as viewed by D? D
might want to use a public member from a base class, but make it private as far as outside functions
are concerned. The solution is to use access specifiers in the base-list.
Note: Since a base class can itself be a derived class, the access attribute question is recursive: you

backtrack until you reach the basest of the base classes, those that do not inherit.
When declaring D, you can use the access specifier public, protected, or private in front of the classes
in the base-list:
class D : public B1, private B2, ... {
 .
 .
 .
}
These modifiers do not alter the access attributes of base members as viewed by the base class,
though they can alter the access attributes of base members as viewed by the derived class.
The default is private if D is a class declaration, and public if D is a struct declaration.
Note: Unions cannot have base classes, and unions cannot be used as base classes.
The derived class inherits access attributes from a base class as follows:
 public base class: public members of the base class are public members of the derived class.
protected members of the base class are protected members of the derived class. private members of
the base class remain private to the base class.
 protected base class: Both public and protected members of the base class are protected
members of the derived class. private members of the base class remain private to the base class.
 private base class: Both public and protected members of the base class are private members
of the derived class. private members of the base class remain private to the base class.
Note that private members of a base class are always inaccessible to member functions of the derived
class unless friend declarations are explicitly declared in the base class granting access. For example,
/* class X is derived from class A */
class X : A { // default for class is private A
 .
 .
 .
}
/* class Y is derived (multiple inheritance) from B and C
 B defaults to private B */
class Y : B, public C { // override default for C
 .
 .
 .
}
/* struct S is derived from D */
struct S : D { // default for struct is public D
 .
 .
 .
}

/* struct T is derived (multiple inheritance) from D and E
 E defaults to public E */
struct T : private D, E { // override default for D
 // E is public by default
 .
 .
 .
}
The effect of access specifiers in the base list can be adjusted by using a qualified-name in the public or
protected declarations of the derived class. For example:
class B {
 int a; // private by default
public:
 int b, c;
 int Bfunc(void);
};
class X : private B { // a, b, c, Bfunc are now private in X
 int d; // private by default, NOTE: a is not
 // accessible in X
public:
 B::c; // c was private, now is public
 int e;
 int Xfunc(void);
};
int Efunc(X& x); // external to B and X
The function Efunc() can use only the public names c, e, and Xfunc().
The function Xfunc() is in X, which is derived from private B, so it has access to
 The “adjusted-to-public” c
 The “private-to-X” members from B: b and Bfunc()
 X’s own private and public members: d, e, and Xfunc()
However, Xfunc() cannot access the “private-to-B” member, a.

Virtual base classes
See also
A virtual class is a base class that is passed to more than one derived class, as might happen with
multiple inheritance.
You cannot specify a base class more than once in a derived class:
class B { ...};
class D : B, B { ... }; // ILLEGAL
However, you can indirectly pass a base class to the derived class more than once:
class X : public B { ... }
class Y : public B { ... }
class Z : public X, public Y { ... } // OK
In this case, each object of class Z has two sub-objects of class B.
If this causes problems, add the keyword virtual to the base class specifier. For example,
class X : virtual public B { ... }
class Y : virtual public B { ... }
class Z : public X, public Y { ... }
B is now a virtual base class, and class Z has only one sub-object of class B.

Constructors for Virtual Base Classes
Constructors for virtual base classes are invoked before any non-virtual base classes.
If the hierarchy contains multiple virtual base classes, the virtual base class constructors invoke in the
order they were declared.
Any non-virtual bases are then constructed before the derived class constructor is called.
If a virtual class is derived from a non-virtual base, that non-virtual base will be first, so that the virtual
base class can be properly constructed. For example, this code
class X : public Y, virtual public Z
 X one;
produces this order:
Z(); // virtual base class initialization
Y(); // non-virtual base class
X(); // derived class

Friends of classes
See also
A friend F of a class X is a function or class, although not a member function of X, with full access rights
to the private and protected members of X. In all other respects, F is a normal function with respect to
scope, declarations, and definitions.
Since F is not a member of X, it is not in the scope of X, and it cannot be called with the x.F and xptr->F
selector operators (where x is an X object and xptr is a pointer to an X object).
If the specifier friend is used with a function declaration or definition within the class X, it becomes a
friend of X.
friend functions defined within a class obey the same inline rules as member functions (see Inline
functions). friend functions are not affected by their position within the class or by any access specifiers.
For example:
class X {
 int i; // private to X
 friend void friend_func(X*, int);
/* friend_func is not private, even though it's declared in the private sect
ion */

public:
 void member_func(int);
};
/* definitions; note both functions access private int i */
void friend_func(X* xptr, int a) { xptr–>i = a; }
void X::member_func(int a) { i = a; }

X xobj;
/* note difference in function calls */
friend_func(&xobj, 6);
xobj.member_func(6);
You can make all the functions of class Y into friends of class X with a single declaration:
class Y; // incomplete declaration
class X {
 friend Y;
 int i;
 void member_funcX();
};
class Y; { // complete the declaration
 void friend_X1(X&);
 void friend_X2(X*);

.

.

.
};
The functions declared in Y are friends of X, although they have no friend specifiers. They can access
the private members of X, such as i and member_funcX.
It is also possible for an individual member function of class X to be a friend of class Y:
class X {

.

.

.
 void member_funcX();
}
class Y {

 int i;
 friend void X::member_funcX();

.

.

.
};
Class friendship is not transitive: X friend of Y and Y friend of Z does not imply X friend of Z. Friendship
is not inherited.

Introduction to constructors and destructors
See also
There are several special member functions that determine how the objects of a class are created,
initalized, copied, and destroyed. Constructors and destructors are the most important of these. They
have many of the characteristics of normal member functions—you declare and define them within the
class, or declare them within the class and define them outside—but they have some unique features:
 They do not have return value declarations (not even void).
 They cannot be inherited, though a derived class can call the base class’s constructors and
destructors.
 Constructors, like most C++ functions, can have default arguments or use member initialization
lists.
 Destructors can be virtual, but constructors cannot. (See Virtual destructors.)

You can’t take their addresses.
int main (void)
{

.

.

.
void *ptr = base::base; // illegal
.
.
.

}
 Constructors and destructors can be generated by C++Builder if they haven’t been explicitly
defined; they are also invoked on many occasions without explicit calls in your program. Any constructor
or destructor generated by the compiler will be public.
 You cannot call constructors the way you call a normal function. Destructors can be called if you
use their fully qualified name.
{

.

.

.
X *p;
.
.
.
p–>X::~X(); // legal call of destructor
X::X(); // illegal call of constructor
.
.
.

}
 The compiler automatically calls constructors and destructors when defining and destroying
objects.
 Constructors and destructors can make implicit calls to operator new and operator delete if
allocation is required for an object.
 An object with a constructor or destructor cannot be used as a member of a union.
 If no constructor has been defined for some class X to accept a given type, no attempt is made to
find other constructors or conversion functions to convert the assigned value into a type acceptable to a
constructor for class X. Note that this rule applies only to any constructor with one parameter and no
initializers that use the “=” syntax.
class X { /* ... */ X(int); };
class Y { /* ... */ Y(X); };
Y a = 1; // illegal: Y(X(1)) not tried

If class X has one or more constructors, one of them is invoked each time you define an object x of
class X. The constructor creates x and initializes it. Destructors reverse the process by destroying the
class objects created by constructors.
Constructors are also invoked when local or temporary objects of a class are created; destructors are
invoked when these objects go out of scope.

Constructors
See also
Constructors are distinguished from all other member functions by having the same name as the class
they belong to. When an object of that class is created or is being copied, the appropriate constructor is
called implicitly.
Constructors for global variables are called before the main function is called. When the #pragma
startup directive is used to install a function prior to the main function, global variable constructors are
called prior to the startup functions.
Local objects are created as the scope of the variable becomes active. A constructor is also invoked
when a temporary object of the class is created.
class X {
public:
 X(); // class X constructor
};
A class X constructor cannot take X as an argument:
class X {
public:
 X(X); // illegal
};
The parameters to the constructor can be of any type except that of the class it’s a member of. The
constructor can accept a reference to its own class as a parameter; when it does so, it is called the copy
constructor . A constructor that accepts no parameters is called the default constructor .

Constructor defaults
See also
The default constructor for class X is one that takes no arguments; it usually has the form X::X(). If no
user-defined constructors exist for a class, C++Builder generates a default constructor. On a declaration
such as X x, the default constructor creates the object x.
Like all functions, constructors can have default arguments. For example, the constructor
X::X(int, int = 0)
can take one or two arguments. When presented with one argument, the missing second argument is
assumed to be a zero int. Similarly, the constructor
X::X(int = 5, int = 6)
could take two, one, or no arguments, with appropriate defaults. However, the default constructor
X::X() takes no arguments and must not be confused with, say, X::X(int = 0), which can be
called with no arguments as a default constructor, or can take an argument.
You should avoid ambiguity in defining constructors. In the following case, the two default constructors
are ambiguous:
class X
{
public:
 X();
 X(int i = 0);
};
int main() {
 X one(10); // OK; uses X::X(int)
 X two; // Error;ambiguous whether to call X::X() or
 // X::X(int = 0)
 return 0;
}

The copy constructor
See also
A copy constructor for class X is one that can be called with a single argument of type X as follows:
X::X(X&)
or
X::X(const X&)
or
X::X(const X&, int = 0)
Default arguments are also allowed in a copy constructor. Copy constructors are invoked when
initializing a class object, typically when you declare with initialization by another class object:
X x1;
X x2 = x1;
X x3(x1);
C++Builder generates a copy constructor for class X if one is needed and no other constructor has
been defined in class X. The copy constructor that is generated by the C++Builder compiler lets you
safely start programming with simple data types. You need to make your own definition of the copy
constructor if your program creates aggregate, complex types such as class, struct, and array types.
The copy constructor is also called when you pass a class argument by value to a function.
See also the discussion of member-by-member class assignment. You should define the copy
constructor if you overload the assignment operator.

Overloading constructors
See also
Constructors can be overloaded, allowing objects to be created, depending on the values being used for
initialization.
class X {
 int integer_part;
 double double_part;
public:
 X(int i) { integer_part = i; }
 X(double d) { double_part = d; }
};
int main() {
 X one(10); // invokes X::X(int) and sets integer_part to 10
 X one(3.14); // invokes X::X(double) setting double_part to 3.14
 return 0;
}

Order of calling constructors
See also
In the case where a class has one or more base classes, the base class constructors are invoked before
the derived class constructor. The base class constructors are called in the order they are declared.
For example, in this setup,
class Y {...}
class X : public Y {...}
X one;
the constructors are called in this order:
Y(); // base class constructor
X(); // derived class constructor
For the case of multiple base classes,
class X : public Y, public Z
X one;
the constructors are called in the order of declaration:
Y(); // base class constructors come first
Z();
X();
Constructors for virtual base classes are invoked before any nonvirtual base classes. If the hierarchy
contains multiple virtual base classes, the virtual base class constructors are invoked in the order in
which they were declared. Any nonvirtual bases are then constructed before the derived class
constructor is called.
If a virtual class is derived from a nonvirtual base, that nonvirtual base will be first so that the virtual
base class can be properly constructed. The code:
class X : public Y, virtual public Z
X one;
produces this order:
Z(); // virtual base class initialization
Y(); // nonvirtual base class
X(); // derived class
Or, for a more complicated example:
class base;
class base2;
class level1 : public base2, virtual public base;
class level2 : public base2, virtual public base;
class toplevel : public level1, virtual public level2;
toplevel view;
The construction order of view would be as follows:
base(); // virtual base class highest in hierarchy
 // base is constructed only once
base2(); // nonvirtual base of virtual base level2
 // must be called to construct level2
level2(); // virtual base class
base2(); // nonvirtual base of level1
level1(); // other nonvirtual base
toplevel();
If a class hierarchy contains multiple instances of a virtual base class, that base class is constructed
only once. If, however, there exist both virtual and nonvirtual instances of the base class, the class
constructor is invoked a single time for all virtual instances and then once for each nonvirtual occurrence

of the base class.
Constructors for elements of an array are called in increasing order of the subscript.

Class initialization
See also
An object of a class with only public members and no constructors or base classes (typically a structure)
can be initialized with an initializer list. If a class has a constructor, its objects must be either initialized or
have a default constructor. The latter is used for objects not explicitly initialized.
Objects of classes with constructors can be initialized with an expression list in parentheses. This list is
used as an argument list to the constructor. An alternative is to use an equal sign followed by a single
value. The single value can be the same type as the first argument accepted by a constructor of that
class, in which case either there are no additional arguments, or the remaining arguments have default
values. It could also be an object of that class type. In the former case, the matching constructor is
called to create the object. In the latter case, the copy constructor is called to initialize the object.
class X
{
 int i;
public:
 X(); // function bodies omitted for clarity
 X(int x);
 X(const X&);
};
void main()
{
 X one; // default constructor invoked
 X two(1); // constructor X::X(int) is used
 X three = 1; // calls X::X(int)
 X four = one; // invokes X::X(const X&) for copy
 X five(two); // calls X::X(const X&)
}
The constructor can assign values to its members in two ways:
 It can accept the values as parameters and make assignments to the member variables within
the function body of the constructor:
class X
{
 int a, b;
public:
 X(int i, int j) { a = i; b = j }
};
 An initializer list can be used prior to the function body:
class X
{
 int a, b, &c; // Note the reference variable.
public:
 X(int i, int j) : a(i), b(j), c(a) {}
};
The initializer list is the only place to initialize a reference variable.
In both cases, an initialization of X x(1, 2) assigns a value of 1 to x::a and 2 to x::b. The second
method, the initializer list, provides a mechanism for passing values along to base class constructors.
Note: Base class constructors must be declared as either public or protected to be called from a

derived class.
class base1
{
 int x;
public:

 base1(int i) { x = i; }
};

class base2
{
 int x;
public:
 base2(int i) : x(i) {}
};
class top : public base1, public base2
{
 int a, b;
public:
 top(int i, int j) : base1(i*5), base2(j+i), a(i) { b = j;}
};
With this class hierarchy, a declaration of top one(1, 2) would result in the initialization of base1 with
the value 5 and base2 with the value 3. The methods of initialization can be intermixed.
As described previously, the base classes are initialized in declaration order. Then the members are
initialized, also in declaration order, independent of the initialization list.
class X
{
 int a, b;
public:
 X(int i, j) : a(i), b(a+j) {}
};
With this class, a declaration of X x(1,1) results in an assignment of 1 to x::a and 2 to x::b.

Base class constructors are called prior to the construction of any of the derived classes members. If the
values of the derived class are changed, they will have no effect on the creation of the base class.
class base
{
 int x;
public:
 base(int i) : x(i) {}
};
class derived : base
{
 int a;
public:
 derived(int i) : a(i*10), base(a) { } // Watch out! Base will be
 // passed an uninitialized ’a’
};
With this class setup, a call of derived d(1) will not result in a value of 10 for the base class member
x. The value passed to the base class constructor will be undefined.
When you want an initializer list in a non-inline constructor, don’t place the list in the class definition.
Instead, put it at the point at which the function is defined.
derived::derived(int i) : a(i)
{
 .
 .
 .
}

Destructors
See also
The destructor for a class is called to free members of an object before the object is itself destroyed.
The destructor is a member function whose name is that of the class preceded by a tilde (~). A
destructor cannot accept any parameters, nor will it have a return type or value declared.
#include <stdlib.h>
class X
{
public:
 ~X(){}; // destructor for class X
};
If a destructor isn’t explicitly defined for a class, the compiler generates one.

Invoking destructors
See also
A destructor is called implicitly when a variable goes out of its declared scope. Destructors for local
variables are called when the block they are declared in is no longer active. In the case of global
variables, destructors are called as part of the exit procedure after the main function.
When pointers to objects go out of scope, a destructor is not implicitly called. This means that the delete
operator must be called to destroy such an object.
Destructors are called in the exact opposite order from which their corresponding constructors were
called (see Order of calling constructors).

atexit, #pragma exit, and destructors
See also
All global objects are active until the code in all exit procedures has executed. Local variables, including
those declared in the main function, are destroyed as they go out of scope. The order of execution at the
end of a C++Builder program is as follows:
 atexit() functions are executed in the order they were inserted.
 #pragma exit functions are executed in the order of their priority codes.
 Destructors for global variables are called.

exit and destructors
See also
When you call exit from within a program, destructors are not called for any local variables in the current
scope. Global variables are destroyed in their normal order.

abort and destructors
See also
If you call abort anywhere in a program, no destructors are called, not even for variables with a global
scope.
A destructor can also be invoked explicitly in one of two ways: indirectly through a call to delete, or
directly by using the destructor’s fully qualified name. You can use delete to destroy objects that have
been allocated using new. Explicit calls to the destructor are necessary only for objects allocated a
specific address through calls to new
#include <stdlib.h>
class X {
public:
 .
 .
 .
 ~X(){};
 .
 .
 .
};
void* operator new(size_t size, void *ptr)
{
 return ptr;
}
char buffer[sizeof(X)];
void main() {
 X* pointer = new X;
 X* exact_pointer;
 exact_pointer = new(&buffer) X; // pointer initialized at
 // address of buffer

.

.

.
 delete pointer; // delete used to destroy pointer
 exact_pointer–>X::~X(); // direct call used to deallocate
}

Virtual destructors
See also
A destructor can be declared as virtual. This allows a pointer to a base class object to call the correct
destructor in the event that the pointer actually refers to a derived class object. The destructor of a class
derived from a class with a virtual destructor is itself virtual.
/* How virtual affects the order of destructor calls.
 Without a virtual destructor in the base class, the derived
 class destructor won't be called. */
#include <iostream.h>
class color {
public:
 virtual ~color() { // Virtual destructor
 cout << "color dtor\n";
 }
};
class red : public color {
public:
 ~red() { // This destructor is also virtual
 cout << "red dtor\n";
 }
};
class brightred : public red {
public:
 ~brightred() { // This destructor is also virtual
 cout << "brightred dtor\n";
 }
};
int main() {
 color *palette[3];
 palette[0] = new red;
 palette[1] = new brightred;
 palette[2] = new color;

 // The destructors for red and color are called.
 delete palette[0];
 cout << endl;

 // The destructors for bright red, red, and color are called.
 delete palette[1];
 cout << endl;

 // The destructor for color is called.
 delete palette[2];
 return 0;
}

Program Output:
red dtor
color dtor

brightred dtor
red dtor
color dtor

color dtor

However, if no destructors are declared as virtual, delete palette[0], delete palette[1], and delete
palette[2] would all call only the destructor for class color. This would incorrectly destruct the first two
elements, which were actually of type red and brightred.

Overloading Operators
See also Operators
C++ lets you redefine the actions of most operators, so that they perform specified functions when used
with objects of a particular class. As with overloaded C++ functions in general, the compiler
distinguishes the different functions by noting the context of the call: the number and types of the
arguments or operands.
All the operators can be overloaded except for:
. .* :: ?:
The followoing preprocessing symbols cannot be overloaded.
 # ##
The =, [], (), and -> operators can be overloaded only as nonstatic member functions. These operators
cannot be overloaded for enum types. Any attempt to overload a global version of these operators
results in a compile-time error.
The keyword operator followed by the operator symbol is called the operator function name; it is used
like a normal function name when defining the new (overloaded) action for the operator.
A function operator called with arguments behaves like an operator working on its operands in an
expression. The operator function cannot alter the number of arguments or the precedence and
associativity rules applying to normal operator use.

Example for Overloading Operators

The following example extends the class complex to create complex-type vectors. Several of the most
useful operators are overloaded to provide some customary mathematical operations in the usual
mathematical syntax.
Some of the issues illustrated by the example are:

The default constructor is defined. This is provided by the compiler only if you have not defined it
or any other constructor.

The copy constructor is defined explicitly. Normally, if you have not defined any constructors, the
compiler will provide one. You should define the copy constructor if you are overloading the assignment
operator.

The assignment operator is overloaded. If you do not overload the assignment operator, the
compiler calls a default assignment operator when required. By overloading assignment of cvector types,
you specify exactly the actions to be taken. Note that the assignment operator function cannot be
inherited by derived classes

The subscript operator is defined as a member function (a requirement when overloading) with a
single argument. The const version assures the caller that it will not modify its argument—this is useful
when copying or assigning. This operator should check that the index value is within range—a good place
to implement exception handling.

The addition operator is defined as a member function. It allows addition only for cvector types.
Addition should always check that the operands’ sizes are compatible.

The multiplication operator is declared a friend. This lets you define the order of the operands. An
attempt to reverse the order of the operands is a compile-time error.

The stream insertion operator is overloaded to naturally display a cvector. Large objects that don’t
display well on a limited size screen might require a different display strategy.

Source
/* HOW TO EXTEND THE complex CLASS AND OVERLOAD THE REQUIRED OPERATORS. */
#pragma warn -inl // IGNORE not expanded inline WARNINGS.
#include <complex.h> // THIS ALREADY INCLUDES iostream.h
// COMPLEX VECTORS
class cvector {
 int size;
 complex *data;
public:
 cvector() { size = 0; data = NULL; };
 cvector(int i = 5) : size(i) { // DEFAULT VECTOR SIZE.
 data = new complex[size];
 for (int j = 0; j < size; j++)
 data[j] = j + (0.1 * j); // ARBITRARY INITIALIZATION.
 };
 /* THIS VERSION IS CALLED IN main() */
 complex& operator [](int i) { return data[i]; };
 /* THIS VERSION IS CALLED IN ASSIGNMENT OPERATOR AND COPY THE CONSTRUCTOR
*/

 const complex& operator [](int i) const { return data[i]; };
 cvector operator +(cvector& A) { // ADDITION OPERATOR
 cvector result(A.size); // DO NOT MODIFY THE ORIGINAL
 for (int i = 0; i < size; i++)
 result[i] = data[i] + A.data[i];
 return result;
 };
 /* BECAUSE scalar * vector MULTIPLICATION IS NOT COMMUTATIVE, THE ORDER O
F

 THE ELEMENTS MUST BE SPECIFIED. THIS FRIEND OPERATOR FUNCTION WILL ENS

URE
 PROPER MULTIPLICATION. */
 friend cvector operator *(int scalar, cvector& A) {
 cvector result(A.size); // DO NOT MODIFY THE ORIGINAL
 for (int i = 0; i < A.size; i++)
 result.data[i] = scalar * A.data[i];
 return result;
 }
 /* THE STREAM INSERTION OPERATOR. */
 friend ostream& operator <<(ostream& out_data, cvector& C) {
 for (int i = 0; i < C.size; i++)
 out_data << "[" << i << "]=" << C.data[i] << " ";
 cout << endl;
 return out_data;
 };
 cvector(const cvector &C) { // COPY CONSTRUCTOR
 size = C.size;
 data = new complex[size];
 for (int i = 0; i < size; i++)
 data[i] = C[i];
 }
 cvector& operator =(const cvector &C) { // ASSIGNMENT OPERATOR.
 if (this == &C) return *this;
 delete[] data;
 size = C.size;
 data = new complex[size];
 for (int i = 0; i < size; i++)
 data[i] = C[i];
 return *this;
 };
 virtual ~cvector() { delete[] data; }; // DESTRUCTOR
 };
int main(void) { /* A FEW OPERATIONS WITH complex VECTORS. */
 cvector cvector1(4), cvector2(4), result(4);
 // CREATE complex NUMBERS AND ASSIGN THEM TO complex VECTORS
 cvector1[3] = complex(3.3, 102.8);
 cout << "Here is cvector1:" << endl;
 cout << cvector1;
 cvector2[3] = complex(33.3, 81);
 cout << "Here is cvector2:" << endl;
 cout << cvector2;
 result = cvector1 + cvector2;
 cout << "The result of vector addition:" << endl;
 cout << result;
 result = 10 * cvector2;
 cout << "The result of 10 * cvector2:" << endl;
 cout << result;
 return 0;
 }

Output
Here is cvector1:
[0]=(0, 0) [1]=(1.1, 0) [2]=(2.2, 0) [3]=(3.3, 102.8)
Here is cvector2:
[0]=(0, 0) [1]=(1.1, 0) [2]=(2.2, 0) [3]=(33.3, 81)
The result of vector addition:
[0]=(0, 0) [1]=(2.2, 0) [2]=(4.4, 0) [3]=(36.6, 183.8)

The result of 10 * cvector2:
[0]=(0, 0) [1]=(11, 0) [2]=(22, 0) [3]=(333, 810)

Overloading Operator Functions
See also Operators
Operator functions can be called directly, although they are usually invoked indirectly by the use of the
overload operator:
c3 = c1.operator + (c2); // same as c3 = c1 + c2
Apart from new and delete, which have their own rules, an operator function must either be a nonstatic
member function or have at least one argument of class type. The operator functions =, (), [] and ->
must be nonstatic member functions.
Enumerations can have overloaded operators. However, the operator functions =, (), [], and -> cannot
be overloaded for enumerations.

Overloaded Operators and Inheritance
See also Operators
With the exception of the assignment function operator =(), all overloaded operator functions for class X
are inherited by classes derived from X, with the standard resolution rules for overloaded functions. If X
is a base class for Y, an overloaded operator function for X could possibly be further overloaded for Y.

Overloading Unary Operators
See also Operators
You can overload a prefix or postfix unary operator by declaring a nonstatic member function taking no
arguments, or by declaring a nonmember function taking one argument. If @ represents a unary
operator, @x and x@ can both be interpreted as either x.operator@() or operator@(x), depending on
the declarations made. If both forms have been declared, standard argument matching is applied to
resolve any ambiguity.

Under C++ 2.0, an overloaded operator ++ or -- is used for both prefix and postfix uses of the
operator.

With C++ 2.1, when an operator++ or operator- - is declared as a member function with no
parameters, or as a nonmember function with one parameter, it only overloads the prefix operator++ or
operator- -. You can only overload a postfix operator++ or operator- - by defining it as a member function
taking an int parameter or as a nonmember function taking one class and one int parameter.
When only the prefix version of an operator++ or operator- - is overloaded and the operator is applied to
a class object as a postfix operator, the compiler issues a warning. Then it calls the prefix operator,
allowing 2.0 code to compile. The preceding example results in the following warnings:
Warning: Overloaded prefix 'operator ++' used as a postfix operator in
function func()

Warning: Overloaded prefix 'operator --' used as a postfix operator in
function func()

Overloading Binary Operators
See also Operators
You can overload a binary operator by declaring a nonstatic member function taking one argument, or
by declaring a non-member function (usually friend) taking two arguments. If @ represents a binary
operator, x@y can be interpreted as either x.operator@(y) or operator@(x,y) depending on the
declarations made. If both forms have been declared, standard argument matching is applied to resolve
any ambiguity.

Overloading the Assignment Operator    =
See also Operators
The assignment operator=() can be overloaded by declaring a nonstatic member function. For example,
class String {
 .
 .
 .
 String& operator = (String& str);
 .
 .
 .
 String (String&);
 ~String();
}
This code, with suitable definitions of String::operator =(), allows string assignments str1 = str2 in the
usual sense. Unlike the other operator functions, the assignment operator function cannot be inherited
by derived classes. If, for any class X, there is no user-defined operator =, the operator = is defined by
default as a member-by-member assignment of the members of class X:
X& X::operator = (const X& source)
{
 // memberwise assignment
}

Overloading the Function Call Operator    ()
See also Operators

Syntax
postfix-expression (<expression-list>)

Description
In its ordinary use as a function call, the postfix-expression must be a function name, or a pointer or
reference to a function. When the postfix-expression is used to make a member function call, postfix-
expression must be a class member function name or a pointer-to-member expression used to select a
class member function. In either case, the postfix-expression is followed by the optional expression-list
(possibly empty).
A call X(arg1, arg2), where X is an object class X, is interpreted as X.operator()(arg1, arg2).
The function call operator, operator()(), can only be overloaded as a nonstatic member function.

Overloading the Subscript Operator    []

Syntax
postfix-expression [expression]

Description
The corresponding operator function is operator[]() this can be user-defined for a class X (and any
derived classes). The expression X[y], where X is an object of class X, is interpreted as x.operator[]
(y).

The operator[]() can only be overloaded as a nonstatic member function.

Overloading the Class Member Access Operator    ->
See also Operators

Syntax
postfix-expression -> primary-expression

Description
The expression x->m, where x is a class X object, is interpreted as (x.operator->())->m, so that
the function operator->() must either return a pointer to a class object or return an object of a class for
which operator-> is defined.
The operator->() can only be overloaded as a nonstatic member function.

Polymorphic classes
See also
Classes that provide an identical interface, but can be implemented to serve different specific
requirements, are referred to as polymorphic classes. A class is polymorphic if it declares or inherits at
least one virtual (or pure virtual) function. The only types that can support polymorphism are class and
struct.

Virtual functions
See also
virtual functions allow derived classes to provide different versions of a base class function. You can
use the virtual keyword to declare a virtual function in a base class. By declaring the function prototype
in the usual way and then prefixing the declaration with the virtual keyword. To declare a pure function
(which automatically declares an abstract class), prefix the prototype with the virtual keyword, and set
the function equal to zero.
virtual int funct1(void); // A virtual function declaration.
virtual int funct2(void) = 0; // A pure function declaration.
virtual void funct3(void) = 0 { // This is a valid declaration.
 // Some code here.
 };
Note: See Abstract classes for a discussion of pure virtual functions.
When you declare virtual functions, keep these guidelines in mind:
 They can be member functions only.
 They can be declared a friend of another class.
 They cannot be a static member.
A virtual function does not need to be redefined in a derived class. You can supply one definition in the
base class so that all calls will access the base function.
To redefine a virtual function in any derived class, the number and type of arguments must be the same
in the base class declaration and in the derived class declaration. (The case for redefined virtual
functions differing only in return type is discussed below.) A redefined function is said to override the
base class function.
You can also declare the functions int Base::Fun(int) and int Derived::Fun(int) even
when they are not virtual. In such a case, int Derived::Fun(int) is said to hide any other versions
of Fun(int) that exist in any base classes. In addition, if class Derived defines other versions of Fun(),
(that is, versions of Fun() with different signatures) such versions are said to be overloaded versions of
Fun().

Virtual function return types
Generally, when redefining a virtual function, you cannot change just the function return type. To
redefine a virtual function, the new definition (in some derived class) must exactly match the return type
and formal parameters of the initial declaration. If two functions with the same name have different
formal parameters, C++ considers them different, and the virtual function mechanism is ignored.
However, for certain virtual functions in a base class, their overriding version in a derived class can have
a return type that is different from the overridden function. This is possible only when both of the
following conditions are met:
 The overridden virtual function returns a pointer or reference to the base class.
 The overriding function returns a pointer or reference to the derived class.
If a base class B and class D (derived publicly from B) each contain a virtual function vf, then if vf is
called for an object d of D, the call made is D::vf(), even when the access is via a pointer or
reference to B. For example,
struct X {}; // Base class.
struct Y : X {}; // Derived class.
struct B {
 virtual void vf1();
 virtual void vf2();
 virtual void vf3();
 void f();
 virtual X* pf(); // Return type is a pointer to base. This can
 // be overridden.
 };

class D : public B {
public:
 virtual void vf1(); // Virtual specifier is legal but redundant.
 void vf2(int); // Not virtual, since it's using a different
 // arg list. This hides B::vf2().
// char vf3(); // Illegal: return-type-only change!
 void f();
 Y* pf(); // Overriding function differs only
 // in return type. Returns a pointer to
 // the derived class.
 };
void extf() {
 D d; // Instantiate D
 B* bp = &d; // Standard conversion from D* to B*
 // Initialize bp with the table of functions

// provided for object d. If there is no entry for a
 // function in the d-table, use the function
 // in the B-table.
 bp–>vf1(); // Calls D::vf1
 bp–>vf2(); // Calls B::vf2 since D's vf2 has different args
 bp–>f(); // Calls B::f (not virtual)
 X* xptr = bp–>pf(); // Calls D::pf() and converts the result
 // to a pointer to X.
 D* dptr = &d;
 Y* yptr = dptr–>pf(); // Calls D::pf() and initializes yptr.
 // No further conversion is done.
 }
The overriding function vf1 in D is automatically virtual. The virtual specifier can be used with an
overriding function declaration in the derived class. If other classes will be derived from D, the virtual
keyword is required. If no further classes will be derived from D, the use of virtual is redundant.
The interpretation of a virtual function call depends on the type of the object it is called for; with
nonvirtual function calls, the interpretation depends only on the type of the pointer or reference denoting
the object it is called for.
virtual functions exact a price for their versatility: each object in the derived class needs to carry a
pointer to a table of functions in order to select the correct one at run time (late binding).

Abstract classes
See also
An abstract class is a class with at least one pure virtual function. A virtual function is specified as pure
by setting it equal to zero.
An abstract class can be used only as a base class for other classes. No objects of an abstract class
can be created. An abstract class cannot be used as an argument type or as a function return type.
However, you can declare pointers to an abstract class. References to an abstract class are allowed,
provided that a temporary object is not needed in the initialization. For example,
class shape { // abstract class
 point center;

.

.

.
public:
 where() { return center; }
 move(point p) { center = p; draw(); }
 virtual void rotate(int) = 0; // pure virtual function
 virtual void draw() = 0; // pure virtual function
 virtual void hilite() = 0; // pure virtual function

.

.

.
}
shape x; // ERROR: attempt to create an object of an abstract class
 shape* sptr; // pointer to abstract class is OK
 shape f(); // ERROR: abstract class cannot be a return type
int g(shape s); // ERROR: abstract class cannot be a function argument typ
e

shape& h(shape&); // reference to abstract class as return
 // value or function argument is OK
Suppose that D is a derived class with the abstract class B as its immediate base class. Then for each
pure virtual function pvf in B, if D doesn’t provide a definition for pvf, pvf becomes a pure member
function of D, and D will also be an abstract class.
For example, using the class shape previously outlined,
class circle : public shape { // circle derived from abstract class
 int radius; // private
public:
 void rotate(int) { } // virtual function defined: no action
 // to rotate a circle
 void draw(); // circle::draw must be defined somewhere
}
Member functions can be called from a constructor of an abstract class, but calling a pure virtual
function directly or indirectly from such a constructor provokes a run-time error.

C++ scope
See also
The lexical scoping rules for C++, apart from class scope, follow the general rules for C, with the proviso
that C++, unlike C, permits both data and function declarations to appear wherever a statement might
appear. The latter flexibility means that care is needed when interpreting such phrases as “enclosing
scope” and “point of declaration.”

Class scope
See also
The name M of a member of a class X has class scope “local to X”; it can be used only in the following
situations:
 In member functions of X
 In expressions such as x.M, where x is an object of X
 In expressions such as xptr->M, where xptr is a pointer to an object of X
 In expressions such as X::M or D::M, where D is a derived class of X
 In forward references within the class of which it is a member
Names of functions declared as friends of X are not members of X; their names simply have enclosing
scope.

Hiding
See also
A name can be hidden by an explicit declaration of the same name in an enclosed block or in a class. A
hidden class member is still accessible using the scope modifier with a class name: X::M. A hidden file
scope (global) name can be referenced with the unary operator :: (for example, ::g). A class name X can
be hidden by the name of an object, function, or enumerator declared within the scope of X, regardless
of the order in which the names are declared. However, the hidden class name X can still be accessed
by prefixing X with the appropriate keyword: class, struct, or union.
The point of declaration for a name x is immediately after its complete declaration but before its
initializer, if one exists.

C++ scoping rules summary
See also
The following rules apply to all names, including typedef names and class names, provided that C++
allows such names in the particular context discussed:
 The name itself is tested for ambiguity. If no ambiguities are detected within its scope, the access
sequence is initiated.
 If no access control errors occur, the type of the object, function, class, typedef, and so on, is
tested.
 If the name is used outside any function and class, or is prefixed by the unary scope access
operator ::, and if the name is not qualified by the binary :: operator or the member selection operators .
and ->, then the name must be a global object, function, or enumerator.
 If the name n appears in any of the forms X::n, x.n (where x is an object of X or a reference to X),
or ptr->n (where ptr is a pointer to X), then n is the name of a member of X or the member of a class from
which X is derived.
 Any name that hasn’t been discussed yet and that is used in a static member function must either
be declared in the block it occurs in or in an enclosing block, or be a global name. The declaration of a
local name n hides declarations of n in enclosing blocks and global declarations of n. Names in different
scopes are not overloaded.
 Any name that hasn’t been discussed yet and that is used in a nonstatic member function of class
X must either be declared in the block it occurs in or in an enclosing block, be a member of class X or a
base class of X, or be a global name. The declaration of a local name n hides declarations of n in
enclosing blocks, members of the function’s class, and global declarations of n. The declaration of a
member name hides declarations of the same name in base classes.
 The name of a function argument in a function definition is in the scope of the outermost block of
the function. The name of a function argument in a nondefining function declaration has no scope at all.
The scope of a default argument is determined by the point of declaration of its argument, but it can’t
access local variables or nonstatic class members. Default arguments are evaluated at each point of call.
 A constructor initializer (see ctor-initializer in the class declarator syntax in C++Builder declaration
syntax,) is evaluated in the scope of the outermost block of its constructor, so it can refer to the
constructor’s argument names.

Using Templates
See also
Templates, also called generics or parameterized types, let you construct a family of related functions or
classes. These topics introduce the basic concept of templates:
Exporting and importing templates
Template Syntax
Template Body Parsing
Function Templates
Class Templates
Implicit and Explicit Template Functions
Template Compiler Switches

template
See also Keywords

Syntax
template-declaration:
 template < template-argument-list > declaration
template-argument-list:
 template-argument
 template-argument-list, template argument

template-argument:
 type-argument
 argument-declaration

type-argument:
 class identifier
template-class-name:
 template-name < template-arg-list >

template-arg-list:
 template-arg
 template-arg-list , template-arg

template-arg:
 expression
 type-name

< template-argument-list > declaration

Description
Use templates (also called generics or parameterized types) to construct a family of related functions or
classes.

Template body parsing
See also
Earlier versions of the compiler didn't check the syntax of a template body unless the template was
instantiated. A template body is now parsed immediately when seen like every other declaration.
template <class T> class X : T
{
 Int j; // Error: Type name expected in template X<T>
};
Let's assume that Int hasn't yet been defined. This means that Int must be a member of the template
argument T. But it also might just be a typing error and should be int instead of Int. Because the
compiler can't guess the right meaning it issues an error message.
If you want to access types defined by a template argument you should use a typedef to make your
intention clear to the compiler:
template <class T> class X : T
{
 typedef T::Int Int;
 Int j;
};
You cannot just write
 typedef T::Int;
as in earlier versions of the compiler. Not giving the typedef name was acceptable, but this now causes
an error message.
All other templates mentioned inside the template body are declared or defined at that point. Therefore,
the following example is ill-formed and will not compile:
template <class T> class X
{
 void f(NotYetDefindedTemplate<T> x);
};
All template definitions must end with a semicolon. Earlier versions of the compiler did not complain if
the semicolon was missing.

Function Templates
See also Using Templates
Consider a function max(x, y) that returns the larger of its two arguments. x and y can be of any type
that has the ability to be ordered. But, since C++ is a strongly typed language, it expects the types of the
parameters x and y to be declared at compile time. Without using templates, many overloaded versions
of max are required, one for each data type to be supported even though the code for each version is
essentially identical. Each version compares the arguments and returns the larger.
One way around this problem is to use a macro:
#define max(x,y) ((x > y) ? x : y)
However, using the #define circumvents the type-checking mechanism that makes C++ such an
improvement over C. In fact, this use of macros is almost obsolete in C++. Clearly, the intent of max(x,
y) is to compare compatible types. Unfortunately, using the macro allows a comparison between an int
and a struct, which are incompatible.
Another problem with the macro approach is that substitution will be performed where you don't want it
to be. By using a template instead, you can define a pattern for a family of related overloaded functions
by letting the data type itself be a parameter:
template <class T> T max(T x, T y){
 return (x > y) ? x : y;
 };
The data type is represented by the template argument <class T>. When used in an application, the
compiler generates the appropriate code for the max function according to the data type actually used in
the call:
int i;
Myclass a, b;

int j = max(i,0); // arguments are integers
Myclass m = max(a,b); // arguments are type Myclass
Any data type (not just a class) can be used for <class T>. The compiler takes care of calling the
appropriate operator>(), so you can use max with arguments of any type for which operator>() is
defined.

Overriding a Template Function
Using Templates
The previous example is called a function template (or generic function, if you like). A specific
instantiation of a function template is called a template function. Template function instantiation occurs
when you take the function address, or when you call the function with defined (non-generic) data types.
You can override the generation of a template function for a specific type with a non-template function:
#include <string.h>

char *max(char *x, char *y){
 return(strcmp(x,y) > 0) ? x : y;
}
If you call the function with string arguments, it's executed in place of the automatic template function. In
this case, calling the function avoided a meaningless comparison between two pointers.
Only trivial argument conversions are performed with compiler-generated template functions.
The argument type(s) of a template function must use all of the template formal arguments. If it doesn't,
there is no way of deducing the actual values for the unused template arguments when the function is
called.

Implicit and Explicit Template Functions
Using Templates
When doing overload resolution (following the steps of looking for an exact match), the compiler ignores
template functions that have been generated implicitly by the compiler.
template<class T> T max(T a, T b){
 return (a > b) ? a : b;
};

void f(int i, char c){
 max(i, i); // calls max(int ,int)
 max(c, c); // calls max(char,char)
 max(i, c); // no match for max(int,char)
 max(c, i); // no match for max(char,int)
}
This code results in the following error messages:
Could not find a match for 'max(int,char)' in function f(int,char)
Could not find a match for 'max(char,int)' in function f(int,char)
If the user explicitly declares a template function, this function, on the other hand, will participate fully in
overload resolution. See the example of explicit template function.
When searching for an exact match for template function parameters, trivial conversions are considered
to be exact matches. See the example on trivial conversions.
Template functions with derived class pointer or reference arguments are permitted to match their public
base classes. See the example of base class referencing.

Class Templates
See also Using Templates Example
A class template (also called a generic class or class generator) lets you define a pattern for class
definitions. Consider the following example of a vector class (a one-dimensional array). Whether you
have a vector of integers or any other type, the basic operations performed on the type are the same
(insert, delete, index, and so on). With the element type treated as a type parameter to the class, the
system will generate type-safe class definitions on the fly.
As with function templates, an explicit template class definition can be provided to override the
automatic definition for a given type:
class Vector<char *> { ... };
The symbol Vector must always be accompanied by a data type in angle brackets. It cannot appear
alone, except in some cases in the original template definition.

Template Arguments
Using Templates
Multiple arguments are allowed as part of the class template declaration. Template arguments can also
represent values in addition to data types:
template<class T, int size = 64> class Buffer { ... };
Non-type template arguments such as size can have default values. The value supplied for a non-type
template argument must be a constant expression:
const int N = 128;
int i = 256;

Buffer<int, 2*N> b1;// OK
Buffer<float, i> b2;// Error: i is not constant
Since each instantiation of a template class is indeed a class, it receives its own copy of static members.
Similarly, template functions get their own copy of static local variables.

Using Angle Brackets in Templates
Using Templates
Be careful when using the right angle bracket character upon instantiation:
Buffer<char, (x > 100 ? 1024 : 64)> buf;
In the preceding example, without the parentheses around the second argument, the > between x and
100 would prematurely close the template argument list.

Using Type-safe Generic Lists in Templates
Using Templates
In general, when you need to write lots of nearly identical things, consider using templates. The
problems with the following class definition, a generic list class,
class GList
{
 public:
 void insert(void *);
 void *peek();
 .
 .
 .
};
are that it isn't type-safe and common solutions need repeated class definitions. Since there's no type
checking on what gets inserted, you have no way of knowing what results you'll get. You can solve the
type-safe problem by writing a wrapper class:
class FooList : public Glist {
 public:
 void insert(Foo *f) { GList::insert(f); }
 Foo *peek() { return (Foo *)GList::peek(); }
 .
 .
 .
};
This is type-safe. insert will only take arguments of type pointer-to-Foo or object-derived-from-Foo, so
the underlying container will only hold pointers that in fact point to something of type Foo. This means
that the cast in FooList::peek() is always safe, and you've created a true FooList. Now, to do the same
thing for a BarList, a BazList, and so on, you need repeated separate class definitions. To solve the
problem of repeated class definitions and be type-safe, you can once again use templates. See the
example for type-safe generic list class.
By using templates, you can create whatever type-safe lists you want, as needed, with a simple
declaration. And there's no code generated by the type conversions from each wrapper class so there's
no run-time overhead imposed by this type safety.

Type-safe generic list class definition
template <class T> class List : public GList
{
public:
 void insert(T *t) { GList::insert(t); }
 T *peek() { return (T *)GList::peek(); }
 .
 .
 .
};

 // Create a List object of Foo types and name it fList.
 List<Foo> fList;

// Create a List object of Bar types and name it bList.
 List<Bar> bList;

// Create a List object of Baz types and name it zList.
 List<Baz> zList;

Eliminating Pointers in Templates
Using Templates
Another design technique is to include actual objects, making pointers unnecessary. This can also
reduce the number of virtual function calls required, since the compiler knows the actual types of the
objects. This is beneficial if the virtual functions are small enough to be effectively inlined. It's difficult to
inline virtual functions when called through pointers, because the compiler doesn't know the actual
types of the objects being pointed to.
template <class T> aBase {
 .
 .
 .
 private:
 T buffer;
};

class anObject : public aSubject, public aBase<aFilebuf> {
 .
 .
 .
};
All the functions in aBase can call functions defined in aFilebuf directly, without having to go through a
pointer. And if any of the functions in aFilebuf can be inlined, you'll get a speed improvement, because
templates allow them to be inlined.

Template Compiler Switches
Using Templates
The -Jg family of switches control how instances of templates are generated by the compiler. Every
template instance encountered by the compiler will be affected by the value of the switch at the point
where the first occurrence of that particular instance is seen by the compiler.
For template functions the switch applies to the function instances; for template classes, it applies to all
member functions and static data members of the template class. In all cases, this switch applies only to
compiler-generated template instances and never to user-defined instances. It can be used, however, to
tell the compiler which instances will be user-defined so that they aren't generated from the template.

Using template switches

When using the -Jg family of switches, there are two basic approaches for generating template
instances:

Approach 1
Include the function body (for a function template) or member function and static data member
definitions (for a template class) in the header file that defines the particular template, and use the
default setting of the template switch (-Jg). If some instances of the template are user-defined, the
declarations (prototypes, for example) for them should be included in the same header but preceded by
#pragma option -Jgx. See the example for template header files.

Approach 2
Compile all of the source files comprising the program with the -Jgx switch (causing external references
to templates to be generated). In order to provide the definitions for all of the template instances, add a
file (or files) to the program that includes the template bodies (including any user-defined instance
definitions), and list all the template instances needed in the rest of the program to provide the
necessary public symbol definitions. Compile the file (or files) with the -Jgd switch. See the example for
separate file template compilation.

Template header file

// Declare a template function and define it's body.
/* When this header file is included in a C++ source file, the sort template
can be used without worrying about how the various instances are generated
(with the exception of sort for integer arrays which is a user-defined
instance. Its definition must be provided by the user. */

template<class T> void sort (T* array, int size)
{
 // Body of template goes here.
}
// Sorting of integer elements done by user-define instance.
#pragma option -Jgx
extern void sort(int *array, int size);
// Restore the template switch to its original state.
#pragma option -Jg

Separate file template compilation
// In vector.h
template <class elem, int size> class vector
{
 elem * value;
public:
 vector();
 elem & operator [] (int index) {
 return value[index];
 }
};
// In main.cpp source file.
#include "vector.h"
/** Let the compiler know that the following template instances will be
defined elsewhere. **/

#pragma option -Jgx
// Use two instances of the vector template class.
vector<int, 100> int_100;
vector<char, 10> char_10;
int main()
{
 return int_100[0] + char_10[0];
}

// In template.cpp source file.
#include <string.h>
#include "vector.h"
// Define any template bodies.
template <class elem, int size> vector <elem, size> :: vector()
{
 value = new elem[size];
 memset(value, 0, size * sizeof(elem));
}
// Generate the necessary instances.
#pragma option -Jgd
typedef vector<int, 100> fake_int_100;
typedef vector<char, 10> fake_char_10;

Exporting and importing templates
See also
The declaration of a template function or template class needs to be sufficiently flexible to allow it to be
used in either a DLL or an EXE file. The same template declaration should be available as an import
and/or export, or without a modifier. To be completely flexible, the header file template declarations
should not use _ _export or _ _import modifiers. This allows the user to apply the appropriate modifier
at the point of instantiation depending on how the instantiation is to be used.
The following steps demonstrate exporting and importing of templates. The source code is organized in
three files. Using the header file, code is generated in the DLL. A DLL library is created and linked to an
EXE file.
1. Exportable/Importable Template Declarations

The header file contains all template class and template function declarations. An export/import
version of the templates can be instantiated by defining the appropriate macro at compile time.

2. Compiling Exportable Templates
Write the source code for a DLL. When compiled, this DLL has reusable export code for templates.

3. Using ImportTemplates
Now you can write a calling function that uses templates. This file is linked to the DLL. Only objects
that are not declared in the header file and which are instantiated in the main function cause the
compiler to generate new code. Code for a newly instantiated object is written into MAIN.OBJ file.

Preprocessor Directives
Preprocessor directives are usually placed at the beginning of your source code, but they can legally
appear at any point in a program. The C++Builder preprocessor detects preprocessor directives (also
known as control lines) and parses the tokens embedded in them. C++Builder supports these
preprocessor directives:
(null directive) #ifdef
#define #ifndef
#elif #include
#else #line
#endif #pragma
#error #undef
#if
Any line with a leading # is taken as a preprocessing directive, unless the # is within a string literal, in a
character constant, or embedded in a comment. The initial # can be preceded or followed by whitespace
(excluding new lines).

(null directive)
Directives

Syntax
#
Description
The null directive consists of a line containing the single character #. This line is always ignored.

#define
See also Example Directives

Syntax
#define macro_identifier <token_sequence>
Description
The #define directive defines a macro. Macros provide a mechanism for token replacement with or
without a set of formal, function-like parameters.
Each occurrence of macro_identifier in your source code following this control line will be replaced in the
original position with the possibly empty token_sequence (there are some exceptions, which are noted
later). Such replacements are known as macro expansions. The token sequence is sometimes called
the body of the macro.
An empty token sequence results in the removal of each affected macro identifier from the source code.
After each individual macro expansion, a further scan is made of the newly expanded text. This allows
for the possibility of nested macros: The expanded text can contain macro identifiers that are subject to
replacement. However, if the macro expands into what looks like a preprocessing directive, such a
directive will not be recognized by the preprocessor. There are these restrictions to macro expansion:

Any occurrences of the macro identifier found within literal strings, character constants, or
comments in the source code are not expanded.

A macro won't be expanded during its own expansion (so #define A A won't expand
indefinitely).

Example
#define HI "Have a nice day!"
#define empty
#define NIL ""
#define GETSTD #include <stdio.h>

#undef
See also Example Directives

Syntax
#undef macro_identifier
Description
You can undefine a macro using the #undef directive. #undef detaches any previous token sequence
from the macro identifier; the macro definition has been forgotten, and the macro identifier is undefined.
No macro expansion occurs within #undef lines.
The state of being defined or undefined turns out to be an important property of an identifier, regardless
of the actual definition. The #ifdef and #ifndef conditional directives, used to test whether any identifier
is currently defined or not, offer a flexible mechanism for controlling many aspects of a compilation.
After a macro identifier has been undefined, it can be redefined with #define, using the same or a
different token sequence.
Attempting to redefine an already defined macro identifier will result in a warning unless the new
definition is exactly the same token-by-token definition as the existing one. The preferred strategy where
definitions might exist in other header files is as follows:
#ifndef BLOCK_SIZE
 #define BLOCK_SIZE 512
#endif
The middle line is bypassed if BLOCK_SIZE is currently defined; if BLOCK_SIZE is not currently
defined, the middle line is invoked to define it.
No semicolon (;) is needed to terminate a preprocessor directive. Any character found in the token
sequence, including semicolons, will appear in the macro expansion. The token sequence terminates at
the first non-backslashed new line encountered. Any sequence of whitespace, including comments in
the token sequence, is replaced with a single-space character.

Example
#define BLOCK_SIZE 512
 .
 .
 .
#undef BLOCK_SIZE
/* use of BLOCK_SIZE now would be illegal "unknown" identifier */
 .
 .
 .
#define BLOCK_SIZE 128 /* redefinition */

Using the -D and -U command-line options
See also
Identifiers can be defined and undefined using the command-line compiler options -D and -U.
The command line
BCC32 -Ddebug=1; paradox=0; X -Umysym myprog.c
is equivalent to placing
#define debug 1
#define paradox 0
#define X
#undef mysym
in the program.

Keywords and Protected Words as Macros
It is legal but ill-advised to use C++Builder keywords as macro identifiers:
#define int long /* legal but probably catastrophic */
#define INT long /* legal and possibly useful */
The following predefined global identifiers cannot appear immediately following a #define or #undef
directive:
_ _DATE_ _ _ _FILE_ _ _ _LINE_ _
_ _STDC_ _ _ _TIME_ _

Macros with Parameters
See also
The following syntax is used to define a macro with parameters:
#define macro_identifier(<arg_list>) token_sequence
Any comma within parentheses in an argument list is treated as part of the argument, not as an
argument delimiter.
Note there can be no whitespace between the macro identifier and the (. The optional arg_list is a
sequence of identifiers separated by commas, not unlike the argument list of a C function. Each comma-
delimited identifier plays the role of a formal argument or placeholder.
Such macros are called by writing
macro_identifier<whitespace>(<actual_arg_list>)
in the subsequent source code. The syntax is identical to that of a function call; indeed, many standard
library C "functions" are implemented as macros. However, there are some important semantic
differences, side effects, and potential pitfalls.
The optional actual_arg_list must contain the same number of comma-delimited token sequences,
known as actual arguments, as found in the formal arg_list of the #define line: There must be an actual
argument for each formal argument. An error will be reported if the number of arguments in the two lists
is different.
A macro call results in two sets of replacements. First, the macro identifier and the parenthesis-enclosed
arguments are replaced by the token sequence. Next, any formal arguments occurring in the token
sequence are replaced by the corresponding real arguments appearing in the actual_arg_list.
As with simple macro definitions, rescanning occurs to detect any embedded macro identifiers eligible
for expansion.

Nesting Parentheses and Commas
The actual_arg_list can contain nested parentheses provided that they are balanced; also, commas
appearing within quotes or parentheses are not treated like argument delimiters.
#define ERRMSG(x, str) showerr("Error:, x. str)
#define SUM(x,y) ((x) + (y))
.
.
.
ERRMSG(2, "Press Enter, then Esc");
/* expands to: showerr("Error",2,"Press Enter, then Esc");
return SUM(f(i, j), g(k,l));
/* expands to: return ((f(i,j) + (g(k,l))); */

Token Pasting with ##
You can paste (or merge) two tokens together by separating them with ## (plus optional whitespace on
either side). The preprocessor removes the whitespace and the ##, combining the separate tokens into
one new token. You can use this to construct identifiers.
Given the definition
#define VAR(i, j) (i##j)
 the call VAR(x, 6) expands to (x6). This replaces the older nonportable method of using (i/**/j).

Converting to Strings with #
The # symbol can be placed in front of a formal macro argument in order to convert the actual argument
to a string after replacement.
Given the following definition:
#define TRACE(flag) printf(#flag "=%d\n", flag)

the code fragment
int highval = 1024;
TRACE(highval);

becomes
int highval = 1024;
printf("highval" "=%d\n", highval);

which, in turn, is treated as
int highval = 1024;
printf("highval=%d\n", highval);

Using the Backslash (\) for Line Continuation
A long token sequence can straddle a line by using a backslash (\). The backslash and the following
newline are both stripped to provide the actual token sequence used in expansions.
#define WARN "This is really a single-\
line warning."
.
.
.
puts(WARN)
/* Screen will show: This is really a single-line warning. */

Side Effects and Other Dangers
The similarities between function and macro calls often obscure their differences. A macro call has no
built-in type checking, so a mismatch between formal and actual argument data types can produce
bizarre, hard-to-debug results with no immediate warning. Macro calls can also give rise to unwanted
side effects, especially when an actual argument is evaluated more than once.
Compare CUBE and cube in the following example.
int cube(int x) {
 return x* x*x;
 }
#define CUBE(x) ((x)* (x) * (x))
...
int b = 0, a = 3;
b = cube(a++);
/* cube() is passed actual arg = 3; so b = 27; a now = 4 */
a = 3;
b = CUBE(a++);
/* expands as ((a++)*(a++)*(a++)); a now = 6 */

#include
Example Directives

Syntax
#include <header_name>
#include "header_name"
#include macro_identifier
Description
The #include directive pulls in other named files, known as include files, header files, or headers, into
the source code. The syntax has three versions:

The first and second versions imply that no macro expansion will be attempted; in other words,
header_name is never scanned for macro identifiers. header_name must be a valid file name with an
extension (traditionally .h for header) and optional path name and path delimiters.

The third version assumes that neither < nor " appears as the first non-whitespace character
following #include; further, it assumes a macro definition exists that will expand the macro identifier into a
valid delimited header name with either of the <header_name> or "header_name" formats.
The preprocessor removes the #include line and conceptually replaces it with the entire text of the
header file at that point in the source code. The source code itself is not changed, but the compiler
"sees" the enlarged text. The placement of the #include can therefore influence the scope and duration
of any identifiers in the included file.
If you place an explicit path in the header_name, only that directory will be searched.
The difference between the <header_name> and "header_name" formats lies in the searching algorithm
employed in trying to locate the include file.

Header File Search with <header_name>
The <header_name> version specifies a standard include file; the search is made successively in each
of the include directories in the order they are defined. If the file is not located in any of the default
directories, an error message is issued.

Header File Search with "header_name"
The "header_name" version specifies a user-supplied include file; the file is sought first in the current
directory (usually the directory holding the source file being compiled). If the file is not found there, the
search continues in the include directories as in the <header_name> situation.

Example
This #include statement causes it to look for stdio.h in the standard include directory.
#include <stdio.h>

This #include statement causes it to look for MYINCLUD.H in the current directory, then in the default
directories.
#include "myinclud.h"

After expansion, this #include statement causes the preprocessor to look in C:\BCB\INCLUDE\
MYSTUFF.H and nowhere else.
#define myinclud "C:\BCB\INCLUDE\MYSTUFF.H"
/* Note: Single backslashes OK here; within a C statement you would
 need "C:\BCB\INCLUDE\\MYSTUFF.H" */
#include myinclud
/* macro expansion */

Conditional compilation
C++Builder supports conditional compilation by replacing the appropriate source-code lines with a blank
line. The linees thus ignored are those beginning with # (except the #if, #ifdef, #ifndef, #else, #elif, and
#endif directives), as well as any lines that are not to be compiled as a result of the directives. All
conditional compilation directives must be completed in the source or include file in which they are
begun.

defined
See also Keywords

Syntax
#if defined[(] <identifier> [)]
#elif defined[(] <identifier> [)]
Description
Use the defined operator to test if an identifier was previously defined using #define. The defined
operator is only valid in #if and #elif expressions.
Defined evaluates to 1 (true) if a previously defined symbol has not been undefined (using #undef);
otherwise, it evaluates to 0 (false).
Defined performs the same function as #ifdef.
#if defined(mysym)
is the same as
#ifdef mysym
The advantage is that you can use defined repeatedly in a complex expression following the #if
directive; for example,
#if defined(mysym) && !defined(yoursym)

#if, #elif, #else, and #endif
See also Directives

Syntax
#if constant-expression-1
<section-1>
<#elif constant-expression-2 newline section-2>
 .
 .
 .
<#elif constant-expression-n newline section-n>
<#else <newline> final-section>
#endif
Description
C++Builder supports conditional compilation by replacing the appropriate source-code lines with a blank
line. The lines thus ignored are those lines that are not to be compiled as a result of the directives. All
conditional compilation directives must be completed in the source or include file in which they are
begun.
The conditional directives #if, #elif, #else, and #endif work like the normal C conditional operators. If
the constant-expression-1 (subject to macro expansion) evaluates to nonzero (true), the lines of code
(possibly empty) represented by section-1, whether preprocessor command lines or normal source
lines, are preprocessed and, as appropriate, passed to the C++Builder compiler. Otherwise, if constant-
expression-1 evaluates to zero (false), section-1 is ignored (no macro expansion and no compilation).
In the true case, after section-1 has been preprocessed, control passes to the matching #endif (which
ends this conditional sequence) and continues with next-section. In the false case, control passes to the
next #elif line (if any) where constant-expression-2 is evaluated. If true, section-2 is processed, after
which control moves on to the matching #endif. Otherwise, if constant-expression-2 is false, control
passes to the next #elif, and so on, until either #else or #endif is reached. The optional #else is used
as an alternative condition for which all previous tests have proved false. The #endif ends the
conditional sequence.
The processed section can contain further conditional clauses, nested to any depth; each #if must be
matched with a closing #endif.
The net result of the preceding scenario is that only one section (possibly empty) is passed on for further
processing. The bypassed sections are relevant only for keeping track of any nested conditionals, so
that each #if can be matched with its correct #endif.
The constant expressions to be tested must evaluate to a constant integral value.

#ifdef and #ifndef
See also Directives

Syntax
#ifdef identifier
#ifndef identifier
Description
The #ifdef and #ifndef conditional directives let you test whether an identifier is currently defined or not;
that is, whether a previous #define command has been processed for that identifier and is still in force.
The line
#ifdef identifier
has exactly the same effect as
#if 1
if identifier is currently defined, and the same effect as
#if 0
if identifier is currently undefined.
#ifndef tests true for the "not-defined" condition, so the line
#ifndef identifier
has exactly the same effect as
#if 0
if identifier is currently defined, and the same effect as
#if 1
if identifier is currently undefined.
The syntax thereafter follows that of the #if, #elif, #else, and #endif.
An identifier defined as NULL is considered to be defined.

#line
Directives

Syntax
#line integer_constant <"filename">
Description
You can use the #line directive to supply line numbers to a program for cross-reference and error
reporting. If your program consists of sections derived from some other program file, it is often useful to
mark such sections with the line numbers of the original source rather than the normal sequential line
numbers derived from the composite program.
The #line directive indicates that the following source line originally came from line number
integer_constant of filename. Once the filename has been registered, subsequent #line commands
relating to that file can omit the explicit filename argument.
Macros are expanded in #line arguments as they are in the #include directive.
The #line directive is primarily used by utilities that produce C code as output, and not in human-written
code.

#error
Example Directives

Syntax
#error errmsg
Description
The #error directive generates the message:
Error: filename line# : Error directive: errmsg
This directive is usually embedded in a preprocessor conditional statement that catches some undesired
compile-time condition. In the normal case, that condition will be false. If the condition is true, you want
the compiler to print an error message and stop the compile. You do this by putting an #error directive
within a conditional statement that is true for the undesired case.

Example
#if (MYVAL != 0 && MYVAL != 1)
#error MYVAL must be defined to either 0 or 1
#endif

#pragma summary
Directives

Syntax
#pragma directive-name
Description
With #pragma, C++Builder can define the directives it wants without interfering with other compilers that
support #pragma. If the compiler doesn't recognize directive-name, it ignores the #pragma directive
without any error or warning message.
C++Builder supports the following #pragma directives:
#pragma anon_struct
#pragma argsused
#pragma codeseg
#pragma comment
#pragma exit
#pragma hdrfile
#pragma hdrstop
#pragma inline
#pragma intrinsic
#pragma link
#pragma message
#pragma option
#pragma resource
#pragma startup
#pragma warn

#pragma anon_struct
See also #pragma

Syntax
#pragma anon_struct on
#pragma anon_struct off
Description
The anon_struct directive allows you to compile anonymous structures embedded in classes.
#pragma anon_struct on
struct S {
 int i;
 struct { // Embedded anonymous struct
 int j ;
 float x ;
 };
 class { // Embedded anonymous class
 public:
 long double ld;
 };
S() { i = 1; j = 2; x = 3.3; ld = 12345.5;}
};
#pragma anon_struct off

void main() {
 S mystruct;
 mystruct.x = 1.2; // Assign to embedded data.
 }

#pragma argsused
See also #pragma

Syntax
#pragma argused
Description
The argsused pragma is allowed only between function definitions, and it affects only the next function.
It disables the warning message:
"Parameter name is never used in function func-name"

#pragma codeseg
See also #pragma

Syntax
#pragma codeseg <seg_name> <"seg_class"> <group>
Description
The codeseg directive lets you name the segment, class, or group where functions are allocated. If the
pragma is used without any of its options, the default code segment is used for function allocation.

#pragma comment
See also #pragma

Syntax
#pragma comment (comment type, "string")
Description
The comment directive lets you write a comment record into an output file. The comment type can be
one of the following values:

Value Explanation
exestr The linker writes string into an .OBJ file. Your specified string is placed in the

executable file. Such a string is never loaded into memory but can be found in
the executable file by use of a suitable file search utility.

lib Writes a comment record into an .OBJ file. The comment record is used by the
linker as a library-search directory. A library module that is not specified in the
linker's response-file can be specified by the comment LIB directive. The linker
includes the library module name specified in string as the last library. Multiple
modules can be named and linked in the order in which they are named.

user The compiler writes string into the .OBJ file. The specified string is ignored by the
linker.

#pragma exit and #pragma startup
See also #pragma

Syntax
#pragma startup function-name <priority>
#pragma exit function-name <priority>
Description
These two pragmas allow the program to specify function(s) that should be called either upon program
startup (before the main function is called), or program exit (just before the program terminates through
_exit).
The specified function-name must be a previously declared function taking no arguments and returning
void; in other words, it should be declared as:
void func(void);
The optional priority parameter should be an integer in the range 64 to 255. The highest priority is 0.
Functions with higher priorities are called first at startup and last at exit. If you don't specify a priority, it
defaults to 100.
Note: Priorities from 0 to 63 are used by the C libraries, and should not be used by the user.

#pragma hdrfile
See also #pragma

Syntax
#pragma hdrfile "filename.CSM"
Description
This directive sets the name of the file in which to store precompiled headers.
If you aren't using precompiled headers, this directive has no effect. You can use the command-line
compiler option -H=filename or Use Precompiled Headers to change the name of the file used to store
precompiled headers.

#pragma hdrstop
See also #pragma

Syntax
#pragma hdrstop
Description
This directive terminates the list of header files eligible for precompilation. You can use it to reduce the
amount of disk space used by precompiled headers.
Use this pragma directive only in source files. The pragma has no effect when it is used in a header file.

#pragma inline
See also #pragma

Syntax
#pragma inline
Description
This directive is equivalent to the -B command-line compiler option or the IDE inline option.
This is best placed at the top of the file, because the compiler restarts itself with the -B option when it
encounters #pragma inline.

#pragma intrinsic
See also Example #pragma

Syntax
#pragma intrinsic [-]function-name
Description
Use #pragma intrinsic to override command-line switches or IDE options to control the inlining of
functions.
When inlining an intrinsic function, always include a prototype for that function before using it.

Example
This example causes the compiler to generate code for strcpy in your function:
#pragma intrinsic strcpy
 while this version prevents the compiler from inlining strcpy:
#pragma intrinsic -strcpy

#pragma link
See also #pragma

Syntax
#pragma link “[path]modulename[.ext]”
Description
This directive is automatically written by the IDE and the DCC32 compiler. The directive instructs the
linker to link the file into an executable file.
By default, the linker searches for modulename in the local directory and any path specified by the -L
option. You can use the path argument to specify a directory.
By default, the linker assumes a .obj extension.

#pragma message
See also Example #pragma

Syntax
#pragma message ("text" ["text"["text" ...]])
#pragma message text
Description
Use #pragma message to specify a user-defined message within your program code.
The first form requires that the text consist of one or more string constants, and the message must be
enclosed in parentheses. (This form is compatible with MSC.) The second form uses the text following
the #pragma for the text of the warning message. With both forms of the #pragma, any macro
references are expanded before the message is displayed.
Display of user-defined messages is on by default and can be turned on or off with the Show Warnings.
This option corresponds to the compiler's -wmsg switch.

Example
The following example displays either "You are compiling using version xxx of C++Builder" (where xxx is
the version number) or "Sorry, you are not using the C++Builder compiler".
#ifdef __BORLANDC__
#pragma message You are compiling using version __BORLANDC__ of C++Builder.
#else
#pragma message ("Sorry, you are not using the C++Builder compiler")
#endif

#pragma option
See also #pragma

Syntax
#pragma option [options...]
Description
Use #pragma option to include command-line options within your program code.
options can be any command-line option (except those listed in the following paragraph). Any number of
options can appear in one directive. Any of the toggle options (such as -a or -K) can be turned on and
off as on the command line. For these toggle options, you can also put a period following the option to
return the option to its command-line, configuration file, or option-menu setting. This allows you to
temporarily change an option, then return it to its default, without having to remember (or even needing
to know) what the exact default setting was.
Options that cannot appear in a pragma option include:
-B -c -dname
-Dname=string -efilename -E
-Fx -h -lfilename
-lexset -M -o
-P -Q -S
-T -Uname -V
-X -Y
You can use #pragmas, #includes, #define, and some #ifs in the following cases:

Before the use of any macro name that begins with two underscores (and is therefore a possible
built-in macro) in an #if, #ifdef, #ifndef or #elif directive.

Before the occurrence of the first real token (the first C or C++ declaration).
Certain command-line options can appear only in a #pragma option command before these events.
These options are:
-Efilename -f -i#
-m* -npath -ofilename
-u -W -z
*
Other options can be changed anywhere. The following options will only affect the compiler if they get
changed between functions or object declarations:
-1 -h -r
-2 -k -rd
-a -N -v
-ff -O -y
-G -p -Z
The following options can be changed at any time and take effect immediately:
-A -gn -zE
-b -jn -zF
-C -K -zH
-d -wxxx
The options can appear followed by a dot (.) to reset the option to its command-line state.

#pragma resource
See also #pragma

Syntax
#pragma resource "*.dfm"
Description
This pragma causes the file to be marked as a form unit and requires matching .dfm and header files. All
such files are managed by the IDE.
If your form requires any variables, they must be declared immediately after the pragma resource is
used. The declarations must be of the form
 TFormName *Formname;

#pragma warn
See also Example #pragma

Syntax
#pragma warn [+|-|.]www
Description
The warn pragma lets you override specific -wxxx command-line options or check Display Warnings.

Example
If your source code contains the directives:
#pragma warn +xxx
#pragma warn -yyy
#pragma warn .zzz
the xxx warning will be turned on, the yyy warning will be turned off, and the zzz warning will be restored
to the value it had when compilation of the file began. See the command-line options summary for a
complete list of the three-letter abbreviations and the warnings to which they apply.

Predefined macros
See also
C++Builder predefines certain global identifiers known as manifest constants. Most global indentifers
begin and end with two underscores (__).
Note: For readability, underscores are often separated by a single blank space. In your source code,

you should never insert whitespace between underscores.

Macro Value Description
_ _BCOPT_ _ 1 Defined in any compiler that has an optimizer.
_ _BCPLUSPLUS_ _ 0x520 Defined if you've selected C++ compilation; will increase in

later releases.
_ _BORLANDC_ _ 0x520 Version number.
_ _CDECL_ _ 1 Defined if Calling Convention is set to cdecl; otherwise

undefined.
_CHAR_UNSIGNED 1 Defined by default indicating that the default char is

unsigned char. Use the -K option to undefine this macro.
_ _CONSOLE_ _ When defined, the macro indicates that the program is a

console application.
_CPPUNWIND 1 Enable stack unwinding.This is true by default; use -xd- to

disable.
_ _cplusplus 1 Defined if in C++ mode; otherwise, undefined.
_ _DATE_ _ String literal Date when processing began on the current file.
_ _DLL_ _ 1 Defined whenever the -WD option is used; otherwise

undefined.
_ _FILE_ _ String literal Name of the current file being processed.
_ _LINE_ _ Decimal constant Number of the current source file line being processed.
_M_IX86 1 Always defined. The default    value is 300. You can

change the value to 400 or 500 by using the /4 or /5
options.

 _ _MSDOS_ _ 1 Integer constant.
_ _MT_ _ 1 Defined only if the -WM option is used. It specifies that

the multithread library is to be linked.
_ _PASCAL_ _ 1 Defined if Calling Convention is set to Pascal; otherwise

undefined.
_ _STDC_ _ 1 Defined if you compile with the -A option; otherwise,

undefined.
_ _TCPLUSPLUS_ _ 0x520 Version number.
_ _TEMPLATES_ _ 1 Defined as 1 for C++ files (meaning that templates are

supported); otherwise, it is undefined.
_ _TIME_ _ String literal Time when processing began on the current file.
_ _TLS_ _ 1 Thread Local Storage. Always true in C++Builder.
_ _TURBOC_ _ 0x520 Will increase in later releases.
_WCHAR_T 1 Defined only for C++ programs to indicate that wchar_t is

an intrinsically defined data type.
_WCHAR_T_DEFINED 1 Defined only for C++ programs to indicate that wchar_t

is an intrinsically defined data type.

_Windows Defined for Windows-only code.
_ _WIN32_ _ 1 Defined for console and GUI applications.
Note: _ _DATE_ _, _ _FILE_ _, _ _LINE_ _, _ _STDC_ _, and _ _TIME_ _cannot appear immediately

following a #define or #undef directive.

C++ Exception Handling
See also
These topics describe the C++ error-handling mechanism generally referred to as exception handling.
The C++Builder implementation is consistent with the proposed ANSI specification.
The exception handling mechanisms in C++Builder provide support for handling exceptions that can
occur during Delphi VCL usage. As part of the Delphi support, C++Builder also provides support for
handling operating system exceptions.

Throwing an Exception
Handling an Exception
Exception Specifications
Constructors and Destructors in Exception Handling
Unhandled Exceptions
Setting Exception Handling Options

The C++ language defines a standard for exception handling. The standard insures that the power of
object-oriented design is supported throughout your program.
In accordance with the ANSI/ISO working paper specification, C++Builder supports the termination
exception-handling model. When an abnormal situation arises at runtime, the program should terminate.
However, throwing an exception allows you to gather information at the throw point that could be useful
in diagnosing the causes which led to failure. You can also specify in the exception handler the actions
to be taken before the program terminates. Only synchronous exceptions are handled, meaning that the
cause of failure is generated from within the program. An event such as Control-C (which is generated
from outside the program) is not considered to be an exception.
C++ exceptions can only be handled in a try/catch construct.
Syntax for try/catch construct:
try-block:
      try compound-statement handler-list
handler-list:
      handler handler-listopt
handler:
      catch (exception-declaration) compound-statement
exception declaration:
      type-specifier-list declarator
      type-specifier-list abstract-declarator
      type-specifier-list
…
throw-expression:

      throw assignment-expressionopt
Note: The catch and throw keywords are not allowed in a C program.
The try-block is a statement that specifies the flow of control as the program executes. The try-block is
designated by the try keyword. Braces after the keyword are used to surround a program block that can
generate exceptions. The language structure specifies that any exceptions that occur should be raised
within a try-block.
The handler is a block of code designed to handle an exception. The C++ language requires that at
least one handler be available immediately after the try-block. There should be a handler for each
exception that the program can generate.
When the program encounters an abnormal situation for which it is not designed, you may transfer

control to some other part of the program that is designed to deal with the problem. This is done by
throwing an exception.
The exception-handling mechanism requires the use of three keywords: try, catch, and throw. The try-
block specified by try must be followed immediately by the handler specified by catch. If an exception is
thrown in the try-block, program control is transferred to the appropriate exception handler. The program
should attempt to catch any exception that is thrown by any function. Failure to do so could result in
abnormal termination of program.

Exception declarations
Although C++ allows an exception to be of any type, it is useful to make exceptions objects. The
exception object is treated exactly the way any object would. An exception carries information from the
point where the exception is thrown to the point where the exception is caught. This is information that
the program user will want to know when the program encounters some anomaly at runtime.

Throwing an Exception
See also C++ Exception Handling
A block of code in which an exception can occur must be prefixed by the keyword try. Following the try
keyword is a block of code enclosed by braces. This indicates that the program is prepared to test for
the existence of exceptions. If an exception occurs, the program flow is interrupted. The sequence of
steps taken is as follows:

The program searches for a matching handler
If a handler is found, the stack is unwound to that point
Program control is tranferred to the handler

If no handler is found, the program will call the terminate function. If no exceptions are thrown, the
program executes in the normal fashion.
A throw expression is also referred to as a throw-point. You can specify whether an exception may be
thrown by using one of the following syntax specifications:

Example 1
throw throw_object;
This example specifies that throw_object is to be passed to a handler.

Example 2
throw;
This example simply specifies that the last exception thrown is to be thrown again. An exception must
currently exist. Otherwise, the terminate function is called.

Example 3
void my_func1() throw (A, B)
{
        // Body of function.
}
This example specifies a list of exceptions that my_func1 can throw. No other exceptions will propagate
out of my_func1. If an exception other than A or B is generated within my_func1, it is considered to be
an unexpected exception and program control will be transferred to the unexpected function.

Example 4
void my_func2() throw ()
{
          // Body of this function.
}
The final case specifies that my_func2 should not throw any exceptions. If any function (for example,
operator new) in the body of my_func2 throws an exception, such an exception should be caught and
handled within the body of my_func2. Otherwise, such an exception is a violation of the exception
specification for my_func2. The unexpected function is then called.
When an exception occurs, the throw expression initializes a temporary object of the type T (to match
the type of argument arg) used in throw(T arg). Other copies can be generated as required by the
compiler. Consequently, it can be useful to define a copy constructor for the exception object.

Handling an Exception
See also Examples C++ Exception Handling
The exception handler is indicated by the catch keyword. The handler must be placed immediately after
the try-block. The keyword catch can also occur immediately after another catch. Each handler will only
evaluate an exception that matches, or can be converted to, the type specified in its argument list.
Every exception thrown by the program must be caught and processed by the exception handler. If the
program fails to provide an exception handler for a thrown exception, the program will call terminate.
Exception handlers are evaluated in the order that they are encountered. An exception is caught when
its type matches the type in the catch statement. Once a type match is made, program control is
transferred to the handler. The stack will have been unwound upon entering the handler. The handler
specifies what actions should be taken to deal with the program anomaly.
A goto statement can be used to transfer program control out of a handler but such a statement can
never be used to enter a handler.
After the handler has executed, the program can continue at the point after the last handler for the
current try-block. No other handlers are evaluated for the current exception.

Example 1
try {
      // Include any code that might throw an exception
}
catch (T X) // Provide a handler for each exception that might be thrown above
{
    // Take some actions
}
This example is specifically defined to handle an object of type T. If the argument is T, T&, const T, or
const T&, the handler will accept an object of type X if any of the following are true:

T and X are of the same type
T is an accessible base class for X in the throw expression
T is a pointer type and X is a pointer type that can be converted to T by a standard pointer

conversion in the throw expression

Example 2
try {
      // Include any code that might throw an exception
}
catch (...)
{
    // Take some actions
}
The statement catch (...) will handle any exception, regardless of type. This statement, if used, must
be the last handler for its try-block.

Exception Specifications
See also Examples C++ Exception Handling
The C++ language makes it possible for you to specify any exceptions that a function can throw. This
exception specification can be used as a suffix to the function declaration. The syntax for exception
specification is as follows:
exception-specification:

      throw (type-id-listopt)
      type-id-list:
      type-id
      type-id-list, type-id
The function suffix is not considered to be part of the function's type. Consequently, a pointer to a
function is not affected by the function's exception specification. Such a pointer checks only the
function's return and argument types. Therefore, the following is legal:
void f2(void) throw();            // Should not throw exceptions
void f3(void) throw (BETA); // Should only throw BETA objects
void (* fptr)();                        // Pointer to a function returning void
fptr = f2;
fptr = f3;
Extreme care should be taken when overriding virtual functions. Again, because the exception
specification is not considered part of the function type, it is possible to violate the program design.

Example 1
In the following example, the derived class BETA::vfunc is defined so that it should not throw any
exceptions--a departure from the original function declaration.
class ALPHA {
public:
      struct ALPHA_ERR {};
      virtual void vfunc(void) throw (ALPHA_ERR) {}; // Exception specification
};

class BETA : public ALPHA {
      void vfunc(void) throw() {};    // Exception specification is changed
};
The following are examples of functions with exception specifications.
void f1();                                // The function can throw any exception

void f2() throw();                // Should not throw any exceptions

void f3() throw(A, B*); // Can throw exceptions publicly derived from A,
  // or a pointer to publicly derived B
The definition and all declarations of such a function must have an exception specification containing the
same set of type-id's. If a function throws an exception not listed in its specification, the program will call
unexpected. This is a runtime issue--it will not be flagged at compile time. Therefore, care must be taken
to handle any exceptions which can be thrown by elements called within a function.

Example 2
// HOW TO MAKE EXCEPTION-SPECIFICATIONS AND HANDLE ALL EXCEPTIONS
#include <iostream.h>

// EXCEPTION DECLARATIONS
class Alpha {
      // Include something that shows why you chose to throw this exception.
};
Alpha alpha_inst;

class Beta {
      // Include something that shows why you chose to throw this exception.
};
Beta beta_inst;

// THROW ONLY Alpha OR Beta TYPE OBJECTS
void f3(char c) throw (Alpha, Beta) {
      cout << "f3() was called" << endl;
      if (c == 'a')
            throw(alpha_inst);
      if (c == 'b')
            throw(beta_inst);
      else ; // DO NOTHING WITH OTHER CHARACTERS
      }

// SHOULD NOT THROW EXCEPTIONS
void f2(char ch) throw() {
      try {  // WRAP ALL CODE IN A TRY-BLOCK
            cout << "f2() was called" << endl;
            f3(ch);
            }
      // HERE ARE HANDLERS FOR THE EXCEPTIONS WE KNOW COULD BE THROWN
      catch (Alpha& alpha_inst) { cout << "Caught Alpha exception.";}
      catch (Beta& beta_inst) { cout << "Caught Beta exception.";}

      // IF THE CODE IS MODIFIED LATER SO THAT SOME
      // OTHER EXCEPTION IS THROWN, IT IS HANDLED HERE
      // AND WE AVOID VIOLATING THE f2() THROW SPECIFICATION
      catch (...) {
            // BUT, WE POST OURSELVES A WARNING MESSAGE.
            cout << "Warning: f2() has elements with exceptions!" << endl;
            }
      }

int main(void) {
      char trigger;

      try {
            cout << "Input a character:";
            cin >> trigger;
            f2(trigger);
            cout << "\nSuccess.";
            return 0;    // WE GET HERE ONLY IF EVERYTHING EXECUTES WELL.
            }
      catch (...) {

            cout << "Need more handlers!";
            return 1;
            }
      }

Sample output when ‘a’ is the input:
Input a character: a
f2() was called
f3() was called
Caught Alpha exception.
Success.

Example 3
If an exception is thrown which is not listed in the exception specification, the unexpected function will
be called.
The following examples illustrate the different sequence of events that can occur when unexpected is
called. The behavior depends on whether you register a function with set_unexpected() or
set_terminate().

Program behavior when a function is registered with set_unexpected():
unexpected()    // CALLED AUTOMATICALLY
    |
    |
    |                                // DEFINE YOUR UNEXPECTED HANDLER
    |                              unexpected_function my_unexpected(void)
    |                              {
    |                                    // DEFINE ACTIONS TO TAKE.
    |                                    // POSSIBLY MAKE ADJUSTMENTS.
    |                              }
    |
    |                              // Now,register you handler
    |                              set_unexpected(my_unexpected);
    |
my_unexpected();

Program behavior when no function is registered with set_unexpected() but there is a function
registered with set_terminate():
unexpected()    // CALLED AUTOMATICALLY
    |
terminate()
    |
    |                    // DEFINE YOUR TERMINATION SCHEME
    |                    terminate_function my_terminate(void)
    |                          {
    |                          // TAKE ACTIONS BEFORE TERMINATING
    |                          // SHOULD NOT THROW EXCEPTIONS
    |                          exit(1); // MUST END SOMEHOW.
    |                          }
    |
    |                    // REGISTER YOUR TERMINATION FUNCTION
    |                    set_terminate(my_terminate)
    |
    |
my_terminate()
// PROGRAM ENDS.

Constructors and Destructors in Exception Handling
See also C++ Exception Handling
When an exception is thrown, the copy constructor is called for the exception. The copy constructor is
used to initialize a temporary object at the throw point. Other copies may be generated by the program.
When program flow is interrupted by an exception, destructors are called for all automatic objects which
were constructed since the beginning of the the try-block was entered. If the exception was thrown
during construction of some object, destructors will be called only for those objects which were fully
constructed. For example, if an array of objects was under contruction when an exception was thrown,
destructors will be called only for the array elements which were already fully constructed.
The effect of calling destructors for automatic objects is referred to as stack unwinding. Stack unwinding
always occurs. Destructors are called by default but the default can be switched off by using the -xd
compiler option.

Unhandled Exceptions
See also C++ Exception Handling
If an exception is thrown and no handler is found it, the program will call the terminate function. This
example illustrates the series of events that can occur when the program encounters an exception for
which no handler can be found.
terminate();
    .
    .
    .
abort();    // PROGRAM ENDS.

C-Based Structured Exceptions
See also
C++Builder provides support for program development that makes use of structured exceptions. You
can compile and link a C source file that contains an implementation of structured exceptions. In a C
program, the ANSI-compatible keywords used to implement structured exceptions are _ _except,
_ _finally , and _ _try .
Note: The _ _finally and _ _try keywords can appear only in C programs.

try-except Exception-Handling Syntax
For try-except exception-handling implementations the syntax is as follows:
try-block:
    _ _try compound-statement (in a C module)
    try compound-statement (in a C++ module)
handler:
    _ _except (expression) compound-statement

try-finally Termination Syntax
For try-finally termination implementations the syntax is as follows:
try-block:
    _ _try compound-statement
termination:
    _ _finally compound-statement
See your Win32 documentation for additional details on the implementation of structured exceptions.

Using C-Based Exceptions in C++ Programs
See also Example
C++Builder allows substantial interaction between Delphi, C, and C++ error handling mechanisms. The

following interactions are supported between C and C++:
C structured exceptions can be used in C++ programs.
C++ exceptions cannot be used in a C program because C++ exceptions require that their

handler be specified by the catch keyword and catch is not allowed in a C program.
An exception generated by a call to the RaiseException function is handled by a try/_ _except or

_ _try/_ _except block. All handlers of try/catch blocks are ignored when RaiseException is called.
The following C exception helper functions can be used in a C and C++ programs:
GetExceptionCode
GetExceptionInformation
SetUnhandledExceptionFilter
UnhandledExceptionFilter

C++Builder does not enforce the use of UnhandledExceptionFilter function only in the except filter of
_ _try/_ _except or try/_ _except blocks. However, program behavior is undefined when this function is
called outside of the _ _try/_except or try/_ _except block.

Handling C-based exceptions
See also Example
The full functionality of an _ _except block is allowed in C++. If an exception is generated in a C
module, it is possible to provide a handler-block in a separate calling C++ module. If no handler is found
in the calling module, the default action is to terminate the program.
If a handler can be found for the generated structured exception, the following actions can be taken:

execute the actions specified by the handler
ignore the generated exception and resume program execution
continue the search for some other handler (regenerate the exception)

These actions are consistent with the design of structured exceptions.
The _ _try/_ _finally ensures that the code in the _ _finally block is executed no matter how the flow
within the _ _try exits. The _ _finally keyword is not allowed in a C++ program and the _ _try/_ _finally
block is not supported in a C++ program.
Even though the _ _try/_ _finally block is not supported in a C++ program, a C-based exception
generated by the operating system or the program can still result in proper stack unwinding by using
local objects within destructors. Any module compiled with the -xd compiler option will have destructors
invoked for all objects with auto storage. Stack unwinding occurs from the point where the exception is
thrown to the point where the exception is caught.

C-Based Exceptions in C++ Programs Example
/* In PROG.C */
void func(void) {

      .
      .
      .
      /* generate an exception */
      RaiseException(/* specifiy your arguments */);

      .
      .
      .
}

// In CALLER.CPP
// How to test for C++ or C-based exceptions.
#include <excpt.h>
#include <iostream.h>

int main(void) {
      try
      {                        // test for C++ exceptions
            try
            {                  // test for structured exceptions
                  func();
            }
            __except(/* filter-expression */)
            {
            cout << "A structured exception was generated.";

      .
      .
      .
            /* specify actions to take for this structured exception */
            return -1;
            }
            return 0;
      }
      catch (...)
      {
      // handler for any C++ exception
      cout << "A C++ exception was thrown.";
      return 1;
      }
}

The property-method-event Model
C++Builder applications are based on the property-method-event (PME) model of programming.
Applications are built using discrete software components. These components have properties that
define the component’s state. The properties can be changed to affect the components. The
components also have built in methods, or member functions, which can be used to manipulate the
component. Components trigger events when changes occur in the component. These events are
passed by calling special event-handling properties set by the code using the component.
C++Builder’s Visual Component Library (VCL) now allows C++ programmers to do visually what they
have traditionally done by hand coding classes or by coding using an application framework such as
Microsoft Foundation Class (MFC) or ObjectWindows Library (OWL).
Most of the pieces that make up a Win32 application are encapsulated in the VCL library. These pieces
include:

User-interface components, including windows, controls, menus and common dialogs.
Database management and manipulation components for any database from a local dBASE®

table to an Oracle database on an IBM mainframe.
Windows specific components for dealing with such tasks as registry manipulation, printing and

multimedia.
Support for advanced Windows features such as multiple threads, OLE automation and timers.
Support for classic data structures such as collections and lists.

Because all these features are now available through the VCL, and most can be manipulated visually
through the C++Builder user interface, C++ programmers no longer need to create or manipulate these
objects through code. Many C++Builder applications can be created by designing the application
visually using the C++Builder Form Designer and adding a few lines of code to the key component’s
event handlers. Remember this rule of thumb:    use the VCL objects whenever possible and resist the
urge to write new code until all other possibilities have been exhausted.

Components vs. classes
At first glance, C++Builder’s components appear to be just like any other C++ class. But there are
differences between components in C++Builder and the standard C++ class hierarchies most classic C+
+ programmers work with. Some differences are:

All C++Builder components are descended from TComponent.
Components are usually used as is, and manipulated through their properties, rather than serving

as “base classes” to be sub-classsed to add or change functionality. When a component is inherited, it is
usually to add specific code to already existing event handling member functions.

VCL Components can only be allocated on the heap, not on the stack (that is, they must be
created with the new operator).

Properties of components intrinsically contain runtime type information.
Components can be added to the Component Palette in the C++Builder user interface and

manipulated via the C++Builder Form Designer.
Components often achieve a better degree of encapsulation than is usually found in standard C++
classes. For example, take the case of a dialog containing a push button. When a user clicks on the
button in a Windows C++ program, a WM_LBUTTONDOWN message is generated by the system. This
message must be caught by the programmer, typically either in a switch statement or a message map or
response table, and dispatched to the correct routine that should be run in response to that message.
For example, an OWL application uses the following macro to associate an EV_BN_CLICKED event (a
WM_LBUTTONDOWN message) generated by the IDEVENTBUTTON button on a TEventTestDlgClient
dialog with the EventBNClicked() function in response.
DEFINE_RESPONSE_TABLE1(TEventTestDlgClient, TDialog)
//{{TEventTestDlgClientRSP_TBL_BEGIN}}
 EV_BN_CLICKED(IDEVENTBUTTON, EventBNClicked),
//{{TEventTestDlgClientRSP_TBL_END}}
END_RESPONSE_TABLE;
In C++Builder, the push button component is pre-programmed to respond to a mouse click using its built
in OnClick event handler. The programmer does not have to provide any means to process that a button
has been clicked. The programmer only provides the routine that will be called when the button is
clicked, and through the Object Inspector of the C++Builder Form Designer, assigns that routine to the
OnClick event handler of the button.

Properties vs. setter/getter functions
Properties are a C++ language extension in C++Builder that enhance the functionality of the getter
and/or    setter functions that are usually part of C++ classes. For example, classes that were declared
as follows:
class Foo {

int howMany;
public:

Foo() {howMany = 0;};
void setValue(int n) {howMany = n;};
int getValue() {return howMany};

};
can now be declared as:
class Foo {

int howMany;
void setValue(int n) {howMany = n;};
int getValue() {return howMany;};

public:
Foo() {howMany = 0;};

__published:
__property int count = {read=getValue, write=setValue};

};
Both classes contain a private data member called howMany. Both use a getter (getValue) and a setter
(setValue) function to get and set the value of howMany. But in the second class, the user gets and sets
the value of howMany by assigning a value to, or reading the value of, count. The use of the property
count simplifies the interface for the user of the class, while still keeping the private data member
howMany private.
Properties allow for the creation of intelligent data members in a class. In the example above, the setter
function could be rewritten as:
void setValue(int n) {howMany = n < 0 ? 0 : n;};
which prevents a value less than 0 from being assigned to howMany. For example:
void Foobar()
{
Foo myFoo;
myFoo.count = 10;
int x = myFoo.count; // 10 assigned to x;
myFoo.count = -10; // -10 changed to 0 on assignment
x = myFoo.count; // 0 assigned to x;

}

Working with legacy code
See also
The C++Builder compiler can compile most Win32 C and C++ code that is compatible with Borland C++
5.0. C++Builder cannot compile 16-bit Windows or DOS programs.
Because of C++Builder’s unique exception handling mechanism, object code and library modules
originally compiled using Borland C++ 5.01 or earlier must be recompiled with C++Builder’s compiler
before they can be linked into an C++Builder application. Also, object code modules compiled with the
C++Builder compiler will not link into projects built with Borland C++ 5.01 or earlier versions.
C++Builder provides a non-VCL dependent multi-threaded runtime library (RTL) to support legacy
applications. This library, called CW32MT.LIB, does not support the VCL’s enhancements to catching
operating system exceptions since doing so would require the use of the VCL.

In-line assembler
The C++Builder compiler does not have a built-in in-line assembler. Using the asm keyword (or its
variants) in your C++ program code to in-line assembly language statements causes the compiler to
output an assembly language source code file (.asm) of your program rather than an object code file.
The .asm file can be assembled with Borland’s Turbo Assember 5.0 (available separately).

Object Windows Library (OWL) and Microsoft Foundation Classes (MFC) applications
OWL and MFC do not ship with C++Builder, but OWL 5.0 and MFC 4.1 applications will compile in C+
+Builder. To compile OWL or MFC code, the OWL or MFC libraries must be recompiled from the source
using the C++Builder compiler. OWL also requires that the CLASSLIB.LIB library be recompiled. MFC
must be compiled from the sources that shipped with Borland C++ 5.01 or a later Borland supplied
version.
Be certain not to overwrite the Borland C++ version of the libraries. Borland C++ and C++Builder must
each have their own versions of the libraries compiled with their respective compilers.
Some OWL class names conflict with VCL class names. To avoid ambiguous declarations C++Builder
uses namespaces to differentiate VCL classes.

Creating forms in memory, default behavior
VCL components created using the Borland C++Builder IDE (such as forms and controls on forms) are
automatically created when the application is started, and destroyed when the application terminates.
For every form in a given application that is created using the Form Designer, a global variable with the
same name as the name given to the form in the Form Designer is created. This variable is a pointer to
an object of the form’s class and is used to reference the form while the application is running. Any
source code (.cpp) file that includes the form’s header (.h) file has access to the form via this pointer.
Also, by default, code is included in the application’s WinMain() function to actually create the form in
memory. Whether or not the form is created when the application is started is dependent on whether the
form is included in the Auto-create forms list on the Forms page of the Project Options dialog.
Assuming the form is auto-created (the default), the form exists in memory for the duration of the run of
the application, and the form can be invoked at any time by using its Show() or ShowModal() method (if
it’s not already visible).

Creating forms at runtime
Any object created manually from a class descended from TObject, such as a form, must be created on
the heap using the new operator. For example:
TMyForm MyForm(NULL); // error
TMyForm *MyForm = new TMyForm(NULL); // ok
Users are discouraged from overloading the new operator for VCL based classes.
If the default global variable for the form, that is created by the Form Designer, is to be used to access
the form created via new, be certain that the form is not auto-created when the application is initialized
or memory will be wasted and the auto-created form will be inaccessible. For example, consider the
following sample application. The application contains two forms:    MainMForm, which is auto-created
and displayed when the application starts, and ResultsForm, which is created (but not displayed) when
the application starts. The project source file for the application appears below:
#include <vcl\vcl.h>
#pragma hdrstop
//---
USEFORM("MainForm.cpp", MainMForm);
USERES("ParamTest.res");
USEFORM("Results.cpp", ResultsForm);
//---
WINAPI WinMain(HINSTANCE, HINSTANCE, LPSTR, int)
{
Application->Initialize();

 Application->CreateForm(__classid(TMainMForm), &MainMForm);
 Application->CreateForm(__classid(TResultsForm), &ResultsForm);
 Application->Run();

 return 0;
}
MainMForm and ResultsForm are pointer variables with global scope that point to their respective forms.
A C++Builder programmer decides to create a modal instance of ResultsForm when the user presses a
button on MainMForm. The event handler looks like this:
void __fastcall TMainMForm::FirstButtonClick(TObject *Sender)
{
ResultsForm = new TResultsForm(this); // BAD! Overwrites global reference!

 ResultsForm->ShowModal();
 delete ResultsForm;
}
In the case above, the programmer created a new instance of the ResultsForm, overwriting the
reference to the auto-created instance. The auto-created instance still exists, but is now inaccessible.
After the event-handler terminates, ResultsForm no longer points to a valid form. Any attempt to
dereference ResultsForm will likely result in a crash of the application.

Modal forms
If the programmer can use the global instance of ResultsForm, the event handler could be written as
follows:
void __fastcall TMainMForm::FirstButtonClick(TObject *Sender)
{
ResultsForm->ShowModal();

}
This version displays the auto-created form without creating a new instance or destroying the existing
instance when the event handler completes.
If the programmer really needs a new instance of the form created in the event handler, it can be done in

a couple ways. The code in the first event handler shown above (utilizing new) can work correctly if
ResultsForm is not auto-created when the application starts. Auto-creation can be avoided by removing
ResultsForm from the Auto-create forms list on the Forms page of the Project Options dialog, or by
manually removing the line:
Application->CreateForm(__classid(TResultsForm), &ResultsForm);
from WinMain(). The event handler in the example deletes the form after it’s closed, so the form would
need to be reinstantiated using new if ResultForm was needed elsewhere in the application.
A safer way to create a unique instance of the modal form would be to use a local variable in the event
handler as a reference to a new instance. If a local variable is used, it does not matter whether
ResultsForm is auto-created or not, as the code in the event handler make no reference to it. For
example:
void __fastcall TMainMForm::FirstButtonClick(TObject *Sender)
{
TResultsForm *rf = new TResultsForm(this); // rf is local form instance

 rf->ShowModal();
 delete rf; // form safely destroyed
}
Notice how the global instance of the form is never used in this version of the event handler.
In many applications, only the global instances of forms are used. In cases where a new modal instance
of a form is required, and the use of the that form is limited to a discrete section of the application, such
as a single function, a local instance is usually the safest and most efficient way of working with the
form.

Modeless forms
If the form instance being created is modeless, using a local reference variable may not be an option.
The Show() method, which opens a form modelessly, returns as soon as the form opens. So if the event
handler below were used:
void __fastcall TMainMForm::FirstButtonClick(TObject *Sender)
{
TResultsForm *rf = new TResultsForm(this); // rf is local form instance

 rf->Show(); // returns after opening form
 delete rf; // BAD! Form destroyed
}
As soon as the form was created by Show() it would be destroyed by the delete statement. An even
worse case would be if the delete command were not included in the event handler. Then the reference
variable rf would go out of scope immediately after the form was created and the form object would be
inaccessible.
It is necessary that reference variables for modeless forms be guaranteed to exist as long as the form is
in use. This means that these variables should have global scope. In most cases, the global reference
variable created by the Form Designer (the variable name that matches the name property of the form)
is used. If additional instances of the form are required, separate global variables (of type pointer to the
form class) should be declared.

Passing parameters to forms
Most of the time, the forms used in a C++Builder application are created using the C++Builder Form
Designer. Forms created this way have a single constructor that takes one argument, TComponent*
Owner. This argument is a pointer to the owner (the calling application object or form object) of the form
being created. This argument can be NULL.
To pass additional arguments to a form you need to create a separate constructor. The form will also
need to be instantiated using the new operator. The example form class below was created using the
Form Designer. A second constructor, with the additional argument int whichButton, was manually
added.
class TResultsForm : public TForm
{
__published: // IDE-managed Components
 TLabel *ResultsLabel;
 TButton *OKButton;
 void __fastcall OKButtonClick(TObject *Sender);
private: // User declarations
public: // User declarations
 virtual __fastcall TResultsForm(TComponent* Owner);
 virtual __fastcall TResultsForm(int whichButton, TComponent* Owner);
};
Here is what a sample constructor might look like. This constructor uses the int parameter to set the
Caption property of a Label control on the form.
__fastcall TResultsForm::TResultsForm(int whichButton, TComponent* Owner)
 : TForm(Owner)
{
switch (whichButton) {

case 1:
ResultsLabel->Caption = "You picked the first button!";
break;

case 2:
ResultsLabel->Caption = "You picked the second button!";
break;

case 3:
ResultsLabel->Caption = "You picked the third button!";

}
}
When creating an instance of a form with multiple constructors, select the constructor that best suits
your purpose. For example, the following OnClick handler for a button on a form calls creates an
instance of TResultsForm utilizing the extra parameter:
void __fastcall TMainMForm::SecondButtonClick(TObject *Sender)
{
TResultsForm *rf = new TResultsForm(2, this);
rf->ShowModal();
delete rf;

}

Retrieving data from forms
Most real world applications consist of several forms. Often, information needs to be passed between
these forms. Information can be passed to a form by means of parameters to the receiving form’s
constructor, or by assigning values to the form’s properties. To get information from a form a couple
techniques can be used.

Modeless forms
Information from modal forms can be easily extracted by calling public member functions of the form or
by querying properties of the form. For example, assume an application contains a modal form called
ColorForm that contains a listbox called ColorListBox with a list of colors (“Red”, “Green”, “Blue”, etc).
The selected color name string in ColorListBox is automatically stored in a property called CurrentColor
everytime a new color is selected. The class declaration for the form is as follows:
class TColorForm : public TForm
{
__published: // IDE-managed Components

TListBox *ColorListBox;
void __fastcall ColorListBoxClick(TObject *Sender);

private: // User declarations
String getColor();
void setColor(String);
String curColor;

public: // User declarations
virtual __fastcall TColorForm(TComponent* Owner);
__property String CurrentColor = {read=getColor, write=setColor};

};
The OnClick event handler for the listbox, ColorListBoxClick, sets the value of the CurrentColor property
each time a new item in the listbox is selected. The event handler gets the string from the listbox
containing the color name and assigns it to CurrentColor. The setter function setColor is used by
CurrentColor to store the actual value for the property in the private data member curColor:
void __fastcall TColorForm::ColorListBoxClick(TObject *Sender)
{
int index = ColorListBox->ItemIndex;
if (index >= 0) { // make sure a color is really selected

CurrentColor = ColorListBox->Items->Strings[index];
}
else // no color selected

CurrentColor = "";
}
//---
void TColorForm::setColor(String s)
{
curColor = s;

}
Now suppose that another form within the application, called ResultsForm, needs to find out which color
is currently selected on ColorForm whenever a button on ResultsForm called UpdateButton is clicked.
The OnClick event handler for UpdateButton might look like this:
void __fastcall TResultsForm::UpdateButtonClick(TObject *Sender)
{
if (ColorForm->Name == "ColorForm") { // verify ColorForm exists

String s = ColorForm->CurrentColor;
// do something with the color name string

}
}

The event handler first verifies that ColorForm exists by checking the value of its Name property. It then
simply gets the value of ColorForm’s CurrentColor property. The query of CurrentColor calls its getter
function getColor which is simply:
String TColorForm::getColor()
{
return curColor;

}
If ColorForm’s getColor function were public, then another form could get the current color without going
through a property (e.g. String s = ColorForm->getColor();). In fact, there’s nothing to prevent
another form from getting ColorForm’s currently selected color by checking the listbox selection directly:
String s = ColorListBox->Items->Strings[ColorListBox->ItemIndex];
However, the use of a property makes the interface to ColorForm very straightforward and simple. All a
form needs to know about ColorForm is to check the value of CurrentColor.

Modal forms
Just like modeless forms, modal forms often contain information needed by other forms. The most
common example is form A launches modal form B. When form B is closed, form A needs to know what
the user did with form B to know how to proceed with the processing of form A. If form B is still in
memory, it can be queried through properties or member functions just as in the modeless forms
example above. But what about situations where form B is deleted from memory when it’s closed?   
Since a form does not have an explicit return value, a way to preserve important information from the
form is to give it a place to store information before it’s destroyed.
To illustrate, consider a modified version of the ColorForm form that is designed to be a modal form. The
class declaration is as follows:
class TColorForm : public TForm
{
__published: // IDE-managed Components

TListBox *ColorListBox;
TButton *SelectButton;
TButton *CancelButton;
void __fastcall CancelButtonClick(TObject *Sender);
void __fastcall SelectButtonClick(TObject *Sender);

private: // User declarations
String* curColor;

public: // User declarations
virtual __fastcall TColorForm(TComponent* Owner);
virtual __fastcall TColorForm(String* s, TComponent* Owner);

};
The form has a listbox called ColorListBox with a list of names of colors. There is a button called
SelectButton which when pressed makes note of the currently selected color name in ColorListBox then
closes the form. CancelButton is a button which simply closes the form.
Note that there is a user defined constructor added to the class that takes a String* argument.
Presumably, this String* is a string that the form launching ColorForm knows about. The implementation
of this constructor is:
__fastcall TColorForm::TColorForm(String* s, TComponent* Owner)
 : TForm(Owner)
{
curColor = s;
*curColor = "";

}
which saves the pointer to the private data member curColor and initializes the string to an emply string.
Note that to use the user-defined constructor the form must be created using the new operator. Make

sure the form is not auto-created when the application is started if you don’t need to use an auto-created
version of the form.
The user is then expected to select a color from the listbox and press SelectButton to save the choice
and close the form. The OnClick event handler for SelectButton is defined as:
void __fastcall TColorForm::SelectButtonClick(TObject *Sender)
{
int index = ColorListBox->ItemIndex;
if (index >= 0)

*curColor = ColorListBox->Items->Strings[index];
Close();

}
Notice how the event handler saves the selected color name at the string address that was passed to
the constructor.
To use ColorForm effectively the calling form needs to pass the constructor an existing string address.
For example, assume ColorForm was being instantiated by a form called ResultsForm in response to a
button called UpdateButton on ResultsForm being clicked. The event handler would be as follows:
void __fastcall TResultsForm::UpdateButtonClick(TObject *Sender)
{
String s;
GetColor(&s);
if (s != "") {

// do something with the color name string
}
else {

// do something else because no color was picked
}

}
//---
void TResultsForm::GetColor(String *s)
{
ColorForm = new TColorForm(s, this);
ColorForm->ShowModal();
delete ColorForm;

}
UpdateButtonClick creates a String called s. The address of s is passed to the GetColor function which
creates ColorForm, passing the pointer to s as an argument to the constructor. As soon as ColorForm is
closed it is deleted, but the color name that was selected is still preserved in s, assuming that a color
was selected. Otherwise s contains an empty string which is a clear indication that the user exited
ColorForm without selecting a color.
This simple example used one string variable to hold information from the modal form. Of course, more
complex objects can be used depending on the need. One thing to keep in mind is to always provide a
mechanism to let the calling form know if the modal form was closed without making any changes or
selections (such as having s default to an empty string in the example).

Using Delphi forms in C++Builder projects
See also
Borland C++Builder includes a modified version of the Borland Delphi compiler that allows Delphi units
and forms to be compiled and linked into C++Builder applications.
To add a Delphi unit to your C++Builder project, use the Add to Project option of the Project menu, or
select the “+” icon on the Project Manager window, to open the Add to Project dialog. Select Pascal
unit as the File Type and select the Object Pascal (.PAS) file you wish to add to the project.
If you are copying Object Pascal source files from a Delphi project directory over to a C++Builder project
directory, be sure you copy the form definition (.DFM) files and Windows resource (.RES) files
associated with those source files to the C++Builder project directory as well.
When the C++Builder project containing the Delphi unit(s) is built, the Delphi units will automatically be
compiled with the C++Builder version of the Delphi compiler. This compiler produces the following
output:
1. A Delphi compiled unit (.DCU) file which can be linked into a Delphi project.
2. A C++ header file with an .HPP extension containing the C++ equivalents of the Object Pascal class

declarations contained in the Object Pascal source file.
3. A object code file (.OBJ) in a format compatible with C++Builder. Special care is required for

constructors hoisted from Object Pascal source to C++ compilable format.
The C++ header files the compiler produces for the Delphi units can be included (with #include) in any
C++ source files that utilize the classes declared in the Delphi units. (In Delphi, classes are usually
declared and defined in the same source file. In C++ classes are usually declared in a header file, and
defined in a C++ source file.)
C++Builder supports virtually all intrinsic Delphi data types, thereby allowing C++Builder code to utilize
the compiled Delphi units. Be certain to always use the __fastcall calling convention when calling
Delphi methods from C++, unless the Delphi methods have been explicitly defined to use a different
calling convention.

Hoisted constructors
See also
Some special care might be required when Object Pascal source code is recompiled for C++
compliance. Object Pascal allows class constructors to be declared with names that don’t match their
class name. There could be a class Base with constructor Create().
When the Base class is hoisted to C++ compliant format, its constructor must be renamed. Therefore,
Base.Create() from Object Pascal becomes myClass::myClass() in a C++ source file.
If Base is being derived from, the hoisted constructor is added, with appropriate access, to the inheriting
class. Object Pascal constructors retain their access scope. This is to say, public constructors are
mapped into the public section of the inheriting class; protected constructors are mapped to protected
class sections.
class myClass : public Base {
public:
 myClass(float f) {};
 myClass() {}; // This was Base.Create()
};
If Base had a second constructor, Base.AnotherCreate(), it is also renamed and hoisted into the C++
class. After renaming, this second constructor is indistinguishable from the first case. To distinguish the
constructors you must add an argument.
class myClass : public Base {
public:
 myClass(float f) {};
 myClass() {}; // This was Base.Create()
 myClass(int =0) {}; // Requires manual fixup
};

If Base derived from FirstBase with its protected constructor FirstBase.FirstBaseCreate(i Integer), its
constructor must also be written in myClass. Note that FirstBase has an argument list that will make it
indistinguishable from another myClass constructor.
class myClass : public Base { // Base inherits from FirstBase.
public:
 myClass(float f) {};
 myClass() {}; // This was Base.Create()
 myClass(int =0) {}; // Requires manual fixup
protected:
 myClass(int i; int = 0); // Requires manual fixup

};
To allow you to identify the relation between old and new (that is, Object Pascal and C++) constructors,
the recompilation process writes comments into the .HPP header file.

Delphi function return types
See also
C++Builder might encounter some problems related to legacy Delphi source code. It is possible for
Pascal functions to return an array.
 unit rarr;
 interface
 type
 T = array[0..99] of char;

 function f : T;

 implementation

 function f : T;
 var
 localArray : T;
 begin
 f := localArray;
 end;
 end.
DCC32 -jphn produces an HPP file with the following prototype.
 extern T __fastcall f(void);
Note that while it is possible to correct the declaration in the HPP file, it is better to change the Pascal
source file. This is because the HPP file could be regenerated and lose any changes that you manually
inserted. Secondly, by changing the Pascal source file the compiler will always generate a valid OBJ file
from it that can be successfully linked.
In C++ it is illegal to return an array from a function. In the Delphi source code, change the function into
a procedure that takes the array as a var parameter.
procedure f(var cArray : T);
 var
 T localArray;
 begin
 // f := localArray; // Change from this to
 cArray := localArray; // this.
 end.

Porting virtual functions
See also
To preseve Delphi program semantics when porting Delphi virtual and override functions to C+
+Builder, the compilers use the HIDESBASE macro, defined as __declspec(hidesbase) in vcl\
sysdefs.h.
In Delphi source code, it is possible to declare a virtual function in a base class. The same function
name can appear in a derived class where it is intended to be a completely new function with no explicit
relation to the earlier one.
class T1
 procedure func; virtual;
END

class T2 (T1)
 procedure func;
END
DCC32 -jphn produces an HPP file with the following prototype.
 virtual void T1::func(void);
 HIDESBASE void T2::func(void);
The HIDESBASE macro, defined in vcl\sysdef.h, is intended to preserve the Delphi program semantics.
It’s use specifies that the two declarations of function func are completely separate. Without the
HIDESBASE decoration, the C++ program semantics indicate that virtual function T1::func() is being
overridden by T2::func().

What is a dynamic-link library?
Dynamic-link libraries (DLLs) provide a way to modularize applications so that functionality can be
updated and reused more easily. They also help reduce memory overhead when several applications
use the same functionality at the same time, because although each application gets its own copy of
the data, they can share the code.

In Windows, DLLs are modules that contain functions and data. A DLL is loaded at runtime by its calling
modules (.EXE or DLL). When a DLL is loaded, it is mapped into the address space of the calling
process.

DLLs can define two kinds of functions: exported and internal. The exported functions can be called by
other modules. Internal functions can only be called from within the DLL where they are defined.

The creation and use of DLLs is described in detail in the Microsoft® Win32 SDK Reference.

Using DLLs in C++Builder
A Windows DLL can be used by a C++Builder application just as it would be by any C++ application.
To statically load a DLL when your C++Builder application is loaded, link the import library file for that
DLL into your C++Builder application at link time. To add an import library to a C++Builder application,
open the make file (.mak file) for the application and add the import library name to the library file list
assigned to the ALLLIB variable. If necessary, add the path of the import library to the path(s) listed for
the -L option of LFLAGS (linker options) variable. The exported functions of that DLL then become
available for use by your application. Prototype the DLL functions your application uses with
__declspec(dllimport) modifier:
__declspec(dllimport) return_type imported_function_name(parameters);
To dynamically load a DLL during the run of a C++Builder application use the Windows API function
LoadLibrary() to load the DLL, then use the API function GetProcAddress() to obtain pointers to the
individual functions you wish to use.
Additional information on using DLLs can be found in the Microsoft® Win32 SDK Reference.

Creating DLLs in C++Builder
There are no major differences in creating DLLs in C++Builder as opposed to standard C++. Exported
functions in the code should be identified with the __declspec (dllexport) modifier as they would be
in Borland C++ or Microsoft Visual C++. For example, the following code is legal in C++Builder and
other Windows C++ compilers:
// MyDLL.cpp
double dblValue(double);
double halfValue(double);
extern “C” __declspec(dllexport) double changeValue(double, bool);

double dblValue(double value)
{
return value * value;

};

double halfValue(double value)
{
return value / 2.0;

}

double changeValue(double value, bool whichOp)
{
return whichOp ? dblValue(value) : halfValue(value);

}
In the code above, the function changeValue is exported, and therefore made available to calling
applications. The functions dblValue and halfValue are internal, and cannot be called from outside of the
DLL.
In the C++Builder IDE, a new DLL project can be created by selecting File | New and selecting the DLL
icon from the New tab. A new edit window opens and the project options are set to build a DLL, rather
than an EXE. Notice that by default VCL.H is included in the new DLL source. If your DLL does not use
any VCL components, you can remove this line.
Additional information on creating DLLs can be found in the Microsoft® Win32 SDK Reference.

Compiling DLLs
To compile and link a DLL from the C++Builder IDE, set the Application Target option on the Linker
page of the Project Options dialog to Generate DLL, then compile the project normally.
If compiling from the command line, invoke the linker (either TLINK32.EXE or ILINK32.EXE) with the -
Tpd switch. For example:
tlink32 /c /aa /Tpd c0d32.obj mydll.obj, mydll.dll, mdll.map, import32.lib
cw32mt.lib

If you plan to use the DLL from within other C or C++ programs and want the calling application to
automatically load the DLL when the application is run, you should use the IMPLIB.EXE command-line
utility to create an import library for the DLL which can be linked into calling applications. For example:
implib mydll.lib mydll.dll

Creating DLLs containing VCL components
One of the strengths of DLLs is that a DLL created with one development tool can often be used by
application written using a different development tool. When your DLL contains VCL components (such
as forms) that are to be utilized by the calling application, you need to provide exported interface
routines that use standard calling conventions, avoid C++ name mangling, and do not require the calling
application to support the VCL library in order to work.
For example, suppose we want to create a DLL to display the following simple dialog box:

The code for the dialog box DLL is as follows:
// DLLMAIN.H
//---
#ifndef dllMainH
#define dllMainH
//---
#include <vcl\Classes.hpp>
#include <vcl\Controls.hpp>
#include <vcl\StdCtrls.hpp>
#include <vcl\Forms.hpp>
//---
class TYesNoDialog : public TForm
{
__published: // IDE-managed Components
 TLabel *LabelText;
 TButton *YesButton;
 TButton *NoButton;
 void __fastcall YesButtonClick(TObject *Sender);
 void __fastcall NoButtonClick(TObject *Sender);
private: // User declarations
 bool returnValue;
public: // User declarations
 virtual __fastcall TYesNoDialog(TComponent* Owner);
 bool __fastcall GetReturnValue();
};

// exported interface function
extern "C" __declspec(dllexport) bool InvokeYesNoDialog();
//---
 extern TYesNoDialog *YesNoDialog;
//---
#endif

// DLLMAIN.CPP
//---
#include <vcl\vcl.h>
#pragma hdrstop

#include "dllMain.h"
//---
#pragma resource "*.dfm"
TYesNoDialog *YesNoDialog;
//---
__fastcall TYesNoDialog::TYesNoDialog(TComponent* Owner)
 : TForm(Owner)
{
 returnValue = false;
}
//---
void __fastcall TYesNoDialog::YesButtonClick(TObject *Sender)
{
 returnValue = true;
 Close();
}
//---
void __fastcall TYesNoDialog::NoButtonClick(TObject *Sender)
{
 returnValue = false;
 Close();
}
//---
bool __fastcall TYesNoDialog::GetReturnValue()
{
 return returnValue;
}
//---
// exported standard C++ interface function that calls into VCL
bool InvokeYesNoDialog()
{
 bool returnValue;

TYesNoDialog *YesNoDialog = new TYesNoDialog(NULL);
 YesNoDialog->ShowModal();

returnValue = YesNoDialog->GetReturnValue();
delete YesNoDialog;

 return returnValue;
}
//---
The code in this example, displays the dialog and stores the value true in the private data member
returnValue if the “Yes” button is pressed. Otherwise, returnValue is false. The public GetReturnValue()
function retrieves the current value of returnValue.
To invoke the dialog and determine which button was pressed, the calling application calls the exported
function InvokeYesNoDialog(). This function is declared in DLLMAIN.H as an exported function using C
linkage (to avoid C++ name mangling) and the standard C calling convention. The function is defined in
DLLMAIN.CPP.
By using a standard C function as the interface into the DLL, any calling application, whether or not it
was created with C++Builder, can use the DLL. The VCL functionality required to support the dialog is
linked into the DLL itself and the calling application does not need to know anything about it.
Note that when creating a DLL that uses the VCL, the required VCL components are linked into the DLL
resulting in a certain amount of overhead. The impact of this overhead on the overall size of the
application can be minimized by combining several components into one DLL which only needs one
copy of the VCL support components.

DLLs and String objects
When a DLL includes exported functions that either take String (or AnsiString) objects as parameters or
return String objects, even if those String objects are embedded in objects or structures, the following
rules apply:

The SHAREMEM.HPP header file must be included in both the source file(s) for the DLL that use
these functions and the source file(s) for the .EXE that will call these functions.

The file BCBMM.DLL (the Delphi shared-memory manager) must be deployed along with the
DLL.

Use standard C++ strings instead of String objects if you do not want the DLL to require BCBMM.DLL.

ANSI Implementation-specific standards
Certain aspects of the ANSI C standard are not defined exactly by ANSI. Instead, each implementor of a
C compiler is free to define these aspects individually. This topic describes how Borland has chosen to
define these implementation-specific standards. The section numbers refer to the February 1990 ANSI
Standard. Remember that there are differences between C and C++; this topic addresses C only.

2.1.1.3 How to identify a diagnostic.
When the compiler runs with the correct combination of options, any messages it issues beginning with
the words Fatal, Error, or Warning are diagnostics in the sense that ANSI specifies. The options needed
to ensure this interpretation are as follows:

Options needed for ANSI compliance
Option Action
–A Enable only ANSI keywords.
–C– No nested comments allowed.
–i32 At least 32 significant characters in identifiers.
–p– Use C calling conventions.
–w– Turn off all warnings except the following.
–wbei Turn on warning about inappropriate initializers.
–wbig Turn on warning about constants being too large.
–wcpt Turn on warning about nonportable pointer comparisons.
–wdcl Turn on warning about declarations without type or storage class.
–wdup Turn on warning about duplicate nonidentical macro definitions.
–wext Turn on warning about variables declared both as external and as static.
–wfdt Turn on warning about function definitions using a typedef.
–wrpt Turn on warning about nonportable pointer conversion.
–wstu Turn on warning about undefined structures.
–wsus Turn on warning about suspicious pointer conversion.
–wucp Turn on warning about mixing pointers to signed and unsigned char.
–wvrt Turn on warning about void functions returning a value.
You cannot use the following options:
–ms! SS must be the same as DS for small data models.
–mm! SS must be the same as DS for small data models.
–mt! SS must be the same as DS for small data models.
–zGxx The BSS group name cannot be changed.
–zSxx The data group name cannot be changed.

Other options not specifically mentioned here can be set to whatever you want.

2.1.2.2.1    The semantics of the arguments to main.
The value of argv[0] is a pointer to a null byte when the program is run on DOS versions prior to version
3.0. For DOS version 3.0 or later, argv[0] points to the program name.
The remaining argv strings point to each component of the DOS command-line arguments. Whitespace
separating arguments is removed, and each sequence of contiguous non-whitespace characters is
treated as a single argument. Quoted strings are handled correctly (that is, as one string containing

spaces).

2.1.2.3    What constitutes an interactive device.
An interactive device is any device that looks like the console.

2.2.1    The collation sequence of the execution character set.
The collation sequence for the execution character set uses the signed value of the character in ASCII.

2.2.1    Members of the source and execution character sets.
The source and execution character sets are the extended ASCII set supported by the IBM PC. Any
character other than Ctrl+Z can appear in string literals, character constants, or comments.

2.2.1.2    Multibyte characters.
Multibyte characters are supported in C++Builder.

2.2.2    The direction of printing.
Printing is from left-to-right, the normal direction for the PC.

2.2.4.2    The number of bits in a character in the execution character set.
There are 8 bits per character in the execution character set.

3.1.2    The number of significant initial characters in identifiers.
The first 32 characters are significant, although you can use a command-line option (–i) to change that
number. Both internal and external identifiers use the same number of significant characters. (The
number of significant characters in C++ identifiers is unlimited.)

3.1.2    Whether case distinctions are significant in external identifiers.
The compiler normally forces the linker to distinguish between uppercase and lowercase. You can use a
command-line option (–l–c) to suppress the distinction.

3.1.2.5    The representations and sets of values of the various types of integers.
Identifying diagnostics in C++

Type
16-bit
minimum value

16-bit
maximum value

32-bit
minimum value

32-bit
maximum value

signed char –128 127 –128 127
unsigned char 0 255 0 255
signed short –32,768 32,767 –32,768 32,767
unsigned short 0 65,535 0 65,535
signed int –32,768 32,767 –2,147,483,648 –2,147,483,647
unsigned int 0 65,535 0 4,294,967,295
signed long –2,147,483,648 2,147,483,647 –2,147,483,648 2,147,483,647
unsigned long 0 4,294,967,295 0 4,294,967,295

All char types use one 8-bit byte for storage.
All short types use 2 bytes, whether in a 16- or 32-bit program.
All short and int types use 2 bytes (in 16-bit programs).
All int types use 4 bytes (in 32-bit programs).
All long types use 4 bytes.
If alignment is requested (–a), all nonchar integer type objects will be aligned to even byte boundaries. If

the requested alignment is –a4, the result is 4-byte alignment. Character types are never aligned.

3.1.2.5    The representations and sets of values of the various types of floating-point numbers.
The IEEE floating-point formats as used by the Intel 8087 are used for all C++Builder floating-point
types. The float type uses 32-bit IEEE real format. The double type uses 64-bit IEEE real format. The
long double type uses 80-bit IEEE extended real format.

3.1.3.4    The mapping between source and execution character sets.
Any characters in string literals or character constants remain unchanged in the executing program. The
source and execution character sets are the same.

3.1.3.4    The value of an integer character constant that contains a character or escape sequence
not represented in the basic execution character set or the extended character set for a wide
character constant.
Wide characters are supported.

3.1.3.4    The current locale used to convert multibyte characters into corresponding wide
characters for a wide character constant.
Wide character constants are recognized.

3.1.3.4    The value of an integer constant that contains more than one character, or a wide
character constant that contains more than one multibyte character.
Character constants can contain one or two characters. If two characters are included, the first character
occupies the low-order byte of the constant, and the second character occupies the high-order byte.

3.2.1.2    The result of converting an integer to a shorter signed integer, or the result of
converting an unsigned integer to a signed integer of equal length, if the value cannot be
represented.
These conversions are performed by simply truncating the high-order bits. Signed integers are stored as
two’s complement values, so the resulting number is interpreted as such a value. If the high-order bit of
the smaller integer is nonzero, the value is interpreted as a negative value; otherwise, it is positive.

3.2.1.3    The direction of truncation when an integral number is converted to a floating-point
number that cannot exactly represent the original value.
The integer value is rounded to the nearest representable value. Thus, for example, the long value (231
–1) is converted to the float value 231. Ties are broken according to the rules of IEEE standard
arithmetic.

3.2.1.4    The direction of truncation or rounding when a floating-point number is converted to a
narrower floating-point number.
The value is rounded to the nearest representable value. Ties are broken according to the rules of IEEE
standard arithmetic.

3.3    The results of bitwise operations on signed integers.
The bitwise operators apply to signed integers as if they were their corresponding unsigned types. The
sign bit is treated as a normal data bit. The result is then interpreted as a normal two’s complement
signed integer.

3.3.2.3    What happens when a member of a union object is accessed using a member of a
different type.
The access is allowed and the different type member will access the bits stored there. You’ll need a
detailed understanding of the bit encodings of floating-point values to understand how to access a
floating-type member using a different member. If the member stored is shorter than the member used
to access the value, the excess bits have the value they had before the short member was stored.

3.3.3.4    The type of integer required to hold the maximum size of an array.

For a normal array, the type is unsigned int, and for huge arrays the type is signed long.

3.3.4    The result of casting a pointer to an integer or vice versa.
When converting between integers and pointers of the same size, no bits are changed. When converting
from a longer type to a shorter type, the high-order bits are truncated. When converting from a shorter
integer type to a longer pointer type, the integer is first widened to an integer type the same size as the
pointer type.
Thus signed integers will sign-extend to fill the new bytes. Similarly, smaller pointer types being
converted to larger integer types will first be widened to a pointer type as wide as the integer type.

3.3.5    The sign of the remainder on integer division.
The sign of the remainder is negative when only one of the operands is negative. If neither or both
operands are negative, the remainder is positive.

3.3.6    The type of integer required to hold the difference between two pointers to elements of the
same array, ptrdiff_t.
The type is signed int when the pointers are near (or the program is a 32-bit application), or signed
long when the pointers are far or huge. The type of ptrdiff_t depends on the memory model in use. In
small data models, the type is int. In large data models, the type is long.

3.3.7    The result of a right shift of a negative signed integral type.
A negative signed value is sign extended when right shifted.

3.5.1    The extent to which objects can actually be placed in registers by using the register
storage-class specifier.
Objects declared with any one, two, or four-byte integer or pointer types can be placed in registers. At
least two and as many as seven registers are available. The number of registers actually used depends
on what registers are needed for temporary values in the function.

3.5.2.1    Whether a plain int bit-field is treated as a signed int or as an unsigned int bit field.
Plain int bit fields are treated as signed int bit fields.

3.5.2.1    The order of allocation of bit fields within an int.
Bit fields are allocated from the low-order bit position to the high-order.

3.5.2.1    The padding and alignment of members of structures.
By default, no padding is used in structures. If you use the word alignment option (–a), structures are
padded to even size, and any members that do not have character or character array type are aligned to
an even multiple offset.

3.5.2.1    Whether a bit-field can straddle a storage-unit boundary.
When alignment (–a) is not requested, bit fields can straddle dword boundaries, but are never stored in
more than four adjacent bytes.

3.5.2.2    The integer type chosen to represent the values of an enumeration type.
Store all enumerators as full ints. Store the enumerations in a long or unsigned long if the values don’t
fit into an int. This is the default behavior as specified by –b compiler option.
The –b- behavior specifies that enumerations should be stored in the smallest integer type that can
represent the values. This includes all integral types, for example, signed char, unsigned char, signed
short, unsigned short, signed int, unsigned int, signed long, and unsigned long.
For C++ compliance, –b- must be specified because it is not correct to store all enumerations as ints for
C++.

3.5.3    What constitutes an access to an object that has volatile-qualified type.
Any reference to a volatile object will access the object. Whether accessing adjacent memory locations

will also access an object depends on how the memory is constructed in the hardware. For special
device memory, such as video display memory, it depends on how the device is constructed. For normal
PC memory, volatile objects are used only for memory that might be accessed by asynchronous
interrupts, so accessing adjacent objects has no effect.

3.5.4    The maximum number of declarators that can modify an arithmetic, structure, or union
type.
There is no specific limit on the number of declarators. The number of declarators allowed is fairly large,
but when nested deeply within a set of blocks in a function, the number of declarators will be reduced.
The number allowed at file level is at least 50.

3.6.4.2    The maximum number of case values in a switch statement.
There is no specific limit on the number of cases in a switch. As long as there is enough memory to hold
the case information, the compiler will accept them.

3.8.1    Whether the value of a single-character character constant in a constant expression that
controls conditional inclusion matches the value of the same character constant in the execution
character set. Whether such a character constant can have a negative value.
All character constants, even constants in conditional directives, use the same character set (execution).
Single-character character constants will be negative if the character type is signed (default and –K not
requested).

3.8.2    The method for locating includable source files.
For include file names given with angle brackets, if include directories are given in the command line,
then the file is searched for in each of the include directories. Include directories are searched in this
order: first, using directories specified on the command line, then using directories specified in
TURBOC.CFG or BCC32.CFG. If no include directories are specified, then only the current directory is
searched.

3.8.2    The support for quoted names for includable source files.
For quoted file names, the file is first searched for in the current directory. If not found,    searches for the
file as if it were in angle brackets.

3.8.2    The mapping of source file name character sequences.
Backslashes in include file names are treated as distinct characters, not as escape characters. Case
differences are ignored for letters.

3.8.8    The definitions for _ _DATE_ _ and _ _TIME_ _ when they are unavailable.
The date and time are always available and will use the operating system date and time.

4.1.1    The decimal point character.
The decimal point character is a period (.).

4.1.5    The type of the sizeof operator, size_t.
The type size_t is unsigned.

4.1.5    The null pointer constant to which the macro NULL expands.
For a 16-bit application, an integer or a long 0, depending on the memory model.
For 32-bit applications, NULL expands to an int zero or a long zero. Both are 32-bit signed numbers.

4.2    The diagnostic printed by and the termination behavior of the assert function.
The diagnostic message printed is “Assertion failed: expression, file filename, line nn”, where expression
is the asserted expression that failed, filename is the source file name, and nn is the line number where
the assertion took place.
Abort is called immediately after the assertion message is displayed.

4.3    The implementation-defined aspects of character testing and case-mapping functions.
None, other than what is mentioned in 4.3.1.

4.3.1    The sets of characters tested for by the isalnum, isalpha, iscntrl, islower, isprint and
isupper functions.
First 128 ASCII characters for the default C locale. Otherwise, all 256 characters.

4.5.1    The values returned by the mathematics functions on domain errors.
An IEEE NAN (not a number).

4.5.1    Whether the mathematics functions set the integer expression errno to the value of the
macro ERANGE on underflow range errors.
No, only for the other errors—domain, singularity, overflow, and total loss of precision.

4.5.6.4    Whether a domain error occurs or zero is returned when the fmod function has a second
argument of zero.
No; fmod(x,0) returns 0.

4.7.1.1    The set of signals for the signal function.
SIGABRT, SIGFPE, SIGILL, SIGINT, SIGSEGV, and SIGTERM.

4.7.1.1    The semantics for each signal recognized by the signal function.
See the description of signal.

4.7.1.1    The default handling and the handling at program startup for each signal recognized by
the signal function.
See the description of signal.

4.7.1.1    If the equivalent of signal(sig, SIG_DFL); is not executed prior to the call of a signal
handler, the blocking of the signal that is performed.
The equivalent of signal(sig, SIG_DFL) is always executed.

4.7.1.1    Whether the default handling is reset if the SIGILL signal is received by a handler
specified to the signal function.
No, it is not.

4.9.2    Whether the last line of a text stream requires a terminating newline character.
No, none is required.

4.9.2    Whether space characters that are written out to a text stream immediately before a
newline character appear when read in.
Yes, they do.

4.9.2    The number of null characters that may be appended to data written to a binary stream.
None.

4.9.3    Whether the file position indicator of an append mode stream is initially positioned at the
beginning or end of the file.
The file position indicator of an append-mode stream is initially placed at the beginning of the file. It is
reset to the end of the file before each write.

4.9.3    Whether a write on a text stream causes the associated file to be truncated beyond that
point.
A write of 0 bytes might or might not truncate the file, depending on how the file is buffered. It is safest to
classify a zero-length write as having indeterminate behavior.

4.9.3    The characteristics of file buffering.
Files can be fully buffered, line buffered, or unbuffered. If a file is buffered, a default buffer of 512 bytes
is created upon opening the file.

4.9.3    Whether a zero-length file actually exists.
Yes, it does.

4.9.3    Whether the same file can be open multiple times.
Yes, it can.

4.9.4.1    The effect of the remove function on an open file.
No special checking for an already open file is performed; the responsibility is left up to the programmer.

4.9.4.2    The effect if a file with the new name exists prior to a call to rename.
Rename returns a –1 and errno is set to EEXIST.

4.9.6.1    The output for %p conversion in fprintf.
In near data models, four hex digits (XXXX). In far data models, four hex digits, colon, four hex digits
(XXXX:XXXX). (For 16-bit programs.)
Eight hex digits (XXXXXXXX). (For 32-bit programs.)

4.9.6.2    The input for %p conversion in fscanf.
See 4.9.6.1.

4.9.6.2    The interpretation of a –(hyphen) character that is neither the first nor the last character
in the scanlist for a %[conversion in fscanf.
See the description of scanf.

4.9.9.1    The value the macro errno is set to by the fgetpos or ftell function on failure.
EBADF      Bad file number.

4.9.10.4    The messages generated by perror.
Messages generated in both Win16 and Win32
Arg list too big Math argument
Attempted to remove current directory Memory arena trashed
Bad address Name too long
Bad file number No child processes
Block device required No more files
Broken pipe No space left on device
Cross-device link No such device
Error 0 No such device or address
Exec format error No such file or directory
Executable file in use No such process
File already exists Not a directory
File too large Not enough memory
Illegal seek Not same device
Inappropriate I/O control operation Operation not permitted
Input/output error Path not found
Interrupted function call Permission denied

Invalid access code Possible deadlock
Invalid argument Read-only file system
Invalid data Resource busy
Invalid environment Resource temporarily unavailable
Invalid format Result too large
Invalid function number Too many links
Invalid memory block address Too many open files
Is a directory

Messages generated only in Win32
Bad address No child processes
Block device required No space left on device
Broken pipe No such device or address
Executable file in use No such process
File too large Not a directory
Illegal seek Operation not permitted
Inappropriate I/O control operation Possible deadlock
Input/output error Read-only file system
Interrupted function call Resource busy
Is a directory Resource temporarily unavailable
Name too long Too many links

4.10.3    The behavior of calloc, malloc, or realloc if the size requested is zero.
calloc and malloc will ignore the request and return 0. realloc will free the block.

4.10.4.1    The behavior of the abort function with regard to open and temporary files.
The file buffers are not flushed and the files are not closed.

4.10.4.3    The status returned by exit if the value of the argument is other than zero,
EXIT_SUCCESS, or EXIT_FAILURE.
Nothing special. The status is returned exactly as it is passed. The status is a represented as a signed
char.

4.10.4.4    The set of environment names and the method for altering the environment list used by
getenv.
The environment strings are those defined in the operating system with the SET command. putenv can
be used to change the strings for the duration of the current program, but the SET command must be
used to change an environment string permanently.

4.10.4.5    The contents and mode of execution of the string by the system function.
The string is interpreted as an operating system command. COMSPEC is used or COMMAND.COM is
executed (for 16-bit programs) or CMD.EXE (for 32-bit programs) and the argument string is passed as
a command to execute. Any operating system built-in command, as well as batch files and executable
programs, can be executed.

4.11.6.2    The contents of the error message strings returned by strerror.
See 4.9.10.4.

4.12.1    The local time zone and Daylight Saving Time.

Defined as local PC time and date.

4.12.2.1    The era for clock.
Represented as clock ticks, with the origin being the beginning of the program execution.

4.12.3.5    The formats for date and time.
 C++Builder implements ANSI formats.

Keywords
{button A,JI(`',`keywords_a')} {button B,JI(`',`keywords_b')} {button C,JI(`',`keywords_c')} {button D,JI(`',`keywords_d')} {button
E,JI(`',`keywords_e')} {button F,JI(`',`keywords_f')} {button G,JI(`',`keywords_g')} {button H,JI(`',`keywords_h')} {button
I,JI(`',`keywords_i')} {button J,JI(`',`keywords_i')} {button l,JI(`',`keywords_l')} {button N,JI(`',`keywords_n')} {button
O,JI(`',`keywords_o')} {button P,JI(`',`keywords_p')} {button R,JI(`',`keywords_r')} {button S,JI(`',`keywords_s')} {button
T,JI(`',`keywords_t')} {button U,JI(`',`keywords_u')} {button V,JI(`',`keywords_v')} {button W,JI(`',`keywords_w')}
Keywords are words reserved for special purposes and must not be used as normal identifier names
This is an alphabetical listing of the keywords supported in this release of C++Builder. The description of
some keywords is provided only under the topic to which they apply. For example, C++ cast operators
are discussed under New-style typecasting, and the discussion of keywords related to C++ namespaces
is discussed under the Namespaces overview.
For a functional listing of the keywords, see Keywords (by Category).

A
__asm
_asm
asm
auto
__automated

B
break
bool

C
case
catch
__cdecl
_cdecl
cdecl
char
class
__classid
__closure
const
const_cast
continue

D
__declspec
default
delete
__dispid
do
double
dynamic_cast

E
else
enum

__except
explicit
_export
__export
extern

F
false
__fastcall
_fastcall
__finally
float
for
friend

G
goto

I
if
__import
_import
inline
int
__int8
__int16
__int32
__int64

L
long
mutable

N
namespace
new

O
operator

P
__pascal
_pascal
pascal
private
protected
__property
public
__published

R
register
reinterpret_cast
return
__rtti

S
short
signed
sizeof
static
static_cast
__stdcall
_stdcall
struct
switch

T
template
this
__thread
throw
true
__try
try
typedef
typename
typeid

U
union
using
unsigned

V
virtual
void
volatile

W
wchar_t
while

Keywords (by Category)
This is a categorical listing of the keywords C++Builder supports. For an alphabetical listing of the
keywords, see Keywords (Alphabetical).
C++Builder Extensions keywords unique to C++Builder
C++ Specific keywords recognized only in C++ programs
Modifiers keywords that change one or more attributes of an identifier associated with

an object
Operators keywords that invoke functions against objects or identifiers
Statements keywords that specify program control during execution
Storage Class Specifiers keywords that define the location and duration of an identifier
Type Specifiers keywords that determine how memory is allocated and bit patterns are

interpreted

Modifiers
A declaration uses modifiers to alter aspects of the identifier/object mapping.
The C++Builder modifiers are:
__cdecl
const
__declspec
__dispid
__export
__fastcall
__import
__pascal
__rtti
__stdcall
volatile

Operator Keywords
See also
Several C++Builder keywords denote operators that invoke functions against objects and identifiers.
The keyword operators supported by C++Builder are:
delete
operator
typeid
new
sizeof
__classid

Statement Keywords
Statements specify the flow of control in a program. In the absence of specific jumps and selection
statements, statements execute sequentially as they appear in the source code.
The statement keywords in C++Builder are:
break else switch
case __finally throw
catch for __try
continue goto try
default if while
do return
__except

asm, _asm,    _ _asm
See also Example Keywords

Syntax
asm <opcode> <operands> <; or newline>
_asm <opcode> <operands> <; or newline>
__asm <opcode> <operands> <; or newline>

Description
Use the asm, _asm, or _ _asm keyword to place assembly language statements in the middle of your C
or C++ source code. Any C++ symbols are replaced by the appropriate assembly language equivalents.
You can group assembly language statements by beginning the block of statements with the asm
keyword, then surrounding the statements with braces ({}).

Examples
// This example places a single assembler statement in your code:
asm pop dx

// If you want to include several of asm statements,
// surround them with braces:
asm {
 mov ax, 0x0e07
 xor bx, bx
 int 0x10 // makes the system beep
}

auto
Example Keywords

Syntax
[auto] <data-definition> ;

Description
Use the auto modifer to define a local variable as having a local lifetime.
This is the default for local variables and is rarely used.

Example
int main()
{
 auto int i;
 i = 5;
 return i;
}

__automated
See also Keywords Example

Syntax
_automated: <declarations>

Description
The visibility rules for automated members are identical to those of public members. The only difference
between automated and public members is that OLE automation information is generated for member
functions and properties that are declared in an automated section. This OLE automation type
information makes it possible to create OLE Automation servers.

For a member function, the types of all member function parameters and the function result (if
any) must be automatable. Likewise, for a property, the property type and the types of any array property
parameters must be automatable. The automatable types are: Currency, double, int, float, short, String,
TDateTime, Variant, and unsigned short. Declaring member functions or properties that use non-
automatable types in an __automated section results in a compile-time error.

Member function declarations must use the __fastcall calling convention.
Member functions can be virtual.
Member functions may add __dispid(constant int expression) after the closing parenthesis of the

parameter list.
Property declarations can only include access specifiers (__dispid, read, and write). No other

specifiers (index, stored, default, nodefault) are allowed.
Property access specifiers must list a member function identifier. Data member identifiers are not

allowed.
Property access member functions must use the __fastcall calling convention.
Property overrides (property declarations that don’t include the property type) are not allowed.

Example of __automated and __dispid
// Illustrates the use of __automated and __dispid.
class myclass : TAutoObject
{
// This access region is used to declare functions
// and properties that need OLE automation information.
__automated :
 // The __dispid directive associates the OLE automation
 // dispatch id 1000 with the member function.
 void __fastcall func(void) __dispid(1000);
};

bool
See also Example Keywords

Syntax
bool <identifier>;

Description
Use bool and the literals false and true to perform Boolean logic tests.
The bool keyword represents a type that can take only the value false or true. The keywords false and
true are Boolean literals with predefined values. false is numericallly zero and true is numerically one.
These Boolean literals are rvalues; you cannot make an assignment to them.
You can convert an rvalue that is of type bool to an rvalue that is int type. The numerical conversion
sets false to zero and true becomes one.
You can convert arithmetic, enumeration, pointer, or pointer to member rvalue types to an rvalue of type
bool. A zero value, null pointer value, or null member pointer value is converted to false. Any other
value is converted to true.

Example
/* How to make Boolean tests with bool, true, and false. */
#include <iostream.h>

bool func() { // Function returns a bool type
 return NULL; // NULL is converted to Boolean false
// return false; // This statement is Boolean equivalent to the one above.
 }

int main() {
 bool val = false; // Boolean variable
 int i = 1; // i is neither Boolean-true nor Boolean-false
 int *iptr = 0; // null pointer
 float j = 1.01; // j is neither Boolean-true nor Boolean-false

 // Tests on integers
 if (i == true) cout << "True: value is 1" << endl;
 if (i == false) cout << "False: value is 0" << endl;

 // Test on pointer
 if (iptr == false) cout << "Invalid pointer." << endl;

 // To test j's truth value, cast it to bool type.
 if (bool(j) == true) cout << "Boolean j is true." << endl;

 // Test Boolean function return value
 val = func();
 if (val == false)
 cout << "func() returned false.";
 if (val == true)
 cout << "func() returned true.";
 return false; // false is converted to 0
}

Program output
True: value is 1
Unknown truth value for g.
Invalid pointer.
Boolean j is true.
func() returned false.

break
See also Example Keywords

Syntax
break ;
Description
Use the break statement within loops to pass control to the first statement following the innermost
switch, for, while, or do block.

Example
/* Illustrates the use of keywords break, case, default, and switch. */
#include <conio.h>
#include <stdio.h>

int main(void) {
 int ch;

 printf("\tPRESS a, b, OR c. ANY OTHER CHOICE WILL "
 "TERMINATE THIS PROGRAM.");
 for (/* FOREVER */; ((ch = getch()) != EOF);)
 switch (ch) {
 case 'a' : /* THE CHOICE OF a HAS ITS OWN ACTION. */
 printf("\nOption a was selected.\n");
 break;
 case 'b' : /* BOTH b AND c GET THE SAME RESULTS. */
 case 'c' :
 printf("\nOption b or c was selected.\n");
 break;
 default :
 printf("\nNOT A VALID CHOICE! Bye ...");
 return(-1);
 }
 return(0);
 }

case
See also Example Keywords

Syntax
switch (<switch variable>){
 case <constant expression> : <statement>; [break;]
 .
 .
 .
 default : <statement>;
}

Description
Use the case statement in conjunction with switches to determine which statements evalute.
The list of possible branch points within <statement> is determined by preceding substatements with
case <constant expression> : <statement>;
where <constant expression> must be an int and must be unique.

The <constant expression> values are searched for a match for the <switch variable>.
If a match is found, execution continues after the matching case statement until a break statement is
encountered or the end of the switch statement is reached.
If no match is found, control is passed to the default case.
Note: It is illegal to have duplicate case constants in the same switch statement.

catch
See also Keywords

Syntax
catch (exception-declaration) compound-statement

Description
The exception handler is indicated by the catch keyword. The handler must be used immediately after
the statements marked by the try keyword. The keyword catch can also occur immediately after another
catch. Each handler will only evaluate an exception that matches, or can be converted to, the type
specified in its argument list.

cdecl, _cdecl,    _ _cdecl
Example Keywords

Syntax
cdecl <data/function definition> ;
_cdecl <data/function definition> ;
__cdecl <data/function definition> ;

Description
Use a cdecl, _cdecl, or _ _cdecl modifier to declare a variable or a function using the C-style naming
conventions (case-sensitive, with a leading underscore appended). When you use cdecl, _cdecl, or _
_cdecl in front of a function, it effects how the parameters are passed (last parameter is pushed first,
and the caller cleans up the stack). The _ _cdecl modifier overrides the compiler directives and IDE
options.
The cdecl, _cdecl, and __cdecl keywords are specific to C++Builder.

Example
int __cdecl FileCount;
long __cdecl HisFunc(int x);

char
See also Keywords

Syntax
[signed|unsigned] char <variable_name>

Description
Use the type specifier char to define a character data type. Variables of type char are 1 byte in length.
A char can be signed, unsigned, or unspecified. By default, signed char is assumed.
Objects declared as characters (char) are large enough to store any member of the basic ASCII
character set.

class
See also Example Keywords

Syntax
<classkey> <classname> <baselist> { <member list> }

<classkey> is either a class, struct, or union.
<classname> can be any name unique within its scope.
<baselist> lists the base class(es) that this class derives from. <baselist> is optional
<member list> declares the class's data members and member functions.

Description
Use the class keyword to define a C++ class.
Within a class:

the data are called data members
the functions are called member functions

Example
class stars {
 int magnitude; // Data member
 int starfunc(void); // Member function
};

__classid
See also Keywords Example

Syntax
__classid(classType)

Description
The __classid operator returns a pointer to the vtable for the specified classType. The operator is used
internally by the VCL support classes and by the generated project source code to interact with VCL
methods (also known as member functions) that use class parameters.
This operator should not be directly used by C++Builder programmers.

__closure
See also Example Keywords

Syntax
<type> (__closure * <id>) (<param list>);

Description
Use __closure to declare event handler functions.
A closure declaration is the same as a function pointer declaration but with the addition of the __closure
keyword in front of the <id> being defined. While a function pointer contains only a 4-byte code address,
a closure contains both a code address (in the first 4 byte) and an object pointer (in the second 4 bytes)
that serves as the this pointer when you call through the closure.

closure example
struct MyObject
{
 double MemFunc(int);
};
double func1(MyObject *o)
{
 // A pointer to a member function taking an
 // int argument and returning double.
 double (__closure *myClosure)(int);

 // Initialize the closure.
 myClosure = o -> MemFunc;

 // Use the closure to call the member function and pass it an int.
 return myClosure(1);
}

const
See also Example Keywords

Syntax
const <variable name> [= <value>] ;
<function name> (const <type>*<variable name> ;)
<function name> const;

Description
Use the const modifier to make a variable value unmodifiable.
Use the const modifier to assign an initial value to a variable that cannot be changed by the program.
Any future assignments to a const result in a compiler error.
A const pointer cannot be modified, though the object to which it points can be changed. Consider the
following examples.
 const float pi = 3.14;
 const maxint = 12345; // When used by itself, const is equivalent to
int.

 char *const str1 = "Hello, world"; // A constant pointer
 char const *str2 = "Borland International"; // A pointer to a constant
character string.

Given these declarations, the following statements are illegal.
pi = 3.0; // Assigns a value to a const.
i = maxint++; // Increments a const.
str1 = "Hi, there!" // Points str1 to something else.

Using the const Keyword in C++ Programs
C++ extends const to include classes and member functions. In a C++ class definition, use the const
modifier following a member function declaration. The member function is prevented from modifying any
data in the class.
A class object defined with the const keyword attempts to use only member functions that are also
defined with const. If you call a member function that is not defined as const, the compiler issues a
warning that the a non-const function is being called for a const object. Using the const keyword in this
manner is a safety feature of C++.
Warning: A pointer can indirectly modify a const variable, as in the following:

*(int *)&my_age = 35;
If you use the const modifier with a pointer parameter in a function's parameter list, the function cannot
modify the variable that the pointer points to. For example,
int printf (const char *format, ...);
printf is prevented from modifying the format string.

Example
class X {
 int j;
public:
 X::X() { j = 0; };
 int lowerBound() const; // DOES NOT MODIFY ANY DATA MEMBERS
 int dimension(X x1, const X &x2) { // x2 PARAMETERS WON'T BE MODIFIED
 x1.j = 3; // OKAY; x1 OBJECT IS MODIFIABLE
 x2.j = 5; // ERROR; x2 IS NOT MODIFIABLE
 return x2.j;
 }
};

Example 2
#include <iostream.h>

class Alpha {
 int num;
public:
 Alpha(int j = 0) { num = j; }
 int func(int i) const {
 cout << "Non-modifying function." << endl;
 return i++;
 }
 int func(int i) {
 cout << "Modify private data" << endl;
 return num = i;
 }
 int f(int i) { cout << "Non-const function called with i = " << i <<
endl; return i;}

};

void main() {
 Alpha alpha_mod; // Calls the non-const functions.
 const Alpha alpha_inst; // Attempts to call the const functions.

 alpha_mod.func(1);
 alpha_mod.f(1); // Causes a compiler warning.

 alpha_inst.func(1);
 alpha_inst.f(1);
 }

Output:
Modify private data
Non-const function called with i = 1
Non-modifying function.
Non-const function called with i = 1

continue
See also Example Keywords

Syntax
continue ;

Description
Use the continue statement within loops to pass control to the end of the innermost enclosing brace; at
which point the loop continuation condition is re-evaluated.

Example
void main ()
{
 for (i = 0; i < 20; i++) {
 if (array[i] == 0)
 continue;
 array[i] = 1/array[i];
 }
}

_ _declspec
See also Example Keywords

Syntax
__declspec(<decl-modifier>)

Description
See also the use of    __declspec keyword when porting virtual functions from Delphi code.
The _ _declspec keyword is required when making forward declarations of VCL classes.
Use the _ _declspec keyword to indicate the storage class attributes for a variable or function.
The _ _declspec keyword extends the attribute syntax for storage class modifiers so that their
placement in a declarative statement is more flexible. The _ _declspec keyword and its argument can
appear anywhere in the declarator list, as opposed to the old-style modifiers which could only appear
immediately preceding the identifier to be modified.
__export void f(void); // illegal
void __export f(void) // correct
void __declspec(dllexport) f(void); // correct
__declspec(dllexport)void f(void); // correct
class __declspec(dllexport) ClassName { } // correct
The decl-modifier argument can only be one of dllexport, dllimport, or thread. The meaning of these
arguments is equivalent to the following storage class attribute keywords.

Argument Storage Class Compiler Support
dllexport __export 32- and 16-bit
dllimport __import 32-bit (legal, but no affect on 16-bit programs)
thread __thread 32-bit only

Example
/* Examples of __declspec declarations follow. */
__declspec(dllimport) void func(void);
__declspec(dllimport) int a;
__declspec(dllexport) void bar (void);

/** Use thread argument only with static storage data. **/
__declspec(thread) int th;
int __declspec(thread) th1;

Using __declspec in VCL class declarations
// Forward declarations
class __declspec(delphiclass) MyVclClass;
class __declspec(delphireturn) MyString;
MyVclClass* MyVclClassFunc();
MyString* MyStringFunc();

class MyClass : public TVclClass
{ /* class definition */ };

class MyString: public AnsiString
{ /* class definition */ };

default
See also Example Keywords

Syntax
switch (<switch variable>){
 case <constant expression> : <statement>; [break;]
 .
 .
 .
 default : <statement>;
}

Description
Use the default statement in switch statement blocks.

If a case match is not found and the default statement is found within the switch statement, the
execution continues at this point.

If no default is defined in the switch statement, control passes to the next statement that follows
the switch statement block.

__dispid
See also Keywords Example

Syntax
__dispid(constant int expression)

Description
A member function that has been declared in the __automated section of a class can    include an
optional __dispid(constant int expression) directive. The directive must be declared after the closing
parenthesis of the parameter list.
The constant int expression gives the OLE Automation dispatch ID of the member function or property. If
a dispid directive is not used, the compiler automatically picks a number one larger than the largest
dispatch ID used by any member function or property in the class and its base classes.
Specifying an already-used dispatch ID in a dispid directive causes a compile-time error.

do
See also Example Keywords

Syntax
do <statement> while (<condition>);

Description
The do statement executes until the condition becomes false.
<statement> is executed repeatedly as long as the value of <condition> remains true.

Since the conditon tests after each the loop executes the <statement>, the loop will execute at least
once.

do Example
/* This example prompts users for a password */
/* and continued to prompt them until they */
/* enter one that matches the value stored in */
/* checkword. */

#include <stdio.h>
#include <string.h>

int main ()
{
 char checkword[80] = "password";
 char password[80] = "";

 do {
 printf ("Enter password: ");
 scanf("%s", password);
 } while (strcmp(password, checkword));

 return 0;
}

double
See also Keywords

Syntax
[long] double <identifier>

Description
Use the double type specifier to define an identifier to be a floating-point data type. The optional
modifier long extends the accuracy of the floating-point value.
If you use the double keyword, the C++Builder IDE will automatically link the floating-point math
package into your program.

enum
See also Example Keywords

Syntax
enum [<type_tag>] {<constant_name> [= <value>], ...} [var_list];

<type_tag> is an optional type tag that names the set.
<constant_name> is the name of a constant that can optionally be assigned the value of

<value>. These are also called enumeration constants.
<value> must be an integer. If <value> is missing, it is assumed to be:

<prev> + 1
where <prev> is the value of the previous integer constant in the list. For the first integer constant in
the list, the default value is 0.

<var_list> is an optional variable list that assigns variables to the enum type.

Description
Use the enum keyword to define a set of constants of type int, called an enumeration data type.
An enumeration data type provides mnemonic identifiers for a set of integer values. C++Builder stores
enumerators in a single byte if you uncheck Treat Enums As Ints (O|C|Code Generation) or use the -b
flag.
Enums are always interpreted as ints if the range of values permits, but if they are not ints the value
gets promoted to an int in expressions. Depending on the values of the enumerators, identifiers in an
enumerator list are implicitly of type signed char, unsigned char, or int.
In C, an enumerated variable can be assigned any value of type int--no type checking beyond that is
enforced. In C++, an enumerated variable can be assigned only one of its enumerators.
In C++, lets you omit the enum keyword if <tag_type> is not the name of anything else in the same
scope. You can also omit <tag_type> if no further variables of this enum type are required.

In the absence of a <value> the first enumerator is assigned the value of zero. Any subsequent names
without initializers will then increase by one. <value> can be any expression yielding a positive or
negative integer value (after possible integer promotions). These values are usually unique, but
duplicates are legal.
Enumeration tags share the same name space as structure and union tags. Enumerators share the
same name space as ordinary variable identifiers.
In C++, enumerators declared within a class are in the scope of that class.

Examples
enum days { sun, mon, tues, wed, thur, fri, sat } anyday;
establishes a unique integral type, enum days, a variable anyday of this type, and a set of enumerators
(sun, mon,...) with constant integer values.
enum modes { LASTMODE = -1, BW40=0, C40, BW80, C80, MONO = 7 };
/*
 "modes" is the type tag.
 "LASTMODE", "BW40", "C40", etc. are the constant names.
 The value of C40 is 1 (BW40 + 1); BW80 = 2 (C40 + 1), etc.
*/

_ _except
See also Keywords

Syntax
__except (expression) compound-statement

Description
The _ _except keyword specifies the action that should be taken when the exception specified by
expression has been raised.

explicit
See also

Syntax
explicit <single-parameter constructor declaration>

Description
Normally, a class with a single-parameter constructor can be assigned a value that matches the
constructor type. This value is automatically (implicitly) converted into an object of the class type to
which it is being assigned. You can prevent this kind of implicit conversion from occurring by declaring
the constructor of the class with the explicit keyword. Then all objects of that class must be assigned
values that are of the class type; all other assignments result in a compiler error.
Objects of the following class can be assigned values that match the constructor type or the class type:
class X {
public:
 X(int);
 X(const char*, int = 0);
};
Then, the following assignment statements are legal.
void f(X arg) {
 X a = 1;
 X B = "Jessie";
 a = 2;
}
However, objects of the following class can be assigned values that match the class type only:
class X {
public:
 explicit X(int);
 explicit X(const char*, int = 0);
};
The explicit constructors then require the values in the following assignment statements to be
converted to the class type to which they are being assigned.
void f(X arg) {
 X a = X(1);
 X b = X("Jessie",0);
 a = X(2);
}

_export, _ _export
See also Keywords

Form 1
class _export <class name>

Form 2
return_type _export <function name>

Form 3
data_type _export <data name>

Description
These modifiers are used to export classes, functions, and data.
The linker enters functions flagged with _export or _ _export into an export table for the module.
Using _export or _ _export eliminates the need for an EXPORTS section in your module definition file.
Functions that are not modified with _export or _ _export receive abbreviated prolog and epilog code,
resulting in a smaller object file and slightly faster execution.
Note: If you use _export or _ _export to export a function, that function will be exported by name rather

than by ordinal (ordinal is usually more efficient).
If you want to change various attributes from the default, you'll need a module definition file.

Compiler Options and the _ _export Keyword
See also Keywords
This table summarizes the effect of the combination of various Windows options and the _ _export
keyword:

The compiler
option is: *

-tW·or
-tWD

-tWE·or
-tWDE

-tW·or
-tWD

-tWE·or
-tWDE

-tW·or
-tWD

-tWE·or
-tWDE

-tW·or
-tWD

-tWE·or
-tWDE

Function flagged
with __export? Yes Yes Yes Yes No No No No
Function·listed in
EXPORTS? Yes Yes No No Yes Yes No No
Is·function
exportable? Yes Yes Yes Yes Yes No Yes No

Will function be
exported? Yes Yes Yes Yes Yes Yes No No
* Or the 32-bit console-mode application equivalents.

Exportable Functions in DLLs
See also
There are two ways to compile a function f1() in a DLL as exportable and then export it.

Compile the DLL with all functions exportable and list f1() in the EXPORTS section of the
module definition file, or

Flag the function f1() with the _export keyword.

Using _export with C++ Classes
See also Keywords
Whenever you declare a class as _export, the compiler exports all of its non-inline member functions
and static data members.
If you declare the class in an include file that is included in both the DLL source files and the source files
of the application that use the DLL, declare the class as _export when compiling the DLL
To do this, use the __DLL__ macro, which the compiler defines when it's building a DLL.

extern
See also Example Keywords

Syntax
extern <data definition> ;
[extern] <function prototype> ;

Description
Use the extern modifier to indicate that the actual storage and initial value of a variable, or body of a
function, is defined in a separate source code module. Functions declared with extern are visible
throughout all source files in a program, unless you redefine the function as static.
The keyword extern is optional for a function prototype.
Use extern "c" to prevent function names from being mangled in C++ programs.

Examples
extern int _fmode;
extern void Factorial(int n);
extern "c" void cfunc(int);

Parameter Types and Possible Registers Used
The compiler uses the following rules when deciding which parameters are to be passed in registers.

Parameter Type Registers
char (signed and unsigned) AL, DL, BL
int (signed and unsigned) AX, DX, BX
long (signed and unsigned) DX:AX
near pointer AX, DX, BX

Only three parameters can be passed in registers to any one function.
Do not assume the assignment of registers will reflect the ordering of the parameters to a function.
Union, structure, and floating-point (float, double, and long) parameters are pushed on the stack.

_fastcall, _ _fastcall
See also Keywords

Syntax
return-value _fastcall function-name(parm-list)
return-value __fastcall function-name(parm-list)

Description
Use the __fastcall modifier to declare functions that expect parameters to be passed in registers. The
first three parameters are passed (from left to right) in EAX, EBX, and EDX, if they fit in the register. The
registers are not used if the parameter is a floating-point or struct type.
All form class member functions must use the __fastcall convention.
The compiler treats this calling convention as a new language specifier, along the lines of _cdecl and
_pascal
Functions declared using _cdecl or _pascal cannot also have the _fastcall modifiers because they use
the stack to pass parameters. Likewise, the __fastcall modifier cannot be used together with _export.
The compiler prefixes the _ _fastcall function name with an at-sign ("@"). This prefix applies to both
unmangled C function names and to mangled C++ function names.
Note: The __fastcall modifier is subject to name mangling. See the description of the -VC option.

_ _finally
See also Keywords

Syntax
__finally {compound-statement}

Description
The _ _finally keyword specifies actions that should be taken regardless of how the flow within the
preceding _ _try exits.
The _ _finally keyword is supported only in C programs.

float
See also Keywords

Syntax
float <identifier>

Description
Use the float type specifier to define an identifier to be a floating-point data type.

Type Length Range
float 32 bits 3.4 * (10**-38) to 3.4 * (10**+38)

The C++Builder IDE automatically links the floating-point math package into you program if you use
floating-point values or operators.

for
Example Keywords

Syntax
for ([<initialization>] ; [<condition>] ; [<increment>]) <statement>

Description
The for statement implements an iterative loop.
<condition> is checked before the first entry into the block.

<statement> is executed repeatedly UNTIL the value of <condition> is false.
Before the first iteration of the loop, <initialization> initializes variables for the loop.
After each iteration of the loop, <increments> increments a loop counter. Consequently, j++

is functionally the same as ++j.
In C++, <initialization> can be an expression or a declaration.

The scope of any identifier declared within the for loop extends to the end of the control statement only.
A variable defined in the for-initialization expression is in scope only within the for-block. See the
description of the -Vd option.
All the expressions are optional. If <condition> is left out, it is assumed to be always true.

Examples
// An example of the scope of variables in for-expressions.
// The example compiles if you use the -Vd option.
#include <iostream.h>

int main() {
 for (int i = 0; i < 10; i++)
 if (i == 8)
 cout << "\ni = " << i;
return i; // Undefined symbol ‘i’ in function main().
}

friend
Example Keywords

Syntax
friend <identifier>;

Description
Use friend to declare a function or class with full access rights to the private and protected members of
an outside class, without being a member of that class.
In all other respects, the friend is a normal function in terms of scope, declarations, and definitions.

Example
class stars {
 friend class galaxy;
 int magnitude;
 int starfunc(void);
};

class galaxy {
 long int number_of_stars;
 void stars_magnitude(stars&);
 void stars_func(stars*);
}

goto
Example Keywords

Syntax
goto <identifier> ;

Description
Use the goto statement to transfer control to the location of a local label specified by <identifier>.
Labels are always terminated by a colon.

Example
Again: /* this is the label */
;
.
.
.
goto Again;

if
See also Example Keywords

Syntax
if (<condition>) <statement1>;

if (<condition>) <statement1>;
else <statement2>;

Description
Use if to implement a conditional statement.
You can declare variables in the condition expression. For example,
 if (int val = func(arg))
is valid syntax. The variable val is in scope for the if statement and extends to an else block when it
exists.
The condition statement must convert to a bool type. Otherwise, the condition is ill-formed.
When <condition> evaluates to true, <statement1> executes.

If <condition> is false, <statement2> executes.

The else keyword is optional, but no statements can come between an if statement and an else.
The #if and #else preprocessor statements (directives) look similar to the if and else statements, but
have very different effects. They control which source file lines are compiled and which are ignored.

Examples
if (int val = func(count)) { /* statements */ }
else {
 /* take other action */
 cout << “val is false”
 }

_import, _ _import
Keywords

Form 1
class _import <class name>
class __import <class name>

Form 2
return_type _import <function name>
return_type __import <function name>

Form 3
data_type _import <data name>
data_type __import <data name>

Description
This keyword can be used as a class, function, or data modifier in 32-bit programs.

inline
Example Keywords

Syntax
inline <datatype> <class>_<function> (<parameters>) { <statements>; }

Description
Use the inline keyword to declare or define C++ inline functions.
Inline functions are best reserved for small, frequently used functions.

Example
inline char* cat_func(void) { return char*; }

int
See also Keywords

Syntax
[signed|unsigned] int <identifier> ;

Description
Use the int type specifier to define an integer data type.
Variables of type int can be signed (default) or unsigned.

long
See also Keywords

Syntax
long [int] <identifier> ;
[long] double <identifier> ;

Description
When used to modify an int, it doubles the number of bytes available to store the integer value.
When used to modify a double, it defines a floating-point data type with 80 bits of precision instead of
64.
The C++Builder IDE links the floating-point math package if you use floating-point values or operators
anywhere in your program.

mutable
See also Example Keywords

Syntax
mutable <variable name>;

Description
Use the mutable specifier to make a variable modifiable even though it is in a const-qualified
expression.

Using the mutable Keyword
Only class data members can be declared mutable. The mutable keyword cannot be used on static or
const names. The purpose of mutable is to specify which data members can be modified by const
member functions. Normally, a const member function cannot modify data members.

Example
#include <iostream.h>
class Alpha {
 mutable int count;
 mutable const int* iptr;
public:
 int func1(int i = 0) const { // Promises not to change const arguments.
 count = i++; // But count can be changed.
 iptr = &i;
 cout << *iptr;
 return count;
 }
};

int main(void) {
 Alpha a;

 a.func1(0);
 return 0;
 }

operator
See also Example Keywords

Syntax
operator <operator symbol>(<parameters>)
{
 <statements>;
}

Description
Use the operator keyword to define a new (overloaded) action of the given operator. When the operator
is overloaded as a member function, only one argument is allowed, as *this is implicitly the first
argument.
When you overload an operator as a friend, you can specify two arguments.

pascal, _pascal,    _ _pascal
Keywords

Syntax
pascal <data-definition/function-definition> ;
_pascal <data-definition/function-definition> ;
__pascal <data-definition/function-definition> ;

Description
Use the pascal, _pascal, and __pascal keywords to declare a variable or a function using a Pascal-
style naming convention (the name is in uppercase).
In addition, pascal declares Pascal-style parameter-passing conventions when applied to a function
header (first parameter pushed first; the called function cleans up the stack).
In C++ programs, functions declared with the pascal modifer will still be mangled.

private
See also Keywords

Syntax
private: <declarations>

Description
A private member can be accessed only by member functions and friends of the class in which it is
declared.
Class members are private by default.
You can override the default struct access with private or protected but you cannot override the default
union access.
Friend declarations are not affected by these access specifiers.

protected
See also Keywords

Syntax
protected: <declarations>

Description
A protected member can be accessed by member functions and friends of the class in which it was
declared, and by classes derived from the declared class.
You can override the default struct access with private or protected but you cannot override the default
union access.
Friend declarations are not affected by these access specifiers.

public
See also Keywords

Syntax
public: <declarations>

Description
A public member can be accessed by any function.
Members of a struct or union are public by default.
You can override the default struct access with private or protected but you cannot override the default
union access.
Friend declarations are not affected by these access specifiers.

__property
See also Keywords Example

Syntax
<property declaration> ::=
 __property <type> <id> [<prop dim list>] = "{" <prop attrib list>
"}"

 <prop dim list> ::= "[" <type> [<id>] "]" [<prop dim list>]

 <prop attrib list> ::= <prop attrib> [, <prop attrib list>]

 <prop attrib> ::= read = <data/function id>
 <prop attrib> ::= write = <data/function id>
 <prop attrib> ::= stored = <data/function id>
 <prop attrib> ::= stored = <boolean constant>
 <prop attrib> ::= default = <constant>
 <prop attrib> ::= nodefault
 <prop attrib> ::= index = <const int expression>

Description
Use __property to associate specialized read/write access with an identifier.
A property declaration in a class defines a named attribute for objects of the class and the actions
associated with reading and modifying the attribute. Examples of properties are the caption of a form,
the size of a font, the name of a database table, and so on. A property can be any type except a file
type.
Properties are a natural extension of data members in an object. Both can be used to express attributes
of an object, but whereas data members are merely storage locations which can be examined and
modified at will, properties provide greater control over access to attributes. Properties provide a
mechanism for associating actions with the reading and writing of attributes, and they allow attributes to
be computed.
For property arrays (when <prop dim list> is used), the index to the arrays can be of any type.

Properties can only be declared in classes.
The identifier in a read/write clause must be a data member or member function.

__published
See also Keywords

Syntax
__published: <declarations>

Description
Use the __published keyword to specify the properties that you want to be displayed in the Object
Inspector. Only classes derived from TObject can have __published sections.
Note: The declarations in the _published section of any class derived from TObject are managed by

the form editor in the IDE. You should not edit the declarations in this section.
The visibility rules for published members are identical to those of public members. The only difference
between published and public members is that Delphi-style run-time type information (RTTI) is
generated for data members and properties that are declared in a __published section. RTTI enables
an application to dynamically query the data members, member functions and properties of an otherwise
unknown class type.
No constructors or destructors are allowed in a __published section. Properties, Pascal intrinsic or VCL
derived data-members, member functions and closures are allowed.

register
Example Keywords

Syntax
register <data definition> ;

Description
Use the register storage class specifier to store the variable being declared in a CPU register (if
possible), to optimize access and reduce code.
Items declared with the register keyword have a global lifetime.
Note: The C++Builder compiler can ignore requests for register allocation. Register allocation is based

on the compiler’s analysis of how a variable is used.

Example
register int i;

return
Example Keywords

Syntax
return [<expression>] ;

Description
Use the return statement to exit from the current function back to the calling routine, optionally returning
a value.

Example
double sqr(double x)
{
 return (x*x);
}

short
See also Example Keywords

Syntax
short int <variable> ;

Description
Use the short type modifier when you want a variable smaller than an int. This modifier can be applied to
the base type int.
When the base type is omitted from a declaration, int is assumed.

Examples
short int i;
short i; /* same as "short int i;" */

signed
See also Example Keywords

Syntax
signed <type> <variable> ;

Description
Use the signed type modifier when the variable value can be either positive or negative. The signed
modifier can be applied to base types int, char, long and short.
When the base type is omitted from a declaration, int is assumed.

Example
signed int i; /* signed is default */
signed i; /* same as "signed int i;" */
unsigned long int l; /* int OK, not needed */
signed char ch; /* unsigned is default */

The sizeof operator
See also Example Operators
The sizeof operator has two distinct uses:
sizeof unary-expression
sizeof (type-name)
The result in both cases is an integer constant that gives the size in bytes of how much memory space
is used by the operand (determined by its type, with some exceptions). The amount of space that is
reserved for each type depends on the machine.
In the first use, the type of the operand expression is determined without evaluating the expression (and
therefore without side effects). When the operand is of type char (signed or unsigned), sizeof gives
the result 1. When the operand is a non-parameter of array type, the result is the total number of bytes
in the array (in other words, an array name is not converted to a pointer type). The number of elements
in an array equals sizeof array/ sizeof array[0] .

If the operand is a parameter declared as array type or function type, sizeof gives the size of the
pointer. When applied to structures and unions, sizeof gives the total number of bytes, including any
padding.
You cannot use sizeof with expressions of function type, incomplete types, parenthesized names of
such types, or with an lvalue that designates a bit field object.
The integer type of the result of sizeof is size_t.
You can use sizeof in preprocessor directives; this is specific to C++Builder.
In C++, sizeof(classtype), where classtype is derived from some base class, returns the size of
the object (remember, this includes the size of the base class).

Example for sizeof operator
/* USE THE sizeof OPERATOR TO GET SIZES OF DIFFERENT DATA TYPES. */
#include <stdio.h>
struct st {
 char *name;
 int age;
 double height;
 };

struct st St_Array[]= { /* AN ARRAY OF structs */
 { "Jr.", 4, 34.20 }, /* ST_Array[0] */
 { "Suzie", 23, 69.75 }, /* ST_Array[1] */
 };
int main() {
 long double LD_Array[] = { 1.3, 501.09, 0.0007, 90.1, 17.08 };

 printf("\nNumber of elements in LD_Array = %d",
 sizeof(LD_Array) / sizeof(LD_Array[0]));

 /**** THE NUMBER OF ELEMENTS IN THE ST_Array. ****/
 printf("\nSt_Array has %d elements",
 sizeof(St_Array)/sizeof(St_Array[0]));

 /**** THE NUMBER OF BYTES IN EACH ST_Array ELEMENT. ****/
 printf("\nSt_Array[0] = %d", sizeof(St_Array[0]));

 /**** THE TOTAL NUMBER OF BYTES IN ST_Array. ****/
 printf("\nSt_Array=%d", sizeof(St_Array));

 return 0;
 }

Output
Number of elements in LD_Array = 5
St_Array has 2 elements
St_Array[0] = 16
St_Array= 32

static
Example Keywords

Syntax
static <data definition> ;
static <function name> <function definition> ;

Description
Use the static storage class specifier with a local variable to preserve the last value between
successive calls to that function. A static variable acts like a local variable but has the lifetime of an
external variable.
In a class, data and member functions can be declared static. Only one copy of the static data exists
for all objects of the class.
A static member function of a global class has external linkage. A member of a local class has no
linkage. A static member function is associated only with the class in which it is declared. Therefore,
such member functions cannot be virtual.
Static member functions can only call other static member functions and only have access to static
data. Such member functions do not have a this pointer.

Examples
static int i;
static void printnewline(void) {}

_stdcall,    __stdcall
Keywords

Syntax
__stdcall <function-name>
_stdcall <function-name>

Description
The _stdcall and __stdcall keywords force the compiler to generate function calls using the Standard
calling convention. Functions must pass the correct number and type of arguments; this is unlike normal
C use, which permits a variable number of function arguments. Such functions comply with the standard
WIN32 argument-passing convention.
Note: The __stdcall modifier is subject to name mangling. See the description of the -VC option.

struct
See also Example Keywords

Syntax
struct [<struct type name>] {
 [<type> <variable-name[, variable-name, ...]>] ;
 .
 .
 .
} [<structure variables>] ;

Description
Use a struct to group variables into a single record.

<struct type name> An optional tag name that refers to the structure type.

<structure variables> The data definitions, also optional.

Though both <struct type name> and <structure variables> are optional, one of the two
must appear.
You define elements in the record by naming a <type>, followed by one or more <variable-name>
(separated by commas).
Separate different variable types by a semicolon.
To access elements in a structure, use a record selector (.).
To declare additional variables of the same type, use the keyword struct followed by the <struct
type name>, followed by the variable names.

Note: C++Builder allows the use of anonymous struct embedded within another structure.

Example
#include <string.h>
struct my_struct {
 char name[80], phone_number[80];
 int age, height;
} my_friend;

void func() {
 strcpy(my_friend.name,"Mr. Wizard"); /* accessing an element */
}
struct my_struct my_friends[100]; /* declaring additional variables */

switch
See also Example Keywords

Syntax
switch (<switch variable>) {
 case <constant expression> : <statement>; [break;]
 .
 .
 .
 default : <statement>;
}

Description
Use the switch statement to pass control to a case which matches the <switch variable>. At which
point the statements following the matching case evaluate.
If no case satisfies the condition the default case evaluates.
To avoid evaluating any other cases and reliquish control from the switch, terminate each case with
break;.

Example
/* Illustrates the use of keywords break, case, default, and switch. */
#include <conio.h>
#include <stdio.h>

int main(void) {
 int ch;

 printf("\tPRESS a, b, OR c. ANY OTHER CHOICE WILL "
 "TERMINATE THIS PROGRAM.");
 for (/* FOREVER */; ((ch = getch()) != EOF);)
 switch (ch) {
 case 'a' : /* THE CHOICE OF a HAS ITS OWN ACTION. */
 printf("\nOption a was selected.\n");
 break;
 case 'b' : /* BOTH b AND c GET THE SAME RESULTS. */
 case 'c' :
 printf("\nOption b or c was selected.\n");
 break;
 default :
 printf("\nNOT A VALID CHOICE! Bye ...");
 return(-1);
 }
 return(0);
 }

this
See also Keywords

Syntax
class X {
int a;

public:
X (int b) {this -> a = b;}

Description
In nonstatic member functions, the keyword this is a pointer to the object for which the function is called.
All calls to nonstatic member functions pass this as a hidden argument.
this is a local variable available in the body of any nonstatic member function. Use it implicitly within the
function for member references. It does not need to be declared and it is rarely referred to explicitly in a
function definition.
For example, in the call x.func(y) , where y is a member of X, the keyword this is set to &x and y is
set to this->y, which is equivalent to x.y.

Static member functions do not have a this pointer because they are called with no particular object in
mind. Thus, a static member function cannot access nonstatic members without explicitly specifying an
object with . or ->.

throw
See also Keywords

Syntax
throw assignment-expression

Description
When an exception occurs, the throw expression initializes a temporary object of the type T (to match
the type of argument arg) used in throw(T arg). Other copies can be generated as required by the
compiler. Consequently, it can be useful to define a copy constructor for the exception object.

_ _try
See also Keywords

Syntax
_ _try compound-statement handler-list
_ _try compound-statement termination-statement

Description
The _ _try keyword is supported only in C programs. Use try in C++ programs.
A block of code in which an exception can occur must be prefixed by the keyword __try. Following the
try keyword is a block of code enclosed by braces. This indicates that the program is prepared to test for
the existence of exceptions. If an exception occurs, the normal program flow is interrupted. The program
begins a search for a handler that matches the exception. If the exception is generated in a C module, it
is possible to handle the structured exception in either a C module or a C++ module.
If a    handler can be found for the generated structured exception, the following actions can be taken:

Execute the actions specified by the handler
Ignore the generated exception and resume program execution
Continue the search for some other handler (regenerate the exception)

If no handler is found, the program will call the terminate function. If no exceptions are thrown, the
program executes in the normal fashion.

// try example
// In PROG.C
void func(void) {
 // generate an exception
 RaiseException(/* specify your arguments */);
}

// In CALLER.CPP
// How to test for C++ or C-based exceptions.
#include <excpt.h>
#include <iostream.h>

int main(void) {
 try
 { // test for C++ exceptions
 try
 { // test for C-based structured exceptions
 func();
 }
 __except(/* filter-expression */)
 {
 cout << "A structured exception was generated.";
 /* specify actions to take for this structured exception */
 return -1;
 }
 return 0;
 }
 catch (...)
 {
 // handler for any C++ exception
 cout << "A C++ exception was thrown.";
 return 1;
 }
}

try
See also Example Keywords

Syntax
try compound-statement handler-list

Description
The try keyword is supported only in C++ programs. Use _ _try in C programs.
A block of code in which an exception can occur must be prefixed by the keyword try. Following the try
keyword is a block of code enclosed by braces. This indicates that the program is prepared to test for
the existence of exceptions. If an exception occurs, the program flow is interrupted. The sequence of
steps taken is as follows:

The program searches for a matching handler
If a handler is found, the stack is unwound to that point
Program control is tranferred to the handler

If no handler is found, the program will call the terminate function. If no exceptions are thrown, the
program executes in the normal fashion.

typedef
Example Keywords

Syntax
typedef <type definition> <identifier> ;

Description
Use the typedef keyword to assign the symbol name <identifier> to the data type definition
<type definition>.

Examples
typedef unsigned char byte;
typedef char str40[41];
typedef struct {
 double re, im;
 } complex;

typename

Syntax 1
typename <identifier>

Syntax 2
template < typename <identifier> > class <identifier>

Description
Use the syntax 1 to reference a type that you have not yet defined. See example 1.
Use syntax 2 in place of the class keyword in a template declaration. See    example 2.

typename Example 2

/* This example shows how the typename keyword can be used to replace the
class keyword in a template declaration. */

#include <iostream.h>

template <typename T1, typename T2> T2 convert (T1 t1)
 // use typename instead of class.
{ return (T2)t1; }

template <typename X, class Y> bool isequal (X x, Y y)
 // mix typename and class.
{ if (x==y)return 1; return 0; }

typename Example 1

/* This example uses the typename keyword to declare variables as type T::A,
which has not yet been defined. */

template <class T>
void f() {
 typedef typename T::A TA; // declare TA as type T::A
 TA a5; // declare a5 as type TA
 typename T::A a6; // declare a6 as type T::A
 TA * pta6; // declare pta6 as pointer to type TA
}

The typeid operator
See also Example Keywords

Syntax
typeid(expression)
typeid(type-name)

Description
You can use typeid to get run-time identification of types and expressions. A call to typeid returns a
reference to an object of type const typeinfo. The returned object represents the type of the typeid
operand.
If the typeid operand is a dereferenced pointer or a reference to a polymorphic type, typeid returns the
dynamic type of the actual object pointed or referred to. If the operand is non-polymorphic, typeid
returns an object that represents the static type.
You can use the typeid operator with fundamental data types as well as user-defined types.
When the typeid operand is a Delphi class object/reference, typeid returns the static rather than
runtime type. Click here to see an example.
If the typeid operand is a dereferenced NULL pointer, the Bad_typeid exception is thrown.

Delphi typeid example
// For Delphi objects, typeid returns the static type, not the runtime type
static const char *TypeIdName(TObject *c) {
 return typeid(*c).name();
}
// The button’s caption is set to TObject, not TButton.
void __fastcall TForm1::Button1Click(TObject *Sender) {
 Button1->Caption = TypeIdName(Button1);
}

// typeid example
// HOW TO USE operator typeid, Type_info::before(), AND Type_info::name()
#include <iostream.h>
#include <typeinfo.h>

class A { };
class B : A { };

void main() {
 char C;
 float X;

 // USE THE typeinfo::operator==()TO MAKE COMPARISON
 if (typeid(C) == typeid(X))
 cout << "C and X are the same type." << endl;
 else cout << "C and X are NOT the same type." << endl;

 // USE true AND false LITERALS TO MAKE COMPARISON
 cout << typeid(int).name();
 cout << " before " << typeid(double).name() << ": " <<
 (typeid(int).before(typeid(double)) ? true : false) << endl;
 cout << typeid(double).name();

 cout << " before " << typeid(int).name() << ": " <<
 (typeid(double).before(typeid(int)) ? true : false) << endl;

 cout << typeid(A).name();
 cout << " before " << typeid(B).name() << ": " <<
 (typeid(A).before(typeid(B)) ? true : false) << endl;
 }

Program Output
C and X are NOT the same type.
int before double: 0
double before int: 1
A before B: 1

union
See also Example Keywords

Syntax
union [<union type name>] {
 <type> <variable names> ;
 ...
} [<union variables>] ;

Description
Use unions to define variables that share storage space.
The compiler allocates enough storage in a_number to accommodate the largest element in the union.
Unlike a struct, the variables a_number.i and a_number.l occupy the same location in memory. Thus,
writing into one overwrites the other.
Use the record selector (.) to access elements of a union .

Example
union int_or_long {
 int i;
 long l;
} a_number;

unsigned
See also Example Keywords

Syntax
unsigned <type> <variable> ;

Description
Use the unsigned type modifier when variable values will always be positive. The unsigned modifer
can be applied to base types int, char, long, and short.
When the base type is omitted from a declaration, int is assumed.

Examples
unsigned int i;
unsigned i; /* same as "unsigned int i;" */
unsigned long int l; /* int OK, not needed */
unsigned char ch; /* unsigned is default for char */

virtual
See also Keywords

Syntax
virtual class-name
virtual function-name

Description
Use the virtual keyword to allow derived classes to provide different versions of a base class function.
Once you declare a function as virtual, you can redefine it in any derived class, even if the number and
type of arguments are the same.
The redefined function overrides the base class function.

void
Example Keywords

Syntax
void identifier

Description
void is a special type indicating the absence of any value. Use the void keyword as a function return
type if the function does not return a value.
void hello(char *name)
{
 printf("Hello, %s.",name);
}
Use void as a function heading if the function does not take any parameters.
int init(void)
{
 return 1;
}

Void Pointers
Generic pointers can also be declared as void, meaning that they can point to any type.
void pointers cannot be dereferenced without explicit casting because the compiler cannot determine
the size of the pointer object.

Example
int x;
float r;
void *p = &x; /* p points to x */
int main (void)
{
 *(int *) p = 2;
 p = &r; /* p points to r */
 *(float *)p = 1.1;
}

volatile
See also Keywords

Syntax
volatile <data definition> ;

Description
Use the volatile modifier to indicate that a variable can be changed by a background routine, an
interrupt routine, or an I/O port. Declaring an object to be volatile warns the compiler not to make
assumptions concerning the value of the object while evaluating expressions in which it occurs because
the value could change at any moment. It also prevents the compiler from making the variable a register
variable
volatile int ticks;
void timer() {
 ticks++;
}
void wait (int interval) {
 ticks = 0;
 while (ticks < interval); // Do nothing
}
The routines in this example (assuming timer has been properly associated with a hardware clock
interrupt) implement a timed wait of ticks specified by the argument interval. A highly optimizing compiler
might not load the value of ticks inside the test of the while loop since the loop doesn’t change the value
of ticks.
Note: C++ extends volatile to include classes and member functions. If you’ve declared a volatile

object, you can use only its volatile member functions.

while
See also Example Keywords

Syntax
while (<condition>) <statement>

Description
Use the while keyword to conditionally iterate a statement.
<statement> executes repeatedly until the value of <condition> is false. If no condition is
specified, the while clause is equivalent to while(true).
The test takes place before <statement> executes. Thus, if <condition> evaluates to false on
the first pass, the loop does not execute.

Example
while (*p == ' ') p++;

wchar_t (keyword)

Syntax
wchar_t <identifier>;

Description
In C++ programs, wchar_t is a fundamental data type that can represent distinct codes for any element
of the largest extended character set in any of the supported locales. A wchar_t type is the same size,
signedness, and alignment requirement as an int type.

C++ language support for the VCL
See also
Data types
Properties
Closures
OLE automation support
Open arrays
Exception handling support
Limitations
C++Builder supports the standard Borland C++ 5.01 language syntax for 32-bit applications. But C+
+Builder is heavily dependent on Delphi 2.01’s Object Pascal based Visual Component Library (VCL) for
building and running applications. Therefore, there are some necessary extensions and nuances in the
C++ implementation which you should be aware of.
All references to VCL objects, and objects descended from VCL objects, are via pointers. VCL object
references are normally made through the member access operator (->). For example, the following
event handler in Delphi:
procedure TForm1.Button1Click(Sender: TObject);
begin
 Listbox1.Items.Add(Edit1.Text);
 Edit1.Text := ‘’;
end;
In C++Builder this becomes:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
 Listbox1->Items->Add(Edit1->Text);
 Edit1->Text = “”;
}
The VCL is implemented using the __fastcall calling convention which passes function parameters and
return values in registers. The IDE adds the __fastcall modifier to all functions and event handler code
that it generates.

Support for Delphi data types
See also Table of Delphi data types
C++Builder supports most Delphi intrinsic data types either by using a typedef to map the Delphi type to
a standard C++ type, or by using a class to emulate the functionality of the type. The following table lists
the Delphi data types and their C++Builder implementations.
Because most of the intrinsic Delphi types also exist in C++Builder, you have a choice of using Delphi-
type declarations or C++Builder type declarations. For example, the line:
Single pi = 3.14159;
and the line:
float pi = 3.14159;
are both valid C++Builder syntax and equivalent.
Note: Remember, unlike Delphi, C++Builder is case sensitive. Therefore Single and single are not the

same. Refer to the header file include\vcl\sysdefs.h for the correct spellings of Delphi types.

Table of Delphi data types
Delphi Size/Values C++ implementation

Implementation
ShortInt 8-bit integer char typedef
SmallInt 16-bit integer short typedef
LongInt 32-bit integer long typedef
Byte 8-bit unsigned integer unsigned char typedef
Word 16-bit unsigned integer unsigned short typedef
Integer 32-bit integer int typedef
Cardinal 32-bit unsigned integer unsigned long typedef
Boolean true/false bool typedef
ByteBool true/false or 8-bit unsigned integer unsigned char typedef
WordBool true/false or 16-bit unsigned integer unsigned short typedef
LongBool true/false or 32-bit unsigned integer unsigned long typedef
AnsiChar 8-bit unsigned character unsigned char typedef
WideChar word-sized Unicode character wchar_t typedef
Char 8-bit unsigned character char typedef
AnsiString Delphi AnsiString AnsiString class
String[n] old style Delphi string, n = 1..255 bytes SmallString<n> template class
ShortString old style Delphi string, 255 bytes SmallString<255> typedef
String Delphi AnsiString AnsiString typedef
Single 32-bit floating point number float typedef
Double 64-bit floating point number double typedef
Extended 80-bit floating point number long double typedef
Currency 64-bit floating point number, 4 decimals Currency class
Real 32-bit floating point number float typedef
Comp 64-bit floating point number double typedef
Set 1..32 bytes Set<type, minval, maxval> template class
Pointer 32-bit generic pointer void * typedef
PChar 32-bit pointer to characters unsigned char * typedef
PAnsiChar 32-bit pointer to ANSI characters unsigned char * typedef
Variant OLE variant value (16 bytes) Variant class

Special Delphi parameter types
See also
Some Delphi functions and procedures take parameter types that require special consideration. These
parameter types include the following:
Open arrays An array that does not explicitly state its element count.
Var parameters A modifiable argument.
Untyped parameters A parameter of unspecified type.

Open arrays
A Delphi open array uses the syntax:
array of <type>
For example:
Procedure MyFunc(x : array of integer); // Call by value; size is not
specified.

There is no intrinsic type in C++ that corresponds to the Pascal open array. However, its functionality
can be obtained. Internally, when an array of T is passed as a parameter, it is broken down into a
pointer to the array itself and a long that contains the highest element index in the array (or the number
of elements of the array minus one). So in C++, the function prototype above becomes:
void MyFunc(int *x, long n);
where x is a pointer to the array of integers and n is passed the highest element index of the array.
For example, the VCL math function Mean() takes one parameter, an array of Double:
function Mean(const Data: array of Double): Extended;
Notice how the function is called in C++:
double d[4];
double *pd = &d;
d[0] = 3.14;
d[1] = 34.33;
d[2] = 9.34;
d[3] = 64.95;
// call by passing a pointer to the array and the highest element
long double x = Mean(pd, 3L);
var parameters
Functions that in Pascal take var, or modifiable parameters such as:
procedure myFunc(var x : int);
should be called using standard C++ “pass by reference” syntax:
void myFunc(int& x);

Untyped parameters
Pascal permits parameters to be passed to functions with no type defined. The receiving function must
cast the parameter to a known type before using it. C++Builder takes untyped parameters as pointers-
to-void (void *). The receiving function must cast the void pointer to a pointer of the desired type. For
example:
int myfunc(void *MyName)
{
// Cast the pointer to the correct type; then dereference it.
return 1 + (int *)MyName;
}

Properties
See also Example
Use the __property keyword to associate specialized read/write access with an identifier.
Only classes can have properties. Properties look to a user like data members, but internally they can
encapsulate member functions that read or write the value of the data member. A property definition in a
class declares a named attribute for objects of the class, and actions associated with reading and writing
the attribute. Examples of properties are the caption of a form, the size of a font or the name of a
database table.
Properties let you create “side effects” for what appears to the user to be a simple data member. For
example, in the C++Builder environment changing the Caption property of a form, which appears to be a
data member of the form object, has the effect of immediately changing the title of the form window
without the user explicitly calling a member function to do so.
A property declaration in a class defines a named attribute for objects of the class and the actions
associated with reading and modifying the attribute. A property can be any type except a file type.
Properties are a natural extension of data members in an object. Both can be used to express attributes
of an object, but whereas data members are merely storage locations which can be examined and
modified at will, properties provide greater control over access to attributes. Properties provide a
mechanism for associating actions with the reading and writing of attributes, and they allow attributes to
be computed.
For VCL-based classes, properties also define the persistence of a class in which are stored and loaded
when an object of the class is persistent.
For property arrays (when <prop dim list> is used), the index to the arrays can be of any type.

Properties can only be declared in classes.
The identifier in a read/write clause must be a data member or member function.

Property attributes
See also

Syntax
stored = <expression>
stored = <data member or member function>
default = <constant expression>
nodefault
index = <constant expression>
read = <data or member function>
write = <data or member function>
__dispid(constant int expression)

Description
 stored = <expression> The value of the expression determines whether this property should be saved
in the corresponding form file (.DFM) . If the expression is true, the property is saved.
default = <constant expression> This applies to ordinal type properties and hence the <constant> must
be of an ordinal type. A property value is saved in a form file only if the current value is different from the
default or there is no default value specified.
nodefault This is used by properties to override a previously declared default= value.
index = <constant expression> This is used when a single getting or setting routine is being used to
support multiple properties. The index constant is a non-negative integer that is passed as an additional
parameter to a read/write member function.
write = <data or member function> An access attribute of a property with an index attribute must list a
member function name. In other words, the read and write attributes of a property with an index
attribute are not allowed to list a data member.
When accessing a property with an index attribute, the integer value specified in the property definition
is passed to the access function as an extra parameter. For that reason, an access function for a
property with an index attribute must take an extra value parameter of type int.
The index is always passed as the last parameter. See the example for declaring indexed properties.
__dispid(constant int expression) A member function that has been declared in the __automated
section of a class can include an optional __dispid(constant int expression) directive. The directive must
be declared after the closing parenthesis of the parameter list.

Example Indexed properties
struct MyObject
{
 // This function is applied to two properties.
 // So, the index is used to distinguish Left and Right
 void Setter(double, int);
 __property double Left =
 {write = Setter,
 index = 0};
 __property double Right =
 {write = Setter,
 index = 1};
};

Property operators
See also

Arithmetic types
Properties of arithmetic types use compiler-defined operators. A property value can be changed by any
of the usual assignment, increment, and decrement operators. If a getter function has been defined for a
property, it is always used. For example, the following is acceptable.
property int i;
i++;
Incrementation is processed as follows.
i += 1;
Class types
For Delphi data types which are implemented as class types, C++Builder provides all the necessary
operators.
Overloaded operators for properties of such class types require the creation of a temporary of that class.
If you provide an overloaded operator, it will only be applied to the temporary class. You must still use
the predefined assignment operator that is provided with the C++Builder implementation of that class
type.
For example, if you overloaded the insertion operator for some property, you must use it as follows.
prop << 3; // Updates a temporary, only.
prop = prop << 3; // Updates the original.
Getter/setter functions
The operator +=()    is not supported for    properties with getter/setter functions.

Hoisted properties
See also Example

Syntax
__property <identifier> = { <attrib list> };
Description
A hoisted property is a property that was defined in a base class and has been modified in a derived
class. Possible modifications can be changing the access rights of the properties or modifying selected
attributes of the base class property.

Hoisted properties example

struct MyObject
{
 int Getter(void);
 bool IsStored(void);
__published:
 __property int myProperty = {
 read = Getter,
 stored = IsStored,
 default = 42 };
};

struct MyDerivedObject : MyObject
{
__published:
 __property myProperty = { nodefault };
};

Property declarations

class myClass (
int data1;
int GetCounter();
void SetCounter(int);

public:
myClass() {data1 = 0;};
__property int counter = {read=GetCounter, write=SetCounter};

};
This class declares an integer property named counter. Whenever the value of counter is read, the
GetCounter function is called. Therefore the following two statements are functionally equivalent:
int x = counter;
int x = GetCounter();
Likewise, when a value is assigned to counter, the function SetCounter will be called. Therefore the
following two statements are functionally equivalent:
counter = 100;
SetCounter(100);
By using properties, the simple act of setting or getting a value can now have validation, error handling,
or even modify values in the process of reading or writing. Setting values of properties can cause an
action to take place beyond simply storing of a value.
Properties can also be tied to data members, not just functions. If, for example, the property in the
above class had been declared as:
__property int counter = {read=data1, write=data1};
Then the statement:
int x = counter;
would assign the value of data1 to x. This behavior could result in code such as:
counter = 10; // assigns 10 to func1
data1 = 20;
int y = counter; // y gets the value 20

Array properties
See also Example

Syntax
__property <type> <id> [<type>] = { <attrib list> };
Description
You can declare properties that look and act much like arrays, in that they have multiple values of the
same type referred to by an index. Unlike an array, however, you cannot refer to the property as a
whole, only to individual elements in the array. These properties are called array properties.
There are two important aspects to array properties:

Declaring an array property
Accessing an array property

Declaring an array property
The declaration of an array property is identical to the declaration of any other property, but you also
declare an index parameter list which specifies the names and types of the indexes of the array
property. For example:
__property int widget[int index] = {read=GetWidget, write=SetWidget};
The format of an index parameter list is the same as a function's formal parameter list. Note that unlike
array types, which can only specify integer dimensions, array properties allow indexes of any type.

Accessing an array property
You access an array property by following the property identifier with a list of actual parameters
enclosed in square brackets. When using array properties you cannot access the array as a whole.

Multiple-index properties
An array property, just like an any array, can have more than one index. The corresponding parameters
to the read and write functions must still have the same signatures as the indexes, and must appear in
the same order as the indexes.
An access attribute of an array property must list a member function. In other words, the read and write
attribute of an array property are not allowed to specify a data member.
The member functions listed in array property access attribute are governed by the following rules:

The read attribute of an array property must list a function that takes the same number and types
of parameters as in the property's index parameter list, and the function result type must be identical to
the property type.

The write attribute of an array property must list a function with the same number and types of
parameters as are listed in the property's index parameter list, plus an additional parameter of the same
type as the property type.

Array properties example

struct MyObject
{
int Getter(char *, int);
 void Setter(char *, int, int);
 __property int prop[char*][int] = { read = Getter, write = Setter);
};
int myFunc(MyObject * optr)
{
 return optr -> prop[“C++Builder”][1996];
}

Closures
See also Example
Use the __closure keyword to declare a pointer to a member function. Such pointers are referred to as
closures.
A closure associates a pointer to a member function with a pointer to a class instance. The pointer to the
class instance is used as the this pointer when calling the associated member function.
A closure declaration is the same as a function pointer declaration but with the addition of the __closure
keyword before the identifier being defined. While a function pointer contains only a 4-byte code
address, a closure contains both a code address (in the first 4 byte) and an object pointer (in the second
4 bytes) that serves as the this pointer when you call thru the closure.

Access specifiers
See also
In addition to the usual C++ access specifiers for classes, you can now define the area of your class
which you want to be published in the Object Inspector or exposed to an OLE automation server. See
the following topics.
Published properties
OLE automation support

Published properties
See also
Use the __published keyword to specify the properties that you want to be displayed in the Object
Inspector when your class is a component that gets added to the component palette. Only classes
derived from TObject can have __published sections.
Every property that is declared in the published interface must use the __fastcall calling convention for
each of its methods (read/write/stored).
The visibility rules for published members are identical to those of public members. The only difference
between published and public members is that Delphi-style run-time type identification (RTTI) is
generated for data members and properties that are declared in a __published section. RTTI enables
an application to dynamically query the data members, member functions and properties of an otherwise
unknown class type.
No constructors or destructors are allowed in a __published section. Properties, Pascal intrinsic or VCL
derived data-members, member functions, and closures are allowed in a published section.

OLE automation support
See also Example
The base class for all objects in automation servers is TAutoObject.
The visibility rules for automated members are identical to those of public members. The only difference
between automated and public components is that automation type information is generated for member
functions and properties that are declared in an automated section. This automation information makes
it possible to create OLE Automation servers.
For a member function, the types of all member function parameters and the function result (if any) must
be automatable. Likewise, for a property, the property type and the types of any array property
parameters must be automatable. Declaring member functions or properties that use non-automatable
types in an __automated section results in an error.
The automatable types are:

Currency
double
int
float
short
String
TDateTime
Variant
unsigned short

Classes should be derived from TAutoObject.
Member function declarations must use the __fastcall calling convention.
Member functions can be virtual.
Member functions may add __dispid(constant int expression) after the closing parenthesis of the

parameter list.
Property declarations can only include access specifiers (dispid, read and write). No other

specifiers (index, stored, default, nodefault) are allowed.
Property access specifiers must list a member function identifier. Data member identifiers are not

allowed.
Property access member functions must use the __fastcall calling convention.
Property overrides (property declarations that don’t include the property type) are not allowed.

Open arrays
See also
Temporary array arguments
Existing array arguments
Some VCL functions take open arrays as arguments. For such functions, you can pass the open array
arguments with one of the following macros: EXISTINGARRAY, SLICE, or OPENARRAY.
A VCL function can require an open array argument in the following ways.

var by reference, arguments can be changed
by value the callee makes a copy of the arguments, the copy can be changed

Very Important:    If you write a C++ function that takes an open array by value as
one of its arguments, the function must make a copy of the open array. The compiler
does NOT do this automatically.

array of const arguments cannot be changed. Always an array of type TVarRec.

The types of functions that take array arguments are of the following forms.
// Pascal function; call by value won’t modify its arguments
function sum(array of double): double;

// C++ equivalent of the function above; const argument won’t be modified
double sum(const double* nums, int sizeless1);

// This Pascal procedure can modify its argument
procedure zero(var array of double);
// C++ equivalent; the argument can be modified
void zero(double* nums, int sizeless1);

Temporary array arguments
See also Example
Temporary array arguments are required by Delphi functions and procedures that take an array of T but
there is no argument that specifies the array element count. When calling such Delphi routines, you can
construct open arrays as temporaries with the OPENARRAY macro. The macro is defined in INCLUDE\
VCL\SYSDEFS.H header file. The declarative form is as follows.
// <T> is data type that the function is expecting.
OPENARRAY(<T>, (value1, value2, value3)) // Up to 19 values.
The OPENARRAY macro constructs a temporary of the specified type and initializes it with the values
provided. You can specify as many as nineteen values. To specify more than nineteen values you must
construct the array yourself.
When you use the OPENARRAY macro to construct temporary arrays, the macro guarantees proper
deletion of the array.
Use the following guidelines when using temporary arrays as function arguments.

Temporary arrays cannot be passed to a var open array.
Temporary arrays can be passed by value to a function with an open array argument. The callee

needs to make a copy of the temporary open array. The copy can be modified.
// The OPENARRAY macro constructs a temporary integer array.
OPENARRAY(int, (5, 7, 82, myIntVariable, 96))

Temporary arrays can be used when a function argument is array of const type. The temporary
array will be passed but it will not be modifed.
// You must always use TVarRec as the type.
OPENARRAY(TVarRec, (myString, fontName, 34, 22.0, myVariant, "abc", 'd'));

Existing array arguments
See also
When a VCL function requires an array, you can use an array of the matching type which you have
defined. You can use the EXISTINGARRAY macro to pass such an array to a calling function. The
EXISTINGARRAY macro provides the type and array size to the calling function.
Use the following guidelines when you want to pass an existing array as a function argument.

You can pass an existing array to a function requiring a var open array.The existing array will be
passed and it can be modified.

EXISTINGARRAY(myExistingArrayOfTheCorrectType)
You can pass an existing array to a function that requires a value type open array as its

argument. The callee will make a copy of the existing open array. The copy can be modified.
EXISTINGARRAY(myExistingArrayOfTheCorrectType)

You can pass an existing array to a function that requires an array of const argument. Although
technically this would work, it is unlikely that a preexisting TVarRec array would exist. You should not
have TVarRec arrays in your application except when specifically required because they don't maintain
proper reference counts (that is, pointers may point to nothing!)

// The example is not recommended usage.
EXISTINGARRAY(myExistingArrayOfTVarRecType)

Exception handling support for Delphi
See also
Operating system exceptions
Delphi exceptions
Portability considerations
The implementation of exception handling in C++Builder supports both, the Object Pascal mechanism
as implemented in Delphi, and the C++ mechanism as implemented in Borland C++. When an exception
is thrown from either mechanism, the usual, expected behaviour for that mechanism is invoked. In other
words, the semantics for exception handling has not changed but it has been enlarged to allow both
mechanisms to coexist.
There are some noteworthy differences between C++ and Delphi exception handling mechanisms.
Exceptions thrown from constructors:

C++ destructors are called for members and base classes that are fully constructed.
Object Pascal base class destructors are called even if the object or base class isn’t fully

constructed.
Catching exceptions:

C++ exceptions can be caught by reference, pointer, or value. Exception derived from TObject
can only be caught by reference or pointer. An attempt to catch TObject exceptions by value results in a
compile-time error.

Object Pascal exceptions are caught by reference.

Operating system exceptions
See also
C++Builder allows you to handle exceptions thrown by the operating system. Operating system
exceptions include access violations, integer math errors, floating point math errors, stack overflow and
control-c interrupts. These are handled in the C++ RTL and converted to Delphi-modeled exception
class objects before being dispatched to your application. You can then write code in your C++ code that
looks like this:
try
{
 char * p = 0;
 *p = 0;
}
// You should always catch by reference.
catch (const EAccessViolation &e)
{
 printf("You can't do that!\n");
}
The exception classes that the RTL uses here are necessarily non-ANSI because ANSI does not
provide for this type of exception. The classes we use are precisely those that Delphi uses and are only
available to C++Builder applications. They are derived from TObject and require the VCL underpinnings.
Here are some characteristics of the C++Builder exception-handling mechanism.

The user is not responsible for freeing the exception object.
Operating system exceptions can only be caught by pointer or reference. Catch by reference is

the preferred approach.
The user cannot rethrow an operating system exception once the catch frame has been exited

and have it be caught by intervening Delphi catch frames.
The user cannot rethrow an operating system exception once the catch frame has been exited

and have it be caught by intervening operating system catch frames.
The last two points can be translated roughly as this: Once an operating system exception has been
caught as a C++ exception, it cannot be rethrown as if it were an operating system exception or a Delphi
exception if you are not in the catching stack frame.

Delphi exceptions
See also
C++Builder broadens the semantics for handling software exceptions thrown from Delphi or,
equivalently, exceptions thrown from C++ where the exception class being thrown is derived from
TObject. In such a case, there are a couple of rules that are derived from the fact that VCL-style classes
can only be allocated on the heap.

VCL-style exception classes may only be caught by pointer or reference (reference is preferred).
VCL-style exception classes may only be thrown by pointer or reference.

Beyond this, there are no real limitations built in. C++Builder does not provide a mechanism for catching
C++ exceptions in Delphi.

Portability considerations
See also
There are several RTLs being delivered with this product. Most of them pertain to C++Builder
applications, but one of them (CW32MT.LIB) is the normal multithreaded RTL that does not make any
references to VCL. This RTL is provided for support of legacy applications which may be part of a
project but should not depend on VCL. This RTL does not have support for catching operating system
exceptions because those exception objects are derived from TObject and would require that parts of
VCL be linked into your application.
To get the full benefits of C++Builder, use the CP32MT.LIB library. This is the multithreaded runtime
library that provides memory management and exception handling with the VCL.

Limitations

When passing open arrays to functions taking an “array of const" (that is, TVarRec*, int), you need to
cast float and double values to long double (for example, (long double)3.14159).

The maximum number of open array elements that may be constructed as a temporary with the
OPENARRAY macro is 19.

Examples
Example 1
Example 2

Examples
Example 1
Example 2
Example 3

TDateTime data type
See also Constructors Member functions Reference

Description
TDateTime is a C++ class that implements the Delphi TDateTime data type and the Delphi date-and-
time runtime library routines that use the TDateTime data type.
The TDateTime class inherits a Val data member declared as a double that holds the date-time value.
The integral part of a TDateTime value is the number of days that have passed since 12/30/1899. The
fractional part of a TDateTime value is the time of day.
Following are some examples of TDateTime values and their corresponding dates and times:
0       12/30/1899 12:00 am
2.75       1/1/1900 6:00 pm
-1.25       12/29/1899 6:00 am
35065       1/1/1996 12:00 am
To find the fractional number of days between two dates, subtract the two values. To increment a date
and time value by a certain fractional number of days, add the fractional number to the date and time
value.
Note
Use only the operators within TDateTime. The compiler will ignore any operators you overload yourself.

TDateTime constructors
See also

Description
Use the constructors to create TDateTime objects from pointers to other TDateTime objects, ints,
doubles, AnsiStrings, date arguments, or time arguments.
__fastcall TDateTime();
Constructs a TDateTime object with a date-time value of 0.
TDateTime(const TDateTimeBase& src);
TDateTime(const TDateTime& src);
Constructs a TDateTime object using the value of another TDateTime object. TDateTimeBase is the

base class of TDateTime.
__fastcall TDateTime(const double src);
Constructs a TDateTime object from a double value.
__fastcall TDateTime(const int src);
Constructs a TDateTime object from an int value.
enum TDateTimeFlag {Date, Time, DateTime};
__fastcall TDateTime(const AnsiString& src, TDateTimeFlag flag = DateTime);
Constructs a TDateTime object from an AnsiString. The value of the TDateTime object is a date, time,

or date-time, depending on the value of the flag argument.
__fastcall TDateTime(unsigned short year, unsigned short month,
 unsigned short day);
Constructs a TDateTime object from the date value specified with the year, month, and day arguments.
__fastcall TDateTime unsigned short hour, unsigned short min,
 unsigned short sec, unsigned short msec);
Constructs a TDateTime object from the time value specified with the hour, min, sec, and msec

arguments

TDateTime data type reference
See also

Syntax
class __declspec(delphireturn) TDateTime : public TDateTimeBase
Constructors
__fastcall TDateTime()
__fastcall TDateTime(const TDateTimeBase& src)
__fastcall TDateTime(const TDateTime& src)
__fastcall TDateTime(const double src)
__fastcall TDateTime(const int src)
enum TDateTimeFlag {Date, Time, DateTime};
__fastcall TDateTime(const AnsiString& src, TDateTimeFlag flag = DateTime);
__fastcall TDateTime(unsigned short year, unsigned short month,
 unsigned short day);
__fastcall TDateTime(unsigned short hour, unsigned short min,
 unsigned short sec, unsigned short msec);
Operators
// Use only the operators within TDateTime.
// The compiler will ignore any operators you overload yourself.
TDateTime& __fastcall operator =(const TDateTimeBase& rhs)
TDateTime& __fastcall operator =(const TDateTime& rhs)
TDateTime& __fastcall operator =(const double rhs)
TDateTime& __fastcall operator =(const int rhs)
TDateTime& __fastcall operator +=(const TDateTimeBase& rhs)
TDateTime& __fastcall operator +=(const TDateTime& rhs)
TDateTime& __fastcall operator +=(const double rhs)
TDateTime& __fastcall operator +=(const int rhs)
TDateTime& __fastcall operator -=(const TDateTimeBase& rhs)
TDateTime& __fastcall operator -=(const TDateTime& rhs)
TDateTime& __fastcall operator -=(const double rhs)
TDateTime& __fastcall operator -=(const int rhs)
TDateTime& operator ++()
TDateTime operator ++(int)
TDateTime& operator --()
TDateTime operator --(int)
TDateTime __fastcall operator +(const TDateTimeBase& rhs) const
TDateTime __fastcall operator +(const TDateTime& rhs) const
TDateTime __fastcall operator +(const double rhs) const
TDateTime __fastcall operator +(const int rhs) const
TDateTime __fastcall operator -(const TDateTimeBase& rhs) const
TDateTime __fastcall operator -(const TDateTime& rhs) const
TDateTime __fastcall operator -(const double rhs) const
TDateTime __fastcall operator -(const int rhs) const
// comparisons
bool __fastcall operator ==(const TDateTime& rhs) const
bool __fastcall operator !=(const TDateTime& rhs) const
bool __fastcall operator >(const TDateTime& rhs) const
bool __fastcall operator <(const TDateTime& rhs) const
bool __fastcall operator >=(const TDateTime& rhs) const
bool __fastcall coperator <=(const TDateTime& rhs) const

__fastcall operator AncsiString() const; //<Date||Time||
DateTime>String(smart)
__fastcall operator double() const
__fastcall operator int() const

Public member functions
static TDateTime __fastcall CurrentDate();
static TDateTime __fastcall CurrentTime();
static TDateTime __fastcall CurrentDateTime();
static TDateTime __fastcall FileDateToDateTime(int fileDate);
AnsiString __fastcall FormatString(const AnsiString& format);
AnsiString __fastcall DateString() const;
AnsiString __fastcall TimeString() const;
AnsiString __fastcall DateTimeString() const;
int __fastcall DayOfWeek() const;
int __fastcall FileDate() const;
void __fastcall DecodeDate(unsigned short* year, unsigned short*
 month, unsigned short* day) const;
void __fastcall DecodeTime(unsigned short* hour, unsigned short*
 min, unsigned short* sec, unsigned short* msec) const;

TDateTime member functions
The following are the member functions of the TDateTime class.
CurrentDate()
CurrentTime()
CurrentDateTime()
DayOfWeek()
DateString()
DateTimeString()
DecodeDate()
DecodeTime()
FileDate()
FileDateToDateTime()
FormatString()
TimeString()

CurrentDate() member function
See also

Syntax
static TDateTime __fastcall CurrentDate();
Description
CurrentDate() returns the current date as a TDateTime value.

CurrentTime() member function
See also

Syntax
static TDateTime __fastcall CurrentTime();
Description
CurrentTime() returns the current time as a TDateTime value.

CurrentDateTime() member function
See also

Syntax
static TDateTime __fastcall CurrentDateTime();
Description
CurrentDateTime() returns the current date and time as a TDateTime value.

DayOfWeek() member function
See also

Syntax
int __fastcall DayOfWeek() const;
Description
DayOfWeek() returns the day of the week of the TDateTime value as an integer between 1 and 7.
Sunday is the first day of the week and Saturday is the seventh.

DateString() member function
See also

Syntax
AnsiString __fastcall DateString() const;
Description
DateString() converts the date of the TDateTime value to a string. The conversion uses the format
specified by the ShortDateFormat variable.

DateTimeString() member function
See also

Syntax
AnsiString __fastcall DateTimeString() const;
Description
The DateTimeToStr() converts the TDateTime value to a string. If the TDateTime value does not contain
a date value, the date displays as 00/00/00. If the TDateTime value does not contain a time value, the
time displays as 00:00:00 AM. You can change how the string is formatted by changing the value of one
or more of the date and time formatting variables.

DecodeDate() member function
See also

Syntax
void __fastcall DecodeDate(unsigned short* year, unsigned short* month,
unsigned short* day) const;

Description
DecodeDate() breaks apart the TDateTime value into year, month, and day values and stores these
values in the year, month, and day parameters, respectively. Use DecodeDate() when you need to
access the year, month, or day of a TDateTime value.

DecodeTime() member function
See also

Syntax
void __fastcall DecodeTime(unsigned short* hour, unsigned short* min,
unsigned short* sec, unsigned short* msec) const;

Description
DecodeTime() breaks apart the TDateTime value into hour, minute, second, and millisecond values and
stores these values in the hour, min, sec, and msec parameters, respectively. Use DecodeDate() when
you need to access the hour, minute, second, or millisecond values of a TDateTime value.

FileDate() member function
See also

Syntax
int __fastcall FileDate() const;
Description
FileDate() converts the date-and-time value to a DOS date-and-time stamp.

FileDateToDateTime() member function
See also

Syntax
static TDateTime __fastcall FileDateToDateTime(int fileDate);
Description
FileDateToDateTime() converts a DOS file date-and-time value, specified with the fileDate argument, to
a TDateTime value.

FormatString() member function
See also

Syntax
AnsiString __fastcall FormatString(const AnsiString& format);
Description
FormatString() returns the TDateTime value as a formatted string using the format specified by the
format argument. The following format specifiers are supported:

Specifier Displays
c Displays the date using the format given by the ShortDateFormat variable,

followed by the time using the format given by the LongTimeFormat variable. The
time is not displayed if the fractional part of the TDateTime value is zero.

d Displays the day as a number without a leading zero (1-31).
dd Displays the day as a number with a leading zero (01-31).
ddd Displays the day as an abbreviation (Sun-Sat) using the strings given by the

ShortDayNames variable.
dddd Displays the day as a full name (Sunday-Saturday) using the strings given by the

LongDayNames variable.
ddddd Displays the date using the format given by the ShortDateFormat variable.
dddddd Displays the date using the format given by the LongDateFormat variable.
m Displays the month as a number without a leading zero (1-12). If the m specifier

immediately follows an h or hh specifier, the minute rather than the month is
displayed.

mm Displays the month as a number with a leading zero (01-12). If the mm specifier
immediately follows an h or hh specifier, the minute rather than the month is
displayed.

mmm Displays the month as an abbreviation (Jan-Dec) using the strings given by the
ShortMonthNames variable.

mmmm Displays the month as a full name (January-December) using the strings given by
the LongMonthNames variable.

yy Displays the year as a two-digit number (00-99).
yyyy Displays the year as a four-digit number (0000-9999).
h Displays the hour without a leading zero (0-23).
hh Displays the hour with a leading zero (00-23).
n Displays the minute without a leading zero (0-59).
nn Displays the minute with a leading zero (00-59).
s Displays the second without a leading zero (0-59).
ss Displays the second with a leading zero (00-59).
t Displays the time using the format given by the ShortTimeFormat variable.
tt Displays the time using the format given by the LongTimeFormatvariable.
am/pm Uses the 12-hour clock for the preceding h or hh specifier, and displays 'am' for

any hour before noon, and 'pm' for any hour after noon. The am/pm specifier can
use lower, upper, or mixed case, and the result is displayed accordingly.

a/p Uses the 12-hour clock for the preceding h or hh specifier, and displays 'a' for any
hour before noon, and 'p' for any hour after noon. The a/p specifier can use lower,

upper, or mixed case, and the result is displayed accordingly.
ampm Uses the 12-hour clock for the preceding h or hh specifier, and displays the

contents of the TimeAMString variable for any hour before noon, and the
contents of the TimePMString variable for any hour after noon.

/ Displays the date separator character given by the DateSeparator variable.
: Displays the time separator character given by the TimeSeparatorvariable.
'xx'/"xx" Characters enclosed in single or double quotes are displayed as-is, and do not

affect formatting.
Format specifiers may be written in upper case as well as in lower case letters. Both produce the same
result.
If the string given by the format parameter is empty, the date and time value is formatted as if a 'c' format
specifier had been given.

TimeString() member function
See also

Syntax
AnsiString __fastcall TimeString() const;
Description
TimeToStr() converts the TDateTime value to a string. The conversion uses the format specified by the
LongTimeFormat variable. You can change the format of how the string is displayed by changing the
value of one or more of the date-and time-formatting variables.

TDateTime formatting variables
See also

Syntax
extern char DateSeparator;
extern System::AnsiString ShortDateFormat;
extern System::AnsiString LongDateFormat;
extern char TimeSeparator;
extern System::AnsiString TimeAMString;
extern System::AnsiString TimePMString;
extern System::AnsiString ShortTimeFormat;
extern System::AnsiString LongTimeFormat;
extern System::AnsiString ShortMonthNames[12];
extern System::AnsiString LongMonthNames[12];
extern System::AnsiString ShortDayNames[7];
extern System::AnsiString LongDayNames[7];

Description
SYSUTILS.HPP includes a number of variables that are used by the TDateTime class. You can assign
new values to these variables to change the formats of date and time strings. The initial values of these
variables are fetched from the system registry using GetLocaleInfo() in the Win32 API. C++Builder
applications automatically update these formatting variables in response to WM_WININICHANGE
messages.
Application->UpdateFormatSettings() either allows or disallow changes in system settings. The default is
true. Set this property to false to prevent the system settings from changing.
The description of each variable specifies the LOCALE_XXXX constant used to fetch the initial value
using the GetLocaleInfo() Win32 API.

Variable Defines
DateSeparator DateSeparator is the character used to separate the year, month, and day parts

of a date value. The initial value is fetched from LOCATE_SDATE.
ShortDateFormat ShortDateFormat is the format string used to convert a date value to a short

string suitable for editing. For a complete description of date and time format
strings, refer to the documentation for the FormatString() function. The short date
format should only use the date separator character and the    m, mm, d, dd, yy,
and yyyy format specifiers. The initial value is fetched from
LOCALE_SSHORTDATE.

LongDateFormat LongDateFormat is the format string used to convert a date value to a long string
suitable for display but not for editing. For a complete description of date and
time format strings, refer to the documentation for the FormatString()    function.
The initial value is fetched from LOCALE_SLONGDATE.

TimeSeparator TimeSeparator is the character used to separate the hour, minute, and second
parts of a time value. The initial value is fetched from LOCALE_STIME.

TimeAMString TimeAMString is the suffix string used for time values between 00:00 and 11:59
in 12-hour clock format. The initial value is fetched from LOCALE_S1159.

TimePMString TimePMString is the suffix string used for time values between 12:00 and 23:59
in 12-hour clock format. The initial value is fetched from LOCALE_S2359.

ShortTimeFormat ShortTimeFormat is the format string used to convert a time value to a short
string with only hours and minutes. The default value is computed from
LOCALE_ITIME and LOCALE_ITLZERO.

LongTimeFormat LongTimeFormat is the format string used to convert a time value to a long string
with hours, minutes, and seconds. The default value is computed from

LOCALE_ITIME and LOCALE_ITLZERO.
ShortMonthNames ShortMonthNames is the array of strings containing short month names. The

mmm format specifier in a format string passed to FormatString() causes a short
month name to be substituted. The default values are fetched from the
LOCALE_SABBREVMONTHNAME system locale entries.

LongMonthNames LongMonthNames is the array of strings containing long month names. The
mmmm format specifier in a format string passed to FormatString() causes a long
month name to be substituted. The default values are fetched from the
LOCALE_SMONTHNAME system locale entries.

ShortDayNames ShortDayNames is the array of strings containing short day names. The ddd
format specifier in a format string passed to FormatString() causes a short day
name to be substituted. The default values are fetched from the
LOCALE_SABBREVDAYNAME system locale entries.

LongDayNames LongDayNames is the array of strings containing long day names. The dddd
format specifier in a format string passed to FormatString() causes a long day
name to be substituted. The default values are fetched from the
LOCALE_SDAYNAME system locale entries.

Currency data type
See also Constructors Reference

Description
Currency is a C++ class that implements the Delphi Currency data type.
Currency inherits a Val data member declared as int64 that holds the currency value. The range of
possible currency values is -922337203685477.5808 to 922337203685477.5807. Use Currency to hold
monetary values.
Note
Use only the operators within Currency. The compiler will ignore any operators you overload yourself.

Currency data type reference
See also

Syntax
class __declspec(delphireturn) Currency : public CurrencyBase
Constructors
__fastcall Currency()
__fastcall Currency(double val)
__fastcall Currency(int val)
__fastcall Currency(const CurrencyBase& src)
__fastcall Currency(const Currency& src)
__fastcall Currency(const AnsiString& src);

Operators
// Use only the operators within Currency.
// The compiler will ignore any operators you overload yourself.
friend Currency __fastcall operator +(int lhs, const Currency& rhs);
friend Currency __fastcall operator -(int lhs, const Currency& rhs);
friend Currency __fastcall operator *(int lhs, const Currency& rhs);
friend Currency __fastcall operator /(int lhs, const Currency& rhs);
friend Currency __fastcall operator +(double lhs, const Currency& rhs);
friend Currency __fastcall operator -(double lhs, const Currency& rhs);
friend Currency __fastcall operator *(double lhs, const Currency& rhs);
friend Currency __fastcall operator /(double lhs, const Currency& rhs);
Currency& __fastcall operator =(double rhs)
Currency& __fastcall operator =(int rhs)
Currency& __fastcall operator =(const CurrencyBase& rhs)
Currency& __fastcall operator =(const Currency& rhs)
Currency& __fastcall operator +=(const Currency& rhs)
Currency& __fastcall operator -=(const Currency& rhs)
Currency& __fastcall operator *=(const Currency& rhs)
Currency& __fastcall operator /=(const Currency& rhs)
Currency& __fastcall operator %=(int rhs)
Currency& operator ++()
Currency operator ++(int)
Currency& operator --()
Currency operator --(int)
Currency __fastcall operator +(const Currency& rhs) const
Currency __fastcall operator -(const Currency& rhs) const
Currency __fastcall operator *(const Currency& rhs) const
Currency __fastcall operator /(const Currency& rhs) const
Currency __fastcall operator +(int rhs) const
Currency __fastcall operator -(int rhs) const
Currency __fastcall operator *(int rhs) const
Currency __fastcall operator /(int rhs) const
Currency __fastcall operator %(int rhs) const
Currency __fastcall operator +(double rhs) const
Currency __fastcall operator -(double rhs) const
Currency __fastcall operator *(double rhs) const
Currency __fastcall operator /(double rhs) const
Currency __fastcall operator -() const
Currency __fastcall operator !() const

// comparisons (Currency rhs)
bool __fastcall operator ==(const Currency& rhs) const
bool __fastcall operator !=(const Currency& rhs) const
bool __fastcall operator >(const Currency& rhs) const
bool __fastcall operator <(const Currency& rhs) const
bool __fastcall operator >=(const Currency& rhs) const
bool __fastcall operator <=(const Currency& rhs) const
// comparisons (int rhs)
bool __fastcall operator ==(int rhs) const
bool __fastcall operator !=(int rhs) const
bool __fastcall operator >(int rhs) const
bool __fastcall operator <(int rhs) const
bool __fastcall operator >=(int rhs) const
bool __fastcall operator <=(int rhs) const
// comparisons (double rhs)
bool __fastcall operator ==(double rhs) const
bool __fastcall operator !=(double rhs) const
bool __fastcall operator >(double rhs) const
bool __fastcall operator <(double rhs) const
bool __fastcall operator >=(double rhs) const
bool __fastcall operator <=(double rhs) const
__fastcall operator double() const
__fastcall operator int() const
__fastcall operator AnsiString() const;

inline Currency __fastcall operator +(int lhs, const Currency& rhs)
inline Currency __fastcall operator -(int lhs, const Currency& rhs)
inline Currency __fastcall operator *(int lhs, const Currency& rhs)
inline Currency __fastcall operator /(int lhs, const Currency& rhs)
inline Currency __fastcall operator +(double lhs, const Currency& rhs)
inline Currency __fastcall operator -(double lhs, const Currency& rhs)
inline Currency __fastcall operator *(double lhs, const Currency& rhs)
inline Currency __fastcall operator /(double lhs, const Currency& rhs)
inline ostream& operator <<(ostream& os, const Currency& arg)
inline istream& operator >>(istream& is, Currency& arg)

Currency constructors
See also

Description
Use the Currency constructors to create Currency objects from pointers to other Currency objects, ints,
doubles, or AnsiString values.
__fastcall Currency();
Constructs a Currency object with a currency value of 0.
__fastcall Currency(double val);
Constructs a Currency object from a double value.
__fastcall Currency(int val);
Constructs a Currency object from an int value.
__fastcall Currency(const CurrencyBase& src);
__fastcall Currency(const Currency& src);
Constructs a Currency object using the value of another Currency object. CurrencyBase is the base
class of Currency; it contains only the Val data member, which holds the currency value.
__fastcall Currency(const AnsiString& src);
Constructs a Currency object from an AnsiString.

Currency formatting variables
See also

Syntax
extern System::AnsiString CurrencyString;
extern unsigned char CurrencyFormat;
extern unsigned char NegCurrFormat;
extern char ThousandSeparator;
extern char DecimalSeparator;
extern unsigned char CurrencyDecimals;

Description
SYSUTILS.HPP includes a number of variables that are used by the Currency class. You can assign
new values to these variables to change the formatting of Currency values. The initial values of these
variables are fetched from the system registry using GetLocaleInfo() in the Win32 API. C++Builder
applications automatically update these formatting variables in response to WM_WININICHANGE
messages.
Application->UpdateFormatSettings() either allows or disallow changes in system settings. The default is
true. Set this property to false to prevent the system settings from changing.
The description of each variable specifies the LOCALE_XXXX constant used to fetch the initial value
using the GetLocaleInfo() Win32 API.

Variable Defines
CurrencyString CurrencyString defines the currency symbol (or characters) used in floating-

point to decimal conversions. The initial value is fetched from
LOCALE_SCURRENCY.

CurrencyFormat CurrencyFormat defines the currency symbol placement and separation
used in floating-point to decimal conversions. Possible values are:
0 = '$1'     
1 = '1$'     
2 = '$ 1'     
3 = '1 $'
The initial value is fetched from LOCALE_ICURRENCY.

NegCurrFormat NegCurrFormat defines the currency format used in floating-point to decimal
conversions of negative numbers. Possible values are:
0 = ($1) 8 = -1 $
1 = -$1 9 = -$ 1
2 = $-1 10 = 1 $-
3 = $1- 11 = $ 1-
4 = (1$) 12 = $ -1
5 = -1$ 13 = 1- $
6 = 1-$ 14 = ($ 1)
7 = 1$- 15 = (1 $)
The initial value is fetched from LOCALE_INEGCURR.

ThousandSeparator ThousandSeparator is the character used to separate thousands in numbers
with more than three digits to the left of the decimal separator. The initial
value is fetched from LOCALE_STHOUSAND.

DecimalSeparator DecimalSeparator is the character used to separate the integer part from the

fractional part of a number. The initial value is fetched from
LOCALE_SDECIMAL.

CurrencyDecimals CurrencyDecimals is the number of digits to the right of the decimal point in
a currency amount. The initial value is fetched from
LOCALE_ICURRDIGITS.

Extended Delphi data types
See also
Some complex data types used in Object Pascal and Delphi cannot be simply typedef’ed in C++Builder.
C++Builder extends support for such data types by implementing them as C++ classes. The extended
Delphi data types are defined in INCLUDE\VCL\SYSDEFS.H header file. Each class provides all the
necessary constructors, member functions, and operators.
Use the C++Builder implementation of these data types when you use the VCL or write your own
components.
The extended Delphi data types that are defined as C++ classes include the following.
Set
AnsiString
Variant
TDateTime
Currency

Set data type
See also Example Reference
Use the Set type as defined in INCLUDE\VCL\SYSDEFS.H to define types used as VCL function
parameters or VCL function return types.
The Set<type, minval, maxval> template class is a C++ class that implements the Delphi intrinsic
type set. You must specify three template parameters:

· type: the type of the set elements (usually int, char, or an enum type)
· minval: the minimum value the set can hold (this value cannot be less then 0)
· maxval: the maximum value the set can hold (this value cannot be greater than 255)
Each instantiation of a Set creates an object based on all three parameters. Therefore, the following are
two distinct types:
Set <char, ‘A’, ‘C’> s1;
Set <char, ‘X’, ‘Z’> s2;
if (s1 == s2) // ERROR; illegal struct.
To create multiple instances of a Set type, use a typedef expression.
typedef Set <char, ‘A’,‘Z’> UPPERCASESet;
The declaration of a Set variable does not initialize the variable. You can declare the set types and
initialize by using this syntax.
UPPERCASESet s1;
s1 << ‘A’ << ‘B’ << ‘C’; // Initialize

UPPERCASESet s2;
s2 << ‘X’ << ‘Y’ << ‘Z’; // Initialize

Set
See also

Syntax
template<class T, unsigned char minEl, unsigned char maxEl>
class __declspec(delphireturn) Set;

Public constructor
__fastcall Set();
__fastcall Set(const Set& src);
Public member functions
bool __fastcall Contains(const T el) const;
Set& __fastcall Clear();

Public operators
Set& __fastcall operator =(const Set& rhs);
Set& __fastcall operator +=(const Set& rhs); //Union
Set& __fastcall operator -=(const Set& rhs); //Difference
Set& __fastcall operator *=(const Set& rhs); //Intersection
Set __fastcall operator +(const Set& rhs) const; //Union
Set __fastcall operator -(const Set& rhs) const; //Difference
Set __fastcall operator *(const Set& rhs) const; //Intersection
Set& __fastcall operator <<(const T el); //Add element
Set& __fastcall operator >>(const T el); //Remove element
bool __fastcall operator ==(const Set& rhs) const;
bool __fastcall operator !=(const Set& rhs) const ;

Example
#include <sysdefs.h>
#include <iostream.h>

typedef Set<char,'U','Z'> UpperSet;
typedef Set<char,'a','z'> LowerSet;
typedef Set<char,'a','j'> HalfLowerSet;

void set_example()
{
LowerSet ae, ae2, ac, de;
UpperSet AE, AE2, AC, DE;
HalfLowerSet aj;

// Both of these are false. Sets are empty until members are added.
cout <<"Set ae " << (ae.Contains('a')?"does":"does not") << " contain 'a' "
<< endl;

cout <<"Set AE " << (AE.Contains('C')?"does":"does not") << " contain 'C' "
<< endl;

ae << 'a' << 'b' << 'c' << 'd' << 'e';
ae2 << 'a' << 'b' << 'c' << 'd' << 'e';
ac << 'a' << 'b' << 'c';
de << 'd' << 'e';
aj << 'd' << 'e';
DE << 'D' << 'E';

cout <<"Now, set ae " << (ae.Contains('a')?"does":"does not") << " contain
'a' " << endl;

/***
 Compile-time error! Although sets 'de' and 'aj' contain the same members,
they are different types of sets and cannot be compared.

****/
//cout << (de==aj?" == ":" != ") << endl;

// Sets support operations * (intersection),+ (union) and - (difference).
cout << "Set ae " << (ae==(ac+de)?" == ":" != ") << "set ac + de." << endl;
cout << "Set de " << (de==(ae-ac)?" == ":" != ") << "set ae - ac." << endl;

// Clear member function
cout << "Set ae2: " << ae2 << endl;
ae2.Clear();
cout << "Set ae2: " << ae2 << " after ae2.Clear()" << endl;

// Sets also support operations *= (intersection),+= (union) and -=
(difference).

ae2+=ac;
cout << "Union ae2+=ac: Set ae2 " << (ae2==ac?" == ":" != ") << "set ac." <<
endl;

ae2+=de;
cout << "Union ae2+=de: Set ae2 " << (ae2==ae?" == ":" != ") << "set ae." <<
endl;

ae2-=ac;
cout << "Difference ae2-=ac: Set ae2 " << (ae2==de?" == ":" != ") << "set

de." << endl;
}

int main()
{
 set_example();

return 0;
}

AnsiString data type
See also Example Reference
C++Builder implements the AnsiString type as a class. AnsiString is designed to function like the Delphi
long    string type. Accordingly, AnsiString provides the following string handling characteristics which are
required when you call VCL-type functions that use any of the Delphi long string types.

· reference count
· string length
· data
· null string terminator
If you don’t provide an initial value, AnsiString variables are zero-initialized upon instantiation.

Example
/* Compile with bcc32 famille.cpp vcl.lib ole2w32.lib */
#include <vcl/dstring.h>
#include <stdio.h>

class Famille
{
private:
 AnsiString FNames[10];
 AnsiString GetName(int Index);
 void SetName(int, AnsiString);
public:
 __property AnsiString Names[int Index] = {read=GetName, write=SetName};
 Famille(){}
 ~Famille(){}
};

AnsiString Famille::GetName(int i)
{
 return FNames[i];
}

void Famille::SetName(int i,const AnsiString s)
{
 FNames[i]=s;
}

int main()
{
 Famille C;
 C.Names[0]="Steve"; //calls Famille::SetName()
 C.Names[1]="Amy";
 C.Names[2]="Sarah";
 C.Names[3]="Andrew";
 for (int i = 0; i <= 3; i++)
 {
 //calls Famille::GetName()
 puts(C.Names[i].c_str());
 }
}

AnsiString data type reference
See also

Syntax
class __declspec(delphireturn) AnsiString
Public constructors
__fastcall AnsiString();
Creates an empty string.

__fastcall AnsiString(const char* src);
__fastcall AnsiString(const AnsiString& src);
__fastcall AnsiString(const char* src, unsigned char len);
__fastcall AnsiString(const wchar_t* src);
__fastcall AnsiString(int src);
__fastcall AnsiString(double src);
Public destructor
__fastcall ~AnsiString();
Public data member
enum TStringFloatFormat {sffGeneral, sffExponent, sffFixed, sffNumber,
sffCurrency };

The TStringFloatFormat enum is used by FloatToStrF.
friend AnsiString __fastcall operator +(const char*, const AnsiString& rhs);
static AnsiString __fastcall StringOfChar(char ch, int count);
static AnsiString __fastcall LoadStr(int ident);
static AnsiString __fastcall FmtLoadStr(int ident, const TVarRec *args, int
size);

static AnsiString __fastcall Format(const AnsiString& format,const TVarRec
*args, int size);

static AnsiString __fastcall FormatFloat(const AnsiString& format,const long
double& value);

static AnsiString __fastcall FloatToStrF(long double value,
TStringFloatFormat format, int precision, int digits);

static AnsiString __fastcall IntToHex(int value, int digits);
static AnsiString __fastcall CurrToStr(Currency value);
static AnsiString __fastcall CurrToStrF(Currency value, TStringFloatFormat
format, int digits);

Assignments
AnsiString& __fastcall operator =(const AnsiString& rhs);

AnsiString& __fastcall operator +=(const AnsiString& rhs);
The operator +=() is not supported on a property with getter/setter functions.

Comparisons
bool __fastcall operator ==(const AnsiString& rhs) const;
bool __fastcall operator !=(const AnsiString& rhs) const;
bool __fastcall operator <(const AnsiString& rhs) const;
bool __fastcall operator >(const AnsiString& rhs) const;
bool __fastcall operator <=(const AnsiString& rhs) const;
bool __fastcall operator >=(const AnsiString& rhs) const;
int __fastcall AnsiCompare(const AnsiString& rhs) const;
int __fastcall AnsiCompareIC(const AnsiString& rhs) const; //ignorecase

char& __fastcall operator [](const int idx);
The [] operator assumes a base index of 1 .

Concatenation
AnsiString __fastcall operator +(const AnsiString& rhs) const;

C string operator
char* __fastcall c_str() const

int __fastcall Length() const;
bool __fastcall IsEmpty() const;

void __fastcall Unique();
Use this function to make a string unique (refcnt == 1).

void __fastcall Insert(const AnsiString& str, int index);
void __fastcall Delete(int index, int count);
void __fastcall SetLength(int newLength);

int __fastcall Pos(const AnsiString& subStr) const;
AnsiString __fastcall LowerCase() const;
AnsiString __fastcall UpperCase() const;

AnsiString __fastcall Trim() const;
Use the Trim function to remove blank space before and after the first printing character.

AnsiString __fastcall TrimLeft() const;
Use the Trim function to remove blank space before the first printing character.

AnsiString __fastcall TrimRight() const;
Use the Trim function to remove blank space after the first printing character.

AnsiString __fastcall SubString(int index, int count) const;

int __fastcall ToInt() const;
int __fastcall ToIntDef(int defaultValue) const;
double __fastcall ToDouble() const;

Convert to Unicode
int __fastcall WideCharBufSize() const;
wchar_t* __fastcall WideChar(wchar_t* dest, int destSize) const;

MultiByte support
These functions are available when _MBCS is defined.

enum TStringMbcsByteType { mbSingleByte, mbLeadByte, mbTrailByte };

TStringMbcsByteType __fastcall ByteType(int index) const;
bool __fastcall IsLeadByte(int index) const;
bool __fastcall IsTrailByte(int index) const;
bool __fastcall IsDelimiter(const AnsiString& delimiters, int index) const;

bool __fastcall IsPathDelimiter(int index) const;
int __fastcall LastDelimiter(const AnsiString& delimiters) const;
int __fastcall AnsiPos(const AnsiString& subStr) const;
char* __fastcall AnsiLastChar() const;

AnsiString multibyte functions
See also

Syntax
enum TStringMbcsByteType { mbSingleByte, mbLeadByte, mbTrailByte };
The TStringMbcsByteType enumeration defines the MBCS byte types that can be contained in a string.

TStringMbcsByteType __fastcall ByteType(int index) const;
The ByteType function returns a value indicating what kind of byte exists at the specified index. For
Western locales, it always returns mbSingleByte. For Far East multibyte locales, it might also return
mbLeadByte, indicating the byte is the first in a multibyte character sequence. If the return is
mbTrailByte, it indicates that the byte is the second in a multibyte character sequence.

Return value Byte at specified index
mbSingleByte if not a MBCS lead or trail byte
mbLeadByte if MBCS lead byte
mbTrailByte if MBCS trail byte

bool __fastcall IsLeadByte(int index) const;
The IsLeadByte function returns a boolean value that indicates whether the byte at the specified index is
a multibyte lead byte.

bool __fastcall IsTrailByte(int index) const;
The IsTrailByte function returns a boolean value that indicates whether the byte at the specified index is
a multibyte trail byte.

bool __fastcall IsDelimiter(const AnsiString& delimiters, int index) const;
The IsDelimiter function returns true if the character at the specified index matches any character in the
delimiters string, and the character is not a multibyte lead or trail byte. The string can contain multibyte
characters; delimiters must contain only single-byte characters.

bool __fastcall IsPathDelimiter(int index) const;
The IsPathDelimiter functions returns true if the character at the specified index is a path delimiter (‘\’),
and it is not a multibyte lead or trail byte.

int __fastcall LastDelimiter(const AnsiString& delimiters) const;
The LastDelimiter function returns the byte index in the string of the rightmost whole character that
matches any character in delimiters. The string may contain multibyte characters; delimiters must
contain only single byte characters.

int __fastcall AnsiPos(const AnsiString& subStr) const;
The AnsiPos function is similar to the Delphi Pos() function except that it provides support for multibyte
strings.

char* __fastcall AnsiLastChar() const;
The AnsiLastChar function returns a pointer to the last character in the multibyte string. If the last

character is a multibyte character, the pointer points to the lead byte.

//Convert to Unicode
int __fastcall WideCharBufSize() const;
wchar_t* __fastcall WideChar(wchar_t* dest, int destSize) const;
Description
These AnsiString members are implemented to provide support for International applications.

Variant data type
See also Member functions Reference Example

Declaration
class __declspec(delphireturn) Variant: public TVarData
Description
The Variant class is a C++Builder implementation of the Delphi intrinsic type Variant.
In C++Builder, the syntax for using the Variant type is different from the Delphi usage. For example, if
you have the following Delphi code:
V: Variant;
V := VarArrayCreate([0,HighVal,0,HighVal],varInteger);
In C++Builder you can use Variant and OPENARRAY like this.
Variant V(OPENARRAY(int,(0,HighVal,0,HighVal)),varInteger);
The Variant type is capable of representing values that change type dynamically. Whereas a variable of
any other type is statically bound to that type, a variable of the Variant type can assume values of
differing types at run-time. The Variant type is most commonly used in situations where the actual type
to be operated upon varies or is unknown at compile-time.
A Variant has the following characteristics:

· Variants can contain integer values, real values, string values, boolean values, date-and-time values,
and OLE Automation objects. In addition, variants can contain arrays of varying size and dimension
with elements of any of these types.

· The special Variant value Unassigned is used to indicate that a variant has not yet been assigned a
value, and the special variant value Null is used to indicate unknown or missing data.

· A Variant can be combined with other variants and it can be constructed from any of the following
data types. The compiler automatically performs the necessary type conversions.

short
int
float
double
Currency
TDateTime
bool
WordBool
Byte
AnsiString&
char *
wchar_t * const
Ole2::IDispatch* const
Ole2::IUnknown* const
When a Variant contains an OLE Automation object, the variant can be used to get and set properties of
the object, and to invoke methods on the object.
Variant variables are always initialized to be Unassigned when they are first created. This is true
whether a variant variable is global, local, or part of a structure such as an array.
Note that while variants offer great flexibility, they also consume more memory than regular variables,
and operations on variants are substantially slower than operations on statically typed values.

Variant reference
Example

Syntax
class __declspec(delphireturn) Variant: public TVarData

private:
Variant& __fastcall operator [];
friend class AutoCmd;
friend ostream& operator <<(ostream& os, const Variant& arg);
Constructors
__fastcall Variant();
__fastcall Variant(const Variant& src);

//By value constructors
__fastcall Variant(const short src);
__fastcall Variant(const int src);
__fastcall Variant(const float src);
__fastcall Variant(const double src);
__fastcall Variant(const Currency src);
__fastcall Variant(const TDateTime src);
__fastcall Variant(const bool src);
__fastcall Variant(const WordBool src);
__fastcall Variant(const Byte src);
__fastcall Variant(const AnsiString& src);
__fastcall Variant(const char* src);
__fastcall Variant(wchar_t* const src);
__fastcall Variant(Ole2::IDispatch* const src);
__fastcall Variant(Ole2::IUnknown* const src);

By reference constructors
__fastcall Variant(short* src);
__fastcall Variant(int* src);
__fastcall Variant(float* src);
__fastcall Variant(double* src);
__fastcall Variant(Currency* src);
__fastcall Variant(TDateTime* src);
__fastcall Variant(WordBool* src);
__fastcall Variant(Byte* src);
__fastcall Variant(wchar_t** src);

// constructor for array of variants of type varType
__fastcall Variant(const int* bounds, const int boundsSize, Word varType);

// constructor for one dimensional array of type Variant
__fastcall Variant(const Variant* values, const int valuesSize);
Destructor
__fastcall ~Variant();
Operators
Use only the operators declared within Variant.
The compiler will ignore any operators you overload yourself.

Assignments
Variant& __fastcall operator =(const Variant& rhs);
Variant& __fastcall operator +=(const Variant& rhs);

Variant& __fastcall operator -=(const Variant& rhs);
Variant& __fastcall operator *=(const Variant& rhs);
Variant& __fastcall operator /=(const Variant& rhs);
Variant& __fastcall operator %=(const Variant& rhs);
Variant& __fastcall operator &=(const Variant& rhs);
Variant& __fastcall operator |=(const Variant& rhs);
Variant& __fastcall operator ^=(const Variant& rhs);
Variant& __fastcall operator <<=(const Variant& rhs);
Variant& __fastcall operator >>=(const Variant& rhs);

Comparisons (Variant on right)
bool __fastcall operator ==(const Variant& rhs) const;
bool __fastcall operator !=(const Variant& rhs) const;
bool __fastcall operator <(const Variant& rhs) const;
bool __fastcall operator >(const Variant& rhs) const;
bool __fastcall operator <=(const Variant& rhs) const;
bool __fastcall operator >=(const Variant& rhs) const;

Comparisons (int on right)
bool __fastcall operator ==(int rhs) const
bool __fastcall operator !=(int rhs) const
bool __fastcall operator < (int rhs) const
bool __fastcall operator > (int rhs) const
bool __fastcall operator <=(int rhs) const
bool __fastcall operator >=(int rhs) const

Comparisons (double on right)
bool __fastcall operator ==(double rhs) const
bool __fastcall operator !=(double rhs) const
bool __fastcall operator < (double rhs) const
bool __fastcall operator > (double rhs) const
bool __fastcall operator <=(double rhs) const
bool __fastcall operator >=(double rhs) const

Binary operators (Variant on right)
Variant __fastcall operator +(const Variant& rhs) const;
Variant __fastcall operator -(const Variant& rhs) const;
Variant __fastcall operator *(const Variant& rhs) const;
Variant __fastcall operator /(const Variant& rhs) const;
Variant __fastcall operator %(const Variant& rhs) const;
Variant __fastcall operator &(const Variant& rhs) const;
Variant __fastcall operator |(const Variant& rhs) const;
Variant __fastcall operator ^(const Variant& rhs) const;
Variant __fastcall operator <<(const Variant& rhs) const;
Variant __fastcall operator >>(const Variant& rhs) const;

Binary operators (AnsiString on right)
Variant __fastcall operator -(const AnsiString& rhs) const
Variant __fastcall operator *(const AnsiString& rhs) const
Variant __fastcall operator /(const AnsiString& rhs) const
Variant __fastcall operator %(const AnsiString& rhs) const
Variant __fastcall operator &(const AnsiString& rhs) const
Variant __fastcall operator |(const AnsiString& rhs) const
Variant __fastcall operator ^(const AnsiString& rhs) const

Variant __fastcall operator <<(const AnsiString& rhs) const
Variant __fastcall operator >>(const AnsiString& rhs) const

Binary operators (int on right)
Variant __fastcall operator +(int rhs) const
Variant __fastcall operator -(int rhs) const
Variant __fastcall operator *(int rhs) const
Variant __fastcall operator /(int rhs) const
Variant __fastcall operator %(int rhs) const
Variant __fastcall operator &(int rhs) const
Variant __fastcall operator |(int rhs) const
Variant __fastcall operator ^(int rhs) const
Variant __fastcall operator <<(int rhs) const
Variant __fastcall operator >>(int rhs) const

Binary operators (double on right)
Variant __fastcall operator +(double rhs) const
Variant __fastcall operator -(double rhs) const
Variant __fastcall operator *(double rhs) const
Variant __fastcall operator /(double rhs) const
Variant __fastcall operator %(double rhs) const
Variant __fastcall operator &(double rhs) const
Variant __fastcall operator |(double rhs) const
Variant __fastcall operator ^(double rhs) const
Variant __fastcall operator <<(double rhs) const
Variant __fastcall operator >>(double rhs) const

Unary operators
Variant __fastcall operator -() const;
Variant __fastcall operator !() const;

Conversion operators
__fastcall operator short() const;
__fastcall operator int() const;
__fastcall operator float() const;
__fastcall operator double() const;
__fastcall operator Currency() const;
__fastcall operator TDateTime() const;
__fastcall operator bool() const;
__fastcall operator WordBool() const;
__fastcall operator Byte() const;
__fastcall operator AnsiString() const;
__fastcall operator Ole2::IDispatch*();
__fastcall operator Ole2::IUnknown*();

By ref conversion operators
__fastcall operator short*();
__fastcall operator int*();
__fastcall operator float*();
__fastcall operator double*();
__fastcall operator Currency*();
__fastcall operator TDateTime*();
__fastcall operator WordBool*();
__fastcall operator Byte*();

__fastcall operator wchar_t**();

Public member functions
HRESULT methods member functions.
void __fastcall SetError(const Integer err);
Integer __fastcall GetError() const;

void __fastcall Clear();
Variant& __fastcall ChangeType(int VarType);
Variant __fastcall AsType(int VarType) const;

int __fastcall Type() const;
bool __fastcall IsNull() const;
bool __fastcall IsEmpty() const;
public:
static Variant __fastcall CreateObject(const String& ProgID);
static Variant __fastcall GetActiveObject(const String& ProgID);

Array manipulation
Use these the GetElement and PutElement functions to access variant arrays.
Array subscript operator is private and can be used only with arrays of variants.
bool __fastcall IsArray() const;
Variant __fastcall GetElement(const int i1) const;
Variant __fastcall GetElement(const int i1, const int i2) const;
Variant __fastcall GetElement(const int i1, const int i2, const int i3)
const;
Variant __fastcall GetElement(const int i1, const int i2, const int i3,
const int i4) const;
Variant __fastcall GetElement(const int i1, const int i2, const int i3,
const int i4, const int i5) const;
void __fastcall PutElement(const Variant& data, const int i1);
void __fastcall PutElement(const Variant& data, const int i1, const int i2);
void __fastcall PutElement(const Variant& data, const int i1, const int i2,
const int i3);
void __fastcall PutElement(const Variant& data, const int i1, const int i2,
const int i3, const int i4);
void __fastcall PutElement(const Variant& data, const int i1, const int i2,
const int i3, const int i4, const int i5);
int __fastcall ArrayDimCount() const;
int __fastcall ArrayLowBound(const int dim = 1) const;
int __fastcall ArrayHighBound(const int dim = 1) const;
void __fastcall ArrayRedim(int highBound);
Pointer __fastcall ArrayLock();
void __fastcall ArrayUnlock();

OLE automation support
Variant __fastcall Exec(AutoCmd& cmd, Integer lcid = LOCALE_SYSTEM_DEFAULT);

The next four functions provide an alternate syntax similar to Exec.
void OleProcedure(const String& name, Variant& v0 = Variant(),
Variant& v1 = Variant(),Variant& v2 = Variant(),Variant& v3 = Variant(),
Variant& v4 = Variant(),Variant& v5 = Variant(),Variant& v6 = Variant(),
Variant& v7 = Variant(),Variant& v8 = Variant(),Variant& v9 = Variant());

Variant OleFunction(const String& name, Variant& v0 = Variant(),
Variant& v1 = Variant(),Variant& v2 = Variant(),Variant& v3 = Variant(),
Variant& v4 = Variant(),Variant& v5 = Variant(),Variant& v6 = Variant(),
Variant& v7 = Variant(),Variant& v8 = Variant(),Variant& v9 = Variant());

Variant OlePropertyGet(const String& name, Variant& v0 = Variant(),
Variant& v1 = Variant(),Variant& v2 = Variant(),Variant& v3 = Variant(),
Variant& v4 = Variant(),Variant& v5 = Variant(),Variant& v6 = Variant(),
Variant& v7 = Variant(),Variant& v8 = Variant(),Variant& v9 = Variant());

void OlePropertySet(const String& name, Variant& v0 = Variant(),
Variant& v1 = Variant(),Variant& v2 = Variant(),Variant& v3 = Variant(),
Variant& v4 = Variant(),Variant& v5 = Variant(),Variant& v6 = Variant(),
Variant& v7 = Variant(),Variant& v8 = Variant(),Variant& v9 = Variant());
// End of Alternate Syntax for Automation

Variant member functions
See also
These are the public member functions of Variant class.
AsType()
ChangeType()
Clear()
CreateObject()
Exec()
GetActiveObject()
OleFunction()
OleProcedure()
OlePropertyGet()
OlePropertySet()
Type()

Variant constructors
See also
By value constructors
By reference constructors

__fastcall Variant();
Default constructor.

__fastcall Variant(const Variant& src);
Copy constructor.

__fastcall Variant(const int* bounds, const int boundsSize, Word varType);
Constructor for array of variants of type varType

__fastcall Variant(const Variant* values, const int valuesSize);
Constructor for one dimensional array of type Variant

__fastcall ~Variant();
Public destructor.

Variant by value constructors
See also
These are the data types that can be used to construct a Variant data type. The compiler use either the
by-value or by-reference constructor depending on the argument that you provide.
__fastcall Variant(const short src);
Example: Variant vSmallint(short(3));
__fastcall Variant(const int src);
Example: Variant vInteger(4);
__fastcall Variant(const float src);
Example: Variant vSingle(float(5));
__fastcall Variant(const double src);
Example: Variant vDouble(double(6));
__fastcall Variant(const Currency src);
Example: Variant vCurrency(Currency(7));
__fastcall Variant(const TDateTime src);
Example: Variant vDate(TDateTime(String(“02/03/97”)));
__fastcall Variant(const bool src);
Example: Variant vBoolean(true);
__fastcall Variant(const WordBool src);

__fastcall Variant(const Byte src);
Example: Variant vByte(Byte)9);
__fastcall Variant(const AnsiString& src);

__fastcall Variant(const char* src);
__fastcall Variant(wchar_t* const src);

__fastcall Variant(Ole2::IDispatch* const src);
Example: Variant VDispatch(Variant::CreatObject(“Word.Basic”));
__fastcall Variant(Ole2::IUnknown* const src);
Example: Variant vUnknown(Variant::CreatObject
(“Word.Basic”).AsType(varUnknown));

Variant by reference constructors
See also
These are the data types that can be used to construct a Variant data type. The compiler use either the
by-value or by-reference constructor depending on the argument that you provide.
__fastcall Variant(short* src);
Example:
static short int = 3;
Variant vrSmallint = &smallint;

__fastcall Variant(int* src);
Example:
static int integer = 4;
Variant vrInteger = &integer;

__fastcall Variant(float* src);
Example:
static float flt = 5;
Variant vrSingle = &flt;

__fastcall Variant(double* src);
Example:
static double dbl = 6;
Variant vrDouble = &dbl;

__fastcall Variant(Currency* src);
Example:
static Currency currency = 7;
Variant vrCurrency = ¤cy;

__fastcall Variant(TDateTime* src);
Example:
static TDateTime date = String(“02/03/97”);
Variant vrDate = &date;

__fastcall Variant(WordBool* src);
Example:
static WordBool boolean = true;
Variant vrBoolean = &boolean;

__fastcall Variant(Byte* src);
Example:
static Byte byte = 9;
Variant vrByte = &byte;

__fastcall Variant(wchar_t** src);
Example:
static wchar_t* oleStr = SysAllocString(L”Welcome to the world of variants
and OLE.”);

Variant vrOleStr = &oleStr;

AsType member function
Example

Syntax
Variant __fastcall AsType(int VarType) const;
Description
Use the AsType function to cast a Variant object to the type specified by the argument VarType. After the
call to AsType there are two Variant objects of the same type.

ChangeType member function
See also Example

Syntax
Variant& __fastcall ChangeType(int VarType);
Description
Use the ChangeType function to change the data type of a Variant object that is already instantiated.
After the call to ChangeType there is a Variant object of type VarType.

AsType example
// Contruct by value
Variant vSmallint(short(3));

// Use the default constructor
Variant vx;

vx = vSmallint.AsType(varString);

ChangeType example
Variant vx, vy;

cout << endl << "TestTypeChanging output:" << endl;

vx.ChangeType(varInteger);
vy = vx.AsType(varSingle);

Clear member function
See also Example

Syntax
void __fastcall Clear();
Description
After the call to Clear, the variant has the value Unassigned.

CreateObject member function
See also Example

Syntax
static Variant __fastcall CreateObject(const String& ProgID);
Description
CreateObject instantiates a single instance of an OLE automation object.
CreateObject creates a single uninitialized object of the class associated with the ProgID specified by
the ProgID parameter. CreateObject is used to create an object of a specified type when the ProgID is
known, and when the object is on a local or in-proc server. Only objects that are not part of an aggregate
are created using CreateObject.
CreateObject is called once to create each new single instance of a class. To create multiple instance of
the same class it is recommended to use a class factory.
CreateObject returns a reference to the identifier of the interface to be used to communicate with the
object. For CreateObject this interface is of type IDispatch.
If ProgId is invalid, CreateObject throws an EOleSysError exception.

Exec member function
Example

Sytax
Variant __fastcall Exec(AutoCmd& cmd, Integer lcid = LOCALE_SYSTEM_DEFAULT);
Declaration
The default value for lcid is LOCALE_SYSTEM_DEFAULT. Attempts to change this value are ignored
and always revert to LOCALE_SYSTEM_DEFAULT.

Exec example
Variant wordBasic, res;
 Function fileNew("FileNew");
 Procedure insert("Insert");
 Function fileSaveAs("FileSaveAs");

 cout << endl << "TestOle: check contents of test.txt" << endl;
 wordBasic = Variant::CreateObject("Word.Basic");
 res = wordBasic.Exec(fileNew <<"Normal");

 wordBasic.Exec(insert <<"This is the first line\n");
 wordBasic.Exec(insert.ClearArgs() <<"This is the second line\n");
 res = wordBasic.Exec(fileSaveAs <<"test.txt" <<3);

CreateObject Example
Variant wordBasic, res;
wordBasic = Variant::CreateObject("Word.Basic");
res = wordBasic.Exec(fileNew <<"Normal");

wordBasic.Exec(insert <<"This is the first line\n");
wordBasic.Exec(insert.ClearArgs() <<"This is the second line\n");
res = wordBasic.Exec(fileSaveAs <<"test.txt" <<3);

GetActiveObject member function
See also

Syntax
#include <vcl\sysdefs.h>
static Variant __fastcall GetActiveObject(const String& ProgID);
Description
GetActiveObject retrieves a reference to an IDispatch interface to a currently running, registered OLE
object.
GetActiveObject returns a reference to a the IDispatch interface of the active object for the given class
indicated by ProgId. ProgId is the programmatic ID for the class of the active object from the OLE
registration database.
If either the the class object or the IDispatch interface are not successfully returned, an EOleSysError
exception is raised.

OleFunction member function
See also

Syntax
#include <vcl\sysdefs.h>
Variant OleFunction(const String& name, Variant& v0 = Variant(),
Variant& v1 = Variant(),Variant& v2 = Variant(),Variant& v3 = Variant(),
Variant& v4 = Variant(),Variant& v5 = Variant(),Variant& v6 = Variant(),
Variant& v7 = Variant(),Variant& v8 = Variant(),Variant& v9 = Variant());
Description
OleFunction provides an alternate syntax for OLE Automation.
Use this function to call an OLE object’s function that returns anything other than void.
Named parameters are not supported.

OleProcedure member function
See also

Syntax
void OlePropertySet(const String& name, Variant& v0 = Variant(),
Variant& v1 = Variant(),Variant& v2 = Variant(),Variant& v3 = Variant(),
Variant& v4 = Variant(),Variant& v5 = Variant(),Variant& v6 = Variant(),
Variant& v7 = Variant(),Variant& v8 = Variant(),Variant& v9 = Variant());
Description
OleProdedure provides an alternate syntax to the for OLE Automation.
Use this function to call an OLE object’s function that has a void return.
Named parameters are not supported.

OlePropertyGet member function
See also

Syntax
Variant OlePropertyGet(const String& name, Variant& v0 = Variant(),
Variant& v1 = Variant(),Variant& v2 = Variant(),Variant& v3 = Variant(),
Variant& v4 = Variant(),Variant& v5 = Variant(),Variant& v6 = Variant(),
Variant& v7 = Variant(),Variant& v8 = Variant(),Variant& v9 = Variant());
Description
Use the OlePropertyGet function to read an automation object property.

OlePropertySet member function
See also

Syntax
void OlePropertySet(const String& name, Variant& v0 = Variant(),
Variant& v1 = Variant(),Variant& v2 = Variant(),Variant& v3 = Variant(),
Variant& v4 = Variant(),Variant& v5 = Variant(),Variant& v6 = Variant(),
Variant& v7 = Variant(),Variant& v8 = Variant(),Variant& v9 = Variant());
Description
Use the OlePropertySet function to write to an automation object property.

Type member function
See also

Syntax
int __fastcall Type() const;
Description
Type returns type code of a Variant instance.
The Type function returns the type code of the given variant. The return value is constructed from the
constants declared in the vcl\sysdefs.h header file.
The lower twelve bits of a variant type code (the bits defined by the varTypeMask bit mask) define the
type of the variant. The varArray bit is set if the variant is an array of the given type. The varByRef bit is
set if the variant is a reference to a value of the given type as opposed to an actual value.

Return value
The following table describes the meaning of each of the variant type codes.
Variant type Return value Contents of variant
varEmpty        = 0X0000; The variant is Unassigned.
varNull          = 0X0001; The variant is Null.
varSmallint = 0X0002; 16-bit signed integer (type Smallint).
varInteger    = 0X0003; 32-bit signed integer (type Integer).
varSingle      = 0X0004; Single-precision floating-point value (type Single).
varDouble      = 0X0005; Double-precision floating-point value (type Double).
varCurrency = 0X0006; Currency floating-point value (type Currency).
varDate          = 0X0007; Date and time value (type TDateTime).
varOleStr      = 0X0008; Reference to a dynamically allocated Unicode string.
varDispatch = 0X0009; Reference to an OLE automation object (an IDispatch interface pointer).
varError        = 0X000A; Operating system error code.
varBoolean    = 0X000B; 16-bit boolean (type WordBool).
varVariant    = 0X000C;
varUnknown    = 0X000D; Reference to an unknown OLE object (an IUnknown interface pointer).
varByte          = 0X0011;
varString      = 0X0100; Reference to a dynamically allocated string (type AnsiString).
varTypeMask = 0X0FFF;
varArray        = 0X2000;
varByRef        = 0X4000;

The value returned by the Type member function corresponds to the vType data member of TVarData.
The type of a variant can be changed using the ChangeType member function.

OLE automation
See also
OLE Automation is a mechanism for Windows applications to manipulate one another, much like a
shared macro language. An application that can be automated is called an automation object or
automation server. An application that automates another is an automation controller or automation
client. OLE Automation is essentially a protocol by which one application can control the actions of
another.
C++Builder fully supports OLE 2.0 automation of applications. You can use an application written with
C++Builder to automate another application, or you can set up your application as an OLE automation
server.
You can find complete examples of OLE automation clients and servers in the EXAMPLES\APPS\
AUTOCON and EXAMPLE\APPS\AUTOSRV directories in your C++Builder installation.
This material is not intended to explain the deep, technical details of the OLE Automation system in
Windows. Rather, it describes what you need to know to perform the most common automation tasks
with C++Builder:

Automating another application
About OLE automation servers
About OLE automation objects
Creating an OLE automation server

Automating another application
See also Example
C++Builder applications can automate other applications that are OLE automation servers. That is, the
other applications must provide a run-time interface through OLE objects. C++Builder applications
access such OLE objects through the C++Builder class Variant.
There are three parts of automating an OLE application:

Creating the OLE object instance
Setting OLE object properties
Calling OLE object methods

Creating the OLE object instance
Each OLE Automation server has a key called ProgID in the system registry, which identifies the server
to its clients. In order to control that object, your automation client must create an instance of the
automation object based on its ProgID.
To create an OLE object instance, call the CreateObject function and assign its result to a variant.
CreateObject takes a single string as its parameter, which is the ProgID in the registry for the
automation object. If there is no automation object registered with that ProgID, CreateObject raises an
exception.
For example, to create an OLE object that controls Microsoft Word, you would declare a variant variable
and create an OLE object for it:
Variant MSWord; // declare holder for OLE object
MSWord = Variant::CreateObject('Word.Basic'); // create instance

//from ProgID
... // use the object

Although the OLE object is not truly an object in the sense of the objects and classes in Object Pascal,
C++Builder allows you to manipulate them using a similar syntax. That is, given a Variant that contains
an OLE object, you can set its properties and call its methods much as you would those of a "real"
object.

Setting OLE object properties
Many automation objects include properties in their interfaces. Properties represent the state or content
of the automation server.
The Variant class provides special methods for reading and writing automation properties:

OlePropertyGet(propname)
OlePropertySet(propname,value) value is any value that can be converted into a Variant.

Calling OLE object methods
Nearly all automation object include methods in their interfaces. As with C++Builder objects, methods
represent the actions associated with the server.
The Variant class provides special methods fof calling automation methods:
OleProcedure(OleProcName, [val, ...])
OleFunction(OleFuncName, [val, ...]) val is any value that can be converted into a Variant.
The compiler cannot determine whether a particular method name or its parameters will be valid when
actually calling into the OLE object at run time. It therefore packages the method name, along with any
parameters, into a packet to be dispatched at run time.
All parameters are passed to OLE object methods as variants, and any results returned are also
interpreted as variants.

Example
The following example shows a simple example that takes data from a query, inserts it into a Microsoft
Word document, and formats the inserted text as a table. You must have Microsoft Word running with a
document open for the automation to work.
1 Create a new application with a blank form.
2 Add a #include <vlc|OleAuto.hpp> statement to the unit1.cpp file.

#include <vcl\OleAuto.hpp> //put this in the implementation part }
3 Place a Query component on the form.
4 Set the query's DatabaseName property to the DCDEMOS alias.
5 Place a Button component on the form.
6 Attach the following handler to the button's OnClick event:

void __fastcall TForm1::Button1Click(TObject *Sender)
{
Vairant MSWord;
int I;
String str;
Query1->SQL->Add("select company, contact, phone from customer"

"where lastinvoicedate >= \"1/1/95""); //SQL statement for query
Query1->Open(); //open the query
while (!Query1->Eof) // for each record
{

for (i=0; i < Query1->FieldCount; I++
str = str + Query1->Fields[i]->AsString = "\t"; // tab separate

Query1->Next(); get the next record
}
Query1->Close();
MSWord = Variant::CreateObject("word.basic"); //create object for

//word server
MSWord.OleProcedure("FileNew", "normal");
MSWord.OleProcedure(Insert",str.SubString(1, str.Length()-1));
MSWord.OleProcedure("EditSelectAll");
//-----Named Parames requires the alternative (low level) syntax --
NamedParm cf("ConvertFrom", 1);
NamedParm nc("NumColumns", Query1->FieldCount);
NamedParm fm("Format",0);
NamedParm ap("Apply", 167);
Procedure TextToTable("TextToTable");
MSWord.Exec(TextToTable << cf << nc << fm << ap);
//----save results (blockexit will close word)-----
MSWord.OleProcedure("FileSaveAs", "d:xxx.doc",3);

About OLE automation servers
See also
An OLE automation server is an application or dynamic-link library (DLL) that exports OLE objects to
OLE automation clients.
There are three important aspects of automation servers you need to understand before you create
them:

In-process and out-of-process servers
Automation object instancing
The Automation object

You can find a complete example of an OLE automation server and a client that automates it in the
EXAMPLES\APPS\AUTOCON and EXAMPLE\APPS\AUTOSRV directories.

In-process and out-of-process servers
See also
There are two kinds of OLE automation servers in Windows: in-process and out-of-process (also called
local) servers. You can create either kind of server with C++Builder.

An in-process server is a dynamic-link library (DLL) that exports automation objects. Because the
automation objects come from a DLL, they are part of the same Windows process as the client
application.

In-process servers are useful for creating program modules shared by a number of applications that
might use different languages. They have the advantage that they run in the same address space as
the calling application, so calls to the server don't have to be marshalled, which adds a huge
message-handling overhead to each call.

An out-of-process server is a standalone application that exports automation objects.

Automation object instancing
See also
Some OLE automation servers can only create and export a single OLE object, while others can handle
multiple OLE objects. Still others cannot export OLE objects at all, keeping their OLE objects only for
internal use. This relationship between a server and the number of objects it can export is called
instancing.
When you create an OLE automation object, you specify its instancing. That way, Windows knows
whether it needs to create a new instance of the server when asked for an instance of a particular
automation object.
The following table describes the three kinds of instancing.

Instancing type Meaning
Internal OLE objects are internal to the application. The OLE objects are not registered,

and therefore external processes cannot create them.
Single Each instance of the server can only export one instance of the OLE object. If

clients request multiple instances of the OLE object, Windows starts a new
instance of the server for each one.

Multiple Each server instance can create and export multiple instances of the OLE object.
In-process servers (DLLs) are always multiple-instance.

The Automation object
See also
Every project that uses the OLEAuto unit automatically incorporates an object called Automation.
Automation is a nonvisual object. Much as the Application and Screen components generated as part of
every C++Builder application encapsulate portions of the application environment, Automation
encapsulates the OLE automation aspects of the server project.
The two most important aspects of the Automation object are its StartMode property and its
OnLastRelease event.
StartMode indicates how and why the OLE server was started. The following table describes the four
possible values of StartMode.

Value Meaning
smStandAlone A user started the application.
smAutomation Windows started the application for the purpose of creating an OLE object.
smRegServer The application was started solely to register one or more OLE objects.
smUnregServer The application was started solely to unregister one or more OLE objects.
OnLastRelease is an event indicating that a server started by the system for automation purposes
(StartMode is smAutomation) is no longer needed as a server, because all clients have released all OLE
objects created by the server. By default, the server shuts down in that case, but you can handle the
OnLastRelease event to provide other checks to determine whether to actually shut down the server.
OnLastRelease gets a Boolean var parameter called ShutDown, which is True by default. By setting
ShutDown to True, you can prevent the server from shutting down when its last OLE object is released.
For more details on the Automation component, see the OLEAuto unit source code.

About OLE automation objects
See also
All OLE objects exported by C++Builder automation servers descend from the class TAutoObject. There
are several important things to know about these objects.

Never call delete or a pointer to an automation object.
OLE objects are reference-counted, because they might be in use by more than one client. When
finished using an OLE object, call its Release method. Release decrements the reference count, and
if that brings the reference count to zero, calls delete this to destroy the object.

OLE objects are generally externally created. You can, however, construct one within the server
by calling its new <class name> as you would for any other class. Keep in mind, however, the
preceeding warning about calling Release, rather than delete, when done.

Always export OLE objects as Variants. Any method or property that returns an OLE object must
return it as a Variant containing the OLE object. TAutoObject provides a property named OLEObject for
just this purpose. It is important that you not export classes or pointers to classes out of the server.
Instead, always reference the OLEObject property of the OLE object, and export it as a Variant.

Creating an OLE automation server
See also
Whatever kind of automation server you create, you must define its interface to clients, which consists of
defining and registering the OLE object and automating properties and methods so that clients can
reference them.
When you change the interface of an existing automation server, you should always make sure the
interface is backward-compatible. That is, don't remove properties or methods already included, as that
will cause errors in existing clients. You should only add to existing interfaces.

If you modify an existing interface in ways that are not backward-compatible, you should change
the object's name as well.
There are three parts to creating an automation server:

Creating an automation server
Adding an automation object
Automating properties and methods

Creating an automation server
See also
The first step in creating an OLE automation server is to create the server itself. That is, you create the
application or dynamic-link library (DLL) that will create and export OLE objects. The choice of whether
to create a DLL or application rests largely on whether you will be creating an in-process or out-of-
process server.
The initial steps are no different from creating any other application or DLL, but each then has its own
particular steps.
To create an in-process automation server (DLL),
1 Create a DLL.

You'll add units and forms as usual, and you can also add OLE objects.
2 Add the #include <vcl\OLEAuto.hpp> after the #pragma hrdstop.
3 Export four standard entry points from the OLEAuto unit from the DLL.

If you already have items exported from the DLL, you can add the four OLE automation entry points
to the existing exports clause.
Otherwise, you can take the following steps.
1 Copy the bin\oledll.def file to your directory. This exports the following entrypoints that OLE expects

to call in an automation server DLL.
DllGetClassObject
DllCanUnloadNow
DllRegisterServer
DllUnregisterServer

2 Save the file with the same name as your project but with a .DEF extension.
3 Add the file to your project using the Project|Add to project command.

To create an out-of-process automation server,
1 Create a C++Builder application.
2 Add any automation server units.
After you create your server, you are ready to add the OLE automation object.

Automating properties and methods
See also
OLE automation clients generally manipulate OLE objects by calling their methods and setting and
reading properties. Your server defines what properties and methods are available by adding those
properties and methods to the OLE objects it exports.
The properties and methods of an automation object are just like those of any other Object Pascal class.
There are a few restrictions, listed below.
To add a property or method to the interface of an OLE object, declare it in the __automated: part of the
class declaration.
The __automated part of a class declaration is just like a public part, but the compiler creates an entry in
the automation table for that class.
The following restrictions apply to code in the __automated part of a class declaration:

Only properties and methods can be declared. Field declarations are not allowed.
All property types, parameter types, and function result types used in property and method

declarations must belong to the following set of types:
SmallInt, int, float, double, Currency, TDateTime, String, WordBool, and Variant

Property declarations can only include access specifiers (read and write). No other specifiers
(index, stored, default, nodefault) are allowed.

Access specifiers must list a method identifier. Field identifiers are not allowed.
Property-access methods must use __fastcall calling conventions.
Array properties are supported.
Property overrides (property declarations that don't include the property type) are not allowed.
Method declarations must use __fastcall calling conventions. Methods can be virtual, but not

dynamic. Method overrides are allowed.
A property or method declaration can include an optional dispid directive, which much be followed

by an integer constant expression that gives the dispatch ID of the property or method.
If a dispid clause is not present, the compiler automatically picks a number one larger than the largest
dispatch ID used by any property or method in the class and its ancestors.
Specifying an already-used dispatch ID in a dispid clause causes an error.

Example of base class referencing

template <class T> class B
{
 // class declarations
};
template <class T> class D : public B<T>
{
 // class declarations
};

template <class T> void func(B <T> *b)
{
 // function body
}
// This is illegal under ANSI C++: unresolved func(int)
// However, Borland C++ calls func(B<int> *).
func(new D<int>);

Example of trivial conversions

template <class T> void func(const T)
{
 .
 .
 .
};
func(0); // This is illegal under ANSI C++: unresolved func(int).
// However, Borland C++ allows func(const int) to be called.

Example of explicit template function

template<class T> T max(T a, T b) {
 return (a > b) ? a : b;
};

// Declare explicit template function
int max(int,int);

void f(int i, char c)
{
 max(i, i); // calls max(int ,int)
 max(c, c); // calls max(char,char)
 max(i, c); // calls max(int,int)
 max(c, i); // calls max(int,int)
}

Class template definition

// An example for defining a template class.
template <class T> class Vector
{
 T *data;
 int size;
public:
 Vector(int);
 ~Vector() { delete[] data; }
 T& operator[] (int i) { return data[i]; }
};
// Note the syntax for out-of-line definitions.
template <class T> Vector<T>::Vector(int n)
{
 data = new T[n];
 size = n;
};

int main()
{
 Vector<int> x(5); // Generate a vector to store five integers
 for (int i = 0; i < 5; ++i)
 x[i] = i; // Initialize the vector.
 return o;
}

Exportable/Importable Template Declarations

// In file EXPORTER.H
#include<iostream.h>
if defined (BUILD_DLL_EXPORTS)
define DECLSPEC __export
elif defined (USING_DLL_IMPORTS)
define DECLSPEC __import
endif

///
// Receive CLASS DEFINITIONS
template <class T> class Receive
{
 T value;
public:
 Receive(const T val) : value(val){}
 T display();
};

template<class T> T Receive<T>::display()
{
 return value;
}

// TEMPLATE FUNCTION DEFINITION
template <class T>
T another_min(T a, T b) { return a < b ? a : b;}

#if (defined (BUILD_DLL_EXPORTS) || defined(USING_DLL_IMPORTS))
////// INSTANTIATED TEMPLATE CLASSES /////
template class DECLSPEC Receive<double>;
template class DECLSPEC Receive<int>;
template class DECLSPEC Receive<char>;

////// INSTANTIATED TEMPLATE FUNCTIONS /////
template int DECLSPEC another_min<int>(int, int);
template double DECLSPEC another_min<double>(double, double);
#endif

Compiling Exportable Templates

// In file DLL_SRC.CPP.
// GENERATE CODE FOR EXPORTABLE CLASSES AND FUNCTIONS.
// TO COMPILE THIS FILE, USE BCC32 -tWD -DBUILD_DLL_EXPORTS DLL_SRC.CPP
#define STRICT
#include <windows.h>
#include "exporter.h"

BOOL WINAPI DllEntryPoint(HINSTANCE hinstdll,
 DWORD fdwReason, LPVOID lpvReserved)
{
 return 1;
}

Using Import Templates
Program Output
// Before you compile this file you need to create the dynamic link library.
// You can use the command IMPLIB DLL_SRC.LIB DLL_SRC.DLL
// TO COMPILE THIS FILE, USE BCC32 -DUSING_DLL_IMPORTS MAIN DLL_SRC.LIB
#include <iostream.h>
#include "exporter.h"

int main () {
 int small = 5;
 int big = 10;
 double smalld = 1.2;
 double bigd = 12.3;

 // No new code is generated for these objects.
 Receive <double> Test_d(0.01);
 Receive <int> Test_i(5);

 // Generate code in MAIN.OBJ for this object.
 Receive <float> Test_f(3.14);
 cout << "Test_d.display() = " << Test_d.display() << endl;
 cout << "Test_i.display() = " << Test_i.display() << endl;

 cout << "min(5, 10): " << another_min(small, big) << endl;
 cout << "min(12.3, 1.2): " << another_min(bigd, smalld)<<endl;
 cout << "Test_f.display() = " << Test_f.display() << endl;

 return 0;
}

Program Output

Test_d.display() = 0.01
Test_i.display() = 5
min(5, 10): 5
min(12.3, 1.2): 1.2
Test_f.display() = 3.14

// Example of the new and delete Operators
// ALLOCATE A TWO-DIMENSIONAL SPACE, INITIALIZE, AND DELETE IT.
#include <except.h>
#include <iostream.h>

void display(long double **);
void de_allocate(long double **);

int m = 3; // THE NUMBER OF ROWS.
int n = 5; // THE NUMBER OF COLUMNS.

int main(void) {
 long double **data;

 try { // TEST FOR EXCEPTIONS.
 data = new long double*[m]; // STEP 1: SET UP THE ROWS.
 for (int j = 0; j < m; j++)
 data[j] = new long double[n]; // STEP 2: SET UP THE COLUMNS
 }
 catch (xalloc) { // ENTER THIS BLOCK ONLY IF xalloc IS THROWN.
 // YOU COULD REQUEST OTHER ACTIONS BEFORE TERMINATING
 cout << "Could not allocate. Bye ...";
 exit(-1);
 }

 for (int i = 0; i < m; i++)
 for (int j = 0; j < n; j++)
 data[i][j] = i + j; // ARBITRARY INITIALIZATION

 display(data);
 de_allocate(data);
 return 0;
 }

void display(long double **data) {
 for (int i = 0; i < m; i++) {
 for (int j = 0; j < n; j++)
 cout << data[i][j] << " ";
 cout << "\n" << endl;
 }
 }

void de_allocate(long double **data) {
 for (int i = 0; i < m; i++)
 delete[] data[i]; // STEP 1: DELETE THE COLUMNS

 delete[] data; // STEP 2: DELETE THE ROWS
 }

operator new placement syntax example

// An example of the placement syntax for operator new()
#include <iostream.h>

class Alpha {
 union {
 char ch;
 char buf[10];
 };
public:
 Alpha(char c = '\0') : ch(c) {
 cout << "character constructor" << endl;
 }
 Alpha(char *s) {
 cout << "string constructor" << endl;
 strcpy(buf,s);
 }

 ~Alpha() { cout << "Alpha::~Alpha() " << endl; }

 void * operator new(size_t, void * buf) {
 return buf;
 }
};

void main() {
 char *str = new char[sizeof(Alpha)];

 // Place 'X' at start of str.
 Alpha* ptr = new(str) Alpha('X');
 cout << "str[0] = " << str[0] << endl;

 // Explicit call of the destructor
 ptr -> Alpha::~Alpha();

 // Place a string in str buffer.
 ptr = new(str) Alpha("my string");
 cout << "\n str = " << str << endl;

 // Explicit call of the destructor
 ptr -> Alpha::~Alpha();
 delete[] str;
 }

Output
character constructor
str[0] = X
Alpha::~Alpha()
string constructor

 str = my string
Alpha::~Alpha()

Example of Overloading the new and delete Operators
#include <stdlib.h>

class X {
 .
 .
 .
public:
 void* operator new(size_t size) { return newalloc(size);}
 void operator delete(void* p) { newfree(p); }
 X() { /* initialize here */ }
 X(char ch) { /* and here */ }

 ~X() { /* clean up here */ }
 .
 .
 .
};

Example
// The MakeStr function takes an "array of const"

AnsiString MakeStr(const TVarRec* args, int argHigh)
{
 String tmp;

 for (int i = 0; i <= argHigh; i++)
 switch (args[i].VType)
 {
 case vtInteger:
 tmp += ::IntToStr(args[i].VInteger);
 break;
 case vtBoolean:
 tmp += args[i].VBoolean? "T": "F";
 break;
 case vtChar:
 tmp += String(&args[i].VChar, 1);
 break;
 case vtExtended:
 tmp += ::FloatToStr(*args[i].VExtended);
 break;
 case vtString:
 tmp += *args[i].VString;
 break;
 case vtPChar:
 tmp += String(args[i].VPChar);
 break;
 case vtObject:
 tmp += "-TObject-"; //classname not available args[i].VObject-
>ClassName();

 break;
 case vtClass:
 tmp += "-TClass-"; //classname not available args[i].VClass-
>ClassName();

 break;
 case vtAnsiString:
 tmp += String(reinterpret_cast<char*>(args[i].VAnsiString));
 break;
 case vtCurrency:
 tmp += ::CurrToStr(*args[i].VCurrency);
 break;
 case vtVariant:
 tmp += *args[i].VVariant;
 break;
 default:
 tmp += "-Other-";
 };
 return tmp;
}

// MakeStr is called with OPENARRAY(TVarRec, (...))
 ::MessageBox(0,
 MakeStr(OPENARRAY(TVarRec,(1, true, 'a', (long double)3.14159,
 ShortString("shstr"), "hello", *this, __classid(TForm1), String("str"),
 Currency(1.23), Variant("var")))).c_str(), PChar("MakeStr"), MB_OK);

// The resulting message box contains:
// 1Ta3.14159shstrhello-TObject--TClass-str1.23var

Variant example
#include <vcl.h>
#pragma hdrstop
#include <iostream.h>
#include <oleauto.hpp>
#include <math.h>

//--
void TestConstructors();
void TestAssignments();
void TestTypeChanging();
void TestOperators();
void TestArrays();
void TestOle();

//--
main()
{
        TestConstructors();
        TestAssignments();
        TestTypeChanging();
        TestOperators();
        TestArrays();
        TestOle();

        return 0;
}

//--
void CheckType(const Variant& v, Word type)
{
    if (v.VType == type)
        cout << "Type Check OK: ";
    else    cout << "Type Check ERROR: ";
    cout <<      "type: " << v.VType;
    cout << ", expected: " << type << endl;
}

//--
void Compare(Variant &lhs, Variant &rhs)

{
    if (lhs == rhs)
        cout << "Compare OK: ";
    else
        cout << "Compare ERROR: ";

    cout <<      "lhs type: " << lhs.VType;
    cout << ", rhs type: " << rhs.VType;
    cout << ", lhs val: "    << String(lhs).c_str();
    cout << ", rhs val: "    << String(rhs).c_str() << endl;
}

//--
void TestConstructors()
{
    static short smallint = 3;
    static int integer = 4;
    static float flt = 5;
    static double dbl = 6;
    static Currency currency = 7;
    static TDateTime date = String("05/11/95");
    static WordBool boolean = true;
    static Byte byte = 9;
    static wchar_t* oleStr = SysAllocString(L"Hey, welcome to the world of variant and OLE");

    Variant vEmpty;

    //can't actually construct a null
    Variant vNull;
    vNull.ChangeType(varNull);

    // by value
    Variant vSmallint(short(3));
    Variant vInteger(4);
    Variant vSingle(float(5));
    Variant vDouble(double(6));
    Variant vCurrency(Currency(7));
    Variant vDate(TDateTime(String("05/11/95")));
    Variant vBoolean(true);
    Variant vByte((Byte)9);

    Variant vString(String("This is an ANSI string, buddy!"));
    Variant vOleStr(L"Hey, welcome to the world of Variants & OLE Automation");
    Variant vDispatch(Variant::CreateObject("Word.Basic"));
    Variant vUnknown(Variant::CreateObject("Word.Basic").AsType(varUnknown));

    // by reference
    Variant vrSmallint = &smallint;
    Variant vrInteger = &integer;
    Variant vrSingle = &flt;
    Variant vrDouble = &dbl;
    Variant vrCurrency = ¤cy;
    Variant vrDate = &date;
    Variant vrBoolean = &boolean;
    Variant vrByte = &byte;
    Variant vrOleStr = &oleStr;

    cout << endl << "TestConstructors output:" << endl;
    CheckType(vEmpty, varEmpty);
    CheckType(vNull, varNull);

    cout << endl << "TestConstructors(byval) output:" << endl;
    CheckType(vSmallint, varSmallint);
    CheckType(vInteger, varInteger);
    CheckType(vSingle, varSingle);
    CheckType(vDouble, varDouble);
    CheckType(vCurrency, varCurrency);
    CheckType(vDate, varDate);
    CheckType(vBoolean, varBoolean);
    CheckType(vByte, varByte);
    CheckType(vString, varString);
    CheckType(vOleStr, varOleStr);
    CheckType(vDispatch, varDispatch);
    CheckType(vUnknown, varUnknown);

    cout << endl << "TestConstructors(byref) output:" << endl;
    CheckType(vrSmallint, varSmallint | varByRef);
    CheckType(vrInteger, varInteger | varByRef);
    CheckType(vrSingle, varSingle | varByRef);
    CheckType(vrDouble, varDouble | varByRef);
    CheckType(vrCurrency, varCurrency | varByRef);

    CheckType(vrDate, varDate | varByRef);
    CheckType(vrBoolean, varBoolean | varByRef);
    CheckType(vrByte, varByte | varByRef);
    CheckType(vrOleStr, varOleStr | varByRef);

    SysFreeString(oleStr);
}

//--
void TestAssignments()
{
    Variant vEmpty, vNull;

    //by val
    Variant vSmallint, vInteger, vSingle, vDouble, vCurrency, vDate;
    Variant vOleStr, vDispatch, vBoolean, vByte, vString, vUnknown;

    //by ref
    Variant vrSmallint, vrInteger, vrSingle, vrDouble, vrCurrency, vrDate;
    Variant vrOleStr, vrDispatch, vrBoolean, vrByte, vrString, vrUnknown;

    static short smallint = 3;
    static int integer = 4;
    static float flt = 5;
    static double dbl = 6;
    static Currency currency = 7;
    static TDateTime date = String("05/11/95");
    static WordBool boolean = true;
    static Byte byte = 9;
    static wchar_t* oleStr = SysAllocString(L"Hey, welcome to the world of variant and OLE");

    vEmpty = Variant();
    vNull = Variant().ChangeType(varNull);

    //by value
    vSmallint = (short)3;
    vInteger = 4;
    vSingle = (float)5;
    vDouble = (double)6;
    vCurrency = Currency(7);

    vDate = (TDateTime) StrToDate(String("03/27/77"));
    vBoolean = true;
    vByte = (Byte)9;
    vString = "This is a Ansi string";
    vOleStr = L"This is an OLE string";
    vDispatch = Variant::CreateObject("Word.Basic");
    vUnknown = Variant::CreateObject("Word.Basic").AsType(varUnknown);

    // by reference
    vrSmallint = &smallint;
    vrInteger = &integer;
    vrSingle = &flt;
    vrDouble = &dbl;
    vrCurrency = ¤cy;
    vrDate = &date;
    vrBoolean = &boolean;
    vrByte = &byte;
    vrOleStr = &oleStr;

    cout << endl << "TestAssignments output:" << endl;
    CheckType(vEmpty, varEmpty);

    cout << endl << "TestAssignments (by val) output:" << endl;
    CheckType(vSmallint, varSmallint);
    CheckType(vInteger, varInteger);
    CheckType(vSingle, varSingle);
    CheckType(vDouble, varDouble);
    CheckType(vCurrency, varCurrency);
    CheckType(vDate, varDate);
    CheckType(vBoolean, varBoolean);
    CheckType(vByte, varByte);
    CheckType(vString, varString);
    CheckType(vOleStr, varOleStr);
    CheckType(vDispatch, varDispatch);
    CheckType(vUnknown, varUnknown);

    cout << endl << "TestAssignments (by ref) output:" << endl;
    CheckType(vrSmallint, varSmallint | varByRef);
    CheckType(vrInteger, varInteger | varByRef);
    CheckType(vrSingle, varSingle | varByRef);

    CheckType(vrDouble, varDouble | varByRef);
    CheckType(vrCurrency, varCurrency | varByRef);
    CheckType(vrDate, varDate | varByRef);
    CheckType(vrBoolean, varBoolean | varByRef);
    CheckType(vrByte, varByte | varByRef);
    CheckType(vrOleStr, varOleStr | varByRef);

    SysFreeString(oleStr);
}

//--
void TestTypeChanging()
{
    Variant vSmallint = 3;
    Variant vx, vy;

    cout << endl << "TestTypeChanging output:" << endl;

    vx = vSmallint.AsType(varString);
    CheckType(vx, varString);

    vx.ChangeType(varInteger);
    CheckType(vx, varInteger);

    vy = vx.AsType(varSingle);
    CheckType(vy, varSingle);
    CheckType(vx, varInteger);

    vx.Clear();
    CheckType(vx, varEmpty);
}

//--
void TestOperators()
{
    Variant vx, vy;

    cout << endl <<"TestOperators output:" << endl;

    vx = 5;

    vy = vx + 0;
    Compare(vy, vx);

    Compare(vx-0, vx);
    Compare(vx*1, vx);
    Compare(vx/1, vx);

    vx = 5;
    vy = vx + 0;
    Compare(vy, vx);

    Compare(vx-0, vx);
    Compare(vx*1, vx);
    Compare(vx/1, vx);

    vy = vx;
    Compare(vy+=0, vx);
    Compare(vy-=0, vx);
    Compare(vy*=1, vx);
    Compare(vy/=1, vx);

    vx = 5;
    vy = 46;
    vx = 2*vx + (vy-6)/2;
    Compare(vx, 30);

    vx = "hi ";
    vy = "there";
    vx += vy;
    Compare(vx, "hi there");

    //force a variant so we can test variant's operator+
    vx = 1 + 20.0 + Variant(String("300"));
    Compare(vx, 321);

    vx = 15;
    vy = (vx == 15);
    Compare(vy, true);

    vy = (vx < 15);

    Compare(vy, false);

    vy = (vx > 15);
    Compare(vy, false);

    vy = (vx != 15.3);
    Compare(vy, true);
}

//--
void TestArrays()
{
    Variant a, b;
    int i, tmp;

    cout << endl <<"TestArrays output:" << endl;

    a = VarArrayCreate(OPENARRAY(int, (0, 9)), varInteger);
    b = VarArrayCreate(OPENARRAY(int, (1, 3, 0, 9)), varInteger);

    // Do it with array lock
    int* ax = (int*) a.ArrayLock();
    for (i=0; i < 10; i++)
        ax[i] = i*i;

    Compare(ax[0], 0);
    Compare(ax[9], 81);

    a.ArrayUnlock();

    //Do it again with Put/GetElement
    for (i=0; i < 10; i++)
    {
        tmp = i*i*i;
        a.PutElement(&tmp, i);
    }
    Compare(a.GetElement(0), 0);
    Compare(a.GetElement(9), 9*9*9);

    // Try a 2-dimensional array

    for (i=0; i < 10; i++)
    {
        b.PutElement(&i, 1, i);
        tmp = sqrt(i);
        b.PutElement(&tmp, 2, i);
        tmp = i*i;
        b.PutElement(&tmp, 3, i);
    }

    Compare(b.GetElement(1,0), 0);
    Compare(b.GetElement(1,9), 9);

    Compare(b.GetElement(2, 0), 0);
    Compare(b.GetElement(2, 9), 3);

    Compare(b.GetElement(3, 0), 0);
    Compare(b.GetElement(3, 9), 81);
}

//--
void TestOle()
{
    Variant      wordBasic, res;
    Function    fileNew("FileNew");
    Procedure insert("Insert");
    Function    fileSaveAs("FileSaveAs");

    cout << endl << "TestOle:    check contents of test.txt" << endl;
    wordBasic = Variant::CreateObject("Word.Basic");
    res = wordBasic.Exec(fileNew <<"Normal");

    wordBasic.Exec(insert <<"This is the first line\n");
    wordBasic.Exec(insert.ClearArgs() <<"This is the second line\n");
    res = wordBasic.Exec(fileSaveAs <<"test.txt" <<3);
}

