
 s

Introduction to component writing
See also
Borland C++Builder is not just a development environment for visually assembling applications from
existing components. It also includes everything necessary to create custom components. These
components can be based on existing components or be entirely new. You create components within
code and don't use the visual tools of the development environment.
If you have already developed components with Delphi, you can add them to the C++Builder
Component palette. You can write C++Builder components in either C++ or Object Pascal.
The Component Writer's Guide and its accompanying Help file (BCBCWG.HLP) describe everything you
need to know to write components for C++Builder applications in C++.
This material has two purposes:

To teach you how to create working components
To ensure that the components you write are well-behaved parts of the C++Builder environment

Whether you're writing components for your own applications or for commercial distribution, this book
will guide you to writing components that fit in well with any C++Builder application.

What is a component?
See also
Components are the building blocks of C++Builder applications. Although most components represent
visible parts of a user interface, components can also represent nonvisual elements in a program, such
as timers and databases.
There are three different levels at which to think about components:
The functional definition of component
The technical definition of component
The component writer's definition of component

The functional definition of component
See also
From the component user's perspective, a component is something to choose from the Component
palette and use in an application by manipulating it in the Forms Designer or in code. From the
component writer's perspective, however, a component is an object in code. Although there are few real
restrictions on what you can do when writing a component, it's good to keep in mind what the end user
expects when using the components you write.
Before you attempt to write components, we strongly recommend that you become familiar with the
existing components in C++Builder so you can make your components familiar to users. Your goal
should be to make your components "feel" as much like other components as possible.

The technical definition of component
See also
At the simplest level, a component is any class descended from the class TComponent. TComponent
defines the most basic behavior that all components must have, such as the ability to appear on the
Component palette and operate in the Forms Designer.
But beyond that simple definition are several larger issues. For example, although TComponent defines
the basic behavior needed to operate in the C++Builder environment, it can't know how to handle all the
specific additions you make to your components. You'll have to specify those yourself.
Although it's not difficult to create well-behaved components, it does require that you pay close attention
to the standards and conventions spelled out in this book.

The component writer's definition of component
See also
At a very practical level, a component is any element that can "plug into" the C++Builder development
environment. It can represent almost any level of complexity, from a simple addition to one of the
standard components, to a vast, complex interface to another hardware or software system. In short, a
component can do or be anything you can create in code, as long as it fits into the component
framework.
A component, then, is essentially an interface specification. This manual spells out the framework onto
which you build your specialized code to make it work in C++Builder.
Defining the limits of "component" is therefore like defining the limits of programming. We can't tell you
every kind of component you can create, any more than we can tell you all the programs you can write
in a given language. What we can do is tell you how to write your code so that it fits well in the C+
+Builder environment.

What's different about writing components?
See also
There are three important differences between the task of creating a component for use in C++Builder
and the more common task of creating an application that uses components:

Component writing is nonvisual
Component writing requires deeper knowledge of classes
Component writing follows more conventions

Component writing is nonvisual
See also
The most obvious difference between writing components and building applications with C++Builder is
that component writing is done strictly in code. Because the visual design of C++Builder applications
requires completed components, creating those components requires writing C++ or Object Pascal
code.
Although you can't use the same visual tools for creating components, you can use all the programming
features of the C++Builder development environment, including the Code editor, and integrated
debugger.

Component writing requires deeper knowledge of classes
See also
Other than the nonvisual programming, the biggest difference between creating components and using
them is that when you create a new component, you derive a new class from an existing one, adding
new properties and methods. Component users, on the other hand, use existing components and
customize their behavior at design time by changing properties and specifying responses to events.
When deriving new classes, you have access to parts of the base classes unavailable to component
users of those same classes. These parts, intended only for component writers, are collectively called
the protected interface to the classes. Derived classes also need to call on their base classes for a lot of
their implementation, so component writers need to be familiar with that aspect of object-oriented
programming.

Component writing follows more conventions
See also
Writing a component is a more traditional programming task than visual application creation, and there
are more conventions you need to follow than when you use existing components. Before you start
writing components of your own it is important to really use the components that come with C++Builder.
You'll become familiar with such things as naming conventions, and you'll also understand what type of
capabilities component users will come to expect when they use your components.
Component users expect that they can do almost anything to your components at any time. Writing
components that fulfill that expectation is not difficult, but it requires some forethought and adherence to
conventions.

Creating a component
See also
Briefly, the process of creating your own component consists of these steps:
1 Create a unit (a .CPP file and header combination) for the new component.
2 Derive a component type from an existing component type.
3 Add properties, methods, and events as needed.
4 Register your component with C++Builder.
5 Create a Help file for your component and its properties, methods, and events.
All these steps are covered in detail in this Help file. When you finish, the complete component includes
these files:

An .OBJ file, which is created automatically if you provide a .CPP (C++ source) or .PAS (Object
Pascal source) file.

A header file
If your source code is C++ or C, the header is an .H file.
If your source code is Object Pascal, the compiler generates an .HPP interface file.
A palette bitmap (.RES file or .DCR file)
If the component uses a form, a .DFM file

Overview of component creation
See also
This set of topics provides a broad overview of component architecture, the philosophy of component
design, and the process of writing components for C++Builder applications.
The main topics discussed are

The Visual Component Library
Components and classes
How do you create components?
What goes in a component?
Creating a new component
Testing uninstalled components
Installing a component on the Component palette

All this material assumes you have some familiarity with using C++Builder and its standard components.

The Visual Component Library
See also
C++Builder's components are all part of a class hierarchy called the Visual Component Library (VCL).
The following figure shows the relationship of the classes that make up VCL.
Note that the class TComponent is the shared ancestor of every component in the VCL. TComponent
provides the minimal properties and events necessary for a component to work in C++Builder. The
various branches of the library provide other, more specialized capabilities.

When you create a component, you add to the VCL by deriving a new class from one of the existing
class types in the hierarchy.

Components and classes
See also
Because components are classes, component writers work with classes at a different level than
component users do. Creating new components requires that you derive new classes. OOP for
component writers describes in detail the kinds of object-oriented tasks component writers need to use.
Briefly, there are two main differences between creating components and using components. When
creating components,

You have access to parts of the class that are inaccessible to end users.
You add new parts (such as properties) to your components.

Because of these differences, you need to be aware of more conventions, and you need to think in
terms of how users will use the components you write.

How do you create components?
See also
A component can be almost any program element you want to manipulate at design time. Creating a
new component means deriving a new component class from an existing class. You can derive a new
component from any existing component, but the following are the most common ways to create new
components:

Modifying existing controls
Creating original controls
Creating graphic controls
Subclassing Windows controls
Creating nonvisual components

The following table summarizes the different kinds of components and the classes you use as starting
points for each.

To do this Start with this type
Modify an existing component Any existing component, such as TButton or TListBox, or an

abstract component type, such as TCustomListBox.
Create an original control TWinControl
Create a graphic control TGraphicControl
Create a nonvisual component TComponent

You can also derive other classes that are not components, but you cannot manipulate them in a form.
C++Builder includes many of these classes, such as TINIFile or TFont.

Modifying existing controls
See also
The simplest way to create a component is to start from an existing, working component and customize
it. You can derive a new component from any of the components provided with C++Builder. For
instance, you might want to change the default property values of one of the standard controls.
There are certain controls, such as list boxes and grids, that have a number of variations on a basic
theme. In those cases, C++Builder provides an abstract control class (with the word "custom" in its
name, such as TCustomGrid) from which to derive customized versions.
For example, you might want to create a special kind of list box that does not have some of the
properties of the standard TListBox class. You can't remove a property from an ancestor class, so you
need to derive your component from something higher in the hierarchy than TListBox. Rather than
forcing you to go clear back to an abstract control class and reinvent all the list box functions, the Visual
Component Library (VCL) provides TCustomListBox, which implements all the properties needed for a
list box, but does not publish all of them.
When deriving a component from one of the abstract classes such as TCustomListBox, you publish
those properties you want to make available in your component and leave the rest protected.

Creating original controls
See also
A windowed control is an item that's visible at runtime, usually one the user can interact with. These
windowed controls all descend from the class TWinControl. The key aspect of a standard control is that
it has a window handle, embodied in a property called Handle. The window handle means that Windows
"knows about" the control, so that

The control can receive the input focus.
You can pass the handle to Windows API functions. (Windows needs a handle to identify which

window to operate on.)
While you could create an original control (one that's not related to any existing control) using
TWinControl as your starting point, C++Builder provides the TCustomControl component for just this
purpose. A TCustomControl component is a specialized windowed control that makes it easier to draw
complex visual images.
If your control doesn't need to receive input focus, you can make it a graphic control, which saves
system resources.
All the components that represent standard windows controls, such as push buttons, list boxes, and edit
boxes, descend from TWinControl except TLabel, as label controls never receive the input focus.

Creating graphic controls
See also
Graphic controls are very similar to custom controls, but they don't carry the overhead of being Windows
controls. That is, Windows doesn't know about graphic controls. They have no window handles, and
therefore consume no system resources. The main restriction on graphic controls is that they can't
receive the input focus.
C++Builder supports the creation of custom controls through the TGraphicControl component.
TGraphicControl is an abstract component derived from TControl. Although you can derive controls from
TControl, you should derive them from TGraphicControl, because TGraphicControl provides a canvas to
paint on and handles WM_PAINT messages. All you need to do is override the Paint method.

Subclassing Windows controls
See also
Windows has a concept called a window class that is somewhat similar to the object-oriented
programming concept of object or class. A window class is a set of information shared between different
instances of the same sort of window or control in Windows.
When you create a new kind of control (usually called a custom control) in traditional Windows
programming, you define a new window class and register it with Windows. You can also base a new
window class on an existing class, which is called subclassing.
In traditional Windows programming, if you wanted to create a custom control, you had to write it in a
dynamic-link library (DLL), much like the standard Windows controls, and provide an interface to it.
Using C++Builder, you can create a component "wrapper" around any existing Windows class. So if you
already have a library of custom controls that you want to use in your C++Builder applications, you can
create C++Builder components that let you use your existing controls and derive new controls from them
just as you would any other component.
Although this text does not include an example of subclassing a Windows control, you can see the
techniques used in the components in the StdCtls header file that represent the standard Windows
controls, such as TEdit.

Creating nonvisual components
See also
The abstract TComponent class is the base class for all components. The only components you create
directly from TComponent are nonvisual components. Most of the components you write will probably be
various kinds of visual controls.
TComponent defines all the properties and methods essential for a component to participate in the Form
Designer. Any component you derive from TComponent, therefore, already has design capability built
into it.
Nonvisual components are fairly rare. You mostly use them as an interface for nonvisual program
elements (much as C++Builder uses them for database elements) and as place holders for dialog boxes
(such as the file dialog boxes).

What goes in a component?
See also
There are few restrictions on what you can put in the components you write. There are certain
conventions you should follow, however, if you want to make your components easy and reliable for the
people who use them.
This section discusses the philosophies underlying the design of components, including the following
topics:

Removing dependencies
Properties, events, and methods
Graphics encapsulation
Registration

Removing dependencies
See also Example
Perhaps the most important philosophy behind the creation of C++Builder's components is the necessity
of removing dependencies. One of the things that makes components so easy for end users to
incorporate into their applications is the fact that there are generally no restrictions on what they can do
at any given point in their code.
The very nature of components suggests that different users will incorporate them into applications in
varying combinations, orders, and environments. You should design your components so that they
function in any context, without requiring any preconditions.

An example of removing dependencies
An excellent example of removing dependencies in components is the Handle property of windowed
controls. If you've written Windows applications before, you know that one of the most difficult and error-
prone aspects of getting a program running is making sure that you don't access a window or control
until you've created it by calling the CreateWindow API function. Calling API functions with invalid
handles causes a multitude of problems.
C++Builder components protect users from worrying about window handles and whether they are valid
by ensuring that a valid handle is always available when needed. That is, by using a property for the
window handle, the component can check whether the window has been created, and therefore whether
there is a valid window handle. If the handle isn't already valid, the property creates the window and
returns the handle. Thus, any time a user's code accesses the Handle property, it is assured of getting a
valid handle.
By removing the background tasks such as creating the window, components allow developers to focus
on what they really want to do. If a developer needs to pass a window handle to an API function, it
shouldn't be necessary to first check to make sure there's a valid handle and, if necessary, create the
window. With component-based programming, the programmer can write assuming that things will work,
instead of constantly checking for things that might go wrong.
Although it might take a little more time to create components that don't have dependencies, it's
generally time well spent. Not only does it keep users of your components from having to repeatedly
perform the same tasks, but it also reduces your documentation and support burdens, since you don't
have to provide and explain numerous warnings or resolve the problems users might have with your
components.

Properties, events, and methods
See also
Outside of the visible image the component user manipulates in the form at design time, the most
obvious attributes of a component are its properties, events, and methods. Each of these is sufficiently
important that it has its own section in this file, but this section explains a little of the philosophy of
implementing them.

Properties
Properties give the component user the illusion of setting or reading the value of a variable in the
component while allowing the component writer to hide the underlying data structure or to implement
side effects of accessing the value.
There are several advantages to the component writer in using properties:

Properties are available at design time.
This allows the component user to set and change initial values of properties without having to write
code.

Properties can check values or formats as the user assigns them.
Validating user input prevents errors caused by invalid values.

The component can construct appropriate values on demand.
Perhaps the most common type of error programmers make is to reference a variable that hasn't had
an initial value assigned. By making the value a property, you can ensure that the value read from the
property is always valid.

Creating properties explains how to add properties to your components.

Events
Events are connections between occurrences determined by the component writer (such as mouse
actions and keystrokes) and code written by component users (event handlers). In essence, an event is
the component writer's way of providing a hook for the component user to specify what code to execute
when a particular occurrence happens.
It is events, therefore, that allow component users to be component users instead of component writers.
The most common reason for subclassing in traditional Windows applications is that users want to
specify a different response to, for example, a Windows message. But in C++Builder, component users
can specify handlers for predefined events without subclassing, so they don't need to derive their own
components.
Creating events explains how to add events for standard Windows occurrences or events you define
yourself.

Methods
Methods are functions built into a component. Component users use methods to direct a component to
perform a specific action or return a certain value not covered by a property. Methods are also useful for
updating several related properties with a single call.
Because they require execution of code, methods are only available at runtime.
Creating methods explains how to add methods to your components.

Graphics encapsulation
See also
C++Builder takes most of the drudgery out of Windows graphics by encapsulating the various graphic
tools into a canvas. The canvas represents the drawing surface of a window or control, and contains
other classes, such as a pen, a brush, and a font. A canvas is much like a Windows device context, but
it takes care of all the bookkeeping for you.
If you've ever written a graphic Windows application, you're familiar with the kinds of requirements
Windows' graphics device interface (GDI) imposes on you, such as limits on the number of device
contexts available, and restoring graphic objects to their initial state before destroying them.
When working with graphics in C++Builder, you don't have to worry about any of those things. To draw
on a form or component, you access the Canvas property. If you want to customize a pen or brush, you
set the color or style. When you finish, C++Builder takes care of disposing of the resources. In fact, it
caches resources, so if your application frequently uses the same kinds of resources, the caching will
probably prevent a lot of creating and recreating.
Of course, you still have full access to the Windows GDI, but you'll often find that your code is much
simpler and runs faster if you use the canvas built into C++Builder components. Graphics features are
detailed in Using graphics in components.

Registration
See also
Before your components can operate in C++Builder at design time, you have to register them with C+
+Builder. Registration tells C++Builder where you want your component to appear on the Component
palette. There are also some customizations you can make to the way C++Builder stores your
components in the form file. Registration is explained in Registering components.

Creating a new component
See also
There are several steps you perform whenever you create a new component. All the examples given
that create new components assume you know how to perform these steps.
You can create a new component two ways:

Using the Component wizard
Creating a component manually

Once you do either of those, you have at least a minimally functional component ready to install on the
Component palette.After installing, you can add your new component to a form and test it in both design
time and runtime. You can then add more features to the component, update the Component palette,
and continue testing.

Using the Component wizard
See also
You can use the Component wizard to create a new component. Using the Component wizard simplifies
the initial stages of creating a new component, as you must specify only these things:

The class name for the new component
The class from which it is derived
The Component palette page you want it to appear on

The Component wizard performs the same tasks you would do when creating a component manually,
namely

Creating a unit (a .CPP file and its associated header)
Deriving the component
Declaring a new constructor
Registering the component

The Component wizard can't add new components to an existing unit (consisting of a .CPP file and an
associated header file). If you want to add new components, you must add them to the unit manually.
To open the Component wizard, choose one of these two methods:

Choose Component|New.
Choose File|New, select the New page, and select Component.

After you fill in the fields in the Component wizard, choose OK. C++Builder creates a new unit consisting
of a .CPP file and an associated header file.
The .CPP file appears in the Code editor. It contains a constructor for the component and the Register
function that registers the component, informing C++Builder which component to add to the component
library and on which page of the Component palette it should appear. The file also contains an include
statement that specifies the header file that was created. For example,

#include <vcl\vcl.h>
#pragma hdrstop
#include "Unit1.h"
//---
__fastcall TNewComponent::TNewComponent(TComponent* AOwner): TComponent(AOwner)
{
}
namespace Unit1
{
 void __fastcall Register()
 {
 TComponentClass classes[1] = {__classid(TNewComponent)};
 RegisterComponents("Samples", classes, 0);
 }
}

To open the header file in the Code editor, place your cursor on the header file name and click your right
mouse button to display the context menu. Choose Open File at Cursor on the menu.
The header file contains the new class declaration, including a constructor declaration, and several
include statements to support the new class. For example,

#ifndef Unit1H
#define Unit1H
//---
#include <vcl\sysutils.hpp>
#include <vcl\controls.hpp>
#include <vcl\classes.hpp>
#include <vcl\forms.hpp>
//---
class TNewComponent : public TComponent
{
private:
protected:
public:
 virtual __fastcall TNewComponent(TComponent* AOwner);
__published:
};

//---
#endif

You should save the .CPP file right away, giving it a meaningful name. When you do, the header file
name changes to the same name as the .CPP file except it has an .H file extension instead of a .CPP
file extension.

Creating a component manually
See also
The easiest way to create a new component is to use the Component wizard. You can, however,
perform the same steps manually.
To create a component manually, follow these steps:
1 Create a unit
2 Derive the component
3 Declare a new constructor
4 Register the component

Creating a unit
See also
A C++Builder unit is comprised of a .CPP file and an .H file combination that is compiled into an .OBJ
file. C++Builder uses units for a number of purposes. Every form has its own unit, and most components
(or logical groups of components) have their own units as well.
When you create a component, you either create a new unit for the component, or add the new
component to an existing unit.
To create a unit for a component, choose one of these methods:

Choose File|New to display the New Items dialog box, select the New tab, select Unit, and
choose OK.

Choose File|New Unit.
C++Builder creates a .CPP file and a header file and displays the .CPP file in the Code editor. Save the
file with a meaningful name.
To open the header file, place your cursor on the name of the header file in the Code editor, right-click
the name to display a menu, and choose Open File at Cursor.
Once you have either a new or existing unit for your component, you can derive the component class.
To add a component to an existing unit, choose File|Open to choose the source code for an existing
unit.

Note:
When adding a component to an existing unit, make sure that unit already contains only component
code. Adding component code to a unit that contains, for example, a form, causes errors in the
Component palette.
Once you have either a new or existing unit for your component, you can derive the component class.

Deriving the component
See also Example
Every component is a class descended from TComponent, from one of its more specialized
descendants, such as TControl or TGraphicControl, or from an existing component class. How do you
create components? describes which class to derive from for different kinds of components.
Deriving new classes is explained in more detail in Creating new classes.
To derive a component class, add a class declaration to the header file.

An example of deriving a component
To create, for example, the simplest component class, a nonvisual component descended directly from
TComponent, add the following class declaration to your header fileto the interface part of your
component unit:
class TNewComponent : public TComponent
{
};
You should also add the necessary include statements that specify the .HPP files needed for the new
component. These are the most common include statements you need:
#include <sysutils.hpp>
#include <controls.hpp>
#include <classes.hpp>
#include <forms.hpp>

Declaring a new constructor
See also
Each new component must have a constructor that overrides the constructor of the class from which it
was derived. When you write the constructor for your new component, it must always call the inherited
constructor.
Within the class declaration, declare a virtual constructor in the public section of the class. You can
learn more about the public section in Controlling access.
For example,

class TNewComponent : public TComponent
{
public:
 virtual __fastcall TNewComponent(TComponent* AOwner);
};

In the .CPP file, implement the constructor:
__fastcall TNewComponent::TNewComponent(TComponent* AOwner): TComponent(AOwner)
{
}

Within the constructor, you add the code you want to execute when the component is created.

Registering the component
See also Example
Registering a component is a simple process that tells C++Builder which components to add to its
component library, and on which pages of the Component palette the components should appear.
Registering components describes the registration process and its nuances in much more detail.
To register a component,
1 Add a function named Register to the unit's .CPP file, placing it within a namespace. The namespace

is the name of the file the component is in, minus the file extension, with all lowercase letters except
the first letter.
For example, this code exists within a Newcomp namespace, whereas Newcomp is the name of
the .CPP file:
namespace Newcomp
{
 void __fastcall Register()
 {
 }
}

2 Within the Register function, declare an open array of type TComponentClass that holds the array of
components you are registering. The syntax should look like this:
TComponentClass classes[1] = {__classid(TNewComponent)};

In this case, the array of classes contains just one component, but you can add all the components
you want to register to the array.

3 Within the Register function, call RegisterComponents for each component you want to register.
RegisterComponents is a function that takes three parameters: the name of a Component palette
page, the array of component classes, and the size - 1 of the component classes. If you're adding a
component to an existing registration, you can either add the new component to the set in the existing
statement, or add a new statement that calls RegisterComponents.
You can register multiple components with just one RegisterComponents call if all components go on
the same page on the Component palette.

An example of registering a component
To register a component named TNewComponent and place it on the Samples page of the Component
palette, add the following Register function to the .CPP file of the unit that contains TNewComponent's
declaration:

namespace Newcomp
{
 void __fastcall Register()
 {
 TComponentClass classes[1] = {__classid(TNewComponent)};
 RegisterComponents("Samples", classes, 0);
 }
}

This Register call places TNewComponent on the Samples page of the Component palette.
Once you register a component, you can test the component, and finally install the component onto the
Component palette.

Testing uninstalled components
Example
You can test the runtime behavior of a component before you install it on the Component palette. This is
particularly useful for debugging newly-created components, but you can use the same technique for
testing any component, regardless of whether the component appears on the Component palette.
Testing your components without installing has the added benefit of generating compile-time errors that
are seen only when the class is instantiated. For example, trying to create an instance of an abstract
class yields an error directing you to the pure virtual that must be overloaded.
In essence, you can test an uninstalled component by emulating the actions performed by C++Builder
when a user places a component from the Component palette on a form.
To test an uninstalled component, do the following:
1 Create a new application or open an existing one.
2 Choose Project|Add to Project to add the component unit to your project.
3 Include the .H file of the component unit in the header file of a form unit.
4 Add a data member to the form to represent the component.

This is one of the main differences between the way you add components and the way C++Builder
does it. You add the data member to the public part at the bottom of the form's class declaration. C+
+Builder would add it above, in the published part of the class declaration that it manages.
You should never add data members to the C++Builder-managed part of the form's class declaration.
The items in that part of the class declaration correspond to the items stored in the form file. Adding
the names of components that do not exist on the form can render your form file invalid.

5 Construct the component in the form's constructor.
When you call the component's constructor, you must pass a parameter specifying the owner of the
component (the component responsible for destroying the component when the time comes). You
nearly always pass this as the owner. In a method, this is a reference to the class that contains the
method. In this case, in the form's OnCreate handler, this refers to the form.

6 Assign the Parent property.
Setting the Parent property is always the first thing to do after constructing a control. The parent is the
component that visually contains the control, which is most often the form, but might be a group box
or panel. Normally, you'll set Parent to this, that is, the form. Always set Parent before setting other
properties of the control.

Warning:
If your component is not a control (that is, if TControl is not one of its ancestors), skip this step. If you
accidentally set the form's Parent property to this instead of the component's, you can cause
Windows to crash.

7 Set any other component properties as desired.

An example of testing uninstalled components
Suppose you want to test a new component of class TNewControl in a unit named NewCtrl. Create a
new project, then follow the steps to end up with a form unit that looks like this:

#ifndef TestFormH
#define TestFormH
//---
#include <classes.hpp>
#include <controls.hpp>
#include <stdCtrls.hpp>
#include <forms.hpp>
#include "NewCtrl.h" // 2. Add NewCtrl to the form header file
//---
class TForm1 : public TForm
{
__published:
private:
public:
 TNewControl* NewControl1; // 3. Add a data member
 virtual __fastcall TForm1(TComponent* Owner);
};
//---
extern TForm1 *Form1;
//---
#endif

The include statement that includes the NEWCOMP.H file assumes that the component resides in the
directory of the current project or in a directory that is on the include path of the project.
This is the .CPP file of the form unit:

#include <vcl.h>
#pragma hdrstop
#include "TestForm.h"
//---
#pragma resource "*.dfm"
TForm1 *Form1;
//---
__fastcall TForm1::TForm1(TComponent* Owner)
 : TForm(Owner)
{
 NewContro11 = new TNewControl(this); // 4. Construct the component
 NewControl1->Parent = this; // 5. Set Parent property if component is a control
 NewControl1->Left = 12; // 6. Set other properties as needed
}

Installing a component on the Component palette
See also
When you install a component on the Component palette, the component library is rebuilt. Any time the
component library is rebuilt, either by installing a component, or by executing the Component|Rebuild
Library command, C++Builder creates a temporary library source file. The name of the library source file
is the name of the library as a .CPP file. For VCL, the name of the file is CMPLIB32.CPP.
To save the library source file that is generated, choose Options|Environment|Library|Save Library
Source Code.
Now when you rebuild the component library, a CMPLIB32.CPP file is created and remains so that you
can browse through it.

Where to place your component
See also
Before you install your new component, move all the component's files to the CBuilder\Lib\Obj directory.
This includes:

All binary files (.DFM, .RES or .RC, .DCR)
All source files (.CPP, .PAS)
All .OBJ and .LIB files
All header files (.H and .HPP)

Adding a component
See also
You can add either a C++ or Pascal component to the component library and have it appear on the
Component palette.
To add components to the component library,
1 Choose Component|Install.

The Install Components dialog box appears.
2 Choose Add to open the Add Module dialog box.
3 In the Add Module dialog box, type the name of the unit you want to add, or choose Browse to specify

a search path.
Note that you can't specify a literal path in the Add Module dialog box. The path you choose in the
Add Module Browse dialog box adds the directory path to the search path listed in the Install
Components dialog box.

4 Choose OK to close the Add Module dialog box.
The name(s) of the component unit(s) you have specified appears at the bottom of the Installed
Components list. If you select the unit name, the class names for components already residing in the
library are displayed in the Component classes list. Class names for newly added components are not
shown.

5 Choose OK to close the Install Components dialog box and rebuild the library.
Note that even if you've made no changes to the Installed Components list, C++Builder rebuilds the
library. If you have unsaved forms open, you're prompted to save them. Once the library is rebuilt, the
components you've installed are reflected in the Component palette.

Note:
Newly installed components initially appear on the page of the Component palette that was specified by
the component writer in the component source code. You can move the components to a different page
after they've been installed on the palette with the Component|Configure Palette dialog box.

Modifying how the component library is built
See also
When you install one or more components on the Component palette, the component library is rebuilt.
To rebuild, C++Builder follows the build process specified in the default CMPLIB32.MAK file, which is a
make file.
If you want to customize how the Component palette is built, choose Options|Environment|Library and
make the changes you want.

OOP for component writers
See also
Working with C++Builder, you've encountered the idea that a class contains both data and code, and
that you can manipulate classes both at design time and runtime. In that sense, you've become a
component user.
When you create new kinds of components, you deal with classes in ways that end users never need to.
Before you start creating components, you need to be familiar with these topics, which are related to
object-oriented programming (OOP):

Creating new classes
Ancestors and descendants
Controlling access
Dispatching methods
Classes and pointers

Creating new classes
See also
The primary difference between component users and component writers is that writers create new
types of classes and users manipulate instances of classes. This concept is fundamental to object-
oriented programming, and an understanding of the distinction is extremely important if you plan to
create your own components.
The concept of types and instances is not unique to classes. Programmers continually work with types
and instances, but they don't generally use that terminology. As a programmer you generally create
variables of a type. Those variables are instances of the type.
Classes are generally more complex than simple types such as int, but by assigning different values to
instances of the same type, a user can perform quite different tasks.
For example, it's quite common to create a form containing two buttons, one labeled OK and one
labeled Cancel. Each is an instance of class TButton, but by assigning different values to the Text,
Default, and Cancel properties and assigning different handlers to the OnClick events, the user makes
the two instances do very different things.

Deriving new classes
See also
The purpose of defining classes is to provide a basis for useful instances. That is, the goal is to create a
class that you or other users can use in different applications in different circumstances, or at least in
different parts of the same application.
There are two reasons to derive new classes:

Changing class defaults to avoid repetition
Adding new capabilities to a class

In either case, the goal is to create reusable classes. If you plan ahead and design your classes with
future reuse in mind, you can save a lot of later work. Give your classes usable default values, but make
them customizable.

Changing class defaults to avoid repetition
See also
In all programming tasks, needless repetition is something to avoid. If you find yourself rewriting the
same lines of code over and over, you should either place the code in a function, or build a library of
routines you'll use in many programs.
The same reasoning holds for components. If you frequently find yourself changing the same properties
or making the same method calls, you should probably create a new component class that does those
things by default.
For example, it's possible that each time you create an application, you find yourself adding a dialog box
form to perform a particular function. Although it's not difficult to recreate the dialog box each time, it's
also not necessary. You can design the dialog box once, set its properties, and then install a wrapper
component associated with the dialog box onto the Component palette, making the dialog box a
reusable component. Not only can this reduce the repetitive nature of the task, it also encourages
standardization and reduces the chance of error in recreating the dialog box.

Adding new capabilities to a class
See also
The other reason for creating a new kind of component is that you want to add capabilities not already
found in the existing components. When you do that, you can either derive from an existing component
class (for example, creating a specialized kind of list box) or from an abstract, base class, such as
TComponent or TControl.
As a general rule, derive your new component from the class that contains the closest subset of the
features you want. You can add capabilities to a class, but you can't take them away, so if an existing
component class contains properties that you don't want to include in yours, you should derive from that
component's ancestor.
For example, if you want to add some capability to a list box, you would derive your new component
from TListBox. However, if you want to add some new capability but exclude some existing capabilities
of the standard list box, you need to derive your new list box from TCustomListBox, the ancestor of
TListBox. Next, recreate or make visible the list box capabilities you want to include. Finally, add your
new features.

Declaring a new component class
See also Example
When you decide that you need to derive a new class of component, you then need to decide what
class to derive your new class from. As with adding new capabilities to an existing class, the essential
rule to follow is this: Derive from the class that contains as much as possible that you want in your
component, but which contains nothing that you don't want in your component.
C++Builder provides a number of abstract component classes specifically designed for component
writers to use as bases for deriving new component classes. The Component creation starting points
topic shows the different classes you can start from when you create your own components.
To declare a new component class, add a class declaration to the component's header file.

An example of declaring a new component class
Here is the declaration of a simple graphical component:

class TSampleShape : public TGraphicControl
{
public:
 virtual__fastcall TSampleShape(TComponent *Owner);
};

A finished component declaration includes property, data member, and method declarations before the
final }, but an empty declaration is also valid, and provides a starting point for the addition of component
features.

Ancestors and descendants
See also
From a component user's standpoint, a class is a self-contained entity consisting of properties, methods,
and events. Component users don't need to know or care about such issues as which class a given
component is derived from. But these issues are extremely important to you as a component writer.
Component users can take for granted that every control has properties named Top and Left that
determine where the control appears on the form that owns it. To them, it does not matter that all
controls inherit those properties from a common ancestor, TControl. When you create a control,
however, you must know which class to derive from so as to inherit the appropriate parts. You also must
know everything your control inherits, so you can take advantage of inherited features without recreating
them.
From the definition of component classes, you know that when you define a component, you derive it
from an existing class. The class you derive from is called the immediate ancestor of your new class.
The immediate ancestor of the class is called an ancestor of the new class, as are all of its ancestors.
The new class is called a descendant of its ancestors.
If you do not specify an ancestor class, C++Builder derives your class from the default ancestor class,
TObject. Ultimately, the standard class TObject is an ancestor of all classes in the Visual Component
Library.

Class hierarchies
All the ancestor-descendant relationships in an application result in a hierarchy of classes. The most
important thing to remember about class hierarchies is that each "generation" of descendant classes
contains more than its ancestors. That is, a class inherits everything that its ancestor contains, then
adds new data and methods or redefines existing methods.
A class cannot remove anything it inherits, however. For example, if a class has a particular property, all
descendants of that class, direct or indirect, will also have that property.
The general rule for choosing which object to derive from is simple: Pick the object that contains as
much as possible of what you want to include in your new object, but which does not include anything
you do not want in the new object. You can always add things to your objects, but you cannot take
things out.

Controlling access
See also
There are five levels of access control on the parts of classes. Access control lets you specify which
code can access which parts of the class. By specifying levels of access, you define the interface to
your components. If you plan the interface carefully, you improve both the usability and reusability of
your components.
Unless you specify otherwise, the data members, methods, and properties you add to your classes are
private.
The following table shows the levels of access, in order, from most restrictive to most accessible:

Protection Used for
private Hiding implementation details
protected Defining the developer's interface
public Defining the runtime interface
__published Defining the design-time interface
__automated For OLE automation

Hiding implementation details
See also Example
Declaring part of a class as private makes that part invisible to code outside the class unless the
functions are friends of the class. Private parts of a class are mostly useful for hiding details of
implementation from users of the class. Because users of the class can't access the private parts, you
can change the internal implementation of the class without affecting user code.
If you don't specify any access control (private, protected, public, __published, or __automated) on a
data member, method, or property, that part is private.

An example of hiding implementation details
Here is an example shown in two parts that illustrates how declaring a data member as private prevents
users from accessing information.
The first part is a form unit made up of a header file and a .CPP file that assigns a value to a private
data member in the form's OnCreate event handler. Because the event handler is declared within the
TSecretForm class, the unit compiles without error.

#ifndef HideInfoH
#define HideInfoH
//---
#include <classes.hpp>
#include <controls.hpp>
#include <stdCtrls.hpp>
#include <forms.hpp>
//---
class TSecretForm : public TForm
{
__published: // IDE-managed Components
 void __fastcall FormCreate(TObject *Sender);
private:
 int FSecretCode; // declare a private data member
public: // User declarations
 virtual __fastcall TSecretForm(TComponent* Owner);
};
//---
extern TSecretForm *SecretForm;
//---
#endif

This is the accompanying .CPP file:
#include <vcl.h>
#pragma hdrstop
#include "hideInfo.h"
//---
#pragma resource "*.dfm"
TSecretForm *SecretForm;
//---
__fastcall TSecretForm::TSecretForm(TComponent* Owner)
 : TForm(Owner)
{
}
//---
void __fastcall TSecretForm::FormCreate(TObject *Sender)
{
 FSecretCode = 42; // this compiles correctly
}

The second part of this example is another form unit that attempts to assign a value to the FSecretCode
data member in the SecretForm form. This is the header file for the unit:

#ifndef TestHideH
#define TestHideH
//---
#include <classes.hpp>
#include <controls.hpp>
#include <stdCtrls.hpp>
#include <forms.hpp>
//---
class TTestForm : public TForm
{
__published: // IDE-managed Components
 void __fastcall FormCreate(TObject *Sender);
public: // User declarations
 virtual __fastcall TTestForm(TComponent* Owner);
};
//---
extern TTestForm *TestForm;
//---
#endif

This is the accompanying .CPP file. Because the OnCreate event handler attempts to assign a value to
a data member private to the SecretForm form, the compilation fails with the error message
'TSecretForm::FSecretCode' is not accessible.

#include <vcl.h>
#pragma hdrstop
#include "testHide.h"
#include "hideInfo.h"
//---
#pragma resource "*.dfm"
TTestForm *TestForm;
//---
__fastcall TTestForm::TTestForm(TComponent* Owner)
 : TForm(Owner)
{
}
//---
void __fastcall TTestForm::FormCreate(TObject *Sender)
{
 SecretForm->FSecretCode = 13; //compiler stops here with error message
}

Although a program using the HideInfo unit can use classes of type TSecretForm, it can't access the
FSecretCode data member in any of those classes.

Defining the developer's interface
See also
Declaring part of a class as protected makes that part invisible to code outside the class like parts
declared private. With protected parts, however, units that contain classes derived from the class can
access the protected parts.
You can use protected declarations to define a developer's interface to the class. That is, users of the
class don't have access to the protected parts, but derived classes do. In general, that means you can
make interfaces available that allow component writers to change the way a class works without making
those details visible to end users.

Defining the runtime interface
See also Example
Declaring part of a class as public makes that part visible to any code that has access to the class as a
whole. That is, the public part has no special restrictions on it.
Public parts of classes are available at runtime to all code, so the public parts of a class define that
class's runtime interface. The runtime interface is useful for items that aren't meaningful or appropriate
at design time, such as properties that depend on actual runtime information or which are read-only.
Methods that you intend for users of your components to call should also be declared as part of the
runtime interface.
Note that read-only properties can't operate at design time, so they should appear in the public
declaration section.

An example of defining the runtime interface
Here is an example that shows two read-only properties declared as part of a component's runtime
interface:

class TSampleComponent : public TComponent
{
private:
 int FTempCelsius; // implementation details are private
 int GetTempFahrenheit();
public:
 ...
 __property int TempCelsius = {read=FTempCelsius}; // properties are public
 __property int TempFahrenheit = {read=GetTempFahrenheit};
};

This is the GetTempFahrenheit method in the .CPP file:
int TSampleComponent::GetTempFahrenheit()
{
 return FTempCelsius * (9 / 5) + 32;
}

Because the user can't change the value of the properties, the properties should not appear in the
Object Inspector, and, therefore, they should not be part of the design-time interface.

Defining the design-time interface
See also Example
Declaring part of a class as __published makes that part public and also generates runtime type
information for the part. Among other things, runtime type information ensures that the Object Inspector
can access properties and events.
Because only published parts show up in the Object Inspector, the published parts of a class define that
class's design-time interface. The design-time interface should include any aspects of the class that a
user might want to customize at design time, but must exclude any properties that depend on specific
information about the runtime environment.

Note:
Read-only properties cannot be part of the design-time interface because the user cannot alter them.
Read-only properties should be public.

An example of defining the design-time interface
Here is an example of a published property. Because it is published, it appears in the Object Inspector at
design time.

class TSampleComponent : public TComponent
{
private:
 int FTemperature;
 ...
__published:
 __property int Temperature = {read=FTemperature, write=FTemperature};
};

Temperature, the property in this example, is available at design time, so users of the component can
adjust the value.

Dispatching methods
Dispatch is the term used to describe how your application determines which class method should be
invoked when it encounters a class method call. When you write code that calls a class method, it looks
like any other function call. Classes, however, have two different ways of dispatching methods.
The two types of method dispatch are

Regular (not virtual) methods
Virtual methods

Regular methods
See also
Class methods are regular (or nonvirtual) unless you specifically declare them as virtual, or unless they
override a virtual method in a base class. The compiler can determine the exact address of a regular
class member at compile time. This is known as compile-time binding.
A base class regular method is inherited by derived classes. In the following example, an object of type
Derived can call the method Regular() as it were it's own method. Declaring a method in a derived class
with the same name and parameters as a regular method in the class's ancestor replaces the ancestor's
method. In the following example, when d->AnotherRegular() is called, it is being dispatched to the
Derived class replacement for AnotherRegular().

class Base
{
public:
 void Regular();
 void AnotherRegular();
 virtual void Virtual();
};
class Derived : public Base
{
public:
 void AnotherRegular(); // replaces Base::AnotherRegular()
 void Virtual(); // overrides Base::Virtual()
};
void FunctionOne()
{
 Derived *d;
 d = new Derived;
 d->Regular(); // Calling Regular() as it were a member of Derived
 // The same as calling d->Base::Regular()
 d->AnotherRegular(); // Calling the redefined AnotherRegular(), ...
 // ... the replacemment for Base::AnotherRegular()
 delete d;
}
void FunctionTwo(Base *b)
{
 b->Virtual();
 b->AnotherRegular();
}

Virtual methods
See also
Unlike regular methods, which are bound at compile time, virtual methods are bound at runtime. The
virtual mechanism of C++ allows a method to be called depending on the class type that is being used
to invoke the method.
In the previous example, if you were to call FunctionTwo() with a pointer to a Derived object, the function
Derived::Virtual() would be called. The virtual mechanism dynamically inspects the class type of the
object you passed at runtime and dispatches the appropriate method. But the call to the regular function
b>AnotherRegular() will always call Base::AnotherRegular() because the address of AnotherRegular()
was determined at compile time.
To declare a new virtual method, preface the method declaration with the virtual keyword.
When the compiler encounters the virtual keyword, it creates an entry in the class's virtual method table
(VMT). The VMT holds the address of all the virtual methods in a class. This lookup table is used at
runtime to determine that b>Virtual should call Derrived::Virtual(), and not Base::Virtual().
When you derive a new class from an existing class, the new class receives its own VMT, which
includes the entries from its ancestor's VMT, plus any additional virtual methods declared in the new
class. In addition, the descendant class can override any of its inherited virtual methods.

Overriding methods
See also Example
Overriding methods means extending or refining an ancestor's method, rather than replacing it. To
override a method in a descendant class, redeclare the method in the derived class, ensuring that the
number and type of arguments are the same.

An example of overriding methods
The following code shows the declaration of two simple components. The first declares two methods,
each with a different kind of dispatching. The other, derived from the first, replaces the nonvirtual method
and overrides the virtual method.

class TFirstComponent : public TComponent
{
public:
 void Move(); // regular method
 virtual void Flash(); // virtual method
};
class TSecondComponent : public TFirstComponent
{
public:
 void Move(); // declares new method "hiding" TFirstComponent::Move()
 void Flash(); // overrides virtual TFirstComponent::Flash in TFirstComponent
};

Classes and pointers
One thing to be aware of when writing components that you don't need to consider when using existing
components is that every class (and therefore every component) is really a pointer.
This becomes important when you pass classes as parameters. In general, you should pass classes by
value rather than by reference. The reason is that classes are already pointers, which are references.
Passing a class by reference, then, would be passing a reference to the reference.

Creating properties
See also
Properties are the most distinctive parts of components, largely because component users can see and
manipulate them at design time and get immediate feedback as the components react in real time.
Properties are also important because, if you design them well, they make your components easier for
others to use and easier for you to maintain.
To make the best use of properties in your components, you should understand the following:

Why create properties?
Types of properties
Publishing inherited properties
Defining component properties
Creating array properties
Writing property editors

Why create properties?
See also
Properties provide significant advantages, both for you as a component writer and for the users of your
components. The most obvious advantage is that properties can appear in the Object Inspector at
design time. That simplifies your programming job, because instead of handling several parameters to
construct a class, you just read the values assigned by the user.
From the component user's standpoint, properties look like variables. Users can set or read the values
of properties much as if those properties were class data members. About the only thing they cannot do
with a property that they would with a variable is pass it as an argument to a method by reference.
From the component writer's standpoint, however, properties provide much more power than simple
class data members because

Users can set properties at design time.
This is very important, because unlike methods, which are only available at runtime, properties let
users customize components before running an application. In general, your components should not
contain a lot of methods; most of them can probably be encapsulated into properties.

Unlike a data member, a property can hide implementation details from users.
For example, the data might be stored internally in an encrypted form, but when setting or reading the
value of the property, the data would appear unencrypted. Although the value of a property might be a
simple number, the component might look up the value from a database or perform complex
calculations to arrive at that value.

Properties allow side effects to outwardly simple assignments.
What appears to be a simple assignment involving a data member can be a call to a method, and that
method could do almost anything.
A simple example is the Top property of all components. Assigning a new value to Top doesn't just
change some stored value; it causes the component to relocate and repaint itself. The effects of
property setting need not be limited to an individual component. For example, setting the Down
property of a speed-button component to true causes the speed button to set the Down properties of
all other speed buttons in its group to false.

The implementation methods for a property can be virtual, meaning that what looks like a single
property to a component user might do different things in different components.

Types of properties
See also
A property can be of any type. The most important aspect of choosing types for your properties is that
different types appear differently in the Object Inspector. The Object Inspector uses the type of the
property to determine what choices appear to the user. You can specify a different property editor when
you register your components, as explained in "Writing property editors" in this chapter Writing property
editors.

Property type Object Inspector treatment
Simple Numeric, character, and string properties appear in the Object Inspector as

numbers, characters, and strings, respectively. The user can type and edit the
value of the property directly.

Enumerated Properties of enumerated types (including Boolean) display the value as defined in
the source code. The user can cycle through the possible values by double-clicking
the value column. There is also a drop-down list that shows all possible values of
the enumerated type.

Set Properties of set types appear in the Object Inspector looking like a set. By
expanding the set, the user can treat each element of the set as a Boolean value:
true if the element is included in the set or false if it's not included.

Object Properties that are themselves classes often have their own property editors.
However, if the class that is a property also has published properties, the Object
Inspector allows the user to expand the list of class properties and edit them
individually. Object properties must descend from TPersistent.

Array Array properties must have their own property editors. The Object Inspector has no
built-in support for editing array properties.

Publishing inherited properties
See also Example
All components inherit properties from their ancestor types. When you derive a new component from an
existing component type, your new component inherits all the properties in the ancestor type. If you
derive instead from one of the abstract types, many of the inherited properties are either protected or
public, but not __published.
If you need more information about levels of protection such as protected, private, and __published,
see Controlling access.
To make a protected or public property appear in the Object Inspector so the user can access it at
design time, you must redeclare the property as __published.
Redeclaring means adding the declaration of an inherited property to the declaration of a descendant
class.

An example of publishing an inherited property
If you derive a component from TWinControl, for example, it inherits a Ctl3D property, but that property
is protected, so users of the component cannot access Ctl3D at design time or runtime. By redeclaring
Ctl3D in your new component, you can change the level of protection to either public or __published.
The following code shows a redeclaration of Ctl3D as __published, making it available at design time:
class TSampleComponent : public TWinControl
{
__published:
 __property Ctl3D;
};
Note that redeclarations can only make a property less restricted, not more restricted. Thus, you can
make a protected property public, but you cannot hide a public property by redeclaring it as protected.
When you redeclare a property, you specify only the property name, not the type and other information
described in Defining component properties. You can also declare new default values when redeclaring
a property, or specify whether to store the property.

Defining component properties
See also
This section focuses on how to declare properties in C++Builder components and the conventions used
by the standard components.
Specific topics include

The property declaration
Internal data storage
Direct access
Access methods
Default property values

The property declaration
See also Example
Declaring a property and its implementation is easy. You add the property declaration to the declaration
of your component class.
To declare a property, you specify three things:

The name of the property
The type of the property
Methods to read and/or set the value of the property

At a minimum, a component's properties should be declared in a public part of the component's class
declaration, making it easy to set and read the properties from outside the component at runtime.
To make the property editable at design time, declare the property in a __published part of the
component's class declaration. Published properties automatically appear in the Object Inspector. Public
properties that aren't published are available only at runtime.

An example of a property declaration
Here is a typical property declaration:

class TYourComponent : public TComponent
{
private:
 int FCount; // data member for storage
 int __fastcall GetCount(); // read method
 void __fastcall SetCount(int ACount); // write method
public:
 __property int Count = {read=GetCount, write=SetCount}; // property declaration
 ...
};

Internal data storage
See also
There are no restrictions on how you store the data for a property. In general, however, C++Builder's
components follow these conventions:

Property data is stored in data members.
Identifiers for properties' data members start with the letter F, and incorporate the name of the

property. For example, the raw data for the Width property defined in TControl is stored in a class data
member called FWidth.

Data members for property data should be declared as private. This ensures that the component
that declares the property has access to them, but component users and descendant components don't.

Derived components should use the inherited property itself, not direct access to the internal data
storage, to manipulate a property.

The underlying principle behind these conventions is that only the implementation methods for a
property should access the data behind that property. If a method or another property needs to change
that data, it should do so through the property, not by direct access to the stored data. This ensures that
the implementation of an inherited property can change without invalidating derived components.

Direct access
See also Example
The simplest way to make property data available is direct access. That is, the read and write parts of
the property declaration specify that assigning or reading the property value goes directly to the internal
storage data member without calling an access method. Direct access is useful when the property has
no side effects, but you want to make it available in the Object Inspector.
It is common to have direct access for the read part of a property declaration but use an access method
for the write part, usually to update the status of the component based on the new property value.

An example of a property that uses direct access
The following component-type declaration shows a property that uses direct access for both the read
and write parts:

class TSampleComponent : public TComponent
{
private: // internal storage is private
 bool FReadOnly; // declare data member to hold value
 ...
__published: // make property available at design time
 __property bool ReadOnly = {read=FReadOnly, write=FReadOnly};
};

Access methods
See also Example
The syntax for property declarations allows the read and write parts of a property declaration to specify
access methods instead of a data member. Regardless of how a particular property implements its read
and write parts, however, that implementation should be protected, and usually declared as virtual.
Users can then create descendant components that override the property implementation, bringing
polymorphic behavior to the property.
You should avoid making access methods public, however. Keeping access methods protected ensures
that component users don't accidentally call those methods, inadvertently modifying a property.

The read method
The read method for a property is a function that takes no parameters, and returns a value of the same
type as the property. By convention, the function's name is "Get" followed by the name of the property.
For example, the read method for a property named Count would be named GetCount.
The only exceptions to the no parameters rule are for array properties, which pass their indexes as
parameters, and for properties that use the index specifier, which also pass index values.
The read method manipulates the internal storage data as needed to produce the value of the property
in the appropriate type.
If you don't declare a read method, the property is write-only. Write-only properties are very rare, and
generally not very useful.

The write method
The write method for a property is always a member function that takes a parameter, of the same type
as the property. The parameter can be passed by reference or by value, and can have any name you
choose. By convention, the method's name is "Set" followed by the name of the property. For example,
the write method for a property named Count would be named SetCount.
The value passed in the parameter is used to set the new value of the property, so the write method
needs to perform any manipulation needed to put the appropriate values in the internal storage.
If you don't declare a write method, the property is read-only.
Properties can share read and write methods. By using the index specifier, you can write one read or
write method that can be used by multiple properties. Properties that use the index specifier pass an
index value to their access methods. Click Example on this screen to see an example of properties that
use the index specifier.
It's common to test whether the new value actually differs from the current value before setting the
value. For example, here's a simple write method for an integer property called Count that stores its
current value in a field called FCount:

void __fastcall TMyComponent::SetCount(int Value)
{
 if (Value != FCount) {
 FCount = Value;
 Update();
 }
}

An example of property access methods
Here is a class that declares three properties using the index specifier, which allows all three properties
to have the same read and write access methods:
class TSampleCalendar : public TCustomGrid
{
private:
 int __fastcall GetDateElement(int Index); // note Index parameter
 void __fastcall SetDateElement(int Index, int Value);
public:
__property int Day = {read=GetDateElement, write=SetDateElement, index=3,
nodefault};
__property int Month = {read=GetDateElement, write=SetDateElement, index=2,
nodefault};
__property int Year = {read=GetDateElement, write=SetDateElement, index=1,
nodefault};
};
Because each element of the date (day, month, and year) is an int, and because setting each requires
encoding the date when set, the code avoids duplication by sharing the read and write methods for all
three properties. You need only one method to read a date element, and another to write the date
element.
Here is the read method that obtains the date element:
int __fastcall TSampleCalendar::GetDateElement(int Index)
{
 unsigned short AYear, AMonth, ADay;
 int result;
 FDate.DecodeDate(&AYear, &AMonth, &Aday); // break date into elements
 switch (Index)
 {
 case 1: result = AYear; break;
 case 2: result = AMonth; break;
 case 3: result = ADay; break;
 default: result = -1;
 }
 return result;
}
This is the write method that sets the appropriate date element:
void __fastcall TSampleCalendar::SetDateElement(int Index, int Value)
{
 unsigned short AYear, AMonth, ADay;
 if (Value > 0) // all elements must be positive
 {
 FDate.DecodeDate(&AYear, &AMonth, &ADay); // get date elements
 switch (Index)
 {
 case 1: AYear = Value; break;
 case 2: AMonth = Value; break;
 case 3: ADay = Value; break;
 default: return;
 }
 }
 FDate = TDateTime(AYear, AMonth, ADay); // encode the modified date
 Refresh(); // update the visible calendar
}

Default property values
See also Example
When you declare a property, you can optionally declare a default value for the property. The default
value for a component's property is the value set for that property in the component's constructor. For
example, when you place a component from the Component palette on a form, C++Builder creates the
component by calling the component's constructor, which determines the initial values of the
component's properties.
C++Builder uses the declared default value to determine whether to store a property in a form file. For
more information on storing properties and using the stored specifier, and the importance of default
values, see Storing and loading properties. If you do not specify a default value for a property, C+
+Builder always stores the property.
To declare a default value for a property, append an equal sign after the property name and a set of
braces that holds the default keyword and the default value. For example,

__property bool IsTrue = {default=true};

Note!:
Declaring a default value in the property declaration does not actually set the property to that value. It is
your responsibility as the component writer to ensure that the component's constructor actually sets the
property to that value.

Specifying no default value
When redeclaring a property, you can specify that the property has no default value, even if the inherited
property specified one.
To designate a property as having no default value, append an equal sign after the property name and a
set of braces that holds the nodefault keyword. For example,

__property int NewInteger = {nodefault};
When you declare a property for the first time, there is no need to specify nodefault because the
absence of a declared default value means the same thing.

An example of a property with a default value
Here is the declaration of a component that includes a single Boolean property named IsTrue with a
default value of true, including the constructor that sets the default value.

class TSampleComponent : public TComponent
{
private:
 bool FIsTrue;
public:
 virtual __fastcall TSampleComponent(TComponent* Owner);
__published:
 __property bool IsTrue = {read=FIsTrue, write=FIsTrue, default=true};
};
__fastcall TSampleComponent::TSampleComponent (TComponent* Owner)
 : TComponent (Owner)
{
 FIsTrue = true;
}

Note that if the default value for IsTrue had been false, you would not need to set it explicitly in the
constructor, because all classes (and therefore, components) always initialize all their data members to
zero, and a "zeroed" Boolean value is false.

Creating array properties
See also Example
Some properties lend themselves to being indexed, much like arrays. That is, they have multiple values
that correspond to some kind of index value. An example in the standard components is the Lines
property of the TMemo component. Lines is an indexed list of the strings that make up the text of the
memo, which you can treat as an array of strings. In this case, the array property gives the user natural
access to a particular element (a string) in a larger set of data (the memo text).
Array properties work just like other properties, and you declare them in largely the same way. The only
differences in declaring array properties are as follows:

The declaration for the property includes one or more indexes with specified types. Indexes can
be of any type.

The read and write parts of the property declaration, if specified, must be methods. They cannot
be data members.

The access methods for reading and writing the property values take additional parameters that
correspond to the index or indexes. The parameters must be in the same order and of the same type as
the indexes specified in the property declaration.
Although they seem quite similar, there are a few important distinctions between array properties and
arrays. Unlike the index of an array, the index type for an array property does not have to be an integer
type. You can index a property on a string, for example. In addition, you can only reference individual
elements of an array property, not the entire range of the property.

An example of an array property
Here's the declaration of a property that returns a string based on an integer index:

class TDemoComponent : public TComponent
{
private:
 System::AnsiString __fastcall GetNumberSize(int Index);
public:
 __property System::AnsiString NumberSize[int Index] = {read=GetNumberSize};
 ...
};

This is the GetNumberSize method in the .CPP file:
System::AnsiString __fastcall TDemoComponent::GetNumberSize(int Index)
{
 System::AnsiString Result;
 switch (Index)
 {
 case 0:
 Result = "Zero";
 break;
 case 100:
 Result = "Medium";
 break;
 case 1000:
 Result = "Large";
 break;
 default:
 Result = "Unknown size";
 }
 return Result;
 }

Writing property editors
See also
The Object Inspector provides default editing for all types of properties. You can, however, provide an
alternate editor for specific properties by writing and registering property editors. You can register
property editors that apply only to the properties in the components you write, but you can also create
editors that apply to all properties of a certain type.
At the simplest level, a property editor can operate in either or both of two ways: displaying and allowing
the user to edit the current value as a text string, and displaying a dialog box that permits some other
kind of editing. Depending on the property being edited, you might find it useful to provide either or both
kinds.
Writing a property editor requires five steps:

Deriving a property-editor class
Editing the property as text
Editing the property as a whole
Specifying editor attributes
Registering the property editor

Deriving a property-editor class
See also Example
The DSGNINTF.HPP file defines several kinds of property editors, all of which descend from
TPropertyEditor. When you create a property editor, your property-editor class can either descend
directly from TPropertyEditor or indirectly through one of the property-editor types described inTable 4.2
the table below.
To create a property-editor class, derive a new class from one of the existing property editor types.
The DSGNINTF.HPP file also defines some very specialized property editors used by unique properties
such as the component name. The listed property editors are the ones that are the most useful for user-
defined properties.

Type Properties edited
TOrdinalProperty All ordinal-property editors (those for integer, character, and enumerated

properties) descend from TOrdinalProperty.
TIntegerProperty All integer types, including predefined and user-defined subranges.
TCharProperty Char-type and subranges of Char, such as 'A'..'Z'.
TEnumProperty Any enumerated type.
TFloatProperty All floating-point numbers.
TStringProperty Strings.
TSetElementProperty Individual elements in sets, shown as Boolean values
TSetProperty All sets. Sets are not directly editable, but can expand into a list of set-element

properties.
TClassProperty Classes. Displays the name of the class and allows expansion of the class's

properties.
TMethodProperty Method pointers, most notably events.
TComponentProperty Components in the same form. The user cannot edit the component's

properties, but can point to a specific component of a compatible type.
TColorProperty Component colors. Shows color constants if applicable, otherwise displays

hexadecimal value. Drop-down list contains the color constants. Double-click
opens the color-selection dialog box.

TFontNameProperty Font names. The drop-down list displays all currently installed fonts.
TFontProperty Fonts. Allows expansion of individual font properties as well as access to the

font dialog box.

An example of a property-editor class
One of the simplest property editors is TFloatPropertyEditor, the editor for properties that are floating-
point numbers. Here is its declaration:

class TFloatProperty : public TPropertyEditor
{
 typedef TFloatProperty ThisClass;
 typedef TPropertyEditor inherited;
public:
 virtual bool __fastcall AllEqual(void);
 virtual System::AnsiString __fastcall GetValue(void);
 virtual void __fastcall SetValue(const AnsiString Value);
};

Editing the property as text
See also
All properties need to provide a string representation of their values for the Object Inspector to display.
Most properties also allow the user to type in a new value for the property. Property-editor classes
provide virtual methods you can override to convert between the text representation and the actual
value.
The methods you override are called GetValue and SetValue. Your property editor also inherits a set of
methods used for assigning and reading different sorts of values, as shown inTable 4.3 the following
table

Property type "Get" method "Set" method
Floating point GetFloatValue SetFloatValue
Closure (event) GetMethodValue SetMethodValue
Ordinal type GetOrdValue SetOrdValue
String GetStrValue SetStrValue.

When you override a GetValue method, you will call one of the "Get" methods, and when you override
SetValue, you will call one of the "Set" methods.

Displaying the property value
The property editor's GetValue method returns a string that represents the current value of the property.
The Object Inspector uses this string in the value column for the property. By default, GetValue returns
"unknown".
To provide a string representation of your property, override the property editor's GetValue method.
If the property isn't a string value, your GetValue must convert the value into a string representation.

Setting the property value
The property editor's SetValue method takes a string typed by the user in the Object Inspector, converts
it into the appropriate type, and sets the value of the property. If the string does not represent a proper
value for the property, SetValue should throw an exception and not use the improper value.
To read string values into properties, override the property editor's SetValue method.
SetValue should convert the string and validate the value before calling one of the "Set" methods.

Editing the property as a whole
See also
You can optionally provide a dialog box in which the user can visually edit a property. The most common
use of property editors is for properties that are themselves classes. An example is the Font property, for
which the user can open a font dialog box to choose all the attributes of the font at once.
To provide a whole-property editor dialog box, override the property-editor class's Edit method.
Edit methods use the same "Get" and "Set" methods used in writing GetValue and SetValue methods. In
fact, an Edit method calls both a "Get" method and a "Set" method. Because the editor is type-specific,
there is usually no need to convert the property values to strings. The editor generally deals with the
value "as retrieved."
When the user clicks the '...' button next to the property or double-clicks the value column, the Object
Inspector calls the property editor's Edit method.
Within your implementation of the Edit method, follow these steps:
1 Construct the editor you are using for the property.
2 Read the current value and assign it to the property using a "Get" method.
3 When the user selects a new value, assign that value to the property using a "Set" method.
4 Destroy the editor.

Specifying editor attributes
See also Example
The property editor must provide information that the Object Inspector can use to determine what tools
to display. For example, the Object Inspector needs to know whether the property has subproperties or
can display a list of possible values.
To specify editor attributes, override the property editor's GetAttributes method.
GetAttributes is a method that returns a set of values of type TPropertyAttributes that can include any or
all of the following values:

Flag Related method Meaning if included
paValueList GetValues The editor can give a list of enumerated values.
paSubProperties GetProperties The property has subproperties that can display.
paDialog Edit The editor can display a dialog box for editing the entire

property.
paMultiSelect N/A The property should display when the user selects more

than one component.
paAutoUpdate SetValue Updates the component after every change instead of

waiting for approval of the value.
paSortList N/A The Object Inspector should sort the value list.
paReadOnly N/A Users cannot modify the property value.
paRevertable N/A Enables the Revert to Inherited menu item on the

Object Inspector's context menu. The menu item tells
the property editor to discard the current property value
and return to some previously established default or
standard value.

An example of specifying editor attributes
Color properties are more versatile than most, in that they allow several ways for users to choose them
in the Object Inspector: typing, selection from a list, and customized editor. TColorProperty's
GetAttributes method, therefore, includes several attributes in its return value:

function TColorProperty.GetAttributes: TPropertyAttributes;
begin
 Result := [paMultiSelect, paDialog, paValueList];
end;

If the GetAttributes method were written in C++, it would look like this:
virtual __fastcall TPropertyAttributes TColorProperty::GetAttributes()
{
 return TPropertyAttributes() << paMultiSelect << paDialog << paValueList;
}

Registering the property editor
See also Example
Once you create a property editor, you need to register it with C++Builder. Registering a property editor
associates a type of property with a specific property editor. You can register the editor with all
properties of a given type or just with a particular property of a particular type of component.
To register a property editor, call the RegisterPropertyEditor method.
RegisterPropertyEditor takes four parameters:

A type-information pointer for the type of property to edit.
Specify the type information like this:
__typeinfo(TMyComponent)

The type of the component to which this editor applies. If this parameter is NULL, the editor
applies to all properties of the given type.

The name of the property. This parameter only has meaning if the previous parameter specifies a
particular type of component. In that case, you can specify the name of a particular property in that
component type to which this editor applies.

The type of property editor to use for editing the specified property.

An example of registering a property editor
Here is an excerpt from the function that registers the editors for the standard components on the
Component palette:

namespace Newcomp
{
 void __fastcall Register()
 {
 RegisterPropertyEditor(__typeinfo(TComponent), 0L, "", TComponentProperty);
 RegisterPropertyEditor(__typeinfo(TComponentName), TComponent, "Name",
TComponentNameProperty);
 RegisterPropertyEditor(__typeinfo(TMenuItem), TMenu, "", TMenuItemProperty);
 ...
 }
}

The three statements in this function cover the different uses of RegisterPropertyEditor:
The first statement is the most typical. It registers the property editor TComponentProperty for all

properties of type TComponent (or descendants of TComponent that do not have their own editors
registered). In general, when you register a property editor, you've created an editor for a particular type,
and you want to use it for all properties of that type, so the second and third parameters are NULL and an
empty string, respectively.

The second statement is the most specific kind of registration. It registers an editor for a specific
property in a specific type of component. In this case, the editor is for the Name property of all
components.

The third statement is more specific than the first, but not as limited as the second. It registers an
editor for all properties of type TMenuItem in components of type TMenu.

Creating events
See also
Events are very important parts of components, although the component writer usually doesn't need to
do much with them. An event is a link between an occurrence in the system (such as a user action or a
change in focus) that a component might need to respond to and a piece of code that responds to that
occurrence. The responding code is an event handler, and is nearly always written by the component
user.
By using events, application developers can customize the behavior of components without having to
change the classes themselves. As a component writer, you use events to enable application
developers to customize the behavior of your components.
Events for the most common user actions (such as mouse actions) are built into all the standard C+
+Builder components, but you can also define new events. To create events in a component, you need
to understand the following:

What are events?
Implementing the standard events
Defining your own events

Events are implemented as properties, so you should already be familiar with Creating properties before
you attempt to create or change a component's events.

What are events?
See also
Loosely defined, an event is a mechanism that links an occurrence to some code. More specifically, an
event is a closure, a pointer to a specific method in a specific class instance.
From the component user's perspective, an event is just a name related to a system event, such as
OnClick, that the user can assign a specific method to call. For example, a push button called Button1
has an OnClick method. By default, C++Builder generates an event handler called Button1Click in the
form that contains the button and assigns it to OnClick. When a click event occurs on the button, the
button calls the method assigned to OnClick, in this case, Button1Click.The component user sees the
event as a way of specifying what user-written code the application should call when a specific event
occurs.
From the component writer's perspective, the most important thing to remember is that you're providing
a link, a place where the component's user can attach code in response to certain kinds of occurrences.
Your components provide outlets where the user can "plug in" specific code.
To write an event, you need to understand the following:

Events are closures
Events are properties
Event types are closure types
Event handlers are optional

Events are closures
See also Example
C++Builder uses closures to implement events. A closure is a special pointer type that points to a
specific method in a specific class instance. As a component writer, you can treat the closure as a place
holder: your code detects that an event occurs, so you call the method (if any) specified by the user for
that event.
Closures maintain a hidden pointer to a class instance. When the user assigns a handler to a
component's event, the assignment is not just to a method with a particular name, but rather to a
specific method of a specific class instance. That instance is usually the form that contains the
component, but it need not be.

Calling the click-event handler
All controls, for example, inherit a virtual method called Click for handling click events:

virtual void __fastcall Click(void);
The implementation of Click calls the user's click-event handler, if one exists. If the user has assigned a
handler to a control's OnClick event, clicking the control results in that method being called. If no handler
is assigned, nothing happens.

Events are properties
See also
Components use properties to implement their events. Unlike most other properties, events don't use
methods to implement their read and write parts. Instead, event properties use a private data member of
the same type as the property.
By convention, the data member's name is the same as the name of the property, but preceded by the
letter F. For example, the OnClick closure is stored in a data member called FOnClick of type
TNotifyEvent, and the declaration of the OnClick event property looks like this:

class TControl : public TComponent
{
private:
 TNotifyEvent FOnClick;
 ...
protected:
 __property TNotifyEvent OnClick = {read=FOnClick, write=FOnClick};
 ...
};

To learn about TNotifyEvent and other event types, see Event types are closure types.
As with any other property, you can set or change the value of an event at runtime. The main advantage
to having events be properties, however, is that component users can assign handlers to events at
design time, using the Object Inspector.

Event types are closure types
See also
Because an event is a pointer to an event handler, the type of the event property must be a closure type.
Similarly, any code to be used as an event handler must be an appropriately typed method of a class.
To be compatible with an event of a given type, an event-handler method must have the same number
and type of parameters, in the same order, passed in the same way.
C++Builder defines closures for all its standard events. When you create your own events, you can use
an existing closure if that's appropriate, or define one of your own.

Event handlers have a return type of void
Event handlers must have a return type of void only. Even though the handler can return only void, you
can still get information back from the user's code by passing arguments by reference. When you do
this, make sure you assign a valid value to the argument before calling the handler so you don't require
the user's code to change the value.
An example of passing arguments by reference to an event handler is the key-pressed event, of type
TKeyPressEvent. TKeyPressEvent defines two arguments, one to indicate which object generated the
event, and one to indicate which key was pressed:

typedef void __fastcall (__closure *TKeyPressEvent)(TObject *Sender, Char &Key);
Normally, the Key parameter contains the character pressed by the user. Under certain circumstances,
however, the user of the component might want to change the character. One example might be to force
all characters to uppercase in an edit control. In that case, the user could define the following handler for
keystrokes:

void __fastcall TForm1::Edit1KeyPress(TObject *Sender, Char &Key)
{
 Key = UpCase(Key);
}

You can also use arguments passed by reference to let the user override the default handling.

Event handlers are optional
See also
The most important thing to remember when creating events for your components is that users of your
components might not attach handlers to the events. That means that your component shouldn't fail or
generate errors simply because a user of the component failed to attach a handler to a particular event.
The mechanics of calling handlers and dealing with events that have no attached handler are explained
in Calling the event, but the principle has important implications for the design of your components and
their events.
The optional nature of event handlers has two aspects:

Component users are not required to handle events.
Events happen almost constantly in a Windows application. Just by moving the mouse pointer across
a component makes Windows send numerous mouse-move messages to the component, which the
component translates into OnMouseMove events. In most cases, users of components don't care to
handle the mouse move events, and this does not cause a problem. The component does not depend
on the mouse events being handled.
Similarly, the components you create should not be dependent on users handling the events they
generate.

Component users can write any code they want in an event handler.
In general, there are no restrictions on the code a user can write in an event handler. The components
in the C++Builder component library all have events written in such a way that they minimize the
chances of user-written code generating unexpected errors. Obviously, you can't protect against logic
errors in user code, but you can ensure that all data structures are initialized before calling events so
that users don't try to access invalid information.

Implementing the standard events
See also
All the controls that come with C++Builder inherit events for all of the most common Windows events.
Collectively, these are called the standard events. Although all these events are built into the standard
controls, by default they are protected, meaning users can't attach handlers to them. When you create
a control, you can choose to make events visible to users of your control.
There are three things you need to consider when incorporating the standard events into your controls:

Identifying standard events
Making events visible
Changing the standard event handling

Identifying standard events
See also
There are two categories of standard events: those defined for all controls and those defined only for the
standard windowed controls.

Standard events for all controls
The most basic events are defined in the class TControl. All controls, whether windowed or graphical or
custom, inherit these events. The following table lists all the events available in all controls:
OnClick OnDragDrop OnEndDrag OnMouseMove
OnDblClick OnDragOver OnMouseDown OnMouseUp

All the standard events have corresponding protected virtual methods declared in TControl, with names
that correspond to the event names, but without the preceding "On." For example, OnClick events call a
method named Click.

Standard events for standard controls
In addition to the events common to all controls, standard controls (those that descend from
TWinControl) have the following events:
OnEnter OnKeyDown OnKeyPress
OnKeyUp OnExit

As with the standard events in TControl, the windowed-control events have corresponding methods.

Making events visible
See also Example
The declarations of the standard events are protected as are the methods that correspond to them. If
you want to make those events accessible to users either at runtime or design time, you need to
redeclare the event property as either public or __published.
Redeclaring a property without specifying its implementation keeps the same implementation methods,
but changes the protection level. You can, therefore, take an event that's defined in TControl but not
made visible to users, and promote it to a level so the user can see and use it.

An example of making an event visbile
For example, if you create a component that needs to surface the OnClick event at design time, you add
the following to the component's class declaration:

class TMyControl : public TCustomControl
{
 ...
__published:
 __property OnClick; // Makes OnClick available in the Object Inspector
};

Changing the standard event handling
See also Example
If you want to change the way your custom component responds to a certain kind of event, you might be
tempted to write some code and assign it to the event. As a component user, that's exactly what you
would do. When you're creating components, you can't do that because you must keep the event
available for the users of the component.
This is precisely the reason for the protected implementation methods associated with each of the
standard events. By overriding the implementation method, you can modify the internal event handling;
and by calling the inherited method you can maintain the standard handling, including the event for the
user's code.
The order in which you call the inherited method is significant. As a general rule, you call the inherited
method first, allowing the user's event-handler code to execute before your customizations (and in some
cases, to keep from executing the customizations). There might be times when you want to execute
your code before calling the inherited method, however. For example, if the inherited code is somehow
dependent on the status of the component and your code changes that status, you should make the
changes and then allow the user's code to respond to the changed status.

An example of changing the standard event handling
Suppose you're writing a component and you want to modify the way your new component responds to
clicks. Instead of assigning a handler to the OnClick event as a component user would do, you override
the protected method Click:

void __fastcall TMyControl::Click()
{
 TWinControl::Click(); // perform standard handling, including calling handler
 // your customizations go here
}

Defining your own events
See also
Defining entirely new events is a relatively rare thing. Usually you refine the handling of existing events.
There are times, however, when a component introduces behavior that is entirely different from that of
any other component, so you'll need to define an event for it.
There are the issues involved in defining an event:

Triggering the event
Defining the handler type
Declaring the event
Calling the event

Triggering the event
See also
You need to know what triggers the event. For some events, the answer is obvious. For example, a
mouse-down event occurs when the user presses the left button on the mouse and Windows sends a
WM_LBUTTONDOWN message to the application. Upon receiving that message, a component calls its
MouseDown method, which in turn calls any code the user has attached to the OnMouseDown event.
But some events are less clearly tied to specific external events. For example, a scroll bar has an
OnChange event, which is triggered by numerous kinds of occurrences, including keystrokes, mouse
clicks, or changes in other controls. When defining your events, you must ensure that all the appropriate
occurrences call the proper events.

Two kinds of events
There are two kinds of occurrences you might need to provide events for: user interactions and state
changes. User-interaction events are nearly always triggered by a message from Windows, indicating
that the user did something your component might need to respond to. State-change events might also
be related to messages from Windows (focus changes or being enabled, for example), but they can also
occur through changes in properties or other code. You have total control over the triggering of events
you define. You should be consistent and complete so that users of your components know how to use
the events.

Defining the handler type
See also
Once you determine when the event occurs, you must define how you want the event handled. This
means determining the type of the event handler. In most cases, handlers for the events you define
yourself are either simple notifications or event-specific types. It's also possible to get information back
from the handler.

Simple notifications
A notification event is one that only tells you that the particular event happened, with no specific
information about when or where. Notifications use the type TNotifyEvent, which carries only one
parameter, the sender of the event. All a handler for a notification "knows" about the event is what kind
of event it was, and what component the event happened to. For example, click events are notifications.
When you write a handler for a click event, all you know is that a click occurred and which component
was clicked.
Notification is a one-way process. There is no mechanism to provide feedback or prevent further
handling of a notification.

Event-specific handlers
In some cases, it's not enough to know only which event happened and what component it happened to.
For example, if the event is a key-press event, it's likely that the handler will want to know which key the
user pressed. In these cases, you need handler types that include parameters with any necessary
information about the event.
If your event was generated in response to a message, it's likely that the parameters you pass to the
event handler come directly from the message parameters.

Returning information from the handler
Because all event handlers return void only, the only way to pass information back from a handler is
through a parameter passed by reference. Your components can use such information to determine how
or whether to process an event after the user's handler executes.
For example, all the key events (OnKeyDown, OnKeyUp, and OnKeyPress) pass by reference the value
of the key pressed in a parameter named Key. The event handler can change Key so that the
application sees a different key as being involved in the event. This is a way to force typed characters to
uppercase, for example.

Declaring the event
See also
Once you've determined the type of your event handler, you're ready to declare the closure and the
property for the event. Be sure to give the event a meaningful and descriptive name so that users can
understand what the event does. Try to be consistent with names of similar properties in other
components.

Event names start with "On"
The names of most events in C++Builder begin with "On." This is just a convention; the compiler doesn't
enforce it. The Object Inspector determines that a property is an event by looking at the type of the
property: all closure properties are assumed to be events and appear on the Events page.
Component users expect to find events in the alphabetical list of names starting with "On." Using other
kinds of names is likely to confuse them.

Calling the event
See also
You should centralize calls to an event. That is, create a virtual method in your component that calls the
user's event handler (if the user assigns one) and provides any default handling.
Putting all the event calls in one place ensures that someone deriving a new component from your
component can customize event handling by overriding that one method, rather than searching through
your code looking for places you call the event.
There are two other considerations when calling the event:

Empty handlers must be valid
Users can override default handling

Empty handlers must be valid
See also Example
You should never create a situation in which an empty event handler causes an error. The proper
functioning of your component should not depend on a particular response from the user's event-handler
code. In fact, an empty handler should produce the same result as no handler at all.
Components should never require the user to use them in a particular way. An important aspect of that
principle is that component users expect no restrictions on what they can do in an event handler.

An example of calling an event handler
Because an empty handler should behave the same as no handler, the code for calling the user's
handler should look like this:

if (OnClick)
 OnClick(this);
// perform default handling }

Warning:
You should never have something like this:

if (OnClick)
 OnClick(this);
else
 // perform default handling

Users can override default handling
See also Example
For some kinds of events, the user might want to replace the default handling or even suppress all
responses. To enable users to do that, you need to pass an argument by reference to the handler and
check for a certain value when the handler returns.
Note that this is in keeping with the notion that empty handlers should have the same effect as no
handler at all. Because an empty handler won't change the values of arguments passed by reference,
the default handling always takes place after calling the empty handler.

An example of overriding default handling
When handling key-press events, for example, the user can suppress the component's default handling
of the keystroke by setting the Key parameter to a null character. The logic for supporting that looks like
this:

if (OnKeyPress)
 OnKeyPress(this, &Key);
if (Key != NULL)
 //perform default handling

The actual code is a little different from this because it's dealing with Windows messages, but the logic
is the same. By default, the component calls any user-assigned handler, then performs its standard
handling. If the user's handler sets Key to a null character, the component skips the default handling.

Creating methods
See also
Component methods are no different from any other class's methods. That is, they are member
functions built into the structure of a component class. Although there are essentially no restrictions on
what you can do with the methods of a component, C++Builder does use some standards you should
follow.
The guidelines to follow when writing methods for your components include

Avoiding interdependencies
Naming methods
Protecting methods
Making methods virtual
Declaring methods

As a general rule, minimize the number of methods users need to call to use your components. A lot of
the features you might be inclined to implement as methods are probably better encapsulated into
properties. Doing so provides an interface that suits the C++Builder environment, and also lets users
access them at design time.

Avoiding interdependencies
See also
At all times when writing components, minimize the preconditions imposed on the component user. To
the greatest extent possible, component users should be able to do anything they want to a component,
whenever they want to do it. There will be times when you can't accommodate that, but your goal should
be to come as close as possible.
This list gives you an idea of the kinds of interdependencies to avoid:

Methods that the user must call to use the component
Methods that must execute in a particular order
Methods that put the component into a state or mode where certain events or methods could be

invalid
The best way to handle these situations is to ensure that you provide ways out of them. For example, if
calling a method puts your component into a state where calling another method might be invalid, then
write that second method so that if the user calls it when the component is in a bad state, the method
corrects that state before executing its main code. At a minimum, you should throw an exception in
cases when a user calls a method that is invalid.
In other words, if you create a situation where parts of your code depend on each other, the burden
should be on you to be sure that using the code in incorrect ways does not cause the user problems. A
warning message, for example, is preferable to crashing if the user doesn't accommodate your
interdependencies.

Naming methods
See also
C++Builder imposes no restrictions on what you name methods or their parameters. There are a few
conventions that make methods easier for users of your components, however. Keep in mind that the
nature of a component architecture dictates that many different kinds of people might use your
components.
If you're accustomed to writing code that only you or a small group of programmers uses, you might not
think too much about how you name things. It is a good idea to make your method names clear because
people unfamiliar with your code (and even unfamiliar with coding) might have to use your components.
Here are some suggestions for making clear method names:

Make names descriptive.
A name like PasteFromClipboard is much more informative than simply Paste or PFC.

Function names should reflect the nature of what they return.
Although it might be obvious to you as a programmer that a function named X returns the horizontal
position of something, a name like GetHorizontalPosition is more universally understandable.

If a function return type is void, the function name should be active.
Use active verbs in your function names. For example, ReadFileNames is much more helpful than
DoFiles.

As a final consideration, make sure the method really needs to be a method. A good guideline is that
method names have verbs in them. If you find that you create a lot of methods that do not have verbs in
their names, consider whether those methods ought to be properties.

Protecting methods
See also
All parts of classes, including data members, methods, and properties, can have various levels of
protection, as explained in Controlling access. Choosing the appropriate level of protection for methods
is quite simple.
As a general rule, methods you write in your components are either public or protected. You rarely
need to make a method private, unless it is truly specific to that particular type of component, to the
point that even components derived from it should not have access to it.

Note:
There is generally no reason for declaring a method (other than an event handler) as __published.
Doing so looks to the end user exactly as if the method were public.
Methods that should be protected
Methods that should be public

Methods that should be public
See also
Any method that users of your components need to be able to call must be declared as public. Keep in
mind that most method calls occur in event handlers, so methods should avoid unduly tying up system
resources or putting Windows in a state where it can't respond to the user.

Note:
Constructors and destructors should always be public.

Methods that should be protected
See also
Any methods that are implementation methods for the component should be protected so that users
can't call them at the wrong time. If you have methods that a user's code should not call, but the
methods are called in derived classes, declare the methods as protected.
For example, suppose you have a method that relies on having certain data set up for it beforehand. If
you make that method public, there's a chance a user will call it before setting up the data. On the other
hand, by making it protected, you ensure that the user can't call it directly. You can then set up other,
public methods that ensure that data setup occurs before calling the protected method.
Property-implementation methods should be declared as virtual protected methods. Methods that are
so declared allow the users of the component to override the property implementation, either
augmenting its functionality or replacing it completely. Such properties are fully polymorphic. Keeping
access methods protected ensures that component users don't accidentally call those methods,
inadvertently modifying a property.

Making methods virtual
See also
Virtual methods in C++Builder components are no different from virtual methods in other classes. You
make methods virtual when you want different types to be able to execute different code in response to
the same method call.
If you create components intended to be used directly by end users, you can probably make all your
methods nonvirtual. On the other hand, if you create components of a more abstract nature, which other
component writers will use as the starting point for their own components, consider making the added
methods virtual. That way, components derived from your components can override the inherited virtual
methods.

Declaring methods
See also Example
Declaring a method in a component is the same as declaring any class method.
To declare a new method in a component, you do these things:

Add the declaration to the component's class declaration in the component's header file
Write the code that implements the method in the .CPP file of the unit

An example of declaring methods
The following code shows a component that defines two new methods, one protected method and one
public virtual method. This is the interface definition in the .H file:

class TSampleComponent : public TControl
{
protected:
 void __fastcall MakeBigger();
public:
 virtual int __fastcall CalculateArea();
 ...
};

This is the code in the .CPP file of the unit that implements the methods:
void __fastcall TSampleComponent::MakeBigger()
{
 Height = Height + 5;
 Width = Width + 5;
}
int __fastcall TSampleComponent::CalculateArea()
{
 return Width * Height;
}

Using graphics in components
See also
Windows provides a powerful Graphics Device Interface (GDI) for drawing device-independent graphics.
The GDI imposes a lot of extra requirements on the programmer, such as managing graphic resources.
C++Builder takes care of all the GDI drudgery for you, allowing you to spend your time doing productive
work instead of searching for lost handles or unreleased resources. C++Builder tackles the tedious
tasks so you can focus on the productive ones.
Note that, as with any part of the Windows API, you can call GDI functions directly from your C++Builder
application if you want to. However, you will probably find that using C++Builder's encapsulation of the
graphic functions is a much more productive way to create graphics.
There are several important topics dealing with graphics in C++Builder:

Overview of graphics
Using the canvas
Working with pictures
Offscreen bitmaps
Responding to changes

Overview of graphics
See also Example
C++Builder encapsulates the Windows GDI at several levels. The most important to you as a
component writer is the way components display their images on the screen. When calling GDI
functions directly, you need to have a handle to a device context, into which you have selected various
drawing tools such as pens and brushes and fonts. After rendering your graphic images, you must then
restore the device context to its original state before disposing of it.
Instead of forcing you to deal with graphics at a detailed level, C++Builder provides a simple yet
complete interface: your component's Canvas property. The canvas ensures that it has a valid device
context, and releases the context when you're not using it. Similarly, the canvas has its own properties
representing the current pen, brush, and font.
The canvas manages all those resources for you, so you need not concern yourself with creating,
selecting, and releasing things such as pen handles. You just tell the canvas what kind of pen it should
use, and it takes care of the rest.
One of the benefits of letting C++Builder manage graphic resources is that it can cache resources for
later use, which can greatly speed up repetitive operations. For example, if you have a program that
repeatedly creates, uses, and disposes of a particular kind of pen tool, you need to repeat those steps
each time you use it. Because C++Builder caches graphic resources, chances are good that a tool you
use repeatedly is still in the cache, so instead of having to recreate a tool, C++Builder reuses an existing
one.

An example of simplified graphics code
As an example of how much simpler C++Builder's graphics code can be, here are two samples of code.
The first uses standard GDI functions to draw a yellow ellipse outlined in blue on a window in an
application written with ObjectWindows. The second uses a canvas to draw the same ellipse in an
application written with C++Builder.
This is the ObjectWindows code:

void TMyWindow::Paint(TDC& PaintDC, bool erase, TRect& rect)
{
 HPEN PenHandle, OlPenHandle;
 HBRUSH BrushHandle, OldBrushHandle;
 PenHandle = CreatePen(PS_SOLID, 1, RGB(0, 0, 255));
 OldPenHandle = SelectObject(PaintDC, PenHandle);
 BrushHandle = CreateSolidBrush(RGB(255, 255, 0));
 OldBrushHandle = SelectObject(PaintDC, BrushHandle);
 Ellipse(10, 20, 50, 50);
 SelectObject(OldBrushHandle);
 DeleteObject(BrushHandle);
 SelectObject(OldPenHandle);
 DeleteObject(PenHandle);
)

This C++Builder code accomplishes the same thing:
void __fastcall TForm1::FormPaint(TObject *Sender)
{
 Canvas->Pen->Color = clBlue;
 Canvas->Brush->Color = clYellow;
 Canvas->Ellipse(10, 20, 50, 50);
}

Using the canvas
See also
The canvas class encapsulates Windows graphics at several levels, ranging from high-level functions
for drawing individual lines, shapes, and text to intermediate-level properties for manipulating the
drawing capabilities of the canvas to low-level access to the Windows GDI.
The following table summarizes the capabilities of the canvas.

Level Operation Tools
High Drawing lines and shapes Methods such as MoveTo, LineTo, Rectangle, and

Ellipse
Displaying and measuring text TextOut, TextHeight, TextWidth, and TextRect

methods
Filling areas FillRect and FloodFill methods

Intermediate Customizing text and graphics Pen, Brush, and Font properties
Manipulating pixels Pixels property
Copying and merging images Draw, StretchDraw, BrushCopy, and methods;

CopyMode property
Low Calling Windows GDI functions Handle property

Working with pictures
See also
Most of the graphics work you do in C++Builder is limited to drawing directly on the canvases of
components and forms. C++Builder also provides for handling standalone graphic images, such as
bitmaps, metafiles, and icons, including automatic management of palettes.
There are three important aspects to working with pictures in C++Builder:

Using a picture, graphic, or canvas
Loading and storing graphics
Handling palettes

Using a picture, graphic, or canvas
See also
There are three kinds of classes in C++Builder that deal with graphics:

A canvas represents a bitmapped drawing surface on a form, graphic control, printer, or bitmap. A
canvas is always a property of something else, never a standalone class.

A graphic represents a graphic image of the sort usually found in a file or resource, such as a
bitmap, icon, or metafile. C++Builder defines classes TBitmap, TIcon, and TMetafile, all descended from a
generic TGraphic. You can also define your own graphic classes. By defining a minimal standard interface
for all graphics, TGraphic provides a simple mechanism for applications to use different kinds of graphics
easily.

A picture is a container for a graphic, meaning it could contain any of the graphic classes. That is,
an item of type TPicture can contain a bitmap, an icon, a metafile, or a user-defined graphic type, and an
application can access them all in the same way through the picture class. For example, the image
control has a property called Picture, of type TPicture, enabling the control to display images from many
kinds of graphics.
Keep in mind that a picture class always has a graphic, and a graphic might have a canvas (the only
standard graphic that has a canvas is TBitmap). Normally, when dealing with a picture, you work only
with the parts of the graphic class exposed through TPicture. If you need access to the specifics of the
graphic class itself, you can refer to the picture's Graphic property.

Loading and storing graphics
See also Example
All pictures and graphics in C++Builder can load their images from files and store them back again (or
into different files). You can load or store the image of a picture at any time.
To load an image into a picture from a file, call the picture's LoadFromFile method.
To save an image from a picture into a file, call the picture's SaveToFile method.
LoadFromFile and SaveToFile each take the name of a file as the only parameter. LoadFromFile uses
the extension of the file name to determine what kind of graphic object it will create and load. SaveToFile
saves whatever type of file is appropriate for the type of graphic object being saved.

An example of loading a bitmap
To load a bitmap into an image control's picture pass the name of a bitmap file to the picture's
LoadFromFile method:

void __fastcall TForm1::FormCreate(TObject *Sender)
{
 Image1->Picture->LoadFromFile("c:\\windows\\athena.bmp");
}

The picture recognizes .BMP as the standard extension for bitmap files, so it creates its graphic as a
TBitmap, then calls that graphic's LoadFromFile method. Because the graphic is a bitmap, it loads the
image from the file as a bitmap.

Handling palettes
See also
When running on a palette-based device, C++Builder controls automatically support palette realization.
That is, if you have a control that has a palette, you can use two methods inherited from TControl to
control how Windows accommodates that palette.
Palette support for controls has these two aspects:

Specifying a palette for a control
Responding to palette changes

Most controls have no need for a palette, but controls that contain graphic images (such as the image
control) might need to interact with Windows and the screen device driver to ensure the proper
appearance of the control. Windows refers to this process as realizing palettes.
Realizing palettes is the process of ensuring that the frontmost window uses its full palette, and that
windows in the background use as much of their palettes as possible, then map any other colors to the
closest available colors in the "real" palette. As windows move in front of one another, Windows
continually realizes the palettes.

Note:
C++Builder itself provides no specific support for creating or maintaining palettes, other than in bitmaps.
If you have a palette handle, however, C++Builder controls can manage it for you.

Specifying a palette for a control
See also
To specify a palette for a control, override the control's GetPalette method to return the handle of the
palette.
Specifying the palette for a control does these things for your application:

It tells the application that your control's palette needs to be realized.
It designates the palette to use for realization.

Responding to palette changes
See also
If your control specifies a palette by overriding GetPalette, C++Builder automatically takes care of
responding to palette messages from Windows. The method that handles the palette messages is
PaletteChanged.
The primary role of PaletteChanged is to determine whether to realize the control's palette in the
foreground or the background. Windows handles this realization of palettes by making the topmost
window have a foreground palette, with other windows resolved in background palettes. C++Builder
goes one step farther, in that it also realizes palettes for controls within a window in tab order. The only
time you might need to override this default behavior is if you want a control that is not first in tab order
to have the foreground palette.

Offscreen bitmaps
See also
When drawing complex graphic images, a common technique in Windows programming is to create an
offscreen bitmap, draw the image on the bitmap, and then copy the complete image from the bitmap to
the final destination onscreen. Using an offscreen image reduces flicker caused by repeated drawing
directly to the screen.
The bitmap class in C++Builder, which represents bitmapped images in resources and files, can also
work as an offscreen image.
There are two main aspects to working with offscreen bitmaps:

Creating and managing offscreen bitmaps
Copying bitmapped images

Creating and managing offscreen bitmaps
See also
When creating complex graphic images, avoid drawing them directly on a canvas that appears
onscreen. Instead of drawing on the canvas for a form or control, you can construct a bitmap object,
draw on its canvas, and then copy its completed image to the onscreen canvas. The most common use
of an offscreen bitmap is in the Paint method of a graphic control.
For an example of painting a complex image on an offscreen bitmap, see the source code for the Gauge
control from the Samples page of the Component palette. The gauge draws its different shapes and text
on an offscreen bitmap before copying them to the screen. Source code for the gauge is in the file
GAUGES.PAS in the SOURCE\SAMPLES subdirectory.

Copying bitmapped images
See also
C++Builder provides four different ways to copy images from one canvas to another. Depending on the
effect you want to create, you call different methods.
The following table summarizes the image-copying methods in canvas objects.

To create this effect Call this method
Copy an entire graphic Draw
Copy and resize a graphic StretchDraw
Copy part of a canvas CopyRect
Copy a bitmap with raster operations BrushCopy

Responding to changes
See also Example
All graphic objects, including canvases and their owned objects (pens, brushes, and fonts) have events
built into them for responding to changes in the object. By using these events, you can make your
components (or the applications that use them) respond to changes by redrawing their images.
Responding to changes in graphic objects is particularly important if you publish them as part of the
design-time interface of your components. The only way to ensure that the design-time appearance of
the component matches the properties set in the Object Inspector is to respond to changes in the
objects.
To respond to changes in a graphic object, assign a method to the class's OnChange event.

An example of responding to changes
The shape component publishes properties representing the pen and brush it uses to draw its shape.
The component's constructor assigns a method to the OnChange event of each, causing the component
to refresh its image if either the pen or brush changes. Although the shape component is written in
Object Pascal, the following is a C++ translation of the shape component with a new name, TMyShape.
This is the class declaration in the header file:

class TMyShape : public TGraphicControl
{
private:
protected:
public:
 virtual __fastcall TMyShape(TComponent* Owner);
__published:
 TPen *FPen;
 TBrush *FBrush;
 void __fastcall StyleChanged(TObject *Sender);
};

This is the code in the .CPP file:
__fastcall TMyShape::TMyShape(TComponent* Owner)
 : TGraphicControl(Owner)
{
 Width = 65;
 Height = 65;
 FPen = new TPen;
 FPen->OnChange = StyleChanged;
 FBrush = new TBrush;
 FBrush->OnChange = StyleChanged;
}
void __fastcall TMyShape::StyleChanged(TObject *Sender)
{
 Invalidate();
}

Handling messages
See also
One of the keys to traditional Windows programming is handling the messages sent by Windows to
applications. C++Builder handles most of the common ones for you. It's possible, however, that you will
need to handle messages that C++Builder doesn't already handle or that you will create your own
messages and need to handle them.
There are three aspects to working with messages:

Understanding the message-handling system
Changing message handling
Creating new message handlers

Understanding the message-handling system
See also
All C++Builder classes have a built-in mechanism for handling messages, called message-handling
methods or message handlers. The basic idea of message handlers is that the class receives messages
of some sort and dispatches them, calling one of a set of specified methods depending on the message
received. If no specific method exists for a particular message, there is a default handler.
The following diagram shows the message-dispatch system:

The Visual Component Library defines a message-dispatching system that translates all Windows
messages (including user-defined messages) directed to a particular class into method calls. You should
never need to alter this message-dispatch mechanism. All you'll need to do is create message-handling
methods.

What's in a Windows message?
See also
A Windows message can be thought of as a data structure that contains several useful data members.
The most important of these is an integer-size value that identifies the message. Windows defines a lot
of messages, and the MESSAGES.HPP file declares identifiers for all of them.
Windows programmers are used to working with the Windows definitions that identify a message, such
as WM_COMMAND or WM_PAINT. A traditional Windows program contains a window procedure that
serves as a callback for system generated messages. In this window procedure there is usually a large
switch statement with case labels for each message this window intends to handle.
Additional useful information is passed to this window procedure in two parameters, wParam and
lParam, for "word parameter" and "long parameter". Often, each parameter contains more than one
piece of information and it is necessary to pull out the relevant portions with Windows macros such as
LOWORD and HIWORD. For example, calling HIWORD(lParam) yields the high word of this
parameter.
Originally, Windows programmers had to remember or look up in the Windows API what information
each parameter contained. Windows has recently implemented "message crackers" to simplify the
syntax associated with handling a Windows message and its associated parameters. With "message
crackers", instead of using a large switch statement that unpacks all of the information into the
parameters, you can simply associate a handler function with the message. If you include
WINDOWSX.H into a standard Windows program, the HANDLE_MSG macro is available to your
program so you can write code like this:

void MyKeyDownHandler(HWND hwnd. UINT nVirtKey, BOOL fDown, int CRepeat, UINT flags)
{
 ...
}

LRESULT MyWndProc(HWND hwnd, UINT Message, WPARAM wParam, LPARAM lParam)
{
 switch(Message)
 {
 HANDLE_MSG(hwnd, WM_KEYDOWN, MyKeyDownHandler);
 ...
}

Using this style of message cracking makes it clearer that messages are being dispatched to a
particular handler. Also, you can give significant names to the parameter list for your handler function. It
is easier to understand a function that takes a parameter called nVirtKey, which is the value for wParam
in a WM_KEYDOWN message.

Dispatching messages
See also
C++Builder simplifies message dispatching in several ways:

Each component inherits a complete message-dispatching system.
The dispatch system has default handling. You define handlers only for messages you need to

respond to specially.
You can modify small parts of the message-handling and rely on inherited methods for most

processing.
The greatest benefit of this message dispatch system is that you can safely send any message to any
component at any time. If the component doesn't have a handler defined for the message, the default
handling takes care of it, usually by ignoring the message.

Tracing the flow of messages
C++Builder registers a method called MainWndProc as the window procedure for each type of
component in an application. MainWndProc contains an exception-handling block, passing the message
structure from Windows to a virtual method called WndProc and handling any exceptions by calling the
application class's HandleException method.
MainWndProc is a nonvirtual method that contains no special handling for any particular messages.
Customizations take place in WndProc, since each component type can override the method to suit its
particular needs.
WndProc methods check for any special conditions that affect their processing so they can "trap"
unwanted messages. For example, while being dragged, components ignore keyboard events, so the
WndProc method of TWinControl passes along keyboard events only if the component is not being
dragged. Ultimately, WndProc calls Dispatch, a nonvirtual method inherited from TObject, which
determines which method to call to handle the message.
Dispatch uses the Msg data member of the message structure to determine how to dispatch a particular
message. If the component defines a handler for that particular message, Dispatch calls the method. If
the component doesn't define a handler for that message, Dispatch calls DefaultHandler.

Changing message handling
See also
Before changing the message-handling of your components, make sure that's what you really want to
do. C++Builder translates most Windows messages into events that both the component writer and the
component user can handle. Rather than changing the message-handling behavior, you should probably
change the event-handling behavior.
To change the message handling, you override the message-handling method. You can also prevent a
component from handling a message under certain circumstances by trapping the message.

Overriding the handler method
See also Example
To change the way a component handles a particular message, you override the message-handling
method for that message. If the component doesn't already handle the particular message, you need to
declare a new message-handling method.
To override a message-handling method,
1 Declare a new method in your component with the same name as the method it overrides in the

protected part of the component declaration.
2 Map the method to the message it overrides by using three macros.

The macros take this form:
BEGIN_MESSAGE_MAP
 MESSAGE_HANDLER(parameter1, parameter2, parameter3)
END_MESSAGE_MAP

Parameter1 is the message index as Windows defines it, parameter2 is the message structure type,
and parameter3 is the name of the message method.
You can include as many MESSAGE_HANDLER macros as you want between the
BEGIN_MESSAGE_MAP and END_MESSAGE_MAP macros.

An example of overriding a message handler
For example, to override a component's handling of the WM_PAINT message, you redeclare the
WMPaint method, and with three macros, map the method to the WM_PAINT message:

class TMyComponent : public TComponent
{
protected:
 void __fastcall WMPaint(TWMPaint* Message);
BEGIN_MESSAGE_MAP
 MESSAGE_HANDLER(WM_PAINT, TWMPaint, WMPaint)
END_MESSAGE_MAP(TComponent)
};

Using message parameters
See also
Once inside a message-handling method, your component has access to all the parameters of the
message structure. Because the parameter passed to the message handler is a pointer, the handler can
change the values of the parameters if necessary. The only parameter that changes frequently is the
return value for the message: the value returned by the SendMessage call that sends the message.
Because the type of the Message parameter in the message-handling method varies with the message
being handled, you should refer to the documentation on Windows messages for the names and
meanings of individual parameters. If for some reason you need to refer to the message parameters by
their old-style names (WParam, LParam, and so on), you can typecast Message to the generic type
TMessage, which uses those parameter names.

Trapping messages
See also Example
Under certain circumstances, you might want your components to ignore certain messages. That is, you
want to keep the component from dispatching the message to its handler. To trap a message that way,
you override the virtual method WndProc.
The WndProc method screens messages before passing them to the Dispatch method, which in turn
determines which method gets to handle the message. By overriding WndProc, your component gets a
chance to filter out messages before dispatching them. An override of WndProc for a control derived
from TWinControl looks like this:

void __fastcall TMyControl::WndProc(TMessage* Message)
{
 // tests to determine whether to continue processing
 TWinControl->WndProc(Message);
}

TControl defines entire ranges of mouse messages that it filters when a user is dragging and dropping
controls. Overriding WndProc helps this in two ways:

It can filter ranges of messages instead of having to specify handlers for each one.
It can preclude dispatching the message at all, so the handlers are never called.

TheWndProc method
Here is part of the WndProc method for TControl as it is implemented in VCL in Object Pascal:

procedure TControl.WndProc(var Message: TMessage);
begin
 ...
 if (Message.Msg >= WM_MOUSEFIRST) and (Message.Msg <= WM_MOUSELAST) then
 if Dragging then { handle dragging specially }
 DragMouseMsg(TWMMouse(Message))
 else
 ... { handle others
normally }
 end;
... { otherwise process
normally }
end;

Creating new message handlers
See also
Because C++Builder provides handlers for most common Windows messages, the time you will most
likely need to create new message handlers is when you define your own messages. Working with user-
defined messages has two aspects:

Defining your own messages
Declaring a new message-handling method

Defining your own messages
See also
A number of the standard components define messages for internal use. The most common reasons for
defining messages are broadcasting information not covered by standard Windows messages and
notification of state changes.
Defining a message is a two-step process. The steps are
1 Declaring a message identifier
2 Declaring a message-structure type

Declaring a message identifier
See also Example
A message identifier is an integer-sized constant. Windows reserves the messages below 1,024 for its
own use, so when you declare your own messages you should start above that level.
The constant WM_USER represents the starting number for user-defined messages. When defining
message identifiers, you should base them on WM_USER.
Be aware that some standard Windows controls use messages in the user-defined range. These include
list boxes, combo boxes, edit boxes, and command buttons. If you derive a component from one of
these and want to define a new message for it, be sure to check the MESSAGES.HPP file to see which
messages Windows already defines for that control.

An example of user-defined messages
The following code shows two user-defined messages:

#define WM_MYFIRSTMESSAGE (WM_USER + 400)
#define WM_MYSECONDMESSAGE (WM_USER + 401)

Declaring a message-structure type
See also Example
If you want to give useful names to the parameters of your message, you need to declare a message-
structure type for that message. The message structure is the type of the parameter passed to the
message-handling method. If you don't use the message's parameters, or if you want to use the old-
style parameter notation (wParam, lParam, and so on), you can use the default message structure,
TMessage.
To declare a message-structure type, follow these conventions:
1 Name the structure type after the message, preceded by a T.
2 Call the first data member in the structure Msg, of type Cardinal.
3 Define the next two bytes to correspond to the Word parameter and the next two bytes as unused
 OR

Define the next four bytes as a Longint parameter.
4 Define the next four bytes as a Longint parameter.
5 Add a final data member called Result, of type Longint.

An example of a message structure
For example, here is the message structure for all mouse messages, TWMKey:

struct TWMKey
{
 Cardinal Msg; // first parameter is the message ID
 Word CharCode; // this is the first wParam
 Word Unused;
 Longint KeyData; // this is the lParam
 Longint Result; // this is the result data member
};

Declaring a new message-handling method
See also Example
There are two sets of circumstances that require you to declare new message-handling methods:

Your component needs to handle a Windows message that isn't already handled by the standard
components.

You have defined your own message for use by your components.
To declare a message-handling method, do the following:
1 Declare the method in a protected part of the component's class declaration.
2 Be sure that the method returns void.
3 Name the method after the message it handles, but without any underline characters.
4 Pass a pointer called Message of the type of the message structure.
5 Map the method to the message using macros.
6 Within the message method implementation, write code for any handling specific to the component.
7 Call the inherited message handler.

An example of a message handler
Here's the declaration of a message handler for a user-defined message called CM_CHANGECOLOR:

#define CM_CHANGECOLOR (WM_USER + 400)
class TMyControl : public TControl
{
protected:
 void __fastcall CMChangeColor(TMessage* Message);
BEGIN_MESSAGE_MAP
 MESSAGE_HANDLER(CM_CHANGECOLOR, TMessage, CMChangeColor)
END_MESSAGE_MAP(TControl)
};
void __fastcall TMyControl::CMChangeColor(TMessage* Message)
{
 Color = Message->LParam; // set color from long parameter
 TControl::CMChangeColor(Message); // call the inherited message handler
}

Registering components
See also
Registering a component installs the component on the Component palette so you can select it, place it
on a form, and manipulate it at design time.
Making your components available at design time requires several steps:

Registering components
Adding palette bitmaps
Providing Help for your component
Storing and loading properties

These steps don't apply to every component. For example, if you don't define any new properties or
events, you don't need to provide Help for them. The only step that is always necessary is registration.

Registering components
See also
Registration works on a compilation unit basis, so if you create several components in a single
compilation unit, you register them all at once.
To register a component, add a Register function to the .CPP file of the unit. Within the Register function
you will register the components and determine where the components are installed on the Component
palette.
Once you've set up the registration, you can install the components onto the Component palette as
described in Chapter 2.

Writing the Register function
See also Example
Registration involves writing a single function in the .CPP file of the unit, which must have the name
Register. Within the Register method, you call the function RegisterComponents for each component
you want to register.

Note:
The Register function itself must exist within a namespace. The namespace is the name of the file the
component is in with all lowercase letters except the first letter.
For example, this code exists within a Newcomp namespace, whereas Newcomp is the name of
the .CPP file:

namespace Newcomp
{
 void __fastcall Register()
 {
 }
}

Inside the Register function, you must register each component you want to add to the Component
palette. If the header and .CPP file combination contain several components, you can register them all
in one step.
1 Within the Register function, declare an open array of type TComponentClass that holds the array of

components you are registering. The syntax should look like this:
TComponentClass classes[1] = {__classid(TNewComponent));

In this case, the array of classes contains just one component, but you can add all the components
you want to register to the array. For example, this code places two components in the array:
TComponentClass classes[2] = {__classid(TNewComponent), __classid(TAnotherComponent)};

Another way to add a component to the array is to assign the component to the array in a separate
statement. This statement adds a third component to the classes array:
classes[2] = __classid(TOneMoreComponent);

Because the classes array already contains two classes, TOneMoreComponent is assigned to the
third position in the array, with the first position having an index value of 0.

2 Within the Register function, call RegisterComponents to register the components in the classes
array.
RegisterComponents is a function that takes three parameters: the name of a Component palette
page, the array of component classes, and the size of the classes array minus 1.

An example of a Register function
The following Register function found in the NEWCOMP.CPP file, registers a component named
TMyComponent and places it on a Component palette page called "Miscellaneous":

namespace Newcomp
{
 void __fastcall Register()
 {
 TComponentClass classes[1] = {__classid(TMyComponent)};
 RegisterComponents("Miscellaneous", classes, 0);
 }
}

Note that the third argument in the RegisterComponents call is 0, which is the size of the classes array
minus 1.
You could also register several components on the same page at once, or register components on
different pages, as shown in the following code:

namespace Mycomps
{
 void __fastcall Register()
 {
 // declares an array that holds two components
 TComponentClass classes1[2] = {__classid(TFirst), __classid(TSecond)};
 // registers the two components in the classes1 array
 RegisterComponents("Miscellaneous", classes1, 1);
 // declares a second array
 TComponentClass classes2[1];
 // assigns a component to be the first element in the array
 classes2[0] = __classid(TThird);
 // registers the component in the classes2 array
 RegisterComponents("Assorted", classes2, 0);
 }
}

In the example two arrays, classes1 and classes2 are declared. In the first RegisterComponents call the
classes1 array size is 2, so the third argument is the size minus 1, which is 1. In the second
RegisterComponents call, the size of the classes2 array is 1, so the third argument is 0.

Adding palette bitmaps
See also Example
Every component needs a bitmap to represent the component on the Component palette. If you don't
specify your own bitmap, C++Builder uses a default bitmap.
Because the palette bitmaps are only needed at design time, you don't compile them into the component
compilation unit. Instead, you supply them in a Windows resource file with the same name as the .H and
.CPP files, but with the extension .DCR (for "dynamic component resource"). You can create this
resource file using the Image editor in C++Builder. Each bitmap should be 24 pixels square.
For each component you want to install, supply a palette bitmap file, and within each palette bitmap file,
supply a bitmap for each component you register. The bitmap image has the same name as the
component. Keep the palette bitmap file in the same directory with the compiled files, so C++Builder can
find the bitmaps when it installs the components on the Component palette.

An example of adding a palette bitmap
For example, if you create a component named TMyControl, you need to create a .DCR or .RES
resource file that contains a bitmap called TMYCONTROL. The resource names are not case-sensitive,
but by convention, they are usually in uppercase letters.

Providing Help for your component
See also
When you select a component on a form, or a property or event in the Object Inspector, you can press
F1 to get Help on that item. Users of your components can get the same kind of documentation for your
components if you create the appropriate help files.
You can provide a small Help file with just the information on your components, and users will be able to
find your documentation without having to take any special steps. Your help file becomes part of the
user's overall C++Builder Help system.

Creating the Help file
See also
You can use any tools you want to create a Windows Help file. C++Builder includes the Microsoft Help
Workshop, which compiles your Help files and presents an online help authoring guide. You can find
complete information about creating Help files in the online guide.
To make your component's Help work with the Help for the rest of the components in the library, observe
the following conventions:
1 Each component should have a screen.

The component screen should show which unit it's declared in, give a brief description of the
component's purpose, then list separately all the properties, events, and methods available to
component users. Application developers access this screen by selecting the component on a form
and pressing F1. For an example of a component screen, place any component on a form and press
F1.
The component screen should have a "K" footnote for keyword searching that includes the name of
the component. For example, the keyword footnote for the TMemo component reads "TMemo."

2 Each property, event, and method that is declared within the component should have a screen.
A property, event, or method screen should show the declaration of the item, and describe its use.
Application developers see these screens either by highlighting the item in the Object Inspector and
pressing F1 or by placing the test cursor in the Code editor on the name of the item and pressing F1.
To see an example of a property screen, select any item in the Object Inspector and press F1.

Each component, property, event, or method screen should have
A topic ID that is unique to the topic entered as a "#" footnote.
A title entered as a "$" footnote.

The title appears as specified in the Topics Found dialog box, the Bookmark dialog box, and the
History window.

A "K" footnote for keyword searching that includes the name of the item.
For example, the keyword footnote for the Top property reads "Top". For TMemo, the keyword reads
"TMemo".

Providing context sensitivity for your component
See also
Each component, property, and event screen must have an"A" footnote. The "A" footnote is used to
display the screen when the user selects a component and presses F1, or when a property or event is
selected in the Object Inspector and the user presses F1. The "A" footnotes must follow certain naming
conventions:
If the Help screen is for a component, the "A" footnote consists of two entries separated by a semicolon
using this syntax:

ComponentName_Object;ComponentName
ComponentName is the name of the component.
For example, for a component named MyComponent, the "A" footnote is
MyComponent_Object;MyComponent

If the Help screen is for a property or event, the "A" footnote consists of three entries separated by
semicolons using this syntax:

ComponentName_Element;Element_Type;Element
ComponentName is the name of the component, Element is the name of the property or event, and
Type is the either Property or Event
For example, for a property named BackgroundColor of a component named MyGrid, the "A" footnote
is
MyGrid_BackgroundColor;BackgroundColor_Property;BackgroundColor

Adding Help files to C++Builder Help
See also
To add your Help file to the C++Builder Help file,
Use the OpenHelp utility.
Search for ..Borland\Common files\OpenHelp.exe.
You'll find information in the OpenHelp.hlp file about using OpenHelp, including adding your Help file to
the Help system.

Storing and loading properties
See also
C++Builder stores forms and their components in form (.DFM) files. A form file is a binary representation
of the properties of a form and its components. When C++Builder users add the components you write
to their forms, your components must have the ability to write their properties to the form file when
saved. Similarly, when loaded into C++Builder or executed as part of an application, the components
must restore themselves from the form file.
Most of the time you won't need to do anything to make your components work with form files because
the ability to store a representation and load from it are part of the inherited behavior of components.
Sometimes, however, you might want to alter the way a component stores itself or the way it initializes
when loaded; so you should understand the underlying mechanism.
These are the aspects of property storage you need to understand:

Using the store-and-load mechanism
Specifying default values
Determining what to store
Initializing after loading

Using the store-and-load mechanism
See also
When an application developer designs forms, C++Builder saves descriptions of the forms in a form
(.DFM) file, which it later attaches to the compiled application. When a user runs the application, those
descriptions are read in.
The description of a form consists of a list of the form's properties, along with similar descriptions of
each component on the form. Each component, including the form itself, is responsible for storing and
loading its own description.
By default, when storing itself, a component writes the values of all its public and published properties
that differ from their default values, in the order of their declaration. When loading itself, a component
first constructs itself, setting all properties to their default values, then reads the stored, non-default
property values.
This default mechanism serves the needs of most components, and requires no action at all on the part
of the component writer. There are several ways you can customize the storing and loading process to
suit the needs of your particular components, however.

Specifying default values
See also Example
C++Builder components only save their property values if those values differ from the default values. If
you don't specify otherwise, C++Builder assumes a property has no default value, meaning the
component always stores the property, whatever its value.
A property whose value is not set by a component's constructor assumes a zero value. A zero value
means whatever value the property assumes when its storage memory is set to zero. That is, numeric
values default to zero, Boolean values to false, pointers to NULL, and so on. If there is any doubt,
specify the default value explicitly.
To specify a default value for a property,
1 Add an equal sign (=) after the property name.
2 After the equal sign, add braces({}).
3 Within the braces, type the keyword default, followed by another equal sign.
4 Specify the new default value.
For example,

__property Alignment = {default=taCenter};
You can also specify a default value when redeclaring a property. In fact, one reason to redeclare a
property is to designate a different default value.

Note:
Specifying the default value does not automatically assign that value to the property on creation of the
object. You must make sure that the component's constructor assigns the necessary value.

An example of specifying a default value
The following code shows a component declaration that specifies a default value for the Align property
and the implementation of the component's constructor that sets the default value. In this case, the new
component is a special case of the standard panel component that will be used for status bars in a
window, so its default alignment should be to the bottom of its owner.

class TMyStatusBar : public TPanel
{
public:
 virtual __fastcall TMyStatusBar(TComponent* AOwner);
__published:
 __property Align = {default=alBottom};
};

The constructor of the TMyStatusBar component is in the .CPP file:
__fastcall TMyStatusBar::TMyStatusBar (TComponent* AOwner)
 : TPanel(AOwner)
{
 Align = alBottom;
}

Determining what to store
See also Example
You can control whether C++Builder stores each of your components' properties. By default, all
properties in the published part of the class declaration are stored. You can choose to not store a given
property at all, or you can designate a function that determines at runtime whether to store the property.
To control whether C++Builder stores a property,
1 Add an equal sign (=) after the property name.
2 After the equal sign, add braces({}).
3 Within the braces, type the stored specifier, followed by true, false, or the name of a Boolean method.

An example of stored properties
The following code shows a component that declares three new properties. One is always stored, one is
never stored, and the third is stored depending on the value of a Boolean method:

class TSampleComponent : public TComponent
{
protected:
 bool __fastcall StoreIt();
public:
 __property int Important = {stored=true}; // always stored
 ...
__published:
 __property int Unimportant = {stored=false}; // never stored
 __property int Sometimes = {stored=StoreIt}; // storage depends on function value
};

Initializing after loading
See also
After a component reads all its property values from its stored description, it calls a virtual method called
Loaded, which provides a chance to perform any initializations that might be required. The call to
Loaded occurs before the form and its controls are shown, so you don't need to worry about initialization
causing flicker on the screen.
To initialize a component after it loads its property values, override the Loaded method.

Note:
The first thing you do in any Loaded method you write is call the inherited Loaded method. This ensures
that any inherited properties are correctly initialized before you perform initializations on your own
component.

