
GNU Emacs Manual

Sixth Edition, Emacs Version 18

for Unix Users

February 1988

(General Public License upgraded, January 1991)

Richard Stallman

Copyright c© 1985, 1986, 1988 Richard M. Stallman.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright

notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions

for verbatim copying, provided also that the sections entitled “The GNUManifesto”, “Distribution”

and “GNU General Public License” are included exactly as in the original, and provided that the

entire resulting derived work is distributed under the terms of a permission notice identical to this

one.

Permission is granted to copy and distribute translations of this manual into another language,

under the above conditions for modified versions, except that the sections entitled “The GNU

Manifesto”, “Distribution” and “GNU General Public License” may be included in a translation

approved by the author instead of in the original English.

Preface 1

Preface

This manual documents the use and simple customization of the Emacs editor. The reader is

not expected to be a programmer. Even simple customizations do not require programming skill,

but the user who is not interested in customizing can ignore the scattered customization hints.

This is primarily a reference manual, but can also be used as a primer. However, I recommend

that the newcomer first use the on-line, learn-by-doing tutorial, which you get by running Emacs

and typing C-h t. With it, you learn Emacs by using Emacs on a specially designed file which

describes commands, tells you when to try them, and then explains the results you see. This gives

a more vivid introduction than a printed manual.

On first reading, just skim chapters one and two, which describe the notational conventions

of the manual and the general appearance of the Emacs display screen. Note which questions

are answered in these chapters, so you can refer back later. After reading chapter four you should

practice the commands there. The next few chapters describe fundamental techniques and concepts

that are used constantly. You need to understand them thoroughly, experimenting with them if

necessary.

To find the documentation on a particular command, look in the index. Keys (character com-

mands) and command names have separate indexes. There is also a glossary, with a cross reference

for each term.

This manual comes in two forms: the published form and the Info form. The Info form is for

on-line perusal with the INFO program; it is distributed along with GNU Emacs. Both forms

contain substantially the same text and are generated from a common source file, which is also

distributed along with GNU Emacs.

GNU Emacs is a member of the Emacs editor family. There are many Emacs editors, all

sharing common principles of organization. For information on the underlying philosophy of Emacs

and the lessons learned from its development, write for a copy of AI memo 519a, “Emacs, the

Extensible, Customizable Self-Documenting Display Editor”, to Publications Department, Artificial

Intelligence Lab, 545 Tech Square, Cambridge, MA 02139, USA. At last report they charge $2.25

per copy. Another useful publication is LCS TM-165, “A Cookbook for an Emacs”, by Craig

Finseth, available from Publications Department, Laboratory for Computer Science, 545 Tech

Square, Cambridge, MA 02139, USA. The price today is $3.

This edition of the manual is intended for use with GNU Emacs installed on Unix systems.

GNU Emacs can also be used on VMS systems, which have different file name syntax and do not

2 GNU Emacs Manual

support all GNU Emacs features. A VMS edition of this manual may appear in the future.

Distribution 3

Distribution

GNU Emacs is free; this means that everyone is free to use it and free to redistribute it on a

free basis. GNU Emacs is not in the public domain; it is copyrighted and there are restrictions on

its distribution, but these restrictions are designed to permit everything that a good cooperating

citizen would want to do. What is not allowed is to try to prevent others from further sharing any

version of GNU Emacs that they might get from you. The precise conditions are found in the GNU

General Public License that comes with Emacs and also appears following this section.

The easiest way to get a copy of GNU Emacs is from someone else who has it. You need not

ask for permission to do so, or tell any one else; just copy it.

If you have access to the Internet, you can get the latest distribution version of GNU Emacs from

host ‘prep.ai.mit.edu’ using anonymous login. See the file ‘/u2/emacs/GETTING.GNU.SOFTWARE’

on that host to find out about your options for copying and which files to use.

You may also receive GNU Emacs when you buy a computer. Computer manufacturers are

free to distribute copies on the same terms that apply to everyone else. These terms require them

to give you the full sources, including whatever changes they may have made, and to permit you

to redistribute the GNU Emacs received from them under the usual terms of the General Public

License. In other words, the program must be free for you when you get it, not just free for the

manufacturer.

If you cannot get a copy in any of those ways, you can order one from the Free Software

Foundation. Though Emacs itself is free, our distribution service is not. An order form is included

at the end of manuals printed by the Foundation. It is also included in the file ‘etc/DISTRIB’ in

the Emacs distribution. For further information, write to

Free Software Foundation
675 Mass Ave
Cambridge, MA 02139
USA

The income from distribution fees goes to support the foundation’s purpose: the development

of more free software to distribute just like GNU Emacs.

If you find GNU Emacs useful, please send a donation to the Free Software Foundation. This

will help support development of the rest of the GNU system, and other useful software beyond

that. Your donation is tax deductible.

4 GNU Emacs Manual

GNU GENERAL PUBLIC LICENSE 5

GNU GENERAL PUBLIC LICENSE

Version 1, February 1989

Copyright c© 1989 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The license agreements of most software companies try to keep users at the mercy of those

companies. By contrast, our General Public License is intended to guarantee your freedom to share

and change free software—to make sure the software is free for all its users. The General Public

License applies to the Free Software Foundation’s software and to any other program whose authors

commit to using it. You can use it for your programs, too.

When we speak of free software, we are referring to freedom, not price. Specifically, the General

Public License is designed to make sure that you have the freedom to give away or sell copies of

free software, that you receive source code or can get it if you want it, that you can change the

software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights

or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you

if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of a such a program, whether gratis or for a fee, you must

give the recipients all the rights that you have. You must make sure that they, too, receive or can

get the source code. And you must tell them their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license

which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands

that there is no warranty for this free software. If the software is modified by someone else and

passed on, we want its recipients to know that what they have is not the original, so that any

problems introduced by others will not reflect on the original authors’ reputations.

6 GNU Emacs Manual

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

1. This License Agreement applies to any program or other work which contains a notice placed

by the copyright holder saying it may be distributed under the terms of this General Public

License. The “Program”, below, refers to any such program or work, and a “work based on

the Program” means either the Program or any work containing the Program or a portion of

it, either verbatim or with modifications. Each licensee is addressed as “you”.

2. You may copy and distribute verbatim copies of the Program’s source code as you receive

it, in any medium, provided that you conspicuously and appropriately publish on each copy

an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that

refer to this General Public License and to the absence of any warranty; and give any other

recipients of the Program a copy of this General Public License along with the Program. You

may charge a fee for the physical act of transferring a copy.

3. You may modify your copy or copies of the Program or any portion of it, and copy and

distribute such modifications under the terms of Paragraph 1 above, provided that you also do

the following:

• cause the modified files to carry prominent notices stating that you changed the files and

the date of any change; and

• cause the whole of any work that you distribute or publish, that in whole or in part

contains the Program or any part thereof, either with or without modifications, to be

licensed at no charge to all third parties under the terms of this General Public License

(except that you may choose to grant warranty protection to some or all third parties, at

your option).

• If the modified program normally reads commands interactively when run, you must cause

it, when started running for such interactive use in the simplest and most usual way, to

print or display an announcement including an appropriate copyright notice and a notice

that there is no warranty (or else, saying that you provide a warranty) and that users may

redistribute the program under these conditions, and telling the user how to view a copy

of this General Public License.

• You may charge a fee for the physical act of transferring a copy, and you may at your

option offer warranty protection in exchange for a fee.

Mere aggregation of another independent work with the Program (or its derivative) on a volume

of a storage or distribution medium does not bring the other work under the scope of these

terms.

4. You may copy and distribute the Program (or a portion or derivative of it, under Paragraph

GNU GENERAL PUBLIC LICENSE 7

2) in object code or executable form under the terms of Paragraphs 1 and 2 above provided

that you also do one of the following:

• accompany it with the complete corresponding machine-readable source code, which must

be distributed under the terms of Paragraphs 1 and 2 above; or,

• accompany it with a written offer, valid for at least three years, to give any third party

free (except for a nominal charge for the cost of distribution) a complete machine-readable

copy of the corresponding source code, to be distributed under the terms of Paragraphs 1

and 2 above; or,

• accompany it with the information you received as to where the corresponding source code

may be obtained. (This alternative is allowed only for noncommercial distribution and

only if you received the program in object code or executable form alone.)

Source code for a work means the preferred form of the work for making modifications to

it. For an executable file, complete source code means all the source code for all modules it

contains; but, as a special exception, it need not include source code for modules which are

standard libraries that accompany the operating system on which the executable file runs, or

for standard header files or definitions files that accompany that operating system.

5. You may not copy, modify, sublicense, distribute or transfer the Program except as expressly

provided under this General Public License. Any attempt otherwise to copy, modify, sublicense,

distribute or transfer the Program is void, and will automatically terminate your rights to use

the Program under this License. However, parties who have received copies, or rights to use

copies, from you under this General Public License will not have their licenses terminated so

long as such parties remain in full compliance.

6. By copying, distributing or modifying the Program (or any work based on the Program) you

indicate your acceptance of this license to do so, and all its terms and conditions.

7. Each time you redistribute the Program (or any work based on the Program), the recipient

automatically receives a license from the original licensor to copy, distribute or modify the

Program subject to these terms and conditions. You may not impose any further restrictions

on the recipients’ exercise of the rights granted herein.

8. The Free Software Foundation may publish revised and/or new versions of the General Public

License from time to time. Such new versions will be similar in spirit to the present version,

but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version

number of the license which applies to it and “any later version”, you have the option of

following the terms and conditions either of that version or of any later version published by

the Free Software Foundation. If the Program does not specify a version number of the license,

you may choose any version ever published by the Free Software Foundation.

9. If you wish to incorporate parts of the Program into other free programs whose distribution

conditions are different, write to the author to ask for permission. For software which is

copyrighted by the Free Software Foundation, write to the Free Software Foundation; we

8 GNU Emacs Manual

sometimes make exceptions for this. Our decision will be guided by the two goals of preserving

the free status of all derivatives of our free software and of promoting the sharing and reuse of

software generally.

NO WARRANTY

10. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-

RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.

EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS

AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS”WITHOUTWARRANTY

OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFOR-

MANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-

FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR

CORRECTION.

11. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-

ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY

AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO

YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CON-

SEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE

PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING

RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES

OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),

EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-

BILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

GNU GENERAL PUBLIC LICENSE 9

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to humanity,

the best way to achieve this is to make it free software which everyone can redistribute and change

under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of

each source file to most effectively convey the exclusion of warranty; and each file should have at

least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive

mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the

General Public License. Of course, the commands you use may be called something other than ‘show

w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign

10 GNU Emacs Manual

a “copyright disclaimer” for the program, if necessary. Here a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
program ‘Gnomovision’ (a program to direct compilers to make passes
at assemblers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

That’s all there is to it!

Introduction 11

Introduction

You are reading about GNU Emacs, the GNU incarnation of the advanced, self-documenting,

customizable, extensible real-time display editor Emacs. (The ‘G’ in ‘GNU’ is not silent.)

We say that Emacs is a display editor because normally the text being edited is visible on the

screen and is updated automatically as you type your commands. See Chapter 1 [Screen], page 13.

We call it a real-time editor because the display is updated very frequently, usually after each

character or pair of characters you type. This minimizes the amount of information you must keep

in your head as you edit. See Section 4.5 [Basic Editing], page 28.

We call Emacs advanced because it provides facilities that go beyond simple insertion and

deletion: filling of text; automatic indentation of programs; viewing two or more files at once; and

dealing in terms of characters, words, lines, sentences, paragraphs, and pages, as well as expressions

and comments in several different programming languages. It is much easier to type one command

meaning “go to the end of the paragraph” than to find that spot with simple cursor keys.

Self-documenting means that at any time you can type a special character, Control-h, to find

out what your options are. You can also use it to find out what any command does, or to find all

the commands that pertain to a topic. See Section 8.4 [Help], page 48.

Customizable means that you can change the definitions of Emacs commands in little ways. For

example, if you use a programming language in which comments start with ‘<**’ and end with ‘**>’,

you can tell the Emacs comment manipulation commands to use those strings (see Section 21.6.2

[Comments], page 152). Another sort of customization is rearrangement of the command set. For

example, if you prefer the four basic cursor motion commands (up, down, left and right) on keys in

a diamond pattern on the keyboard, you can have it. See Chapter 28 [Customization], page 217.

Extensible means that you can go beyond simple customization and write entirely new com-

mands, programs in the Lisp language to be run by Emacs’s own Lisp interpreter. Emacs is an

“on-line extensible” system, which means that it is divided into many functions that call each

other, any of which can be redefined in the middle of an editing session. Any part of Emacs can be

replaced without making a separate copy of all of Emacs. Most of the editing commands of Emacs

are written in Lisp already; the few exceptions could have been written in Lisp but are written in C

for efficiency. Although only a programmer can write an extension, anybody can use it afterward.

12 GNU Emacs Manual

Chapter 1: The Organization of the Screen 13

1 The Organization of the Screen

Emacs divides the screen into several areas, each of which contains its own sorts of information.

The biggest area, of course, is the one in which you usually see the text you are editing.

When you are using Emacs, the screen is divided into a number of windows. Initially there is one

text window occupying all but the last line, plus the special echo area or minibuffer window in the

last line. The text window can be subdivided horizontally or vertically into multiple text windows,

each of which can be used for a different file (see Chapter 17 [Windows], page 111). The window

that the cursor is in is the selected window, in which editing takes place. The other windows are

just for reference unless you select one of them.

Each text window’s last line is a mode line which describes what is going on in that window.

It is in inverse video if the terminal supports that, and contains text that starts like ‘-----Emacs:

something’. Its purpose is to indicate what buffer is being displayed above it in the window; what

major and minor modes are in use; and whether the buffer’s text has been changed.

1.1 Point

When Emacs is running, the terminal’s cursor shows the location at which editing commands

will take effect. This location is called point. Other commands move point through the text, so

that you can edit at different places in it.

While the cursor appears to point at a character, point should be thought of as between two

characters; it points before the character that the cursor appears on top of. Sometimes people

speak of “the cursor” when they mean “point”, or speak of commands that move point as “cursor

motion” commands.

Terminals have only one cursor, and when output is in progress it must appear where the typing

is being done. This does not mean that point is moving. It is only that Emacs has no way to show

you the location of point except when the terminal is idle.

If you are editing several files in Emacs, each file has its own point location. A file that is not

being displayed remembers where point is so that it can be seen when you look at that file again.

When there are multiple text windows, each window has its own point location. The cursor

shows the location of point in the selected window. This also is how you can tell which window is

14 GNU Emacs Manual

selected. If the same buffer appears in more than one window, point can be moved in each window

independently.

The term ‘point’ comes from the character ‘.’, which was the command in TECO (the language

in which the original Emacs was written) for accessing the value now called ‘point’.

1.2 The Echo Area

The line at the bottom of the screen (below the mode line) is the echo area. It is used to display

small amounts of text for several purposes.

Echoing means printing out the characters that you type. Emacs never echoes single-character

commands, and multi-character commands are echoed only if you pause while typing them. As

soon as you pause for more than a second in the middle of a command, all the characters of the

command so far are echoed. This is intended to prompt you for the rest of the command. Once

echoing has started, the rest of the command is echoed immediately when you type it. This behavior

is designed to give confident users fast response, while giving hesitant users maximum feedback.

You can change this behavior by setting a variable (see Section 12.4 [Display Vars], page 67).

If a command cannot be executed, it may print an error message in the echo area. Error

messages are accompanied by a beep or by flashing the screen. Also, any input you have typed

ahead is thrown away when an error happens.

Some commands print informative messages in the echo area. These messages look much like

error messages, but they are not announced with a beep and do not throw away input. Sometimes

the message tells you what the command has done, when this is not obvious from looking at the

text being edited. Sometimes the sole purpose of a command is to print a message giving you

specific information. For example, the command C-x = is used to print a message describing the

character position of point in the text and its current column in the window. Commands that take

a long time often display messages ending in ‘...’ while they are working, and add ‘done’ at the

end when they are finished.

The echo area is also used to display the minibuffer, a window that is used for reading arguments

to commands, such as the name of a file to be edited. When the minibuffer is in use, the echo area

begins with a prompt string that usually ends with a colon; also, the cursor appears in that line

because it is the selected window. You can always get out of the minibuffer by typing C-g. See

Chapter 6 [Minibuffer], page 35.

Chapter 1: The Organization of the Screen 15

1.3 The Mode Line

Each text window’s last line is a mode line which describes what is going on in that window.

When there is only one text window, the mode line appears right above the echo area. The mode

line is in inverse video if the terminal supports that, starts and ends with dashes, and contains text

like ‘Emacs: something’.

If a mode line has something else in place of ‘Emacs: something’, then the window above it is

in a special subsystem such as Dired. The mode line then indicates the status of the subsystem.

Normally, the mode line has the following appearance:

--ch-Emacs: buf (major minor)----pos------

This gives information about the buffer being displayed in the window: the buffer’s name, what

major and minor modes are in use, whether the buffer’s text has been changed, and how far down

the buffer you are currently looking.

ch contains two stars ‘**’ if the text in the buffer has been edited (the buffer is “modified”), or

‘--’ if the buffer has not been edited. Exception: for a read-only buffer, it is ‘%%’.

buf is the name of the window’s chosen buffer. The chosen buffer in the selected window (the

window that the cursor is in) is also Emacs’s selected buffer, the one that editing takes place in.

When we speak of what some command does to “the buffer”, we are talking about the currently

selected buffer. See Chapter 16 [Buffers], page 105.

pos tells you whether there is additional text above the top of the screen, or below the bottom.

If your file is small and it is all on the screen, pos is ‘All’. Otherwise, it is ‘Top’ if you are looking

at the beginning of the file, ‘Bot’ if you are looking at the end of the file, or ‘nn%’, where nn is the

percentage of the file above the top of the screen.

major is the name of the major mode in effect in the buffer. At any time, each buffer is in

one and only one of the possible major modes. The major modes available include Fundamental

mode (the least specialized), Text mode, Lisp mode, and C mode. See Chapter 18 [Major Modes],

page 115, for details of how the modes differ and how to select one.

minor is a list of some of the minor modes that are turned on at the moment in the window’s

chosen buffer. ‘Fill’ means that Auto Fill mode is on. ‘Abbrev’ means that Word Abbrev mode is

16 GNU Emacs Manual

on. ‘Ovwrt’ means that Overwrite mode is on. See Section 28.1 [Minor Modes], page 217, for more

information. ‘Narrow’ means that the buffer being displayed has editing restricted to only a portion

of its text. This is not really a minor mode, but is like one. See Section 27.2 [Narrowing], page 208.

‘Def’ means that a keyboard macro is being defined. See Section 28.3 [Keyboard Macros], page 223.

Some buffers display additional information after the minor modes. For example, Rmail buffers

display the current message number and the total number of messages. Compilation buffers and

Shell mode display the status of the subprocess.

In addition, if Emacs is currently inside a recursive editing level, square brackets (‘[. . .]’) appear

around the parentheses that surround the modes. If Emacs is in one recursive editing level within

another, double square brackets appear, and so on. Since this information pertains to Emacs in

general and not to any one buffer, the square brackets appear in every mode line on the screen or

not in any of them. See Section 27.1 [Recursive Edit], page 207.

Emacs can optionally display the time and system load in all mode lines. To enable this feature,

type M-x display-time. The information added to the mode line usually appears after the file

name, before the mode names and their parentheses. It looks like this:

hh:mmpm l.ll [d]

(Some fields may be missing if your operating system cannot support them.) hh and mm are the

hour and minute, followed always by ‘am’ or ‘pm’. l.ll is the average number of running processes in

the whole system recently. d is an approximate index of the ratio of disk activity to cpu activity

for all users.

The word ‘Mail’ appears after the load level if there is mail for you that you have not read yet.

Customization note: the variable mode-line-inverse-video controls whether the mode line is

displayed in inverse video (assuming the terminal supports it); nil means no inverse video. The

default is t.

Chapter 2: Characters, Keys and Commands 17

2 Characters, Keys and Commands

This chapter explains the character set used by Emacs for input commands and for the contents

of files, and also explains the concepts of keys and commands which are necessary for understanding

how your keyboard input is understood by Emacs.

2.1 The Emacs Character Set

GNU Emacs uses the ASCII character set, which defines 128 different character codes. Some of

these codes are assigned graphic symbols such as ‘a’ and ‘=’; the rest are control characters, such as

Control-a (also called C-a for short). C-a gets its name from the fact that you type it by holding

down the CTRL key and then pressing a. There is no distinction between C-a and C-A; they are the

same character.

Some control characters have special names, and special keys you can type them with: RET, TAB,

LFD, DEL and ESC. The space character is usually referred to below as SPC, even though strictly

speaking it is a graphic character whose graphic happens to be blank.

Emacs extends the 7-bit ASCII code to an 8-bit code by adding an extra bit to each character.

This makes 256 possible command characters. The additional bit is called Meta. Any ASCII

character can be made Meta; examples of Meta characters include Meta-a (M-a, for short), M-A (not

the same character as M-a, but those two characters normally have the same meaning in Emacs),

M-RET, and M-C-a. For traditional reasons, M-C-a is usually called C-M-a; logically speaking, the

order in which the modifier keys CTRL and META are mentioned does not matter.

Some terminals have a META key, and allow you to type Meta characters by holding this key

down. Thus, Meta-a is typed by holding down META and pressing a. The META key works much like

the SHIFT key. Such a key is not always labeled META, however, as this function is often a special

option for a key with some other primary purpose.

If there is no META key, you can still type Meta characters using two-character sequences starting

with ESC. Thus, to enter M-a, you could type ESC a. To enter C-M-a, you would type ESC C-a. ESC

is allowed on terminals with Meta keys, too, in case you have formed a habit of using it.

Emacs believes the terminal has a META key if the variable meta-flag is non-nil. Normally this

is set automatically according to the termcap entry for your terminal type. However, sometimes

18 GNU Emacs Manual

the termcap entry is wrong, and then it is useful to set this variable yourself. See Section 28.2

[Variables], page 218, for how to do this.

Emacs buffers also use an 8-bit character set, because bytes have 8 bits, but only the ASCII

characters are considered meaningful. ASCII graphic characters in Emacs buffers are displayed

with their graphics. LFD is the same as a newline character; it is displayed by starting a new

line. TAB is displayed by moving to the next tab stop column (usually every 8 columns). Other

control characters are displayed as a caret (‘^’) followed by the non-control version of the character;

thus, C-a is displayed as ‘^A’. Non-ASCII characters 128 and up are displayed with octal escape

sequences; thus, character code 243 (octal), also called M-# when used as an input character, is

displayed as ‘\243’.

2.2 Keys

A complete key—where ‘key’ is short for key sequence—is a sequence of keystrokes that are

understood by Emacs as a unit, as a single command (possibly undefined). Most single characters

constitute complete keys in the standard Emacs command set; there are also some multi-character

keys. Examples of complete keys are C-a, X, RET, C-x C-f and C-x 4 C-f.

A prefix key is a sequence of keystrokes that are the beginning of a complete key, but not a

whole one. Prefix keys and complete keys are collectively called keys.

A prefix key is the beginning of a series of longer sequences that are valid keys; adding any single

character to the end of the prefix gives a valid key, which could be defined as an Emacs command,

or could be a prefix itself. For example, C-x is standardly defined as a prefix, so C-x and the

next input character combine to make a two-character key. There are 256 different two-character

keys starting with C-x, one for each possible second character. Many of these two-character keys

starting with C-x are standardly defined as Emacs commands. Notable examples include C-x C-f

and C-x s (see Chapter 15 [Files], page 87).

Adding one character to a prefix key does not have to form a complete key. It could make

another, longer prefix. For example, C-x 4 is itself a prefix that leads to 256 different three-

character keys, including C-x 4 f, C-x 4 b and so on. It would be possible to define one of those

three-character sequences as a prefix, creating a series of four-character keys, but we did not define

any of them this way.

By contrast, the two-character sequence C-f C-k is not a key, because the C-f is a complete

key in itself. It’s impossible to give C-f C-k an independent meaning as a command as long as C-f

Chapter 2: Characters, Keys and Commands 19

retains its meaning. C-f C-k is two commands.

All told, the prefix keys in Emacs are C-c, C-x, C-h, C-x 4, and ESC. But this is not built in;

it is just a matter of Emacs’s standard key bindings. In customizing Emacs, you could make new

prefix keys, or eliminate these. See Section 28.4 [Key Bindings], page 226.

Whether a sequence is a key can be changed by customization. For example, if you redefine C-f

as a prefix, C-f C-k automatically becomes a key (complete, unless you define it too as a prefix).

Conversely, if you remove the prefix definition of C-x 4, then C-x 4 f (or C-x 4 anything) is no

longer a key.

2.3 Keys and Commands

This manual is full of passages that tell you what particular keys do. But Emacs does not assign

meanings to keys directly. Instead, Emacs assigns meanings to functions, and then gives keys their

meanings by binding them to functions.

A function is a Lisp object that can be executed as a program. Usually it is a Lisp symbol

which has been given a function definition; every symbol has a name, usually made of a few

English words separated by dashes, such as next-line or forward-word. It also has a definition

which is a Lisp program; this is what makes the function do what it does. Only some functions can

be the bindings of keys; these are functions whose definitions use interactive to specify how to

call them interactively. Such functions are called commands, and their names are command names.

More information on this subject will appear in the GNU Emacs Lisp Manual (which is not yet

written).

The bindings between keys and functions are recorded in various tables called keymaps. See

Section 28.4.1 [Keymaps], page 226.

When we say that “C-n moves down vertically one line” we are glossing over a distinction that is

irrelevant in ordinary use but is vital in understanding how to customize Emacs. It is the function

next-line that is programmed to move down vertically. C-n has this effect because it is bound

to that function. If you rebind C-n to the function forward-word then C-n will move forward by

words instead. Rebinding keys is a common method of customization.

In the rest of this manual, we usually ignore this subtlety to keep things simple. To give the

customizer the information he needs, we state the name of the command which really does the work

in parentheses after mentioning the key that runs it. For example, we will say that “The command

20 GNU Emacs Manual

C-n (next-line) moves point vertically down,” meaning that next-line is a command that moves

vertically down and C-n is a key that is standardly bound to it.

While we are on the subject of information for customization only, it’s a good time to tell you

about variables. Often the description of a command will say, “To change this, set the variable

mumble-foo.” A variable is a name used to remember a value. Most of the variables documented in

this manual exist just to facilitate customization: some command or other part of Emacs examines

the variable and behaves differently accordingly. Until you are interested in customizing, you

can ignore the information about variables. When you are ready to be interested, read the basic

information on variables, and then the information on individual variables will make sense. See

Section 28.2 [Variables], page 218.

Chapter 3: Entering and Exiting Emacs 21

3 Entering and Exiting Emacs

The usual way to invoke Emacs is just to type emacs RET at the shell. Emacs clears the screen

and then displays an initial advisor message and copyright notice. You can begin typing Emacs

commands immediately afterward.

Some operating systems insist on discarding all type-ahead when Emacs starts up; they give

Emacs no way to prevent this. Therefore, it is wise to wait until Emacs clears the screen before

typing your first editing command.

Before Emacs reads the first command, you have not had a chance to give a command to specify

a file to edit. But Emacs must always have a current buffer for editing. In an attempt to do

something useful, Emacs presents a buffer named ‘*scratch*’ which is in Lisp Interaction mode;

you can use it to type Lisp expressions and evaluate them, or you can ignore that capability and

simply doodle. (You can specify a different major mode for this buffer by setting the variable

initial-major-mode in your init file. See Section 28.6 [Init File], page 232.)

It is also possible to specify files to be visited, Lisp files to be loaded, and functions to be called,

by giving Emacs arguments in the shell command line. See Section 3.2 [Command Switches],

page 22.

3.1 Exiting Emacs

There are two commands for exiting Emacs because there are two kinds of exiting: suspending

Emacs and killing Emacs. Suspending means stopping Emacs temporarily and returning control

to its superior (usually the shell), allowing you to resume editing later in the same Emacs job, with

the same files, same kill ring, same undo history, and so on. This is the usual way to exit. Killing

Emacs means destroying the Emacs job. You can run Emacs again later, but you will get a fresh

Emacs; there is no way to resume the same editing session after it has been killed.

C-z Suspend Emacs (suspend-emacs).

C-x C-c Kill Emacs (save-buffers-kill-emacs).

To suspend Emacs, type C-z (suspend-emacs). This takes you back to the shell from which you

invoked Emacs. You can resume Emacs with the command %emacs if you are using the C shell.

On systems that do not permit programs to be suspended, C-z runs an inferior shell that

22 GNU Emacs Manual

communicates directly with the terminal, and Emacs waits until you exit the subshell. The only

way on these systems to get back to the shell from which Emacs was run (to log out, for example)

is to kill Emacs. C-d or exit are typical commands to exit a subshell.

To kill Emacs, type C-x C-c (save-buffers-kill-emacs). A two-character key is used for this

to make it harder to type. Unless a numeric argument is used, this command first offers to save

any modified buffers. If you do not save them all, it asks for reconfirmation with yes before killing

Emacs, since any changes not saved before that will be lost forever. Also, if any subprocesses are still

running, C-x C-c asks for confirmation about them, since killing Emacs will kill the subprocesses

immediately.

In most programs running on Unix, certain characters may instantly suspend or kill the program.

(In Berkeley Unix these characters are normally C-z and C-c.) This Unix feature is turned off while

you are in Emacs. The meanings of C-z and C-x C-c as keys in Emacs were inspired by the standard

Berkeley Unix meanings of C-z and C-c, but that is their only relationship with Unix. You could

customize these keys to do anything (see Section 28.4.1 [Keymaps], page 226).

3.2 Command Line Switches and Arguments

GNU Emacs supports command line arguments to request various actions when invoking Emacs.

These are for compatibility with other editors and for sophisticated activities. They are not needed

for ordinary editing with Emacs, so new users can skip this section.

You may be used to using command line arguments with other editors to specify which file to

edit. That’s because many other editors are designed to be started afresh each time you want to

edit. You edit one file and then exit the editor. The next time you want to edit either another

file or the same one, you must run the editor again. With these editors, it makes sense to use a

command line argument to say which file to edit.

The recommended way to use GNU Emacs is to start it only once, just after you log in, and do

all your editing in the same Emacs process. Each time you want to edit a different file, you visit it

with the existing Emacs, which eventually comes to have many files in it ready for editing. Usually

you do not kill the Emacs until you are about to log out.

When files are nearly always read by typing commands to an editor that is already running,

command line arguments for specifying a file when the editor is started are seldom needed.

Emacs accepts command-line arguments that specify files to visit, functions to call, and other

Chapter 3: Entering and Exiting Emacs 23

activities and operating modes.

The command arguments are processed in the order they appear in the command argument list;

however, certain arguments (the ones in the second table) must be at the front of the list if they

are used.

Here are the arguments allowed:

‘file’ Visit file using find-file. See Section 15.2 [Visiting], page 88.

‘+linenum file’

Visit file using find-file, then go to line number linenum in it.

‘-l file’

‘-load file’

Load a file file of Lisp code with the function load. See Section 22.3 [Lisp Libraries],

page 169.

‘-f function’

‘-funcall function’

Call Lisp function function with no arguments.

‘-i file’

‘-insert file’

Insert the contents of file into the current buffer. This is like what M-x insert-buffer

does; See Section 15.8 [Misc File Ops], page 102.

‘-kill’ Exit from Emacs without asking for confirmation.

The remaining switches are recognized only at the beginning of the command line. If more than

one of them appears, they must appear in the order that they appear in this table.

‘-t device’

Use device as the device for terminal input and output.

‘-d display ’

When running with the X window system, use the display named display to make the

window that serves as Emacs’s terminal.

‘-batch’ Run Emacs in batch mode, which means that the text being edited is not displayed

and the standard Unix interrupt characters such as C-z and C-c continue to have their

normal effect. Emacs in batch mode outputs to stdout only what would normally be

printed in the echo area under program control.

Batch mode is used for running programs written in Emacs Lisp from shell scripts,

makefiles, and so on. Normally the ‘-l’ switch or ‘-f’ switch will be used as well, to

24 GNU Emacs Manual

invoke a Lisp program to do the batch processing.

‘-batch’ implies ‘-q’ (do not load an init file). It also causes Emacs to kill itself after

all command switches have been processed. In addition, auto-saving is not done except

in buffers for which it has been explicitly requested.

‘-q’

‘-no-init-file’

Do not load your Emacs init file ‘~/.emacs’.

‘-u user’

‘-user user’

Load user’s Emacs init file ‘~user/.emacs’ instead of your own.

Note that the init file can get access to the command line argument values as the elements of

a list in the variable command-line-args. (The arguments in the second table above will already

have been processed and will not be in the list.) The init file can override the normal processing of

the other arguments by setting this variable.

One way to use command switches is to visit many files automatically:

emacs *.c

passes each .c file as a separate argument to Emacs, so that Emacs visits each file (see Section 15.2

[Visiting], page 88).

Here is an advanced example that assumes you have a Lisp program file called ‘hack-c-

program.el’ which, when loaded, performs some useful operation on current buffer, expected to

be a C program.

emacs -batch foo.c -l hack-c-program -f save-buffer -kill > log

Here Emacs is told to visit ‘foo.c’, load ‘hack-c-program.el’ (which makes changes in the visited

file), save ‘foo.c’ (note that save-buffer is the function that C-x C-s is bound to), and then

exit to the shell that this command was done with. ‘-batch’ guarantees there will be no problem

redirecting output to ‘log’, because Emacs will not assume that it has a display terminal to work

with.

Chapter 4: Basic Editing Commands 25

4 Basic Editing Commands

We now give the basics of how to enter text, make corrections, and save the text in a file. If

this material is new to you, you might learn it more easily by running the Emacs learn-by-doing

tutorial. To do this, type Control-h t (help-with-tutorial).

4.1 Inserting Text

To insert printing characters into the text you are editing, just type them. This inserts the

character into the buffer at the cursor (that is, at point; see Section 1.1 [Point], page 13). The

cursor moves forward. Any characters after the cursor move forward too. If the text in the buffer

is ‘FOOBAR’, with the cursor before the ‘B’, then if you type XX, you get ‘FOOXXBAR’, with the cursor

still before the ‘B’.

To delete text you have just inserted, use DEL. DEL deletes the character before the cursor (not

the one that the cursor is on top of or under; that is the character after the cursor). The cursor

and all characters after it move backwards. Therefore, if you type a printing character and then

type DEL, they cancel out.

To end a line and start typing a new one, type RET. This inserts a newline character in the

buffer. If point is in the middle of a line, RET splits the line. Typing DEL when the cursor is at the

beginning of a line rubs out the newline before the line, thus joining the line with the preceding

line.

Emacs will split lines automatically when they become too long, if you turn on a special mode

called Auto Fill mode. See Section 20.6 [Filling], page 134, for how to use Auto Fill mode.

Customization information: DEL in most modes runs the command named delete-backward-

char; RET runs the command newline, and self-inserting printing characters run the command

self-insert, which inserts whatever character was typed to invoke it. Some major modes rebind

DEL to other commands.

Direct insertion works for printing characters and SPC, but other characters act as editing

commands and do not insert themselves. If you need to insert a control character or a character

whose code is above 200 octal, you must quote it by typing the character control-q (quoted-

insert) first. There are two ways to use C-q:

26 GNU Emacs Manual

• Control-q followed by any non-graphic character (even C-g) inserts that character.

• Control-q followed by three octal digits inserts the character with the specified character code.

A numeric argument to C-q specifies how many copies of the quoted character should be inserted

(see Section 4.9 [Arguments], page 31).

If you prefer to have text characters replace (overwrite) existing text rather than shove it to the

right, you can enable Overwrite mode, a minor mode. See Section 28.1 [Minor Modes], page 217.

4.2 Changing the Location of Point

To do more than insert characters, you have to know how to move point (see Section 1.1 [Point],

page 13). Here are a few of the commands for doing that.

C-a Move to the beginning of the line (beginning-of-line).

C-e Move to the end of the line (end-of-line).

C-f Move forward one character (forward-char).

C-b Move backward one character (backward-char).

M-f Move forward one word (forward-word).

M-b Move backward one word (backward-word).

C-n Move down one line, vertically (next-line). This command attempts to keep the

horizontal position unchanged, so if you start in the middle of one line, you end in the

middle of the next. When on the last line of text, C-n creates a new line and moves

onto it.

C-p Move up one line, vertically (previous-line).

C-l Clear the screen and reprint everything (recenter). Text moves on the screen to bring

point to the center of the window.

M-r Move point to left margin on the line halfway down the screen or window (move-to-

window-line). Text does not move on the screen. A numeric argument says how many

screen lines down from the top of the window (zero for the top). A negative argument

counts from the bottom (−1 for the bottom).

C-t Transpose two characters, the ones before and after the cursor (transpose-chars).

M-< Move to the top of the buffer (beginning-of-buffer). With numeric argument n,

move to n/10 of the way from the top. See Section 4.9 [Arguments], page 31, for more

information on numeric arguments.

M-> Move to the end of the buffer (end-of-buffer).

Chapter 4: Basic Editing Commands 27

M-x goto-char

Read a number n and move cursor to character number n. Position 1 is the beginning

of the buffer.

M-x goto-line

Read a number n and move cursor to line number n. Line 1 is the beginning of the

buffer.

C-x C-n Use the current column of point as the semipermanent goal column for C-n and C-p

(set-goal-column). Henceforth, those commands always move to this column in each

line moved into, or as close as possible given the contents of the line. This goal column

remains in effect until canceled.

C-u C-x C-n

Cancel the goal column. Henceforth, C-n and C-p once again try to avoid changing the

horizontal position, as usual.

If you set the variable track-eol to a non-nil value, then C-n and C-p when at the end of the

starting line move to the end of the line. Normally, track-eol is nil.

4.3 Erasing Text

DEL Delete the character before the cursor (delete-backward-char).

C-d Delete the character after the cursor (delete-char).

C-k Kill to the end of the line (kill-line).

M-d Kill forward to the end of the next word (kill-word).

M-DEL Kill back to the beginning of the previous word (backward-kill-word).

You already know about the DEL key which deletes the character before the cursor. Another

key, Control-d, deletes the character after the cursor, causing the rest of the text on the line to

shift left. If Control-d is typed at the end of a line, that line and the next line are joined together.

To erase a larger amount of text, use the Control-k key, which kills a line at a time. If C-k is

done at the beginning or middle of a line, it kills all the text up to the end of the line. If C-k is

done at the end of a line, it joins that line and the next line.

See Section 10.1.3 [Killing], page 55, for more flexible ways of killing text.

28 GNU Emacs Manual

4.4 Files

The commands above are sufficient for creating and altering text in an Emacs buffer; the more

advanced Emacs commands just make things easier. But to keep any text permanently you must

put it in a file. Files are named units of text which are stored by the operating system for you to

retrieve later by name. To look at or use the contents of a file in any way, including editing the file

with Emacs, you must specify the file name.

Consider a file named ‘/usr/rms/foo.c’. In Emacs, to begin editing this file, type

C-x C-f /usr/rms/foo.c RET

Here the file name is given as an argument to the command C-x C-f (find-file). That com-

mand uses the minibuffer to read the argument, and you type RET to terminate the argument (see

Chapter 6 [Minibuffer], page 35).

Emacs obeys the command by visiting the file: creating a buffer, copying the contents of the file

into the buffer, and then displaying the buffer for you to edit. You can make changes in it, and then

save the file by typing C-x C-s (save-buffer). This makes the changes permanent by copying the

altered contents of the buffer back into the file ‘/usr/rms/foo.c’. Until then, the changes are only

inside your Emacs, and the file ‘foo.c’ is not changed.

To create a file, just visit the file with C-x C-f as if it already existed. Emacs will make an

empty buffer in which you can insert the text you want to put in the file. When you save your text

with C-x C-s, the file will be created.

Of course, there is a lot more to learn about using files. See Chapter 15 [Files], page 87.

4.5 Help

If you forget what a key does, you can find out with the Help character, which is C-h. Type C-h

k followed by the key you want to know about; for example, C-h k C-n tells you all about what

C-n does. C-h is a prefix key; C-h k is just one of its subcommands (the command describe-key).

The other subcommands of C-h provide different kinds of help. Type C-h three times to get a

description of all the help facilities. See Section 8.4 [Help], page 48.

Chapter 4: Basic Editing Commands 29

4.6 Blank Lines

Here are special commands and techniques for putting in and taking out blank lines.

C-o Insert one or more blank lines after the cursor (open-line).

C-x C-o Delete all but one of many consecutive blank lines (delete-blank-lines).

When you want to insert a new line of text before an existing line, you can do it by typing the

new line of text, followed by RET. However, it may be easier to see what you are doing if you first

make a blank line and then insert the desired text into it. This is easy to do using the key C-o

(open-line), which inserts a newline after point but leaves point in front of the newline. After

C-o, type the text for the new line. C-o F O O has the same effect as F O O RET, except for the final

location of point.

You can make several blank lines by typing C-o several times, or by giving it an argument to

tell it how many blank lines to make. See Section 4.9 [Arguments], page 31, for how.

If you have many blank lines in a row and want to get rid of them, use C-x C-o (delete-blank-

lines). When point is on a blank line which is adjacent to at least one other blank line, C-x C-o

deletes all but one of the consecutive blank lines, leaving exactly one. With point on a blank line

with no other blank line adjacent to it, the sole blank line is deleted, leaving none. When point is

on a nonblank line, C-x C-o deletes any blank lines following that nonblank line.

4.7 Continuation Lines

If you add too many characters to one line, without breaking it with a RET, the line will grow

to occupy two (or more) lines on the screen, with a ‘\’ at the extreme right margin of all but the

last of them. The ‘\’ says that the following screen line is not really a distinct line in the text, but

just the continuation of a line too long to fit the screen. Sometimes it is nice to have Emacs insert

newlines automatically when a line gets too long; for this, use Auto Fill mode (see Section 20.6

[Filling], page 134).

Instead of continuation, long lines can be displayed by truncation. This means that all the

characters that do not fit in the width of the screen or window do not appear at all. They remain

in the buffer, temporarily invisible. ‘$’ is used in the last column instead of ‘\’ to inform you that

truncation is in effect.

30 GNU Emacs Manual

Continuation can be turned off for a particular buffer by setting the variable truncate-lines

to non-nil in that buffer. Truncation instead of continuation also happens whenever horizontal

scrolling is in use, and optionally whenever side-by-side windows are in use (see Chapter 17 [Win-

dows], page 111). Altering the value of truncate-lines makes it local to the current buffer; until

that time, the default value is in effect. The default is initially nil. See Section 28.2.3 [Locals],

page 220.

4.8 Cursor Position Information

If you are accustomed to other display editors, you may be surprised that Emacs does not always

display the page number or line number of point in the mode line. This is because the text is stored

in a way that makes it difficult to compute this information. Displaying them all the time would

be intolerably slow. They are not needed very often in Emacs anyway, but there are commands to

compute them and print them.

M-x what-page

Print page number of point, and line number within page.

M-x what-line

Print line number of point in the buffer.

M-= Print number of lines in the current region (count-lines-region).

C-x = Print character code of character after point, character position of point, and column

of point (what-cursor-position).

There are two commands for printing line numbers. M-x what-line counts lines from the

beginning of the file and prints the line number point is on. The first line of the file is line number

1. These numbers can be used as arguments to M-x goto-line. By contrast, M-x what-page counts

pages from the beginning of the file, and counts lines within the page, printing both of them. See

Section 20.5 [Pages], page 133.

While on this subject, we might as well mention M-= (count-lines-region), which prints the

number of lines in the region (see Chapter 9 [Mark], page 49). See Section 20.5 [Pages], page 133,

for the command C-x l which counts the lines in the current page.

The command C-x = (what-cursor-position) can be used to find out the column that the

cursor is in, and other miscellaneous information about point. It prints a line in the echo area that

looks like this:

Chapter 4: Basic Editing Commands 31

Char: x (0170) point=65986 of 563027(12%) x=44

(In fact, this is the output produced when point is before the ‘x=44’ in the example.)

The two values after ‘Char:’ describe the character following point, first by showing it and

second by giving its octal character code.

‘point=’ is followed by the position of point expressed as a character count. The front of the

buffer counts as position 1, one character later as 2, and so on. The next, larger number is the

total number of characters in the buffer. Afterward in parentheses comes the position expressed as

a percentage of the total size.

‘x=’ is followed by the horizontal position of point, in columns from the left edge of the window.

If the buffer has been narrowed, making some of the text at the beginning and the end tem-

porarily invisible, C-x = prints additional text describing the current visible range. For example, it

might say

Char: x (0170) point=65986 of 563025(12%) <65102 - 68533> x=44

where the two extra numbers give the smallest and largest character position that point is allowed

to assume. The characters between those two positions are the visible ones. See Section 27.2

[Narrowing], page 208.

If point is at the end of the buffer (or the end of the visible part), C-x = omits any description

of the character after point. The output looks like

point=563026 of 563025(100%) x=0

4.9 Numeric Arguments

Any Emacs command can be given a numeric argument. Some commands interpret the argument

as a repetition count. For example, giving an argument of ten to the key C-f (the command

forward-char, move forward one character) moves forward ten characters. With these commands,

no argument is equivalent to an argument of one. Negative arguments are allowed. Often they tell

a command to move or act backwards.

32 GNU Emacs Manual

If your terminal keyboard has a META key, the easiest way to specify a numeric argument is to

type digits and/or a minus sign while holding down the the META key. For example,

M-5 C-n

would move down five lines. The characters Meta-1, Meta-2, and so on, as well as Meta--, do this

because they are keys bound to commands (digit-argument and negative-argument) that are

defined to contribute to an argument for the next command.

Another way of specifying an argument is to use the C-u (universal-argument) command

followed by the digits of the argument. With C-u, you can type the argument digits without

holding down shift keys. To type a negative argument, start with a minus sign. Just a minus sign

normally means −1. C-u works on all terminals.

C-u followed by a character which is neither a digit nor a minus sign has the special meaning of

“multiply by four”. It multiplies the argument for the next command by four. C-u twice multiplies

it by sixteen. Thus, C-u C-u C-f moves forward sixteen characters. This is a good way to move

forward “fast”, since it moves about 1/5 of a line in the usual size screen. Other useful combinations

are C-u C-n, C-u C-u C-n (move down a good fraction of a screen), C-u C-u C-o (make “a lot” of

blank lines), and C-u C-k (kill four lines).

Some commands care only about whether there is an argument, and not about its value. For

example, the command M-q (fill-paragraph) with no argument fills text; with an argument, it

justifies the text as well. (See Section 20.6 [Filling], page 134, for more information on M-q.) Just

C-u is a handy way of providing an argument for such commands.

Some commands use the value of the argument as a repeat count, but do something peculiar

when there is no argument. For example, the command C-k (kill-line) with argument n kills n

lines, including their terminating newlines. But C-k with no argument is special: it kills the text

up to the next newline, or, if point is right at the end of the line, it kills the newline itself. Thus,

two C-k commands with no arguments can kill a nonblank line, just like C-k with an argument of

one. (See Section 10.1.3 [Killing], page 55, for more information on C-k.)

A few commands treat a plain C-u differently from an ordinary argument. A few others may

treat an argument of just a minus sign differently from an argument of −1. These unusual cases will

be described when they come up; they are always for reasons of convenience of use of the individual

command.

Chapter 5: Undoing Changes 33

5 Undoing Changes

Emacs allows all changes made in the text of a buffer to be undone, up to a certain amount

of change (8000 characters). Each buffer records changes individually, and the undo command

always applies to the current buffer. Usually each editing command makes a separate entry in the

undo records, but some commands such as query-replace make many entries, and very simple

commands such as self-inserting characters are often grouped to make undoing less tedious.

C-x u Undo one batch of changes (usually, one command worth) (undo).

C-_ The same.

The command C-x u or C-_ is how you undo. The first time you give this command, it undoes

the last change. Point moves to the text affected by the undo, so you can see what was undone.

Consecutive repetitions of the C-_ or C-x u commands undo earlier and earlier changes, back to

the limit of what has been recorded. If all recorded changes have already been undone, the undo

command prints an error message and does nothing.

Any command other than an undo command breaks the sequence of undo commands. Starting

at this moment, the previous undo commands are considered ordinary changes that can themselves

be undone. Thus, you can redo changes you have undone by typing C-f or any other command

that will have no important effect, and then using more undo commands.

If you notice that a buffer has been modified accidentally, the easiest way to recover is to type

C-_ repeatedly until the stars disappear from the front of the mode line. At this time, all the

modifications you made have been cancelled. If you do not remember whether you changed the

buffer deliberately, type C-_ once, and when you see the last change you made undone, you will

remember why you made it. If it was an accident, leave it undone. If it was deliberate, redo the

change as described in the preceding paragraph.

Whenever an undo command makes the stars disappear from the mode line, it means that the

buffer contents are the same as they were when the file was last read in or saved.

Not all buffers record undo information. Buffers whose names start with spaces don’t; these

buffers are used internally by Emacs and its extensions to hold text that users don’t normally look

at or edit. Also, minibuffers, help buffers and documentation buffers don’t record undo information.

At most 8000 or so characters of deleted or modified text can be remembered in any one buffer

34 GNU Emacs Manual

for reinsertion by the undo command. Also, there is a limit on the number of individual insert,

delete or change actions that can be remembered.

The reason the undo command has two keys, C-x u and C-_, set up to run it is that it is worthy

of a single-character key, but the way to type C-_ on some keyboards is not obvious. C-x u is an

alternative you can type in the same fashion on any terminal.

Chapter 6: The Minibuffer 35

6 The Minibuffer

The minibuffer is the facility used by Emacs commands to read arguments more complicated

than a single number. Minibuffer arguments can be file names, buffer names, Lisp function names,

Emacs command names, Lisp expressions, and many other things, depending on the command

reading the argument. The usual Emacs editing commands can be used in the minibuffer to edit

the argument.

When the minibuffer is in use, it appears in the echo area, and the terminal’s cursor moves there.

The beginning of the minibuffer line displays a prompt which says what kind of input you should

supply and how it will be used. Often this prompt is derived from the name of the command that

the argument is for. The prompt normally ends with a colon.

Sometimes a default argument appears in parentheses after the colon; it too is part of the

prompt. The default will be used as the argument value if you enter an empty argument (e.g., just

type RET). For example, commands that read buffer names always show a default, which is the

name of the buffer that will be used if you type just RET.

The simplest way to give a minibuffer argument is to type the text you want, terminated by

RET which exits the minibuffer. You can get out of the minibuffer, canceling the command that it

was for, by typing C-g.

Since the minibuffer uses the screen space of the echo area, it can conflict with other ways Emacs

customarily uses the echo area. Here is how Emacs handles such conflicts:

• If a command gets an error while you are in the minibuffer, this does not cancel the minibuffer.

However, the echo area is needed for the error message and therefore the minibuffer itself is

hidden for a while. It comes back after a few seconds, or as soon as you type anything.

• If in the minibuffer you use a command whose purpose is to print a message in the echo area,

such as C-x =, the message is printed normally, and the minibuffer is hidden for a while. It

comes back after a few seconds, or as soon as you type anything.

• Echoing of keystrokes does not take place while the minibuffer is in use.

6.1 Minibuffers for File Names

Sometimes the minibuffer starts out with text in it. For example, when you are supposed to

give a file name, the minibuffer starts out containing the default directory, which ends with a slash.

36 GNU Emacs Manual

This is to inform you which directory the file will be found in if you do not specify a directory. For

example, the minibuffer might start out with

Find File: /u2/emacs/src/

where ‘Find File: ’ is the prompt. Typing buffer.c specifies the file ‘/u2/emacs/src/buffer.c’.

To find files in nearby directories, use ..; thus, if you type ../lisp/simple.el, the file that you

visit will be the one named ‘/u2/emacs/lisp/simple.el’. Alternatively, you can kill with M-DEL

the directory names you don’t want (see Section 20.2 [Words], page 130).

You can also type an absolute file name, one starting with a slash or a tilde, ignoring the default

directory. For example, to find the file ‘/etc/termcap’, just type the name, giving

Find File: /u2/emacs/src//etc/termcap

Two slashes in a row are not normally meaningful in Unix file names, but they are allowed

in GNU Emacs. They mean, “ignore everything before the second slash in the pair.” Thus,

‘/u2/emacs/src/’ is ignored, and you get the file ‘/etc/termcap’.

If you set insert-default-directory to nil, the default directory is not inserted in the mini-

buffer. This way, the minibuffer starts out empty. But the name you type, if relative, is still

interpreted with respect to the same default directory.

6.2 Editing in the Minibuffer

The minibuffer is an Emacs buffer (albeit a peculiar one), and the usual Emacs commands are

available for editing the text of an argument you are entering.

Since RET in the minibuffer is defined to exit the minibuffer, inserting a newline into the mini-

buffer must be done with C-o or with C-q LFD. (Recall that a newline is really the LFD character.)

The minibuffer has its own window which always has space on the screen but acts as if it were

not there when the minibuffer is not in use. When the minibuffer is in use, its window is just like

the others; you can switch to another window with C-x o, edit text in other windows and perhaps

even visit more files, before returning to the minibuffer to submit the argument. You can kill text in

another window, return to the minibuffer window, and then yank the text to use it in the argument.

See Chapter 17 [Windows], page 111.

Chapter 6: The Minibuffer 37

There are some restrictions on the use of the minibuffer window, however. You cannot switch

buffers in it—the minibuffer and its window are permanently attached. Also, you cannot split or

kill the minibuffer window. But you can make it taller in the normal fashion with C-x ^.

If while in the minibuffer you issue a command that displays help text of any sort in another

window, then that window is identified as the one to scroll if you type C-M-v while in the minibuffer.

This lasts until you exit the minibuffer. This feature comes into play if a completing minibuffer

gives you a list of possible completions.

Recursive use of the minibuffer is supported by Emacs. However, it is easy to do this by

accident (because of autorepeating keyboards, for example) and get confused. Therefore, most

Emacs commands that use the minibuffer refuse to operate if the minibuffer window is selected. If

the minibuffer is active but you have switched to a different window, recursive use of the minibuffer

is allowed—if you know enough to try to do this, you probably will not get confused.

If you set the variable enable-recursive-minibuffers to be non-nil, recursive use of the

minibuffer is always allowed.

6.3 Completion

When appropriate, the minibuffer provides a completion facility. This means that you type

enough of the argument to determine the rest, based on Emacs’s knowledge of which arguments

make sense, and Emacs visibly fills in the rest, or as much as can be determined from the part you

have typed.

When completion is available, certain keys—TAB, RET, and SPC—are redefined to complete an

abbreviation present in the minibuffer into a longer string that it stands for, by matching it against

a set of completion alternatives provided by the command reading the argument. ? is defined to

display a list of possible completions of what you have inserted.

For example, when the minibuffer is being used by Meta-x to read the name of a command, it

is given a list of all available Emacs command names to complete against. The completion keys

match the text in the minibuffer against all the command names, find any additional characters of

the name that are implied by the ones already present in the minibuffer, and add those characters

to the ones you have given.

Case is normally significant in completion, because it is significant in most of the names that

you can complete (buffer names, file names and command names). Thus, ‘fo’ will not complete to

38 GNU Emacs Manual

‘Foo’. When you are completing a name in which case does not matter, case may be ignored for

completion’s sake if the program said to do so.

6.3.1 Completion Example

A concrete example may help here. If you type Meta-x au TAB, the TAB looks for alternatives

(in this case, command names) that start with ‘au’. There are only two: auto-fill-mode and

auto-save-mode. These are the same as far as auto-, so the ‘au’ in the minibuffer changes to

‘auto-’.

If you type TAB again immediately, there are multiple possibilities for the very next character—

it could be ‘s’ or ‘f’—so no more characters are added; but a list of all possible completions is

displayed in another window.

If you go on to type f TAB, this TAB sees ‘auto-f’. The only command name starting this way

is auto-fill-mode, so completion inserts the rest of that. You now have ‘auto-fill-mode’ in the

minibuffer after typing just au TAB f TAB. Note that TAB has this effect because in the minibuffer

it is bound to the function minibuffer-complete when completion is supposed to be done.

6.3.2 Completion Commands

Here is a list of all the completion commands, defined in the minibuffer when completion is

available.

TAB Complete the text in the minibuffer as much as possible

(minibuffer-complete).

SPC Complete the text in the minibuffer but don’t add or fill out more than one word

(minibuffer-complete-word).

RET Submit the text in the minibuffer as the argument, possibly completing first as de-

scribed below (minibuffer-complete-and-exit).

? Print a list of all possible completions of the text in the minibuffer (minibuffer-list-

completions).

SPC completes much like TAB, but never goes beyond the next hyphen or space. If you have

‘auto-f’ in the minibuffer and type SPC, it finds that the completion is ‘auto-fill-mode’, but it

stops completing after ‘fill-’. This gives ‘auto-fill-’. Another SPC at this point completes all

Chapter 6: The Minibuffer 39

the way to ‘auto-fill-mode’. SPC in the minibuffer runs the function minibuffer-complete-word

when completion is available.

There are three different ways that RET can work in completing minibuffers, depending on how

the argument will be used.

• Strict completion is used when it is meaningless to give any argument except one of the known

alternatives. For example, when C-x k reads the name of a buffer to kill, it is meaningless to

give anything but the name of an existing buffer. In strict completion, RET refuses to exit if

the text in the minibuffer does not complete to an exact match.

• Cautious completion is similar to strict completion, except that RET exits only if the text was

an exact match already, not needing completion. If the text is not an exact match, RET does

not exit, but it does complete the text. If it completes to an exact match, a second RET will

exit.

Cautious completion is used for reading file names for files that must already exist.

• Permissive completion is used when any string whatever is meaningful, and the list of comple-

tion alternatives is just a guide. For example, when C-x C-f reads the name of a file to visit,

any file name is allowed, in case you want to create a file. In permissive completion, RET takes

the text in the minibuffer exactly as given, without completing it.

The completion commands display a list of all possible completions in a window whenever there

is more than one possibility for the very next character. Also, typing ? explicitly requests such a

list. The list of completions counts as help text, so C-M-v typed in the minibuffer scrolls the list.

When completion is done on file names, certain file names are usually ignored. The variable

completion-ignored-extensions contains a list of strings; a file whose name ends in any of those

strings is ignored as a possible completion. The standard value of this variable has several elements

including ".o", ".elc", ".dvi" and "~". The effect is that, for example, ‘foo’ can complete to

‘foo.c’ even though ‘foo.o’ exists as well. If the only possible completions are files that end in

“ignored” strings, then they are not ignored.

Normally, a completion command that finds the next character is undetermined automatically

displays a list of all possible completions. If the variable completion-auto-help is set to nil, this

does not happen, and you must type ? to display the possible completions.

6.4 Repeating Minibuffer Commands

Every command that uses the minibuffer at least once is recorded on a special history list,

40 GNU Emacs Manual

together with the values of the minibuffer arguments, so that you can repeat the command easily.

In particular, every use of Meta-x is recorded, since M-x uses the minibuffer to read the command

name.

C-x ESC Re-execute a recent minibuffer command

(repeat-complex-command).

M-p Within C-x ESC, move to previous recorded command (previous-complex-command).

M-n Within C-x ESC, move to the next (more recent) recorded command (next-complex-

command).

M-x list-command-history

Display the entire command history, showing all the commands C-x ESC can repeat,

most recent first.

C-x ESC is used to re-execute a recent minibuffer-using command. With no argument, it repeats

the last such command. A numeric argument specifies which command to repeat; one means the

last one, and larger numbers specify earlier ones.

C-x ESC works by turning the previous command into a Lisp expression and then entering a

minibuffer initialized with the text for that expression. If you type just RET, the command is

repeated as before. You can also change the command by editing the Lisp expression. Whatever

expression you finally submit is what will be executed. The repeated command is added to the

front of the command history unless it is identical to the most recently executed command already

there.

Even if you don’t understand Lisp syntax, it will probably be obvious which command is dis-

played for repetition. If you do not change the text, you can be sure it will repeat exactly as

before.

Once inside the minibuffer for C-x ESC, if the command shown to you is not the one you want

to repeat, you can move around the list of previous commands using M-n and M-p. M-p replaces the

contents of the minibuffer with the next earlier recorded command, and M-n replaces them with

the next later command. After finding the desired previous command, you can edit its expression

as usual and then resubmit it by typing RET as usual. Any editing you have done on the command

to be repeated is lost if you use M-n or M-p.

M-p is more useful than M-n, since more often you will initially request to repeat the most recent

command and then decide to repeat an older one instead. These keys are specially defined within

C-x ESC to run the commands previous-complex-command and next-complex-command.

Chapter 6: The Minibuffer 41

The list of previous minibuffer-using commands is stored as a Lisp list in the variable command-

history. Each element is a Lisp expression which describes one command and its arguments. Lisp

programs can reexecute a command by feeding the corresponding command-history element to

eval.

42 GNU Emacs Manual

Chapter 7: Running Commands by Name 43

7 Running Commands by Name

The Emacs commands that are used often or that must be quick to type are bound to keys—

short sequences of characters—for convenient use. Other Emacs commands that do not need to be

brief are not bound to keys; to run them, you must refer to them by name.

A command name is, by convention, made up of one or more words, separated by hyphens; for

example, auto-fill-mode or manual-entry. The use of English words makes the command name

easier to remember than a key made up of obscure characters, even though it is more characters to

type. Any command can be run by name, even if it is also runnable by keys.

The way to run a command by name is to start with M-x, type the command name, and finish

it with RET. M-x uses the minibuffer to read the command name. RET exits the minibuffer and runs

the command.

Emacs uses the minibuffer for reading input for many different purposes; on this occasion, the

string ‘M-x’ is displayed at the beginning of the minibuffer as a prompt to remind you that your

input should be the name of a command to be run. See Chapter 6 [Minibuffer], page 35, for full

information on the features of the minibuffer.

You can use completion to enter the command name. For example, the command forward-char

can be invoked by name by typing

M-x forward-char RET

or

M-x fo TAB c RET

Note that forward-char is the same command that you invoke with the key C-f. Any command

(interactively callable function) defined in Emacs can be called by its name using M-x whether or

not any keys are bound to it.

If you type C-g while the command name is being read, you cancel the M-x command and get

out of the minibuffer, ending up at top level.

To pass a numeric argument to the command you are invoking with M-x, specify the numeric

argument before the M-x. M-x passes the argument along to the function which it calls. The

argument value appears in the prompt while the command name is being read.

44 GNU Emacs Manual

Normally, when describing a command that is run by name, we omit the RET that is needed to

terminate the name. Thus we might speak of M-x auto-fill-mode rather than M-x auto-fill-

mode RET. We mention the RET only when there is a need to emphasize its presence, such as when

describing a sequence of input that contains a command name and arguments that follow it.

M-x is defined to run the command execute-extended-command, which is responsible for reading

the name of another command and invoking it.

Chapter 8: Help 45

8 Help

Emacs provides extensive help features which revolve around a single character, C-h. C-h is a

prefix key that is used only for documentation-printing commands. The characters that you can

type after C-h are called help options. One help option is C-h; that is how you ask for help about

using C-h.

C-h C-h prints a list of the possible help options, and then asks you to go ahead and type the

option. It prompts with a string

A, B, C, F, I, K, L, M, N, S, T, V, W, C-c, C-d, C-n, C-w or C-h for more help:

and you should type one of those characters.

Typing a third C-h displays a description of what the options mean; it still waits for you to type

an option. To cancel, type C-g.

Here is a summary of the defined help commands.

C-h a string RET

Display list of commands whose names contain string (command-apropos).

C-h b Display a table of all key bindings in effect now; local bindings of the current major

mode first, followed by all global bindings (describe-bindings).

C-h c key Print the name of the command that key runs (describe-key-briefly). c is for

‘character’. For more extensive information on key, use C-h k.

C-h f function RET

Display documentation on the Lisp function named function (describe-function).

Note that commands are Lisp functions, so a command name may be used.

C-h i Run Info, the program for browsing documentation files (info). The complete Emacs

manual is available on-line in Info.

C-h k key Display name and documentation of the command key runs (describe-key).

C-h l Display a description of the last 100 characters you typed (view-lossage).

C-h m Display documentation of the current major mode (describe-mode).

C-h n Display documentation of Emacs changes, most recent first (view-emacs-news).

C-h s Display current contents of the syntax table, plus an explanation of what they mean

(describe-syntax).

C-h t Display the Emacs tutorial (help-with-tutorial).

46 GNU Emacs Manual

C-h v var RET

Display the documentation of the Lisp variable var (describe-variable).

C-h w command RET

Print which keys run the command named command (where-is).

8.1 Documentation for a Key

The most basic C-h options are C-h c (describe-key-briefly) and C-h k (describe-key).

C-h c key prints in the echo area the name of the command that key is bound to. For example,

C-h c C-f prints ‘forward-char’. Since command names are chosen to describe what the command

does, this is a good way to get a very brief description of what key does.

C-h k key is similar but gives more information. It displays the documentation string of the

command key is bound to as well as its name. This is too big for the echo area, so a window is

used for the display.

8.2 Help by Command or Variable Name

C-h f (describe-function) reads the name of a Lisp function using the minibuffer, then dis-

plays that function’s documentation string in a window. Since commands are Lisp functions, you

can use this to get the documentation of a command that is known by name. For example,

C-h f auto-fill-mode RET

displays the documentation of auto-fill-mode. This is the only way to see the documentation of

a command that is not bound to any key (one which you would normally call using M-x).

C-h f is also useful for Lisp functions that you are planning to use in a Lisp program. For

example, if you have just written the code (make-vector len) and want to be sure that you

are using make-vector properly, type C-h f make-vector RET. Because C-h f allows all function

names, not just command names, you may find that some of your favorite abbreviations that work

in M-x don’t work in C-h f. An abbreviation may be unique among command names yet fail to be

unique when other function names are allowed.

The function name for C-h f to describe has a default which is used if you type RET leaving

the minibuffer empty. The default is the function called by the innermost Lisp expression in the

Chapter 8: Help 47

buffer around point, provided that is a valid, defined Lisp function name. For example, if point is

located following the text ‘(make-vector (car x)’, the innermost list containing point is the one

that starts with ‘(make-vector’, so the default is to describe the function make-vector.

C-h f is often useful just to verify that you have the right spelling for the function name. If C-h

f mentions a default in the prompt, you have typed the name of a defined Lisp function. If that

tells you what you want to know, just type C-g to cancel the C-h f command and go on editing.

C-h w command RET tells you what keys are bound to command. It prints a list of the keys in

the echo area. Alternatively, it says that the command is not on any keys, which implies that you

must use M-x to call it.

C-h v (describe-variable) is like C-h f but describes Lisp variables instead of Lisp functions.

Its default is the Lisp symbol around or before point, but only if that is the name of a known Lisp

variable. See Section 28.2 [Variables], page 218.

8.3 Apropos

A more sophisticated sort of question to ask is, “What are the commands for working with files?”

For this, type C-h a file RET, which displays a list of all command names that contain ‘file’, such

as copy-file, find-file, and so on. With each command name appears a brief description of

how to use the command, and what keys you can currently invoke it with. For example, it would

say that you can invoke find-file by typing C-x C-f. The a in C-h a stands for ‘Apropos’; C-h

a runs the Lisp function command-apropos.

Because C-h a looks only for functions whose names contain the string which you specify, you

must use ingenuity in choosing the string. If you are looking for commands for killing backwards and

C-h a kill-backwards RET doesn’t reveal any, don’t give up. Try just kill, or just backwards, or

just back. Be persistent. Pretend you are playing Adventure. Also note that you can use a regular

expression as the argument (see Section 13.5 [Regexps], page 74).

Here is a set of arguments to give to C-h a that covers many classes of Emacs commands, since

there are strong conventions for naming the standard Emacs commands. By giving you a feel for

the naming conventions, this set should also serve to aid you in developing a technique for picking

apropos strings.

char, line, word, sentence, paragraph, region, page, sexp, list, defun, buffer, screen,
window, file, dir, register, mode, beginning, end, forward, backward, next, previous,

48 GNU Emacs Manual

up, down, search, goto, kill, delete, mark, insert, yank, fill, indent, case, change, set,
what, list, find, view, describe.

To list all Lisp symbols that contain a match for a regexp, not just the ones that are defined as

commands, use the command M-x apropos instead of C-h a.

8.4 Other Help Commands

C-h i (info) runs the Info program, which is used for browsing through structured documen-

tation files. The entire Emacs manual is available within Info. Eventually all the documentation

of the GNU system will be available. Type h after entering Info to run a tutorial on using Info.

If something surprising happens, and you are not sure what commands you typed, use C-h l

(view-lossage). C-h l prints the last 100 command characters you typed in. If you see commands

that you don’t know, you can use C-h c to find out what they do.

Emacs has several major modes, each of which redefines a few keys and makes a few other

changes in how editing works. C-h m (describe-mode) prints documentation on the current major

mode, which normally describes all the commands that are changed in this mode.

C-h b (describe-bindings) and C-h s (describe-syntax) present other information about the

current Emacs mode. C-h b displays a list of all the key bindings now in effect; the local bindings

of the current major mode first, followed by the global bindings (see Section 28.4 [Key Bindings],

page 226). C-h s displays the contents of the syntax table, with explanations of each character’s

syntax (see Section 28.5 [Syntax], page 229).

The other C-h options display various files of useful information. C-h C-w displays the full details

on the complete absence of warranty for GNU Emacs. C-h n (view-emacs-news) displays the

file ‘emacs/etc/NEWS’, which contains documentation on Emacs changes arranged chronologically.

C-h t (help-with-tutorial) displays the learn-by-doing Emacs tutorial. C-h C-c (describe-

copying) displays the file ‘emacs/etc/COPYING’, which tells you the conditions you must obey

in distributing copies of Emacs. C-h C-d (describe-distribution) displays another file named

‘emacs/etc/DISTRIB’, which tells you how you can order a copy of the latest version of Emacs.

Chapter 9: The Mark and the Region 49

9 The Mark and the Region

There are many Emacs commands which operate on an arbitrary contiguous part of the current

buffer. To specify the text for such a command to operate on, you set the mark at one end of it,

and move point to the other end. The text between point and the mark is called the region. You

can move point or the mark to adjust the boundaries of the region. It doesn’t matter which one is

set first chronologically, or which one comes earlier in the text.

Once the mark has been set, it remains until it is set again at another place. The mark remains

fixed with respect to the preceding character if text is inserted or deleted in the buffer. Each Emacs

buffer has its own mark, so that when you return to a buffer that had been selected previously, it

has the same mark it had before.

Many commands that insert text, such as C-y (yank) and M-x insert-buffer, position the

mark at one end of the inserted text—the opposite end from where point is positioned, so that the

region contains the text just inserted.

Aside from delimiting the region, the mark is also useful for remembering a spot that you may

want to go back to. To make this feature more useful, Emacs remembers 16 previous locations of

the mark, in the mark ring.

9.1 Setting the Mark

Here are some commands for setting the mark:

C-SPC Set the mark where point is (set-mark-command).

C-@ The same.

C-x C-x Interchange mark and point (exchange-point-and-mark).

For example, if you wish to convert part of the buffer to all upper-case, you can use the C-x

C-u (upcase-region) command, which operates on the text in the region. You can first go to the

beginning of the text to be capitalized, type C-SPC to put the mark there, move to the end, and

then type C-x C-u. Or, you can set the mark at the end of the text, move to the beginning, and

then type C-x C-u. Most commands that operate on the text in the region have the word region

in their names.

50 GNU Emacs Manual

The most common way to set the mark is with the C-SPC command (set-mark-command). This

sets the mark where point is. Then you can move point away, leaving the mark behind. It is

actually incorrect to speak of the character C-SPC; there is no such character. When you type

SPC while holding down CTRL, what you get on most terminals is the character C-@. This is the

key actually bound to set-mark-command. But unless you are unlucky enough to have a terminal

where typing C-SPC does not produce C-@, you might as well think of this character as C-SPC.

Since terminals have only one cursor, there is no way for Emacs to show you where the mark is

located. You have to remember. The usual solution to this problem is to set the mark and then

use it soon, before you forget where it is. But you can see where the mark is with the command

C-x C-x (exchange-point-and-mark) which puts the mark where point was and point where the

mark was. The extent of the region is unchanged, but the cursor and point are now at the previous

location of the mark.

C-x C-x is also useful when you are satisfied with the location of point but want to move the

mark; do C-x C-x to put point there and then you can move it. A second use of C-x C-x, if

necessary, puts the mark at the new location with point back at its original location.

9.2 Operating on the Region

Once you have created an active region, you can do many things to the text in it:

• Kill it with C-w (see Section 10.1.3 [Killing], page 55).

• Save it in a register with C-x x (see Chapter 11 [Registers], page 63).

• Save it in a buffer or a file (see Section 10.3 [Accumulating Text], page 58).

• Convert case with C-x C-l or C-x C-u

(see Section 20.7 [Case], page 137).

• Evaluate it as Lisp code with M-x eval-region (see Section 22.4 [Lisp Eval], page 172).

• Fill it as text with M-g (see Section 20.6 [Filling], page 134).

• Print hardcopy with M-x print-region (see Section 27.5 [Hardcopy], page 213).

• Indent it with C-x TAB or C-M-\ (see Chapter 19 [Indentation], page 117).

9.3 Commands to Mark Textual Objects

There are commands for placing point and the mark around a textual object such as a word,

list, paragraph or page.

Chapter 9: The Mark and the Region 51

M-@ Set mark after end of next word (mark-word). This command and the following one

do not move point.

C-M-@ Set mark after end of next Lisp expression (mark-sexp).

M-h Put region around current paragraph (mark-paragraph).

C-M-h Put region around current Lisp defun (mark-defun).

C-x h Put region around entire buffer (mark-whole-buffer).

C-x C-p Put region around current page (mark-page).

M-@ (mark-word) puts the mark at the end of the next word, while C-M-@ (mark-sexp) puts it at

the end of the next Lisp expression. These characters allow you to save a little typing or redisplay,

sometimes.

Other commands set both point and mark, to delimit an object in the buffer. M-h (mark-

paragraph) moves point to the beginning of the paragraph that surrounds or follows point, and

puts the mark at the end of that paragraph (see Section 20.4 [Paragraphs], page 132). M-h does all

that’s necessary if you wish to indent, case-convert, or kill a whole paragraph. C-M-h (mark-defun)

similarly puts point before and the mark after the current or following defun (see Section 21.3

[Defuns], page 142). C-x C-p (mark-page) puts point before the current page (or the next or

previous, according to the argument), and mark at the end (see Section 20.5 [Pages], page 133).

The mark goes after the terminating page delimiter (to include it), while point goes after the

preceding page delimiter (to exclude it). Finally, C-x h (mark-whole-buffer) sets up the entire

buffer as the region, by putting point at the beginning and the mark at the end.

9.4 The Mark Ring

Aside from delimiting the region, the mark is also useful for remembering a spot that you may

want to go back to. To make this feature more useful, Emacs remembers 16 previous locations of

the mark, in the mark ring. Most commands that set the mark push the old mark onto this ring. To

return to a marked location, use C-u C-SPC (or C-u C-@); this is the command set-mark-command

given a numeric argument. It moves point to where the mark was, and restores the mark from the

ring of former marks. So repeated use of this command moves point to all of the old marks on the

ring, one by one. The marks you see go to the end of the ring, so no marks are lost.

Each buffer has its own mark ring. All editing commands use the current buffer’s mark ring. In

particular, C-u C-SPC always stays in the same buffer.

Many commands that can move long distances, such as M-< (beginning-of-buffer), start by

52 GNU Emacs Manual

setting the mark and saving the old mark on the mark ring. This is to make it easier for you to

move back later. Searches do this except when they do not actually move point. You can tell when

a command sets the mark because ‘Mark Set’ is printed in the echo area.

The variable mark-ring-max is the maximum number of entries to keep in the mark ring. If

that many entries exist and another one is pushed, the last one in the list is discarded. Repeating

C-u C-SPC circulates through the limited number of entries that are currently in the ring.

The variable mark-ring holds the mark ring itself, as a list of marker objects in the order most

recent first. This variable is local in every buffer.

Chapter 10: Killing and Moving Text 53

10 Killing and Moving Text

Killing means erasing text and copying it into the kill ring, from which it can be retrieved by

yanking it. Some other systems that have recently become popular use the terms “cutting” and

“pasting” for these operations.

The commonest way of moving or copying text with Emacs is to kill it and later yank it in

one or more places. This is very safe because all the text killed recently is remembered, and it is

versatile, because the many commands for killing syntactic units can also be used for moving those

units. There are also other ways of copying text for special purposes.

Emacs has only one kill ring, so you can kill text in one buffer and yank it in another buffer.

10.1 Deletion and Killing

Most commands which erase text from the buffer save it so that you can get it back if you

change your mind, or move or copy it to other parts of the buffer. These commands are known as

kill commands. The rest of the commands that erase text do not save it; they are known as delete

commands. (This distinction is made only for erasure of text in the buffer.)

The delete commands include C-d (delete-char) and DEL (delete-backward-char), which

delete only one character at a time, and those commands that delete only spaces or newlines.

Commands that can destroy significant amounts of nontrivial data generally kill. The commands’

names and individual descriptions use the words ‘kill’ and ‘delete’ to say which they do. If you

do a kill or delete command by mistake, you can use the C-x u (undo) command to undo it (see

Chapter 5 [Undo], page 33).

10.1.1 Deletion

C-d Delete next character (delete-char).

DEL Delete previous character (delete-backward-char).

M-\ Delete spaces and tabs around point (delete-horizontal-space).

M-SPC Delete spaces and tabs around point, leaving one space (just-one-space).

C-x C-o Delete blank lines around the current line (delete-blank-lines).

54 GNU Emacs Manual

M-^ Join two lines by deleting the intervening newline, and any indentation following it

(delete-indentation).

The most basic delete commands are C-d (delete-char) and DEL (delete-backward-char).

C-d deletes the character after point, the one the cursor is “on top of”. Point doesn’t move. DEL

deletes the character before the cursor, and moves point back. Newlines can be deleted like any

other characters in the buffer; deleting a newline joins two lines. Actually, C-d and DEL aren’t

always delete commands; if given an argument, they kill instead, since they can erase more than

one character this way.

The other delete commands are those which delete only formatting characters: spaces, tabs and

newlines. M-\ (delete-horizontal-space) deletes all the spaces and tab characters before and

after point. M-SPC (just-one-space) does likewise but leaves a single space after point, regardless

of the number of spaces that existed previously (even zero).

C-x C-o (delete-blank-lines) deletes all blank lines after the current line, and if the current

line is blank deletes all blank lines preceding the current line as well (leaving one blank line,

the current line). M-^ (delete-indentation) joins the current line and the previous line, or the

current line and the next line if given an argument, by deleting a newline and all surrounding

spaces, possibly leaving a single space. See Chapter 19 [Indentation], page 117.

10.1.2 Killing by Lines

C-k Kill rest of line or one or more lines (kill-line).

The simplest kill command is C-k. If given at the beginning of a line, it kills all the text on the

line, leaving it blank. If given on a blank line, the blank line disappears. As a consequence, if you

go to the front of a non-blank line and type C-k twice, the line disappears completely.

More generally, C-k kills from point up to the end of the line, unless it is at the end of a line.

In that case it kills the newline following the line, thus merging the next line into the current one.

Invisible spaces and tabs at the end of the line are ignored when deciding which case applies, so if

point appears to be at the end of the line, you can be sure the newline will be killed.

If C-k is given a positive argument, it kills that many lines and the newlines that follow them

(however, text on the current line before point is spared). With a negative argument, it kills back

to a number of line beginnings. An argument of −2 means kill back to the second line beginning.

Chapter 10: Killing and Moving Text 55

If point is at the beginning of a line, that line beginning doesn’t count, so C-u - 2 C-k with point

at the front of a line kills the two previous lines.

C-k with an argument of zero kills all the text before point on the current line.

10.1.3 Other Kill Commands

C-w Kill region (from point to the mark) (kill-region). See Section 20.2 [Words], page 130.

M-d Kill word (kill-word).

M-DEL Kill word backwards (backward-kill-word).

C-x DEL Kill back to beginning of sentence (backward-kill-sentence). See Section 20.3 [Sen-

tences], page 131.

M-k Kill to end of sentence (kill-sentence).

C-M-k Kill sexp (kill-sexp). See Section 21.2 [Lists], page 140.

M-z char Kill up to next occurrence of char (zap-to-char).

A kill command which is very general is C-w (kill-region), which kills everything between

point and the mark. With this command, you can kill any contiguous sequence of characters, if

you first set the mark at one end of them and go to the other end.

A convenient way of killing is combined with searching: M-z (zap-to-char) reads a character

and kills from point up to (but not including) the next occurrence of that character in the buffer.

If there is no next occurrence, killing goes to the end of the buffer. A numeric argument acts as a

repeat count. A negative argument means to search backward and kill text before point.

Other syntactic units can be killed: words, with M-DEL and M-d (see Section 20.2 [Words],

page 130); sexps, with C-M-k (see Section 21.2 [Lists], page 140); and sentences, with C-x DEL and

M-k (see Section 20.3 [Sentences], page 131).

10.2 Yanking

Yanking is getting back text which was killed. This is what some systems call “pasting”. The

usual way to move or copy text is to kill it and then yank it one or more times.

C-y Yank last killed text (yank).

56 GNU Emacs Manual

M-y Replace re-inserted killed text with the previously killed text (yank-pop).

M-w Save region as last killed text without actually killing it (copy-region-as-kill).

C-M-w Append next kill to last batch of killed text (append-next-kill).

10.2.1 The Kill Ring

All killed text is recorded in the kill ring, a list of blocks of text that have been killed. There is

only one kill ring, used in all buffers, so you can kill text in one buffer and yank it in another buffer.

This is the usual way to move text from one file to another. (See Section 10.3 [Accumulating Text],

page 58, for some other ways.)

The command C-y (yank) reinserts the text of the most recent kill. It leaves the cursor at the

end of the text. It sets the mark at the beginning of the text. See Chapter 9 [Mark], page 49.

C-u C-y leaves the cursor in front of the text, and sets the mark after it. This is only if the

argument is specified with just a C-u, precisely. Any other sort of argument, including C-u and

digits, has an effect described below (under “Yanking Earlier Kills”).

If you wish to copy a block of text, you might want to use M-w (copy-region-as-kill), which

copies the region into the kill ring without removing it from the buffer. This is approximately

equivalent to C-w followed by C-y, except that M-w does not mark the buffer as “modified” and

does not temporarily change the screen.

10.2.2 Appending Kills

Normally, each kill command pushes a new block onto the kill ring. However, two or more kill

commands in a row combine their text into a single entry, so that a single C-y gets it all back as it

was before it was killed. This means that you don’t have to kill all the text in one command; you

can keep killing line after line, or word after word, until you have killed it all, and you can still get

it all back at once. (Thus we join television in leading people to kill thoughtlessly.)

Commands that kill forward from point add onto the end of the previous killed text. Commands

that kill backward from point add onto the beginning. This way, any sequence of mixed forward and

backward kill commands puts all the killed text into one entry without rearrangement. Numeric

arguments do not break the sequence of appending kills. For example, suppose the buffer contains

Chapter 10: Killing and Moving Text 57

This is the first
line of sample text
and here is the third.

with point at the beginning of the second line. If you type C-k C-u 2 M-DEL C-k, the first C-k kills

the text ‘line of sample text’, C-u 2 M-DEL kills ‘the first’ with the newline that followed it,

and the second C-k kills the newline after the second line. The result is that the buffer contains

‘This is and here is the third.’ and a single kill entry contains ‘the firstRETline of sample

textRET’—all the killed text, in its original order.

If a kill command is separated from the last kill command by other commands (not just numeric

arguments), it starts a new entry on the kill ring. But you can force it to append by first typing

the command C-M-w (append-next-kill) in front of it. The C-M-w tells the following command,

if it is a kill command, to append the text it kills to the last killed text, instead of starting a new

entry. With C-M-w, you can kill several separated pieces of text and accumulate them to be yanked

back in one place.

10.2.3 Yanking Earlier Kills

To recover killed text that is no longer the most recent kill, you need the Meta-y (yank-pop)

command. M-y can be used only after a C-y or another M-y. It takes the text previously yanked

and replaces it with the text from an earlier kill. So, to recover the text of the next-to-the-last kill,

you first use C-y to recover the last kill, and then use M-y to replace it with the previous kill.

You can think in terms of a “last yank” pointer which points at an item in the kill ring. Each

time you kill, the “last yank” pointer moves to the newly made item at the front of the ring. C-y

yanks the item which the “last yank” pointer points to. M-y moves the “last yank” pointer to a

different item, and the text in the buffer changes to match. Enough M-y commands can move the

pointer to any item in the ring, so you can get any item into the buffer. Eventually the pointer

reaches the end of the ring; the next M-y moves it to the first item again.

Yanking moves the “last yank” pointer around the ring, but it does not change the order of the

entries in the ring, which always runs from the most recent kill at the front to the oldest one still

remembered.

M-y can take a numeric argument, which tells it how many items to advance the “last yank”

pointer by. A negative argument moves the pointer toward the front of the ring; from the front of

the ring, it moves to the last entry and starts moving forward from there.

58 GNU Emacs Manual

Once the text you are looking for is brought into the buffer, you can stop doing M-y commands

and it will stay there. It’s just a copy of the kill ring item, so editing it in the buffer does not

change what’s in the ring. As long as no new killing is done, the “last yank” pointer remains at

the same place in the kill ring, so repeating C-y will yank another copy of the same old kill.

If you know how many M-y commands it would take to find the text you want, you can yank

that text in one step using C-y with a numeric argument. C-y with an argument greater than one

restores the text the specified number of entries back in the kill ring. Thus, C-u 2 C-y gets the next

to the last block of killed text. It is equivalent to C-y M-y. C-y with a numeric argument starts

counting from the “last yank” pointer, and sets the “last yank” pointer to the entry that it yanks.

The length of the kill ring is controlled by the variable kill-ring-max; no more than that many

blocks of killed text are saved.

10.3 Accumulating Text

Usually we copy or move text by killing it and yanking it, but there are other ways that are

useful for copying one block of text in many places, or for copying many scattered blocks of text

into one place.

You can accumulate blocks of text from scattered locations either into a buffer or into a file if

you like. These commands are described here. You can also use Emacs registers for storing and

accumulating text. See Chapter 11 [Registers], page 63.

C-x a Append region to contents of specified buffer (append-to-buffer).

M-x prepend-to-buffer

Prepend region to contents of specified buffer.

M-x copy-to-buffer

Copy region into specified buffer, deleting that buffer’s old contents.

M-x insert-buffer

Insert contents of specified buffer into current buffer at point.

M-x append-to-file

Append region to contents of specified file, at the end.

To accumulate text into a buffer, use the command C-x a buffername (append-to-buffer),

which inserts a copy of the region into the buffer buffername, at the location of point in that buffer.

If there is no buffer with that name, one is created. If you append text into a buffer which has

Chapter 10: Killing and Moving Text 59

been used for editing, the copied text goes into the middle of the text of the buffer, wherever point

happens to be in it.

Point in that buffer is left at the end of the copied text, so successive uses of C-x a accumulate

the text in the specified buffer in the same order as they were copied. Strictly speaking, C-x a does

not always append to the text already in the buffer; but if C-x a is the only command used to alter

a buffer, it does always append to the existing text because point is always at the end.

M-x prepend-to-buffer is just like C-x a except that point in the other buffer is left before the

copied text, so successive prependings add text in reverse order. M-x copy-to-buffer is similar

except that any existing text in the other buffer is deleted, so the buffer is left containing just the

text newly copied into it.

You can retrieve the accumulated text from that buffer with M-x insert-buffer; this too takes

buffername as an argument. It inserts a copy of the text in buffer buffername into the selected

buffer. You could alternatively select the other buffer for editing, perhaps moving text from it by

killing or with C-x a. See Chapter 16 [Buffers], page 105, for background information on buffers.

Instead of accumulating text within Emacs, in a buffer, you can append text directly into a file

with M-x append-to-file, which takes file-name as an argument. It adds the text of the region to

the end of the specified file. The file is changed immediately on disk. This command is normally

used with files that are not being visited in Emacs. Using it on a file that Emacs is visiting can

produce confusing results, because the text inside Emacs for that file will not change while the file

itself changes.

10.4 Rectangles

The rectangle commands affect rectangular areas of the text: all the characters between a

certain pair of columns, in a certain range of lines. Commands are provided to kill rectangles,

yank killed rectangles, clear them out, or delete them. Rectangle commands are useful with text

in multicolumnar formats, such as perhaps code with comments at the right, or for changing text

into or out of such formats.

When you must specify a rectangle for a command to work on, you do it by putting the mark

at one corner and point at the opposite corner. The rectangle thus specified is called the region-

rectangle because it is controlled about the same way the region is controlled. But remember that

a given combination of point and mark values can be interpreted either as specifying a region or as

specifying a rectangle; it is up to the command that uses them to choose the interpretation.

60 GNU Emacs Manual

M-x delete-rectangle

Delete the text of the region-rectangle, moving any following text on each line leftward

to the left edge of the region-rectangle.

M-x kill-rectangle

Similar, but also save the contents of the region-rectangle as the “last killed rectangle”.

M-x yank-rectangle

Yank the last killed rectangle with its upper left corner at point.

M-x open-rectangle

Insert blank space to fill the space of the region-rectangle. The previous contents of

the region-rectangle are pushed rightward.

M-x clear-rectangle

Clear the region-rectangle by replacing its contents with spaces.

The rectangle operations fall into two classes: commands deleting and moving rectangles, and

commands for blank rectangles.

There are two ways to get rid of the text in a rectangle: you can discard the text (delete it) or

save it as the “last killed” rectangle. The commands for these two ways are M-x delete-rectangle

and M-x kill-rectangle. In either case, the portion of each line that falls inside the rectangle’s

boundaries is deleted, causing following text (if any) on the line to move left.

Note that “killing” a rectangle is not killing in the usual sense; the rectangle is not stored in

the kill ring, but in a special place that can only record the most recent rectangle killed. This is

because yanking a rectangle is so different from yanking linear text that different yank commands

have to be used and yank-popping is hard to make sense of.

Inserting a rectangle is the opposite of deleting one. All you need to specify is where to put the

upper left corner; that is done by putting point there. The rectangle’s first line is inserted there,

the rectangle’s second line is inserted at a point one line vertically down, and so on. The number

of lines affected is determined by the height of the saved rectangle.

To insert the last killed rectangle, type M-x yank-rectangle. This can be used to convert

single-column lists into double-column lists; kill the second half of the list as a rectangle and then

yank it beside the first line of the list.

There are two commands for working with blank rectangles: M-x clear-rectangle to blank

out existing text, and M-x open-rectangle to insert a blank rectangle. Clearing a rectangle is

equivalent to deleting it and then inserting as blank rectangle of the same size.

Chapter 10: Killing and Moving Text 61

Rectangles can also be copied into and out of registers. See Section 11.3 [Rectangle Registers],

page 64.

62 GNU Emacs Manual

Chapter 11: Registers 63

11 Registers

Emacs registers are places you can save text or positions for later use. Text saved in a register

can be copied into the buffer once or many times; a position saved in a register is used by moving

point to that position. Rectangles can also be copied into and out of registers (see Section 10.4

[Rectangles], page 59).

Each register has a name, which is a single character. A register can store either a piece of text

or a position or a rectangle, but only one thing at any given time. Whatever you store in a register

remains there until you store something else in that register.

M-x view-register RET r

Display a description of what register r contains.

M-x view-register reads a register name as an argument and then displays the contents of the

specified register.

11.1 Saving Positions in Registers

Saving a position records a spot in a buffer so that you can move back there later. Moving to a

saved position reselects the buffer and moves point to the spot.

C-x / r Save location of point in register r (point-to-register).

C-x j r Jump to the location saved in register r (register-to-point).

To save the current location of point in a register, choose a name r and type C-x / r. The

register r retains the location thus saved until you store something else in that register.

The command C-x j r moves point to the location recorded in register r. The register is not

affected; it continues to record the same location. You can jump to the same position using the

same register any number of times.

11.2 Saving Text in Registers

When you want to insert a copy of the same piece of text frequently, it may be impractical to

64 GNU Emacs Manual

use the kill ring, since each subsequent kill moves the piece of text further down on the ring. It

becomes hard to keep track of what argument is needed to retrieve the same text with C-y. An

alternative is to store the text in a register with C-x x (copy-to-register) and then retrieve it

with C-x g (insert-register).

C-x x r Copy region into register r (copy-to-register).

C-x g r Insert text contents of register r (insert-register).

C-x x r stores a copy of the text of the region into the register named r. Given a numeric

argument, C-x x deletes the text from the buffer as well.

C-x g r inserts in the buffer the text from register r. Normally it leaves point before the text

and places the mark after, but with a numeric argument it puts point after the text and the mark

before.

11.3 Saving Rectangles in Registers

A register can contain a rectangle instead of linear text. The rectangle is represented as a list

of strings. See Section 10.4 [Rectangles], page 59, for basic information on rectangles and how

rectangles in the buffer are specified.

C-x r r Copy the region-rectangle into register r

(copy-region-to-rectangle). With numeric argument, delete it as well.

C-x g r Insert the rectangle stored in register r (if it contains a rectangle) (insert-register).

The C-x g command inserts linear text if the register contains that, or inserts a rectangle if the

register contains one.

Chapter 12: Controlling the Display 65

12 Controlling the Display

Since only part of a large buffer fits in the window, Emacs tries to show the part that is likely

to be interesting. The display control commands allow you to specify which part of the text you

want to see.

C-l Clear screen and redisplay, scrolling the selected window to center point vertically

within it (recenter).

C-v Scroll forward (a windowful or a specified number of lines) (scroll-up).

M-v Scroll backward (scroll-down).

arg C-l Scroll so point is on line arg (recenter).

C-x < Scroll text in current window to the left (scroll-left).

C-x > Scroll to the right (scroll-right).

C-x $ Make deeply indented lines invisible (set-selective-display).

12.1 Scrolling

If a buffer contains text that is too large to fit entirely within a window that is displaying the

buffer, Emacs shows a contiguous section of the text. The section shown always contains point.

Scrolling means moving text up or down in the window so that different parts of the text are

visible. Scrolling forward means that text moves up, and new text appears at the bottom. Scrolling

backward moves text down and new text appears at the top.

Scrolling happens automatically if you move point past the bottom or top of the window. You

can also explicitly request scrolling with the commands in this section.

The most basic scrolling command is C-l (recenter) with no argument. It clears the entire

screen and redisplays all windows. In addition, the selected window is scrolled so that point is

halfway down from the top of the window.

The scrolling commands C-v and M-v let you move all the text in the window up or down a

few lines. C-v (scroll-up) with an argument shows you that many more lines at the bottom of

the window, moving the text and point up together as C-l might. C-v with a negative argument

shows you more lines at the top of the window. Meta-v (scroll-down) is like C-v, but moves in

the opposite direction.

66 GNU Emacs Manual

To read the buffer a windowful at a time, use C-v with no argument. It takes the last two lines

at the bottom of the window and puts them at the top, followed by nearly a whole windowful of

lines not previously visible. If point was in the text scrolled off the top, it moves to the new top of

the window. M-v with no argument moves backward with overlap similarly. The number of lines of

overlap across a C-v or M-v is controlled by the variable next-screen-context-lines; by default,

it is two.

Another way to do scrolling is with C-l with a numeric argument. C-l does not clear the

screen when given an argument; it only scrolls the selected window. With a positive argument n,

it repositions text to put point n lines down from the top. An argument of zero puts point on the

very top line. Point does not move with respect to the text; rather, the text and point move rigidly

on the screen. C-l with a negative argument puts point that many lines from the bottom of the

window. For example, C-u - 1 C-l puts point on the bottom line, and C-u - 5 C-l puts it five lines

from the bottom. Just C-u as argument, as in C-u C-l, scrolls point to the center of the screen.

Scrolling happens automatically if point has moved out of the visible portion of the text when

it is time to display. Usually the scrolling is done so as to put point vertically centered within the

window. However, if the variable scroll-step has a nonzero value, an attempt is made to scroll

the buffer by that many lines; if that is enough to bring point back into visibility, that is what is

done.

12.2 Horizontal Scrolling

The text in a window can also be scrolled horizontally. This means that each line of text is

shifted sideways in the window, and one or more characters at the beginning of each line are not

displayed at all. When a window has been scrolled horizontally in this way, text lines are truncated

rather than continued (see Section 4.7 [Continuation Lines], page 29), with a ‘$’ appearing in the

first column when there is text truncated to the left, and in the last column when there is text

truncated to the right.

The command C-x < (scroll-left) scrolls the selected window to the left by n columns with

argument n. With no argument, it scrolls by almost the full width of the window (two columns less,

to be precise). C-x > (scroll-right) scrolls similarly to the right. The window cannot be scrolled

any farther to the right once it is displaying normally (with each line starting at the window’s left

margin); attempting to do so has no effect.

Chapter 12: Controlling the Display 67

12.3 Selective Display

Emacs has the ability to hide lines indented more than a certain number of columns (you specify

how many columns). You can use this to get an overview of a part of a program.

To hide lines, type C-x $ (set-selective-display) with a numeric argument n. (See Sec-

tion 4.9 [Arguments], page 31, for how to give the argument.) Then lines with at least n columns

of indentation disappear from the screen. The only indication of their presence is that three dots

(‘. . .’) appear at the end of each visible line that is followed by one or more invisible ones.

The invisible lines are still present in the buffer, and most editing commands see them as usual,

so it is very easy to put point in the middle of invisible text. When this happens, the cursor appears

at the end of the previous line, after the three dots. If point is at the end of the visible line, before

the newline that ends it, the cursor appears before the three dots.

The commands C-n and C-p move across the invisible lines as if they were not there.

To make everything visible again, type C-x $ with no argument.

12.4 Variables Controlling Display

This section contains information for customization only. Beginning users should skip it.

The variable mode-line-inverse-video controls whether the mode line is displayed in inverse

video (assuming the terminal supports it); nil means don’t do so. See Chapter 2 [Mode Line],

page 17.

If the variable inverse-video is non-nil, Emacs attempts to invert all the lines of the display

from what they normally are.

If the variable visible-bell is non-nil, Emacs attempts to make the whole screen blink when

it would normally make an audible bell sound. This variable has no effect if your terminal does not

have a way to make the screen blink.

When you reenter Emacs after suspending, Emacs normally clears the screen and redraws the

entire display. On some terminals with more than one page of memory, it is possible to arrange

the termcap entry so that the ‘ti’ and ‘te’ strings (output to the terminal when Emacs is entered

68 GNU Emacs Manual

and exited, respectively) switch between pages of memory so as to use one page for Emacs and

another page for other output. Then you might want to set the variable no-redraw-on-reenter

non-nil so that Emacs will assume, when resumed, that the screen page it is using still contains

what Emacs last wrote there.

The variable echo-keystrokes controls the echoing of multi-character keys; its value is the

number of seconds of pause required to cause echoing to start, or zero meaning don’t echo at all.

See Section 1.2 [Echo Area], page 14.

If the variable ctl-arrow is nil, control characters in the buffer are displayed with octal escape

sequences, all except newline and tab. Altering the value of ctl-arrowmakes it local to the current

buffer; until that time, the default value is in effect. The default is initially t. See Section 28.2.3

[Locals], page 220.

Normally, a tab character in the buffer is displayed as whitespace which extends to the next

display tab stop position, and display tab stops come at intervals equal to eight spaces. The number

of spaces per tab is controlled by the variable tab-width, which is made local by changing it, just

like ctl-arrow. Note that how the tab character in the buffer is displayed has nothing to do with

the definition of TAB as a command.

If you set the variable selective-display-ellipses to nil, the three dots do not appear at

the end of a line that precedes invisible lines. Then there is no visible indication of the invisible

lines. This variable too becomes local automatically when set.

Chapter 13: Searching and Replacement 69

13 Searching and Replacement

Like other editors, Emacs has commands for searching for occurrences of a string. The principal

search command is unusual in that it is incremental; it begins to search before you have finished

typing the search string. There are also nonincremental search commands more like those of other

editors.

Besides the usual replace-string command that finds all occurrences of one string and replaces

them with another, Emacs has a fancy replacement command called query-replace which asks

interactively which occurrences to replace.

13.1 Incremental Search

An incremental search begins searching as soon as you type the first character of the search

string. As you type in the search string, Emacs shows you where the string (as you have typed it

so far) would be found. When you have typed enough characters to identify the place you want,

you can stop. Depending on what you will do next, you may or may not need to terminate the

search explicitly with an ESC first.

C-s Incremental search forward (isearch-forward).

C-r Incremental search backward (isearch-backward).

C-s starts an incremental search. C-s reads characters from the keyboard and positions the

cursor at the first occurrence of the characters that you have typed. If you type C-s and then F,

the cursor moves right after the first ‘F’. Type an O, and see the cursor move to after the first

‘FO’. After another O, the cursor is after the first ‘FOO’ after the place where you started the search.

Meanwhile, the search string ‘FOO’ has been echoed in the echo area.

The echo area display ends with three dots when actual searching is going on. When search is

waiting for more input, the three dots are removed. (On slow terminals, the three dots are not

displayed.)

If you make a mistake in typing the search string, you can erase characters with DEL. Each

DEL cancels the last character of search string. This does not happen until Emacs is ready to read

another input character; first it must either find, or fail to find, the character you want to erase. If

you do not want to wait for this to happen, use C-g as described below.

70 GNU Emacs Manual

When you are satisfied with the place you have reached, you can type ESC, which stops searching,

leaving the cursor where the search brought it. Also, any command not specially meaningful in

searches stops the searching and is then executed. Thus, typing C-a would exit the search and then

move to the beginning of the line. ESC is necessary only if the next command you want to type is a

printing character, DEL, ESC, or another control character that is special within searches (C-q, C-w,

C-r, C-s or C-y).

Sometimes you search for ‘FOO’ and find it, but not the one you expected to find. There was a

second ‘FOO’ that you forgot about, before the one you were looking for. In this event, type another

C-s to move to the next occurrence of the search string. This can be done any number of times. If

you overshoot, you can cancel some C-s characters with DEL.

After you exit a search, you can search for the same string again by typing just C-s C-s: the

first C-s is the key that invokes incremental search, and the second C-s means “search again”.

If your string is not found at all, the echo area says ‘Failing I-Search’. The cursor is after the

place where Emacs found as much of your string as it could. Thus, if you search for ‘FOOT’, and

there is no ‘FOOT’, you might see the cursor after the ‘FOO’ in ‘FOOL’. At this point there are several

things you can do. If your string was mistyped, you can rub some of it out and correct it. If you

like the place you have found, you can type ESC or some other Emacs command to “accept what

the search offered”. Or you can type C-g, which removes from the search string the characters

that could not be found (the ‘T’ in ‘FOOT’), leaving those that were found (the ‘FOO’ in ‘FOOT’).

A second C-g at that point cancels the search entirely, returning point to where it was when the

search started.

If a search is failing and you ask to repeat it by typing another C-s, it starts again from the

beginning of the buffer. Repeating a failing reverse search with C-r starts again from the end. This

is called wrapping around. ‘Wrapped’ appears in the search prompt once this has happened.

The C-g “quit” character does special things during searches; just what it does depends on the

status of the search. If the search has found what you specified and is waiting for input, C-g cancels

the entire search. The cursor moves back to where you started the search. If C-g is typed when

there are characters in the search string that have not been found—because Emacs is still searching

for them, or because it has failed to find them—then the search string characters which have not

been found are discarded from the search string. With them gone, the search is now successful and

waiting for more input, so a second C-g will cancel the entire search.

To search for a control character such as C-s or DEL or ESC, you must quote it by typing C-q first.

This function of C-q is analogous to its meaning as an Emacs command: it causes the following

Chapter 13: Searching and Replacement 71

character to be treated the way a graphic character would normally be treated in the same context.

You can change to searching backwards with C-r. If a search fails because the place you started

was too late in the file, you should do this. Repeated C-r keeps looking for more occurrences

backwards. A C-s starts going forwards again. C-r in a search can be cancelled with DEL.

If you know initially that you want to search backwards, you can use C-r instead of C-s to start

the search, because C-r is also a key running a command (isearch-backward) to search backward.

The characters C-y and C-w can be used in incremental search to grab text from the buffer into

the search string. This makes it convenient to search for another occurrence of text at point. C-w

copies the word after point as part of the search string, advancing point over that word. Another

C-s to repeat the search will then search for a string including that word. C-y is similar to C-w but

copies all the rest of the current line into the search string.

All the characters special in incremental search can be changed by setting the following variables:

search-delete-char

Character to delete from incremental search string (normally DEL).

search-exit-char

Character to exit incremental search (normally ESC).

search-quote-char

Character to quote special characters for incremental search (normally C-q).

search-repeat-char

Character to repeat incremental search forwards (normally C-s).

search-reverse-char

Character to repeat incremental search backwards (normally C-r).

search-yank-line-char

Character to pull rest of line from buffer into search string (normally C-y).

search-yank-word-char

Character to pull next word from buffer into search string (normally C-w).

13.1.1 Slow Terminal Incremental Search

Incremental search on a slow terminal uses a modified style of display that is designed to take

less time. Instead of redisplaying the buffer at each place the search gets to, it creates a new single-

line window and uses that to display the line that the search has found. The single-line window

72 GNU Emacs Manual

comes into play as soon as point gets outside of the text that is already on the screen.

When the search is terminated, the single-line window is removed. Only at this time is the

window in which the search was done redisplayed to show its new value of point.

The three dots at the end of the search string, normally used to indicate that searching is going

on, are not displayed in slow style display.

The slow terminal style of display is used when the terminal baud rate is less than or equal to

the value of the variable search-slow-speed, initially 1200.

The number of lines to use in slow terminal search display is controlled by the variable search-

slow-window-lines. 1 is its normal value.

13.2 Nonincremental Search

Emacs also has conventional nonincremental search commands, which require you to type the

entire search string before searching begins.

C-s ESC string RET

Search for string.

C-r ESC string RET

Search backward for string.

To do a nonincremental search, first type C-s ESC. This enters the minibuffer to read the search

string; terminate the string with RET, and then the search is done. If the string is not found the

search command gets an error.

The way C-s ESC works is that the C-s invokes incremental search, which is specially pro-

grammed to invoke nonincremental search if the argument you give it is empty. (Such an empty

argument would otherwise be useless.) C-r ESC also works this way.

Forward and backward nonincremental searches are implemented by the commands search-

forward and search-backward. These commands may be bound to keys in the usual manner.

The reason that incremental search is programmed to invoke them as well is that C-s ESC is the

traditional sequence of characters used in Emacs to invoke nonincremental search.

Chapter 13: Searching and Replacement 73

However, nonincremental searches performed using C-s ESC do not call search-forward right

away. The first thing done is to see if the next character is C-w, which requests a word search.

13.3 Word Search

Word search searches for a sequence of words without regard to how the words are separated.

More precisely, you type a string of many words, using single spaces to separate them, and the

string can be found even if there are multiple spaces, newlines or other punctuation between the

words.

Word search is useful in editing documents formatted by text formatters. If you edit while

looking at the printed, formatted version, you can’t tell where the line breaks are in the source file.

With word search, you can search without having to know them.

C-s ESC C-w words RET

Search for words, ignoring differences in punctuation.

C-r ESC C-w words RET

Search backward for words, ignoring differences in punctuation.

Word search is a special case of nonincremental search and is invoked with C-s ESC C-w. This is

followed by the search string, which must always be terminated with RET. Being nonincremental,

this search does not start until the argument is terminated. It works by constructing a regular

expression and searching for that. See Section 13.4 [Regexp Search], page 73.

A backward word search can be done by C-r ESC C-w.

Forward and backward word searches are implemented by the commands word-search-forward

and word-search-backward. These commands may be bound to keys in the usual manner. The

reason that incremental search is programmed to invoke them as well is that C-s ESC C-w is the

traditional Emacs sequence of keys for word search.

13.4 Regular Expression Search

A regular expression (regexp, for short) is a pattern that denotes a set of strings, possibly an

infinite set. Searching for matches for a regexp is a very powerful operation that editors on Unix

74 GNU Emacs Manual

systems have traditionally offered. In GNU Emacs, you can search for the next match for a regexp

either incrementally or not.

Incremental search for a regexp is done by typing C-M-s (isearch-forward-regexp). This

command reads a search string incrementally just like C-s, but it treats the search string as a

regexp rather than looking for an exact match against the text in the buffer. Each time you add

text to the search string, you make the regexp longer, and the new regexp is searched for. A reverse

regexp search command isearch-backward-regexp also exists but no key runs it.

All of the control characters that do special things within an ordinary incremental search have

the same function in incremental regexp search. Typing C-s or C-r immediately after starting the

search retrieves the last incremental search regexp used; that is to say, incremental regexp and

non-regexp searches have independent defaults.

Note that adding characters to the regexp in an incremental regexp search does not make the

cursor move back and start again. Perhaps it ought to; I am not sure. As it stands, if you have

searched for ‘foo’ and you add ‘\|bar’, the search will not check for a ‘bar’ in the buffer before

the ‘foo’.

Nonincremental search for a regexp is done by the functions re-search-forward and re-

search-backward. You can invoke these with M-x, or bind them to keys. Also, you can call

re-search-forward by way of incremental regexp search with C-M-s ESC.

13.5 Syntax of Regular Expressions

Regular expressions have a syntax in which a few characters are special constructs and the rest

are ordinary. An ordinary character is a simple regular expression which matches that character

and nothing else. The special characters are ‘$’, ‘^’, ‘.’, ‘*’, ‘+’, ‘?’, ‘[’, ‘]’ and ‘\’; no new special

characters will be defined. Any other character appearing in a regular expression is ordinary, unless

a ‘\’ precedes it.

For example, ‘f’ is not a special character, so it is ordinary, and therefore ‘f’ is a regular

expression that matches the string ‘f’ and no other string. (It does not match the string ‘ff’.)

Likewise, ‘o’ is a regular expression that matches only ‘o’.

Any two regular expressions a and b can be concatenated. The result is a regular expression

which matches a string if a matches some amount of the beginning of that string and b matches

the rest of the string.

Chapter 13: Searching and Replacement 75

As a simple example, we can concatenate the regular expressions ‘f’ and ‘o’ to get the regular

expression ‘fo’, which matches only the string ‘fo’. Still trivial. To do something nontrivial, you

need to use one of the special characters. Here is a list of them.

. (Period) is a special character that matches any single character except a newline. Using concate-

nation, we can make regular expressions like ‘a.b’ which matches any three-character

string which begins with ‘a’ and ends with ‘b’.

* is not a construct by itself; it is a suffix, which means the preceding regular expression

is to be repeated as many times as possible. In ‘fo*’, the ‘*’ applies to the ‘o’, so ‘fo*’

matches one ‘f’ followed by any number of ‘o’s. The case of zero ‘o’s is allowed: ‘fo*’

does match ‘f’.

‘*’ always applies to the smallest possible preceding expression. Thus, ‘fo*’ has a

repeating ‘o’, not a repeating ‘fo’.

The matcher processes a ‘*’ construct by matching, immediately, as many repetitions as

can be found. Then it continues with the rest of the pattern. If that fails, backtracking

occurs, discarding some of the matches of the ‘*’-modified construct in case that makes

it possible to match the rest of the pattern. For example, matching ‘ca*ar’ against the

string ‘caaar’, the ‘a*’ first tries to match all three ‘a’s; but the rest of the pattern is

‘ar’ and there is only ‘r’ left to match, so this try fails. The next alternative is for ‘a*’

to match only two ‘a’s. With this choice, the rest of the regexp matches successfully.

+ Is a suffix character similar to ‘*’ except that it requires that the preceding expression

be matched at least once. So, for example, ‘ca+r’ will match the strings ‘car’ and

‘caaaar’ but not the string ‘cr’, whereas ‘ca*r’ would match all three strings.

? Is a suffix character similar to ‘*’ except that it can match the preceding expression

either once or not at all. For example, ‘ca?r’ will match ‘car’ or ‘cr’; nothing else.

[. . .] ‘[’ begins a character set, which is terminated by a ‘]’. In the simplest case, the

characters between the two form the set. Thus, ‘[ad]’ matches either one ‘a’ or one

‘d’, and ‘[ad]*’ matches any string composed of just ‘a’s and ‘d’s (including the empty

string), from which it follows that ‘c[ad]*r’ matches ‘cr’, ‘car’, ‘cdr’, ‘caddaar’, etc.

Character ranges can also be included in a character set, by writing two characters

with a ‘-’ between them. Thus, ‘[a-z]’ matches any lower-case letter. Ranges may

be intermixed freely with individual characters, as in ‘[a-z$%.]’, which matches any

lower case letter or ‘$’, ‘%’ or period.

Note that the usual special characters are not special any more inside a character set.

A completely different set of special characters exists inside character sets: ‘]’, ‘-’ and

‘^’.

To include a ‘]’ in a character set, you must make it the first character. For example,

‘[]a]’ matches ‘]’ or ‘a’. To include a ‘-’, write ‘---’, which is a range containing only

‘-’. To include ‘^’, make it other than the first character in the set.

76 GNU Emacs Manual

[^ . . .] ‘[^’ begins a complement character set, which matches any character except the ones

specified. Thus, ‘[^a-z0-9A-Z]’ matches all characters except letters and digits.

‘^’ is not special in a character set unless it is the first character. The character following

the ‘^’ is treated as if it were first (‘-’ and ‘]’ are not special there).

Note that a complement character set can match a newline, unless newline is mentioned

as one of the characters not to match.

^ is a special character that matches the empty string, but only if at the beginning of

a line in the text being matched. Otherwise it fails to match anything. Thus, ‘^foo’

matches a ‘foo’ which occurs at the beginning of a line.

$ is similar to ‘^’ but matches only at the end of a line. Thus, ‘xx*$’ matches a string of

one ‘x’ or more at the end of a line.

\ has two functions: it quotes the special characters (including ‘\’), and it introduces

additional special constructs.

Because ‘\’ quotes special characters, ‘\$’ is a regular expression which matches only

‘$’, and ‘\[’ is a regular expression which matches only ‘[’, and so on.

Note: for historical compatibility, special characters are treated as ordinary ones if they are in

contexts where their special meanings make no sense. For example, ‘*foo’ treats ‘*’ as ordinary

since there is no preceding expression on which the ‘*’ can act. It is poor practice to depend on

this behavior; better to quote the special character anyway, regardless of where is appears.

For the most part, ‘\’ followed by any character matches only that character. However, there are

several exceptions: characters which, when preceded by ‘\’, are special constructs. Such characters

are always ordinary when encountered on their own. Here is a table of ‘\’ constructs.

\| specifies an alternative. Two regular expressions a and b with ‘\|’ in between form an

expression that matches anything that either a or b will match.

Thus, ‘foo\|bar’ matches either ‘foo’ or ‘bar’ but no other string.

‘\|’ applies to the largest possible surrounding expressions. Only a surrounding ‘\(. . .

\)’ grouping can limit the grouping power of ‘\|’.

Full backtracking capability exists to handle multiple uses of ‘\|’.

\(. . . \) is a grouping construct that serves three purposes:

1. To enclose a set of ‘\|’ alternatives for other operations. Thus, ‘\(foo\|bar\)x’

matches either ‘foox’ or ‘barx’.

2. To enclose a complicated expression for the postfix ‘*’ to operate on. Thus,

‘ba\(na\)*’ matches ‘bananana’, etc., with any (zero or more) number of ‘na’

strings.

Chapter 13: Searching and Replacement 77

3. To mark a matched substring for future reference.

This last application is not a consequence of the idea of a parenthetical grouping; it

is a separate feature which happens to be assigned as a second meaning to the same

‘\(. . . \)’ construct because there is no conflict in practice between the two meanings.

Here is an explanation of this feature:

\digit after the end of a ‘\(. . . \)’ construct, the matcher remembers the beginning and end

of the text matched by that construct. Then, later on in the regular expression, you

can use ‘\’ followed by digit to mean “match the same text matched the digit’th time

by the ‘\(. . . \)’ construct.”

The strings matching the first nine ‘\(. . . \)’ constructs appearing in a regular expres-

sion are assigned numbers 1 through 9 in order that the open-parentheses appear in

the regular expression. ‘\1’ through ‘\9’ may be used to refer to the text matched by

the corresponding ‘\(. . . \)’ construct.

For example, ‘\(.*\)\1’ matches any newline-free string that is composed of two iden-

tical halves. The ‘\(.*\)’ matches the first half, which may be anything, but the ‘\1’

that follows must match the same exact text.

\‘ matches the empty string, provided it is at the beginning of the buffer.

\’ matches the empty string, provided it is at the end of the buffer.

\b matches the empty string, provided it is at the beginning or end of a word. Thus,

‘\bfoo\b’ matches any occurrence of ‘foo’ as a separate word. ‘\bballs?\b’ matches

‘ball’ or ‘balls’ as a separate word.

\B matches the empty string, provided it is not at the beginning or end of a word.

\< matches the empty string, provided it is at the beginning of a word.

\> matches the empty string, provided it is at the end of a word.

\w matches any word-constituent character. The editor syntax table determines which

characters these are.

\W matches any character that is not a word-constituent.

\scode matches any character whose syntax is code. code is a character which represents a

syntax code: thus, ‘w’ for word constituent, ‘-’ for whitespace, ‘(’ for open-parenthesis,

etc. See Section 28.5 [Syntax], page 229.

\Scode matches any character whose syntax is not code.

Here is a complicated regexp, used by Emacs to recognize the end of a sentence together with

any whitespace that follows. It is given in Lisp syntax to enable you to distinguish the spaces from

the tab characters. In Lisp syntax, the string constant begins and ends with a double-quote. ‘\"’

stands for a double-quote as part of the regexp, ‘\\’ for a backslash as part of the regexp, ‘\t’ for

a tab and ‘\n’ for a newline.

78 GNU Emacs Manual

"[.?!][]\"’)]*\\($\\|\t\\| \\)[\t\n]*"

This contains four parts in succession: a character set matching period, ‘?’ or ‘!’; a character set

matching close-brackets, quotes or parentheses, repeated any number of times; an alternative in

backslash-parentheses that matches end-of-line, a tab or two spaces; and a character set matching

whitespace characters, repeated any number of times.

13.6 Searching and Case

All sorts of searches in Emacs normally ignore the case of the text they are searching through;

if you specify searching for ‘FOO’, then ‘Foo’ and ‘foo’ are also considered a match. Regexps, and

in particular character sets, are included: ‘[aB]’ would match ‘a’ or ‘A’ or ‘b’ or ‘B’.

If you do not want this feature, set the variable case-fold-search to nil. Then all letters

must match exactly, including case. This is a per-buffer variable; altering the variable affects only

the current buffer, but there is a default value which you can change as well. See Section 28.2.3

[Locals], page 220.

13.7 Replacement Commands

Global search-and-replace operations are not needed as often in Emacs as they are in other

editors, but they are available. In addition to the simple replace-string command which is like

that found in most editors, there is a query-replace command which asks you, for each occurrence

of the pattern, whether to replace it.

The replace commands all replace one string (or regexp) with one replacement string. It is

possible to perform several replacements in parallel using the command expand-region-abbrevs.

See Section 23.2 [Expanding Abbrevs], page 178.

13.7.1 Unconditional Replacement

M-x replace-string RET string RET newstring RET

Replace every occurrence of string with newstring.

M-x replace-regexp RET regexp RET newstring RET

Replace every match for regexp with newstring.

Chapter 13: Searching and Replacement 79

To replace every instance of ‘foo’ after point with ‘bar’, use the command M-x replace-string

with the two arguments ‘foo’ and ‘bar’. Replacement occurs only after point, so if you want to

cover the whole buffer you must go to the beginning first. All occurrences up to the end of the

buffer are replaced; to limit replacement to part of the buffer, narrow to that part of the buffer

before doing the replacement (see Section 27.2 [Narrowing], page 208).

When replace-string exits, point is left at the last occurrence replaced. The value of point

when the replace-string command was issued is remembered on the mark ring; C-u C-SPC moves

back there.

A numeric argument restricts replacement to matches that are surrounded by word boundaries.

13.7.2 Regexp Replacement

replace-string replaces exact matches for a single string. The similar command replace-

regexp replaces any match for a specified pattern.

In replace-regexp, the newstring need not be constant. It can refer to all or part of what

is matched by the regexp. ‘\&’ in newstring stands for the entire text being replaced. ‘\d’ in

newstring, where d is a digit, stands for whatever matched the d’th parenthesized grouping in

regexp. For example,

M-x replace-regexp RET c[ad]+r RET \&-safe RET

would replace (for example) ‘cadr’ with ‘cadr-safe’ and ‘cddr’ with ‘cddr-safe’.

M-x replace-regexp RET \(c[ad]+r\)-safe RET \1 RET

would perform exactly the opposite replacements. To include a ‘\’ in the text to replace with, you

must give ‘\\’.

13.7.3 Replace Commands and Case

If the arguments to a replace command are in lower case, it preserves case when it makes a

replacement. Thus, the command

80 GNU Emacs Manual

M-x replace-string RET foo RET bar RET

replaces a lower case ‘foo’ with a lower case ‘bar’, ‘FOO’ with ‘BAR’, and ‘Foo’ with ‘Bar’. If upper

case letters are used in the second argument, they remain upper case every time that argument

is inserted. If upper case letters are used in the first argument, the second argument is always

substituted exactly as given, with no case conversion. Likewise, if the variable case-replace is

set to nil, replacement is done without case conversion. If case-fold-search is set to nil, case

is significant in matching occurrences of ‘foo’ to replace; also, case conversion of the replacement

string is not done.

13.7.4 Query Replace

M-% string RET newstring RET

M-x query-replace RET string RET newstring RET

Replace some occurrences of string with newstring.

M-x query-replace-regexp RET regexp RET newstring RET

Replace some matches for regexp with newstring.

If you want to change only some of the occurrences of ‘foo’ to ‘bar’, not all of them, then

you cannot use an ordinary replace-string. Instead, use M-% (query-replace). This command

finds occurrences of ‘foo’ one by one, displays each occurrence and asks you whether to replace it.

A numeric argument to query-replace tells it to consider only occurrences that are bounded by

word-delimiter characters.

Aside from querying, query-replace works just like replace-string, and query-replace-

regexp works just like replace-regexp.

The things you can type when you are shown an occurrence of string or a match for regexp are:

SPC to replace the occurrence with newstring. This preserves case, just like replace-

string, provided case-replace is non-nil, as it normally is.

DEL to skip to the next occurrence without replacing this one.

, (Comma)

to replace this occurrence and display the result. You are then asked for another input

character, except that since the replacement has already been made, DEL and SPC are

equivalent. You could type C-r at this point (see below) to alter the replaced text.

You could also type C-x u to undo the replacement; this exits the query-replace, so

Chapter 13: Searching and Replacement 81

if you want to do further replacement you must use C-x ESC to restart (see Section 6.4

[Repetition], page 39).

ESC to exit without doing any more replacements.

. (Period) to replace this occurrence and then exit.

! to replace all remaining occurrences without asking again.

^ to go back to the location of the previous occurrence (or what used to be an occurrence),

in case you changed it by mistake. This works by popping the mark ring. Only one

^ in a row is allowed, because only one previous replacement location is kept during

query-replace.

C-r to enter a recursive editing level, in case the occurrence needs to be edited rather than

just replaced with newstring. When you are done, exit the recursive editing level with

C-M-c and the next occurrence will be displayed. See Section 27.1 [Recursive Edit],

page 207.

C-w to delete the occurrence, and then enter a recursive editing level as in C-r. Use the

recursive edit to insert text to replace the deleted occurrence of string. When done,

exit the recursive editing level with C-M-c and the next occurrence will be displayed.

C-l to redisplay the screen and then give another answer.

C-h to display a message summarizing these options, then give another answer.

If you type any other character, the query-replace is exited, and the character executed as a

command. To restart the query-replace, use C-x ESC, which repeats the query-replace because

it used the minibuffer to read its arguments. See Section 6.4 [Repetition], page 39.

13.8 Other Search-and-Loop Commands

Here are some other commands that find matches for a regular expression. They all operate

from point to the end of the buffer.

M-x occur Print each line that follows point and contains a match for the specified regexp. A

numeric argument specifies the number of context lines to print before and after each

matching line; the default is none.

The buffer ‘*Occur*’ containing the output serves as a menu for finding the occurrences

in their original context. Find an occurrence as listed in ‘*Occur*’, position point there

and type C-c C-c; this switches to the buffer that was searched and moves point to the

original of the same occurrence.

M-x list-matching-lines

Synonym for M-x occur.

82 GNU Emacs Manual

M-x count-matches

Print the number of matches following point for the specified regexp.

M-x delete-non-matching-lines

Delete each line that follows point and does not contain a match for the specified

regexp.

M-x delete-matching-lines

Delete each line that follows point and contains a match for the specified regexp.

Chapter 14: Commands for Fixing Typos 83

14 Commands for Fixing Typos

In this chapter we describe the commands that are especially useful for the times when you

catch a mistake in your text just after you have made it, or change your mind while composing

text on line.

14.1 Killing Your Mistakes

DEL Delete last character (delete-backward-char).

M-DEL Kill last word (backward-kill-word).

C-x DEL Kill to beginning of sentence (backward-kill-sentence).

The DEL character (delete-backward-char) is the most important correction command. When

used among graphic (self-inserting) characters, it can be thought of as canceling the last character

typed.

When your mistake is longer than a couple of characters, it might be more convenient to use

M-DEL or C-x DEL. M-DEL kills back to the start of the last word, and C-x DEL kills back to the

start of the last sentence. C-x DEL is particularly useful when you are thinking of what to write as

you type it, in case you change your mind about phrasing. M-DEL and C-x DEL save the killed text

for C-y and M-y to retrieve. See Section 10.2 [Yanking], page 55.

M-DEL is often useful even when you have typed only a few characters wrong, if you know you

are confused in your typing and aren’t sure exactly what you typed. At such a time, you cannot

correct with DEL except by looking at the screen to see what you did. It requires less thought to

kill the whole word and start over again.

14.2 Transposing Text

C-t Transpose two characters (transpose-chars).

M-t Transpose two words (transpose-words).

C-M-t Transpose two balanced expressions (transpose-sexps).

C-x C-t Transpose two lines (transpose-lines).

84 GNU Emacs Manual

The common error of transposing two characters can be fixed, when they are adjacent, with the

C-t command (transpose-chars). Normally, C-t transposes the two characters on either side of

point. When given at the end of a line, rather than transposing the last character of the line with

the newline, which would be useless, C-t transposes the last two characters on the line. So, if you

catch your transposition error right away, you can fix it with just a C-t. If you don’t catch it so

fast, you must move the cursor back to between the two transposed characters. If you transposed

a space with the last character of the word before it, the word motion commands are a good way

of getting there. Otherwise, a reverse search (C-r) is often the best way. See Chapter 13 [Search],

page 69.

Meta-t (transpose-words) transposes the word before point with the word after point. It

moves point forward over a word, dragging the word preceding or containing point forward as well.

The punctuation characters between the words do not move. For example, ‘FOO, BAR’ transposes

into ‘BAR, FOO’ rather than ‘BAR FOO,’.

C-M-t (transpose-sexps) is a similar command for transposing two expressions (see Sec-

tion 21.2 [Lists], page 140), and C-x C-t (transpose-lines) exchanges lines. They work like

M-t except in determining the division of the text into syntactic units.

A numeric argument to a transpose command serves as a repeat count: it tells the transpose

command to move the character (word, sexp, line) before or containing point across several other

characters (words, sexps, lines). For example, C-u 3 C-t moves the character before point forward

across three other characters. This is equivalent to repeating C-t three times. C-u - 4 M-t moves

the word before point backward across four words. C-u - C-M-t would cancel the effect of plain

C-M-t.

A numeric argument of zero is assigned a special meaning (because otherwise a command with

a repeat count of zero would do nothing): to transpose the character (word, sexp, line) ending after

point with the one ending after the mark.

14.3 Case Conversion

M-- M-l Convert last word to lower case. Note Meta-- is Meta-minus.

M-- M-u Convert last word to all upper case.

M-- M-c Convert last word to lower case with capital initial.

A very common error is to type words in the wrong case. Because of this, the word case-

conversion commands M-l, M-u and M-c have a special feature when used with a negative argument:

Chapter 14: Commands for Fixing Typos 85

they do not move the cursor. As soon as you see you have mistyped the last word, you can simply

case-convert it and go on typing. See Section 20.7 [Case], page 137.

14.4 Checking and Correcting Spelling

M-$ Check and correct spelling of word (spell-word).

M-x spell-buffer

Check and correct spelling of each word in the buffer.

M-x spell-region

Check and correct spelling of each word in the region.

M-x spell-string

Check spelling of specified word.

To check the spelling of the word before point, and optionally correct it as well, use the command

M-$ (spell-word). This command runs an inferior process containing the spell program to see

whether the word is correct English. If it is not, it asks you to edit the word (in the minibuffer)

into a corrected spelling, and then does a query-replace to substitute the corrected spelling for

the old one throughout the buffer.

If you exit the minibuffer without altering the original spelling, it means you do not want to do

anything to that word. Then the query-replace is not done.

M-x spell-buffer checks each word in the buffer the same way that spell-word does, doing a

query-replace if appropriate for every incorrect word.

M-x spell-region is similar but operates only on the region, not the entire buffer.

M-x spell-string reads a string as an argument and checks whether that is a correctly spelled

English word. It prints in the echo area a message giving the answer.

86 GNU Emacs Manual

Chapter 15: File Handling 87

15 File Handling

The basic unit of stored data in Unix is the file. To edit a file, you must tell Emacs to examine

the file and prepare a buffer containing a copy of the file’s text. This is called visiting the file.

Editing commands apply directly to text in the buffer; that is, to the copy inside Emacs. Your

changes appear in the file itself only when you save the buffer back into the file.

In addition to visiting and saving files, Emacs can delete, copy, rename, and append to files,

and operate on file directories.

15.1 File Names

Most Emacs commands that operate on a file require you to specify the file name. (Saving

and reverting are exceptions; the buffer knows which file name to use for them.) File names are

specified using the minibuffer (see Chapter 6 [Minibuffer], page 35). Completion is available, to

make it easier to specify long file names. See Section 6.3.2 [Completion], page 38.

There is always a default file name which will be used if you type just RET, entering an empty

argument. Normally the default file name is the name of the file visited in the current buffer; this

makes it easy to operate on that file with any of the Emacs file commands.

Each buffer has a default directory, normally the same as the directory of the file visited in that

buffer. When Emacs reads a file name, if you do not specify a directory, the default directory is

used. If you specify a directory in a relative fashion, with a name that does not start with a slash,

it is interpreted with respect to the default directory. The default directory is kept in the variable

default-directory, which has a separate value in every buffer.

For example, if the default file name is ‘/u/rms/gnu/gnu.tasks’ then the default directory

is ‘/u/rms/gnu/’. If you type just ‘foo’, which does not specify a directory, it is short for

‘/u/rms/gnu/foo’. ‘../.login’ would stand for ‘/u/rms/.login’. ‘new/foo’ would stand for

the filename ‘/u/rms/gnu/new/foo’.

The command M-x pwd prints the current buffer’s default directory, and the command M-x cd

sets it (to a value read using the minibuffer). A buffer’s default directory changes only when the

cd command is used. A file-visiting buffer’s default directory is initialized to the directory of the

file that is visited there. If a buffer is made randomly with C-x b, its default directory is copied

from that of the buffer that was current at the time.

88 GNU Emacs Manual

The default directory actually appears in the minibuffer when the minibuffer becomes active to

read a file name. This serves two purposes: it shows you what the default is, so that you can type

a relative file name and know with certainty what it will mean, and it allows you to edit the default

to specify a different directory. This insertion of the default directory is inhibited if the variable

insert-default-directory is set to nil.

Note that it is legitimate to type an absolute file name after you enter the minibuffer, ignoring

the presence of the default directory name as part of the text. The final minibuffer contents may

look invalid, but that is not so. See Section 6.1 [Minibuffer File], page 35.

‘$’ in a file name is used to substitute environment variables. For example, if you have used the

shell command ‘setenv FOO rms/hacks’ to set up an environment variable named ‘FOO’, then you

can use ‘/u/$FOO/test.c’ or ‘/u/${FOO}/test.c’ as an abbreviation for ‘/u/rms/hacks/test.c’.

The environment variable name consists of all the alphanumeric characters after the ‘$’; alterna-

tively, it may be enclosed in braces after the ‘$’. Note that the ‘setenv’ command affects Emacs

only if done before Emacs is started.

To access a file with ‘$’ in its name, type ‘$$’. This pair is converted to a single ‘$’ at the

same time as variable substitution is performed for single ‘$’. The Lisp function that performs the

substitution is called substitute-in-file-name. The substitution is performed only on filenames

read as such using the minibuffer.

15.2 Visiting Files

C-x C-f Visit a file (find-file).

C-x C-v Visit a different file instead of the one visited last (find-alternate-file).

C-x 4 C-f Visit a file, in another window (find-file-other-window). Don’t change this window.

Visiting a file means copying its contents into Emacs where you can edit them. Emacs makes a

new buffer for each file that you visit. We say that the buffer is visiting the file that it was created

to hold. Emacs constructs the buffer name from the file name by throwing away the directory,

keeping just the name proper. For example, a file named ‘/usr/rms/emacs.tex’ would get a buffer

named ‘emacs.tex’. If there is already a buffer with that name, a unique name is constructed by

appending ‘<2>’, ‘<3>’, or so on, using the lowest number that makes a name that is not already

in use.

Each window’s mode line shows the name of the buffer that is being displayed in that window,

so you can always tell what buffer you are editing.

Chapter 15: File Handling 89

The changes you make with Emacs are made in the Emacs buffer. They do not take effect in

the file that you visited, or any place permanent, until you save the buffer. Saving the buffer means

that Emacs writes the current contents of the buffer into its visited file. See Section 15.3 [Saving],

page 90.

If a buffer contains changes that have not been saved, the buffer is said to be modified. This is

important because it implies that some changes will be lost if the buffer is not saved. The mode

line displays two stars near the left margin if the buffer is modified.

To visit a file, use the command C-x C-f (find-file). Follow the command with the name of

the file you wish to visit, terminated by a RET.

The file name is read using the minibuffer (see Chapter 6 [Minibuffer], page 35), with defaulting

and completion in the standard manner (see Section 15.1 [File Names], page 87). While in the

minibuffer, you can abort C-x C-f by typing C-g.

Your confirmation that C-x C-f has completed successfully is the appearance of new text on the

screen and a new buffer name in the mode line. If the specified file does not exist and could not

be created, or cannot be read, then an error results. The error message is printed in the echo area,

and includes the file name which Emacs was trying to visit.

If you visit a file that is already in Emacs, C-x C-f does not make another copy. It selects the

existing buffer containing that file. However, before doing so, it checks that the file itself has not

changed since you visited or saved it last. If the file has changed, a warning message is printed.

See Section 15.3.2 [Simultaneous Editing], page 94.

What if you want to create a file? Just visit it. Emacs prints ‘(New File)’ in the echo area, but

in other respects behaves as if you had visited an existing empty file. If you make any changes and

save them, the file is created.

If you visit a nonexistent file unintentionally (because you typed the wrong file name), use the

C-x C-v (find-alternate-file) command to visit the file you wanted. C-x C-v is similar to C-x

C-f, but it kills the current buffer (after first offering to save it if it is modified). C-x C-v is allowed

even if the current buffer is not visiting a file.

If the file you specify is actually a directory, Dired is called on that directory (see Section 15.7

[Dired], page 99). This can be inhibited by setting the variable find-file-run-dired to nil; then

it is an error to try to visit a directory.

90 GNU Emacs Manual

C-x 4 f (find-file-other-window) is like C-x C-f except that the buffer containing the spec-

ified file is selected in another window. The window that was selected before C-x 4 f continues to

show the same buffer it was already showing. If this command is used when only one window is

being displayed, that window is split in two, with one window showing the same before as before,

and the other one showing the newly requested file. See Chapter 17 [Windows], page 111.

There are two hook variables that allow extensions to modify the operation of visiting files.

Visiting a file that does not exist runs the functions in the list find-file-not-found-hooks; the

value of this variable is expected to be a list of functions, and the functions are called one by one

until one of them returns non-nil. Any visiting of a file, whether extant or not, expects find-

file-hooks to contain list of functions and calls them all, one by one. In both cases the functions

receive no arguments. Visiting a nonexistent file runs the find-file-not-found-hooks first.

15.3 Saving Files

Saving a buffer in Emacs means writing its contents back into the file that was visited in the

buffer.

C-x C-s Save the current buffer in its visited file (save-buffer).

C-x s Save any or all buffers in their visited files (save-some-buffers).

M-~ Forget that the current buffer has been changed (not-modified).

C-x C-w Save the current buffer in a specified file, and record that file as the one visited in the

buffer (write-file).

M-x set-visited-file-name

Change file the name under which the current buffer will be saved.

When you wish to save the file and make your changes permanent, type C-x C-s (save-buffer).

After saving is finished, C-x C-s prints a message such as

Wrote /u/rms/gnu/gnu.tasks

If the selected buffer is not modified (no changes have been made in it since the buffer was created

or last saved), saving is not really done, because it would have no effect. Instead, C-x C-s prints a

message in the echo area saying

(No changes need to be written)

Chapter 15: File Handling 91

The command C-x s (save-some-buffers) can save any or all modified buffers. First it asks,

for each modified buffer, whether to save it. These questions should be answered with y or n. C-x

C-c, the key that kills Emacs, invokes save-some-buffers and therefore asks the same questions.

If you have changed a buffer and do not want the changes to be saved, you should take some

action to prevent it. Otherwise, each time you use save-some-buffers you are liable to save it by

mistake. One thing you can do is type M-~ (not-modified), which clears out the indication that

the buffer is modified. If you do this, none of the save commands will believe that the buffer needs

to be saved. (‘~’ is often used as a mathematical symbol for ‘not’; thus Meta-~ is ‘not’, metafied.)

You could also use set-visited-file-name (see below) to mark the buffer as visiting a different

file name, one which is not in use for anything important. Alternatively, you can undo all the

changes made since the file was visited or saved, by reading the text from the file again. This is

called reverting. See Section 15.4 [Reverting], page 95. You could also undo all the changes by

repeating the undo command C-x u until you have undone all the changes; but this only works if

you have not made more changes than the undo mechanism can remember.

M-x set-visited-file-name alters the name of the file that the current buffer is visiting. It

reads the new file name using the minibuffer. It can be used on a buffer that is not visiting a file,

too. The buffer’s name is changed to correspond to the file it is now visiting in the usual fashion

(unless the new name is in use already for some other buffer; in that case, the buffer name is not

changed). set-visited-file-name does not save the buffer in the newly visited file; it just alters

the records inside Emacs so that, if you save the buffer, it will be saved in that file. It also marks

the buffer as “modified” so that C-x C-s will save.

If you wish to mark the buffer as visiting a different file and save it right away, use C-x C-w

(write-file). It is precisely equivalent to set-visited-file-name followed by C-x C-s. C-x C-s

used on a buffer that is not visiting with a file has the same effect as C-x C-w; that is, it reads a

file name, marks the buffer as visiting that file, and saves it there. The default file name in a buffer

that is not visiting a file is made by combining the buffer name with the buffer’s default directory.

If Emacs is about to save a file and sees that the date of the latest version on disk does not match

what Emacs last read or wrote, Emacs notifies you of this fact, because it probably indicates a

problem caused by simultaneous editing and requires your immediate attention. See Section 15.3.2

[Simultaneous Editing], page 94.

If the variable require-final-newline is non-nil, Emacs puts a newline at the end of any file

that doesn’t already end in one, every time a file is saved or written.

You can implement other ways to write files, and other things to be done before writing them,

92 GNU Emacs Manual

using the hook variable write-file-hooks. The value of this variable should be a list of Lisp

functions. When a file is to be written, the functions in the list are called, one by one, with no

arguments. If one of them returns a non-nil value, Emacs takes this to mean that the file has been

written in some suitable fashion; the rest of the functions are not called, and normal writing is not

done.

15.3.1 Backup Files

Because Unix does not provide version numbers in file names, rewriting a file in Unix automati-

cally destroys all record of what the file used to contain. Thus, saving a file from Emacs throws away

the old contents of the file—or it would, except that Emacs carefully copies the old contents to an-

other file, called the backup file, before actually saving. (Provided the variable make-backup-files

is non-nil. Backup files are not written if this variable is nil).

At your option, Emacs can keep either a single backup file or a series of numbered backup files

for each file that you edit.

Emacs makes a backup for a file only the first time the file is saved from one buffer. No matter

how many times you save a file, its backup file continues to contain the contents from before the

file was visited. Normally this means that the backup file contains the contents from before the

current editing session; however, if you kill the buffer and then visit the file again, a new backup

file will be made by the next save.

15.3.1.1 Single or Numbered Backups

If you choose to have a single backup file (this is the default), the backup file’s name is con-

structed by appending ‘~’ to the file name being edited; thus, the backup file for ‘eval.c’ would

be ‘eval.c~’.

If you choose to have a series of numbered backup files, backup file names are made by appending

‘.~’, the number, and another ‘~’ to the original file name. Thus, the backup files of ‘eval.c’ would

be called ‘eval.c.~1~’, ‘eval.c.~2~’, and so on, through names like ‘eval.c.~259~’ and beyond.

If protection stops you from writing backup files under the usual names, the backup file is written

as ‘%backup%~’ in your home directory. Only one such file can exist, so only the most recently made

such backup is available.

Chapter 15: File Handling 93

The choice of single backup or numbered backups is controlled by the variable version-control.

Its possible values are

t Make numbered backups.

nil Make numbered backups for files that have numbered backups already. Otherwise,

make single backups.

never Do not in any case make numbered backups; always make single backups.

version-control may be set locally in an individual buffer to control the making of backups for

that buffer’s file. For example, Rmail mode locally sets version-control to never to make sure

that there is only one backup for an Rmail file. See Section 28.2.3 [Locals], page 220.

15.3.1.2 Automatic Deletion of Backups

To prevent unlimited consumption of disk space, Emacs can delete numbered backup versions

automatically. Generally Emacs keeps the first few backups and the latest few backups, deleting

any in between. This happens every time a new backup is made. The two variables that control

the deletion are kept-old-versions and kept-new-versions. Their values are, respectively the

number of oldest (lowest-numbered) backups to keep and the number of newest (highest-numbered)

ones to keep, each time a new backup is made. Recall that these values are used just after a new

backup version is made; that newly made backup is included in the count in kept-new-versions.

By default, both variables are 2.

If trim-versions-without-asking is non-nil, the excess middle versions are deleted without

a murmur. If it is nil, the default, then you are asked whether the excess middle versions should

really be deleted.

Dired’s . (Period) command can also be used to delete old versions. See Section 15.7 [Dired],

page 99.

15.3.1.3 Copying vs. Renaming

Backup files can be made by copying the old file or by renaming it. This makes a difference when

the old file has multiple names. If the old file is renamed into the backup file, then the alternate

names become names for the backup file. If the old file is copied instead, then the alternate names

remain names for the file that you are editing, and the contents accessed by those names will be

the new contents.

94 GNU Emacs Manual

The method of making a backup file may also affect the file’s owner and group. If copying is

used, these do not change. If renaming is used, you become the file’s owner, and the file’s group

becomes the default (different operating systems have different defaults for the group).

Having the owner change is usually a good idea, because then the owner always shows who last

edited the file. Also, the owners of the backups show who produced those versions. Occasionally

there is a file whose owner should not change; it is a good idea for such files to contain local variable

lists to set backup-by-copying-when-mismatch for them alone (see Section 28.2.4 [File Variables],

page 221).

The choice of renaming or copying is controlled by three variables. Normally, renaming is done.

If the variable backup-by-copying is non-nil, copying is used. Otherwise, if the variable backup-

by-copying-when-linked is non-nil, then copying is done for files that have multiple names, but

renaming may still done when the file being edited has only one name. If the variable backup-by-

copying-when-mismatch is non-nil, then copying is done if renaming would cause the file’s owner

or group to change.

15.3.2 Protection against Simultaneous Editing

Simultaneous editing occurs when two users visit the same file, both make changes, and then

both save them. If nobody were informed that this was happening, whichever user saved first would

later find that his changes were lost. On some systems, Emacs notices immediately when the second

user starts to change the file, and issues an immediate warning. When this is not possible, or if the

second user has gone on to change the file despite the warning, Emacs checks later when the file

is saved, and issues a second warning when a user is about to overwrite a file containing another

user’s changes. If the editing user takes the proper corrective action at this point, he can prevent

actual loss of work.

When you make the first modification in an Emacs buffer that is visiting a file, Emacs records

that you have locked the file. (It does this by writing another file in a directory reserved for this

purpose.) The lock is removed when you save the changes. The idea is that the file is locked

whenever the buffer is modified. If you begin to modify the buffer while the visited file is locked by

someone else, this constitutes a collision, and Emacs asks you what to do. It does this by calling

the Lisp function ask-user-about-lock, which you can redefine for the sake of customization.

The standard definition of this function asks you a question and accepts three possible answers:

s Steal the lock. Whoever was already changing the file loses the lock, and you gain the

lock.

Chapter 15: File Handling 95

p Proceed. Go ahead and edit the file despite its being locked by someone else.

q Quit. This causes an error (file-locked) and the modification you were trying to

make in the buffer does not actually take place.

Note that locking works on the basis of a file name; if a file has multiple names, Emacs does

not realize that the two names are the same file and cannot prevent two user from editing it

simultaneously under different names. However, basing locking on names means that Emacs can

interlock the editing of new files that will not really exist until they are saved.

Some systems are not configured to allow Emacs to make locks. On these systems, Emacs cannot

detect trouble in advance, but it still can detect it in time to prevent you from overwriting someone

else’s changes.

Every time Emacs saves a buffer, it first checks the last-modification date of the existing file

on disk to see that it has not changed since the file was last visited or saved. If the date does not

match, it implies that changes were made in the file in some other way, and these changes are about

to be lost if Emacs actually does save. To prevent this, Emacs prints a warning message and asks

for confirmation before saving. Occasionally you will know why the file was changed and know that

it does not matter; then you can answer yes and proceed. Otherwise, you should cancel the save

with C-g and investigate the situation.

The first thing you should do when notified that simultaneous editing has already taken place

is to list the directory with C-u C-x C-d (see Section 15.6 [Directory Listing], page 98). This will

show the file’s current author. You should attempt to contact him to warn him not to continue

editing. Often the next step is to save the contents of your Emacs buffer under a different name,

and use diff to compare the two files.

Simultaneous editing checks are also made when you visit with C-x C-f a file that is already

visited and when you start to modify a file. This is not strictly necessary, but it can cause you to

find out about the problem earlier, when perhaps correction takes less work.

15.4 Reverting a Buffer

If you have made extensive changes to a file and then change your mind about them, you can

get rid of them by reading in the previous version of the file. To do this, use M-x revert-buffer,

which operates on the current buffer. Since this is a very dangerous thing to do, you must confirm

it with yes.

96 GNU Emacs Manual

If the current buffer has been auto-saved more recently than it has been saved for real, revert-

buffer offers to read the auto save file instead of the visited file (see Section 15.5 [Auto Save],

page 96). This question comes before the usual request for confirmation, and demands y or n as an

answer. If you have started to type yes for confirmation without realizing that the other question

was going to be asked, the y will answer that question, but the es will not be valid confirmation.

So you will have a chance to cancel the operation with C-g and try it again with the answers that

you really intend.

revert-buffer keeps point at the same distance (measured in characters) from the beginning

of the file. If the file was edited only slightly, you will be at approximately the same piece of text

after reverting as before. If you have made drastic changes, the same value of point in the old file

may address a totally different piece of text.

A buffer reverted from its visited file is marked “not modified” until another change is made.

Some kinds of buffers whose contents reflect data bases other than files, such as Dired buffers,

can also be reverted. For them, reverting means recalculating their contents from the appropriate

data base. Buffers created randomly with C-x b cannot be reverted; revert-buffer reports an

error when asked to do so.

15.5 Auto-Saving: Protection Against Disasters

Emacs saves all the visited files from time to time (based on counting your keystrokes) without

being asked. This is called auto-saving. It prevents you from losing more than a limited amount

of work if the system crashes.

When Emacs determines that it is time for auto-saving, each buffer is considered, and is auto-

saved if auto-saving is turned on for it and it has been changed since the last time it was auto-saved.

If any auto-saving is done, the message ‘Auto-saving...’ is displayed in the echo area until auto-

saving is finished. Errors occurring during auto-saving are caught so that they do not interfere

with the execution of commands you have been typing.

15.5.1 Auto-Save Files

Auto-saving does not normally save in the files that you visited, because it can be very unde-

sirable to save a program that is in an inconsistent state when you have made half of a planned

Chapter 15: File Handling 97

change. Instead, auto-saving is done in a different file called the auto-save file, and the visited file

is changed only when you request saving explicitly (such as with C-x C-s).

Normally, the auto-save file name is made by appending ‘#’ to the front and rear of the visited

file name. Thus, a buffer visiting file ‘foo.c’ would be auto-saved in a file ‘#foo.c#’. Most buffers

that are not visiting files are auto-saved only if you request it explicitly; when they are auto-saved,

the auto-save file name is made by appending ‘#%’ to the front and ‘#’ to the rear of buffer name.

For example, the ‘*mail*’ buffer in which you compose messages to be sent is auto-saved in a file

named ‘#%*mail*#’. Auto-save file names are made this way unless you reprogram parts of Emacs

to do something different (the functions make-auto-save-file-name and auto-save-file-name-

p). The file name to be used for auto-saving in a buffer is calculated when auto-saving is turned

on in that buffer.

If you want auto-saving to be done in the visited file, set the variable auto-save-visited-

file-name to be non-nil. In this mode, there is really no difference between auto-saving and

explicit saving.

A buffer’s auto-save file is deleted when you save the buffer in its visited file. To inhibit this,

set the variable delete-auto-save-files to nil. Changing the visited file name with C-x C-w or

set-visited-file-name renames any auto-save file to go with the new visited name.

15.5.2 Controlling Auto-Saving

Each time you visit a file, auto-saving is turned on for that file’s buffer if the variable auto-

save-default is non-nil (but not in batch mode; see Chapter 3 [Entering Emacs], page 21). The

default for this variable is t, so auto-saving is the usual practice for file-visiting buffers. Auto-saving

can be turned on or off for any existing buffer with the command M-x auto-save-mode. Like other

minor mode commands, M-x auto-save-mode turns auto-saving on with a positive argument, off

with a zero or negative argument; with no argument, it toggles.

Emacs does auto-saving periodically based on counting how many characters you have typed

since the last time auto-saving was done. The variable auto-save-interval specifies how many

characters there are between auto-saves. By default, it is 300. Emacs also auto-saves whenever you

call the function do-auto-save.

Emacs also does auto-saving whenever it gets a fatal error. This includes killing the Emacs job

with a shell command such as kill %emacs, or disconnecting a phone line or network connection.

98 GNU Emacs Manual

15.5.3 Recovering Data from Auto-Saves

The way to use the contents of an auto-save file to recover from a loss of data is with the command

M-x recover-file RET file RET. This visits file and then (after your confirmation) restores the

contents from from its auto-save file ‘#file#’. You can then save with C-x C-s to put the recovered

text into file itself. For example, to recover file ‘foo.c’ from its auto-save file ‘#foo.c#’, do:

M-x recover-file RET foo.c RET
C-x C-s

Before asking for confirmation, M-x recover-file displays a directory listing describing the

specified file and the auto-save file, so you can compare their sizes and dates. If the auto-save file

is older, M-x recover-file does not offer to read it.

Auto-saving is disabled by M-x recover-file because using this command implies that the

auto-save file contains valuable data from a past session. If you save the data in the visited file and

then go on to make new changes, you should turn auto-saving back on with M-x auto-save-mode.

15.6 Listing a File Directory

Files are classified by Unix into directories. A directory listing is a list of all the files in a

directory. Emacs provides directory listings in brief format (file names only) and verbose format

(sizes, dates, and authors included).

C-x C-d dir-or-pattern

Print a brief directory listing (list-directory).

C-u C-x C-d dir-or-pattern

Print a verbose directory listing.

The command to print a directory listing is C-x C-d (list-directory). It reads using the

minibuffer a file name which is either a directory to be listed or a wildcard-containing pattern for

the files to be listed. For example,

C-x C-d /u2/emacs/etc RET

lists all the files in directory ‘/u2/emacs/etc’. An example of specifying a file name pattern is

Chapter 15: File Handling 99

C-x C-d /u2/emacs/src/*.c RET

Normally, C-x C-d prints a brief directory listing containing just file names. A numeric argument

(regardless of value) tells it to print a verbose listing (like ls -l).

The text of a directory listing is obtained by running ls in an inferior process. Two Emacs

variables control the switches passed to ls: list-directory-brief-switches is a string giving

the switches to use in brief listings ("-CF" by default), and list-directory-verbose-switches

is a string giving the switches to use in a verbose listing ("-l" by default).

15.7 Dired, the Directory Editor

Dired makes it easy to delete or visit many of the files in a single directory at once. It makes

an Emacs buffer containing a listing of the directory. You can use the normal Emacs commands to

move around in this buffer, and special Dired commands to operate on the files.

15.7.1 Entering Dired

To invoke dired, do C-x d or M-x dired. The command reads a directory name or wildcard file

name pattern as a minibuffer argument just like the list-directory command, C-x C-d. Where

dired differs from list-directory is in naming the buffer after the directory name or the wildcard

pattern used for the listing, and putting the buffer into Dired mode so that the special commands

of Dired are available in it. The variable dired-listing-switches is a string used as an argument

to ls in making the directory; this string must contain ‘-l’.

To display the Dired buffer in another window rather than in the selected window, use C-x 4 d

(dired-other-window) instead of C-x d.

15.7.2 Editing in Dired

Once the Dired buffer exists, you can switch freely between it and other Emacs buffers. Whenever

the Dired buffer is selected, certain special commands are provided that operate on files that are

listed. The Dired buffer is “read-only”, and inserting text in it is not useful, so ordinary printing

characters such as d and x are used for Dired commands. Most Dired commands operate on the

file described by the line that point is on. Some commands perform operations immediately; others

“flag” the file to be operated on later.

100 GNU Emacs Manual

Most Dired commands that operate on the current line’s file also treat a numeric argument as

a repeat count, meaning to act on the files of the next few lines. A negative argument means to

operate on the files of the preceding lines, and leave point on the first of those lines.

All the usual Emacs cursor motion commands are available in Dired buffers. Some special

purpose commands are also provided. The keys C-n and C-p are redefined so that they try to

position the cursor at the beginning of the filename on the line, rather than at the beginning of the

line.

For extra convenience, SPC and n in Dired are equivalent to C-n. p is equivalent to C-p. Moving

by lines is done so often in Dired that it deserves to be easy to type. DEL (move up and unflag) is

often useful simply for moving up.

The g command in Dired runs revert-buffer to reinitialize the buffer from the actual disk

directory and show any changes made in the directory by programs other than Dired. All deletion

flags in the Dired buffer are lost when this is done.

15.7.3 Deleting Files with Dired

The primary use of Dired is to flag files for deletion and then delete them.

d Flag this file for deletion.

u Remove deletion-flag on this line.

DEL Remove deletion-flag on previous line, moving point to that line.

x Delete the files that are flagged for deletion.

Flag all auto-save files (files whose names start and end with ‘#’) for deletion (see

Section 15.5 [Auto Save], page 96).

~ Flag all backup files (files whose names end with ‘~’) for deletion (see Section 15.3.1

[Backup], page 92).

. (Period) Flag excess numeric backup files for deletion. The oldest and newest few backup files

of any one file are exempt; the middle ones are flagged.

You can flag a file for deletion by moving to the line describing the file and typing d or C-d.

The deletion flag is visible as a ‘D’ at the beginning of the line. Point is moved to the beginning of

the next line, so that repeated d commands flag successive files.

The files are flagged for deletion rather than deleted immediately to avoid the danger of deleting

Chapter 15: File Handling 101

a file accidentally. Until you direct Dired to delete the flagged files, you can remove deletion flags

using the commands u and DEL. u works just like d, but removes flags rather than making flags.

DEL moves upward, removing flags; it is like u with numeric argument automatically negated.

To delete the flagged files, type x. This command first displays a list of all the file names flagged

for deletion, and requests confirmation with yes. Once you confirm, all the flagged files are deleted,

and their lines are deleted from the text of the Dired buffer. The shortened Dired buffer remains

selected. If you answer no or quit with C-g, you return immediately to Dired, with the deletion

flags still present and no files actually deleted.

The #, ~ and . commands flag many files for deletion, based on their names. These commands

are useful precisely because they do not actually delete any files; you can remove the deletion flags

from any flagged files that you really wish to keep.

flags for deletion all files that appear to have been made by auto-saving (that is, files whose

names begin and end with ‘#’). ~ flags for deletion all files that appear to have been made as

backups for files that were edited (that is, files whose names end with ‘~’).

. (Period) flags just some of the backup files for deletion: only numeric backups that are not

among the oldest few nor the newest few backups of any one file. Normally dired-kept-versions

(not kept-new-versions; that applies only when saving) specifies the number of newest versions

of each file to keep, and kept-old-versions specifies the number of oldest versions to keep. Period

with a positive numeric argument, as in C-u 3 ., specifies the number of newest versions to keep,

overriding dired-kept-versions. A negative numeric argument overrides kept-old-versions,

using minus the value of the argument to specify the number of oldest versions of each file to keep.

15.7.4 Immediate File Operations in Dired

Some file operations in Dired take place immediately when they are requested.

c Copies the file described on the current line. You must supply a file name to copy to,

using the minibuffer.

f Visits the file described on the current line. It is just like typing C-x C-f and supplying

that file name. If the file on this line is a subdirectory, f actually causes Dired to be

invoked on that subdirectory. See Section 15.2 [Visiting], page 88.

o Like f, but uses another window to display the file’s buffer. The Dired buffer remains

visible in the first window. This is like using C-x 4 C-f to visit the file. See Chapter 17

[Windows], page 111.

102 GNU Emacs Manual

r Renames the file described on the current line. You must supply a file name to rename

to, using the minibuffer.

v Views the file described on this line using M-x view-file. Viewing a file is like visiting

it, but is slanted toward moving around in the file conveniently and does not allow

changing the file. See Section 15.8 [Misc File Ops], page 102. Viewing a file that is a

directory runs Dired on that directory.

15.8 Miscellaneous File Operations

Emacs has commands for performing many other operations on files. All operate on one file;

they do not accept wild card file names.

M-x view-file allows you to scan or read a file by sequential screenfuls. It reads a file name

argument using the minibuffer. After reading the file into an Emacs buffer, view-file reads and

displays one windowful. You can then type SPC to scroll forward one windowful, or DEL to scroll

backward. Various other commands are provided for moving around in the file, but none for

changing it; type C-h while viewing for a list of them. They are mostly the same as normal Emacs

cursor motion commands. To exit from viewing, type C-c.

M-x insert-file inserts a copy of the contents of the specified file into the current buffer at

point, leaving point unchanged before the contents and the mark after them. See Chapter 9 [Mark],

page 49.

M-x write-region is the inverse of M-x insert-file; it copies the contents of the region into

the specified file. M-x append-to-file adds the text of the region to the end of the specified file.

M-x delete-file deletes the specified file, like the rm command in the shell. If you are deleting

many files in one directory, it may be more convenient to use Dired (see Section 15.7 [Dired],

page 99).

M-x rename-file reads two file names old and new using the minibuffer, then renames file old

as new. If a file named new already exists, you must confirm with yes or renaming is not done;

this is because renaming causes the old meaning of the name new to be lost. If old and new are

on different file systems, the file old is copied and deleted.

The similar command M-x add-name-to-file is used to add an additional name to an existing

file without removing its old name. The new name must belong on the same file system that the

file is on.

Chapter 15: File Handling 103

M-x copy-file reads the file old and writes a new file named new with the same contents.

Confirmation is required if a file named new already exists, because copying has the consequence

of overwriting the old contents of the file new.

M-x make-symbolic-link reads two file names old and linkname, and then creates a symbolic

link named linkname and pointing at old. The effect is that future attempts to open file linkname

will refer to whatever file is named old at the time the opening is done, or will get an error if the

name old is not in use at that time. Confirmation is required when creating the link if linkname is

in use. Note that not all systems support symbolic links.

104 GNU Emacs Manual

Chapter 16: Using Multiple Buffers 105

16 Using Multiple Buffers

The text you are editing in Emacs resides in an object called a buffer. Each time you visit a

file, a buffer is created to hold the file’s text. Each time you invoke Dired, a buffer is created to

hold the directory listing. If you send a message with C-x m, a buffer named ‘*mail*’ is used to

hold the text of the message. When you ask for a command’s documentation, that appears in a

buffer called ‘*Help*’.

At any time, one and only one buffer is selected. It is also called the current buffer. Often we

say that a command operates on “the buffer” as if there were only one; but really this means that

the command operates on the selected buffer (most commands do).

When Emacs makes multiple windows, each window has a chosen buffer which is displayed there,

but at any time only one of the windows is selected and its chosen buffer is the selected buffer. Each

window’s mode line displays the name of the buffer that the window is displaying (see Chapter 17

[Windows], page 111).

Each buffer has a name, which can be of any length, and you can select any buffer by giving its

name. Most buffers are made by visiting files, and their names are derived from the files’ names.

But you can also create an empty buffer with any name you want. A newly started Emacs has

a buffer named ‘*scratch*’ which can be used for evaluating Lisp expressions in Emacs. The

distinction between upper and lower case matters in buffer names.

Each buffer records individually what file it is visiting, whether it is modified, and what major

mode and minor modes are in effect in it (see Chapter 18 [Major Modes], page 115). Any Emacs

variable can be made local to a particular buffer, meaning its value in that buffer can be different

from the value in other buffers. See Section 28.2.3 [Locals], page 220.

16.1 Creating and Selecting Buffers

C-x b buffer RET

Select or create a buffer named buffer (switch-to-buffer).

C-x 4 b buffer RET

Similar but select a buffer named buffer in another window (switch-to-buffer-

other-window).

To select the buffer named bufname, type C-x b bufname RET. This is the command switch-

106 GNU Emacs Manual

to-buffer with argument bufname. You can use completion on an abbreviation for the buffer

name you want (see Section 6.3.2 [Completion], page 38). An empty argument to C-x b specifies

the most recently selected buffer that is not displayed in any window.

Most buffers are created by visiting files, or by Emacs commands that want to display some

text, but you can also create a buffer explicitly by typing C-x b bufname RET. This makes a new,

empty buffer which is not visiting any file, and selects it for editing. Such buffers are used for

making notes to yourself. If you try to save one, you are asked for the file name to use. The new

buffer’s major mode is determined by the value of default-major-mode (see Chapter 18 [Major

Modes], page 115).

Note that C-x C-f, and any other command for visiting a file, can also be used to switch buffers.

See Section 15.2 [Visiting], page 88.

16.2 Listing Existing Buffers

C-x C-b List the existing buffers (list-buffers).

To print a list of all the buffers that exist, type C-x C-b. Each line in the list shows one buffer’s

name, major mode and visited file. ‘*’ at the beginning of a line indicates the buffer is “modified”.

If several buffers are modified, it may be time to save some with C-x s (see Section 15.3 [Saving],

page 90). ‘%’ indicates a read-only buffer. ‘.’ marks the selected buffer. Here is an example of a

buffer list:

MR Buffer Size Mode File
-- ------ ---- ---- ----

.* emacs.tex 383402 Texinfo /u2/emacs/man/emacs.tex
Help 1287 Fundamental
files.el 23076 Emacs-Lisp /u2/emacs/lisp/files.el

% RMAIL 64042 RMAIL /u/rms/RMAIL
*% man 747 Dired

net.emacs 343885 Fundamental /u/rms/net.emacs
fileio.c 27691 C /u2/emacs/src/fileio.c
NEWS 67340 Text /u2/emacs/etc/NEWS
scratch 0 Lisp Interaction

Note that the buffer ‘*Help*’ was made by a help request; it is not visiting any file. The buffer

man was made by Dired on the directory ‘/u2/emacs/man/’.

Chapter 16: Using Multiple Buffers 107

16.3 Miscellaneous Buffer Operations

C-x C-q Toggle read-only status of buffer (toggle-read-only).

M-x rename-buffer

Change the name of the current buffer.

M-x view-buffer

Scroll through a buffer.

A buffer can be read-only, which means that commands to change its text are not allowed.

Normally, read-only buffers are made by subsystems such as Dired and Rmail that have special

commands to operate on the text; a read-only buffer is also made if you visit a file that is protected

so you cannot write it. If you wish to make changes in a read-only buffer, use the command C-x C-q

(toggle-read-only). It makes a read-only buffer writable, and makes a writable buffer read-only.

This works by setting the variable buffer-read-only, which has a local value in each buffer and

makes the buffer read-only if its value is non-nil.

M-x rename-buffer changes the name of the current buffer. Specify the new name as a mini-

buffer argument. There is no default. If you specify a name that is in use for some other buffer, an

error happens and no renaming is done.

M-x view-buffer is much like M-x view-file (see Section 15.8 [Misc File Ops], page 102) except

that it examines an already existing Emacs buffer. View mode provides commands for scrolling

through the buffer conveniently but not for changing it. When you exit View mode, the value of

point that resulted from your perusal remains in effect.

The commands C-x a (append-to-buffer) and M-x insert-buffer can be used to copy text

from one buffer to another. See Section 10.3 [Accumulating Text], page 58.

16.4 Killing Buffers

After you use Emacs for a while, you may accumulate a large number of buffers. You may then

find it convenient to eliminate the ones you no longer need. There are several commands provided

for doing this.

C-x k Kill a buffer, specified by name (kill-buffer).

M-x kill-some-buffers

Offer to kill each buffer, one by one.

108 GNU Emacs Manual

C-x k (kill-buffer) kills one buffer, whose name you specify in the minibuffer. The default,

used if you type just RET in the minibuffer, is to kill the current buffer. If the current buffer is

killed, another buffer is selected; a buffer that has been selected recently but does not appear in any

window now is chosen to be selected. If the buffer being killed is modified (has unsaved editing)

then you are asked to confirm with yes before the buffer is killed.

The command M-x kill-some-buffers asks about each buffer, one by one. An answer of y

means to kill the buffer. Killing the current buffer or a buffer containing unsaved changes selects a

new buffer or asks for confirmation just like kill-buffer.

16.5 Operating on Several Buffers

The buffer-menu facility is like a “Dired for buffers”; it allows you to request operations on

various Emacs buffers by editing an Emacs buffer containing a list of them. You can save buffers,

kill them (here called deleting them, for consistency with Dired), or display them.

M-x buffer-menu

Begin editing a buffer listing all Emacs buffers.

The command buffer-menu writes a list of all Emacs buffers into the buffer ‘*Buffer List*’,

and selects that buffer in Buffer Menu mode. The buffer is read-only, and can only be changed

through the special commands described in this section. Most of these commands are graphic

characters. The usual Emacs cursor motion commands can be used in the ‘*Buffer List*’ buffer.

The following special commands apply to the buffer described on the current line.

d Request to delete (kill) the buffer, then move down. The request shows as a ‘D’ on the

line, before the buffer name. Requested deletions take place when the x command is

used.

k Synonym for d.

C-d Like d but move up afterwards instead of down.

s Request to save the buffer. The request shows as an ‘S’ on the line. Requested saves

take place when the x command is used. You may request both saving and deletion for

the same buffer.

~ Mark buffer “unmodified”. The command ~ does this immediately when typed.

x Perform previously requested deletions and saves.

u Remove any request made for the current line, and move down.

DEL Move to previous line and remove any request made for that line.

Chapter 16: Using Multiple Buffers 109

All the commands that put in or remove flags to request later operations also move down a line,

and accept a numeric argument as a repeat count, unless otherwise specified.

There are also special commands to use the buffer list to select another buffer, and to specify

one or more other buffers for display in additional windows.

1 Select the buffer in a full-screen window. This command takes effect immediately.

2 Immediately set up two windows, with this buffer in one, and the previously selected

buffer (aside from the buffer ‘*Buffer List*’) in the other.

f Immediately select the buffer in place of the ‘*Buffer List*’ buffer.

o Immediately select the buffer in another window as if by C-x 4 b, leaving ‘*Buffer

List*’ visible.

q Immediately select this buffer, and also display in other windows any buffers previously

flagged with the m command. If there are no such buffers, this command is equivalent

to 1.

m Flag this buffer to be displayed in another window if the q command is used. The

request shows as a ‘>’ at the beginning of the line. The same buffer may not have both

a delete request and a display request.

All that buffer-menu does directly is create and select a suitable buffer, and turn on Buffer

Menu mode. Everything else described above is implemented by the special commands provided

in Buffer Menu mode. One consequence of this is that you can switch from the ‘*Buffer List*’

buffer to another Emacs buffer, and edit there. You can reselect the buffer-menu buffer later, to

perform the operations already requested, or you can kill it, or pay no further attention to it.

The only difference between buffer-menu and list-buffers is that buffer-menu selects the

‘*Buffer List*’ buffer and list-buffers does not. If you run list-buffers (that is, type C-x

C-b) and select the buffer list manually, you can use all of the commands described here.

110 GNU Emacs Manual

Chapter 17: Multiple Windows 111

17 Multiple Windows

Emacs can split the screen into two or many windows, which can display parts of different

buffers, or different parts of one buffer.

17.1 Concepts of Emacs Windows

When multiple windows are being displayed, each window has an Emacs buffer designated for

display in it. The same buffer may appear in more than one window; if it does, any changes in its

text are displayed in all the windows where it appears. But the windows showing the same buffer

can show different parts of it, because each window has its own value of point.

At any time, one of the windows is the selected window ; the buffer this window is displaying is

the current buffer. The terminal’s cursor shows the location of point in this window. Each other

window has a location of point as well, but since the terminal has only one cursor there is no way

to show where those locations are.

Commands to move point affect the value of point for the selected Emacs window only. They

do not change the value of point in any other Emacs window, even one showing the same buffer.

The same is true for commands such as C-x b to change the selected buffer in the selected window;

they do not affect other windows at all. However, there are other commands such as C-x 4 b that

select a different window and switch buffers in it. Also, all commands that display information in a

window, including (for example) C-h f (describe-function) and C-x C-b (list-buffers), work

by switching buffers in a nonselected window without affecting the selected window.

Each window has its own mode line, which displays the buffer name, modification status and

major and minor modes of the buffer that is displayed in the window. See Chapter 2 [Mode Line],

page 17, for full details on the mode line.

17.2 Splitting Windows

C-x 2 Split the selected window into two windows, one above the other (split-window-

vertically).

C-x 5 Split the selected window into two windows positioned side by side (split-window-

horizontally).

112 GNU Emacs Manual

The command C-x 2 (split-window-vertically) breaks the selected window into two win-

dows, one above the other. Both windows start out displaying the same buffer, with the same

value of point. By default the two windows each get half the height of the window that was split;

a numeric argument specifies how many lines to give to the top window.

C-x 5 (split-window-horizontally) breaks the selected window into two side-by-side win-

dows. A numeric argument specifies how many columns to give the one on the left. A line of

vertical bars separates the two windows. Windows that are not the full width of the screen have

mode lines, but they are truncated; also, they do not always appear in inverse video, because, the

Emacs display routines have not been taught how to display a region of inverse video that is only

part of a line on the screen.

When a window is less than the full width, text lines too long to fit are frequent. Continuing

all those lines might be confusing. The variable truncate-partial-width-windows can be set

non-nil to force truncation in all windows less than the full width of the screen, independent of

the buffer being displayed and its value for truncate-lines. See Section 4.7 [Continuation Lines],

page 29.

Horizontal scrolling is often used in side-by-side windows. See Chapter 12 [Display], page 65.

17.3 Using Other Windows

C-x o Select another window (other-window). That is o, not zero.

C-M-v Scroll the next window (scroll-other-window).

M-x compare-windows

Find next place where the text in the selected window does not match the text in the

next window.

To select a different window, use C-x o (other-window). That is an o, for ‘other’, not a zero.

When there are more than two windows, this command moves through all the windows in a cyclic

order, generally top to bottom and left to right. From the rightmost and bottommost window, it

goes back to the one at the upper left corner. A numeric argument means to move several steps in

the cyclic order of windows. A negative argument moves around the cycle in the opposite order.

When the minibuffer is active, the minibuffer is the last window in the cycle; you can switch from

the minibuffer window to one of the other windows, and later switch back and finish supplying the

minibuffer argument that is requested. See Section 6.2 [Minibuffer Edit], page 36.

The usual scrolling commands (see Chapter 12 [Display], page 65) apply to the selected window

Chapter 17: Multiple Windows 113

only, but there is one command to scroll the next window. C-M-v (scroll-other-window) scrolls

the window that C-x o would select. It takes arguments, positive and negative, like C-v.

The command M-x compare-windows compares the text in the current window with that in the

next window. Comparison starts at point in each window. Point moves forward in each window,

a character at a time in each window, until the next characters in the two windows are different.

Then the command is finished.

17.4 Displaying in Another Window

C-x 4 is a prefix key for commands that select another window (splitting the window if there

is only one) and select a buffer in that window. Different C-x 4 commands have different ways of

finding the buffer to select.

C-x 4 b bufname RET

Select buffer bufname in another window. This runs

switch-to-buffer-other-window.

C-x 4 f filename RET

Visit file filename and select its buffer in another window. This runs find-file-

other-window. See Section 15.2 [Visiting], page 88.

C-x 4 d directory RET

Select a Dired buffer for directory directory in another window. This runs dired-

other-window. See Section 15.7 [Dired], page 99.

C-x 4 m Start composing a mail message in another window. This runs mail-other-window,

and its same-window version is C-x m (see Chapter 25 [Sending Mail], page 187).

C-x 4 . Find a tag in the current tag table in another window. This runs find-tag-other-

window, the multiple-window variant of M-. (see Section 21.11 [Tags], page 155).

17.5 Deleting and Rearranging Windows

C-x 0 Get rid of the selected window (kill-window). That is a zero.

C-x 1 Get rid of all windows except the selected one (delete-other-windows).

C-x ^ Make the selected window taller, at the expense of the other(s) (enlarge-window).

C-x } Make the selected window wider (enlarge-window-horizontally).

114 GNU Emacs Manual

To delete a window, type C-x 0 (delete-window). (That is a zero.) The space occupied by the

deleted window is distributed among the other active windows (but not the minibuffer window,

even if that is active at the time). Once a window is deleted, its attributes are forgotten; there is

no automatic way to make another window of the same shape or showing the same buffer. But the

buffer continues to exist, and you can select it in any window with C-x b.

C-x 1 (delete-other-windows) is more powerful than C-x 0; it deletes all the windows except

the selected one (and the minibuffer); the selected window expands to use the whole screen except

for the echo area.

To readjust the division of space among existing windows, use C-x ^ (enlarge-window). It

makes the currently selected window get one line bigger, or as many lines as is specified with

a numeric argument. With a negative argument, it makes the selected window smaller. C-x }

(enlarge-window-horizontally) makes the selected window wider by the specified number of

columns. The extra screen space given to a window comes from one of its neighbors, if that is

possible; otherwise, all the competing windows are shrunk in the same proportion. If this makes

any windows too small, those windows are deleted and their space is divided up. The minimum

size is specified by the variables window-min-height and window-min-width.

Chapter 18: Major Modes 115

18 Major Modes

Emacs has many different major modes, each of which customizes Emacs for editing text of a

particular sort. The major modes are mutually exclusive, and each buffer has one major mode at

any time. The mode line normally contains the name of the current major mode, in parentheses.

See Chapter 2 [Mode Line], page 17.

The least specialized major mode is called Fundamental mode. This mode has no mode-specific

redefinitions or variable settings, so that each Emacs command behaves in its most general manner,

and each option is in its default state. For editing any specific type of text, such as Lisp code or

English text, you should switch to the appropriate major mode, such as Lisp mode or Text mode.

Selecting a major mode changes the meanings of a few keys to become more specifically adapted

to the language being edited. The ones which are changed frequently are TAB, DEL, and LFD. In

addition, the commands which handle comments use the mode to determine how comments are to

be delimited. Many major modes redefine the syntactical properties of characters appearing in the

buffer. See Section 28.5 [Syntax], page 229.

The major modes fall into three major groups. Lisp mode (which has several variants), C mode

and Muddle mode are for specific programming languages. Text mode, Nroff mode, TEX mode and

Outline mode are for editing English text. The remaining major modes are not intended for use on

users’ files; they are used in buffers created for specific purposes by Emacs, such as Dired mode for

buffers made by Dired (see Section 15.7 [Dired], page 99), and Mail mode for buffers made by C-x

m (see Chapter 25 [Sending Mail], page 187), and Shell mode for buffers used for communicating

with an inferior shell process (see Section 27.4.2 [Interactive Shell], page 212).

Most programming language major modes specify that only blank lines separate paragraphs.

This is so that the paragraph commands remain useful. See Section 20.4 [Paragraphs], page 132.

They also cause Auto Fill mode to use the definition of TAB to indent the new lines it creates. This

is because most lines in a program are usually indented. See Chapter 19 [Indentation], page 117.

18.1 How Major Modes are Chosen

You can select a major mode explicitly for the current buffer, but most of the time Emacs

determines which mode to use based on the file name or some text in the file.

Explicit selection of a new major mode is done with a M-x command. From the name of a major

116 GNU Emacs Manual

mode, add -mode to get the name of a command to select that mode. Thus, you can enter Lisp

mode by executing M-x lisp-mode.

When you visit a file, Emacs usually chooses the right major mode based on the file’s name.

For example, files whose names end in .c are edited in C mode. The correspondence between file

names and major mode is controlled by the variable auto-mode-alist. Its value is a list in which

each element has the form

(regexp . mode-function)

For example, one element normally found in the list has the form ("\\.c$" . c-mode), and it is

responsible for selecting C mode for files whose names end in ‘.c’. (Note that ‘\\’ is needed in

Lisp syntax to include a ‘\’ in the string, which is needed to suppress the special meaning of ‘.’ in

regexps.) The only practical way to change this variable is with Lisp code.

You can specify which major mode should be used for editing a certain file by a special sort of

text in the first nonblank line of the file. The mode name should appear in this line both preceded

and followed by ‘-*-’. Other text may appear on the line as well. For example,

;-*-Lisp-*-

tells Emacs to use Lisp mode. Note how the semicolon is used to make Lisp treat this line as a

comment. Such an explicit specification overrides any defaulting based on the file name.

Another format of mode specification is

-*-Mode: modename;-*-

which allows other things besides the major mode name to be specified. However, Emacs does not

look for anything except the mode name.

The major mode can also be specified in a local variables list. See Section 28.2.4 [File Variables],

page 221.

When a file is visited that does not specify a major mode to use, or when a new buffer is created

with C-x b, the major mode used is that specified by the variable default-major-mode. Normally

this value is the symbol fundamental-mode, which specifies Fundamental mode. If default-major-

mode is nil, the major mode is taken from the previously selected buffer.

Chapter 19: Indentation 117

19 Indentation

TAB Indent current line “appropriately” in a mode-dependent fashion.

LFD Perform RET followed by TAB (newline-and-indent).

M-^ Merge two lines (delete-indentation). This would cancel out the effect of LFD.

C-M-o Split line at point; text on the line after point becomes a new line indented to the same

column that it now starts in (split-line).

M-m Move (forward or back) to the first nonblank character on the current line (back-to-

indentation).

C-M-\ Indent several lines to same column (indent-region).

C-x TAB Shift block of lines rigidly right or left (indent-rigidly).

M-i Indent from point to the next prespecified tab stop column (tab-to-tab-stop).

M-x indent-relative

Indent from point to under an indentation point in the previous line.

Most programming languages have some indentation convention. For Lisp code, lines are in-

dented according to their nesting in parentheses. The same general idea is used for C code, though

many details are different.

Whatever the language, to indent a line, use the TAB command. Each major mode defines this

command to perform the sort of indentation appropriate for the particular language. In Lisp mode,

TAB aligns the line according to its depth in parentheses. No matter where in the line you are when

you type TAB, it aligns the line as a whole. In C mode, TAB implements a subtle and sophisticated

indentation style that knows about many aspects of C syntax.

In Text mode, TAB runs the command tab-to-tab-stop, which indents to the next tab stop

column. You can set the tab stops with M-x edit-tab-stops.

19.1 Indentation Commands and Techniques

If you just want to insert a tab character in the buffer, you can type C-q TAB.

To move over the indentation on a line, do Meta-m (back-to-indentation). This command,

given anywhere on a line, positions point at the first nonblank character on the line.

118 GNU Emacs Manual

To insert an indented line before the current line, do C-a C-o TAB. To make an indented line

after the current line, use C-e LFD.

C-M-o (split-line) moves the text from point to the end of the line vertically down, so that

the current line becomes two lines. C-M-o first moves point forward over any spaces and tabs. Then

it inserts after point a newline and enough indentation to reach the same column point is on. Point

remains before the inserted newline; in this regard, C-M-o resembles C-o.

To join two lines cleanly, use the Meta-^ (delete-indentation) command to delete the inden-

tation at the front of the current line, and the line boundary as well. They are replaced by a single

space, or by no space if at the beginning of a line or before a ‘)’ or after a ‘(’. To delete just the

indentation of a line, go to the beginning of the line and use Meta-\ (delete-horizontal-space),

which deletes all spaces and tabs around the cursor.

There are also commands for changing the indentation of several lines at once. Control-Meta-\

(indent-region) gives each line which begins in the region the “usual” indentation by invoking

TAB at the beginning of the line. A numeric argument specifies the column to indent to, and each

line is shifted left or right so that its first nonblank character appears in that column. C-x TAB

(indent-rigidly) moves all of the lines in the region right by its argument (left, for negative

arguments). The whole group of lines moves rigidly sideways, which is how the command gets its

name.

M-x indent-relative indents at point based on the previous line (actually, the last nonempty

line.) It inserts whitespace at point, moving point, until it is underneath an indentation point in

the previous line. An indentation point is the end of a sequence of whitespace or the end of the

line. If point is farther right than any indentation point in the previous line, the whitespace before

point is deleted and the first indentation point then applicable is used. If no indentation point is

applicable even then, tab-to-tab-stop is run (see next section).

indent-relative is the definition of TAB in Indented Text mode. See Chapter 20 [Text],

page 121.

19.2 Tab Stops

For typing in tables, you can use Text mode’s definition of TAB, tab-to-tab-stop. This com-

mand inserts indentation before point, enough to reach the next tab stop column. If you are not

in Text mode, this function can be found on M-i anyway.

Chapter 19: Indentation 119

The tab stops used by M-i can be set arbitrarily by the user. They are stored in a variable

called tab-stop-list, as a list of column-numbers in increasing order.

The convenient way to set the tab stops is using M-x edit-tab-stops, which creates and selects

a buffer containing a description of the tab stop settings. You can edit this buffer to specify different

tab stops, and then type C-c C-c to make those new tab stops take effect. In the tab stop buffer,

C-c C-c runs the function edit-tab-stops-note-changes rather than its usual definition save-

buffer. edit-tab-stops records which buffer was current when you invoked it, and stores the tab

stops back in that buffer; normally all buffers share the same tab stops and changing them in one

buffer affects all, but if you happen to make tab-stop-list local in one buffer then edit-tab-

stops in that buffer will edit the local settings.

Here is what the text representing the tab stops looks like for ordinary tab stops every eight

columns.

: : : : : :
0 1 2 3 4
0123456789012345678901234567890123456789012345678
To install changes, type C-c C-c

The first line contains a colon at each tab stop. The remaining lines are present just to help

you see where the colons are and know what to do.

Note that the tab stops that control tab-to-tab-stop have nothing to do with displaying tab

characters in the buffer. See Section 12.4 [Display Vars], page 67, for more information on that.

19.3 Tabs vs. Spaces

Emacs normally uses both tabs and spaces to indent lines. If you prefer, all indentation can

be made from spaces only. To request this, set indent-tabs-mode to nil. This is a per-buffer

variable; altering the variable affects only the current buffer, but there is a default value which you

can change as well. See Section 28.2.3 [Locals], page 220.

There are also commands to convert tabs to spaces or vice versa, always preserving the columns

of all nonblank text. M-x tabify scans the region for sequences of spaces, and converts sequences

of at least three spaces to tabs if that can be done without changing indentation. M-x untabify

changes all tabs in the region to appropriate numbers of spaces.

120 GNU Emacs Manual

Chapter 20: Commands for Human Languages 121

20 Commands for Human Languages

The term text has two widespread meanings in our area of the computer field. One is data that

is a sequence of characters. Any file that you edit with Emacs is text, in this sense of the word.

The other meaning is more restrictive: a sequence of characters in a human language for humans

to read (possibly after processing by a text formatter), as opposed to a program or commands for

a program.

Human languages have syntactic/stylistic conventions that can be supported or used to advan-

tage by editor commands: conventions involving words, sentences, paragraphs, and capital letters.

This chapter describes Emacs commands for all of these things. There are also commands for fill-

ing, or rearranging paragraphs into lines of approximately equal length. The commands for moving

over and killing words, sentences and paragraphs, while intended primarily for editing text, are also

often useful for editing programs.

Emacs has several major modes for editing human language text. If the file contains text pure

and simple, use Text mode, which customizes Emacs in small ways for the syntactic conventions

of text. For text which contains embedded commands for text formatters, Emacs has other major

modes, each for a particular text formatter. Thus, for input to TEX, you would use TEX mode; for

input to nroff, Nroff mode.

20.1 Text Mode

Editing files of text in a human language ought to be done using Text mode rather than Lisp

or Fundamental mode. Invoke M-x text-mode to enter Text mode. In Text mode, TAB runs the

function tab-to-tab-stop, which allows you to use arbitrary tab stops set with M-x edit-tab-

stops (see Section 19.2 [Tab Stops], page 118). Features concerned with comments in programs

are turned off except when explicitly invoked. The syntax table is changed so that periods are not

considered part of a word, while apostrophes, backspaces and underlines are.

A similar variant mode is Indented Text mode, intended for editing text in which most lines are

indented. This mode defines TAB to run indent-relative (see Chapter 19 [Indentation], page 117),

and makes Auto Fill indent the lines it creates. The result is that normally a line made by Auto

Filling, or by LFD, is indented just like the previous line. Use M-x indented-text-mode to select

this mode.

Entering Text mode or Indented Text mode calls with no arguments the value of the variable

122 GNU Emacs Manual

text-mode-hook, if that value exists and is not nil. This value is also called when modes related to

Text mode are entered; this includes Nroff mode, TEX mode, Outline mode and Mail mode. Your

hook can look at the value of major-mode to see which of these modes is actually being entered.

20.1.1 Nroff Mode

Nroff mode is a mode like Text mode but modified to handle nroff commands present in the

text. Invoke M-x nroff-mode to enter this mode. It differs from Text mode in only a few ways. All

nroff command lines are considered paragraph separators, so that filling will never garble the nroff

commands. Pages are separated by ‘.bp’ commands. Comments start with backslash-doublequote.

Also, three special commands are provided that are not in Text mode:

M-n Move to the beginning of the next line that isn’t an nroff command (forward-text-

line). An argument is a repeat count.

M-p Like M-n but move up (backward-text-line).

M-? Prints in the echo area the number of text lines (lines that are not nroff commands) in

the region (count-text-lines).

The other feature of Nroff mode is that you can turn on Electric Nroff newline mode. This is a

minor mode that you can turn on or off with M-x electric-nroff-mode (see Section 28.1 [Minor

Modes], page 217). When the mode is on, each time you use RET to end a line that contains an

nroff command that opens a kind of grouping, the matching nroff command to close that grouping

is automatically inserted on the following line. For example, if you are at the beginning of a line

and type . (b RET, the matching command ‘.)b’ will be inserted on a new line following point.

Entering Nroff mode calls with no arguments the value of the variable text-mode-hook, if that

value exists and is not nil; then it does the same with the variable nroff-mode-hook.

20.1.2 TEX Mode

TEX is a powerful text formatter written by Donald Knuth; it is also free, like GNU Emacs.

LaTEX is a simplified input format for TEX, implemented by TEX macros. It comes with TEX.

Emacs has a special TEX mode for editing TEX input files. It provides facilities for checking the

balance of delimiters and for invoking TEX on all or part of the file.

Chapter 20: Commands for Human Languages 123

TEX mode has two variants, Plain TEX mode and LaTEX mode (actually two distinct major

modes which differ only slightly). They are designed for editing the two different input formats.

The command M-x tex-mode looks at the contents of the buffer to determine whether the contents

appear to be LaTEX input or not; it then selects the appropriate mode. If it can’t tell which is

right (e.g., the buffer is empty), the variable TeX-default-mode controls which mode is used.

The commands M-x plain-tex-mode and M-x latex-mode explicitly select the two variants of

TEX mode. Use these commands when M-x tex-mode does not guess right.

TEX for Unix systems can be obtained from the University of Washington for a distribution fee.

To order a full distribution, send $140.00 for a 1/2 inch 9-track tape, $165.00 for two 4-track

1/4 inch cartridge tapes (foreign sites $150.00, for 1/2 inch, $175.00 for 1/4 inch, to cover the extra

postage) payable to the University of Washington to:

The Director
Northwest Computer Support Group, DW-10
University of Washington
Seattle, Washington 98195

Purchase orders are acceptable, but there is an extra charge of $10.00, to pay for processing charges.

(Total of $150 for domestic sites, $175 for foreign sites).

The normal distribution is a tar tape, blocked 20, 1600 bpi, on an industry standard 2400 foot

half-inch reel. The physical format for the 1/4 inch streamer cartridges uses QIC-11, 8000 bpi, 4-

track serpentine recording for the SUN. Also, SystemV tapes can be written in cpio format, blocked

5120 bytes, ASCII headers.

20.1.2.1 TEX Editing Commands

Here are the special commands provided in TEX mode for editing the text of the file.

" Insert, according to context, either ‘‘‘’ or ‘"’ or ‘’’’ (TeX-insert-quote).

LFD Insert a paragraph break (two newlines) and check the previous paragraph for unbal-

anced braces or dollar signs (TeX-terminate-paragraph).

M-x validate-TeX-buffer

Check each paragraph in the buffer for unbalanced braces or dollar signs.

M-{ Insert ‘{}’ and position point between them (TeX-insert-braces).

124 GNU Emacs Manual

M-} Move forward past the next unmatched close brace (up-list).

C-c C-f Close a block for LaTEX (TeX-close-LaTeX-block).

In TEX, the character ‘"’ is not normally used; one uses ‘‘‘’ to start a quotation and ‘’’’ to

end one. TEX mode defines the key " to insert ‘‘‘’ after whitespace or an open brace, ‘"’ after a

backslash, or ‘’’’ otherwise. This is done by the command TeX-insert-quote. If you need the

character ‘"’ itself in unusual contexts, use C-q to insert it. Also, " with a numeric argument always

inserts that number of ‘"’ characters.

In TEX mode, ‘$’ has a special syntax code which attempts to understand the way TEX math

mode delimiters match. When you insert a ‘$’ that is meant to exit math mode, the position of

the matching ‘$’ that entered math mode is displayed for a second. This is the same feature that

displays the open brace that matches a close brace that is inserted. However, there is no way to

tell whether a ‘$’ enters math mode or leaves it; so when you insert a ‘$’ that enters math mode,

the previous ‘$’ position is shown as if it were a match, even though they are actually unrelated.

If you prefer to keep braces balanced at all times, you can use M-{ (TeX-insert-braces) to

insert a pair of braces. It leaves point between the two braces so you can insert the text that

belongs inside. Afterward, use the command M-} (up-list) to move forward past the close brace.

There are two commands for checking the matching of braces. LFD (TeX-terminate-paragraph)

checks the paragraph before point, and inserts two newlines to start a new paragraph. It prints a

message in the echo area if any mismatch is found. M-x validate-TeX-buffer checks the entire

buffer, paragraph by paragraph. When it finds a paragraph that contains a mismatch, it displays

point at the beginning of the paragraph for a few seconds and pushes a mark at that spot. Scanning

continues until the whole buffer has been checked or until you type another key. The positions of

the last several paragraphs with mismatches can be found in the mark ring (see Chapter 10 [Mark

Ring], page 53).

Note that square brackets and parentheses are matched in TEX mode, not just braces. This

is wrong for the purpose of checking TEX syntax. However, parentheses and square brackets are

likely to be used in text as matching delimiters and it is useful for the various motion commands

and automatic match display to work with them.

In LaTEX input, ‘\begin’ and ‘\end’ commands must balance. After you insert a ‘\begin’,

use C-c C-f (TeX-close-LaTeX-block) to insert automatically a matching ‘\end’ (on a new line

following the ‘\begin’). A blank line is inserted between the two, and point is left there.

Chapter 20: Commands for Human Languages 125

20.1.2.2 TEX Printing Commands

You can invoke TEX as an inferior of Emacs on either the entire contents of the buffer or just

a region at a time. Running TEX in this way on just one chapter is a good way to see what your

changes look like without taking the time to format the entire file.

C-c C-r Invoke TEX on the current region, plus the buffer’s header (TeX-region).

C-c C-b Invoke TEX on the entire current buffer (TeX-buffer).

C-c C-l Recenter the window showing output from the inferior TEX so that the last line can be

seen (TeX-recenter-output-buffer).

C-c C-k Kill the inferior TEX (TeX-kill-job).

C-c C-p Print the output from the last C-c C-r or C-c C-b command (TeX-print).

C-c C-q Show the printer queue (TeX-show-print-queue).

You can pass the current buffer through an inferior TEX by means of C-c C-b (TeX-buffer).

The formatted output appears in a file in ‘/tmp’; to print it, type C-c C-p (TeX-print). Afterward

use C-c C-q (TeX-show-print-queue) to view the progress of your output towards being printed.

The console output from TEX, including any error messages, appear in a buffer called ‘*TeX-

shell*’. If TEX gets an error, you can switch to this buffer and feed it input (this works as in Shell

mode; see Section 27.4.2 [Interactive Shell], page 212). Without switching to this buffer you can

scroll it so that its last line is visible by typing C-c C-l.

Type C-c C-k (TeX-kill-job) to kill the TEX process if you see that its output is no longer

useful. Using C-c C-b or C-c C-r also kills any TEX process still running.

You can also pass an arbitrary region through an inferior TEX by typing C-c C-r (TeX-region).

This is tricky, however, because most files of TEX input contain commands at the beginning to set

parameters and define macros, without which no later part of the file will format correctly. To solve

this problem, C-c C-r allows you to designate a part of the file as containing essential commands;

it is included before the specified region as part of the input to TEX. The designated part of the

file is called the header.

To indicate the bounds of the header in Plain TEX mode, you insert two special strings in the

file. Insert ‘%**start of header’ before the header, and ‘%**end of header’ after it. Each string

must appear entirely on one line, but there may be other text on the line before or after. The lines

containing the two strings are included in the header. If ‘%**start of header’ does not appear

within the first 100 lines of the buffer, C-c C-r assumes that there is no header.

126 GNU Emacs Manual

In LaTEX mode, the header begins with ‘\documentstyle’ and ends with ‘\begin{document}’.

These are commands that LaTEX requires you to use in any case, so nothing special needs to be

done to identify the header.

Entering either kind of TEX mode calls with no arguments the value of the variable text-mode-

hook, if that value exists and is not nil; then it does the same with the variable TeX-mode-hook.

Finally it does the same with either plain-TeX-mode-hook or LaTeX-mode-hook.

20.1.3 Outline Mode

Outline mode is a major mode much like Text mode but intended for editing outlines. It allows

you to make parts of the text temporarily invisible so that you can see just the overall structure of

the outline. Type M-x outline-mode to turn on Outline mode in the current buffer.

Entering Outline mode calls with no arguments the value of the variable text-mode-hook, if

that value exists and is not nil; then it does the same with the variable outline-mode-hook.

When a line is invisible in outline mode, it does not appear on the screen. The screen appears

exactly as if the invisible line were deleted, except that an ellipsis (three periods in a row) appears

at the end of the previous visible line (only one ellipsis no matter how many invisible lines follow).

All editing commands treat the text of the invisible line as part of the previous visible line.

For example, C-n moves onto the next visible line. Killing an entire visible line, including its

terminating newline, really kills all the following invisible lines along with it; yanking it all back

yanks the invisible lines and they remain invisible.

20.1.3.1 Format of Outlines

Outline mode assumes that the lines in the buffer are of two types: heading lines and body

lines. A heading line represents a topic in the outline. Heading lines start with one or more stars;

the number of stars determines the depth of the heading in the outline structure. Thus, a heading

line with one star is a major topic; all the heading lines with two stars between it and the next

one-star heading are its subtopics; and so on. Any line that is not a heading line is a body line.

Body lines belong to the preceding heading line. Here is an example:

* Food

Chapter 20: Commands for Human Languages 127

This is the body,
which says something about the topic of food.

** Delicious Food

This is the body of the second-level header.

** Distasteful Food

This could have
a body too, with
several lines.

*** Dormitory Food

* Shelter

A second first-level topic with its header line.

A heading line together with all following body lines is called collectively an entry. A heading

line together with all following deeper heading lines and their body lines is called a subtree.

You can customize the criterion for distinguishing heading lines by setting the variable outline-

regexp. Any line whose beginning has a match for this regexp is considered a heading line. Matches

that start within a line (not at the beginning) do not count. The length of the matching text

determines the level of the heading; longer matches make a more deeply nested level. Thus, for

example, if a text formatter has commands ‘@chapter’, ‘@section’ and ‘@subsection’ to divide the

document into chapters and sections, you could make those lines count as heading lines by setting

outline-regexp to ‘"@chap\\|@\\(sub\\)*section"’. Note the trick: the two words ‘chapter’

and ‘section’ are equally long, but by defining the regexp to match only ‘chap’ we ensure that the

length of the text matched on a chapter heading is shorter, so that Outline mode will know that

sections are contained in chapters. This works as long as no other command starts with ‘@chap’.

Outline mode makes a line invisible by changing the newline before it into an ASCII Control-M

(code 015). Most editing commands that work on lines treat an invisible line as part of the previous

line because, strictly speaking, it is part of that line, since there is no longer a newline in between.

When you save the file in Outline mode, Control-M characters are saved as newlines, so the invisible

lines become ordinary lines in the file. But saving does not change the visibility status of a line

inside Emacs.

128 GNU Emacs Manual

20.1.3.2 Outline Motion Commands

There are some special motion commands in Outline mode that move backward and forward to

heading lines.

C-c C-n Move point to the next visible heading line (outline-next-visible-heading).

C-c C-p Move point to the previous visible heading line

(outline-previous-visible-heading).

C-c C-f Move point to the next visible heading line at the same level as the one point is on

(outline-forward-same-level).

C-c C-b Move point to the previous visible heading line at the same level (outline-backward-

same-level).

C-c C-u Move point up to a lower-level (more inclusive) visible heading line (outline-up-

heading).

C-c C-n (next-visible-heading) moves down to the next heading line. C-c C-p (previous-

visible-heading) moves similarly backward. Both accept numeric arguments as repeat counts.

The names emphasize that invisible headings are skipped, but this is not really a special feature.

All editing commands that look for lines ignore the invisible lines automatically.

More advanced motion commands understand the levels of headings. The commands C-c C-f

(outline-forward-same-level) and C-c C-b (outline-backward-same-level) move from one

heading line to another visible heading at the same depth in the outline. C-c C-u (outline-up-

heading) moves backward to another heading that is less deeply nested.

20.1.3.3 Outline Visibility Commands

The other special commands of outline mode are used to make lines visible or invisible. Their

names all start with hide or show. Most of them fall into pairs of opposites. They are not undoable;

instead, you can undo right past them. Making lines visible or invisible is simply not recorded by

the undo mechanism.

M-x hide-body

Make all body lines in the buffer invisible.

M-x show-all

Make all lines in the buffer visible.

Chapter 20: Commands for Human Languages 129

C-c C-h Make everything under this heading invisible, not including this heading itself

(hide-subtree).

C-c C-s Make everything under this heading visible, including body, subheadings, and their

bodies (show-subtree).

M-x hide-leaves

Make the body of this heading line, and of all its subheadings, invisible.

M-x show-branches

Make all subheadings of this heading line, at all levels, visible.

C-c C-i Make immediate subheadings (one level down) of this heading line visible (show-

children).

M-x hide-entry

Make this heading line’s body invisible.

M-x show-entry

Make this heading line’s body visible.

Two commands that are exact opposites are M-x hide-entry and M-x show-entry. They are

used with point on a heading line, and apply only to the body lines of that heading. The subtopics

and their bodies are not affected.

Two more powerful opposites are C-c C-h (hide-subtree) and C-c C-s (show-subtree). Both

expect to be used when point is on a heading line, and both apply to all the lines of that heading’s

subtree: its body, all its subheadings, both direct and indirect, and all of their bodies. In other

words, the subtree contains everything following this heading line, up to and not including the next

heading of the same or higher rank.

Intermediate between a visible subtree and an invisible one is having all the subheadings visible

but none of the body. There are two commands for doing this, depending on whether you want

to hide the bodies or make the subheadings visible. They are M-x hide-leaves and M-x show-

branches.

A little weaker than show-branches is C-c C-i (show-children). It makes just the direct

subheadings visible—those one level down. Deeper subheadings remain invisible, if they were

invisible.

Two commands have a blanket effect on the whole file. M-x hide-body makes all body lines

invisible, so that you see just the outline structure. M-x show-all makes all lines visible. These

commands can be thought of as a pair of opposites even though M-x show-all applies to more than

just body lines.

130 GNU Emacs Manual

The use of ellipses at the ends of visible lines can be turned off by setting selective-display-

ellipses to nil. Then there is no visible indication of the presence of invisible lines.

20.2 Words

Emacs has commands for moving over or operating on words. By convention, the keys for them

are all Meta- characters.

M-f Move forward over a word (forward-word).

M-b Move backward over a word (backward-word).

M-d Kill up to the end of a word (kill-word).

M-DEL Kill back to the beginning of a word (backward-kill-word).

M-@ Mark the end of the next word (mark-word).

M-t Transpose two words; drag a word forward or backward across other words (transpose-

words).

Notice how these keys form a series that parallels the character-based C-f, C-b, C-d, C-t and

DEL. M-@ is related to C-@, which is an alias for C-SPC.

The commands Meta-f (forward-word) and Meta-b (backward-word) move forward and back-

ward over words. They are thus analogous to Control-f and Control-b, which move over single

characters. Like their Control- analogues, Meta-f and Meta-b move several words if given an ar-

gument. Meta-f with a negative argument moves backward, and Meta-b with a negative argument

moves forward. Forward motion stops right after the last letter of the word, while backward motion

stops right before the first letter.

Meta-d (kill-word) kills the word after point. To be precise, it kills everything from point to

the place Meta-f would move to. Thus, if point is in the middle of a word, Meta-d kills just the

part after point. If some punctuation comes between point and the next word, it is killed along

with the word. (If you wish to kill only the next word but not the punctuation before it, simply

do Meta-f to get the end, and kill the word backwards with Meta-DEL.) Meta-d takes arguments

just like Meta-f.

Meta-DEL (backward-kill-word) kills the word before point. It kills everything from point

back to where Meta-b would move to. If point is after the space in ‘FOO, BAR’, then ‘FOO, ’ is

killed. (If you wish to kill just ‘FOO’, do Meta-b Meta-d instead of Meta-DEL.)

Chapter 20: Commands for Human Languages 131

Meta-t (transpose-words) exchanges the word before or containing point with the following

word. The delimiter characters between the words do not move. For example, ‘FOO, BAR’ trans-

poses into ‘BAR, FOO’ rather than ‘BAR FOO,’. See Section 14.2 [Transpose], page 83, for more on

transposition and on arguments to transposition commands.

To operate on the next n words with an operation which applies between point and mark, you

can either set the mark at point and then move over the words, or you can use the command Meta-@

(mark-word) which does not move point, but sets the mark where Meta-f would move to. It can

be given arguments just like Meta-f.

The word commands’ understanding of syntax is completely controlled by the syntax table. Any

character can, for example, be declared to be a word delimiter. See Section 28.5 [Syntax], page 229.

20.3 Sentences

The Emacs commands for manipulating sentences and paragraphs are mostly on Meta- keys, so

as to be like the word-handling commands.

M-a Move back to the beginning of the sentence (backward-sentence).

M-e Move forward to the end of the sentence (forward-sentence).

M-k Kill forward to the end of the sentence (kill-sentence).

C-x DEL Kill back to the beginning of the sentence

(backward-kill-sentence).

The commands Meta-a and Meta-e (backward-sentence and forward-sentence) move to the

beginning and end of the current sentence, respectively. They were chosen to resemble Control-a

and Control-e, which move to the beginning and end of a line. Unlike them, Meta-a and Meta-e

if repeated or given numeric arguments move over successive sentences. Emacs assumes that the

typist’s convention is followed, and thus considers a sentence to end wherever there is a ‘.’, ‘?’ or

‘!’ followed by the end of a line or two spaces, with any number of ‘)’, ‘]’, ‘’’, or ‘"’ characters

allowed in between. A sentence also begins or ends wherever a paragraph begins or ends.

Neither M-a nor M-e moves past the newline or spaces beyond the sentence edge at which it is

stopping.

Just as C-a and C-e have a kill command, C-k, to go with them, so M-a and M-e have a

corresponding kill command M-k (kill-sentence) which kills from point to the end of the sentence.

132 GNU Emacs Manual

With minus one as an argument it kills back to the beginning of the sentence. Larger arguments

serve as a repeat count.

There is a special command, C-x DEL (backward-kill-sentence) for killing back to the begin-

ning of a sentence, because this is useful when you change your mind in the middle of composing

text.

The variable sentence-end controls recognition of the end of a sentence. It is a regexp that

matches the last few characters of a sentence, together with the whitespace following the sentence.

Its normal value is

"[.?!][]\"’)]*\\($\\|\t\\| \\)[\t\n]*"

This example is explained in the section on regexps. See Section 13.5 [Regexps], page 74.

20.4 Paragraphs

The Emacs commands for manipulating paragraphs are also Meta- keys.

M-[Move back to previous paragraph beginning

(backward-paragraph).

M-] Move forward to next paragraph end (forward-paragraph).

M-h Put point and mark around this or next paragraph (mark-paragraph).

Meta-[moves to the beginning of the current or previous paragraph, while Meta-] moves to

the end of the current or next paragraph. Blank lines and text formatter command lines separate

paragraphs and are not part of any paragraph. Also, an indented line starts a new paragraph.

In major modes for programs (as opposed to Text mode), paragraphs begin and end only at

blank lines. This makes the paragraph commands continue to be useful even though there are no

paragraphs per se.

When there is a fill prefix, then paragraphs are delimited by all lines which don’t start with the

fill prefix. See Section 20.6 [Filling], page 134.

When you wish to operate on a paragraph, you can use the command Meta-h (mark-paragraph)

to set the region around it. This command puts point at the beginning and mark at the end of the

Chapter 20: Commands for Human Languages 133

paragraph point was in. If point is between paragraphs (in a run of blank lines, or at a boundary),

the paragraph following point is surrounded by point and mark. If there are blank lines preceding

the first line of the paragraph, one of these blank lines is included in the region. Thus, for example,

M-h C-w kills the paragraph around or after point.

The precise definition of a paragraph boundary is controlled by the variables paragraph-

separate and paragraph-start. The value of paragraph-start is a regexp that should match

any line that either starts or separates paragraphs. The value of paragraph-separate is another

regexp that should match only lines that separate paragraphs without being part of any paragraph.

Lines that start a new paragraph and are contained in it must match both regexps. For example,

normally paragraph-start is "^[\t\n\f]" and paragraph-separate is "^[\t\f]*$".

Normally it is desirable for page boundaries to separate paragraphs. The default values of these

variables recognize the usual separator for pages.

20.5 Pages

Files are often thought of as divided into pages by the formfeed character (ASCII Control-L,

octal code 014). For example, if a file is printed on a line printer, each page of the file, in this sense,

will start on a new page of paper. Emacs treats a page-separator character just like any other

character. It can be inserted with C-q C-l, or deleted with DEL. Thus, you are free to paginate

your file or not. However, since pages are often meaningful divisions of the file, commands are

provided to move over them and operate on them.

C-x [Move point to previous page boundary (backward-page).

C-x] Move point to next page boundary (forward-page).

C-x C-p Put point and mark around this page (or another page) (mark-page).

C-x l Count the lines in this page (count-lines-page).

The C-x [(backward-page) command moves point to immediately after the previous page

delimiter. If point is already right after a page delimiter, it skips that one and stops at the previous

one. A numeric argument serves as a repeat count. The C-x] (forward-page) command moves

forward past the next page delimiter.

The C-x C-p command (mark-page) puts point at the beginning of the current page and the

mark at the end. The page delimiter at the end is included (the mark follows it). The page delimiter

at the front is excluded (point follows it). This command can be followed by C-w to kill a page

134 GNU Emacs Manual

which is to be moved elsewhere. If it is inserted after a page delimiter, at a place where C-x] or

C-x [would take you, then the page will be properly delimited before and after once again.

A numeric argument to C-x C-p is used to specify which page to go to, relative to the current

one. Zero means the current page. One means the next page, and −1 means the previous one.

The C-x l command (count-lines-page) is good for deciding where to break a page in two.

It prints in the echo area the total number of lines in the current page, and then divides it up into

those preceding the current line and those following, as in

Page has 96 (72+25) lines

Notice that the sum is off by one; this is correct if point is not at the beginning of a line.

The variable page-delimiter should have as its value a regexp that matches the beginning of

a line that separates pages. This is what defines where pages begin. The normal value of this

variable is "^\f", which matches a formfeed character at the beginning of a line.

20.6 Filling Text

With Auto Fill mode, text can be filled (broken up into lines that fit in a specified width) as

you insert it. If you alter existing text it may no longer be properly filled; then explicit commands

for filling can be used.

20.6.1 Auto Fill Mode

Auto Fill mode is a minor mode in which lines are broken automatically when they become too

wide. Breaking happens only when you type a SPC or RET.

M-x auto-fill-mode

Enable or disable Auto Fill mode.

SPC

RET In Auto Fill mode, break lines when appropriate.

M-x auto-fill-mode turns Auto Fill mode on if it was off, or off if it was on. With a positive

numeric argument it always turns Auto Fill mode on, and with a negative argument always turns

Chapter 20: Commands for Human Languages 135

it off. You can see when Auto Fill mode is in effect by the presence of the word ‘Fill’ in the

mode line, inside the parentheses. Auto Fill mode is a minor mode, turned on or off for each buffer

individually. See Section 28.1 [Minor Modes], page 217.

In Auto Fill mode, lines are broken automatically at spaces when they get longer than the

desired width. Line breaking and rearrangement takes place only when you type SPC or RET. If

you wish to insert a space or newline without permitting line-breaking, type C-q SPC or C-q LFD

(recall that a newline is really a linefeed). Also, C-o inserts a newline without line breaking.

Auto Fill mode works well with Lisp mode, because when it makes a new line in Lisp mode it

indents that line with TAB. If a line ending in a comment gets too long, the text of the comment

is split into two comment lines. Optionally new comment delimiters are inserted at the end of the

first line and the beginning of the second so that each line is a separate comment; the variable

comment-multi-line controls the choice (see Section 21.6.2 [Comments], page 152).

Auto Fill mode does not refill entire paragraphs. It can break lines but cannot merge lines. So

editing in the middle of a paragraph can result in a paragraph that is not correctly filled. The

easiest way to make the paragraph properly filled again is usually with the explicit fill commands.

Many users like Auto Fill mode and want to use it in all text files. The section on init files says

how to arrange this permanently for yourself. See Section 28.6 [Init File], page 232.

20.6.2 Explicit Fill Commands

M-q Fill current paragraph (fill-paragraph).

M-g Fill each paragraph in the region (fill-region).

C-x f Set the fill column (set-fill-column).

M-x fill-region-as-paragraph.

Fill the region, considering it as one paragraph.

M-s Center a line.

To refill a paragraph, use the command Meta-q (fill-paragraph). It causes the paragraph

that point is inside, or the one after point if point is between paragraphs, to be refilled. All the

line-breaks are removed, and then new ones are inserted where necessary. M-q can be undone with

C-_. See Chapter 5 [Undo], page 33.

To refill many paragraphs, use M-g (fill-region), which divides the region into paragraphs

136 GNU Emacs Manual

and fills each of them.

Meta-q and Meta-g use the same criteria as Meta-h for finding paragraph boundaries (see Sec-

tion 20.4 [Paragraphs], page 132). For more control, you can use M-x fill-region-as-paragraph,

which refills everything between point and mark. This command recognizes only blank lines as

paragraph separators.

A numeric argument to M-g or M-q causes it to justify the text as well as filling it. This means

that extra spaces are inserted to make the right margin line up exactly at the fill column. To

remove the extra spaces, use M-q or M-g with no argument.

The command Meta-s (center-line) centers the current line within the current fill column.

With an argument, it centers several lines individually and moves past them.

The maximum line width for filling is in the variable fill-column. Altering the value of fill-

column makes it local to the current buffer; until that time, the default value is in effect. The

default is initially 70. See Section 28.2.3 [Locals], page 220.

The easiest way to set fill-column is to use the command C-x f (set-fill-column). With

no argument, it sets fill-column to the current horizontal position of point. With a numeric

argument, it uses that as the new fill column.

20.6.3 The Fill Prefix

To fill a paragraph in which each line starts with a special marker (which might be a few spaces,

giving an indented paragraph), use the fill prefix feature. The fill prefix is a string which Emacs

expects every line to start with, and which is not included in filling.

C-x . Set the fill prefix (set-fill-prefix).

M-q Fill a paragraph using current fill prefix (fill-paragraph).

M-x fill-individual-paragraphs

Fill the region, considering each change of indentation as starting a new paragraph.

To specify a fill prefix, move to a line that starts with the desired prefix, put point at the end

of the prefix, and give the command C-x . (set-fill-prefix). That’s a period after the C-x. To

turn off the fill prefix, specify an empty prefix: type C-x . with point at the beginning of a line.

Chapter 20: Commands for Human Languages 137

When a fill prefix is in effect, the fill commands remove the fill prefix from each line before

filling and insert it on each line after filling. The fill prefix is also inserted on new lines made

automatically by Auto Fill mode. Lines that do not start with the fill prefix are considered to

start paragraphs, both in M-q and the paragraph commands; this is just right if you are using

paragraphs with hanging indentation (every line indented except the first one). Lines which are

blank or indented once the prefix is removed also separate or start paragraphs; this is what you

want if you are writing multi-paragraph comments with a comment delimiter on each line.

The fill prefix is stored in the variable fill-prefix. Its value is a string, or nil when there is

no fill prefix. This is a per-buffer variable; altering the variable affects only the current buffer, but

there is a default value which you can change as well. See Section 28.2.3 [Locals], page 220.

Another way to use fill prefixes is through M-x fill-individual-paragraphs. This function

divides the region into groups of consecutive lines with the same amount and kind of indentation

and fills each group as a paragraph using its indentation as a fill prefix.

20.7 Case Conversion Commands

Emacs has commands for converting either a single word or any arbitrary range of text to upper

case or to lower case.

M-l Convert following word to lower case (downcase-word).

M-u Convert following word to upper case (upcase-word).

M-c Capitalize the following word (capitalize-word).

C-x C-l Convert region to lower case (downcase-region).

C-x C-u Convert region to upper case (upcase-region).

The word conversion commands are the most useful. Meta-l (downcase-word) converts the

word after point to lower case, moving past it. Thus, repeating Meta-l converts successive words.

Meta-u (upcase-word) converts to all capitals instead, while Meta-c (capitalize-word) puts the

first letter of the word into upper case and the rest into lower case. All these commands convert

several words at once if given an argument. They are especially convenient for converting a large

amount of text from all upper case to mixed case, because you can move through the text using

M-l, M-u or M-c on each word as appropriate, occasionally using M-f instead to skip a word.

When given a negative argument, the word case conversion commands apply to the appropriate

number of words before point, but do not move point. This is convenient when you have just typed

138 GNU Emacs Manual

a word in the wrong case: you can give the case conversion command and continue typing.

If a word case conversion command is given in the middle of a word, it applies only to the part

of the word which follows point. This is just like what Meta-d (kill-word) does. With a negative

argument, case conversion applies only to the part of the word before point.

The other case conversion commands are C-x C-u (upcase-region) and C-x C-l (downcase-

region), which convert everything between point and mark to the specified case. Point and mark

do not move.

Chapter 21: Editing Programs 139

21 Editing Programs

Emacs has many commands designed to understand the syntax of programming languages such

as Lisp and C. These commands can

• Move over or kill balanced expressions or sexps (see Section 21.2 [Lists], page 140).

• Move over or mark top-level balanced expressions (defuns, in Lisp; functions, in C).

• Show how parentheses balance (see Section 21.5 [Matching], page 149).

• Insert, kill or align comments (see Section 21.6.2 [Comments], page 152).

• Follow the usual indentation conventions of the language (see Section 21.4 [Grinding], page 143).

The commands for words, sentences and paragraphs are very useful in editing code even though

their canonical application is for editing human language text. Most symbols contain words (see

Section 20.2 [Words], page 130); sentences can be found in strings and comments (see Section 20.3

[Sentences], page 131). Paragraphs per se are not present in code, but the paragraph commands

are useful anyway, because Lisp mode and C mode define paragraphs to begin and end at blank

lines (see Section 20.4 [Paragraphs], page 132). Judicious use of blank lines to make the program

clearer will also provide interesting chunks of text for the paragraph commands to work on.

The selective display feature is useful for looking at the overall structure of a function (see

Section 12.3 [Selective Display], page 67). This feature causes only the lines that are indented less

than a specified amount to appear on the screen.

21.1 Major Modes for Programming Languages

Emacs also has major modes for the programming languages Lisp, Scheme (a variant of Lisp), C,

Fortran and Muddle. Ideally, a major mode should be implemented for each programming language

that you might want to edit with Emacs; but often the mode for one language can serve for other

syntactically similar languages. The language modes that exist are those that someone decided to

take the trouble to write.

There are several forms of Lisp mode, which differ in the way they interface to Lisp execution.

See Section 22.2 [Lisp Modes], page 169.

Each of the programming language modes defines the TAB key to run an indentation function

that knows the indentation conventions of that language and updates the current line’s indentation

140 GNU Emacs Manual

accordingly. For example, in C mode TAB is bound to c-indent-line. LFD is normally defined to

do RET followed by TAB; thus, it too indents in a mode-specific fashion.

In most programming languages, indentation is likely to vary from line to line. So the major

modes for those languages rebind DEL to treat a tab as if it were the equivalent number of spaces

(using the command backward-delete-char-untabify). This makes it possible to rub out inden-

tation one column at a time without worrying whether it is made up of spaces or tabs. Use C-b

C-d to delete a tab character before point, in these modes.

Programming language modes define paragraphs to be separated only by blank lines, so that

the paragraph commands remain useful. Auto Fill mode, if enabled in a programming language

major mode, indents the new lines which it creates.

Turning on a major mode calls a user-supplied function called the mode hook, which is the value

of a Lisp variable. For example, turning on C mode calls the value of the variable c-mode-hook

if that value exists and is non-nil. Mode hook variables for other programming language modes

include lisp-mode-hook, emacs-lisp-mode-hook, lisp-interaction-mode-hook, scheme-mode-

hook and muddle-mode-hook. The mode hook function receives no arguments.

21.2 Lists and Sexps

By convention, Emacs keys for dealing with balanced expressions are usually Control-Meta-

characters. They tend to be analogous in function to their Control- and Meta- equivalents. These

commands are usually thought of as pertaining to expressions in programming languages, but can

be useful with any language in which some sort of parentheses exist (including English).

These commands fall into two classes. Some deal only with lists (parenthetical groupings). They

see nothing except parentheses, brackets, braces (whichever ones must balance in the language you

are working with), and escape characters that might be used to quote those.

The other commands deal with expressions or sexps. The word ‘sexp’ is derived from s-

expression, the ancient term for an expression in Lisp. But in Emacs, the notion of ‘sexp’ is

not limited to Lisp. It refers to an expression in whatever language your program is written in.

Each programming language has its own major mode, which customizes the syntax tables so that

expressions in that language count as sexps.

Sexps typically include symbols, numbers, and string constants, as well as anything contained

in parentheses, brackets or braces.

Chapter 21: Editing Programs 141

In languages that use prefix and infix operators, such as C, it is not possible for all expressions

to be sexps. For example, C mode does not recognize ‘foo + bar’ as a sexp, even though it is a C

expression; it recognizes ‘foo’ as one sexp and ‘bar’ as another, with the ‘+’ as punctuation between

them. This is a fundamental ambiguity: both ‘foo + bar’ and ‘foo’ are legitimate choices for the

sexp to move over if point is at the ‘f’. Note that ‘(foo + bar)’ is a sexp in C mode.

Some languages have obscure forms of syntax for expressions that nobody has bothered to make

Emacs understand properly.

C-M-f Move forward over a sexp (forward-sexp).

C-M-b Move backward over a sexp (backward-sexp).

C-M-k Kill sexp forward (kill-sexp).

C-M-u Move up and backward in list structure (backward-up-list).

C-M-d Move down and forward in list structure (down-list).

C-M-n Move forward over a list (forward-list).

C-M-p Move backward over a list (backward-list).

C-M-t Transpose expressions (transpose-sexps).

C-M-@ Put mark after following expression (mark-sexp).

To move forward over a sexp, use C-M-f (forward-sexp). If the first significant character after

point is an opening delimiter (‘(’ in Lisp; ‘(’, ‘[’ or ‘{’ in C), C-M-f moves past the matching

closing delimiter. If the character begins a symbol, string, or number, C-M-f moves over that. If

the character after point is a closing delimiter, C-M-f just moves past it. (This last is not really

moving across a sexp; it is an exception which is included in the definition of C-M-f because it is

as useful a behavior as anyone can think of for that situation.)

The command C-M-b (backward-sexp) moves backward over a sexp. The detailed rules are like

those above for C-M-f, but with directions reversed. If there are any prefix characters (singlequote,

backquote and comma, in Lisp) preceding the sexp, C-M-b moves back over them as well.

C-M-f or C-M-b with an argument repeats that operation the specified number of times; with a

negative argument, it moves in the opposite direction.

The sexp commands move across comments as if they were whitespace, in languages such as C

where the comment-terminator can be recognized. In Lisp, and other languages where comments

run until the end of a line, it is very difficult to ignore comments when parsing backwards; therefore,

in such languages the sexp commands treat the text of comments as if it were code.

142 GNU Emacs Manual

Killing a sexp at a time can be done with C-M-k (kill-sexp). C-M-k kills the characters that

C-M-f would move over.

The list commands move over lists like the sexp commands but skip blithely over any number of

other kinds of sexps (symbols, strings, etc). They are C-M-n (forward-list) and C-M-p (backward-

list). The main reason they are useful is that they usually ignore comments (since the comments

usually do not contain any lists).

C-M-n and C-M-p stay at the same level in parentheses, when that’s possible. To move up one (or

n) levels, use C-M-u (backward-up-list). C-M-u moves backward up past one unmatched opening

delimiter. A positive argument serves as a repeat count; a negative argument reverses direction of

motion and also requests repetition, so it moves forward and up one or more levels.

To move down in list structure, use C-M-d (down-list). In Lisp mode, where ‘(’ is the only

opening delimiter, this is nearly the same as searching for a ‘(’. An argument specifies the number

of levels of parentheses to go down.

A somewhat random-sounding command which is nevertheless easy to use is C-M-t (transpose-

sexps), which drags the previous sexp across the next one. An argument serves as a repeat count,

and a negative argument drags backwards (thus canceling out the effect of C-M-t with a positive

argument). An argument of zero, rather than doing nothing, transposes the sexps ending after

point and the mark.

To make the region be the next sexp in the buffer, use C-M-@ (mark-sexp) which sets mark at

the same place that C-M-f would move to. C-M-@ takes arguments like C-M-f. In particular, a

negative argument is useful for putting the mark at the beginning of the previous sexp.

The list and sexp commands’ understanding of syntax is completely controlled by the syntax

table. Any character can, for example, be declared to be an opening delimiter and act like an open

parenthesis. See Section 28.5 [Syntax], page 229.

21.3 Defuns

In Emacs, a parenthetical grouping at the top level in the buffer is called a defun. The name

derives from the fact that most top-level lists in a Lisp file are instances of the special form defun,

but any top-level parenthetical grouping counts as a defun in Emacs parlance regardless of what

its contents are, and regardless of the programming language in use. For example, in C, the body

of a function definition is a defun.

Chapter 21: Editing Programs 143

C-M-a Move to beginning of current or preceding defun (beginning-of-defun).

C-M-e Move to end of current or following defun (end-of-defun).

C-M-h Put region around whole current or following defun (mark-defun).

The commands to move to the beginning and end of the current defun are C-M-a (beginning-

of-defun) and C-M-e (end-of-defun).

If you wish to operate on the current defun, use C-M-h (mark-defun) which puts point at the

beginning and mark at the end of the current or next defun. For example, this is the easiest way

to get ready to move the defun to a different place in the text. In C mode, C-M-h runs the function

mark-c-function, which is almost the same as mark-defun; the difference is that it backs up over

the argument declarations, function name and returned data type so that the entire C function is

inside the region.

Emacs assumes that any open-parenthesis found in the leftmost column is the start of a defun.

Therefore, never put an open-parenthesis at the left margin in a Lisp file unless it is the start of

a top level list. Never put an open-brace or other opening delimiter at the beginning of a line of

C code unless it starts the body of a function. The most likely problem case is when you want an

opening delimiter at the start of a line inside a string. To avoid trouble, put an escape character

(‘\’, in C and Emacs Lisp, ‘/’ in some other Lisp dialects) before the opening delimiter. It will not

affect the contents of the string.

In the remotest past, the original Emacs found defuns by moving upward a level of parentheses

until there were no more levels to go up. This always required scanning all the way back to the

beginning of the buffer, even for a small function. To speed up the operation, Emacs was changed

to assume that any ‘(’ (or other character assigned the syntactic class of opening-delimiter) at the

left margin is the start of a defun. This heuristic was nearly always right and avoided the costly

scan; however, it mandated the convention described above.

21.4 Indentation for Programs

The best way to keep a program properly indented (“ground”) is to use Emacs to re-indent it

as you change it. Emacs has commands to indent properly either a single line, a specified number

of lines, or all of the lines inside a single parenthetical grouping.

21.4.1 Basic Program Indentation Commands

144 GNU Emacs Manual

TAB Adjust indentation of current line.

LFD Equivalent to RET followed by TAB (newline-and-indent).

The basic indentation command is TAB, which gives the current line the correct indentation as

determined from the previous lines. The function that TAB runs depends on the major mode; it

is lisp-indent-line in Lisp mode, c-indent-line in C mode, etc. These functions understand

different syntaxes for different languages, but they all do about the same thing. TAB in any pro-

gramming language major mode inserts or deletes whitespace at the beginning of the current line,

independent of where point is in the line. If point is inside the whitespace at the beginning of the

line, TAB leaves it at the end of that whitespace; otherwise, TAB leaves point fixed with respect to

the characters around it.

Use C-q TAB to insert a tab at point.

When entering a large amount of new code, use LFD (newline-and-indent), which is equivalent

to a RET followed by a TAB. LFD creates a blank line, and then gives it the appropriate indentation.

TAB indents the second and following lines of the body of an parenthetical grouping each under

the preceding one; therefore, if you alter one line’s indentation to be nonstandard, the lines below

will tend to follow it. This is the right behavior in cases where the standard result of TAB is

unaesthetic.

Remember that an open-parenthesis, open-brace or other opening delimiter at the left margin

is assumed by Emacs (including the indentation routines) to be the start of a function. Therefore,

you must never have an opening delimiter in column zero that is not the beginning of a function,

not even inside a string. This restriction is vital for making the indentation commands fast; you

must simply accept it. See Section 21.3 [Defuns], page 142, for more information on this.

21.4.2 Indenting Several Lines

When you wish to re-indent several lines of code which have been altered or moved to a different

level in the list structure, you have several commands available.

C-M-q Re-indent all the lines within one list (indent-sexp).

C-u TAB Shift an entire list rigidly sideways so that its first line is properly indented.

C-M-\ Re-indent all lines in the region (indent-region).

Chapter 21: Editing Programs 145

You can re-indent the contents of a single list by positioning point before the beginning of it

and typing C-M-q (indent-sexp in Lisp mode, indent-c-exp in C mode; also bound to other

suitable functions in other modes). The indentation of the line the sexp starts on is not changed;

therefore, only the relative indentation within the list, and not its position, is changed. To correct

the position as well, type a TAB before the C-M-q.

If the relative indentation within a list is correct but the indentation of its beginning is not, go

to the line the list begins on and type C-u TAB. When TAB is given a numeric argument, it moves

all the lines in the grouping starting on the current line sideways the same amount that the current

line moves. It is clever, though, and does not move lines that start inside strings, or C preprocessor

lines when in C mode.

Another way to specify the range to be re-indented is with point and mark. The command

C-M-\ (indent-region) applies TAB to every line whose first character is between point and mark.

21.4.3 Customizing Lisp Indentation

The indentation pattern for a Lisp expression can depend on the function called by the expres-

sion. For each Lisp function, you can choose among several predefined patterns of indentation, or

define an arbitrary one with a Lisp program.

The standard pattern of indentation is as follows: the second line of the expression is indented

under the first argument, if that is on the same line as the beginning of the expression; otherwise,

the second line is indented underneath the function name. Each following line is indented under

the previous line whose nesting depth is the same.

If the variable lisp-indent-offset is non-nil, it overrides the usual indentation pattern for

the second line of an expression, so that such lines are always indented lisp-indent-offset more

columns than the containing list.

The standard pattern is overridded for certain functions. Functions whose names start with def

always indent the second line by lisp-body-indention extra columns beyond the open-parenthesis

starting the expression.

The standard pattern can be overridden in various ways for individual functions, according to

the lisp-indent-hook property of the function name. There are four possibilities for this property:

nil This is the same as no property; the standard indentation pattern is used.

146 GNU Emacs Manual

defun The pattern used for function names that start with def is used for this function also.

a number, number

The first number arguments of the function are distinguished arguments; the rest are

considered the body of the expression. A line in the expression is indented according to

whether the first argument on it is distinguished or not. If the argument is part of the

body, the line is indented lisp-body-indent more columns than the open-parenthesis

starting the containing expression. If the argument is distinguished and is either the

first or second argument, it is indented twice that many extra columns. If the argument

is distinguished and not the first or second argument, the standard pattern is followed

for that line.

a symbol, symbol

symbol should be a function name; that function is called to calculate the indentation

of a line within this expression. The function receives two arguments:

state The value returned by parse-partial-sexp (a Lisp primitive for indenta-

tion and nesting computation) when it parses up to the beginning of this

line.

pos The position at which the line being indented begins.

It should return either a number, which is the number of columns of indentation for

that line, or a list whose car is such a number. The difference between returning a

number and returning a list is that a number says that all following lines at the same

nesting level should be indented just like this one; a list says that following lines might

call for different indentations. This makes a difference when the indentation is being

computed by C-M-q; if the value is a number, C-M-q need not recalculate indentation

for the following lines until the end of the list.

21.4.4 Customizing C Indentation

Two variables control which commands perform C indentation and when.

If c-auto-newline is non-nil, newlines are inserted both before and after braces that you

insert, and after colons and semicolons. Correct C indentation is done on all the lines that are

made this way.

If c-tab-always-indent is non-nil, the TAB command in C mode does indentation only if point

is at the left margin or within the line’s indentation. If there is non-whitespace to the left of point,

then TAB just inserts a tab character in the buffer. Normally, this variable is nil, and TAB always

reindents the current line.

Chapter 21: Editing Programs 147

C does not have anything analogous to particular function names for which special forms of

indentation are desirable. However, it has a different need for customization facilities: many

different styles of C indentation are in common use.

There are six variables you can set to control the style that Emacs C mode will use.

c-indent-level

Indentation of C statements within surrounding block. The surrounding block’s inden-

tation is the indentation of the line on which the open-brace appears.

c-continued-statement-offset

Extra indentation given to a substatement, such as the then-clause of an if or body of

a while.

c-brace-offset

Extra indentation for line if it starts with an open brace.

c-brace-imaginary-offset

An open brace following other text is treated as if it were this far to the right of the

start of its line.

c-argdecl-indent

Indentation level of declarations of C function arguments.

c-label-offset

Extra indentation for line that is a label, or case or default.

The variable c-indent-level controls the indentation for C statements with respect to the

surrounding block. In the example

{
foo ();

the difference in indentation between the lines is c-indent-level. Its standard value is 2.

If the open-brace beginning the compound statement is not at the beginning of its line, the

c-indent-level is added to the indentation of the line, not the column of the open-brace. For

example,

if (losing) {
do_this ();

One popular indentation style is that which results from setting c-indent-level to 8 and putting

open-braces at the end of a line in this way. I prefer to put the open-brace on a separate line.

148 GNU Emacs Manual

In fact, the value of the variable c-brace-imaginary-offset is also added to the indentation of

such a statement. Normally this variable is zero. Think of this variable as the imaginary position

of the open brace, relative to the first nonblank character on the line. By setting this variable to 4

and c-indent-level to 0, you can get this style:

if (x == y) {
do_it ();
}

When c-indent-level is zero, the statements inside most braces will line up right under the

open brace. But there is an exception made for braces in column zero, such as surrounding a

function’s body. The statements just inside it do not go at column zero. Instead, c-brace-offset

and c-continued-statement-offset (see below) are added to produce a typical offset between

brace levels, and the statements are indented that far.

c-continued-statement-offset controls the extra indentation for a line that starts within

a statement (but not within parentheses or brackets). These lines are usually statements that

are within other statements, such as the then-clauses of if statements and the bodies of while

statements. This parameter is the difference in indentation between the two lines in

if (x == y)
do_it ();

Its standard value is 2. Some popular indentation styles correspond to a value of zero for c-

continued-statement-offset.

c-brace-offset is the extra indentation given to a line that starts with an open-brace. Its

standard value is zero; compare

if (x == y)
{

with

if (x == y)
do_it ();

if c-brace-offset were set to 4, the first example would become

Chapter 21: Editing Programs 149

if (x == y)
{

c-argdecl-indent controls the indentation of declarations of the arguments of a C function. It

is absolute: argument declarations receive exactly c-argdecl-indent spaces. The standard value

is 5, resulting in code like this:

char *
index (string, char)

char *string;
int char;

c-label-offset is the extra indentation given to a line that contains a label, a case statement,

or a default: statement. Its standard value is −2, resulting in code like this

switch (c)
{
case ’x’:

If c-label-offset were zero, the same code would be indented as

switch (c)
{

case ’x’:

This example assumes that the other variables above also have their standard values.

I strongly recommend that you try out the indentation style produced by the standard settings

of these variables, together with putting open braces on separate lines. You can see how it looks

in all the C source files of GNU Emacs.

21.5 Automatic Display Of Matching Parentheses

The Emacs parenthesis-matching feature is designed to show automatically how parentheses

match in the text. Whenever a self-inserting character that is a closing delimiter is typed, the

cursor moves momentarily to the location of the matching opening delimiter, provided that is on

the screen. If it is not on the screen, some text starting with that opening delimiter is displayed in

the echo area. Either way, you can tell what grouping is being closed off.

150 GNU Emacs Manual

In Lisp, automatic matching applies only to parentheses. In C, it applies to braces and brackets

too. Emacs knows which characters to regard as matching delimiters based on the syntax table,

which is set by the major mode. See Section 28.5 [Syntax], page 229.

If the opening delimiter and closing delimiter are mismatched—such as in ‘[x)’—a warning

message is displayed in the echo area. The correct matches are specified in the syntax table.

Two variables control parenthesis match display. blink-matching-paren turns the feature on

or off; nil turns it off, but the default is t to turn match display on. blink-matching-paren-

distance specifies how many characters back to search to find the matching opening delimiter. If

the match is not found in that far, scanning stops, and nothing is displayed. This is to prevent

scanning for the matching delimiter from wasting lots of time when there is no match. The default

is 4000.

21.6 Manipulating Comments

The comment commands insert, kill and align comments.

M-; Insert or align comment (indent-for-comment).

C-x ; Set comment column (set-comment-column).

C-u - C-x ;

Kill comment on current line (kill-comment).

M-LFD Like RET followed by inserting and aligning a comment (indent-new-comment-line).

The command that creates a comment is Meta-; (indent-for-comment). If there is no comment

already on the line, a new comment is created, aligned at a specific column called the comment

column. The comment is created by inserting the string Emacs thinks comments should start with

(the value of comment-start; see below). Point is left after that string. If the text of the line

extends past the comment column, then the indentation is done to a suitable boundary (usually, at

least one space is inserted). If the major mode has specified a string to terminate comments, that

is inserted after point, to keep the syntax valid.

Meta-; can also be used to align an existing comment. If a line already contains the string that

starts comments, then M-; just moves point after it and re-indents it to the conventional place.

Exception: comments starting in column 0 are not moved.

Some major modes have special rules for indenting certain kinds of comments in certain contexts.

Chapter 21: Editing Programs 151

For example, in Lisp code, comments which start with two semicolons are indented as if they were

lines of code, instead of at the comment column. Comments which start with three semicolons

are supposed to start at the left margin. Emacs understands these conventions by indenting a

double-semicolon comment using TAB, and by not changing the indentation of a triple-semicolon

comment at all.

;; This function is just an example
;;; Here either two or three semicolons are appropriate.
(defun foo (x)
;;; And now, the first part of the function:
;; The following line adds one.
(1+ x)) ; This line adds one.

In C code, a comment preceded on its line by nothing but whitespace is indented like a line of

code.

Even when an existing comment is properly aligned, M-; is still useful for moving directly to

the start of the comment.

C-u - C-x ; (kill-comment) kills the comment on the current line, if there is one. The inden-

tation before the start of the comment is killed as well. If there does not appear to be a comment

in the line, nothing is done. To reinsert the comment on another line, move to the end of that

line, do C-y, and then do M-; to realign it. Note that C-u - C-x ; is not a distinct key; it is C-x ;

(set-comment-column) with a negative argument. That command is programmed so that when it

receives a negative argument it calls kill-comment. However, kill-comment is a valid command

which you could bind directly to a key if you wanted to.

21.6.1 Multiple Lines of Comments

If you are typing a comment and find that you wish to continue it on another line, you can

use the command Meta-LFD (indent-new-comment-line), which terminates the comment you are

typing, creates a new blank line afterward, and begins a new comment indented under the old one.

When Auto Fill mode is on, going past the fill column while typing a comment causes the comment

to be continued in just this fashion. If point is not at the end of the line when M-LFD is typed, the

text on the rest of the line becomes part of the new comment line.

152 GNU Emacs Manual

21.6.2 Options Controlling Comments

The comment column is stored in the variable comment-column. You can set it to a number

explicitly. Alternatively, the command C-x ; (set-comment-column) sets the comment column to

the column point is at. C-u C-x ; sets the comment column to match the last comment before

point in the buffer, and then does a Meta-; to align the current line’s comment under the previous

one. Note that C-u - C-x ; runs the function kill-comment as described above.

comment-column is a per-buffer variable; altering the variable affects only the current buffer,

but there is a default value which you can change as well. See Section 28.2.3 [Locals], page 220.

Many major modes initialize this variable for the current buffer.

The comment commands recognize comments based on the regular expression that is the value

of the variable comment-start-skip. This regexp should not match the null string. It may match

more than the comment starting delimiter in the strictest sense of the word; for example, in C

mode the value of the variable is "/*+ *", which matches extra stars and spaces after the ‘/*’

itself. (Note that ‘\\’ is needed in Lisp syntax to include a ‘\’ in the string, which is needed to

deny the first star its special meaning in regexp syntax. See Section 13.5 [Regexps], page 74.)

When a comment command makes a new comment, it inserts the value of comment-start to

begin it. The value of comment-end is inserted after point, so that it will follow the text that you

will insert into the comment. In C mode, comment-start has the value "/* " and comment-end

has the value " */".

comment-multi-line controls how M-LFD (indent-new-comment-line) behaves when used in-

side a comment. If comment-multi-line is nil, as it normally is, then the comment on the starting

line is terminated and a new comment is started on the new following line. If comment-multi-line

is not nil, then the new following line is set up as part of the same comment that was found on

the starting line. This is done by not inserting a terminator on the old line, and not inserting a

starter on the new line. In languages where multi-line comments work, the choice of value for this

variable is a matter of taste.

The variable comment-indent-hook should contain a function that will be called to compute the

indentation for a newly inserted comment or for aligning an existing comment. It is set differently

by various major modes. The function is called with no arguments, but with point at the beginning

of the comment, or at the end of a line if a new comment is to be inserted. It should return the

column in which the comment ought to start. For example, in Lisp mode, the indent hook function

bases its decision on how many semicolons begin an existing comment, and on the code in the

preceding lines.

Chapter 21: Editing Programs 153

21.7 Editing Without Unbalanced Parentheses

M-(Put parentheses around next sexp(s) (insert-parentheses).

M-) Move past next close parenthesis and re-indent (move-over-close-and-reindent).

The commands M-((insert-parentheses) and M-) (move-over-close-and-reindent) are

designed to facilitate a style of editing which keeps parentheses balanced at all times. M-(inserts

a pair of parentheses, either together as in ‘()’, or, if given an argument, around the next several

sexps, and leaves point after the open parenthesis. Instead of typing (F O O), you can type M-(F

O O, which has the same effect except for leaving the cursor before the close parenthesis. Then you

would type M-), which moves past the close parenthesis, deleting any indentation preceding it (in

this example there is none), and indenting with LFD after it.

21.8 Completion for Lisp Symbols

Usually completion happens in the minibuffer. But one kind of completion is available in all

buffers: completion for Lisp symbol names.

The command M-TAB (lisp-complete-symbol) takes the partial Lisp symbol before point to

be an abbreviation, and compares it against all nontrivial Lisp symbols currently known to Emacs.

Any additional characters that they all have in common are inserted at point. Nontrivial symbols

are those that have function definitions, values or properties.

If there is an open-parenthesis immediately before the beginning of the partial symbol, only

symbols with function definitions are considered as completions.

If the partial name in the buffer has more than one possible completion and they have no

additional characters in common, a list of all possible completions is displayed in another window.

21.9 Documentation Commands

As you edit Lisp code to be run in Emacs, the commands C-h f (describe-function) and C-h

v (describe-variable) can be used to print documentation of functions and variables that you

want to call. These commands use the minibuffer to read the name of a function or variable to

document, and display the documentation in a window.

154 GNU Emacs Manual

For extra convenience, these commands provide default arguments based on the code in the

neighborhood of point. C-h f sets the default to the function called in the innermost list containing

point. C-h v uses the symbol name around or adjacent to point as its default.

Documentation on Unix commands, system calls and libraries can be obtained with the M-x

manual-entry command. This reads a topic as an argument, and displays the text on that topic

from the Unix manual. manual-entry always searches all 8 sections of the manual, and concatenates

all the entries that are found. For example, the topic ‘termcap’ finds the description of the termcap

library from section 3, followed by the description of the termcap data base from section 5.

21.10 Change Logs

The Emacs command M-x add-change-log-entry helps you keep a record of when and why

you have changed a program. It assumes that you have a file in which you write a chronological

sequence of entries describing individual changes. The default is to store the change entries in a

file called ‘ChangeLog’ in the same directory as the file you are editing. The same ‘ChangeLog’ file

therefore records changes for all the files in the directory.

A change log entry starts with a header line that contains your name and the current date. Aside

from these header lines, every line in the change log starts with a tab. One entry can describe several

changes; each change starts with a line starting with a tab and a star. M-x add-change-log-entry

visits the change log file and creates a new entry unless the most recent entry is for today’s date

and your name. In either case, it adds a new line to start the description of another change just

after the header line of the entry. When M-x add-change-log-entry is finished, all is prepared for

you to edit in the description of what you changed and how. You must then save the change log

file yourself.

The change log file is always visited in Indented Text mode, which means that LFD and auto-

filling indent each new line like the previous line. This is convenient for entering the contents of an

entry, which must all be indented. See Section 20.1 [Text Mode], page 121.

Here is an example of the formatting conventions used in the change log for Emacs:

Wed Jun 26 19:29:32 1985 Richard M. Stallman (rms at mit-prep)

* xdisp.c (try_window_id):
If C-k is done at end of next-to-last line,
this fn updates window_end_vpos and cannot leave
window_end_pos nonnegative (it is zero, in fact).

Chapter 21: Editing Programs 155

If display is preempted before lines are output,
this is inconsistent. Fix by setting
blank_end_of_window to nonzero.

Tue Jun 25 05:25:33 1985 Richard M. Stallman (rms at mit-prep)

* cmds.c (Fnewline):
Call the auto fill hook if appropriate.

* xdisp.c (try_window_id):
If point is found by compute_motion after xp, record that
permanently. If display_text_line sets point position wrong
(case where line is killed, point is at eob and that line is
not displayed), set it again in final compute_motion.

21.11 Tag Tables

A tag table is a description of how a multi-file program is broken up into files. It lists the

names of the component files and the names and positions of the functions in each file. Grouping

the related files makes it possible to search or replace through all the files with one command.

Recording the function names and positions makes possible the Meta-. command which you can

use to find the definition of a function without having to know which of the files it is in.

Tag tables are stored in files called tag table files. The conventional name for a tag table file is

‘TAGS’.

Each entry in the tag table records the name of one tag, the name of the file that the tag is

defined in (implicitly), and the position in that file of the tag’s definition.

Just what names from the described files are recorded in the tag table depends on the program-

ming language of the described file. They normally include all functions and subroutines, and may

also include global variables, data types, and anything else convenient. In any case, each name

recorded is called a tag.

21.11.1 Source File Tag Syntax

In Lisp code, any function defined with defun, any variable defined with defvar or defconst,

and in general the first argument of any expression that starts with ‘(def’ in column zero, is a tag.

156 GNU Emacs Manual

In C code, any C function is a tag, and so is any typedef if -t is specified when the tag table is

constructed.

In Fortran code, functions and subroutines are tags.

In LaTEX text, the argument of any of the commands \chapter, \section, \subsection,

\subsubsection, \eqno, \label, \ref, \cite, \bibitem and \typeout is a tag.

21.11.2 Creating Tag Tables

The etags program is used to create a tag table file. It knows the syntax of C, Fortran, LaTEX,

Scheme and Emacs Lisp/Common Lisp. To use etags, type

etags inputfiles. . .

as a shell command. It reads the specified files and writes a tag table named ‘TAGS’ in the current

working directory. etags recognizes the language used in an input file based on its file name and

contents; there are no switches for specifying the language. The -t switch tells etags to record

typedefs in C code as tags.

If the tag table data become outdated due to changes in the files described in the table, the way

to update the tag table is the same way it was made in the first place. It is not necessary to do

this often.

If the tag table fails to record a tag, or records it for the wrong file, then Emacs cannot possibly

find its definition. However, if the position recorded in the tag table becomes a little bit wrong

(due to some editing in the file that the tag definition is in), the only consequence is to slow down

finding the tag slightly. Even if the stored position is very wrong, Emacs will still find the tag, but

it must search the entire file for it.

So you should update a tag table when you define new tags that you want to have listed, or when

you move tag definitions from one file to another, or when changes become substantial. Normally

there is no need to update the tag table after each edit, or even every day.

21.11.3 Selecting a Tag Table

Emacs has at any time one selected tag table, and all the commands for working with tag tables

Chapter 21: Editing Programs 157

use the selected one. To select a tag table, type M-x visit-tags-table, which reads the tag table

file name as an argument. The name ‘TAGS’ in the default directory is used as the default file name.

All this command does is store the file name in the variable tags-file-name. Emacs does not

actually read in the tag table contents until you try to use them. Setting this variable yourself is

just as good as using visit-tags-table. The variable’s initial value is nil; this value tells all the

commands for working with tag tables that they must ask for a tag table file name to use.

21.11.4 Finding a Tag

The most important thing that a tag table enables you to do is to find the definition of a specific

tag.

M-. tag Find first definition of tag (find-tag).

C-u M-. Find next alternate definition of last tag specified.

C-x 4 . tag

Find first definition of tag, but display it in another window (find-tag-other-window).

M-. (find-tag) is the command to find the definition of a specified tag. It searches through

the tag table for that tag, as a string, and then uses the tag table info to determine the file that

the definition is in and the approximate character position in the file of the definition. Then

find-tag visits that file, moves point to the approximate character position, and starts searching

ever-increasing distances away for the the text that should appear at the beginning of the definition.

If an empty argument is given (just type RET), the sexp in the buffer before or around point is

used as the name of the tag to find. See Section 21.2 [Lists], page 140, for info on sexps.

The argument to find-tag need not be the whole tag name; it can be a substring of a tag name.

However, there can be many tag names containing the substring you specify. Since find-tag works

by searching the text of the tag table, it finds the first tag in the table that the specified substring

appears in. The way to find other tags that match the substring is to give find-tag a numeric

argument, as in C-u M-.; this does not read a tag name, but continues searching the tag table’s

text for another tag containing the same substring last used. If you have a real META key, M-0 M-.

is an easier alternative to C-u M-..

Like most commands that can switch buffers, find-tag has another similar command that

displays the new buffer in another window. C-x 4 . invokes the function find-tag-other-window.

(This key sequence ends with a period.)

158 GNU Emacs Manual

Emacs comes with a tag table file ‘TAGS’, in the directory containing Lisp libraries, which includes

all the Lisp libraries and all the C sources of Emacs. By specifying this file with visit-tags-table

and then using M-. you can quickly look at the source of any Emacs function.

21.11.5 Searching and Replacing with Tag Tables

The commands in this section visit and search all the files listed in the selected tag table, one

by one. For these commands, the tag table serves only to specify a sequence of files to search. A

related command is M-x grep (see Section 22.1 [Compilation], page 167).

M-x tags-search

Search for the specified regexp through the files in the selected tag table.

M-x tags-query-replace

Perform a query-replace on each file in the selected tag table.

M-, Restart one of the commands above, from the current location of point (tags-loop-

continue).

M-x tags-search reads a regexp using the minibuffer, then visits the files of the selected tag

table one by one, and searches through each one for that regexp. It displays the name of the file

being searched so you can follow its progress. As soon as an occurrence is found, tags-search

returns.

Having found one match, you probably want to find all the rest. To find one more match,

type M-, (tags-loop-continue) to resume the tags-search. This searches the rest of the current

buffer, followed by the remaining files of the tag table.

M-x tags-query-replace performs a single query-replace through all the files in the tag table.

It reads a string to search for and a string to replace with, just like ordinary M-x query-replace.

It searches much like M-x tags-search but repeatedly, processing matches according to your input.

See Section 13.7 [Replace], page 78, for more information on query-replace.

It is possible to get through all the files in the tag table with a single invocation of M-x tags-

query-replace. But since any unrecognized character causes the command to exit, you may need

to continue where you left off. M-, can be used for this. It resumes the last tags search or replace

command that you did.

It may have struck you that tags-search is a lot like grep. You can also run grep itself as an

inferior of Emacs and have Emacs show you the matching lines one by one. This works mostly the

Chapter 21: Editing Programs 159

same as running a compilation and having Emacs show you where the errors were. See Section 22.1

[Compilation], page 167.

21.11.6 Stepping Through a Tag Table

If you wish to process all the files in the selected tag table, but M-x tags-search and M-x

tags-query-replace in particular are not what you want, you can use M-x next-file.

C-u M-x next-file

With a numeric argument, regardless of its value, visit the first file in the tag table,

and prepare to advance sequentially by files.

M-x next-file

Visit the next file in the selected tag table.

21.11.7 Tag Table Inquiries

M-x list-tags

Display a list of the tags defined in a specific program file.

M-x tags-apropos

Display a list of all tags matching a specified regexp.

M-x list-tags reads the name of one of the files described by the selected tag table, and displays

a list of all the tags defined in that file. The “file name” argument is really just a string to compare

against the names recorded in the tag table; it is read as a string rather than as a file name.

Therefore, completion and defaulting are not available, and you must enter the string the same

way it appears in the tag table. Do not include a directory as part of the file name unless the file

name recorded in the tag table includes a directory.

M-x tags-apropos is like apropos for tags. It reads a regexp, then finds all the tags in the

selected tag table whose entries match that regexp, and displays the tag names found.

21.12 Fortran Mode

Fortran mode provides special motion commands for Fortran statements and subprograms,

and indentation commands that understand Fortran conventions of nesting, line numbers and

continuation statements.

160 GNU Emacs Manual

Special commands for comments are provided because Fortran comments are unlike those of

other languages.

Built-in abbrevs optionally save typing when you insert Fortran keywords.

Use M-x fortran-mode to switch to this major mode. Doing so calls the value of fortran-

mode-hook as a function of no arguments if that variable has a value that is not nil.

Fortran mode was contributed by Michael Prange.

21.12.1 Motion Commands

Fortran mode provides special commands to move by subprograms (functions and subroutines)

and by statements. There is also a command to put the region around one subprogram, convenient

for killing it or moving it.

C-M-a Move to beginning of subprogram

(beginning-of-fortran-subprogram).

C-M-e Move to end of subprogram (end-of-fortran-subprogram).

C-M-h Put point at beginning of subprogram and mark at end (mark-fortran-subprogram).

C-c C-n Move to beginning of current or next statement (fortran-next-statement).

C-c C-p Move to beginning of current or previous statement (fortran-previous-statement).

21.12.2 Fortran Indentation

Special commands and features are needed for indenting Fortran code in order to make sure

various syntactic entities (line numbers, comment line indicators and continuation line flags) appear

in the columns that are required for standard Fortran.

21.12.2.1 Fortran Indentation Commands

TAB Indent the current line (fortran-indent-line).

M-LFD Break the current line and set up a continuation line.

Chapter 21: Editing Programs 161

C-M-q Indent all the lines of the subprogram point is in (fortran-indent-subprogram).

TAB is redefined by Fortran mode to reindent the current line for Fortran (fortran-indent-

line). Line numbers and continuation markers are indented to their required columns, and the

body of the statement is independently indented based on its nesting in the program.

The key C-M-q is redefined as fortran-indent-subprogram, a command to reindent all the

lines of the Fortran subprogram (function or subroutine) containing point.

The key M-LFD is redefined as fortran-split-line, a command to split a line in the appropriate

fashion for Fortran. In a non-comment line, the second half becomes a continuation line and is

indented accordingly. In a comment line, both halves become separate comment lines.

21.12.2.2 Line Numbers and Continuation

If a number is the first non-whitespace in the line, it is assumed to be a line number and is moved

to columns 0 through 4. (Columns are always counted from 0 in GNU Emacs.) If the text on the

line starts with the conventional Fortran continuation marker ‘$’, it is moved to column 5. If the

text begins with any non whitespace character in column 5, it is assumed to be an unconventional

continuation marker and remains in column 5.

Line numbers of four digits or less are normally indented one space. This amount is controlled

by the variable fortran-line-number-indent which is the maximum indentation a line number

can have. Line numbers are indented to right-justify them to end in column 4 unless that would

require more than this maximum indentation. The default value of the variable is 1.

Simply inserting a line number is enough to indent it according to these rules. As each digit

is inserted, the indentation is recomputed. To turn off this feature, set the variable fortran-

electric-line-number to nil. Then inserting line numbers is like inserting anything else.

21.12.2.3 Syntactic Conventions

Fortran mode assumes that you follow certain conventions that simplify the task of understand-

ing a Fortran program well enough to indent it properly:

• Two nested ‘do’ loops never share a ‘continue’ statement.

162 GNU Emacs Manual

• The same character appears in column 5 of all continuation lines, and this character is the

value of the variable fortran-continuation-char. By default, this character is ‘$’.

If you fail to follow these conventions, the indentation commands may indent some lines unaes-

thetically. However, a correct Fortran program will retain its meaning when reindented even if the

conventions are not followed.

21.12.2.4 Variables for Fortran Indentation

Several additional variables control how Fortran indentation works.

fortran-do-indent

Extra indentation within each level of ‘do’ statement (default 3).

fortran-if-indent

Extra indentation within each level of ‘if’ statement (default 3).

fortran-continuation-indent

Extra indentation for bodies of continuation lines (default 5).

fortran-check-all-num-for-matching-do

If this is nil, indentation assumes that each ‘do’ statement ends on a ‘continue’ state-

ment. Therefore, when computing indentation for a statement other than ‘continue’,

it can save time by not checking for a ‘do’ statement ending there. If this is non-nil,

indenting any numbered statement must check for a ‘do’ that ends there. The default

is nil.

fortran-minimum-statement-indent

Minimum indentation for fortran statements. For standard Fortran, this is 6. State-

ment bodies will never be indented less than this much.

21.12.3 Comments

The usual Emacs comment commands assume that a comment can follow a line of code. In

Fortran, the standard comment syntax requires an entire line to be just a comment. Therefore,

Fortran mode replaces the standard Emacs comment commands and defines some new variables.

Fortran mode can also handle a nonstandard comment syntax where comments start with ‘!’

and can follow other text. Because only some Fortran compilers accept this syntax, Fortran mode

will not insert such comments unless you have said in advance to do so. To do this, set the variable

comment-start to ‘"!"’ (see Section 28.2 [Variables], page 218).

Chapter 21: Editing Programs 163

M-; Align comment or insert new comment (fortran-comment-indent).

C-x ; Applies to nonstandard ‘!’ comments only.

C-c ; Turn all lines of the region into comments, or (with arg) turn them back into real code

(fortran-comment-region).

M-; in Fortran mode is redefined as the command fortran-comment-indent. Like the usual M-;

command, this recognizes any kind of existing comment and aligns its text appropriately; if there

is no existing comment, a comment is inserted and aligned. But inserting and aligning comments

are not the same in Fortran mode as in other modes.

When a new comment must be inserted, if the current line is blank, a full-line comment is

inserted. On a non-blank line, a nonstandard ‘!’ comment is inserted if you have said you want to

use them. Otherwise a full-line comment is inserted on a new line before the current line.

Nonstandard ‘!’ comments are aligned like comments in other languages, but full-line comments

are different. In a standard full-line comment, the comment delimiter itself must always appear in

column zero. What can be aligned is the text within the comment. You can choose from three

styles of alignment by setting the variable fortran-comment-indent-style to one of these values:

fixed The text is aligned at a fixed column, which is the value of fortran-comment-line-

column. This is the default.

relative The text is aligned as if it were a line of code, but with an additional fortran-comment-

line-column columns of indentation.

nil Text in full-line columns is not moved automatically.

In addition, you can specify the character to be used to indent within full-line comments by

setting the variable fortran-comment-indent-char to the character you want to use.

Fortran mode introduces two variables comment-line-start and comment-line-start-skip

which play for full-line comments the same roles played by comment-start and comment-start-

skip for ordinary text-following comments. Normally these are set properly by Fortran mode so

you do not need to change them.

The normal Emacs comment command C-x ; has not been redefined. If you use ‘!’ comments,

this command can be used with them. Otherwise it is useless in Fortran mode.

The command C-c ; (fortran-comment-region) turns all the lines of the region into comments

by inserting the string ‘C$$$’ at the front of each one. With a numeric arg, the region is turned

164 GNU Emacs Manual

back into live code by deleting ‘C$$$’ from the front of each line in it. The string used for these

comments can be controlled by setting the variable fortran-comment-region. Note that here we

have an example of a command and a variable with the same name; these two uses of the name

never conflict because in Lisp and in Emacs it is always clear from the context which one is meant.

21.12.4 Columns

C-c C-r Displays a “column ruler” momentarily above the current line (fortran-column-

ruler).

C-c C-w Splits the current window horizontally so that it is 72 columns wide. This may help

you avoid going over that limit (fortran-window-create).

The command C-c C-r (fortran-column-ruler) shows a column ruler momentarily above the

current line. The comment ruler is two lines of text that show you the locations of columns with

special significance in Fortran programs. Square brackets show the limits of the columns for line

numbers, and curly brackets show the limits of the columns for the statement body. Column

numbers appear above them.

Note that the column numbers count from zero, as always in GNU Emacs. As a result, the

numbers may not be those you are familiar with; but the actual positions in the line are standard

Fortran.

The text used to display the column ruler is the value of the variable fortran-comment-ruler.

By changing this variable, you can change the display.

For even more help, use C-c C-w (fortran-window-create), a command which splits the current

window horizontally, making a window 72 columns wide. By editing in this window you can

immediately see when you make a line too wide to be correct Fortran.

21.12.5 Fortran Keyword Abbrevs

Fortran mode provides many built-in abbrevs for common keywords and declarations. These

are the same sort of abbrev that you can define yourself. To use them, you must turn on Abbrev

mode. see Chapter 23 [Abbrevs], page 177.

The built-in abbrevs are unusual in one way: they all start with a semicolon. You cannot

Chapter 21: Editing Programs 165

normally use semicolon in an abbrev, but Fortran mode makes this possible by changing the syntax

of semicolon to “word constituent”.

For example, one built-in Fortran abbrev is ‘;c’ for ‘continue’. If you insert ‘;c’ and then

insert a punctuation character such as a space or a newline, the ‘;c’ will change automatically to

‘continue’, provided Abbrev mode is enabled.

Type ‘;?’ or ‘;C-h’ to display a list of all the built-in Fortran abbrevs and what they stand for.

166 GNU Emacs Manual

Chapter 22: Compiling and Testing Programs 167

22 Compiling and Testing Programs

The previous chapter discusses the Emacs commands that are useful for making changes in

programs. This chapter deals with commands that assist in the larger process of developing and

maintaining programs.

22.1 Running ‘make’, or Compilers Generally

Emacs can run compilers for noninteractive languages such as C and Fortran as inferior processes,

feeding the error log into an Emacs buffer. It can also parse the error messages and visit the files

in which errors are found, moving point right to the line where the error occurred.

M-x compile

Run a compiler asynchronously under Emacs, with error messages to ‘*compilation*’

buffer.

M-x grep Run grep asynchronously under Emacs, with matching lines listed in the buffer named

‘*compilation*’.

M-x kill-compiler

M-x kill-grep

Kill the running compilation or grep subprocess.

C-x ‘ Visit the locus of the next compiler error message or grep match.

To run make or another compiler, do M-x compile. This command reads a shell command line

using the minibuffer, and then executes the specified command line in an inferior shell with output

going to the buffer named ‘*compilation*’. The current buffer’s default directory is used as the

working directory for the execution of the command; normally, therefore, the makefile comes from

this directory.

When the shell command line is read, the minibuffer appears containing a default command

line, which is the command you used the last time you did M-x compile. If you type just RET, the

same command line is used again. The first M-x compile provides make -k as the default. The

default is taken from the variable compile-command; if the appropriate compilation command for

a file is something other than make -k, it can be useful to have the file specify a local value for

compile-command (see Section 28.2.4 [File Variables], page 221).

Starting a compilation causes the buffer ‘*compilation*’ to be displayed in another window

but not selected. Its mode line tells you whether compilation is finished, with the word ‘run’ or

168 GNU Emacs Manual

‘exit’ inside the parentheses. You do not have to keep this buffer visible; compilation continues in

any case.

To kill the compilation process, do M-x kill-compilation. You will see that the mode line of

the ‘*compilation*’ buffer changes to say ‘signal’ instead of ‘run’. Starting a new compilation

also kills any running compilation, as only one can exist at any time. However, this requires

confirmation before actually killing a compilation that is running.

To parse the compiler error messages, type C-x ‘ (next-error). The character following the

C-x is the grave accent, not the single quote. This command displays the buffer ‘*compilation*’

in one window and the buffer in which the next error occurred in another window. Point in that

buffer is moved to the line where the error was found. The corresponding error message is scrolled

to the top of the window in which ‘*compilation*’ is displayed.

The first time C-x ‘ is used after the start of a compilation, it parses all the error messages,

visits all the files that have error messages, and makes markers pointing at the lines that the error

messages refer to. Then it moves to the first error message location. Subsequent uses of C-x ‘

advance down the data set up by the first use. When the preparsed error messages are exhausted,

the next C-x ‘ checks for any more error messages that have come in; this is useful if you start

editing the compiler errors while the compilation is still going on. If no more error messages have

come in, C-x ‘ reports an error.

C-u C-x ‘ discards the preparsed error message data and parses the ‘*compilation*’ buffer

over again, then displaying the first error. This way, you can process the same set of errors again.

Instead of running a compiler, you can run grep and see the lines on which matches were found.

To do this, type M-x grep with an argument line that contains the same arguments you would give

grep when running it normally: a grep-style regexp (usually in singlequotes to quote the shell’s

special characters) followed by filenames which may use wildcards. The output from grep goes in

the ‘*compilation*’ buffer and the lines that matched can be found with C-x ‘ as if they were

compilation errors.

Note: a shell is used to run the compile command, but the shell is told that it should be

noninteractive. This means in particular that the shell starts up with no prompt. If you find your

usual shell prompt making an unsightly appearance in the ‘*compilation*’ buffer, it means you

have made a mistake in your shell’s init file (‘.cshrc’ or ‘.shrc’ or . . .) by setting the prompt

unconditionally. The shell init file should set the prompt only if there already is a prompt. In csh,

here is how to do it:

Chapter 22: Compiling and Testing Programs 169

if ($?prompt) set prompt = ...

22.2 Major Modes for Lisp

Emacs has four different major modes for Lisp. They are the same in terms of editing commands,

but differ in the commands for executing Lisp expressions.

Emacs-Lisp mode

The mode for editing source files of programs to run in Emacs Lisp. This mode defines

C-M-x to evaluate the current defun. See Section 22.3 [Lisp Libraries], page 169.

Lisp Interaction mode

The mode for an interactive session with Emacs Lisp. It defines LFD to evaluate the

sexp before point and insert its value in the buffer. See Section 22.6 [Lisp Interaction],

page 175.

Lisp mode The mode for editing source files of programs that run in Lisps other than Emacs Lisp.

This mode defines C-M-x to send the current defun to an inferior Lisp process. See

Section 22.7 [External Lisp], page 175.

Inferior Lisp mode

The mode for an interactive session with an inferior Lisp process. This mode combines

the special features of Lisp mode and Shell mode (see Section 27.4.3 [Shell Mode],

page 213).

Scheme mode

Like Lisp mode but for Scheme programs.

Inferior Scheme mode

The mode for an interactive session with an inferior Scheme process.

22.3 Libraries of Lisp Code for Emacs

Lisp code for Emacs editing commands is stored in files whose names conventionally end in

‘.el’. This ending tells Emacs to edit them in Emacs-Lisp mode (see Section 22.2 [Lisp Modes],

page 169).

22.3.1 Loading Libraries

To execute a file of Emacs Lisp, use M-x load-file. This command reads a file name using the

170 GNU Emacs Manual

minibuffer and then executes the contents of that file as Lisp code. It is not necessary to visit the

file first; in any case, this command reads the file as found on disk, not text in an Emacs buffer.

Once a file of Lisp code is installed in the Emacs Lisp library directories, users can load it using

M-x load-library. Programs can load it by calling load-library, or with load, a more primitive

function that is similar but accepts some additional arguments.

M-x load-library differs from M-x load-file in that it searches a sequence of directories and

tries three file names in each directory. The three names are, first, the specified name with ‘.elc’

appended; second, with ‘.el’ appended; third, the specified name alone. A ‘.elc’ file would be the

result of compiling the Lisp file into byte code; it is loaded if possible in preference to the Lisp file

itself because the compiled file will load and run faster.

Because the argument to load-library is usually not in itself a valid file name, file name

completion is not available. Indeed, when using this command, you usually do not know exactly

what file name will be used.

The sequence of directories searched by M-x load-library is specified by the variable load-

path, a list of strings that are directory names. The default value of the list contains the directory

where the Lisp code for Emacs itself is stored. If you have libraries of your own, put them in a

single directory and add that directory to load-path. nil in this list stands for the current default

directory, but it is probably not a good idea to put nil in the list. If you find yourself wishing that

nil were in the list, most likely what you really want to do is use M-x load-file this once.

Often you do not have to give any command to load a library, because the commands defined in

the library are set up to autoload that library. Running any of those commands causes load to be

called to load the library; this replaces the autoload definitions with the real ones from the library.

If autoloading a file does not finish, either because of an error or because of a C-g quit, all

function definitions made by the file are undone automatically. So are any calls to provide. As

a consequence, if you use one of the autoloadable commands again, the entire file will be loaded

a second time. This prevents problems where the command is no longer autoloading but it works

wrong because not all the file was loaded. Function definitions are undone only for autoloading;

explicit calls to load do not undo anything if loading is not completed.

22.3.2 Compiling Libraries

Emacs Lisp code can be compiled into byte-code which loads faster, takes up less space when

Chapter 22: Compiling and Testing Programs 171

loaded, and executes faster.

The way to make a byte-code compiled file from an Emacs-Lisp source file is with M-x byte-

compile-file. The default argument for this function is the file visited in the current buffer. It

reads the specified file, compiles it into byte code, and writes an output file whose name is made by

appending ‘c’ to the input file name. Thus, the file ‘rmail.el’ would be compiled into ‘rmail.elc’.

To recompile the changed Lisp files in a directory, use M-x byte-recompile-directory. Specify

just the directory name as an argument. Each ‘.el’ file that has been byte-compiled before is byte-

compiled again if it has changed since the previous compilation. A numeric argument to this

command tells it to offer to compile each ‘.el’ file that has not already been compiled. You must

answer y or n to each offer.

Emacs can be invoked noninteractively from the shell to do byte compilation with the aid of the

function batch-byte-compile. In this case, the files to be compiled are specified with command-

line arguments. Use a shell command of the form

emacs -batch -f batch-byte-compile files...

Directory names may also be given as arguments; byte-recompile-directory is invoked (in ef-

fect) on each such directory. batch-byte-compile uses all the remaining command-line arguments

as file or directory names, then kills the Emacs process.

M-x disassemble explains the result of byte compilation. Its argument is a function name. It

displays the byte-compiled code in a help window in symbolic form, one instruction per line. If the

instruction refers to a variable or constant, that is shown too.

22.3.3 Converting Mocklisp to Lisp

GNU Emacs can run Mocklisp files by converting them to Emacs Lisp first. To convert a

Mocklisp file, visit it and then type M-x convert-mocklisp-buffer. Then save the resulting

buffer of Lisp file in a file whose name ends in ‘.el’ and use the new file as a Lisp library.

It does not currently work to byte-compile converted Mocklisp code. This is because converted

Mocklisp code uses some special Lisp features to deal with Mocklisp’s incompatible ideas of how

arguments are evaluated and which values signify “true” or “false”.

172 GNU Emacs Manual

22.4 Evaluating Emacs-Lisp Expressions

Lisp programs intended to be run in Emacs should be edited in Emacs-Lisp mode; this will

happen automatically for file names ending in ‘.el’. By contrast, Lisp mode itself is used for

editing Lisp programs intended for other Lisp systems. Emacs-Lisp mode can be selected with the

command M-x emacs-lisp-mode.

For testing of Lisp programs to run in Emacs, it is useful to be able to evaluate part of the

program as it is found in the Emacs buffer. For example, after changing the text of a Lisp function

definition, evaluating the definition installs the change for future calls to the function. Evaluation

of Lisp expressions is also useful in any kind of editing task for invoking noninteractive functions

(functions that are not commands).

M-ESC Read a Lisp expression in the minibuffer, evaluate it, and print the value in the mini-

buffer (eval-expression).

C-x C-e Evaluate the Lisp expression before point, and print the value in the minibuffer (eval-

last-sexp).

C-M-x Evaluate the defun containing or after point, and print the value in the minibuffer

(eval-defun).

M-x eval-region

Evaluate all the Lisp expressions in the region.

M-x eval-current-buffer

Evaluate all the Lisp expressions in the buffer.

M-ESC (eval-expression) is the most basic command for evaluating a Lisp expression interac-

tively. It reads the expression using the minibuffer, so you can execute any expression on a buffer

regardless of what the buffer contains. When the expression is evaluated, the current buffer is once

again the buffer that was current when M-ESC was typed.

M-ESC can easily confuse users who do not understand it, especially on keyboards with autorepeat

where it can result from holding down the ESC key for too long. Therefore, eval-expression is

normally a disabled command. Attempting to use this command asks for confirmation and gives

you the option of enabling it; once you enable the command, confirmation will no longer be required

for it. See Section 28.4.3 [Disabling], page 229.

In Emacs-Lisp mode, the key C-M-x is bound to the function eval-defun, which parses the

defun containing or following point as a Lisp expression and evaluates it. The value is printed in

the echo area. This command is convenient for installing in the Lisp environment changes that you

have just made in the text of a function definition.

Chapter 22: Compiling and Testing Programs 173

The command C-x C-e (eval-last-sexp) performs a similar job but is available in all major

modes, not just Emacs-Lisp mode. It finds the sexp before point, reads it as a Lisp expression,

evaluates it, and prints the value in the echo area. It is sometimes useful to type in an expression

and then, with point still after it, type C-x C-e.

If C-M-x or C-x C-e is given a numeric argument, it prints the value by insertion into the current

buffer at point, rather than in the echo area. The argument value does not matter.

The most general command for evaluating Lisp expressions from a buffer is eval-region. M-x

eval-region parses the text of the region as one or more Lisp expressions, evaluating them one

by one. M-x eval-current-buffer is similar but evaluates the entire buffer. This is a reasonable

way to install the contents of a file of Lisp code that you are just ready to test. After finding and

fixing a bug, use C-M-x on each function that you change, to keep the Lisp world in step with the

source file.

22.5 The Emacs-Lisp Debugger

GNU Emacs contains a debugger for Lisp programs executing inside it. This debugger is nor-

mally not used; many commands frequently get Lisp errors when invoked in inappropriate contexts

(such as C-f at the end of the buffer) and it would be very unpleasant for that to enter a special de-

bugging mode. When you want to make Lisp errors invoke the debugger, you must set the variable

debug-on-error to non-nil. Quitting with C-g is not considered an error, and debug-on-error

has no effect on the handling of C-g. However, if you set debug-on-quit non-nil, C-g will invoke

the debugger. This can be useful for debugging an infinite loop; type C-g once the loop has had

time to reach its steady state. debug-on-quit has no effect on errors.

You can also cause the debugger to be entered when a specified function is called, or at a

particular place in Lisp code. Use M-x debug-on-entry with argument fun-name to cause function

fun-name to enter the debugger as soon as it is called. Use M-x cancel-debug-on-entry to make

the function stop entering the debugger when called. (Redefining the function also does this.) To

enter the debugger from some other place in Lisp code, you must insert the expression (debug)

there and install the changed code with C-M-x. See Section 22.4 [Lisp Eval], page 172.

When the debugger is entered, it displays the previously selected buffer in one window and a

buffer named ‘*Backtrace*’ in another window. The backtrace buffer contains one line for each

level of Lisp function execution currently going on. At the beginning of this buffer is a message

describing the reason that the debugger was invoked (such as, what error message if it was invoked

due to an error).

174 GNU Emacs Manual

The backtrace buffer is read-only, and is in a special major mode, Backtrace mode, in which

letters are defined as debugger commands. The usual Emacs editing commands are available; you

can switch windows to examine the buffer that was being edited at the time of the error, and you

can also switch buffers, visit files, and do any other sort of editing. However, the debugger is a

recursive editing level (see Section 27.1 [Recursive Edit], page 207) and it is wise to go back to the

backtrace buffer and exit the debugger officially when you don’t want to use it any more. Exiting

the debugger kills the backtrace buffer.

The contents of the backtrace buffer show you the functions that are executing and the arguments

that were given to them. It has the additional purpose of allowing you to specify a stack frame by

moving point to the line describing that frame. The frame whose line point is on is considered the

current frame. Some of the debugger commands operate on the current frame. Debugger commands

are mainly used for stepping through code an expression at a time. Here is a list of them.

c Exit the debugger and continue execution. In most cases, execution of the program

continues as if the debugger had never been entered (aside from the effect of any

variables or data structures you may have changed while inside the debugger). This

includes entry to the debugger due to function entry or exit, explicit invocation, quitting

or certain errors. Most errors cannot be continued; trying to continue one of them

causes the same error to occur again.

d Continue execution, but enter the debugger the next time a Lisp function is called. This

allows you to step through the subexpressions of an expression, seeing what values the

subexpressions compute and what else they do.

The stack frame made for the function call which enters the debugger in this way will

be flagged automatically for the debugger to be called when the frame is exited. You

can use the u command to cancel this flag.

b Set up to enter the debugger when the current frame is exited. Frames that will invoke

the debugger on exit are flagged with stars.

u Don’t enter the debugger when the current frame is exited. This cancels a b command

on that frame.

e Read a Lisp expression in the minibuffer, evaluate it, and print the value in the echo

area. This is the same as the command M-ESC, except that e is not normally disabled

like M-ESC.

q Terminate the program being debugged; return to top-level Emacs command execution.

If the debugger was entered due to a C-g but you really want to quit, not to debug,

use the q command.

r Return a value from the debugger. The value is computed by reading an expression

with the minibuffer and evaluating it.

The value returned by the debugger makes a difference when the debugger was invoked

Chapter 22: Compiling and Testing Programs 175

due to exit from a Lisp call frame (as requested with b); then the value specified in the

r command is used as the value of that frame.

The debugger’s return value also matters with many errors. For example, wrong-type-

argument errors will use the debugger’s return value instead of the invalid argument;

no-catch errors will use the debugger value as a throw tag instead of the tag that was

not found. If an error was signaled by calling the Lisp function signal, the debugger’s

return value is returned as the value of signal.

22.6 Lisp Interaction Buffers

The buffer ‘*scratch*’ which is selected when Emacs starts up is provided for evaluating Lisp

expressions interactively inside Emacs. Both the expressions you evaluate and their output goes in

the buffer.

The ‘*scratch*’ buffer’s major mode is Lisp Interaction mode, which is the same as Emacs-

Lisp mode except for one command, LFD. In Emacs-Lisp mode, LFD is an indentation command,

as usual. In Lisp Interaction mode, LFD is bound to eval-print-last-sexp. This function reads

the Lisp expression before point, evaluates it, and inserts the value in printed representation before

point.

Thus, the way to use the ‘*scratch*’ buffer is to insert Lisp expressions at the end, ending each

one with LFD so that it will be evaluated. The result is a complete typescript of the expressions

you have evaluated and their values.

The rationale for this feature is that Emacs must have a buffer when it starts up, but that

buffer is not useful for editing files since a new buffer is made for every file that you visit. The

Lisp interpreter typescript is the most useful thing I can think of for the initial buffer to do. M-x

lisp-interaction-mode will put any buffer in Lisp Interaction mode.

22.7 Running an External Lisp

Emacs has facilities for running programs in other Lisp systems. You can run a Lisp process

as an inferior of Emacs, and pass expressions to it to be evaluated. You can also pass changed

function definitions directly from the Emacs buffers in which you edit the Lisp programs to the

inferior Lisp process.

176 GNU Emacs Manual

To run an inferior Lisp process, type M-x run-lisp. This runs the program named lisp, the

same program you would run by typing lisp as a shell command, with both input and output

going through an Emacs buffer named ‘*lisp*’. That is to say, any “terminal output” from Lisp

will go into the buffer, advancing point, and any “terminal input” for Lisp comes from text in the

buffer. To give input to Lisp, go to the end of the buffer and type the input, terminated by RET.

The ‘*lisp*’ buffer is in Inferior Lisp mode, a mode which has all the special characteristics of

Lisp mode and Shell mode (see Section 27.4.3 [Shell Mode], page 213).

For the source files of programs to run in external Lisps, use Lisp mode. This mode can

be selected with M-x lisp-mode, and is used automatically for files whose names end in ‘.l’ or

‘.lisp’, as most Lisp systems usually expect.

When you edit a function in a Lisp program you are running, the easiest way to send the changed

definition to the inferior Lisp process is the key C-M-x. In Lisp mode, this runs the function lisp-

send-defun, which finds the defun around or following point and sends it as input to the Lisp

process. (Emacs can send input to any inferior process regardless of what buffer is current.)

Contrast the meanings of C-M-x in Lisp mode (for editing programs to be run in another Lisp

system) and Emacs-Lisp mode (for editing Lisp programs to be run in Emacs): in both modes

it has the effect of installing the function definition that point is in, but the way of doing so is

different according to where the relevant Lisp environment is found. See Section 22.2 [Lisp Modes],

page 169.

Chapter 23: Abbrevs 177

23 Abbrevs

An abbrev is a word which expands, if you insert it, into some different text. Abbrevs are

defined by the user to expand in specific ways. For example, you might define ‘foo’ as an abbrev

expanding to ‘find outer otter’. With this abbrev defined, you would be able to get ‘find outer

otter ’ into the buffer by typing f o o SPC.

Abbrevs expand only when Abbrev mode (a minor mode) is enabled. Disabling Abbrev mode

does not cause abbrev definitions to be forgotten, but they do not expand until Abbrev mode is

enabled again. The command M-x abbrev-mode toggles Abbrev mode; with a numeric argument,

it turns Abbrev mode on if the argument is positive, off otherwise. See Section 28.1 [Minor Modes],

page 217. abbrev-mode is also a variable; Abbrev mode is on when the variable is non-nil. The

variable abbrev-mode automatically becomes local to the current buffer when it is set.

Abbrev definitions can be mode-specific—active only in one major mode. Abbrevs can also have

global definitions that are active in all major modes. The same abbrev can have a global definition

and various mode-specific definitions for different major modes. A mode specific definition for the

current major mode overrides a global definition.

Abbrevs can be defined interactively during the editing session. Lists of abbrev definitions can

also be saved in files and reloaded in later sessions. Some users keep extensive lists of abbrevs that

they load in every session.

A second kind of abbreviation facility is called the dynamic expansion. Dynamic abbrev expan-

sion happens only when you give an explicit command and the result of the expansion depends

only on the current contents of the buffer. See Section 23.5 [Dynamic Abbrevs], page 181.

23.1 Defining Abbrevs

C-x + Define an abbrev to expand into some text before point (add-global-abbrev).

C-x C-a Similar, but define an abbrev available only in the current major mode (add-mode-

abbrev).

C-x - Define a word in the buffer as an abbrev (inverse-add-global-abbrev).

C-x C-h Define a word in the buffer as a mode-specific abbrev (inverse-add-mode-abbrev).

M-x kill-all-abbrevs

After this command, there are no abbrev definitions in effect.

178 GNU Emacs Manual

The usual way to define an abbrev is to enter the text you want the abbrev to expand to,

position point after it, and type C-x + (add-global-abbrev). This reads the abbrev itself using

the minibuffer, and then defines it as an abbrev for one or more words before point. Use a numeric

argument to say how many words before point should be taken as the expansion. For example, to

define the abbrev ‘foo’ as mentioned above, insert the text ‘find outer otter’ and then type C-u

3 C-x + f o o RET.

An argument of zero to C-x + means to use the contents of the region as the expansion of the

abbrev being defined.

The command C-x C-a (add-mode-abbrev) is similar, but defines a mode-specific abbrev. Mode

specific abbrevs are active only in a particular major mode. C-x C-a defines an abbrev for the major

mode in effect at the time C-x C-a is typed. The arguments work the same as for C-x +.

If the text of the abbrev you want is already in the buffer instead of the expansion, use com-

mand C-x - (inverse-add-global-abbrev) instead of C-x +, or use C-x C-h (inverse-add-mode-

abbrev) instead of C-x C-a. These commands are called “inverse” because they invert the meaning

of the argument found in the buffer and the argument read using the minibuffer.

To change the definition of an abbrev, just add the new definition. You will be asked to confirm

if the abbrev has a prior definition. To remove an abbrev definition, give a negative argument to

C-x + or C-x C-a. You must choose the command to specify whether to kill a global definition or

a mode-specific definition for the current mode, since those two definitions are independent for one

abbrev.

M-x kill-all-abbrevs removes all the abbrev definitions there are.

23.2 Controlling Abbrev Expansion

An abbrev expands whenever it is present in the buffer just before point and a self-inserting

punctuation character (SPC, comma, etc.) is typed. Most often the way an abbrev is used is to

insert the abbrev followed by punctuation.

Abbrev expansion preserves case; thus, ‘foo’ expands into ‘find outer otter’; ‘Foo’ into ‘Find

outer otter’, and ‘FOO’ into ‘FIND OUTER OTTER’ or ‘Find Outer Otter’ according to the variable

abbrev-all-caps (a non-nil value chooses the first of the two expansions).

These two commands are used to control abbrev expansion:

Chapter 23: Abbrevs 179

M-’ Separate a prefix from a following abbrev to be expanded (abbrev-prefix-mark).

C-x ’ Expand the abbrev before point (expand-abbrev). This is effective even when Abbrev

mode is not enabled.

M-x unexpand-abbrev

Undo last abbrev expansion.

M-x expand-region-abbrevs

Expand some or all abbrevs found in the region.

You may wish to expand an abbrev with a prefix attached; for example, if ‘cnst’ expands into

‘construction’, you might want to use it to enter ‘reconstruction’. It does not work to type

recnst, because that is not necessarily a defined abbrev. What does work is to use the command

M-’ (abbrev-prefix-mark) in between the prefix ‘re’ and the abbrev ‘cnst’. First, insert ‘re’.

Then type M-’; this inserts a minus sign in the buffer to indicate that it has done its work. Then

insert the abbrev ‘cnst’; the buffer now contains ‘re-cnst’. Now insert a punctuation character

to expand the abbrev ‘cnst’ into ‘construction’. The minus sign is deleted at this point, because

M-’ left word for this to be done. The resulting text is the desired ‘reconstruction’.

If you actually want the text of the abbrev in the buffer, rather than its expansion, you can

accomplish this by inserting the following punctuation with C-q. Thus, foo C-q - leaves ‘foo-’ in

the buffer.

If you expand an abbrev by mistake, you can undo the expansion (replace the expansion by

the original abbrev text) with M-x unexpand-abbrev. C-_ (undo) can also be used to undo the

expansion; but first it will undo the insertion of the following punctuation character!

M-x expand-region-abbrevs searches through the region for defined abbrevs, and for each one

found offers to replace it with its expansion. This command is useful if you have typed in text using

abbrevs but forgot to turn on Abbrev mode first. It may also be useful together with a special set

of abbrev definitions for making several global replacements at once. This command is effective

even if Abbrev mode is not enabled.

23.3 Examining and Editing Abbrevs

M-x list-abbrevs

Print a list of all abbrev definitions.

M-x edit-abbrevs

Edit a list of abbrevs; you can add, alter or remove definitions.

180 GNU Emacs Manual

The output from M-x list-abbrevs looks like this:

(lisp-mode-abbrev-table)
"dk" 0 "define-key"
(global-abbrev-table)
"dfn" 0 "definition"

(Some blank lines of no semantic significance, and some other abbrev tables, have been omitted.)

A line containing a name in parentheses is the header for abbrevs in a particular abbrev table;

global-abbrev-table contains all the global abbrevs, and the other abbrev tables that are named

after major modes contain the mode-specific abbrevs.

Within each abbrev table, each nonblank line defines one abbrev. The word at the beginning

is the abbrev. The number that appears is the number of times the abbrev has been expanded.

Emacs keeps track of this to help you see which abbrevs you actually use, in case you decide to

eliminate those that you don’t use often. The string at the end of the line is the expansion.

M-x edit-abbrevs allows you to add, change or kill abbrev definitions by editing a list of them

in an Emacs buffer. The list has the same format described above. The buffer of abbrevs is

called ‘*Abbrevs*’, and is in Edit-Abbrevs mode. This mode redefines the key C-c C-c to install

the abbrev definitions as specified in the buffer. The command that does this is edit-abbrevs-

redefine. Any abbrevs not described in the buffer are eliminated when this is done.

edit-abbrevs is actually the same as list-abbrevs except that it selects the buffer ‘*Abbrevs*’

whereas list-abbrevs merely displays it in another window.

23.4 Saving Abbrevs

These commands allow you to keep abbrev definitions between editing sessions.

M-x write-abbrev-file

Write a file describing all defined abbrevs.

M-x read-abbrev-file

Read such a file and define abbrevs as specified there.

M-x quietly-read-abbrev-file

Similar but do not display a message about what is going on.

Chapter 23: Abbrevs 181

M-x define-abbrevs

Define abbrevs from buffer.

M-x insert-abbrevs

Insert all abbrevs and their expansions into the buffer.

M-x write-abbrev-file reads a file name using the minibuffer and writes a description of all

current abbrev definitions into that file. The text stored in the file looks like the output of M-x

list-abbrevs. This is used to save abbrev definitions for use in a later session.

M-x read-abbrev-file reads a file name using the minibuffer and reads the file, defining abbrevs

according to the contents of the file. M-x quietly-read-abbrev-file is the same except that it

does not display a message in the echo area saying that it is doing its work; it is actually useful

primarily in the ‘.emacs’ file. If an empty argument is given to either of these functions, the file

name used is the value of the variable abbrev-file-name, which is by default "~/.abbrev_defs".

Emacs will offer to save abbrevs automatically if you have changed any of them, whenever it

offers to save all files (for C-x s or C-x C-c). This feature can be inhibited by setting the variable

save-abbrevs to nil.

The commands M-x insert-abbrevs and M-x define-abbrevs are similar to the previous com-

mands but work on text in an Emacs buffer. M-x insert-abbrevs inserts text into the current

buffer before point, describing all current abbrev definitions; M-x define-abbrevs parses the entire

current buffer and defines abbrevs accordingly.

23.5 Dynamic Abbrev Expansion

The abbrev facility described above operates automatically as you insert text, but all abbrevs

must be defined explicitly. By contrast, dynamic abbrevs allow the meanings of abbrevs to be

determined automatically from the contents of the buffer, but dynamic abbrev expansion happens

only when you request it explicitly.

M-/ Expand the word in the buffer before point as a dynamic abbrev, by searching in the

buffer for words starting with that abbreviation (dabbrev-expand).

For example, if the buffer contains ‘does this follow ’ and you type f o M-/, the effect is to

insert ‘follow’ because that is the last word in the buffer that starts with ‘fo’. A numeric argument

to M-/ says to take the second, third, etc. distinct expansion found looking backward from point.

182 GNU Emacs Manual

Repeating M-/ searches for an alternative expansion by looking farther back. After the entire buffer

before point has been considered, the buffer after point is searched.

Dynamic abbrev expansion is completely independent of Abbrev mode; the expansion of a word

with M-/ is completely independent of whether it has a definition as an ordinary abbrev.

Chapter 24: Editing Pictures 183

24 Editing Pictures

If you want to create a picture made out of text characters (for example, a picture of the

division of a register into fields, as a comment in a program), use the command edit-picture to

enter Picture mode.

In Picture mode, editing is based on the quarter-plane model of text, according to which the

text characters lie studded on an area that stretches infinitely far to the right and downward. The

concept of the end of a line does not exist in this model; the most you can say is where the last

nonblank character on the line is found.

Of course, Emacs really always considers text as a sequence of characters, and lines really do

have ends. But in Picture mode most frequently-used keys are rebound to commands that simulate

the quarter-plane model of text. They do this by inserting spaces or by converting tabs to spaces.

Most of the basic editing commands of Emacs are redefined by Picture mode to do essentially

the same thing but in a quarter-plane way. In addition, Picture mode defines various keys starting

with the C-c prefix to run special picture editing commands.

One of these keys, C-c C-c, is pretty important. Often a picture is part of a larger file that

is usually edited in some other major mode. M-x edit-picture records the name of the previous

major mode, and then you can use the C-c C-c command (picture-mode-exit) to restore that

mode. C-c C-c also deletes spaces from the ends of lines, unless given a numeric argument.

The commands used in Picture mode all work in other modes (provided the ‘picture’ library is

loaded), but are not bound to keys except in Picture mode. Note that the descriptions below talk

of moving “one column” and so on, but all the picture mode commands handle numeric arguments

as their normal equivalents do.

Turning on Picture mode calls the value of the variable picture-mode-hook as a function, with

no arguments, if that value exists and is non-nil.

24.1 Basic Editing in Picture Mode

Most keys do the same thing in Picture mode that they usually do, but do it in a quarter-plane

style. For example, C-f is rebound to run picture-forward-column, which is defined to move

point one column to the right, by inserting a space if necessary, so that the actual end of the line

184 GNU Emacs Manual

makes no difference. C-b is rebound to run picture-backward-column, which always moves point

left one column, converting a tab to multiple spaces if necessary. C-n and C-p are rebound to

run picture-move-down and picture-move-up, which can either insert spaces or convert tabs as

necessary to make sure that point stays in exactly the same column. C-e runs picture-end-of-

line, which moves to after the last nonblank character on the line. There is no need to change

C-a, as the choice of screen model does not affect beginnings of lines.

Insertion of text is adapted to the quarter-plane screen model through the use of Overwrite

mode (see Section 28.1 [Minor Modes], page 217). Self-inserting characters replace existing text,

column by column, rather than pushing existing text to the right. RET runs picture-newline,

which just moves to the beginning of the following line so that new text will replace that line.

Deletion and killing of text are replaced with erasure. DEL (picture-backward-clear-column)

replaces the preceding character with a space rather than removing it. C-d (picture-clear-

column) does the same thing in a forward direction. C-k (picture-clear-line) really kills the

contents of lines, but does not ever remove the newlines from the buffer.

To do actual insertion, you must use special commands. C-o (picture-open-line) still creates

a blank line, but does so after the current line; it never splits a line. C-M-o, split-line, makes

sense in Picture mode, so it is not changed. LFD (picture-duplicate-line) inserts below the

current line another line with the same contents.

Real deletion can be done with C-w, or with C-c C-d (which is defined as delete-char, as C-d

is in other modes), or with one of the picture rectangle commands (see Section 24.4 [Rectangles in

Picture], page 185).

24.2 Controlling Motion after Insert

Since “self-inserting” characters in Picture mode just overwrite and move point, there is no

essential restriction on how point should be moved. Normally point moves right, but you can specify

any of the eight orthogonal or diagonal directions for motion after a “self-inserting” character. This

is useful for drawing lines in the buffer.

C-c < Move left after insertion (picture-movement-left).

C-c > Move right after insertion (picture-movement-right).

C-c ^ Move up after insertion (picture-movement-up).

C-c . Move down after insertion (picture-movement-down).

Chapter 24: Editing Pictures 185

C-c ‘ Move up and left (“northwest”) after insertion

(picture-movement-nw).

C-c ’ Move up and right (“northeast”) after insertion

(picture-movement-ne).

C-c / Move down and left (“southwest”) after insertion

(picture-movement-sw).

C-c \ Move down and right (“southeast”) after insertion

(picture-movement-se).

Two motion commands move based on the current Picture insertion direction. The command

C-c C-f (picture-motion) moves in the same direction as motion after “insertion” currently does,

while C-c C-b (picture-motion-reverse) moves in the opposite direction.

24.3 Picture Mode Tabs

Two kinds of tab-like action are provided in Picture mode. Context-based tabbing is done

with M-TAB (picture-tab-search). With no argument, it moves to a point underneath the next

“interesting” character that follows whitespace in the previous nonblank line. “Next” here means

“appearing at a horizontal position greater than the one point starts out at”. With an argument, as

in C-u M-TAB, this command moves to the next such interesting character in the current line. M-TAB

does not change the text; it only moves point. “Interesting” characters are defined by the variable

picture-tab-chars, which contains a string whose characters are all considered interesting. Its

default value is "!-~".

TAB itself runs picture-tab, which operates based on the current tab stop settings; it is the

Picture mode equivalent of tab-to-tab-stop. Normally it just moves point, but with a numeric

argument it clears the text that it moves over.

The context-based and tab-stop-based forms of tabbing are brought together by the command

C-c TAB, picture-set-tab-stops. This command sets the tab stops to the positions which M-TAB

would consider significant in the current line. The use of this command, together with TAB, can get

the effect of context-based tabbing. But M-TAB is more convenient in the cases where it is sufficient.

24.4 Picture Mode Rectangle Commands

Picture mode defines commands for working on rectangular pieces of the text in ways that fit with

186 GNU Emacs Manual

the quarter-plane model. The standard rectangle commands may also be useful (see Section 10.4

[Rectangles], page 59).

C-c C-k Clear out the region-rectangle (picture-clear-rectangle). With argument, kill it.

C-c C-w r Similar but save rectangle contents in register r first (picture-clear-rectangle-to-

register).

C-c C-y Copy last killed rectangle into the buffer by overwriting, with upper left corner at point

(picture-yank-rectangle). With argument, insert instead.

C-c C-x r Similar, but use the rectangle in register r

(picture-yank-rectangle-from-register).

The picture rectangle commands C-c C-k (picture-clear-rectangle) and C-c C-w (picture-

clear-rectangle-to-register) differ from the standard rectangle commands in that they nor-

mally clear the rectangle instead of deleting it; this is analogous with the way C-d is changed in

Picture mode.

However, deletion of rectangles can be useful in Picture mode, so these commands delete the

rectangle if given a numeric argument.

The Picture mode commands for yanking rectangles differ from the standard ones in overwriting

instead of inserting. This is the same way that Picture mode insertion of other text is different

from other modes. C-c C-y (picture-yank-rectangle) inserts (by overwriting) the rectangle that

was most recently killed, while C-c C-x (picture-yank-rectangle-from-register) does likewise

for the rectangle found in a specified register.

Chapter 25: Sending Mail 187

25 Sending Mail

To send a message in Emacs, you start by typing a command (C-x m) to select and initialize the

‘*mail*’ buffer. Then you edit the text and headers of the message in this buffer, and type another

command (C-c C-c) to send the message.

C-x m Begin composing a message to send (mail).

C-x 4 m Likewise, but display the message in another window (mail-other-window).

C-c C-c In Mail mode, send the message and switch to another buffer (mail-send-and-exit).

The command C-x m (mail) selects a buffer named ‘*mail*’ and initializes it with the skeleton

of an outgoing message. C-x 4 m (mail-other-window) selects the ‘*mail*’ buffer in a different

window, leaving the previous current buffer visible.

Because the mail composition buffer is an ordinary Emacs buffer, you can switch to other

buffers while in the middle of composing mail, and switch back later (or never). If you use the

C-x m command again when you have been composing another message but have not sent it, you

are asked to confirm before the old message is erased. If you answer n, the ‘*mail*’ buffer is left

selected with its old contents, so you can finish the old message and send it. C-u C-x m is another

way to do this. Sending the message marks the ‘*mail*’ buffer “unmodified”, which avoids the

need for confirmation when C-x m is next used.

If you are composing a message in the ‘*mail*’ buffer and want to send another message before

finishing the first, rename the ‘*mail*’ buffer using M-x rename-buffer (see Section 16.3 [Misc

Buffer], page 107).

25.1 The Format of the Mail Buffer

In addition to the text or contents, a message has header fields which say who sent it, when, to

whom, why, and so on. Some header fields such as the date and sender are created automatically

after the message is sent. Others, such as the recipient names, must be specified by you in order

to send the message properly.

Mail mode provides a few commands to help you edit some header fields, and some are preini-

tialized in the buffer automatically at times. You can insert or edit any header fields using ordinary

editing commands.

188 GNU Emacs Manual

The line in the buffer that says

--text follows this line--

is a special delimiter that separates the headers you have specified from the text. Whatever follows

this line is the text of the message; the headers precede it. The delimiter line itself does not appear

in the message actually sent. The text used for the delimiter line is controlled by the variable

mail-header-separator.

Here is an example of what the headers and text in the ‘*mail*’ buffer might look like.

To: rms@mc
CC: mly@mc, rg@oz
Subject: The Emacs Manual
--Text follows this line--
Please ignore this message.

25.2 Mail Header Fields

There are several header fields you can use in the ‘*mail*’ buffer. Each header field starts with

a field name at the beginning of a line, terminated by a colon. It does not matter whether you use

upper or lower case in the field name. After the colon and optional whitespace comes the contents

of the field.

‘To’ This field contains the mailing addresses to which the message is addressed.

‘Subject’ The contents of the ‘Subject’ field should be a piece of text that says what the message

is about. The reason ‘Subject’ fields are useful is that most mail-reading programs can

provide a summary of messages, listing the subject of each message but not its text.

‘CC’ This field contains additional mailing addresses to send the message to, but whose

readers should not regard the message as addressed to them.

‘BCC’ This field contains additional mailing addresses to send the message to, but which

should not appear in the header of the message actually sent.

‘FCC’ This field contains the name of one file (in Unix mail file format) to which a copy of

the message should be appended when the message is sent.

‘From’ Use the ‘From’ field to say who you are, when the account you are using to send the

mail is not your own. The contents of the ‘From’ field should be a valid mailing address,

since replies will normally go there.

Chapter 25: Sending Mail 189

‘Reply-To’

Use the ‘Reply-to’ field to direct replies to a different address, not your own. There

is no difference between ‘From’ and ‘Reply-to’ in their effect on where replies go, but

they convey a different meaning to the human who reads the message.

‘In-Reply-To’

This field contains a piece of text describing a message you are replying to. Some mail

systems can use this information to correlate related pieces of mail. Normally this field

is filled in by Rmail when you are replying to a message in Rmail, and you never need

to think about it (see Chapter 26 [Rmail], page 193).

The ‘To’, ‘CC’, ‘BCC’ and ‘FCC’ fields can appear any number of times, to specify many places to

send the message.

The ‘To’, ‘CC’, and ‘BCC’ fields can have continuation lines. All the lines starting with whitespace,

following the line on which the field starts, are considered part of the field. For example,

To: foo@here, this@there,
me@gnu.cambridge.mass.usa.earth.spiral3281

If you have a ‘~/.mailrc’ file, Emacs will scan it for mail aliases the first time you try to send

mail in an Emacs session. Aliases found in the ‘To’, ‘CC’, and ‘BCC’ fields will be expanded where

appropriate.

If the variable mail-archive-file-name is non-nil, it should be a string naming a file; every

time you start to edit a message to send, an ‘FCC’ field will be put in for that file. Unless you

remove the ‘FCC’ field, every message will be written into that file when it is sent.

25.3 Mail Mode

The major mode used in the ‘*mail*’ buffer is Mail mode, which is much like Text mode except

that various special commands are provided on the C-c prefix. These commands all have to do

specifically with editing or sending the message.

C-c C-s Send the message, and leave the ‘*mail*’ buffer selected (mail-send).

C-c C-c Send the message, and select some other buffer (mail-send-and-exit).

C-c C-f C-t

Move to the ‘To’ header field, creating one if there is none (mail-to).

190 GNU Emacs Manual

C-c C-f C-s

Move to the ‘Subject’ header field, creating one if there is none (mail-subject).

C-c C-f C-c

Move to the ‘CC’ header field, creating one if there is none (mail-cc).

C-c C-w Insert the file ‘~/.signature’ at the end of the message text (mail-signature).

C-c C-y Yank the selected message from Rmail (mail-yank-original). This command does

nothing unless your command to start sending a message was issued with Rmail.

C-c C-q Fill all paragraphs of yanked old messages, each individually (mail-fill-yanked-

message).

There are two ways to send the message. C-c C-s (mail-send) sends the message and marks

the ‘*mail*’ buffer unmodified, but leaves that buffer selected so that you can modify the message

(perhaps with new recipients) and send it again. C-c C-c (mail-send-and-exit) sends and then

deletes the window (if there is another window) or switches to another buffer. It puts the ‘*mail*’

buffer at the lowest priority for automatic reselection, since you are finished with using it. This is

the usual way to send the message.

Mail mode provides some other special commands that are useful for editing the headers and text

of the message before you send it. There are three commands defined to move point to particular

header fields, all based on the prefix C-c C-f (‘C-f’ is for “field”). They are C-c C-f C-t (mail-to)

to move to the ‘To’ field, C-c C-f C-s (mail-subject) for the ‘Subject’ field, and C-c C-f C-c

(mail-cc) for the ‘CC’ field. These fields have special motion commands because they are the most

common fields for the user to want to edit.

C-c C-w (mail-signature) adds a standard piece text at the end of the message to say more

about who you are. The text comes from the file ‘.signature’ in your home directory.

When mail sending is invoked from the Rmail mail reader using an Rmail command, C-c C-y can

be used inside the ‘*mail*’ buffer to insert the text of the message you are replying to. Normally

it indents each line of that message four spaces and eliminates most header fields. A numeric

argument specifies the number of spaces to indent. An argument of just C-u says not to indent

at all and not to eliminate anything. C-c C-y always uses the current message from the ‘RMAIL’

buffer, so you can insert several old messages by selecting one in ‘RMAIL’, switching to ‘*mail*’ and

yanking it, then switching back to ‘RMAIL’ to select another.

After using C-c C-y, the command C-c C-q (mail-fill-yanked-message) can be used to fill

the paragraphs of the yanked old message or messages. One use of C-c C-q fills all such paragraphs,

each one separately.

Chapter 25: Sending Mail 191

Turning on Mail mode (which C-x m does automatically) calls the value of text-mode-hook, if

it is not void or nil, and then calls the value of mail-mode-hook if that is not void or nil.

192 GNU Emacs Manual

Chapter 26: Reading Mail with Rmail 193

26 Reading Mail with Rmail

Rmail is an Emacs subsystem for reading and disposing of mail that you receive. Rmail stores

mail messages in files called Rmail files. Reading the message in an Rmail file is done in a special

major mode, Rmail mode, which redefines most letters to run commands for managing mail. To

enter Rmail, type M-x rmail. This reads your primary mail file, merges new mail in from your

inboxes, displays the first new message, and lets you begin reading.

Using Rmail in the simplest fashion, you have one Rmail file ‘~/RMAIL’ in which all of your mail

is saved. It is called your primary mail file. In more sophisticated usage, you can copy messages

into other Rmail files and then edit those files with Rmail.

Rmail displays only one message at a time. It is called the current message. Rmail mode’s

special commands can do such things as move to another message, delete the message, copy the

message into another file, or send a reply.

Within the Rmail file, messages are arranged sequentially in order of receipt. They are also

assigned consecutive integers as their message numbers. The number of the current message is

displayed in Rmail’s mode line, followed by the total number of messages in the file. You can move

to a message by specifying its message number using the j key (see Section 26.2 [Rmail Motion],

page 194).

Following the usual conventions of Emacs, changes in an Rmail file become permanent only

when the file is saved. You can do this with s (rmail-save), which also expunges deleted messages

from the file first (see Section 26.3 [Rmail Deletion], page 195). To save the file without expunging,

use C-x C-s. Rmail saves the Rmail file spontaneously when moving new mail from an inbox file

(see Section 26.4 [Rmail Inbox], page 197).

You can exit Rmail with q (rmail-quit); this expunges and saves the Rmail file and then

switches to another buffer. But there is no need to ‘exit’ formally. If you switch from Rmail to

editing in other buffers, and never happen to switch back, you have exited. Just make sure to save

the Rmail file eventually (like any other file you have changed). C-x s is a good enough way to do

this (see Section 15.3 [Saving], page 90).

26.1 Scrolling Within a Message

When Rmail displays a message that does not fit on the screen, it is necessary to scroll through

194 GNU Emacs Manual

it. This could be done with C-v, M-v and M-<, but in Rmail scrolling is so frequent that it deserves

to be easier to type.

SPC Scroll forward (scroll-up).

DEL Scroll backward (scroll-down).

. Scroll to start of message (rmail-beginning-of-message).

Since the most common thing to do while reading a message is to scroll through it by screenfuls,

Rmail makes SPC and DEL synonyms of C-v (scroll-up) and M-v (scroll-down)

The command . (rmail-beginning-of-message) scrolls back to the beginning of the selected

message. This is not quite the same as M-<: for one thing, it does not set the mark; for another, it

resets the buffer boundaries to the current message if you have changed them.

26.2 Moving Among Messages

The most basic thing to do with a message is to read it. The way to do this in Rmail is to

make the message current. You can make any message current given its message number using the

j command, but the usual thing to do is to move sequentially through the file, since this is the

order of receipt of messages. When you enter Rmail, you are positioned at the first new message

(new messages are those received since the previous use of Rmail), or at the last message if there

are no new messages this time. Move forward to see the other new messages; move backward to

reexamine old messages.

n Move to the next nondeleted message, skipping any intervening deleted

messages (rmail-next-undeleted-message).

p Move to the previous nondeleted message

(rmail-previous-undeleted-message).

M-n Move to the next message, including deleted messages (rmail-next-message).

M-p Move to the previous message, including deleted messages (rmail-previous-message).

j Move to the first message. With argument n, move to message number n (rmail-show-

message).

> Move to the last message (rmail-last-message).

M-s regexp RET

Move to the next message containing a match for regexp (rmail-search). If regexp is

empty, the last regexp used is used again.

Chapter 26: Reading Mail with Rmail 195

- M-s regexp RET

Move to the previous message containing a match for regexp. If regexp is empty, the

last regexp used is used again.

n and p are the usual way of moving among messages in Rmail. They move through the

messages sequentially, but skip over deleted messages, which is usually what you want to do.

Their command definitions are named rmail-next-undeleted-message and rmail-previous-

undeleted-message. If you do not want to skip deleted messages—for example, if you want to

move to a message to undelete it—use the variants M-n and M-p (rmail-next-message and rmail-

previous-message). A numeric argument to any of these commands serves as a repeat count.

In Rmail, you can specify a numeric argument by typing the digits. It is not necessary to type

C-u first.

The M-s (rmail-search) command is Rmail’s version of search. The usual incremental search

command C-s works in Rmail, but it searches only within the current message. The purpose of

M-s is to search for another message. It reads a regular expression (see Section 13.5 [Regexps],

page 74) nonincrementally, then searches starting at the beginning of the following message for a

match. The message containing the match is selected.

To search backward in the file for another message, give M-s a negative argument. In Rmail this

can be done with - M-s.

It is also possible to search for a message based on labels. See Section 26.7 [Rmail Labels],

page 199.

To move to a message specified by absolute message number, use j (rmail-show-message) with

the message number as argument. With no argument, j selects the first message. > (rmail-last-

message) selects the last message.

26.3 Deleting Messages

When you no longer need to keep a message, you can delete it. This flags it as ignorable, and

some Rmail commands will pretend it is no longer present; but it still has its place in the Rmail

file, and still has its message number.

Expunging the Rmail file actually removes the deleted messages. The remaining messages are

196 GNU Emacs Manual

renumbered consecutively. Expunging is the only action that changes the message number of any

message, except for undigestifying (see Chapter 27 [Rmail Digest], page 207).

d Delete the current message, and move to the next nondeleted message (rmail-delete-

forward).

C-d Delete the current message, and move to the previous nondeleted message (rmail-

delete-backward).

u Undelete the current message, or move back to a deleted message and undelete it

(rmail-undelete-previous-message).

x

e Expunge the Rmail file (rmail-expunge). These two commands are synonyms.

There are two Rmail commands for deleting messages. Both delete the current message and

select another message. d (rmail-delete-forward) moves to the following message, skipping

messages already deleted, while C-d (rmail-delete-backward) moves to the previous nondeleted

message. If there is no nondeleted message to move to in the specified direction, the message that

was just deleted remains current.

To make all the deleted messages finally vanish from the Rmail file, type e (rmail-expunge).

Until you do this, you can still undelete the deleted messages.

To undelete, type u (rmail-undelete-previous-message), which is designed to cancel the

effect of a d command (usually). It undeletes the current message if the current message is deleted.

Otherwise it moves backward to previous messages until a deleted message is found, and undeletes

that message.

You can usually undo a d with a u because the u moves back to and undeletes the message that

the d deleted. But this does not work when the d skips a few already-deleted messages that follow

the message being deleted; then the u command will undelete the last of the messages that were

skipped. There is no clean way to avoid this problem. However, by repeating the u command, you

can eventually get back to the message that you intended to undelete. You can also reach that

message with M-p commands and then type u.

A deleted message has the ‘deleted’ attribute, and as a result ‘deleted’ appears in the mode

line when the current message is deleted. In fact, deleting or undeleting a message is nothing more

than adding or removing this attribute. See Section 26.7 [Rmail Labels], page 199.

Chapter 26: Reading Mail with Rmail 197

26.4 Rmail Files and Inboxes

Unix places incoming mail for you in a file that we call your inbox. When you start up Rmail,

it copies the new messages from your inbox into your primary mail file, an Rmail file, which also

contains other messages saved from previous Rmail sessions. It is in this file that you actually read

the mail with Rmail. This operation is called getting new mail. It can be repeated at any time

using the g key in Rmail. The inbox file name is ‘/usr/spool/mail/username’ in Berkeley Unix,

‘/usr/mail/username’ in system V.

There are two reason for having separate Rmail files and inboxes.

1. The format in which Unix delivers the mail in the inbox is not adequate for Rmail mail storage.

It has no way to record attributes (such as ‘deleted’) or user-specified labels; it has no way

to record old headers and reformatted headers; it has no way to record cached summary line

information.

2. It is very cumbersome to access an inbox file without danger of losing mail, because it is neces-

sary to interlock with mail delivery. Moreover, different Unix systems use different interlocking

techniques. The strategy of moving mail out of the inbox once and for all into a separate Rmail

file avoids the need for interlocking in all the rest of Rmail, since only Rmail operates on the

Rmail file.

When getting new mail, Rmail first copies the new mail from the inbox file to the Rmail file;

then it saves the Rmail file; then it deletes the inbox file. This way, a system crash may cause

duplication of mail between the inbox and the Rmail file, but cannot lose mail.

Copying mail from an inbox in the system’s mailer directory actually puts it in an intermediate

file ‘~/.newmail’. This is because the interlocking is done by a C program that copies to another

file. ‘~/.newmail’ is deleted after mail merging is successful. If there is a crash at the wrong time,

this file will continue to exist and will be used as an inbox the next time you get new mail.

26.5 Multiple Mail Files

Rmail operates by default on your primary mail file, which is named ‘~/RMAIL’ and receives your

incoming mail from your system inbox file. But you can also have other mail files and edit them

with Rmail. These files can receive mail through their own inboxes, or you can move messages into

them by explicit command in Rmail (see Section 26.6 [Rmail Output], page 198).

i file RET Read file into Emacs and run Rmail on it (rmail-input).

198 GNU Emacs Manual

M-x set-rmail-inbox-list RET files RET

Specify inbox file names for current Rmail file to get mail from.

g Merge new mail from current Rmail file’s inboxes (rmail-get-new-mail).

C-u g file Merge new mail from inbox file file.

To run Rmail on a file other than your primary mail file, you may use the i (rmail-input)

command in Rmail. This visits the file, puts it in Rmail mode, and then gets new mail from the

file’s inboxes if any. You can also use M-x rmail-input even when not in Rmail.

The file you read with i does not have to be in Rmail file format. It could also be Unix mail

format, or mmdf format; or it could be a mixture of all three, as long as each message belongs to

one of the three formats. Rmail recognizes all three and converts all the messages to proper Rmail

format before showing you the file.

Each Rmail file can contain a list of inbox file names; you can specify this list with M-x set-

rmail-inbox-list RET files RET. The argument can contain any number of file names, separated

by commas. It can also be empty, which specifies that this file should have no inboxes. Once a list

of inboxes is specified, the Rmail file remembers it permanently until it is explicitly changed.

If an Rmail file has inboxes, new mail is merged in from the inboxes when the Rmail file is

brought into Rmail, and when the g (rmail-get-new-mail) command is used. If the Rmail file

specifies no inboxes, then no new mail is merged in at these times. A special exception is made for

your primary mail file in using the standard system inbox for it if it does not specify any.

To merge mail from a file that is not the usual inbox, give the g key a numeric argument, as in

C-u g. Then it reads a file name and merges mail from that file. The inbox file is not deleted or

changed in any way when g with an argument is used. This is, therefore, a general way of merging

one file of messages into another.

26.6 Copying Messages Out to Files

o file RET Append a copy of the current message to the file file, writing it in Rmail file format

(rmail-output-to-rmail-file).

C-o file RET

Append a copy of the current message to the file file, writing it in Unix mail file format

(rmail-output).

Chapter 26: Reading Mail with Rmail 199

If an Rmail file has no inboxes, how does it get anything in it? By explicit o commands.

o (rmail-output-to-rmail-file) appends the current message in Rmail format to the end of

the specified file. This is the best command to use to move messages between Rmail files. If the

other Rmail file is currently visited, the copying is done into the other file’s Emacs buffer instead.

You should eventually save it on disk.

The C-o (rmail-output) command in Rmail appends a copy of the current message to a specified

file, in Unix mail file format. This is useful for moving messages into files to be read by other mail

processors that do not understand Rmail format.

Copying a message with o or C-o gives the original copy of the message the ‘filed’ attribute,

so that ‘filed’ appears in the mode line when such a message is current.

Normally you should use only o to output messages to other Rmail files, never C-o. But it is

also safe if you always use C-o, never o. When a file is visited in Rmail, the last message is checked,

and if it is in Unix format, the entire file is scanned and all Unix-format messages are converted to

Rmail format. (The reason for checking the last message is that scanning the file is slow and most

Rmail files have only Rmail format messages.) If you use C-o consistently, the last message is sure

to be in Unix format, so Rmail will convert all messages properly.

The case where you might want to use C-o always, instead of o always, is when you or other

users want to append mail to the same file from other mail processors. Other mail processors

probably do not know Rmail format but do know Unix format.

In any case, always use o to add to an Rmail file that is being visited in Rmail. Adding messages

with C-o to the actual disk file will trigger a “simultaneous editing” warning when you ask to save

the Emacs buffer, and will be lost if you do save.

26.7 Labels

Each message can have various labels assigned to it as a means of classification. A label has

a name; different names mean different labels. Any given label is either present or absent on

a particular message. A few label names have standard meanings and are given to messages

automatically by Rmail when appropriate; these special labels are called attributes. All other

labels are assigned by the user.

a label RET

200 GNU Emacs Manual

Assign the label label to the current message (rmail-add-label).

k label RET

Remove the label label from the current message (rmail-kill-label).

C-M-n labels RET

Move to the next message that has one of the labels labels (rmail-next-labeled-

message).

C-M-p labels RET

Move to the previous message that has one of the labels labels (rmail-previous-

labeled-message).

C-M-l labels RET

Make a summary of all messages containing any of the labels labels (rmail-summary-

by-labels).

Specifying an empty string for one these commands means to use the last label specified for any of

these commands.

The a (rmail-add-label) and k (rmail-kill-label) commands allow you to assign or remove

any label on the current message. If the label argument is empty, it means to assign or remove the

same label most recently assigned or removed.

Once you have given messages labels to classify them as you wish, there are two ways to use the

labels: in moving and in summaries.

The command C-M-n labels RET (rmail-next-labeled-message) moves to the next message

that has one of the labels labels. labels is one or more label names, separated by commas. C-M-p

(rmail-previous-labeled-message) is similar, but moves backwards to previous messages. A

preceding numeric argument to either one serves as a repeat count.

The command C-M-l labels RET (rmail-summary-by-labels) displays a summary containing

only the messages that have at least one of a specified set of messages. The argument labels is

one or more label names, separated by commas. See Section 26.8 [Rmail Summary], page 201, for

information on summaries.

If the labels argument to C-M-n, C-M-p or C-M-l is empty, it means to use the last set of labels

specified for any of these commands.

Some labels such as ‘deleted’ and ‘filed’ have built-in meanings and are assigned to or removed

from messages automatically at appropriate times; these labels are called attributes. Here is a list

of Rmail attributes:

Chapter 26: Reading Mail with Rmail 201

‘unseen’ Means the message has never been current. Assigned to messages when they come

from an inbox file, and removed when a message is made current.

‘deleted’ Means the message is deleted. Assigned by deletion commands and removed by un-

deletion commands (see Section 26.3 [Rmail Deletion], page 195).

‘filed’ Means the message has been copied to some other file. Assigned by the file output

commands (see Section 26.5 [Rmail Files], page 197).

‘answered’

Means you have mailed an answer to the message. Assigned by the r command (rmail-

reply). See Section 26.9 [Rmail Reply], page 204.

‘forwarded’

Means you have forwarded the message to other users. Assigned by the f command

(rmail-forward). See Section 26.9 [Rmail Reply], page 204.

‘edited’ Means you have edited the text of the message within Rmail. See Section 26.10 [Rmail

Editing], page 205.

All other labels are assigned or removed only by the user, and it is up to the user to decide what

they mean.

26.8 Summaries

A summary is a buffer containing one line per message that Rmail can make and display to give

you an overview of the mail in an Rmail file. Each line shows the message number, the sender, the

labels, and the subject. When the summary buffer is selected, various commands can be used to

select messages by moving in the summary buffer, or delete or undelete messages.

A summary buffer applies to a single Rmail file only; if you are editing multiple Rmail files,

they have separate summary buffers. The summary buffer name is made by appending ‘-summary’

to the Rmail buffer’s name. Only one summary buffer will be displayed at a time unless you make

several windows and select the summary buffers by hand.

26.8.1 Making Summaries

Here are the commands to create a summary for the current Rmail file. Summaries do not

update automatically; to make an updated summary, you must use one of these commands again.

h

202 GNU Emacs Manual

C-M-h Summarize all messages (rmail-summary).

l labels RET

C-M-l labels RET

Summarize message that have one or more of the specified labels (rmail-summary-by-

labels).

C-M-r rcpts RET

Summarize messages that have one or more of the specified recipients (rmail-summary-

by-recipients)

The h or C-M-h (rmail-summary) command fills the summary buffer for the current Rmail file

with a summary of all the messages in the file. It then displays and selects the summary buffer in

another window.

C-M-l labels RET (rmail-summary-by-labels) makes a partial summary mentioning only the

messages that have one or more of the labels labels. labels should contain label names separated

by commas.

C-M-r rcpts RET (rmail-summary-by-recipients) makes a partial summary mentioning only

the messages that have one or more of the recipients rcpts. rcpts should contain mailing addresses

separated by commas.

Note that there is only one summary buffer for any Rmail file; making one kind of summary

discards any previously made summary.

26.8.2 Editing in Summaries

Summary buffers are given the major mode Rmail Summary mode, which provides the following

special commands:

j Select the message described by the line that point is on (rmail-summary-goto-msg).

C-n Move to next line and select its message in Rmail (rmail-summary-next-all).

C-p Move to previous line and select its message (rmail-summary-previous-all).

n Move to next line, skipping lines saying ‘deleted’, and select its message (rmail-

summary-next-msg).

p Move to previous line, skipping lines saying ‘deleted’, and select its message (rmail-

summary-previous-msg).

d Delete the current line’s message, then do like n (rmail-summary-delete-forward).

Chapter 26: Reading Mail with Rmail 203

u Undelete and select this message or the previous deleted message in the summary

(rmail-summary-undelete).

SPC Scroll the other window (presumably Rmail) forward (rmail-summary-scroll-msg-

up).

DEL Scroll the other window backward (rmail-summary-scroll-msg-down).

x Kill the summary window (rmail-summary-exit).

q Exit Rmail (rmail-summary-quit).

The keys C-n and C-p are modified in Rmail Summary mode so that in addition to moving

point in the summary buffer they also cause the line’s message to become current in the associated

Rmail buffer. That buffer is also made visible in another window if it is not already so.

n and p are similar to C-n and C-p, but skip lines that say ‘message deleted’. They are like the

n and p keys of Rmail itself. Note, however, that in a partial summary these commands move only

among the message listed in the summary.

The other Emacs cursor motion commands are not changed in Rmail Summary mode, so it is

easy to get the point on a line whose message is not selected in Rmail. This can also happen if you

switch to the Rmail window and switch messages there. To get the Rmail buffer back in sync with

the summary, use the j (rmail-summary-goto-msg) command, which selects in Rmail the message

of the current summary line.

Deletion and undeletion can also be done from the summary buffer. They always work based

on where point is located in the summary buffer, ignoring which message is selected in Rmail. d

(rmail-summary-delete-forward) deletes the current line’s message, then moves to the next line

whose message is not deleted and selects that message. The inverse of this is u (rmail-summary-

undelete), which moves back (if necessary) to a line whose message is deleted, undeletes that

message, and selects it in Rmail.

When moving through messages with the summary buffer, it is convenient to be able to scroll the

message while remaining in the summary window. The commands SPC (rmail-summary-scroll-

msg-up) and DEL (rmail-summary-scroll-msg-down) do this. They scroll the message just as

those same keys do when the Rmail buffer is selected.

When you are finished using the summary, type x (rmail-summary-exit) to kill the summary

buffer’s window.

You can also exit Rmail while in the summary. q (rmail-summary-quit) kills the summary

window, then saves the Rmail file and switches to another buffer.

204 GNU Emacs Manual

26.9 Sending Replies

Rmail has several commands that use Mail mode to send outgoing mail. See Chapter 25 [Sending

Mail], page 187, for information on using Mail mode. What are documented here are the special

commands of Rmail for entering Mail mode. Note that the usual keys for sending mail, C-x m and

C-x 4 m, are available in Rmail mode and work just as they usually do.

m Send a message (rmail-mail).

c Continue editing already started outgoing message

(rmail-continue).

r Send a reply to the current Rmail message (rmail-reply).

f Forward current message to other users (rmail-forward).

The most common reason to send a message while in Rmail is to reply to the message you

are reading. To do this, type r (rmail-reply). This displays the ‘*mail*’ buffer in another

window, much like C-x 4 m, but preinitializes the ‘Subject’, ‘To’, ‘CC’ and ‘In-reply-to’ header

fields based on the message being replied to. The ‘To’ field is given the sender of that message,

and the ‘CC’ gets all the recipients of that message (but recipients that match elements of the list

rmail-dont-reply-to are omitted; by default, this list contains your own mailing address).

Once you have initialized the ‘*mail*’ buffer this way, sending the mail goes as usual (see

Chapter 25 [Sending Mail], page 187). You can edit the presupplied header fields if they are not

right for you.

One additional Mail mode command is available when mailing is invoked from Rmail: C-c C-y

(mail-yank-original) inserts into the outgoing message a copy of the current Rmail message;

normally this is the message you are replying to, but you can also switch to the Rmail buffer, select

a different message, switch back, and yank new current message. Normally the yanked message is

indented four spaces and has most header fields deleted from it; an argument to C-c C-y specifies

the amount to indent, and C-u C-c C-y does not indent at all and does not delete any header fields.

Another frequent reason to send mail in Rmail is to forward the current message to other users.

f (rmail-forward) makes this easy by preinitializing the ‘*mail*’ buffer with the current message

as the text, and a subject designating a forwarded message. All you have to do is fill in the recipients

and send.

The m (rmail-mail) command is used to start editing an outgoing message that is not a reply.

It leaves the header fields empty. Its only difference from C-x 4 m is that it makes the Rmail buffer

accessible for C-c y, just as r does. Thus, m can be used to reply to or forward a message; it can

Chapter 26: Reading Mail with Rmail 205

do anything r or f can do.

The c (rmail-continue) command resumes editing the ‘*mail*’ buffer, to finish editing an

outgoing message you were already composing, or to alter a message you have sent.

26.10 Editing Within a Message

Rmail mode provides a few special commands for moving within and editing the current message.

In addition, the usual Emacs commands are available (except for a few, such as C-M-n and C-M-h,

that are redefined by Rmail for other purposes). However, the Rmail buffer is normally read-only,

and to alter it you must use the Rmail command w described below.

t Toggle display of original headers (rmail-toggle-headers).

w Edit current message (rmail-edit-current-message).

Rmail reformats the header of each message before displaying it. Normally this involves deleting

most header fields, on the grounds that they are not interesting. The variable rmail-ignored-

headers should contain a regexp that matches the header fields to discard in this way. The original

headers are saved permanently, and to see what they look like, use the t (rmail-toggle-headers)

command. This discards the reformatted headers of the current message and displays it with

the original headers. Repeating t reformats the message again. Selecting the message again also

reformats.

The Rmail buffer is normally read only, and most of the characters you would type to modify it

(including most letters) are redefined as Rmail commands. This is usually not a problem since it

is rare to want to change the text of a message. When you do want to do this, the way is to type w

(rmail-edit-current-message), which changes from Rmail mode into Rmail Edit mode, another

major mode which is nearly the same as Text mode. The mode line illustrates this change.

In Rmail Edit mode, letters insert themselves as usual and the Rmail commands are not avail-

able. When you are finished editing the message and are ready to go back to Rmail, type C-c C-c,

which switches back to Rmail mode. Alternatively, you can return to Rmail mode but cancel all

the editing that you have done by typing C-c C-].

Entering Rmail Edit mode calls with no arguments the value of the variable text-mode-hook,

if that value exists and is not nil; then it does the same with the variable rmail-edit-mode-hook.

It adds the attribute ‘edited’ to the message.

206 GNU Emacs Manual

26.11 Digest Messages

A digest message is a message which exists to contain and carry several other messages. Digests

are used on moderated mailing lists; all the messages that arrive for the list during a period of time

such as one day are put inside a single digest which is then sent to the subscribers. Transmitting

the single digest uses much less computer time than transmitting the individual messages even

though the total size is the same, because the per-message overhead in network mail transmission

is considerable.

When you receive a digest message, the most convenient way to read it is to undigestify it: to

turn it back into many individual messages. Then you can read and delete the individual messages

as it suits you.

To undigestify a message, select it and then type M-x undigestify-rmail-message. This copies

each submessage as a separate Rmail message and inserts them all following the digest. The digest

message itself is flagged as deleted.

Chapter 27: Miscellaneous Commands 207

27 Miscellaneous Commands

This chapter contains several brief topics that do not fit anywhere else.

27.1 Recursive Editing Levels

A recursive edit is a situation in which you are using Emacs commands to perform arbitrary

editing while in the middle of another Emacs command. For example, when you type C-r inside

of a query-replace, you enter a recursive edit in which you can change the current buffer. On

exiting from the recursive edit, you go back to the query-replace.

Exiting the recursive edit means returning to the unfinished command, which continues exe-

cution. For example, exiting the recursive edit requested by C-r in query-replace causes query

replacing to resume. Exiting is done with C-M-c (exit-recursive-edit).

You can also abort the recursive edit. This is like exiting, but also quits the unfinished command

immediately. Use the command C-] (abort-recursive-edit) for this. See Section 29.1 [Quitting],

page 237.

The mode line shows you when you are in a recursive edit by displaying square brackets around

the parentheses that always surround the major and minor mode names. Every window’s mode

line shows this, in the same way, since being in a recursive edit is true of Emacs as a whole rather

than any particular buffer.

It is possible to be in recursive edits within recursive edits. For example, after typing C-r in

a query-replace, you might type a command that entered the debugger. In such circumstances,

two or more sets of square brackets appear in the mode line. Exiting the inner recursive edit (such

as, with the debugger c command) would resume the command where it called the debugger. After

the end of this command, you would be able to exit the first recursive edit. Aborting also gets

out of only one level of recursive edit; it returns immediately to the command level of the previous

recursive edit. So you could immediately abort that one too.

Alternatively, the command M-x top-level aborts all levels of recursive edits, returning imme-

diately to the top level command reader.

The text being edited inside the recursive edit need not be the same text that you were editing

at top level. It depends on what the recursive edit is for. If the command that invokes the recursive

208 GNU Emacs Manual

edit selects a different buffer first, that is the buffer you will edit recursively. In any case, you can

switch buffers within the recursive edit in the normal manner (as long as the buffer-switching keys

have not been rebound). You could probably do all the rest of your editing inside the recursive

edit, visiting files and all. But this could have surprising effects (such as stack overflow) from time

to time. So remember to exit or abort the recursive edit when you no longer need it.

In general, GNU Emacs tries to avoid using recursive edits. It is usually preferable to allow the

user to switch among the possible editing modes in any order he likes. With recursive edits, the

only way to get to another state is to go “back” to the state that the recursive edit was invoked

from.

27.2 Narrowing

Narrowing means focusing in on some portion of the buffer, making the rest temporarily invisible

and inaccessible. Cancelling the narrowing, and making the entire buffer once again visible, is called

widening. The amount of narrowing in effect in a buffer at any time is called the buffer’s restriction.

C-x n Narrow down to between point and mark (narrow-to-region).

C-x w Widen to make the entire buffer visible again (widen).

When you have narrowed down to a part of the buffer, that part appears to be all there is. You

can’t see the rest, you can’t move into it (motion commands won’t go outside the visible part),

you can’t change it in any way. However, it is not gone, and if you save the file all the invisible

text will be saved. In addition to sometimes making it easier to concentrate on a single subroutine

or paragraph by eliminating clutter, narrowing can be used to restrict the range of operation of

a replace command or repeating keyboard macro. The word ‘Narrow’ appears in the mode line

whenever narrowing is in effect.

The primary narrowing command is C-x n (narrow-to-region). It sets the current buffer’s

restrictions so that the text in the current region remains visible but all text before the region or

after the region is invisible. Point and mark do not change.

Because narrowing can easily confuse users who do not understand it, narrow-to-region is

normally a disabled command. Attempting to use this command asks for confirmation and gives

you the option of enabling it; once you enable the command, confirmation will no longer be required

for it. See Section 28.4.3 [Disabling], page 229.

The way to undo narrowing is to widen with C-x w (widen). This makes all text in the buffer

Chapter 27: Miscellaneous Commands 209

accessible again.

You can get information on what part of the buffer you are narrowed down to using the C-x =

command. See Section 4.8 [Position Info], page 30.

27.3 Sorting Text

Emacs provides several commands for sorting text in the buffer. All operate on the contents

of the region (the text between point and the mark). They divide the text of the region into

many sort records, identify a sort key for each record, and then reorder the records into the order

determined by the sort keys. The records are ordered so that their keys are in alphabetical order,

or, for numeric sorting, in numeric order. In alphabetic sorting, all upper case letters ‘A’ through

‘Z’ come before lower case ‘a’, in accord with the ASCII character sequence.

The various sort commands differ in how they divide the text into sort records and in which

part of each record is used as the sort key. Most of the commands make each line a separate sort

record, but some commands use paragraphs or pages as sort records. Most of the sort commands

use each entire sort record as its own sort key, but some use only a portion of the record as the

sort key.

M-x sort-lines

Divide the region into lines, and sort by comparing the entire text of a line. A prefix

argument means sort into descending order.

M-x sort-paragraphs

Divide the region into paragraphs, and sort by comparing the entire text of a paragraph

(except for leading blank lines). A prefix argument means sort into descending order.

M-x sort-pages

Divide the region into pages, and sort by comparing the entire text of a page (except

for leading blank lines). A prefix argument means sort into descending order.

M-x sort-fields

Divide the region into lines, and sort by comparing the contents of one field in each

line. Fields are defined as separated by whitespace, so the first run of consecutive

non-whitespace characters in a line constitutes field 1, the second such run constitutes

field 2, etc.

You specify which field to sort by with a numeric argument: 1 to sort by field 1, etc.

A negative argument means sort into descending order. Thus, minus 2 means sort by

field 2 in reverse-alphabetical order.

210 GNU Emacs Manual

M-x sort-numeric-fields

Like M-x sort-fields except the specified field is converted to a number for each line,

and the numbers are compared. ‘10’ comes before ‘2’ when considered as text, but

after it when considered as a number.

M-x sort-columns

Like M-x sort-fields except that the text within each line used for comparison comes

from a fixed range of columns. See below for an explanation.

For example, if the buffer contains

On systems where clash detection (locking of files being edited) is
implemented, Emacs also checks the first time you modify a buffer
whether the file has changed on disk since it was last visited or
saved. If it has, you are asked to confirm that you want to change
the buffer.

then if you apply M-x sort-lines to the entire buffer you get

On systems where clash detection (locking of files being edited) is
implemented, Emacs also checks the first time you modify a buffer
saved. If it has, you are asked to confirm that you want to change
the buffer.
whether the file has changed on disk since it was last visited or

where the upper case ‘O’ comes before all lower case letters. If you apply instead C-u 2 M-x sort-

fields you get

implemented, Emacs also checks the first time you modify a buffer
saved. If it has, you are asked to confirm that you want to change
the buffer.
On systems where clash detection (locking of files being edited) is
whether the file has changed on disk since it was last visited or

where the sort keys were ‘Emacs’, ‘If’, ‘buffer’, ‘systems’ and ‘the’.

M-x sort-columns requires more explanation. You specify the columns by putting point at one

of the columns and the mark at the other column. Because this means you cannot put point or the

mark at the beginning of the first line to sort, this command uses an unusual definition of ‘region’:

all of the line point is in is considered part of the region, and so is all of the line the mark is in.

For example, to sort a table by information found in columns 10 to 15, you could put the mark

Chapter 27: Miscellaneous Commands 211

on column 10 in the first line of the table, and point on column 15 in the last line of the table, and

then use this command. Or you could put the mark on column 15 in the first line and point on

column 10 in the last line.

This can be thought of as sorting the rectangle specified by point and the mark, except that the

text on each line to the left or right of the rectangle moves along with the text inside the rectangle.

See Section 10.4 [Rectangles], page 59.

27.4 Running Shell Commands from Emacs

Emacs has commands for passing single command lines to inferior shell processes; it can also

run a shell interactively with input and output to an Emacs buffer ‘*shell*’.

M-! Run a specified shell command line and display the output (shell-command).

M-| Run a specified shell command line with region contents as input; optionally replace

the region with the output (shell-command-on-region).

M-x shell Run a subshell with input and output through an Emacs buffer. You can then give

commands interactively.

27.4.1 Single Shell Commands

M-! (shell-command) reads a line of text using the minibuffer and creates an inferior shell to

execute the line as a command. Standard input from the command comes from the null device.

If the shell command produces any output, the output goes into an Emacs buffer named ‘*Shell

Command Output*’, which is displayed in another window but not selected. A numeric argument, as

in M-1 M-!, directs this command to insert any output into the current buffer. In that case, point

is left before the output and the mark is set after the output.

M-| (shell-command-on-region) is like M-! but passes the contents of the region as input to

the shell command, instead of no input. If a numeric argument is used, meaning insert output in

the current buffer, then the old region is deleted first and the output replaces it as the contents of

the region.

Both M-! and M-| use shell-file-name to specify the shell to use. This variable is initialized

based on your SHELL environment variable when Emacs is started. If the file name does not specify

a directory, the directories in the list exec-path are searched; this list is initialized based on the

212 GNU Emacs Manual

environment variable PATH when Emacs is started. Your ‘.emacs’ file can override either or both

of these default initializations.

With M-! and M-|, Emacs has to wait until the shell command completes. You can quit with

C-g; that terminates the shell command.

27.4.2 Interactive Inferior Shell

To run a subshell interactively, putting its typescript in an Emacs buffer, use M-x shell. This

creates (or reuses) a buffer named ‘*shell*’ and runs a subshell with input coming from and output

going to that buffer. That is to say, any “terminal output” from the subshell will go into the buffer,

advancing point, and any “terminal input” for the subshell comes from text in the buffer. To give

input to the subshell, go to the end of the buffer and type the input, terminated by RET.

Emacs does not wait for the subshell to do anything. You can switch windows or buffers and

edit them while the shell is waiting, or while it is running a command. Output from the subshell

waits until Emacs has time to process it; this happens whenever Emacs is waiting for keyboard

input or for time to elapse.

If you would like multiple subshells, change the name of buffer ‘*shell*’ to something different

by using M-x rename-buffer. The next use of M-x shell will create a new buffer ‘*shell*’ with

its own subshell. By renaming this buffer as well you can create a third one, and so on. All the

subshells run independently and in parallel.

The file name used to load the subshell is the value of the variable explicit-shell-file-

name, if that is non-nil. Otherwise, the environment variable ESHELL is used, or the environment

variable SHELL if there is no ESHELL. If the file name specified is relative, the directories in the list

exec-path are searched (see Section 27.4.1 [Single Shell], page 211).

As soon as the subshell is started, it is sent as input the contents of the file ‘~/.emacs_shellname’,

if that file exists, where shellname is the name of the file that the shell was loaded from. For example,

if you use csh, the file sent to it is ‘~/.emacs_csh’.

cd, pushd and popd commands given to the inferior shell are watched by Emacs so it can keep

the ‘*shell*’ buffer’s default directory the same as the shell’s working directory. These commands

are recognized syntactically by examining lines of input that are sent. If you use aliases for these

commands, you can tell Emacs to recognize them also. For example, if the value of the variable

shell-pushd-regexp matches the beginning of a shell command line, that line is regarded as a

Chapter 27: Miscellaneous Commands 213

pushd command. Change this variable when you add aliases for ‘pushd’. Likewise, shell-popd-

regexp and shell-cd-regexp are used to recognize commands with the meaning of ‘popd’ and

‘cd’. These commands are recognized only at the beginning of a shell command line.

If Emacs gets an error while trying to handle what it believes is a ‘cd’, ‘pushd’ or ‘popd’

command, and the value of shell-set-directory-error-hook is non-nil, that value is called as

a function with no arguments.

27.4.3 Shell Mode

The shell buffer uses Shell mode, which defines several special keys attached to the C-c prefix.

They are chosen to resemble the usual editing and job control characters present in shells that are

not under Emacs, except that you must type C-c first. Here is a complete list of the special key

bindings of Shell mode:

RET At end of buffer send line as input; otherwise, copy current line to end of buffer and

send it (send-shell-input). When a line is copied, any text at the beginning of the

line that matches the variable shell-prompt-pattern is left out; this variable’s value

should be a regexp string that matches the prompts that you use in your subshell.

C-c C-d Send end-of-file as input, probably causing the shell or its current subjob to finish

(shell-send-eof).

C-c C-u Kill all text that has yet to be sent as input (kill-shell-input).

C-c C-w Kill a word before point (backward-kill-word).

C-c C-c Interrupt the shell or its current subjob if any (interrupt-shell-subjob).

C-c C-z Stop the shell or its current subjob if any (stop-shell-subjob).

C-c C-\ Send quit signal to the shell or its current subjob if any (quit-shell-subjob).

C-c C-o Delete last batch of output from shell (kill-output-from-shell).

C-c C-r Scroll top of last batch of output to top of window (show-output-from-shell).

C-c C-y Copy the previous bunch of shell input, and insert it into the buffer before point

(copy-last-shell-input). No final newline is inserted, and the input copied is not

resubmitted until you type RET.

27.5 Hardcopy Output

The Emacs commands for making hardcopy derive their names from the Unix commands ‘print’

and ‘lpr’.

214 GNU Emacs Manual

M-x print-buffer

Print hardcopy of current buffer using Unix command ‘print’ (‘lpr -p’). This makes

page headings containing the file name and page number.

M-x lpr-buffer

Print hardcopy of current buffer using Unix command ‘lpr’. This makes no page

headings.

M-x print-region

Like print-buffer but prints only the current region.

M-x lpr-region

Like lpr-buffer but prints only the current region.

All the hardcopy commands pass extra switches to the lpr program based on the value of the

variable lpr-switches. Its value should be a list of strings, each string a switch starting with ‘-’.

For example, the value could be ("-Pfoo") to print on printer ‘foo’.

27.6 Dissociated Press

M-x dissociated-press is a command for scrambling a file of text either word by word or

character by character. Starting from a buffer of straight English, it produces extremely amusing

output. The input comes from the current Emacs buffer. Dissociated Press writes its output in

a buffer named ‘*Dissociation*’, and redisplays that buffer after every couple of lines (approxi-

mately) to facilitate reading it.

dissociated-press asks every so often whether to continue operating. Answer n to stop it. You

can also stop at any time by typing C-g. The dissociation output remains in the ‘*Dissociation*’

buffer for you to copy elsewhere if you wish.

Dissociated Press operates by jumping at random from one point in the buffer to another. In

order to produce plausible output rather than gibberish, it insists on a certain amount of overlap

between the end of one run of consecutive words or characters and the start of the next. That is, if

it has just printed out ‘president’ and then decides to jump to a different point in the file, it might

spot the ‘ent’ in ‘pentagon’ and continue from there, producing ‘presidentagon’. Long sample texts

produce the best results.

A positive argument to M-x dissociated-press tells it to operate character by character, and

specifies the number of overlap characters. A negative argument tells it to operate word by word

and specifies the number of overlap words. In this mode, whole words are treated as the elements

to be permuted, rather than characters. No argument is equivalent to an argument of two. For

Chapter 27: Miscellaneous Commands 215

your againformation, the output goes only into the buffer ‘*Dissociation*’. The buffer you start

with is not changed.

Dissociated Press produces nearly the same results as a Markov chain based on a frequency

table constructed from the sample text. It is, however, an independent, ignoriginal invention.

Dissociated Press techniquitously copies several consecutive characters from the sample between

random choices, whereas a Markov chain would choose randomly for each word or character. This

makes for more plausible sounding results, and runs faster.

It is a mustatement that too much use of Dissociated Press can be a developediment to your real

work. Sometimes to the point of outragedy. And keep dissociwords out of your documentation, if

you want it to be well userenced and properbose. Have fun. Your buggestions are welcome.

27.7 Other Amusements

If you are a little bit bored, you can try M-x hanoi. If you are considerably bored, give it a

numeric argument. If you are very very bored, try an argument of 9. Sit back and watch.

When you are frustrated, try the famous Eliza program. Just do M-x doctor. End each input

by typing RET twice.

When you are feeling strange, type M-x yow.

27.8 Emulation

GNU Emacs can be programmed to emulate (more or less) most other editors. Standard facilities

can emulate these:

EDT (DEC VMS editor)

Turn on EDT emulation with M-x edt-emulation-on. M-x edt-emulation-off re-

stores normal Emacs command bindings.

Most of the EDT emulation commands are keypad keys, and most standard Emacs

key bindings are still available. The EDT emulation rebindings are done in the global

keymap, so there is no problem switching buffers or major modes while in EDT emu-

lation.

216 GNU Emacs Manual

Gosling Emacs

Turn on emulation of Gosling Emacs (aka Unipress Emacs) with M-x set-gosmacs-

bindings. This redefines many keys, mostly on the C-x and ESC prefixes, to work

as they do in Gosmacs. M-x set-gnu-bindings returns to normal GNU Emacs by

rebinding the same keys to the definitions they had at the time M-x set-gosmacs-

bindings was done.

It is also possible to run Mocklisp code written for Gosling Emacs. See Section 22.3.3

[Mocklisp], page 171.

vi (Berkeley Unix editor)

Turn on vi emulation with M-x vi-mode. This is a major mode that replaces the

previously established major mode. All of the vi commands that, in real vi, enter

“input” mode are programmed in the Emacs emulator to return to the previous major

mode. Thus, ordinary Emacs serves as vi’s “input” mode.

Because vi emulation works through major modes, it does not work to switch buffers

during emulation. Return to normal Emacs first.

If you plan to use vi emulation much, you probably want to bind a key to the vi-mode

command.

vi (alternate emulator)

Another vi emulator said to resemble real vi more thoroughly is invoked by M-x vip-

mode. “Input” mode in this emulator is changed from ordinary Emacs so you can use

ESC to go back to emulated vi command mode. To get from emulated vi command

mode back to ordinary Emacs, type C-z.

This emulation does not work through major modes, and it is possible to switch buffers

in various ways within the emulator. It is not so necessary to assign a key to the

command vip-mode as it is with vi-mode because terminating insert mode does not

use it.

For full information, see the long comment at the beginning of the source file, which is

‘lisp/vip.el’ in the Emacs distribution.

I am interested in hearing which vi emulator users prefer, as well as in receiving more complete

user documentation for either or both emulators. Warning: loading both at once may cause name

conficts; no one has checked.

Chapter 28: Customization 217

28 Customization

This chapter talks about various topics relevant to adapting the behavior of Emacs in minor

ways.

All kinds of customization affect only the particular Emacs job that you do them in. They are

completely lost when you kill the Emacs job, and have no effect on other Emacs jobs you may run

at the same time or later. The only way an Emacs job can affect anything outside of it is by writing

a file; in particular, the only way to make a customization ‘permanent’ is to put something in your

‘.emacs’ file or other appropriate file to do the customization in each session. See Section 28.6 [Init

File], page 232.

28.1 Minor Modes

Minor modes are options which you can use or not. For example, Auto Fill mode is a minor

mode in which SPC breaks lines between words as you type. All the minor modes are independent

of each other and of the selected major mode. Most minor modes say in the mode line when they

are on; for example, ‘Fill’ in the mode line means that Auto Fill mode is on.

Append -mode to the name of a minor mode to get the name of a command function that

turns the mode on or off. Thus, the command to enable or disable Auto Fill mode is called M-x

auto-fill-mode. These commands are usually invoked with M-x, but you can bind keys to them

if you wish. With no argument, the function turns the mode on if it was off and off if it was on.

This is known as toggling. A positive argument always turns the mode on, and an explicit zero

argument or a negative argument always turns it off.

Auto Fill mode allows you to enter filled text without breaking lines explicitly. Emacs inserts

newlines as necessary to prevent lines from becoming too long. See Section 20.6 [Filling], page 134.

Overwrite mode causes ordinary printing characters to replace existing text instead of shoving

it over. For example, if the point is in front of the ‘B’ in ‘FOOBAR’, then in Overwrite mode typing

a G changes it to ‘FOOGAR’, instead of making it ‘FOOGBAR’ as usual.

Abbrev mode allows you to define abbreviations that automatically expand as you type them.

For example, ‘amd’ might expand to ‘abbrev mode’. See Chapter 23 [Abbrevs], page 177, for full

information.

218 GNU Emacs Manual

28.2 Variables

A variable is a Lisp symbol which has a value. The symbol’s name is also called the name of

the variable. Variable names can contain any characters, but conventionally they are chosen to be

words separated by hyphens. A variable can have a documentation string which describes what

kind of value it should have and how the value will be used.

Lisp allows any variable to have any kind of value, but most variables that Emacs uses require

a value of a certain type. Often the value should always be a string, or should always be a number.

Sometimes we say that a certain feature is turned on if a variable is “non-nil,” meaning that if the

variable’s value is nil, the feature is off, but the feature is on for any other value. The conventional

value to use to turn on the feature—since you have to pick one particular value when you set the

variable—is t.

Emacs uses many Lisp variables for internal recordkeeping, as any Lisp program must, but the

most interesting variables for you are the ones that exist for the sake of customization. Emacs does

not (usually) change the values of these variables; instead, you set the values, and thereby alter

and control the behavior of certain Emacs commands. These variables are called options. Most

options are documented in this manual, and appear in the Variable Index (see [Variable Index],

page 287).

One example of a variable which is an option is fill-column, which specifies the position of

the right margin (as a number of characters from the left margin) to be used by the fill commands

(see Section 20.6 [Filling], page 134).

28.2.1 Examining and Setting Variables

C-h v

M-x describe-variable

Print the value and documentation of a variable.

M-x set-variable

Change the value of a variable.

To examine the value of a single variable, use C-h v (describe-variable), which reads a variable

name using the minibuffer, with completion. It prints both the value and the documentation of the

variable.

C-h v fill-column RET

Chapter 28: Customization 219

prints something like

fill-column’s value is 75

Documentation:
*Column beyond which automatic line-wrapping should happen.
Automatically becomes local when set in any fashion.

The star at the beginning of the documentation indicates that this variable is an option. C-h v is

not restricted to options; it allows any variable name.

If you know which option you want to set, you can set it using M-x set-variable. This reads

the variable name with the minibuffer (with completion), and then reads a Lisp expression for the

new value using the minibuffer a second time. For example,

M-x set-variable RET fill-column RET 75 RET

sets fill-column to 75, like executing the Lisp expression

(setq fill-column 75)

Setting variables in this way, like all means of customizing Emacs except where explicitly stated,

affects only the current Emacs session.

28.2.2 Editing Variable Values

M-x list-options

Display a buffer listing names, values and documentation of all options.

M-x edit-options

Change option values by editing a list of options.

M-x list-options displays a list of all Emacs option variables, in an Emacs buffer named ‘*List

Options*’. Each option is shown with its documentation and its current value. Here is what a

portion of it might look like:

;; exec-path:
("." "/usr/local/bin" "/usr/ucb" "/bin" "/usr/bin" "/u2/emacs/etc")
*List of directories to search programs to run in subprocesses.

220 GNU Emacs Manual

Each element is a string (directory name)
or nil (try the default directory).
;;
;; fill-column:
75
*Column beyond which automatic line-wrapping should happen.
Automatically becomes local when set in any fashion.
;;

M-x edit-options goes one step further and immediately selects the ‘*List Options*’ buffer;

this buffer uses the major mode Options mode, which provides commands that allow you to point

at an option and change its value:

s Set the variable point is in or near to a new value read using the minibuffer.

x Toggle the variable point is in or near: if the value was nil, it becomes t; otherwise it

becomes nil.

1 Set the variable point is in or near to t.

0 Set the variable point is in or near to nil.

n

p Move to the next or previous variable.

28.2.3 Local Variables

M-x make-local-variable

Make a variable have a local value in the current buffer.

M-x kill-local-variable

Make a variable use its global value in the current buffer.

M-x make-variable-buffer-local

Mark a variable so that setting it will make it local to the buffer that is current at that

time.

Any variable can be made local to a specific Emacs buffer. This means that its value in that

buffer is independent of its value in other buffers. A few variables are always local in every buffer.

Every other Emacs variable has a global value which is in effect in all buffers that have not made

the variable local.

Major modes always make the variables they set local to the buffer. This is why changing major

modes in one buffer has no effect on other buffers.

Chapter 28: Customization 221

M-x make-local-variable reads the name of a variable and makes it local to the current buffer.

Further changes in this buffer will not affect others, and further changes in the global value will

not affect this buffer.

M-x make-variable-buffer-local reads the name of a variable and changes the future behavior

of the variable so that it will become local automatically when it is set. More precisely, once a

variable has been marked in this way, the usual ways of setting the variable will automatically do

make-local-variable first. We call such variables per-buffer variables.

Some important variables have been marked per-buffer already. These include abbrev-mode,

auto-fill-hook, case-fold-search, comment-column, ctl-arrow, fill-column, fill-prefix,

indent-tabs-mode, left-margin, mode-line-format, overwrite-mode,

selective-display-ellipses, selective-display, tab-width, and truncate-lines. Some

other variables are always local in every buffer, but they are used for internal purposes.

M-x kill-local-variable reads the name of a variable and makes it cease to be local to the

current buffer. The global value of the variable henceforth is in effect in this buffer. Setting the

major mode kills all the local variables of the buffer.

To set the global value of a variable, regardless of whether the variable has a local value in the

current buffer, you can use the Lisp function setq-default. It works like setq. If there is a local

value in the current buffer, the local value is not affected by setq-default; thus, the new global

value may not be visible until you switch to another buffer. For example,

(setq-default fill-column 75)

setq-default is the only way to set the global value of a variable that has been marked with

make-variable-buffer-local.

Programs can look at a variable’s default value with default-value. This function takes a

symbol as argument and returns its default value. The argument is evaluated; usually you must

quote it explicitly. For example,

(default-value ’fill-column)

28.2.4 Local Variables in Files

A file can contain a local variables list, which specifies the values to use for certain Emacs

222 GNU Emacs Manual

variables when that file is edited. Visiting the file checks for a local variables list and makes each

variable in the list local to the buffer in which the file is visited, with the value specified in the file.

A local variables list goes near the end of the file, in the last page. (It is often best to put it on a

page by itself.) The local variables list starts with a line containing the string ‘Local Variables:’,

and ends with a line containing the string ‘End:’. In between come the variable names and values,

one set per line, as ‘variable: value’. The values are not evaluated; they are used literally.

The line which starts the local variables list does not have to say just ‘Local Variables:’. If

there is other text before ‘Local Variables:’, that text is called the prefix, and if there is other

text after, that is called the suffix. If these are present, each entry in the local variables list should

have the prefix before it and the suffix after it. This includes the ‘End:’ line. The prefix and suffix

are included to disguise the local variables list as a comment so that the compiler or text formatter

will not be perplexed by it. If you do not need to disguise the local variables list as a comment in

this way, do not bother with a prefix or a suffix.

Two “variable” names are special in a local variables list: a value for the variable mode really

sets the major mode, and a value for the variable eval is simply evaluated as an expression and

the value is ignored. These are not real variables; setting such variables in any other context has

no such effect. If mode is used in a local variables list, it should be the first entry in the list.

Here is an example of a local variables list:

;;; Local Variables: ***
;;; mode:lisp ***
;;; comment-column:0 ***
;;; comment-start: ";;; " ***
;;; comment-end:"***" ***
;;; End: ***

Note that the prefix is ‘;;; ’ and the suffix is ‘ ***’. Note also that comments in the file begin

with and end with the same strings. Presumably the file contains code in a language which is like

Lisp (like it enough for Lisp mode to be useful) but in which comments start and end in that way.

The prefix and suffix are used in the local variables list to make the list appear as comments when

the file is read by the compiler or interpreter for that language.

The start of the local variables list must be no more than 3000 characters from the end of the

file, and must be in the last page if the file is divided into pages. Otherwise, Emacs will not notice

it is there. The purpose of this is so that a stray ‘Local Variables:’ not in the last page does not

confuse Emacs, and so that visiting a long file that is all one page and has no local variables list

Chapter 28: Customization 223

need not take the time to search the whole file.

You may be tempted to try to turn on Auto Fill mode with a local variable list. That is a

mistake. The choice of Auto Fill mode or not is a matter of individual taste, not a matter of

the contents of particular files. If you want to use Auto Fill, set up major mode hooks with your

‘.emacs’ file to turn it on (when appropriate) for you alone (see Section 28.6 [Init File], page 232).

Don’t try to use a local variable list that would impose your taste on everyone.

28.3 Keyboard Macros

A keyboard macro is a command defined by the user to abbreviate a sequence of keys. For

example, if you discover that you are about to type C-n C-d forty times, you can speed your work

by defining a keyboard macro to do C-n C-d and calling it with a repeat count of forty.

C-x (Start defining a keyboard macro (start-kbd-macro).

C-x) End the definition of a keyboard macro (end-kbd-macro).

C-x e Execute the most recent keyboard macro (call-last-kbd-macro).

C-u C-x (Re-execute last keyboard macro, then add more keys to its definition.

C-x q When this point is reached during macro execution, ask for confirmation (kbd-macro-

query).

M-x name-last-kbd-macro

Give a command name (for the duration of the session) to the most recently defined

keyboard macro.

M-x insert-kbd-macro

Insert in the buffer a keyboard macro’s definition, as Lisp code.

Keyboard macros differ from ordinary Emacs commands in that they are written in the Emacs

command language rather than in Lisp. This makes it easier for the novice to write them, and

makes them more convenient as temporary hacks. However, the Emacs command language is not

powerful enough as a programming language to be useful for writing anything intelligent or general.

For such things, Lisp must be used.

You define a keyboard macro while executing the commands which are the definition. Put

differently, as you are defining a keyboard macro, the definition is being executed for the first time.

This way, you can see what the effects of your commands are, so that you don’t have to figure

them out in your head. When you are finished, the keyboard macro is defined and also has been,

in effect, executed once. You can then do the whole thing over again by invoking the macro.

224 GNU Emacs Manual

28.3.1 Basic Use

To start defining a keyboard macro, type the C-x (command (start-kbd-macro). From then

on, your keys continue to be executed, but also become part of the definition of the macro. ‘Def’

appears in the mode line to remind you of what is going on. When you are finished, the C-x)

command (end-kbd-macro) terminates the definition (without becoming part of it!). For example

C-x (M-F foo C-x)

defines a macro to move forward a word and then insert ‘foo’.

The macro thus defined can be invoked again with the C-x e command (call-last-kbd-macro),

which may be given a repeat count as a numeric argument to execute the macro many times. C-x

) can also be given a repeat count as an argument, in which case it repeats the macro that many

times right after defining it, but defining the macro counts as the first repetition (since it is executed

as you define it). So, giving C-x) an argument of 4 executes the macro immediately 3 additional

times. An argument of zero to C-x e or C-x) means repeat the macro indefinitely (until it gets an

error or you type C-g).

If you wish to repeat an operation at regularly spaced places in the text, define a macro and

include as part of the macro the commands to move to the next place you want to use it. For

example, if you want to change each line, you should position point at the start of a line, and define

a macro to change that line and leave point at the start of the next line. Then repeating the macro

will operate on successive lines.

After you have terminated the definition of a keyboard macro, you can add to the end of its

definition by typing C-u C-x (. This is equivalent to plain C-x (followed by retyping the whole

definition so far. As a consequence it re-executes the macro as previously defined.

28.3.2 Naming and Saving Keyboard Macros

If you wish to save a keyboard macro for longer than until you define the next one, you must

give it a name using M-x name-last-kbd-macro. This reads a name as an argument using the

minibuffer and defines that name to execute the macro. The macro name is a Lisp symbol, and

defining it in this way makes it a valid command name for calling with M-x or for binding a key

to with global-set-key (see Section 28.4.1 [Keymaps], page 226). If you specify a name that has

a prior definition other than another keyboard macro, an error message is printed and nothing is

changed.

Chapter 28: Customization 225

Once a macro has a command name, you can save its definition in a file. Then it can be used

in another editing session. First visit the file you want to save the definition in. Then use the

command

M-x insert-kbd-macro RET macroname RET

This inserts some Lisp code that, when executed later, will define the same macro with the same

definition it has now. You need not understand Lisp code to do this, because insert-kbd-macro

writes the Lisp code for you. Then save the file. The file can be loaded with load-file (see

Section 22.3 [Lisp Libraries], page 169). If the file you save in is your init file ‘~/.emacs’ (see

Section 28.6 [Init File], page 232) then the macro will be defined each time you run Emacs.

If you give insert-kbd-macro a prefix argument, it makes additional Lisp code to record the

keys (if any) that you have bound to the keyboard macro, so that the macro will be reassigned the

same keys when you load the file.

28.3.3 Executing Macros with Variations

Using C-x q (kbd-macro-query), you can get an effect similar to that of query-replace, where

the macro asks you each time around whether to make a change. When you are defining the macro,

type C-x q at the point where you want the query to occur. During macro definition, the C-x q

does nothing, but when the macro is invoked the C-x q reads a character from the terminal to

decide whether to continue.

The special answers are SPC, DEL, C-d, C-l and C-r. Any other character terminates execution

of the keyboard macro and is then read as a command. SPC means to continue. DEL means to

skip the remainder of this repetition of the macro, starting again from the beginning in the next

repetition. C-d means to skip the remainder of this repetition and cancel further repetition. C-l

redraws the screen and asks you again for a character to say what to do. C-r enters a recursive

editing level, in which you can perform editing which is not part of the macro. When you exit the

recursive edit using C-M-c, you are asked again how to continue with the keyboard macro. If you

type a SPC at this time, the rest of the macro definition is executed. It is up to you to leave point

and the text in a state such that the rest of the macro will do what you want.

C-u C-x q, which is C-x q with a numeric argument, performs a different function. It enters a

recursive edit reading input from the keyboard, both when you type it during the definition of the

macro, and when it is executed from the macro. During definition, the editing you do inside the

recursive edit does not become part of the macro. During macro execution, the recursive edit gives

226 GNU Emacs Manual

you a chance to do some particularized editing. See Section 27.1 [Recursive Edit], page 207.

28.4 Customizing Key Bindings

This section deals with the keymaps which define the bindings between keys and functions, and

shows how you can customize these bindings.

A command is a Lisp function whose definition provides for interactive use. Like every Lisp

function, a command has a function name, a Lisp symbol whose name usually consists of lower

case letters and hyphens.

28.4.1 Keymaps

The bindings between characters and command functions are recorded in data structures called

keymaps. Emacs has many of these. One, the global keymap, defines the meanings of the single-

character keys that are defined regardless of major mode. It is the value of the variable global-map.

Each major mode has another keymap, its local keymap, which contains overriding definitions

for the single-character keys that are to be redefined in that mode. Each buffer records which local

keymap is installed for it at any time, and the current buffer’s local keymap is the only one that

directly affects command execution. The local keymaps for Lisp mode, C mode, and many other

major modes always exist even when not in use. They are the values of the variables lisp-mode-

map, c-mode-map, and so on. For major modes less often used, the local keymap is sometimes

constructed only when the mode is used for the first time in a session. This is to save space.

There are local keymaps for the minibuffer too; they contain various completion and exit com-

mands.

• minibuffer-local-map is used for ordinary input (no completion).

• minibuffer-local-ns-map is similar, except that SPC exits just like RET. This is used mainly

for Mocklisp compatibility.

• minibuffer-local-completion-map is for permissive completion.

• minibuffer-local-must-match-map is for strict completion and for cautious completion.

• repeat-complex-command-map is for use in C-x ESC.

Finally, each prefix key has a keymap which defines the key sequences that start with it. For

Chapter 28: Customization 227

example, ctl-x-map is the keymap used for characters following a C-x.

• ctl-x-map is the variable name for the map used for characters that follow C-x.

• help-map is used for characters that follow C-h.

• esc-map is for characters that follow ESC. Thus, all Meta characters are actually defined by

this map.

• ctl-x-4-map is for characters that follow C-x 4.

• mode-specific-map is for characters that follow C-c.

The definition of a prefix key is just the keymap to use for looking up the following character.

Actually, the definition is sometimes a Lisp symbol whose function definition is the following char-

acter keymap. The effect is the same, but it provides a command name for the prefix key that

can be used as a description of what the prefix key is for. Thus, the binding of C-x is the symbol

Ctl-X-Prefix, whose function definition is the keymap for C-x commands, the value of ctl-x-map.

Prefix key definitions of this sort can appear in either the global map or a local map. The

definitions of C-c, C-x, C-h and ESC as prefix keys appear in the global map, so these prefix keys

are always available. Major modes can locally redefine a key as a prefix by putting a prefix key

definition for it in the local map.

A mode can also put a prefix definition of a global prefix character such as C-x into its local

map. This is how major modes override the definitions of certain keys that start with C-x. This

case is special, because the local definition does not entirely replace the global one. When both

the global and local definitions of a key are other keymaps, the next character is looked up in

both keymaps, with the local definition overriding the global one as usual. So, the character after

the C-x is looked up in both the major mode’s own keymap for redefined C-x commands and in

ctl-x-map. If the major mode’s own keymap for C-x commands contains nil, the definition from

the global keymap for C-x commands is used.

A keymap is actually a Lisp object. The simplest form of keymap is a Lisp vector of length

128. The binding for a character in such a keymap is found by indexing into the vector with the

character as an index. A keymap can also be a Lisp list whose car is the symbol keymap and whose

remaining elements are pairs of the form (char . binding). Such lists are called sparse keymaps

because they are used when most of the characters’ entries will be nil. Sparse keymaps are used

mainly for prefix characters.

Keymaps are only of length 128, so what about Meta characters, whose codes are from 128 to

255? A key that contains a Meta character actually represents it as a sequence of two characters,

the first of which is ESC. So the key M-a is really represented as ESC a, and its binding is found at

228 GNU Emacs Manual

the slot for ‘a’ in esc-map.

28.4.2 Changing Key Bindings Interactively

The way to redefine an Emacs key is to change its entry in a keymap. You can change the global

keymap, in which case the change is effective in all major modes (except those that have their own

overriding local definitions for the same key). Or you can change the current buffer’s local map,

which affects all buffers using the same major mode.

M-x global-set-key RET key cmd RET

Defines key globally to run cmd.

M-x local-set-key RET key cmd RET

Defines key locally (in the major mode now in effect) to run cmd.

For example,

M-x global-set-key RET C-f next-line RET

would redefine C-f to move down a line. The fact that cmd is read second makes it serve as a kind

of confirmation for key.

These functions offer no way to specify a particular prefix keymap as the one to redefine in, but

that is not necessary, as you can include prefixes in key. key is read by reading characters one by

one until they amount to a complete key (that is, not a prefix key). Thus, if you type C-f for key,

that’s the end; the minibuffer is entered immediately to read cmd. But if you type C-x, another

character is read; if that is 4, another character is read, and so on. For example,

M-x global-set-key RET C-x 4 $ spell-other-window RET

would redefine C-x 4 $ to run the (fictitious) command spell-other-window.

The most general way to modify a keymap is the function define-key, used in Lisp code (such

as your ‘.emacs’ file). define-key takes three arguments: the keymap, the key to modify in it,

and the new definition. See Section 28.6 [Init File], page 232, for an example. substitute-key-

definition is used similarly; it takes three arguments, an old definition, a new definition and a

keymap, and redefines in that keymap all keys that were previously defined with the old definition

to have the new definition instead.

Chapter 28: Customization 229

28.4.3 Disabling Commands

Disabling a command marks the command as requiring confirmation before it can be executed.

The purpose of disabling a command is to prevent beginning users from executing it by accident

and being confused.

The direct mechanism for disabling a command is to have a non-nil disabled property on the

Lisp symbol for the command. These properties are normally set up by the user’s ‘.emacs’ file

with Lisp expressions such as

(put ’delete-region ’disabled t)

If the value of the disabled property is a string, that string is included in the message printed

when the command is used:

(put ’delete-region ’disabled
"Text deleted this way cannot be yanked back!\n")

You can make a command disabled either by editing the ‘.emacs’ file directly or with the

command M-x disable-command, which edits the ‘.emacs’ file for you. See Section 28.6 [Init File],

page 232.

Attempting to invoke a disabled command interactively in Emacs causes the display of a window

containing the command’s name, its documentation, and some instructions on what to do imme-

diately; then Emacs asks for input saying whether to execute the command as requested, enable

it and execute, or cancel it. If you decide to enable the command, you are asked whether to do

this permanently or just for the current session. Enabling permanently works by automatically

editing your ‘.emacs’ file. You can use M-x enable-command at any time to enable any command

permanently.

Whether a command is disabled is independent of what key is used to invoke it; it also applies

if the command is invoked using M-x. Disabling a command has no effect on calling it as a function

from Lisp programs.

28.5 The Syntax Table

All the Emacs commands which parse words or balance parentheses are controlled by the syntax

table. The syntax table says which characters are opening delimiters, which are parts of words,

230 GNU Emacs Manual

which are string quotes, and so on. Actually, each major mode has its own syntax table (though

sometimes related major modes use the same one) which it installs in each buffer that uses that

major mode. The syntax table installed in the current buffer is the one that all commands use, so

we call it “the” syntax table. A syntax table is a Lisp object, a vector of length 256 whose elements

are numbers.

28.5.1 Information about Each Character

The syntax table entry for a character is a number that encodes six pieces of information:

• The syntactic class of the character, represented as a small integer.

• The matching delimiter, for delimiter characters only. The matching delimiter of ‘(’ is ‘)’, and

vice versa.

• A flag saying whether the character is the first character of a two-character comment starting

sequence.

• A flag saying whether the character is the second character of a two-character comment starting

sequence.

• A flag saying whether the character is the first character of a two-character comment ending

sequence.

• A flag saying whether the character is the second character of a two-character comment ending

sequence.

The syntactic classes are stored internally as small integers, but are usually described to or by

the user with characters. For example, ‘(’ is used to specify the syntactic class of opening delimiters.

Here is a table of syntactic classes, with the characters that specify them.

‘ ’ The class of whitespace characters.

‘w’ The class of word-constituent characters.

‘_’ The class of characters that are part of symbol names but not words. This class is

represented by ‘_’ because the character ‘_’ has this class in both C and Lisp.

‘.’ The class of punctuation characters that do not fit into any other special class.

‘(’ The class of opening delimiters.

‘)’ The class of closing delimiters.

‘’’ The class of expression-adhering characters. These characters are part of a symbol if

found within or adjacent to one, and are part of a following expression if immediately

preceding one, but are like whitespace if surrounded by whitespace.

Chapter 28: Customization 231

‘"’ The class of string-quote characters. They match each other in pairs, and the characters

within the pair all lose their syntactic significance except for the ‘\’ and ‘/’ classes of

escape characters, which can be used to include a string-quote inside the string.

‘$’ The class of self-matching delimiters. This is intended for TEX’s ‘$’, which is used both

to enter and leave math mode. Thus, a pair of matching ‘$’ characters surround each

piece of math mode TEX input. A pair of adjacent ‘$’ characters act like a single one

for purposes of matching

‘/’ The class of escape characters that always just deny the following character its special

syntactic significance. The character after one of these escapes is always treated as

alphabetic.

‘\’ The class of C-style escape characters. In practice, these are treated just like ‘/’-class

characters, because the extra possibilities for C escapes (such as being followed by

digits) have no effect on where the containing expression ends.

‘<’ The class of comment-starting characters. Only single-character comment starters

(such as ‘;’ in Lisp mode) are represented this way.

‘>’ The class of comment-ending characters. Newline has this syntax in Lisp mode.

The characters flagged as part of two-character comment delimiters can have other syntactic

functions most of the time. For example, ‘/’ and ‘*’ in C code, when found separately, have nothing

to do with comments. The comment-delimiter significance overrides when the pair of characters

occur together in the proper order. Only the list and sexp commands use the syntax table to find

comments; the commands specifically for comments have other variables that tell them where to

find comments. And the list and sexp commands notice comments only if parse-sexp-ignore-

comments is non-nil. This variable is set to nil in modes where comment-terminator sequences

are liable to appear where there is no comment; for example, in Lisp mode where the comment

terminator is a newline but not every newline ends a comment.

28.5.2 Altering Syntax Information

It is possible to alter a character’s syntax table entry by storing a new number in the appropriate

element of the syntax table, but it would be hard to determine what number to use. Therefore,

Emacs provides a command that allows you to specify the syntactic properties of a character in a

convenient way.

M-x modify-syntax-entry is the command to change a character’s syntax. It can be used

interactively, and is also the means used by major modes to initialize their own syntax tables. Its

first argument is the character to change. The second argument is a string that specifies the new

syntax. When called from Lisp code, there is a third, optional argument, which specifies the syntax

232 GNU Emacs Manual

table in which to make the change. If not supplied, or if this command is called interactively, the

third argument defaults to the current buffer’s syntax table.

1. The first character in the string specifies the syntactic class. It is one of the characters in the

previous table (see Section 28.5.1 [Syntax Entry], page 230).

2. The second character is the matching delimiter. For a character that is not an opening or

closing delimiter, this should be a space, and may be omitted if no following characters are

needed.

3. The remaining characters are flags. The flag characters allowed are

‘1’ Flag this character as the first of a two-character comment starting sequence.

‘2’ Flag this character as the second of a two-character comment starting sequence.

‘3’ Flag this character as the first of a two-character comment ending sequence.

‘4’ Flag this character as the second of a two-character comment ending sequence.

A description of the contents of the current syntax table can be displayed with C-h s (describe-

syntax). The description of each character includes both the string you would have to give to

modify-syntax-entry to set up that character’s current syntax, and some English to explain that

string if necessary.

28.6 The Init File, .emacs

When Emacs is started, it normally loads the file ‘.emacs’ in your home directory. This file,

if it exists, should contain Lisp code. It is called your init file. The command line switches ‘-q’

and ‘-u’ can be used to tell Emacs whether to load an init file (see Chapter 3 [Entering Emacs],

page 21).

There can also be a default init file, which is the library named ‘default.el’, found via the

standard search path for libraries. The Emacs distribution contains no such library; your site may

create one for local customizations. If this library exists, it is loaded whenever you start Emacs.

But your init file, if any, is loaded first; if it sets inhibit-default-init non-nil, then ‘default’

is not loaded.

If you have a large amount of code in your ‘.emacs’ file, you should move it into another file

named ‘something.el’, byte-compile it (see Section 22.3 [Lisp Libraries], page 169), and make your

‘.emacs’ file load the other file using load.

Chapter 28: Customization 233

28.6.1 Init File Syntax

The ‘.emacs’ file contains one or more Lisp function call expressions. Each of these consists of

a function name followed by arguments, all surrounded by parentheses. For example, (setq fill-

column 60) represents a call to the function setq which is used to set the variable fill-column

(see Section 20.6 [Filling], page 134) to 60.

The second argument to setq is an expression for the new value of the variable. This can be

a constant, a variable, or a function call expression. In ‘.emacs’, constants are used most of the

time. They can be:

Numbers: Numbers are written in decimal, with an optional initial minus sign.

Strings: Lisp string syntax is the same as C string syntax with a few extra features. Use a

double-quote character to begin and end a string constant.

Newlines and special characters may be present literally in strings. They can also be

represented as backslash sequences: ‘\n’ for newline, ‘\b’ for backspace, ‘\r’ for carriage

return, ‘\t’ for tab, ‘\f’ for formfeed (control-l), ‘\e’ for escape, ‘\\’ for a backslash,

‘\"’ for a double-quote, or ‘\ooo’ for the character whose octal code is ooo. Backslash

and double-quote are the only characters for which backslash sequences are mandatory.

‘\C-’ can be used as a prefix for a control character, as in ‘\C-s’ for ASCII Control-S,

and ‘\M-’ can be used as a prefix for a meta character, as in ‘\M-a’ for Meta-A or

‘\M-\C-a’ for Control-Meta-A.

Characters:

Lisp character constant syntax consists of a ‘?’ followed by either a character or an

escape sequence starting with ‘\’. Examples: ?x, ?\n, ?\", ?\). Note that strings

and characters are not interchangeable in Lisp; some contexts require one and some

contexts require the other.

True: t stands for ‘true’.

False: nil stands for ‘false’.

Other Lisp objects:

Write a single-quote (’) followed by the Lisp object you want.

28.6.2 Init File Examples

Here are some examples of doing certain commonly desired things with Lisp expressions:

• Make TAB in C mode just insert a tab if point is in the middle of a line.

234 GNU Emacs Manual

(setq c-tab-always-indent nil)

Here we have a variable whose value is normally t for ‘true’ and the alternative is nil for

‘false’.

• Make searches case sensitive by default (in all buffers that do not override this).

(setq-default case-fold-search nil)

This sets the default value, which is effective in all buffers that do not have local values for the

variable. Setting case-fold-search with setq affects only the current buffer’s local value,

which is not what you probably want to do in an init file.

• Make Text mode the default mode for new buffers.

(setq default-major-mode ’text-mode)

Note that text-mode is used because it is the command for entering the mode we want. A

single-quote is written before it to make a symbol constant; otherwise, text-mode would be

treated as a variable name.

• Turn on Auto Fill mode automatically in Text mode and related modes.

(setq text-mode-hook
’(lambda () (auto-fill-mode 1)))

Here we have a variable whose value should be a Lisp function. The function we supply is a

list starting with lambda, and a single quote is written in front of it to make it (for the purpose

of this setq) a list constant rather than an expression. Lisp functions are not explained here,

but for mode hooks it is enough to know that (auto-fill-mode 1) is an expression that will

be executed when Text mode is entered, and you could replace it with any other expression

that you like, or with several expressions in a row.

(setq text-mode-hook ’turn-on-auto-fill)

This is another way to accomplish the same result. turn-on-auto-fill is a symbol whose

function definition is (lambda () (auto-fill-mode 1)).

• Load the installed Lisp library named ‘foo’ (actually a file ‘foo.elc’ or ‘foo.el’ in a standard

Emacs directory).

(load "foo")

When the argument to load is a relative pathname, not starting with ‘/’ or ‘~’, load searches

the directories in load-path (see Section 22.3.1 [Loading], page 169).

• Load the compiled Lisp file ‘foo.elc’ from your home directory.

(load "~/foo.elc")

Here an absolute file name is used, so no searching is done.

• Rebind the key C-x l to run the function make-symbolic-link.

(global-set-key "\C-xl" ’make-symbolic-link)

or

Chapter 28: Customization 235

(define-key global-map "\C-xl" ’make-symbolic-link)

Note once again the single-quote used to refer to the symbol make-symbolic-link instead of

its value as a variable.

• Do the same thing for C mode only.

(define-key c-mode-map "\C-xl" ’make-symbolic-link)

• Redefine all keys which now run next-line in Fundamental mode so that they run forward-

line instead.

(substitute-key-definition ’next-line ’forward-line
global-map)

• Make C-x C-v undefined.

(global-unset-key "\C-x\C-v")

One reason to undefine a key is so that you can make it a prefix. Simply defining C-x C-v

anything would make C-x C-v a prefix, but C-x C-v must be freed of any non-prefix definition

first.

• Make ‘$’ have the syntax of punctuation in Text mode. Note the use of a character constant

for ‘$’.

(modify-syntax-entry ?\$ "." text-mode-syntax-table)

• Enable the use of the command eval-expression without confirmation.

(put ’eval-expression ’disabled nil)

28.6.3 Terminal-specific Initialization

Each terminal type can have a Lisp library to be loaded into Emacs when it is run on that

type of terminal. For a terminal type named termtype, the library is called ‘term/termtype’ and it

is found by searching the directories load-path as usual and trying the suffixes ‘.elc’ and ‘.el’.

Normally it appears in the subdirectory ‘term’ of the directory where most Emacs libraries are

kept.

The usual purpose of the terminal-specific library is to define the escape sequences used by the

terminal’s function keys using the library ‘keypad.el’. See the file ‘term/vt100.el’ for an example

of how this is done.

When the terminal type contains a hyphen, only the part of the name before the first hyphen is

significant in choosing the library name. Thus, terminal types ‘aaa-48’ and ‘aaa-30-rv’ both use

the library ‘term/aaa’. The code in the library can use (getenv "TERM") to find the full terminal

type name.

236 GNU Emacs Manual

The library’s name is constructed by concatenating the value of the variable term-file-prefix

and the terminal type. Your ‘.emacs’ file can prevent the loading of the terminal-specific library

by setting term-file-prefix to nil.

The value of the variable term-setup-hook, if not nil, is called as a function of no arguments at

the end of Emacs initialization, after both your ‘.emacs’ file and any terminal-specific library have

been read in. You can set the value in the ‘.emacs’ file to override part of any of the terminal-specific

libraries and to define initializations for terminals that do not have a library.

Chapter 29: Correcting Mistakes (Yours or Emacs’s) 237

29 Correcting Mistakes (Yours or Emacs’s)

If you type an Emacs command you did not intend, the results are often mysterious. This chapter

tells what you can do to cancel your mistake or recover from a mysterious situation. Emacs bugs

and system crashes are also considered.

29.1 Quitting and Aborting

C-g Quit. Cancel running or partially typed command.

C-] Abort innermost recursive editing level and cancel the command which invoked it

(abort-recursive-edit).

M-x top-level

Abort all recursive editing levels that are currently executing.

C-x u Cancel an already-executed command, usually (undo).

There are two ways of cancelling commands which are not finished executing: quitting with

C-g, and aborting with C-] or M-x top-level. Quitting is cancelling a partially typed command

or one which is already running. Aborting is getting out of a recursive editing level and cancelling

the command that invoked the recursive edit.

Quitting with C-g is used for getting rid of a partially typed command, or a numeric argument

that you don’t want. It also stops a running command in the middle in a relatively safe way, so you

can use it if you accidentally give a command which takes a long time. In particular, it is safe to

quit out of killing; either your text will all still be there, or it will all be in the kill ring (or maybe

both). Quitting an incremental search does special things documented under searching; in general,

it may take two successive C-g characters to get out of a search. C-g works by setting the variable

quit-flag to t the instant C-g is typed; Emacs Lisp checks this variable frequently and quits if it

is non-nil. C-g is only actually executed as a command if it is typed while Emacs is waiting for

input.

If you quit twice in a row before the first C-g is recognized, you activate the “emergency escape”

feature and return to the shell. See Section 29.2.5 [Emergency Escape], page 239.

Aborting with C-] (abort-recursive-edit) is used to get out of a recursive editing level and

cancel the command which invoked it. Quitting with C-g does not do this, and could not do this,

because it is used to cancel a partially typed command within the recursive editing level. Both

operations are useful. For example, if you are in the Emacs debugger (see Section 22.5 [Lisp Debug],

238 GNU Emacs Manual

page 173) and have typed C-u 8 to enter a numeric argument, you can cancel that argument with

C-g and remain in the debugger.

The command M-x top-level is equivalent to “enough” C-] commands to get you out of all the

levels of recursive edits that you are in. C-] gets you out one level at a time, but M-x top-level

goes out all levels at once. Both C-] and M-x top-level are like all other commands, and unlike

C-g, in that they are effective only when Emacs is ready for a command. C-] is an ordinary key

and has its meaning only because of its binding in the keymap. See Section 27.1 [Recursive Edit],

page 207.

C-x u (undo) is not strictly speaking a way of cancelling a command, but you can think of it as

cancelling a command already finished executing. See Chapter 5 [Undo], page 33.

29.2 Dealing with Emacs Trouble

This section describes various conditions in which Emacs fails to work, and how to recognize

them and correct them.

29.2.1 Recursive Editing Levels

Recursive editing levels are important and useful features of Emacs, but they can seem like

malfunctions to the user who does not understand them.

If the mode line has square brackets ‘[. . .]’ around the parentheses that contain the names of

the major and minor modes, you have entered a recursive editing level. If you did not do this on

purpose, or if you don’t understand what that means, you should just get out of the recursive editing

level. To do so, type M-x top-level. This is called getting back to top level. See Section 27.1

[Recursive Edit], page 207.

29.2.2 Garbage on the Screen

If the data on the screen looks wrong, the first thing to do is see whether the text is really

wrong. Type C-l, to redisplay the entire screen. If it appears correct after this, the problem was

entirely in the previous screen update.

Chapter 29: Correcting Mistakes (Yours or Emacs’s) 239

Display updating problems often result from an incorrect termcap entry for the terminal you

are using. The file ‘etc/TERMS’ in the Emacs distribution gives the fixes for known problems of this

sort. ‘INSTALL’ contains general advice for these problems in one of its sections. Very likely there

is simply insufficient padding for certain display operations. To investigate the possibility that you

have this sort of problem, try Emacs on another terminal made by a different manufacturer. If

problems happen frequently on one kind of terminal but not another kind, it is likely to be a bad

termcap entry, though it could also be due to a bug in Emacs that appears for terminals that have

or that lack specific features.

29.2.3 Garbage in the Text

If C-l shows that the text is wrong, try undoing the changes to it using C-x u until it gets back

to a state you consider correct. Also try C-h l to find out what command you typed to produce

the observed results.

If a large portion of text appears to be missing at the beginning or end of the buffer, check for

the word ‘Narrow’ in the mode line. If it appears, the text is still present, but marked off-limits.

To make it visible again, type C-x w. See Section 27.2 [Narrowing], page 208.

29.2.4 Spontaneous Entry to Incremental Search

If Emacs spontaneously displays ‘I-search:’ at the bottom of the screen, it means that the

terminal is sending C-s and C-q according to the poorly designed xon/xoff “flow control” protocol.

You should try to prevent this by putting the terminal in a mode where it will not use flow control

or giving it enough padding that it will never send a C-s. If that cannot be done, you must tell

Emacs to expect flow control to be used, until you can get a properly designed terminal.

Information on how to do these things can be found in the file ‘INSTALL’ in the Emacs distri-

bution.

29.2.5 Emergency Escape

Because at times there have been bugs causing Emacs to loop without checking quit-flag, a

special feature causes Emacs to be suspended immediately if you type a second C-g while the flag

is already set, so you can always get out of GNU Emacs. Normally Emacs recognizes and clears

quit-flag (and quits!) quickly enough to prevent this from happening.

240 GNU Emacs Manual

When you resume Emacs after a suspension caused by multiple C-g, it asks two questions before

going back to what it had been doing:

Auto-save? (y or n)
Abort (and dump core)? (y or n)

Answer each one with y or n followed by RET.

Saying y to ‘Auto-save?’ causes immediate auto-saving of all modified buffers in which auto-

saving is enabled.

Saying y to ‘Abort (and dump core)?’ causes an illegal instruction to be executed, dumping

core. This is to enable a wizard to figure out why Emacs was failing to quit in the first place.

Execution does not continue after a core dump. If you answer n, execution does continue. With

luck, GNU Emacs will ultimately check quit-flag and quit normally. If not, and you type another

C-g, it is suspended again.

If Emacs is not really hung, just slow, you may invoke the double C-g feature without really

meaning to. Then just resume and answer n to both questions, and you will arrive at your former

state. Presumably the quit you requested will happen soon.

The double-C-g feature may be turned off when Emacs is running under a window system, since

the window system always enables you to kill Emacs or to create another window and run another

program.

29.2.6 Help for Total Frustration

If using Emacs (or something else) becomes terribly frustrating and none of the techniques

described above solve the problem, Emacs can still help you.

First, if the Emacs you are using is not responding to commands, type C-g C-g to get out of it

and then start a new one.

Second, type M-x doctor RET.

The doctor will make you feel better. Each time you say something to the doctor, you must end

it by typing RET RET. This lets the doctor know you are finished.

Chapter 29: Correcting Mistakes (Yours or Emacs’s) 241

29.3 Reporting Bugs

Sometimes you will encounter a bug in Emacs. Although we cannot promise we can or will fix

the bug, and we might not even agree that it is a bug, we want to hear about bugs you encounter

in case we do want to fix them.

To make it possible for us to fix a bug, you must report it. In order to do so effectively, you

must know when and how to do it.

29.3.1 When Is There a Bug

If Emacs executes an illegal instruction, or dies with an operating system error message that

indicates a problem in the program (as opposed to something like “disk full”), then it is certainly

a bug.

If Emacs updates the display in a way that does not correspond to what is in the buffer, then

it is certainly a bug. If a command seems to do the wrong thing but the problem corrects itself if

you type C-l, it is a case of incorrect display updating.

Taking forever to complete a command can be a bug, but you must make certain that it was

really Emacs’s fault. Some commands simply take a long time. Type C-g and then C-h l to see

whether the input Emacs received was what you intended to type; if the input was such that you

know it should have been processed quickly, report a bug. If you don’t know whether the command

should take a long time, find out by looking in the manual or by asking for assistance.

If a command you are familiar with causes an Emacs error message in a case where its usual

definition ought to be reasonable, it is probably a bug.

If a command does the wrong thing, that is a bug. But be sure you know for certain what it

ought to have done. If you aren’t familiar with the command, or don’t know for certain how the

command is supposed to work, then it might actually be working right. Rather than jumping to

conclusions, show the problem to someone who knows for certain.

Finally, a command’s intended definition may not be best for editing with. This is a very

important sort of problem, but it is also a matter of judgment. Also, it is easy to come to such a

conclusion out of ignorance of some of the existing features. It is probably best not to complain

about such a problem until you have checked the documentation in the usual ways, feel confident

that you understand it, and know for certain that what you want is not available. If you are not

242 GNU Emacs Manual

sure what the command is supposed to do after a careful reading of the manual, check the index

and glossary for any terms that may be unclear. If you still do not understand, this indicates a

bug in the manual. The manual’s job is to make everything clear. It is just as important to report

documentation bugs as program bugs.

If the on-line documentation string of a function or variable disagrees with the manual, one of

them must be wrong, so report the bug.

29.3.2 How to Report a Bug

When you decide that there is a bug, it is important to report it and to report it in a way which

is useful. What is most useful is an exact description of what commands you type, starting with

the shell command to run Emacs, until the problem happens. Always include the version number

of Emacs that you are using; type M-x emacs-version to print this.

The most important principle in reporting a bug is to report facts, not hypotheses or cate-

gorizations. It is always easier to report the facts, but people seem to prefer to strain to posit

explanations and report them instead. If the explanations are based on guesses about how Emacs

is implemented, they will be useless; we will have to try to figure out what the facts must have

been to lead to such speculations. Sometimes this is impossible. But in any case, it is unnecessary

work for us.

For example, suppose that you type C-x C-f /glorp/baz.ugh RET, visiting a file which (you

know) happens to be rather large, and Emacs prints out ‘I feel pretty today’. The best way to

report the bug is with a sentence like the preceding one, because it gives all the facts and nothing

but the facts.

Do not assume that the problem is due to the size of the file and say, “When I visit a large file,

Emacs prints out ‘I feel pretty today’.” This is what we mean by “guessing explanations”. The

problem is just as likely to be due to the fact that there is a ‘z’ in the file name. If this is so, then

when we got your report, we would try out the problem with some “large file”, probably with no

‘z’ in its name, and not find anything wrong. There is no way in the world that we could guess

that we should try visiting a file with a ‘z’ in its name.

Alternatively, the problem might be due to the fact that the file starts with exactly 25 spaces.

For this reason, you should make sure that you inform us of the exact contents of any file that is

needed to reproduce the bug. What if the problem only occurs when you have typed the C-x C-a

command previously? This is why we ask you to give the exact sequence of characters you typed

Chapter 29: Correcting Mistakes (Yours or Emacs’s) 243

since starting to use Emacs.

You should not even say “visit a file” instead of C-x C-f unless you know that it makes no

difference which visiting command is used. Similarly, rather than saying “if I have three characters

on the line,” say “after I type RET A B C RET C-p,” if that is the way you entered the text.

If you are not in Fundamental mode when the problem occurs, you should say what mode you

are in.

If the manifestation of the bug is an Emacs error message, it is important to report not just the

text of the error message but a backtrace showing how the Lisp program in Emacs arrived at the

error. To make the backtrace, you must execute the Lisp expression (setq debug-on-error t)

before the error happens (that is to say, you must execute that expression and then make the bug

happen). This causes the Lisp debugger to run (see Section 22.5 [Lisp Debug], page 173). The

debugger’s backtrace can be copied as text into the bug report. This use of the debugger is possible

only if you know how to make the bug happen again. Do note the error message the first time the

bug happens, so if you can’t make it happen again, you can report at least that.

Check whether any programs you have loaded into the Lisp world, including your ‘.emacs’ file,

set any variables that may affect the functioning of Emacs. Also, see whether the problem happens

in a freshly started Emacs without loading your ‘.emacs’ file (start Emacs with the -q switch to

prevent loading the init file.) If the problem does not occur then, it is essential that we know the

contents of any programs that you must load into the Lisp world in order to cause the problem to

occur.

If the problem does depend on an init file or other Lisp programs that are not part of the standard

Emacs system, then you should make sure it is not a bug in those programs by complaining to their

maintainers first. After they verify that they are using Emacs in a way that is supposed to work,

they should report the bug.

If you can tell us a way to cause the problem without visiting any files, please do so. This

makes it much easier to debug. If you do need files, make sure you arrange for us to see their

exact contents. For example, it can often matter whether there are spaces at the ends of lines, or a

newline after the last line in the buffer (nothing ought to care whether the last line is terminated,

but tell that to the bugs).

The easy way to record the input to Emacs precisely is to to write a dribble file; execute the

Lisp expression

244 GNU Emacs Manual

(open-dribble-file "~/dribble")

using Meta-ESC or from the ‘*scratch*’ buffer just after starting Emacs. From then on, all Emacs

input will be written in the specified dribble file until the Emacs process is killed.

For possible display bugs, it is important to report the terminal type (the value of environment

variable TERM), the complete termcap entry for the terminal from ‘/etc/termcap’ (since that file is

not identical on all machines), and the output that Emacs actually sent to the terminal. The way

to collect this output is to execute the Lisp expression

(open-termscript "~/termscript")

using Meta-ESC or from the ‘*scratch*’ buffer just after starting Emacs. From then on, all output

from Emacs to the terminal will be written in the specified termscript file as well, until the Emacs

process is killed. If the problem happens when Emacs starts up, put this expression into your

‘.emacs’ file so that the termscript file will be open when Emacs displays the screen for the first

time. Be warned: it is often difficult, and sometimes impossible, to fix a terminal-dependent bug

without access to a terminal of the type that stimulates the bug.

The address for reporting bugs is

GNU Emacs Bugs
545 Tech Sq, rm 703
Cambridge, MA 02139

or send email to ‘mit-eddie!bug-gnu-emacs’ (Usenet) or ‘bug-gnu-emacs@prep.ai.mit.edu’ (In-

ternet).

Once again, we do not promise to fix the bug; but if the bug is serious, or ugly, or easy to fix,

chances are we will want to.

Emacs Version 17 Antinews 245

Emacs Version 17 Antinews

For those of you who are downgrading from version 18 to version 17 of GNU Emacs, here is a list

of the old features. You will note many simplifications; complicated features have been eliminated.

The list does not include changes affecting only topics not dealt with in this manual.

General Changes

• Vi, EDT and Gosmacs emulation have been eliminated in version 17. The idea is that other

editors are obsolete and nobody should want to remember they exist.

• The buffer-sorting commands of version 18 have been eliminated in version 17. See Section 27.3

[Sorting], page 209.

• The M-TAB command for completion of Lisp symbol names has been eliminated.

• The M-/ command for dynamic abbrev expansion has been eliminated.

• C-M-v is no longer redefined in the minibuffer. It has its standard meaning, which is to scroll

the “next” window. In the minibuffer, the “next” window is always the one at the top of the

screen. See Chapter 17 [Windows], page 111.

• The old command M-x occur-menu is now the way to ask for a list of matches for a regexp

and then pick one and move point to it. Refer to its on-line documentation for full details of

its use. M-x occur has been simplified and now just displays a list of matches with no fancy

options. See Section 13.8 [Other Repeating Search], page 81.

• Incremental searches both ordinary and regexp now share a single default search string which

is the last thing searched for by either kind of incremental search. They do not wrap to the

beginning or end of the buffer. See Section 13.1.1 [Incremental Search], page 71.

• The variables search-low-speed and search-slow-window-lines have been renamed to start

with isearch instead of search.

• Undo in version 17 clears the “modified” flag more often. If the buffer contents that result from

undoing are the same as at a prior instant when the “modified” flag was clear, the “modified”

flag is cleared again. See Chapter 5 [Undo], page 33.

• C-x C-v is allowed only when the current buffer is visiting a file. See Section 15.2 [Visiting],

page 88.

• Auto-save file names in version 17 do not have a final ‘#’. The auto-save file name for a file

‘foo.c’ is therefore ‘#foo.c’. See Section 15.5 [Auto Save], page 96.

• M-x recover-file works more simply. It does not compare the dates of the specified file and

its auto-save file; it does not display a directory listing for them. You must figure out on your

own whether you want to recover the file from its auto-save file.

246 GNU Emacs Manual

• Some of the command line switches have been eliminated (see Section 3.2 [Command Switches],

page 22). Switches eliminated include ‘-insert’ and ‘-i’, and the alternate names ‘-funcall’,

‘-load’, ‘-user’ and ‘-no-init-file’.

Changes in Major Modes

• Fortran mode has been eliminated.

• Nroff mode no longer defines a syntax for comments (see Section 20.1.1 [Nroff Mode], page 122).

• The two kinds of TEX mode have been combined into one; M-x tex-mode simply turns on this

mode instead of choosing among two others. A further simplification is the elimination of the

commands C-c C-f, C-c C-k, C-c C-l and C-c C-q. See Section 20.1.2 [TeX Mode], page 122.

• All the special commands of Outline mode have been moved to new keys or eliminated (see

Section 20.1.3 [Outline Mode], page 126).

• C-c C-n becomes M-}.

• C-c C-p becomes M-{.

• C-c C-f, C-c C-b and C-c C-u are eliminated.

The variable outline-regexp has also been eliminated in version 17.

• In C mode, TAB always reindents the current line. The variable c-tab-always-indent has

been eliminated and Emacs acts as if it were t. See Section 21.4.4 [C Indent], page 146.

• Linefeed is now redefined in C mode so that it reindents (with TAB) both of the lines that result

from breaking the current line.

• The special commands used in Picture mode to specify the direction of cursor motion after

self-inserting characters have been given new keys (see Chapter 24 [Picture], page 183). They

are now

• M-‘ to request leftward motion.

• M-’ to request rightward motion.

• M-- to request upward motion.

• M-= to request downward motion.

• C-c ‘ to request upward and leftward motion.

• C-c ’ to request upward and rightward motion.

• C-c / to request downward and leftward motion.

• C-c \ to request downward and rightward motion.

• The special C-c commands of Mail mode have been given new keys (see Chapter 25 [Sending

Mail], page 187).

• C-c C-f C-s becomes C-c s

Emacs Version 17 Antinews 247

• C-c C-f C-t becomes C-c t

• C-c C-f C-b becomes C-c b

• C-c C-f C-c becomes C-c c

• C-c C-y becomes C-c y

• C-c C-q becomes C-c q

• C-c C-w becomes C-c w

• The g command in Dired has been removed (see Section 15.7 [Dired], page 99).

Init Files and Library Changes

• The commands load-file and load-library are replaced with one command, load. This

command is logically the same as version 18 load-library, but due to changes in the order

of searching it can also serve in place of load-file. See Section 22.3.1 [Loading], page 169.

The search order in version 17 is:

1. Search all the directories in the search path for the file name as given.

2. Append the suffix ‘.elc’ and search all the directories.

3. Remove the final ‘c’, resulting in a suffix ‘.el’, and search all the directories.

The search path in version 17 normally starts with nil, meaning the current default directory.

As a result, the first file name that load tries is the one load-file would use in version 18:

no suffix, and current default directory.

• The default init file is called ‘default-profile’ instead of ‘default.el’ or ‘default.elc’.

Also, it is executed only if you have no init file of your own.

• The terminal-independent keypad support in the ‘keypad’ library has been eliminated. See

Chapter 29 [Terminal Init], page 237.

• The function setq-default has been eliminated. Use set-default and quote the variable

name, as in

(set-default ’variable value)

Several built-in variables now are always local to all buffers.

These variables are tab-width, ctl-arrow, truncate-lines, fill-column, left-margin,

mode-line-format, abbrev-mode, overwrite-mode, case-fold-search, auto-fill-hook,

selective-display.

set-default does not work with these variables. They do have defaults, but the defaults

affect only buffers yet to be created. The only way to set the default for variable foo is to set

the variable named default-foo, such as default-case-fold-search and default-fill-

column.

248 GNU Emacs Manual

• Some variables have been eliminated. Emacs version 17 always behaves as if they were nil.

• backup-by-copying-when-mismatch

• find-file-hooks

• find-file-not-found-hooks

• write-file-hooks

• file-precious-flag

• no-redraw-on-reenter

The GNU Manifesto 249

The GNU Manifesto

What’s GNU? Gnu’s Not Unix!

GNU, which stands for Gnu’s Not Unix, is the name for the complete Unix-compatible software

system which I am writing so that I can give it away free to everyone who can use it. Several other

volunteers are helping me. Contributions of time, money, programs and equipment are greatly

needed.

So far we have an Emacs text editor with Lisp for writing editor commands, a source level

debugger, a yacc-compatible parser generator, a linker, and around 35 utilities. A shell (command

interpreter) is nearly completed. A new portable optimizing C compiler has compiled itself and

may be released this year. An initial kernel exists but many more features are needed to emulate

Unix. When the kernel and compiler are finished, it will be possible to distribute a GNU system

suitable for program development. We will use TEX as our text formatter, but an nroff is being

worked on. We will use the free, portable X window system as well. After this we will add a

portable Common Lisp, an Empire game, a spreadsheet, and hundreds of other things, plus on-line

documentation. We hope to supply, eventually, everything useful that normally comes with a Unix

system, and more.

GNU will be able to run Unix programs, but will not be identical to Unix. We will make

all improvements that are convenient, based on our experience with other operating systems. In

particular, we plan to have longer filenames, file version numbers, a crashproof file system, filename

completion perhaps, terminal-independent display support, and perhaps eventually a Lisp-based

window system through which several Lisp programs and ordinary Unix programs can share a

screen. Both C and Lisp will be available as system programming languages. We will try to

support UUCP, MIT Chaosnet, and Internet protocols for communication.

GNU is aimed initially at machines in the 68000/16000 class with virtual memory, because they

are the easiest machines to make it run on. The extra effort to make it run on smaller machines

will be left to someone who wants to use it on them.

To avoid horrible confusion, please pronounce the ‘G’ in the word ‘GNU’ when it is the name

of this project.

250 GNU Emacs Manual

Why I Must Write GNU

I consider that the golden rule requires that if I like a program I must share it with other

people who like it. Software sellers want to divide the users and conquer them, making each user

agree not to share with others. I refuse to break solidarity with other users in this way. I cannot

in good conscience sign a nondisclosure agreement or a software license agreement. For years I

worked within the Artificial Intelligence Lab to resist such tendencies and other inhospitalities, but

eventually they had gone too far: I could not remain in an institution where such things are done

for me against my will.

So that I can continue to use computers without dishonor, I have decided to put together a

sufficient body of free software so that I will be able to get along without any software that is not

free. I have resigned from the AI lab to deny MIT any legal excuse to prevent me from giving GNU

away.

Why GNU Will Be Compatible with Unix

Unix is not my ideal system, but it is not too bad. The essential features of Unix seem to be

good ones, and I think I can fill in what Unix lacks without spoiling them. And a system compatible

with Unix would be convenient for many other people to adopt.

How GNU Will Be Available

GNU is not in the public domain. Everyone will be permitted to modify and redistribute GNU,

but no distributor will be allowed to restrict its further redistribution. That is to say, proprietary

modifications will not be allowed. I want to make sure that all versions of GNU remain free.

Why Many Other Programmers Want to Help

I have found many other programmers who are excited about GNU and want to help.

Many programmers are unhappy about the commercialization of system software. It may enable

them to make more money, but it requires them to feel in conflict with other programmers in general

rather than feel as comrades. The fundamental act of friendship among programmers is the sharing

of programs; marketing arrangements now typically used essentially forbid programmers to treat

The GNU Manifesto 251

others as friends. The purchaser of software must choose between friendship and obeying the law.

Naturally, many decide that friendship is more important. But those who believe in law often do

not feel at ease with either choice. They become cynical and think that programming is just a way

of making money.

By working on and using GNU rather than proprietary programs, we can be hospitable to

everyone and obey the law. In addition, GNU serves as an example to inspire and a banner to rally

others to join us in sharing. This can give us a feeling of harmony which is impossible if we use

software that is not free. For about half the programmers I talk to, this is an important happiness

that money cannot replace.

How You Can Contribute

I am asking computer manufacturers for donations of machines and money. I’m asking individ-

uals for donations of programs and work.

One consequence you can expect if you donate machines is that GNU will run on them at an

early date. The machines should be complete, ready to use systems, approved for use in a residential

area, and not in need of sophisticated cooling or power.

I have found very many programmers eager to contribute part-time work for GNU. For most

projects, such part-time distributed work would be very hard to coordinate; the independently-

written parts would not work together. But for the particular task of replacing Unix, this problem is

absent. A complete Unix system contains hundreds of utility programs, each of which is documented

separately. Most interface specifications are fixed by Unix compatibility. If each contributor can

write a compatible replacement for a single Unix utility, and make it work properly in place of the

original on a Unix system, then these utilities will work right when put together. Even allowing for

Murphy to create a few unexpected problems, assembling these components will be a feasible task.

(The kernel will require closer communication and will be worked on by a small, tight group.)

If I get donations of money, I may be able to hire a few people full or part time. The salary

won’t be high by programmers’ standards, but I’m looking for people for whom building community

spirit is as important as making money. I view this as a way of enabling dedicated people to devote

their full energies to working on GNU by sparing them the need to make a living in another way.

252 GNU Emacs Manual

Why All Computer Users Will Benefit

Once GNU is written, everyone will be able to obtain good system software free, just like air.

This means much more than just saving everyone the price of a Unix license. It means that

much wasteful duplication of system programming effort will be avoided. This effort can go instead

into advancing the state of the art.

Complete system sources will be available to everyone. As a result, a user who needs changes in

the system will always be free to make them himself, or hire any available programmer or company

to make them for him. Users will no longer be at the mercy of one programmer or company which

owns the sources and is in sole position to make changes.

Schools will be able to provide a much more educational environment by encouraging all students

to study and improve the system code. Harvard’s computer lab used to have the policy that no

program could be installed on the system if its sources were not on public display, and upheld it

by actually refusing to install certain programs. I was very much inspired by this.

Finally, the overhead of considering who owns the system software and what one is or is not

entitled to do with it will be lifted.

Arrangements to make people pay for using a program, including licensing of copies, always

incur a tremendous cost to society through the cumbersome mechanisms necessary to figure out

how much (that is, which programs) a person must pay for. And only a police state can force

everyone to obey them. Consider a space station where air must be manufactured at great cost:

charging each breather per liter of air may be fair, but wearing the metered gas mask all day and all

night is intolerable even if everyone can afford to pay the air bill. And the TV cameras everywhere

to see if you ever take the mask off are outrageous. It’s better to support the air plant with a head

tax and chuck the masks.

Copying all or parts of a program is as natural to a programmer as breathing, and as productive.

It ought to be as free.

Some Easily Rebutted Objections to GNU’s Goals

“Nobody will use it if it is free, because that means they can’t rely on any support.”

“You have to charge for the program to pay for providing the support.”

The GNU Manifesto 253

If people would rather pay for GNU plus service than get GNU free without service, a company

to provide just service to people who have obtained GNU free ought to be profitable.

We must distinguish between support in the form of real programming work and mere hand-

holding. The former is something one cannot rely on from a software vendor. If your problem is

not shared by enough people, the vendor will tell you to get lost.

If your business needs to be able to rely on support, the only way is to have all the necessary

sources and tools. Then you can hire any available person to fix your problem; you are not at the

mercy of any individual. With Unix, the price of sources puts this out of consideration for most

businesses. With GNU this will be easy. It is still possible for there to be no available competent

person, but this problem cannot be blamed on distibution arrangements. GNU does not eliminate

all the world’s problems, only some of them.

Meanwhile, the users who know nothing about computers need handholding: doing things for

them which they could easily do themselves but don’t know how.

Such services could be provided by companies that sell just hand-holding and repair service.

If it is true that users would rather spend money and get a product with service, they will also

be willing to buy the service having got the product free. The service companies will compete in

quality and price; users will not be tied to any particular one. Meanwhile, those of us who don’t

need the service should be able to use the program without paying for the service.

“You cannot reach many people without advertising, and you must charge for the
program to support that.”

“It’s no use advertising a program people can get free.”

There are various forms of free or very cheap publicity that can be used to inform numbers of

computer users about something like GNU. But it may be true that one can reach more microcom-

puter users with advertising. If this is really so, a business which advertises the service of copying

and mailing GNU for a fee ought to be successful enough to pay for its advertising and more. This

way, only the users who benefit from the advertising pay for it.

On the other hand, if many people get GNU from their friends, and such companies don’t

succeed, this will show that advertising was not really necessary to spread GNU. Why is it that

free market advocates don’t want to let the free market decide this?

“My company needs a proprietary operating system to get a competitive edge.”

254 GNU Emacs Manual

GNU will remove operating system software from the realm of competition. You will not be

able to get an edge in this area, but neither will your competitors be able to get an edge over

you. You and they will compete in other areas, while benefitting mutually in this one. If your

business is selling an operating system, you will not like GNU, but that’s tough on you. If your

business is something else, GNU can save you from being pushed into the expensive business of

selling operating systems.

I would like to see GNU development supported by gifts from many manufacturers and users,

reducing the cost to each.

“Don’t programmers deserve a reward for their creativity?”

If anything deserves a reward, it is social contribution. Creativity can be a social contribution,

but only in so far as society is free to use the results. If programmers deserve to be rewarded for

creating innovative programs, by the same token they deserve to be punished if they restrict the

use of these programs.

“Shouldn’t a programmer be able to ask for a reward for his creativity?”

There is nothing wrong with wanting pay for work, or seeking to maximize one’s income, as long

as one does not use means that are destructive. But the means customary in the field of software

today are based on destruction.

Extracting money from users of a program by restricting their use of it is destructive because

the restrictions reduce the amount and the ways that the program can be used. This reduces the

amount of wealth that humanity derives from the program. When there is a deliberate choice to

restrict, the harmful consequences are deliberate destruction.

The reason a good citizen does not use such destructive means to become wealthier is that, if

everyone did so, we would all become poorer from the mutual destructiveness. This is Kantian

ethics; or, the Golden Rule. Since I do not like the consequences that result if everyone hoards

information, I am required to consider it wrong for one to do so. Specifically, the desire to be

rewarded for one’s creativity does not justify depriving the world in general of all or part of that

creativity.

“Won’t programmers starve?”

I could answer that nobody is forced to be a programmer. Most of us cannot manage to get

any money for standing on the street and making faces. But we are not, as a result, condemned to

The GNU Manifesto 255

spend our lives standing on the street making faces, and starving. We do something else.

But that is the wrong answer because it accepts the questioner’s implicit assumption: that

without ownership of software, programmers cannot possibly be paid a cent. Supposedly it is all

or nothing.

The real reason programmers will not starve is that it will still be possible for them to get paid

for programming; just not paid as much as now.

Restricting copying is not the only basis for business in software. It is the most common basis

because it brings in the most money. If it were prohibited, or rejected by the customer, software

business would move to other bases of organization which are now used less often. There are always

numerous ways to organize any kind of business.

Probably programming will not be as lucrative on the new basis as it is now. But that is not an

argument against the change. It is not considered an injustice that sales clerks make the salaries

that they now do. If programmers made the same, that would not be an injustice either. (In

practice they would still make considerably more than that.)

“Don’t people have a right to control how their creativity is used?”

“Control over the use of one’s ideas” really constitutes control over other people’s lives; and it

is usually used to make their lives more difficult.

People who have studied the issue of intellectual property rights carefully (such as lawyers)

say that there is no intrinsic right to intellectual property. The kinds of supposed intellectual

property rights that the government recognizes were created by specific acts of legislation for specific

purposes.

For example, the patent system was established to encourage inventors to disclose the details

of their inventions. Its purpose was to help society rather than to help inventors. At the time, the

life span of 17 years for a patent was short compared with the rate of advance of the state of the

art. Since patents are an issue only among manufacturers, for whom the cost and effort of a license

agreement are small compared with setting up production, the patents often do not do much harm.

They do not obstruct most individuals who use patented products.

The idea of copyright did not exist in ancient times, when authors frequently copied other

authors at length in works of non-fiction. This practice was useful, and is the only way many

authors’ works have survived even in part. The copyright system was created expressly for the

256 GNU Emacs Manual

purpose of encouraging authorship. In the domain for which it was invented—books, which could

be copied economically only on a printing press—it did little harm, and did not obstruct most of

the individuals who read the books.

All intellectual property rights are just licenses granted by society because it was thought, rightly

or wrongly, that society as a whole would benefit by granting them. But in any particular situation,

we have to ask: are we really better off granting such license? What kind of act are we licensing a

person to do?

The case of programs today is very different from that of books a hundred years ago. The fact

that the easiest way to copy a program is from one neighbor to another, the fact that a program

has both source code and object code which are distinct, and the fact that a program is used rather

than read and enjoyed, combine to create a situation in which a person who enforces a copyright

is harming society as a whole both materially and spiritually; in which a person should not do so

regardless of whether the law enables him to.

“Competition makes things get done better.”

The paradigm of competition is a race: by rewarding the winner, we encourage everyone to run

faster. When capitalism really works this way, it does a good job; but its defenders are wrong in

assuming it always works this way. If the runners forget why the reward is offered and become

intent on winning, no matter how, they may find other strategies—such as, attacking other runners.

If the runners get into a fist fight, they will all finish late.

Proprietary and secret software is the moral equivalent of runners in a fist fight. Sad to say,

the only referee we’ve got does not seem to object to fights; he just regulates them (“For every ten

yards you run, you can fire one shot”). He really ought to break them up, and penalize runners for

even trying to fight.

“Won’t everyone stop programming without a monetary incentive?”

Actually, many people will program with absolutely no monetary incentive. Programming has

an irresistible fascination for some people, usually the people who are best at it. There is no

shortage of professional musicians who keep at it even though they have no hope of making a living

that way.

But really this question, though commonly asked, is not appropriate to the situation. Pay for

programmers will not disappear, only become less. So the right question is, will anyone program

with a reduced monetary incentive? My experience shows that they will.

The GNU Manifesto 257

For more than ten years, many of the world’s best programmers worked at the Artificial Intel-

ligence Lab for far less money than they could have had anywhere else. They got many kinds of

non-monetary rewards: fame and appreciation, for example. And creativity is also fun, a reward

in itself.

Then most of them left when offered a chance to do the same interesting work for a lot of money.

What the facts show is that people will program for reasons other than riches; but if given

a chance to make a lot of money as well, they will come to expect and demand it. Low-paying

organizations do poorly in competition with high-paying ones, but they do not have to do badly if

the high-paying ones are banned.

“We need the programmers desperately. If they demand that we stop helping our
neighbors, we have to obey.”

You’re never so desperate that you have to obey this sort of demand. Remember: millions for

defense, but not a cent for tribute!

“Programmers need to make a living somehow.”

In the short run, this is true. However, there are plenty of ways that programmers could make

a living without selling the right to use a program. This way is customary now because it brings

programmers and businessmen the most money, not because it is the only way to make a living. It

is easy to find other ways if you want to find them. Here are a number of examples.

A manufacturer introducing a new computer will pay for the porting of operating systems onto

the new hardware.

The sale of teaching, hand-holding and maintenance services could also employ programmers.

People with new ideas could distribute programs as freeware, asking for donations from satis-

fied users, or selling hand-holding services. I have met people who are already working this way

successfully.

Users with related needs can form users’ groups, and pay dues. A group would contract with

programming companies to write programs that the group’s members would like to use.

All sorts of development can be funded with a Software Tax:

258 GNU Emacs Manual

Suppose everyone who buys a computer has to pay x percent of the price as a soft-
ware tax. The government gives this to an agency like the NSF to spend on software
development.

But if the computer buyer makes a donation to software development himself, he can
take a credit against the tax. He can donate to the project of his own choosing—often,
chosen because he hopes to use the results when it is done. He can take a credit for
any amount of donation up to the total tax he had to pay.

The total tax rate could be decided by a vote of the payers of the tax, weighted according
to the amount they will be taxed on.

The consequences:

• The computer-using community supports software development.

• This community decides what level of support is needed.

• Users who care which projects their share is spent on can choose this for themselves.

In the long run, making programs free is a step toward the post-scarcity world, where nobody

will have to work very hard just to make a living. People will be free to devote themselves to

activities that are fun, such as programming, after spending the necessary ten hours a week on

required tasks such as legislation, family counseling, robot repair and asteroid prospecting. There

will be no need to be able to make a living from programming.

We have already greatly reduced the amount of work that the whole society must do for its

actual productivity, but only a little of this has translated itself into leisure for workers because

much nonproductive activity is required to accompany productive activity. The main causes of

this are bureaucracy and isometric struggles against competition. Free software will greatly reduce

these drains in the area of software production. We must do this, in order for technical gains in

productivity to translate into less work for us.

Glossary 259

Glossary

Abbrev An abbrev is a text string which expands into a different text string when present in

the buffer. For example, you might define a short word as an abbrev for a long phrase

that you want to insert frequently. See Chapter 23 [Abbrevs], page 177.

Aborting Aborting means getting out of a recursive edit (q.v.). The commands C-] and M-x

top-level are used for this. See Section 29.1 [Quitting], page 237.

Auto Fill mode

Auto Fill mode is a minor mode in which text that you insert is automatically broken

into lines of fixed width. See Section 20.6 [Filling], page 134.

Auto Saving

Auto saving is when Emacs automatically stores the contents of an Emacs buffer in a

specially-named file so that the information will not be lost if the buffer is lost due to

a system error or user error. See Section 15.5 [Auto Save], page 96.

Backup File

A backup file records the contents that a file had before the current editing session.

Emacs makes backup files automatically to help you track down or cancel changes you

later regret making. See Section 15.3.1 [Backup], page 92.

Balance Parentheses

Emacs can balance parentheses manually or automatically. Manual balancing is done

by the commands to move over balanced expressions (see Section 21.2 [Lists], page 140).

Automatic balancing is done by blinking the parenthesis that matches one just inserted

(see Section 21.5 [Matching Parens], page 149).

Bind To bind a key is to change its binding (q.v.). See Section 28.4.2 [Rebinding], page 228.

Binding A key gets its meaning in Emacs by having a binding which is a command (q.v.), a Lisp

function that is run when the key is typed. See Section 2.3 [Commands], page 19. Cus-

tomization often involves rebinding a character to a different command function. The

bindings of all keys are recorded in the keymaps (q.v.). See Section 28.4.1 [Keymaps],

page 226.

Blank Lines

Blank lines are lines that contain only whitespace. Emacs has several commands for

operating on the blank lines in the buffer.

Buffer The buffer is the basic editing unit; one buffer corresponds to one piece of text being

edited. You can have several buffers, but at any time you are editing only one, the

‘selected’ buffer, though several can be visible when you are using multiple windows.

See Chapter 16 [Buffers], page 105.

Buffer Selection History

Emacs keeps a buffer selection history which records how recently each Emacs buffer

260 GNU Emacs Manual

has been selected. This is used for choosing a buffer to select. See Chapter 16 [Buffers],

page 105.

C- ‘C’ in the name of a character is an abbreviation for Control. See Section 2.1 [Charac-

ters], page 17.

C-M- ‘C-M-’ in the name of a character is an abbreviation for Control-Meta. See Section 2.1

[Characters], page 17.

Case Conversion

Case conversion means changing text from upper case to lower case or vice versa. See

Section 20.7 [Case], page 137, for the commands for case conversion.

Characters

Characters form the contents of an Emacs buffer; also, Emacs commands are invoked by

keys (q.v.), which are sequences of one or more characters. See Section 2.1 [Characters],

page 17.

Command A command is a Lisp function specially defined to be able to serve as a key binding

in Emacs. When you type a key (q.v.), its binding (q.v.) is looked up in the relevant

keymaps (q.v.) to find the command to run. See Section 2.3 [Commands], page 19.

Command Name

A command name is the name of a Lisp symbol which is a command (see Section 2.3

[Commands], page 19). You can invoke any command by its name using M-x (see

Chapter 7 [M-x], page 43).

Comments

A comment is text in a program which is intended only for humans reading the program,

and is marked specially so that it will be ignored when the program is loaded or

compiled. Emacs offers special commands for creating, aligning and killing comments.

See Section 21.6.2 [Comments], page 152.

Compilation

Compilation is the process of creating an executable program from source code. Emacs

has commands for compiling files of Emacs Lisp code (see Section 22.3 [Lisp Libraries],

page 169) and programs in C and other languages (see Section 22.1 [Compilation],

page 167).

Complete Key

A complete key is a character or sequence of characters which, when typed by the user,

fully specifies one action to be performed by Emacs. For example, X and Control-

f and Control-x m are keys. Keys derive their meanings from being bound (q.v.)

to commands (q.v.). Thus, X is conventionally bound to a command to insert ‘X’ in

the buffer; C-x m is conventionally bound to a command to begin composing a mail

message. See Section 2.2 [Keys], page 18.

Completion

Completion is what Emacs does when it automatically fills out an abbreviation for a

Glossary 261

name into the entire name. Completion is done for minibuffer (q.v.) arguments when

the set of possible valid inputs is known; for example, on command names, buffer names,

and file names. Completion occurs when TAB, SPC or RET is typed. See Section 6.3.2

[Completion], page 38.

Continuation Line

When a line of text is longer than the width of the screen, it takes up more than one

screen line when displayed. We say that the text line is continued, and all screen lines

used for it after the first are called continuation lines. See Section 4.5 [Basic Editing],

page 28.

Control-Character

ASCII characters with octal codes 0 through 037, and also code 0177, do not have

graphic images assigned to them. These are the control characters. Any control char-

acter can be typed by holding down the CTRL key and typing some other character;

some have special keys on the keyboard. RET, TAB, ESC, LFD and DEL are all control

characters. See Section 2.1 [Characters], page 17.

Copyleft A copyleft is a notice giving the public legal permission to redistribute a program or

other work of art. Copylefts are used by leftists to enrich the public just as copyrights

are used by rightists to gain power over the public.

Current Buffer

The current buffer in Emacs is the Emacs buffer on which most editing commands

operate. You can select any Emacs buffer as the current one. See Chapter 16 [Buffers],

page 105.

Current Line

The line point is on (see Section 1.1 [Point], page 13).

Current Paragraph

The paragraph that point is in. If point is between paragraphs, the current paragraph

is the one that follows point. See Section 20.4 [Paragraphs], page 132.

Current Defun

The defun (q.v.) that point is in. If point is between defuns, the current defun is the

one that follows point. See Section 21.3 [Defuns], page 142.

Cursor The cursor is the rectangle on the screen which indicates the position called point (q.v.)

at which insertion and deletion takes place. The cursor is on or under the character

that follows point. Often people speak of ‘the cursor’ when, strictly speaking, they

mean ‘point’. See Section 4.5 [Basic Editing], page 28.

Customization

Customization is making minor changes in the way Emacs works. It is often done

by setting variables (see Section 28.2 [Variables], page 218) or by rebinding keys (see

Section 28.4.1 [Keymaps], page 226).

Default Argument

262 GNU Emacs Manual

The default for an argument is the value that will be assumed if you do not specify

one. When the minibuffer is used to read an argument, the default argument is used if

you just type RET. See Chapter 6 [Minibuffer], page 35.

Default Directory

When you specify a file name that does not start with ‘/’ or ‘~’, it is interpreted relative

to the current buffer’s default directory. See Section 6.1 [Minibuffer File], page 35.

Defun A defun is a list at the top level of parenthesis or bracket structure in a program. It

is so named because most such lists in Lisp programs are calls to the Lisp function

defun. See Section 21.3 [Defuns], page 142.

DEL DEL is a character that runs the command to delete one character of text. See Section 4.5

[Basic Editing], page 28.

Deletion Deletion means erasing text without saving it. Emacs deletes text only when it is

expected not to be worth saving (all whitespace, or only one character). The alternative

is killing (q.v.). See Section 10.1.3 [Killing], page 55.

Deletion of Files

Deleting a file means erasing it from the file system. See Section 15.8 [Misc File Ops],

page 102.

Deletion of Messages

Deleting a message means flagging it to be eliminated from your mail file. This can be

undone by undeletion until the mail file is expunged. See Section 26.3 [Rmail Deletion],

page 195.

Deletion of Windows

Deleting a window means eliminating it from the screen. Other windows expand to use

up the space. The deleted window can never come back, but no actual text is thereby

lost. See Chapter 17 [Windows], page 111.

Directory Files in the Unix file system are grouped into file directories. See Section 15.6 [Direc-

tories], page 98.

Dired Dired is the Emacs facility that displays the contents of a file directory and allows

you to “edit the directory”, performing operations on the files in the directory. See

Section 15.7 [Dired], page 99.

Disabled Command

A disabled command is one that you may not run without special confirmation. The

usual reason for disabling a command is that it is confusing for beginning users. See

Section 28.4.3 [Disabling], page 229.

Dribble File

A file into which Emacs writes all the characters that the user types on the keyboard.

Dribble files are used to make a record for debugging Emacs bugs. Emacs does not

make a dribble file unless you tell it to. See [Bugs], page 247.

Glossary 263

Echo Area The echo area is the bottom line of the screen, used for echoing the arguments to

commands, for asking questions, and printing brief messages (including error messages).

See Section 1.2 [Echo Area], page 14.

Echoing Echoing is acknowledging the receipt of commands by displaying them (in the echo

area). Emacs never echoes single-character keys; longer keys echo only if you pause

while typing them.

Error An error occurs when an Emacs command cannot execute in the current circumstances.

When an error occurs, execution of the command stops (unless the command has

been programmed to do otherwise) and Emacs reports the error by printing an error

message (q.v.). Type-ahead is discarded. Then Emacs is ready to read another editing

command.

Error Messages

Error messages are single lines of output printed by Emacs when the user asks for

something impossible to do (such as, killing text forward when point is at the end of

the buffer). They appear in the echo area, accompanied by a beep.

ESC ESC is a character, used to end incremental searches and as a prefix for typing Meta

characters on keyboards lacking a META key. Unlike the META key (which, like the SHIFT

key, is held down while another character is typed), the ESC key is pressed once and

applies to the next character typed.

Fill Prefix The fill prefix is a string that should be expected at the beginning of each line when

filling is done. It is not regarded as part of the text to be filled. See Section 20.6

[Filling], page 134.

Filling Filling text means moving text from line to line so that all the lines are approximately

the same length. See Section 20.6 [Filling], page 134.

Global Global means ‘independent of the current environment; in effect throughout Emacs’. It

is the opposite of local (q.v.). Particular examples of the use of ‘global’ appear below.

Global Abbrev

A global definition of an abbrev (q.v.) is effective in all major modes that do not have

local (q.v.) definitions for the same abbrev. See Chapter 23 [Abbrevs], page 177.

Global Keymap

The global keymap (q.v.) contains key bindings that are in effect except when overrid-

den by local key bindings in a major mode’s local keymap (q.v.). See Section 28.4.1

[Keymaps], page 226.

Global Substitution

Global substitution means replacing each occurrence of one string by another string

through a large amount of text. See Section 13.7 [Replace], page 78.

Global Variable

The global value of a variable (q.v.) takes effect in all buffers that do not have their

own local (q.v.) values for the variable. See Section 28.2 [Variables], page 218.

264 GNU Emacs Manual

Graphic Character

Graphic characters are those assigned pictorial images rather than just names. All

the non-Meta (q.v.) characters except for the Control (q.v.) characters are graphic

characters. These include letters, digits, punctuation, and spaces; they do not include

RET or ESC. In Emacs, typing a graphic character inserts that character (in ordinary

editing modes). See Section 4.5 [Basic Editing], page 28.

Grinding Grinding means adjusting the indentation in a program to fit the nesting structure.

See Chapter 19 [Indentation], page 117.

Hardcopy Hardcopy means printed output. Emacs has commands for making printed listings of

text in Emacs buffers. See Section 27.5 [Hardcopy], page 213.

HELP You can type HELP at any time to ask what options you have, or to ask what any

command does. HELP is really Control-h. See Section 8.4 [Help], page 48.

Inbox An inbox is a file in which mail is delivered by the operating system. Rmail transfers

mail from inboxes to mail files (q.v.) in which the mail is then stored permanently or

until explicitly deleted. See Section 26.4 [Rmail Inbox], page 197.

Indentation

Indentation means blank space at the beginning of a line. Most programming languages

have conventions for using indentation to illuminate the structure of the program, and

Emacs has special features to help you set up the correct indentation. See Chapter 19

[Indentation], page 117.

Insertion Insertion means copying text into the buffer, either from the keyboard or from some

other place in Emacs.

Justification

Justification means adding extra spaces to lines of text to make them come exactly to

a specified width. See Section 20.6 [Filling], page 134.

Keyboard Macros

Keyboard macros are a way of defining new Emacs commands from sequences of existing

ones, with no need to write a Lisp program. See Section 28.3 [Keyboard Macros],

page 223.

Key A key is a sequence of characters that, when input to Emacs, specify or begin to specify

a single action for Emacs to perform. That is, the sequence is not more than a single

unit. If the key is enough to specify one action, it is a complete key (q.v.); if it is less

than enough, it is a prefix key (q.v.). See Section 2.2 [Keys], page 18.

Keymap The keymap is the data structure that records the bindings (q.v.) of keys to the com-

mands that they run. For example, the keymap binds the character C-n to the command

function next-line. See Section 28.4.1 [Keymaps], page 226.

Kill Ring The kill ring is where all text you have killed recently is saved. You can reinsert any of

the killed text still in the ring; this is called yanking (q.v.). See Section 10.2 [Yanking],

page 55.

Glossary 265

Killing Killing means erasing text and saving it on the kill ring so it can be yanked (q.v.) later.

Some other systems call this “cutting”. Most Emacs commands to erase text do killing,

as opposed to deletion (q.v.). See Section 10.1.3 [Killing], page 55.

Killing Jobs

Killing a job (such as, an invocation of Emacs) means making it cease to exist. Any

data within it, if not saved in a file, is lost. See Section 3.1 [Exiting], page 21.

List A list is, approximately, a text string beginning with an open parenthesis and ending

with the matching close parenthesis. In C mode and other non-Lisp modes, groupings

surrounded by other kinds of matched delimiters appropriate to the language, such as

braces, are also considered lists. Emacs has special commands for many operations on

lists. See Section 21.2 [Lists], page 140.

Local Local means ‘in effect only in a particular context’; the relevant kind of context is a

particular function execution, a particular buffer, or a particular major mode. It is the

opposite of ‘global’ (q.v.). Specific uses of ‘local’ in Emacs terminology appear below.

Local Abbrev

A local abbrev definition is effective only if a particular major mode is selected. In that

major mode, it overrides any global definition for the same abbrev. See Chapter 23

[Abbrevs], page 177.

Local Keymap

A local keymap is used in a particular major mode; the key bindings (q.v.) in the

current local keymap override global bindings of the same keys. See Section 28.4.1

[Keymaps], page 226.

Local Variable

A local value of a variable (q.v.) applies to only one buffer. See Section 28.2.3 [Locals],

page 220.

M- M- in the name of a character is an abbreviation for META, one of the modifier keys that

can accompany any character. See Section 2.1 [Characters], page 17.

M-C- ‘M-C-’ in the name of a character is an abbreviation for Control-Meta; it means the

same thing as ‘C-M-’. If your terminal lacks a real META key, you type a Control-Meta

character by typing ESC and then typing the corresponding Control character. See

Section 2.1 [Characters], page 17.

M-x M-x is the key which is used to call an Emacs command by name. This is how commands

that are not bound to keys are called. See Chapter 7 [M-x], page 43.

Mail Mail means messages sent from one user to another through the computer system, to be

read at the recipient’s convenience. Emacs has commands for composing and sending

mail, and for reading and editing the mail you have received. See Chapter 25 [Sending

Mail], page 187. See Chapter 26 [Rmail], page 193, for how to read mail.

Mail File A mail file is a file which is edited using Rmail and in which Rmail stores mail. See

Chapter 26 [Rmail], page 193.

266 GNU Emacs Manual

Major Mode

The major modes are a mutually exclusive set of options each of which configures

Emacs for editing a certain sort of text. Ideally, each programming language has its

own major mode. See Chapter 18 [Major Modes], page 115.

Mark The mark points to a position in the text. It specifies one end of the region (q.v.),

point being the other end. Many commands operate on all the text from point to the

mark. See Chapter 9 [Mark], page 49.

Mark Ring

The mark ring is used to hold several recent previous locations of the mark, just in

case you want to move back to them. See Chapter 10 [Mark Ring], page 53.

Message See ‘mail’.

Meta Meta is the name of a modifier bit which a command character may have. It is present

in a character if the character is typed with the META key held down. Such characters

are given names that start with Meta-. For example, Meta-< is typed by holding down

META and at the same time typing < (which itself is done, on most terminals, by holding

down SHIFT and typing ,). See Section 2.1 [Characters], page 17.

Meta Character

A Meta character is one whose character code includes the Meta bit.

Minibuffer The minibuffer is the window that appears when necessary inside the echo area (q.v.),

used for reading arguments to commands. See Chapter 6 [Minibuffer], page 35.

Minor Mode

A minor mode is an optional feature of Emacs which can be switched on or off inde-

pendently of all other features. Each minor mode has a command to turn it on or off.

See Section 28.1 [Minor Modes], page 217.

Mode Line

The mode line is the line at the bottom of each text window (q.v.), which gives sta-

tus information on the buffer displayed in that window. See Chapter 2 [Mode Line],

page 17.

Modified Buffer

A buffer (q.v.) is modified if its text has been changed since the last time the buffer

was saved (or since when it was created, if it has never been saved). See Section 15.3

[Saving], page 90.

Moving Text

Moving text means erasing it from one place and inserting it in another. This is done

by killing (q.v.) and then yanking (q.v.). See Section 10.1.3 [Killing], page 55.

Named Mark

A named mark is a register (q.v.) in its role of recording a location in text so that you

can move point to that location. See Chapter 11 [Registers], page 63.

Glossary 267

Narrowing Narrowing means creating a restriction (q.v.) that limits editing in the current buffer

to only a part of the text in the buffer. Text outside that part is inaccessible to the

user until the boundaries are widened again, but it is still there, and saving the file

saves it all. See Section 27.2 [Narrowing], page 208.

Newline LFD characters in the buffer terminate lines of text and are called newlines. See Sec-

tion 2.1 [Characters], page 17.

Numeric Argument

A numeric argument is a number, specified before a command, to change the effect of

the command. Often the numeric argument serves as a repeat count. See Section 4.9

[Arguments], page 31.

Option An option is a variable (q.v.) that exists so that you can customize Emacs by giving it

a new value. See Section 28.2 [Variables], page 218.

Overwrite Mode

Overwrite mode is a minor mode. When it is enabled, ordinary text characters replace

the existing text after point rather than pushing it to the right. See Section 28.1 [Minor

Modes], page 217.

Page A page is a unit of text, delimited by formfeed characters (ASCII Control-L, code 014)

coming at the beginning of a line. Some Emacs commands are provided for moving

over and operating on pages. See Section 20.5 [Pages], page 133.

Paragraphs

Paragraphs are the medium-size unit of English text. There are special Emacs com-

mands for moving over and operating on paragraphs. See Section 20.4 [Paragraphs],

page 132.

Parsing We say that Emacs parses words or expressions in the text being edited. Really, all

it knows how to do is find the other end of a word or expression. See Section 28.5

[Syntax], page 229.

Point Point is the place in the buffer at which insertion and deletion occur. Point is consid-

ered to be between two characters, not at one character. The terminal’s cursor (q.v.)

indicates the location of point. See Section 4.5 [Basic], page 28.

Prefix Key

A prefix key is a key (q.v.) whose sole function is to introduce a set of multi-character

keys. Control-x is an example of prefix key; thus, any two-character sequence starting

with C-x is also a legitimate key. See Section 2.2 [Keys], page 18.

Primary Mail File

Your primary mail file is the file named ‘RMAIL’ in your home directory, where all mail

that you receive is stored by Rmail unless you make arrangements to do otherwise. See

Chapter 26 [Rmail], page 193.

Prompt A prompt is text printed to ask the user for input. Printing a prompt is called prompt-

ing. Emacs prompts always appear in the echo area (q.v.). One kind of prompting

268 GNU Emacs Manual

happens when the minibuffer is used to read an argument (see Chapter 6 [Minibuf-

fer], page 35); the echoing which happens when you pause in the middle of typing a

multicharacter key is also a kind of prompting (see Section 1.2 [Echo Area], page 14).

Quitting Quitting means cancelling a partially typed command or a running command, using

C-g. See Section 29.1 [Quitting], page 237.

Quoting Quoting means depriving a character of its usual special significance. In Emacs this

is usually done with Control-q. What constitutes special significance depends on

the context and on convention. For example, an “ordinary” character as an Emacs

command inserts itself; so in this context, a special character is any character that

does not normally insert itself (such as DEL, for example), and quoting it makes it

insert itself as if it were not special. Not all contexts allow quoting. See Section 4.5

[Basic Editing], page 28.

Read-only Buffer

A read-only buffer is one whose text you are not allowed to change. Normally Emacs

makes buffers read-only when they contain text which has a special significance to

Emacs; for example, Dired buffers. Visiting a file that is write protected also makes a

read-only buffer. See Chapter 16 [Buffers], page 105.

Recursive Editing Level

A recursive editing level is a state in which part of the execution of a command involves

asking the user to edit some text. This text may or may not be the same as the text

to which the command was applied. The mode line indicates recursive editing levels

with square brackets (‘[’ and ‘]’). See Section 27.1 [Recursive Edit], page 207.

Redisplay Redisplay is the process of correcting the image on the screen to correspond to changes

that have been made in the text being edited. See Chapter 1 [Screen], page 13.

Regexp See ‘regular expression’.

Region The region is the text between point (q.v.) and the mark (q.v.). Many commands

operate on the text of the region. See Chapter 9 [Mark], page 49.

Registers Registers are named slots in which text or buffer positions or rectangles can be saved

for later use. See Chapter 11 [Registers], page 63.

Regular Expression

A regular expression is a pattern that can match various text strings; for example,

‘l[0-9]+’ matches ‘l’ followed by one or more digits. See Section 13.5 [Regexps],

page 74.

Replacement

See ‘global substitution’.

Restriction

A buffer’s restriction is the amount of text, at the beginning or the end of the buffer,

that is temporarily invisible and inaccessible. Giving a buffer a nonzero amount of

restriction is called narrowing (q.v.). See Section 27.2 [Narrowing], page 208.

Glossary 269

RET RET is a character than in Emacs runs the command to insert a newline into the text. It

is also used to terminate most arguments read in the minibuffer (q.v.). See Section 2.1

[Characters], page 17.

Saving Saving a buffer means copying its text into the file that was visited (q.v.) in that

buffer. This is the way text in files actually gets changed by your Emacs editing. See

Section 15.3 [Saving], page 90.

Scrolling Scrolling means shifting the text in the Emacs window so as to see a different part of

the buffer. See Chapter 12 [Display], page 65.

Searching Searching means moving point to the next occurrence of a specified string. See Chap-

ter 13 [Search], page 69.

Selecting Selecting a buffer means making it the current (q.v.) buffer. See Chapter 16 [Buffers],

page 105.

Self-documentation

Self-documentation is the feature of Emacs which can tell you what any command

does, or give you a list of all commands related to a topic you specify. You ask for

self-documentation with the help character, C-h. See Section 8.4 [Help], page 48.

Sentences Emacs has commands for moving by or killing by sentences. See Section 20.3 [Sen-

tences], page 131.

Sexp A sexp (short for ‘s-expression’) is the basic syntactic unit of Lisp in its textual form:

either a list, or Lisp atom. Many Emacs commands operate on sexps. The term

‘sexp’ is generalized to languages other than Lisp, to mean a syntactically recognizable

expression. See Section 21.2 [Lists], page 140.

Simultaneous Editing

Simultaneous editing means two users modifying the same file at once. Simultaneous

editing if not detected can cause one user to lose his work. Emacs detects all cases

of simultaneous editing and warns the user to investigate them. See Section 15.3.2

[Simultaneous Editing], page 94.

String A string is a kind of Lisp data object which contains a sequence of characters. Many

Emacs variables are intended to have strings as values. The Lisp syntax for a string

consists of the characters in the string with a ‘"’ before and another ‘"’ after. A ‘"’

that is part of the string must be written as ‘\"’ and a ‘\’ that is part of the string

must be written as ‘\\’. All other characters, including newline, can be included just

by writing them inside the string; however, escape sequences as in C, such as ‘\n’ for

newline or ‘\241’ using an octal character code, are allowed as well.

String Substitution

See ‘global substitution’.

Syntax Table

The syntax table tells Emacs which characters are part of a word, which characters

balance each other like parentheses, etc. See Section 28.5 [Syntax], page 229.

270 GNU Emacs Manual

Tag Table A tag table is a file that serves as an index to the function definitions in one or more

other files. See Section 21.11 [Tags], page 155.

Termscript File

A termscript file contains a record of all characters sent by Emacs to the terminal. It

is used for tracking down bugs in Emacs redisplay. Emacs does not make a termscript

file unless you tell it to. See [Bugs], page 247.

Text Two meanings (see Chapter 20 [Text], page 121):

• Data consisting of a sequence of characters, as opposed to binary numbers, images,

graphics commands, executable programs, and the like. The contents of an Emacs

buffer are always text in this sense.

• Data consisting of written human language, as opposed to programs, or following

the stylistic conventions of human language.

Top Level Top level is the normal state of Emacs, in which you are editing the text of the file you

have visited. You are at top level whenever you are not in a recursive editing level (q.v.)

or the minibuffer (q.v.), and not in the middle of a command. You can get back to top

level by aborting (q.v.) and quitting (q.v.). See Section 29.1 [Quitting], page 237.

Transposition

Transposing two units of text means putting each one into the place formerly occupied

by the other. There are Emacs commands to transpose two adjacent characters, words,

sexps (q.v.) or lines (see Section 14.2 [Transpose], page 83).

Truncation

Truncating text lines in the display means leaving out any text on a line that does not

fit within the right margin of the window displaying it. See also ‘continuation line’.

See Section 4.5 [Basic Editing], page 28.

Undoing Undoing means making your previous editing go in reverse, bringing back the text that

existed earlier in the editing session. See Chapter 5 [Undo], page 33.

Variable A variable is an object in Lisp that can store an arbitrary value. Emacs uses some

variables for internal purposes, and has others (known as ‘options’ (q.v.)) just so that

you can set their values to control the behavior of Emacs. The variables used in Emacs

that you are likely to be interested in are listed in the Variables Index in this manual.

See Section 28.2 [Variables], page 218, for information on variables.

Visiting Visiting a file means loading its contents into a buffer (q.v.) where they can be edited.

See Section 15.2 [Visiting], page 88.

Whitespace

Whitespace is any run of consecutive formatting characters (space, tab, newline, and

backspace).

Widening Widening is removing any restriction (q.v.) on the current buffer; it is the opposite of

narrowing (q.v.). See Section 27.2 [Narrowing], page 208.

Glossary 271

Window Emacs divides the screen into one or more windows, each of which can display the

contents of one buffer (q.v.) at any time. See Chapter 1 [Screen], page 13, for basic

information on how Emacs uses the screen. See Chapter 17 [Windows], page 111, for

commands to control the use of windows.

Word Abbrev

Synonymous with ‘abbrev’.

Word Search

Word search is searching for a sequence of words, considering the punctuation between

them as insignificant. See Section 13.3 [Word Search], page 73.

Yanking Yanking means reinserting text previously killed. It can be used to undo a mistaken kill,

or for copying or moving text. Some other systems call this “pasting”. See Section 10.2

[Yanking], page 55.

272 GNU Emacs Manual

Key (Character) Index 273

Key (Character) Index

!
! (query-replace) . 80

,
, (query-replace) . 80

.

. (query-replace) . 80

. (Rmail) . 194

"

" (TeX mode) . 124

>

> (Rmail) . 195

^

^ (query-replace) . 80

A
a (Rmail) . 200

C
c (Rmail) . 205

C-] . 207, 237

C-_ . 33

C-a . 26

C-b . 26

C-c . 18

C-c ’ (Picture mode) . 184

C-c . (Picture mode) . 184

C-c / (Picture mode) . 184

C-c ; (Fortran mode) . 163

C-c ‘ (Picture mode) . 184

C-c > (Picture mode) . 184

C-c ^ (Picture mode) . 184

C-c \ (Picture mode) . 184

C-c < (Picture mode) . 184

C-c C-\ (Shell mode) . 213

C-c C-b (Outline mode) .128

C-c C-b (Picture mode) .185

C-c C-b (TeX mode) . 125

C-c C-c (Edit Abbrevs) .180

C-c C-c (Edit Tab Stops) . 118

C-c C-c (Mail mode) . 190

C-c C-c (Occur mode) . 81

C-c C-c (Shell mode) . 213

C-c C-d (Picture mode) .184

C-c C-d (Shell mode) . 213

C-c C-f (LaTeX mode) . 124

C-c C-f (Outline mode) .128

C-c C-f (Picture mode) .185

C-c C-f C-c (Mail mode) . 190

C-c C-f C-s (Mail mode) . 190

C-c C-f C-t (Mail mode) . 190

C-c C-h (Outline mode) .129

C-c C-i (Outline mode) .129

C-c C-k (Picture mode) .186

C-c C-k (TeX mode) . 125

C-c C-l (TeX mode) . 125

C-c C-n (Fortran mode) .160

C-c C-n (Outline mode) .128

C-c C-o (Shell mode) . 213

C-c C-p (Fortran mode) .160

C-c C-p (Outline mode) .128

C-c C-p (TeX mode) . 125

C-c C-q (Mail mode) . 190

C-c C-q (TeX mode) . 125

C-c C-r (Fortran mode) .164

C-c C-r (Shell mode) . 213

C-c C-r (TeX mode) . 125

C-c C-s (Mail mode) . 190

C-c C-s (Outline mode) .129

C-c C-u (Outline mode) .128

C-c C-u (Shell mode) . 213

C-c C-w (Fortran mode) .164

C-c C-w (Mail mode) . 190

C-c C-w (Picture mode) .186

C-c C-w (Shell mode) . 213

C-c C-x (Picture mode) .186

C-c C-y (Mail mode) . 190, 204

C-c C-y (Picture mode) .186

274 GNU Emacs Manual

C-c C-y (Shell mode) . 213

C-c C-z (Shell mode) . 213

C-c TAB (Picture mode) .185

C-d . 53

C-d (Rmail) .196

C-e . 26

C-f . 26

C-g . 35

C-h . 18

C-h a . 47

C-h b . 48

C-h c . 46

C-h C-c . 48

C-h C-d . 48

C-h C-w . 48

C-h f .46, 153

C-h i . 48

C-h k . 46

C-h l . 48

C-h m . 48

C-h n . 48

C-h s . 232

C-h t .25, 48

C-h v . 47, 153, 218

C-h w . 47

C-k . 54, 55

C-l . 26, 65

C-l (query-replace) . 80

C-M-@ . 51, 142

C-M-\ . 118, 145

C-M-a .143

C-M-a (Fortran mode) . 160

C-M-b .141

C-M-c .207

C-M-d .142

C-M-e .143

C-M-e (Fortran mode) . 160

C-M-f .141

C-M-h . 51, 143

C-M-h (Fortran mode) . 160

C-M-k . 55, 141

C-M-l (Rmail) . 200, 202

C-M-n .142

C-M-n (Rmail) . 200

C-M-o .118

C-M-p .142

C-M-p (Rmail) . 200

C-M-q .144

C-M-q (Fortran mode) . 161

C-M-r (Rmail) . 202

C-M-s .74

C-M-t . 84, 142

C-M-u .142

C-M-v . 37, 112

C-M-w .57

C-M-x . 172, 176

C-n . 26

C-n (Rmail summary) . 203

C-o . 29

C-o (Rmail) .198

C-p . 26

C-p (Rmail summary) . 203

C-q . 25

C-r . 69

C-r (query-replace) . 80

C-s . 69

C-SPC .49

C-t . 26, 83

C-u . 32

C-u - C-x ; . 151

C-u C-@ . 51

C-u C-SPC . 51

C-u TAB . 145

C-v . 65

C-w . 55

C-w (query-replace) . 80

C-x . 18

C-x $. 67

C-x (. 224

C-x) . 224

C-x - . 178

C-x . 136

C-x / . 63

C-x ; . 152

C-x = . 30

C-x [. 133

Key (Character) Index 275

C-x] . 133

C-x ‘ . 168

C-x } . 114

C-x + . 177

C-x > . 66

C-x ^ . 114

C-x < . 66

C-x 0 . 113

C-x 1 . 114

C-x 2 . 111

C-x 4 . 113

C-x 4 . 157

C-x 4 b . 105

C-x 4 d . 99

C-x 4 f . 89

C-x 4 m . 187

C-x 5 . 112

C-x a . 58

C-x b . 105

C-x C-a . 178

C-x C-b . 106

C-x C-c . 22

C-x C-d . 98

C-x C-e . 172

C-x C-f . 89

C-x C-h . 178

C-x C-l . 138

C-x C-o .29, 54

C-x C-p .51, 133

C-x C-q . 107

C-x C-s . 90

C-x C-t . 84

C-x C-u . 138

C-x C-v . 89

C-x C-w . 91

C-x C-x . 50

C-x d . 99

C-x DEL . 55, 83, 131

C-x e . 224

C-x ESC . 40

C-x f . 136

C-x g . 64

C-x h . 51

C-x j . 63

C-x k . 107

C-x l . 134

C-x m . 187

C-x n . 208

C-x o . 112

C-x q . 225

C-x s . 90

C-x TAB . 118

C-x u . 33

C-x w . 208

C-x x . 64

C-y . 56

C-z . 21

D
d (Rmail summary) .203

d (Rmail) . 196

DEL . 25, 53, 83, 115, 140

DEL (query-replace) . 80

DEL (Rmail summary) . 203

DEL (Rmail) .194

E
e (Rmail) . 196

ESC . 18

ESC (query-replace) . 80

F
f (Rmail) . 204

G
g (Rmail) . 198

H
h (Rmail) . 202

Help .45

I
i (Rmail) . 198

J
j (Rmail summary) .203

276 GNU Emacs Manual

j (Rmail) . 195

K
k (rmail) . 200

L
l (Rmail) . 202

LFD . 115, 144

LFD (TeX mode) . 124

M
m (Rmail) . 204

M-! . 211

M-$. 85

M-% . 80

M-’ . 179

M-(. 153

M-) . 153

M-, . 158

M-- . 31

M-- M-c . 84

M-- M-l . 84

M-- M-u . 84

M-. 157

M-/ . 181

M-; . 150

M-= . 30

M-? . 122

M-[. 132

M-] . 132

M-@ . 51, 131

M-{ (TeX mode) . 124

M-| . 211

M-} (TeX mode) . 124

M-~ . 91

M-> . 26

M-^ . 54, 118

M-\ . 54, 118

M-< . 26

M-1 . 31

M-a . 131

M-b . 130

M-c . 137

M-d . 55, 130

M-DEL . 55, 83, 130

M-e . 131

M-ESC .172

M-f . 130

M-g . 135

M-h . 51, 132

M-i . 118

M-k . 55, 131

M-l . 137

M-LFD .151

M-LFD (Fortran mode) . 161

M-m . 117

M-n . 40, 122

M-n (Rmail) .195

M-p . 40, 122

M-p (Rmail) .195

M-q . 135

M-r . 26

M-s . 136

M-s (Rmail) .195

M-SPC .54

M-t . 84, 130

M-TAB . 153, 185

M-u . 137

M-v . 65

M-w . 56

M-x . 43

M-y . 57

M-z . 55

N
n (Rmail summary) .203

n (Rmail) . 195

O
o (Rmail) . 198

P
p (Rmail summary) .203

p (Rmail) . 195

Key (Character) Index 277

Q
q (Rmail summary) .203

q (Rmail) . 193

R
r (Rmail) . 204

RET . 25

RET (Shell mode) .213

S
s (Rmail) . 193

SPC . 38

SPC (query-replace) . 80

SPC (Rmail summary) . 203

SPC (Rmail) .194

T
t (Rmail) . 205

TAB . 38, 115, 117, 121, 144

U
u (Rmail summary) .203

u (Rmail) . 196

W
w (Rmail) . 205

X
x (Rmail summary) .203

278 GNU Emacs Manual

Command and Function Index 279

Command and Function Index

A
abbrev-mode . 177, 217

abbrev-prefix-mark . 179

abort-recursive-edit . 207, 237

add-change-log-entry .154

add-global-abbrev . 177

add-mode-abbrev . 178

add-name-to-file . 102

append-next-kill . 57

append-to-buffer . 58

append-to-file .58, 102

apropos .48

ask-user-about-lock . 94

auto-fill-mode .134, 217

auto-save-mode . 97

B
back-to-indentation . 117

backward-char . 26

backward-delete-char-untabify 140

backward-kill-sentence 55, 83, 131

backward-kill-word . 55, 83, 130

backward-list . 142

backward-page . 133

backward-paragraph . 132

backward-sentence . 131

backward-sexp . 141

backward-text-line . 122

backward-up-list . 142

backward-word . 130

batch-byte-compile . 171

beginning-of-buffer . 26

beginning-of-defun . 143

beginning-of-fortran-subprogram 160

beginning-of-line . 26

buffer-menu . 108

byte-compile-file . 171

byte-recompile-directory . 171

C
c-indent-line . 144

call-last-kbd-macro . 224

cancel-debug-on-entry .173

capitalize-word .84, 137

center-line . 136

clear-rectangle . 60

command-apropos . 47

compare-windows . 113

compile .167

convert-mocklisp-buffer . 171

copy-file . 102

copy-last-shell-input .213

copy-region-as-kill . 56

copy-to-buffer . 58

copy-to-register . 64

count-lines-page . 134

count-lines-region . 30

count-matches . 81

count-text-lines . 122

D
dabbrev-expand . 181

debug .173

debug-on-entry . 173

default-value . 221

define-abbrevs . 181

define-key . 228

delete-backward-char . 25, 53, 83

delete-blank-lines .29, 54

delete-char . 53, 184

delete-file . 102

delete-horizontal-space 54, 118

delete-indentation . 54, 118

delete-matching-lines .81

delete-non-matching-lines . 81

delete-other-windows .114

delete-rectangle . 60

delete-window . 113

describe-bindings . 48

describe-copying . 48

describe-distribution .48

describe-function .46, 153

280 GNU Emacs Manual

describe-key . 46

describe-key-briefly .46

describe-mode . 48

describe-no-warranty .48

describe-syntax . 232

describe-variable . 47, 153, 218

digit-argument . 31

dired .99

dired-other-window . 99, 113

disable-command . 229

disassemble . 171

display-time . 16

dissociated-press . 214

do-auto-save . 97

doctor .240

down-list . 142

downcase-region . 138

downcase-word . 84, 137

E
edit-abbrevs . 180

edit-abbrevs-redefine .180

edit-options . 220

edit-picture . 183

edit-tab-stops .118, 121

edit-tab-stops-note-changes 118

edt-emulation-off . 215

edt-emulation-on . 215

electric-nroff-mode . 122

emacs-lisp-mode . 172

emacs-version . 242

enable-command . 229

end-kbd-macro . 224

end-of-buffer . 26

end-of-defun . 143

end-of-fortran-subprogram . 160

end-of-line . 26

enlarge-window . 114

enlarge-window-horizontally 114

eval-current-buffer . 173

eval-defun . 172

eval-expression . 172

eval-last-sexp . 172

eval-region . 173

exchange-point-and-mark .50

execute-extended-command . 44

exit-recursive-edit . 207

expand-abbrev . 179

expand-region-abbrevs .179

F
fill-individual-paragraphs 137

fill-paragraph . 135

fill-region . 135

fill-region-as-paragraph . 136

find-alternate-file . 89

find-file . 89

find-file-other-window . 89, 113

find-tag . 157

find-tag-other-window . 113, 157

fortran-column-ruler .164

fortran-comment-region .163

fortran-indent-line . 161

fortran-indent-subprogram . 161

fortran-mode . 160

fortran-next-statement .160

fortran-previous-statement 160

fortran-split-line . 161

fortran-window-create .164

forward-char . 26

forward-list . 142

forward-page . 133

forward-paragraph . 132

forward-sentence . 131

forward-sexp . 141

forward-text-line . 122

forward-word . 130

G
global-set-key . 228

goto-char . 26

goto-line . 26

H
hanoi .215

help-with-tutorial .25, 48

Command and Function Index 281

hide-body . 129

hide-entry . 129

hide-leaves . 129

hide-subtree . 129

I
indent-c-exp . 144

indent-for-comment . 150

indent-new-comment-line . 151

indent-region . 118, 145

indent-relative . 118

indent-rigidly . 118

indent-sexp . 144

indented-text-mode . 121

info .48

insert-abbrevs . 181

insert-file . 102

insert-kbd-macro . 224

insert-parentheses . 153

insert-register . 64

interrupt-shell-subjob .213

inverse-add-global-abbrev . 178

inverse-add-mode-abbrev . 178

isearch-backward . 69

isearch-backward-regexp .74

isearch-forward . 69

isearch-forward-regexp .74

J
just-one-space . 54

K
kbd-macro-query . 225

kill-all-abbrevs . 178

kill-buffer . 107

kill-comment . 151

kill-compilation . 168

kill-line . 54, 55

kill-local-variable . 221

kill-output-from-shell .213

kill-rectangle . 60

kill-region . 55

kill-sentence . 55, 131

kill-sexp . 55, 141

kill-some-buffers . 107

kill-word . 55, 130

L
latex-mode . 122

LaTeX-mode . 122

lisp-complete-symbol .153

lisp-indent-line . 144

lisp-interaction-mode .175

lisp-mode . 176

lisp-send-defun . 176

list-abbrevs . 179

list-buffers . 106

list-command-history .40

list-directory . 98

list-matching-lines . 81

list-options . 219

list-tags . 159

load .170

load-file . 169

load-library . 170

local-set-key . 228

lpr-buffer . 214

lpr-region . 214

M
mail .187

mail-cc .190

mail-fill-yanked-message . 190

mail-other-window . 113, 187

mail-send . 190

mail-send-and-exit . 190

mail-signature . 190

mail-subject . 190

mail-to .190

mail-yank-original . 190, 204

make-local-variable . 220

make-symbolic-link . 103

make-variable-buffer-local 221

manual-entry . 154

mark-defun . 51, 143

mark-fortran-subprogram . 160

282 GNU Emacs Manual

mark-page . 51, 133

mark-paragraph .51, 132

mark-sexp . 51, 142

mark-whole-buffer . 51

mark-word . 51, 131

minibuffer-complete . 38

minibuffer-complete-word . 38

modify-syntax-entry . 231

move-over-close-and-reindent 153

move-to-window-line . 26

N
name-last-kbd-macro . 224

narrow-to-region . 208

negative-argument . 31

newline .25

newline-and-indent . 144

next-complex-command .40

next-error . 168

next-file . 159

next-line . 26

not-modified . 91

nroff-mode . 122

O
occur .81

open-dribble-file . 243

open-line . 29

open-rectangle . 60

open-termscript . 244

other-window . 112

outline-backward-same-level 128

outline-forward-same-level 128

outline-next-visible-heading 128

outline-previous-visible-heading 128

outline-up-heading . 128

overwrite-mode . 217

P
picture-backward-clear-column 184

picture-backward-column . 183

picture-clear-column .184

picture-clear-line . 184

picture-clear-rectangle . 186

picture-clear-rectangle-to-register 186

picture-forward-column .183

picture-motion . 185

picture-motion-reverse .185

picture-move-down . 183

picture-move-up . 183

picture-movement-down .184

picture-movement-left .184

picture-movement-ne . 184

picture-movement-nw . 184

picture-movement-right .184

picture-movement-se . 184

picture-movement-sw . 184

picture-movement-up . 184

picture-newline . 184

picture-open-line . 184

picture-set-tab-stops .185

picture-tab . 185

picture-tab-search . 185

picture-yank-rectangle .186

picture-yank-rectangle-from-register186

plain-tex-mode . 122

plain-TeX-mode . 122

point-to-register . 63

prepend-to-buffer . 58

previous-complex-command . 40

previous-line . 26

print-buffer . 214

print-region . 214

Q
query-replace . 80

query-replace-regexp .80

quietly-read-abbrev-file . 181

quit-shell-subjob . 213

quoted-insert . 25

R
re-search-backward . 74

re-search-forward . 74

read-abbrev-file . 181

recenter . 26, 65

Command and Function Index 283

recover-file . 98

register-to-point . 63

rename-buffer . 107

rename-file . 102

repeat-complex-command .40

replace-regexp . 78

replace-string . 78

revert-buffer . 95

rmail .193

rmail-add-label . 200

rmail-beginning-of-message 194

rmail-continue . 205

rmail-delete-backward .196

rmail-delete-forward .196

rmail-edit-current-message 205

rmail-expunge . 196

rmail-forward . 204

rmail-get-new-mail . 198

rmail-input . 198

rmail-kill-label . 200

rmail-last-message . 195

rmail-mail . 204

rmail-next-labeled-message 200

rmail-next-message . 195

rmail-next-undeleted-message 195

rmail-output . 198

rmail-output-to-rmail-file 198

rmail-previous-labeled-message 200

rmail-previous-message .195

rmail-previous-undeleted-message 195

rmail-quit . 193

rmail-reply . 204

rmail-save . 193

rmail-search . 195

rmail-show-message . 195

rmail-summary . 202

rmail-summary-by-labels 200, 202

rmail-summary-by-recipients 202

rmail-summary-delete-forward 203

rmail-summary-exit . 203

rmail-summary-goto-msg .203

rmail-summary-next-all .203

rmail-summary-next-msg .203

rmail-summary-previous-all 203

rmail-summary-previous-msg 203

rmail-summary-quit . 203

rmail-summary-scroll-msg-down 203

rmail-summary-scroll-msg-up 203

rmail-summary-undelete .203

rmail-toggle-header . 205

rmail-undelete-previous-message 196

run-lisp . 175

S
save-buffer . 90

save-buffers-kill-emacs .22

save-some-buffers . 90

scroll-down . 65

scroll-left . 66

scroll-other-window . 112

scroll-right . 66

scroll-up . 65

search-backward . 72

search-forward . 72

self-insert . 25

send-shell-input . 213

set-comment-column . 152

set-fill-column . 136

set-fill-prefix . 136

set-gnu-bindings . 216

set-goal-column . 27

set-gosmacs-bindings .216

set-mark-command . 49

set-rmail-inbox-list .198

set-selective-display .67

set-variable . 219

set-visited-file-name .91

setq-default . 221

shell .212

shell-command . 211

shell-command-on-region . 211

shell-send-eof . 213

show-all . 129

show-branches . 129

show-children . 129

show-entry . 129

284 GNU Emacs Manual

show-output-from-shell .213

show-subtree . 129

sort-columns . 210

sort-fields . 209

sort-lines . 209

sort-numeric-fields . 209

sort-pages . 209

sort-paragraphs . 209

spell-buffer . 85

spell-region . 85

spell-string . 85

spell-word . 85

split-line . 118

split-window-horizontally . 112

split-window-vertically . 111

start-kbd-macro . 224

stop-shell-subjob . 213

substitute-key-definition . 228

suspend-emacs . 21

switch-to-buffer . 105

switch-to-buffer-other-window105, 113

T
tab-to-tab-stop .118, 121

tabify .119

tags-apropos . 159

tags-loop-continue . 158

tags-query-replace . 158

tags-search . 158

TeX-buffer . 125

TeX-close-LaTeX-block .124

TeX-insert-braces . 124

TeX-insert-quote . 124

TeX-kill-job . 125

tex-mode . 122

TeX-mode . 122

TeX-print . 125

TeX-recenter-output-buffer 125

TeX-region . 125

TeX-show-print-queue .125

TeX-terminate-paragraph . 124

text-mode . 121

toggle-read-only . 107

top-level . 207, 238

transpose-chars .26, 83

transpose-lines . 84

transpose-sexps .84, 142

transpose-words .84, 130

U
undigestify-rmail-message . 206

undo .33

unexpand-abbrev . 179

universal-argument . 32

untabify . 119

up-list .124

upcase-region . 138

upcase-word . 84, 137

V
validate-TeX-buffer . 124

vi-mode .216

view-buffer . 107

view-emacs-news . 48

view-file . 102

view-lossage . 48

view-register . 63

vip-mode . 216

visit-tags-table . 156

W
what-cursor-position .30

what-line . 30

what-page . 30

where-is . 47

widen .208

word-search-backward .73

word-search-forward . 73

write-abbrev-file . 181

write-file . 91

write-region . 102

Y
Yank .56

yank-pop . 57

yank-rectangle . 60

Command and Function Index 285

yow . 215 Z
zap-to-char . 55

286 GNU Emacs Manual

Concept Index 287

Concept Index

A
Abbrev mode .217

abbrevs . 177

aborting . 237

againformation . 214

apropos . 47

arguments (from shell) . 22

ASCII . 17

attribute (Rmail) . 199

Auto Fill mode . 134, 151, 217

Auto-Save mode . 96

autoload . 170

B
backup file . 92

batch mode . 23

binding . 19

blank lines . 29, 151

body lines (Outline mode) . 126

boredom . 215

buffer menu . 108

buffers . 105

buggestion . 215

bugs . 241

byte code . 170

C
C . 139

C mode . 139

C- . 17

C-g .237

case conversion .84, 137

centering .136

change buffers . 105

change log . 154

character set . 17

command . 19, 226

command history . 39

command line arguments . 22

command name .226

comments . 150

compilation errors . 167

completion . 37

completion (symbol names) . 153

continuation line .29

Control . 17

Control-Meta .140

copying files . 102

copying text .55

crashes . 96

creating files. .89

current buffer . 105

current stack frame . 174

cursor . 13, 25

customization .19, 145, 217

cutting. .53

D
debugger .173

default argument . 35

defuns . 142

deletion . 25, 53

deletion (of files) . 99, 102

deletion (Rmail) . 195

digest message .206

directory listing .98

Dired . 99

disabled command . 229

Distribution . 6

doctor . 240

drastic changes . 95

dribble file . 243

E
echo area . 14

editing level, recursive . 207, 237

EDT . 215

Eliza . 240

Emacs initialization file. .232

Emacs-Lisp mode . 172

entering Emacs . 21

environment .211

288 GNU Emacs Manual

error log . 167

ESC replacing META key . 17

etags program . 156

exiting . 21, 207

expansion (of abbrevs) . 177

expression .140

expunging (Rmail) . 195

F
file dates . 94

file directory . 98

file names . 87

files . 28, 87, 88

fill prefix . 136

filling . 134

formfeed . 133

Fortran mode . 159

forward a message . 204

function . 19, 226

G
General Public License . 5

global keymap . 226

global substitution . 78

graphic characters . 25

grinding . 143

H
hardcopy .213

header (TeX mode) . 125

headers (of mail message) . 188

heading lines (Outline mode) . 126

help . 45

history of commands . 39

horizontal scrolling .66

I
ignoriginal . 215

inbox file .197

indentation . 117, 143, 150

inferior process . 167

init file . 232

insertion . 25

invisible lines . 126

J
justification . 136

K
key . 18

key rebinding, permanent .232

key rebinding, this session . 228

keyboard macros .223

keymap .19, 226

kill ring . 55

killing . 53

killing Emacs .21

L
label (Rmail) . 199

LaTeX . 122

libraries .169

license to copy Emacs . 5

line number . 30

Lisp . 139

Lisp mode . 139

list . 140

loading Lisp code . 169

local keymap . 226

local variables . 220

local variables in files . 221

M
M- . 17

mail . 187

major modes . 115

make . 167

mark . 49

mark ring . 51

Markov chain .215

matching parentheses . 149

message . 187, 193

message number . 193

Meta . 17, 130

minibuffer . 35, 43, 226

minor modes . 217

Concept Index 289

mistakes, correcting .33, 83

mocklisp . 171

mode hook . 140

mode line .15, 217

modified (buffer) .89

moving text . 55

N
narrowing . 208

newline . 25

nonincremental search .72

nroff .122

numeric arguments .31

O
option . 218, 219

other editors . 215

outlines . 126

outragedy . 215

Overwrite mode . 217

P
pages . 133

paragraphs . 132

parentheses . 149

pasting . 55

per-buffer variables . 221

pictures . 183

point . 13, 25

prefix key . 18

presidentagon . 214

primary mail file .193

prompt . 35

properbose . 215

Q
query replace . 80

quitting .237

quitting (in search) . 70

quoting . 25

R
read-only buffer . 107

rebinding keys, permanently . 232

rebinding keys, this session . 228

rectangle . 64, 185

rectangles . 59

recursive editing level . 207, 237

regexp . 73

region . 49, 138

registers . 63

regular expression .73

replacement . 78

reply to a message . 204

restriction .208

Rmail . 193

S
saving . 88

Scheme mode .139

screen . 13

scrolling . 65

searching .69

selected buffer . 105

selected window . 111

selective display . 126

self-documentation . 45

sentences .131

setting variables . 218

sexp . 140

shell commands .211

Shell mode . 213

simultaneous editing . 94

sorting .209

sparse keymap .227

spelling . 85

string substitution . 78

subshell . 211

subtree (Outline mode) .129

summary (Rmail) . 201

suspending . 21

switch buffers . 105

syntax table . 131, 229

T
tag table . 155

290 GNU Emacs Manual

techniquitous . 215

television . 56

termscript file . 244

TeX . 122

text . 121

Text mode . 121

top level . 15

transposition . 83, 130, 142

truncation .29

typos . 83

U
undeletion (Rmail) .196

undigestify . 206

undo . 33

V
variable . 218

variables . 20

vi . 215

viewing . 102

visiting . 88

visiting files . 88

W
widening . 208

windows . 111

word search . 73

words . 84, 130, 137

Y
yanking . 55

i

Short Contents

Preface . 1

Distribution .3

GNU GENERAL PUBLIC LICENSE . 5

Introduction .11

1 The Organization of the Screen . 13

2 Characters, Keys and Commands .17

3 Entering and Exiting Emacs . 21

4 Basic Editing Commands .25

5 Undoing Changes . 33

6 The Minibuffer .35

7 Running Commands by Name . 43

8 Help . 45

9 The Mark and the Region . 49

10 Killing and Moving Text . 53

11 Registers. .63

12 Controlling the Display .65

13 Searching and Replacement . 69

14 Commands for Fixing Typos .83

15 File Handling . 87

16 Using Multiple Buffers . 105

17 Multiple Windows . 111

18 Major Modes . 115

19 Indentation . 117

20 Commands for Human Languages . 121

21 Editing Programs . 139

22 Compiling and Testing Programs . 167

23 Abbrevs . 177

24 Editing Pictures .183

25 Sending Mail . 187

26 Reading Mail with Rmail . 193

27 Miscellaneous Commands . 207

28 Customization . 217

29 Correcting Mistakes (Yours or Emacs’s) .237

Emacs Version 17 Antinews .245

The GNU Manifesto . 249

Glossary . 259

ii GNU Emacs Manual

Key (Character) Index .273

Command and Function Index .279

Concept Index . 287

iii

Table of Contents

Preface . 1

Distribution .3

GNU GENERAL PUBLIC LICENSE .5

Preamble. .5

TERMS AND CONDITIONS . 6

Appendix: How to Apply These Terms to Your New Programs9

Introduction . 11

1 The Organization of the Screen .13

1.1 Point . 13

1.2 The Echo Area . 14

1.3 The Mode Line . 15

2 Characters, Keys and Commands . 17

2.1 The Emacs Character Set . 17

2.2 Keys . 18

2.3 Keys and Commands .19

3 Entering and Exiting Emacs .21

3.1 Exiting Emacs . 21

3.2 Command Line Switches and Arguments .22

4 Basic Editing Commands . 25

4.1 Inserting Text . 25

4.2 Changing the Location of Point .26

4.3 Erasing Text . 27

4.4 Files .28

4.5 Help .28

4.6 Blank Lines . 29

4.7 Continuation Lines . 29

4.8 Cursor Position Information . 30

4.9 Numeric Arguments . 31

iv GNU Emacs Manual

5 Undoing Changes .33

6 The Minibuffer .35

6.1 Minibuffers for File Names . 35

6.2 Editing in the Minibuffer .36

6.3 Completion . 37

6.3.1 Completion Example . 38

6.3.2 Completion Commands . 38

6.4 Repeating Minibuffer Commands . 39

7 Running Commands by Name .43

8 Help . 45

8.1 Documentation for a Key . 46

8.2 Help by Command or Variable Name .46

8.3 Apropos .47

8.4 Other Help Commands .48

9 The Mark and the Region .49

9.1 Setting the Mark . 49

9.2 Operating on the Region . 50

9.3 Commands to Mark Textual Objects . 50

9.4 The Mark Ring . 51

10 Killing and Moving Text .53

10.1 Deletion and Killing .53

10.1.1 Deletion .53

10.1.2 Killing by Lines . 54

10.1.3 Other Kill Commands .55

10.2 Yanking .55

10.2.1 The Kill Ring .56

10.2.2 Appending Kills . 56

10.2.3 Yanking Earlier Kills .57

10.3 Accumulating Text .58

10.4 Rectangles . 59

11 Registers . 63

11.1 Saving Positions in Registers . 63

11.2 Saving Text in Registers . 63

11.3 Saving Rectangles in Registers .64

v

12 Controlling the Display .65

12.1 Scrolling . 65

12.2 Horizontal Scrolling . 66

12.3 Selective Display . 67

12.4 Variables Controlling Display .67

13 Searching and Replacement .69

13.1 Incremental Search . 69

13.1.1 Slow Terminal Incremental Search .71

13.2 Nonincremental Search .72

13.3 Word Search .73

13.4 Regular Expression Search .73

13.5 Syntax of Regular Expressions .74

13.6 Searching and Case . 78

13.7 Replacement Commands .78

13.7.1 Unconditional Replacement .78

13.7.2 Regexp Replacement . 79

13.7.3 Replace Commands and Case .79

13.7.4 Query Replace .80

13.8 Other Search-and-Loop Commands . 81

14 Commands for Fixing Typos . 83

14.1 Killing Your Mistakes . 83

14.2 Transposing Text .83

14.3 Case Conversion .84

14.4 Checking and Correcting Spelling . 85

15 File Handling . 87

15.1 File Names . 87

15.2 Visiting Files . 88

15.3 Saving Files .90

15.3.1 Backup Files .92

15.3.1.1 Single or Numbered Backups . 92

15.3.1.2 Automatic Deletion of Backups93

15.3.1.3 Copying vs.Renaming . 93

15.3.2 Protection against Simultaneous Editing94

15.4 Reverting a Buffer .95

15.5 Auto-Saving: Protection Against Disasters . 96

15.5.1 Auto-Save Files .96

15.5.2 Controlling Auto-Saving . 97

15.5.3 Recovering Data from Auto-Saves . 98

15.6 Listing a File Directory . 98

vi GNU Emacs Manual

15.7 Dired, the Directory Editor . 99

15.7.1 Entering Dired . 99

15.7.2 Editing in Dired .99

15.7.3 Deleting Files with Dired . 100

15.7.4 Immediate File Operations in Dired .101

15.8 Miscellaneous File Operations . 102

16 Using Multiple Buffers .105

16.1 Creating and Selecting Buffers . 105

16.2 Listing Existing Buffers .106

16.3 Miscellaneous Buffer Operations . 107

16.4 Killing Buffers .107

16.5 Operating on Several Buffers . 108

17 Multiple Windows .111

17.1 Concepts of Emacs Windows . 111

17.2 Splitting Windows . 111

17.3 Using Other Windows . 112

17.4 Displaying in Another Window .113

17.5 Deleting and Rearranging Windows .113

18 Major Modes .115

18.1 How Major Modes are Chosen .115

19 Indentation .117

19.1 Indentation Commands and Techniques . 117

19.2 Tab Stops . 118

19.3 Tabs vs. Spaces . 119

20 Commands for Human Languages .121

20.1 Text Mode. .121

20.1.1 Nroff Mode . 122

20.1.2 TEX Mode . 122

20.1.2.1 TEX Editing Commands . 123

20.1.2.2 TEX Printing Commands . 125

20.1.3 Outline Mode . 126

20.1.3.1 Format of Outlines .126

20.1.3.2 Outline Motion Commands .128

20.1.3.3 Outline Visibility Commands128

20.2 Words . 130

20.3 Sentences . 131

vii

20.4 Paragraphs . 132

20.5 Pages . 133

20.6 Filling Text .134

20.6.1 Auto Fill Mode .134

20.6.2 Explicit Fill Commands . 135

20.6.3 The Fill Prefix . 136

20.7 Case Conversion Commands .137

21 Editing Programs .139

21.1 Major Modes for Programming Languages .139

21.2 Lists and Sexps . 140

21.3 Defuns . 142

21.4 Indentation for Programs . 143

21.4.1 Basic Program Indentation Commands 143

21.4.2 Indenting Several Lines . 144

21.4.3 Customizing Lisp Indentation . 145

21.4.4 Customizing C Indentation . 146

21.5 Automatic Display Of Matching Parentheses . 149

21.6 Manipulating Comments .150

21.6.1 Multiple Lines of Comments .151

21.6.2 Options Controlling Comments .152

21.7 Editing Without Unbalanced Parentheses .153

21.8 Completion for Lisp Symbols . 153

21.9 Documentation Commands . 153

21.10 Change Logs . 154

21.11 Tag Tables . 155

21.11.1 Source File Tag Syntax . 155

21.11.2 Creating Tag Tables . 156

21.11.3 Selecting a Tag Table .156

21.11.4 Finding a Tag .157

21.11.5 Searching and Replacing with Tag Tables 158

21.11.6 Stepping Through a Tag Table .159

21.11.7 Tag Table Inquiries . 159

21.12 Fortran Mode . 159

21.12.1 Motion Commands . 160

21.12.2 Fortran Indentation .160

21.12.2.1 Fortran Indentation Commands160

21.12.2.2 Line Numbers and Continuation 161

21.12.2.3 Syntactic Conventions . 161

21.12.2.4 Variables for Fortran Indentation 162

21.12.3 Comments .162

21.12.4 Columns .164

viii GNU Emacs Manual

21.12.5 Fortran Keyword Abbrevs .164

22 Compiling and Testing Programs . 167

22.1 Running ‘make’, or Compilers Generally .167

22.2 Major Modes for Lisp .169

22.3 Libraries of Lisp Code for Emacs .169

22.3.1 Loading Libraries . 169

22.3.2 Compiling Libraries . 170

22.3.3 Converting Mocklisp to Lisp .171

22.4 Evaluating Emacs-Lisp Expressions . 172

22.5 The Emacs-Lisp Debugger .173

22.6 Lisp Interaction Buffers .175

22.7 Running an External Lisp . 175

23 Abbrevs .177

23.1 Defining Abbrevs .177

23.2 Controlling Abbrev Expansion . 178

23.3 Examining and Editing Abbrevs . 179

23.4 Saving Abbrevs . 180

23.5 Dynamic Abbrev Expansion . 181

24 Editing Pictures .183

24.1 Basic Editing in Picture Mode . 183

24.2 Controlling Motion after Insert .184

24.3 Picture Mode Tabs .185

24.4 Picture Mode Rectangle Commands . 185

25 Sending Mail .187

25.1 The Format of the Mail Buffer . 187

25.2 Mail Header Fields .188

25.3 Mail Mode .189

26 Reading Mail with Rmail .193

26.1 Scrolling Within a Message .193

26.2 Moving Among Messages . 194

26.3 Deleting Messages .195

26.4 Rmail Files and Inboxes . 197

26.5 Multiple Mail Files .197

26.6 Copying Messages Out to Files .198

26.7 Labels . 199

26.8 Summaries .201

ix

26.8.1 Making Summaries .201

26.8.2 Editing in Summaries .202

26.9 Sending Replies . 204

26.10 Editing Within a Message . 205

26.11 Digest Messages .206

27 Miscellaneous Commands .207

27.1 Recursive Editing Levels .207

27.2 Narrowing . 208

27.3 Sorting Text .209

27.4 Running Shell Commands from Emacs .211

27.4.1 Single Shell Commands . 211

27.4.2 Interactive Inferior Shell . 212

27.4.3 Shell Mode . 213

27.5 Hardcopy Output . 213

27.6 Dissociated Press .214

27.7 Other Amusements .215

27.8 Emulation . 215

28 Customization .217

28.1 Minor Modes . 217

28.2 Variables . 218

28.2.1 Examining and Setting Variables .218

28.2.2 Editing Variable Values .219

28.2.3 Local Variables .220

28.2.4 Local Variables in Files . 221

28.3 Keyboard Macros . 223

28.3.1 Basic Use .224

28.3.2 Naming and Saving Keyboard Macros 224

28.3.3 Executing Macros with Variations .225

28.4 Customizing Key Bindings . 226

28.4.1 Keymaps . 226

28.4.2 Changing Key Bindings Interactively . 228

28.4.3 Disabling Commands . 229

28.5 The Syntax Table . 229

28.5.1 Information about Each Character . 230

28.5.2 Altering Syntax Information .231

28.6 The Init File, .emacs .232

28.6.1 Init File Syntax . 233

28.6.2 Init File Examples . 233

28.6.3 Terminal-specific Initialization . 235

x GNU Emacs Manual

29 Correcting Mistakes (Yours or Emacs’s)237

29.1 Quitting and Aborting .237

29.2 Dealing with Emacs Trouble .238

29.2.1 Recursive Editing Levels .238

29.2.2 Garbage on the Screen .238

29.2.3 Garbage in the Text . 239

29.2.4 Spontaneous Entry to Incremental Search 239

29.2.5 Emergency Escape . 239

29.2.6 Help for Total Frustration . 240

29.3 Reporting Bugs . 241

29.3.1 When Is There a Bug . 241

29.3.2 How to Report a Bug . 242

Emacs Version 17 Antinews .245

General Changes . 245

Changes in Major Modes . 246

Init Files and Library Changes .247

The GNU Manifesto .249

What’s GNU? Gnu’s Not Unix! . 249

Why I Must Write GNU .250

Why GNU Will Be Compatible with Unix .250

How GNU Will Be Available . 250

Why Many Other Programmers Want to Help . 250

How You Can Contribute .251

Why All Computer Users Will Benefit .252

Some Easily Rebutted Objections to GNU’s Goals .252

Glossary .259

Key (Character) Index .273

Command and Function Index .279

Concept Index .287

