

"Not Quite Deleted" Files

Another potential security problem is caused by how most operating systems delete files.    When you
encrypt a file and then delete the original plaintext file, the operating system doesn't actually physically
erase the data.    It merely marks those disk blocks as deleted, allowing the space to be reused later.    It's
sort of like discarding sensitive paper documents in the paper recycling bin instead of the paper shredder. 
The disk blocks still contain the original sensitive data you wanted to erase, and will probably eventually
be overwritten by new data at some point in the future.    If an attacker reads these deleted disk blocks
soon after they have been deallocated, he could recover your plaintext.

In fact this could even happen accidentally, if for some reason something went wrong with the disk and
some files were accidentally deleted or corrupted.    A disk recovery program may be run to recover the
damaged files, but this often means some previously deleted files are resurrected along with everything
else.    Your confidential files that you thought were gone forever could then reappear and be inspected by
whomever is attempting to recover your damaged disk.      Even while you are creating the original
message with a word processor or text editor, the editor may be creating multiple temporary copies of
your text on the disk, just because of its internal workings.    These temporary copies of your text are
deleted by the word processor when it's done, but these sensitive fragments are still on your disk
somewhere.   

Let me tell you a true horror story.    I had a friend, married with young children, who once had a brief and
not very serious affair.    She wrote a letter to her lover on her word processor, and deleted the letter after
she sent it.    Later, after the affair was over, the floppy disk got damaged somehow and she had to recover
it because it contained other important documents.    She asked her husband to salvage the disk, which
seemed perfectly safe because she knew she had deleted the incriminating letter.    Her husband ran a
commercial disk recovery software package to salvage the files.    It recovered the files alright, including
the deleted letter.    He read it, which    set off a tragic chain of events.   

The only way to prevent the plaintext from reappearing is to somehow cause the deleted plaintext files to
be overwritten.    Unless you know for sure that all the deleted disk blocks will soon be reused, you must
take positive steps to overwrite the plaintext file, and also any fragments of it on the disk left by your
word processor.    You can overwrite the original plaintext file after encryption by using the PGP -w
(wipe) option.    You can take care of any fragments of the plaintext left on the disk by using any of the
disk utilities available that can overwrite all of the unused blocks on a disk.    For example, the Norton
Utilities for MSDOS can do this.

Even if you overwrite the plaintext data on the disk, it may still be possible for a resourceful and
determined attacker to recover the data.    Faint magnetic traces of the original data remain on the disk
after it has been overwritten.    Special sophisticated disk recovery hardware can sometimes be used to
recover the data.

Next Section : Viruses and Trojan Horses

PGP Users Guide Volume II
This help file contains second part of the original documentation included with PGP 2.6.2 for MS DOS. It
explains public cryptography, encryption and decryption, key management, etc. No changes were made to
the original text. Help file generated by Miroslav Pikus 1996.

Appendix A:    Where to Get PGP

The following describes how to get the freeware public key cryptographic software PGP (Pretty Good
Privacy) from an anonymous FTP site on Internet, or from other sources.   

PGP has become a worldwide de facto standard for E-mail encryption. PGP has sophisticated key
management, an RSA/conventional hybrid    encryption scheme, message digests for digital signatures,
data compression before encryption, and good ergonomic design.    PGP is well featured and fast, and has
excellent user documentation.    Source code is free.

The Massachusetts Institute of Technology is the distributor of PGP version 2.6, for distribution in the
USA only.    It is available from "net-dist.mit.edu," a controlled FTP site that has restrictions and
limitations, similar to those used by RSA Data Security, Inc., to comply with export control requirements. 
The software resides in the directory /pub/PGP.

A reminder:    Set mode to binary or image when doing an FTP transfer. And when doing a kermit
download to your PC, specify 8-bit binary mode at both ends.

There are two compressed archive files in the standard release, with the file name derived from the
release version number.    For PGP version 2.6.2, you must get pgp262.zip which contains the MSDOS
binary executable and the PGP User's Guide, and you can optionally get pgp262s.zip which contains all
the source code.    These files can be decompressed with the MSDOS shareware archive decompression
utility PKUNZIP.EXE, version 1.10 or later.    For Unix users who lack an implementation of UNZIP, the
source code can also be found in the compressed tar file pgp262s.tar.Z.

If you don't have any local BBS phone numbers handy, here is a BBS you might try.    The Catacombs
BBS, operated by Mike Johnson in Longmont, Colorado, has PGP available for download by people in
the US or Canada only.    The BBS phone number is 303-772-1062.    Mike Johnson's voice phone number
is 303 772-1773, and his E-mail address is mpj@csn.org.    Mike also has PGP available on an Internet
FTP site for users in the US or Canada only; the site name is csn.org, in directory /mpj/, and you must
read the README.MPJ file to get it.

To get a fully licensed version of PGP for use in the USA or Canada, contact ViaCrypt in Phoenix,
Arizona.    Their phone number is 602-944-0773.    ViaCrypt has obtained all the necessary licenses from
PKP, Ascom-Tech AG, and Philip Zimmermann to sell PGP for use in commercial or Government
environments.    ViaCrypt PGP is every bit as secure as the freeware PGP, and is entirely compatible in
both directions with the freeware version of PGP.    ViaCrypt PGP is the perfect way to get a fully licensed
version of PGP into your corporate or Government environment.

Here are a few people and their E-mail addresses or phone numbers you can contact in some countries to
get information on local PGP    availability for versions earlier than 2.5:

Peter Gutmann  Hugh Kennedy
pgut1@cs.aukuni.ac.nz                  70042.710@compuserve.com
New Zealand                                      Germany

Branko Lankester                            Miguel Angel Gallardo
branko@hacktic.nl                          gallardo@batman.fi.upm.es
+31 2159 42242                                (341) 474 38 09

The Netherlands                              Spain

Hugh Miller                                      Colin Plumb
hmiller@lucpul.it.luc.edu          colin@nyx.cs.du.edu
(312) 508-2727                                Toronto, Ontario, Canada
USA

Jean-loup Gailly
jloup@chorus.fr
France

ARMOR - Enable ASCII Armor Output

Default setting:    ARMOR = off

The configuration parameter ARMOR is equivalent to the -a command line option.    If enabled, it causes
PGP to emit ciphertext or keys in ASCII Radix-64 format suitable for transporting through E-mail
channels.    Output files are named with the ".asc" extension.

If you intend to use PGP primarily for E-mail purposes, you should turn ARMOR=ON.

For further details, see the section "Sending Ciphertext Through E-mail Channels: Radix-64 Format" in
the Essential Topics volume.

Next Section : ARMORLINES - Size of ASCII Armor Multipart Files

ARMORLINES - Size of ASCII Armor Multipart Files

Default setting:    ARMORLINES = 720

When PGP creates a very large ".asc" radix-64 file for sending ciphertext or keys through the E-mail, it
breaks the file up into separate chunks small enough to send through Internet mail utilities.    Normally,
Internet mailers prohibit files larger than about 50000 bytes, which means that if we restrict the number of
lines to about 720, we'll be well within the limit.    The file chunks are named with suffixes ".as1", ".as2",
".as3", ...

The configuration parameter ARMORLINES specifies the maximum number of lines to make each chunk
in a multipart ".asc" file sequence.    If you set it to zero, PGP will not break up the file into chunks.

Fidonet E-mail files usually have an upper limit of about 32K bytes, so 450 lines would be appropriate for
Fidonet environments.

For further details, see the section "Sending Ciphertext Through E-mail Channels: Radix-64 Format" in
the Essential Topics volume.

Next Topic : KEEPBINARY - Keep Binary Ciphertext Files After Decrypting

BAKRING - Filename for Backup Secret Keyring

Default setting:    BAKRING = ""

All of the key certification that PGP does on your public key ring ultimately depends on your own
ultimately-trusted public key (or keys).    To detect any tampering of your public key ring, PGP must
check that your own key has not been tampered with.    To do this, PGP must compare your public key
against a backup copy of your secret key on some tamper-resistant media, such as a write-protected
floppy disk.    A secret key contains all the information that your public key has, plus some secret
components.    This means PGP can check your public key against a backup copy of your secret key.

The configuration parameter BAKRING specifies what pathname to use for PGP's trusted backup copy of
your secret key ring.    On MSDOS, you could set it to "a:\secring.pgp" to point it at a write-protected
backup copy of your secret key ring on your floppy drive.    This check is performed only when you
execute the PGP -kc option to check your whole public key ring.

If BAKRING is not defined, PGP will not check your own key against any backup copy.

For further details, see the sections "How to Protect Public Keys from Tampering" and "How Does PGP
Keep Track of Which Keys are Valid?" in the Essential Topics volume.

Next Section : PUBRING - Filename for Your Public Keyring

CERT_DEPTH - How Deep May Introducers Be Nested

Default setting:    CERT_DEPTH = 4

The configuration parameter CERT_DEPTH specifies how many levels deep you may nest introducers to
certify other introducers to certify public keys on your public key ring.    For example, If CERT_DEPTH
is set to 1, there may only be one layer of introducers below your own ultimately-trusted key.    If that
were the case, you would be required to directly certify the public keys of all trusted introducers on your
key ring.    If you set CERT_DEPTH to 0, you could have no introducers at all, and you would have to
directly certify each and every key on your public key ring in order to use it.    The minimum
CERT_DEPTH is 0, the maximum is 8.

For further details, see the section "How Does PGP Keep Track of    Which Keys are Valid?" in the
Essential Topics volume.

Next Section : BAKRING - Filename for Backup Secret Keyring

CLEARSIG - Enable Signed Messages to be Encapsulated as Clear Text

Default setting:    CLEARSIG = on

Normally, unencrypted PGP signed messages have a signature certificate prepended in binary form.   
Also, the signed message is compressed, rendering the message unreadable to casual human eyes, even
though the message is not actually encrypted.    To send this binary data through a 7-bit E-mail channel,
radix-64 ASCII armor is applied (see the ARMOR parameter).    Even if PGP didn't compress the
message, the ASCII armor would still render the message unreadable to human eyes.    The recipient must
use PGP to strip the armor off and decompress it before reading the message.

If the original plaintext message is in text (not binary) form, there is a way to send a signed message
through an E-mail channel in such a way that the signed message is not compressed and the ASCII armor
is applied only to the binary signature certificate, but not to the plaintext message.    The CLEARSIG flag
provides this useful feature, making it possible to generate a signed message that can be read with human
eyes, without the aid of PGP.    Of course, you still need PGP to actually check the signature.

The CLEARSIG flag is preset to "on" beginning with PGP version 2.5.    To enable the full CLEARSIG
behavior, the ARMOR and TEXTMODE flags must also be turned on.    Set ARMOR=ON (or use the -a
option), and set TEXTMODE=ON (or use the -t option).    If your config file has CLEARSIG turned off,
you can turn it back on again directly on the command line, like so:

          pgp -sta +clearsig=on message.txt

This message representation is analogous to the MIC-CLEAR message type used in Internet Privacy
Enhanced Mail (PEM).    It is important to note that since this method only applies ASCII armor to the
binary signature certificate, and not to the message text itself, there is some risk that the unarmored
message may suffer some accidental molestation while en route.    This can happen if it passes through
some E-mail gateway that performs character set conversions, or in some cases extra spaces may be
added to or stripped from the ends of lines.    If this occurs, the signature will fail to verify, which may
give a false indication of intentional tampering.    But since PEM lives under a similar vulnerability, it
seems worth having this feature despite the risks.

Beginning with PGP version 2.2, trailing blanks are ignored on each line in calculating the signature for
text in CLEARSIG mode.

Next Section : VERBOSE - Quiet, Normal, or Verbose Messages

Compatibility with Previous and Future Versions of PGP

PGP version 2.6 can read anything produced by versions 2.3 through 2.7.    However, because of a
negotiated agreement between MIT and RSA Data Security, PGP 2.6 was programmed to change its
behavior slightly on 1 September 1994, triggered by a built-in software timer.    On that date, version 2.6
started producing a new and slightly different data format for messages, signatures and keys.    PGP 2.6
will still be able to read and process messages, signatures, and keys produced under the old format, but it
will generate the new format.    This change is intended to discourage people from continuing to use the
older (2.3a and earlier) versions of PGP, which Public Key Partners contends infringes its RSA patent (see
the section on Legal Issues).    ViaCrypt PGP (see the section Where to Get a Commercial Version of
PGP), versions 2.4 and 2.7, avoids questions of infringement through Viacrypt's license arrangement with
Public Key Partners.    PGP 2.5 and 2.6 avoid questions of infringement by using the RSAREF(TM)
Cryptographic Toolkit, under license from RSA Data Security, Inc.

Outside the United States, the RSA patent is not in force, so PGP users there are free to use
implementations of PGP that do not rely on RSAREF and its restrictions.    See the notes on foreign
versions in the Legal Issues section later in this manual.    It seems likely that any versions of PGP
prepared outside the US will accept the new format, whose detailed description is available from MIT.    If
everyone upgrades before September 1994, or soon thereafter, there will be little interoperability
problems.

This format change beginning with 2.6 is similar to the process that naturally happens when new features
are added, causing older versions of PGP to be unable to read stuff from the newer PGP, while the newer
version can still read the old stuff.    The only difference is that this is a "legal upgrade", instead of a
technical one.    It's a worthwhile change, if it can achieve peace in our time.

According to ViaCrypt, which sells a commercial version of PGP, ViaCrypt PGP will evolve to maintain
interoperability with new freeware versions of PGP.

There is a another change that effects interoperability with earlier versions of PGP.    Unfortunately, due to
data format limitations imposed by RSAREF, PGP 2.5 and 2.6 cannot interpret any messages or
signatures made with PGP version 2.2 or earlier.    Since we had no choice but to use the new data
formats, because of the need to switch to RSAREF, we can't do anything about this problem.

Beginning with version 2.4 (which was ViaCrypt's first version) through at least 2.6, PGP does not allow
you to generate RSA keys bigger than 1024 bits.    The upper limit was always intended to be 1024 bits --
there had to be some kind of upper limit, for performance and interoperability reasons.    But because of a
bug in earlier versions of PGP, it was possible to generate keys larger than 1024 bits.    These larger keys
caused interoperability problems between different older versions of PGP that used different arithmetic
algorithms with different native word sizes.    On some platforms, PGP choked on the larger keys.    In
addition to these older key size problems, the 1024-bit limit is now enforced by RSAREF.    A 1024-bit
key is very likely to be well out of reach of attacks by major governments.    In a future version, PGP will
support bigger keys.

In general, there is compatibility from version 2.0 upwards through 2.4.    Because new features are added,
older versions may not always be able to handle some files created with newer versions.    Because of
massive changes to all the algorithms and data structures, PGP version 2.0 (and later) is not even slightly
compatible with PGP version 1.0, which no one uses anymore anyway.

Future versions of PGP may have to change the data formats for messages, signatures, keys and key rings,
in order to provide important new features.    We will endeavor to make future versions handle keys,
signatures, and messages from this version, but this is not guaranteed.    Future releases may provide
conversion utilities to convert old keys, but you may have to dispose of old messages created with the old
PGP.    Also, this current version may not be able to read stuff produced from all future versions.   

   
Next Section : Vulnerabilities

COMPLETES_NEEDED - Number of Completely Trusted Introducers
Needed

Default setting:    COMPLETES_NEEDED = 1

The configuration parameter COMPLETES_NEEDED specifies the minimum number of completely
trusted introducers required to fully certify a public key on your public key ring.    This gives you a way of
tuning PGP's skepticism.

For further details, see the section "How Does PGP Keep Track of    Which Keys are Valid?" in the
Essential Topics volume.

Next Section : MARGINALS_NEEDED - Number of Marginally Trusted Introducers Needed

COMPRESS - Enable Compression

Default setting:    COMPRESS = on

The configuration parameter COMPRESS enables or disables data compression before encryption.    It is
used mainly for debugging PGP.    Normally, PGP attempts to compress the plaintext before it encrypts it. 
Generally, you should leave this alone and let PGP attempt to compress the plaintext.

Next Section : COMPLETES_NEEDED - Number of Completely Trusted Introducers Needed

Compromised Pass Phrase and Secret Key

Probably the simplest attack is if you leave your pass phrase for your secret key written down somewhere.
If someone gets it and also gets your secret key file, they can read your messages and make signatures in
your name.   

Don't use obvious passwords that can be easily guessed, such as the names of your kids or spouse.    If you
make your pass phrase a single word, it can be easily guessed by having a computer try all the words in
the dictionary until it finds your password.    That's why a pass phrase is so much better than a password.   
A more sophisticated attacker may have his computer scan a book of famous quotations to find your pass
phrase.    An easy to remember but hard to guess pass phrase can be easily constructed by some creatively
nonsensical sayings or very obscure literary quotes.   

For further details, see the section "How to Protect Secret Keys from Disclosure" in the Essential Topics
volume of the PGP User's Guide.

Next Section : Public Key Tampering

Computer-Related Political Groups

PGP is a very political piece of software.    It seems appropriate to mention here some computer-related
activist groups.    Full details on these groups, and how to join them, is provided in a separate document
file in the PGP release package.

The Electronic Privacy Information Center (EPIC) is a public interest research center in Washington, DC. 
It was established in 1994 to focus public attention on emerging privacy issues relating to the National
Information Infrastructure, such as the Clipper Chip, the Digital Telephony proposal, medical record
privacy, and the sale of consumer data.    EPIC is sponsored by the Fund for Constitutional Government
and Computer Professionals for Social Responsibility.    EPIC publishes the EPIC Alert and EPIC
Reports, pursues Freedom of Information Act litigation, and conducts policy research on emerging
privacy issues.    For more information email info@epic.org, or write EPIC, 666 Pennsylvania Ave., SE,
Suite 301, Washington, DC 20003. +1 202 544 9240 (tel), +1 202 547 5482 (fax).

The Electronic Frontier Foundation (EFF) was founded in 1990 to assure freedom of expression in digital
media, with a particular emphasis on applying the principles embodied in the US Constitution and the Bill
of Rights to computer-based communication.    They can be reached in Washington DC, at (202) 347-
5400.    Internet E-mail address: eff@eff.org.

Computer Professionals For Social Responsibility (CPSR) empowers computer professionals and
computer users to advocate for the responsible use of information technology and empowers all who use
computer technology to participate in public policy debates on the impacts of computers on society.   
They can be reached at: (415) 322-3778 in Palo Alto, E-mail address cpsr@csli.stanford.edu.

The League for Programming Freedom (LPF) is a grass-roots organization of professors, students,
businessmen, programmers and users dedicated to bringing back the freedom to write programs.    They
regard patents on computer algorithms as harmful to the US software industry (and so do I!).    They can
be reached at (617) 433-7071.    E-mail address: lpf@uunet.uu.net.

For more details on these groups, see the accompanying document in the PGP release package.

Next Section : Recommended Readings

Phil's Pretty Good Software
Presents

=======
PGP(tm)
=======

Pretty Good(tm) Privacy
Public Key Encryption for the Masses

PGP(tm) User's Guide

Volume II: Speial Topics

by Philip Zimmermann
Revised    11 October 94

                               
PGP Version 2.6.2 - 11 October 1994

Software by Philip Zimmermann, and many others.

Synopsis:    PGP(tm) uses public-key encryption to protect E-mail and data files.    Communicate
securely with people you've never met, with no secure channels needed for prior exchange of
keys.    PGP is well featured and fast, with sophisticated key management, digital signatures, data
compression, and good ergonomic design.

Software and documentation (c) Copyright 1990-1994 Philip Zimmermann. All rights reserved.   
For information on PGP licensing, distribution, copyrights, patents, trademarks, liability
limitations, and export controls, see the "Legal Issues" section.    Distributed by the
Massachusetts Institute of Technology.

Contents:

Quick Overview
Special Topics
    Selecting Keys via Key ID

              Separating Signatures from Messages

    Decrypting the Message and Leaving the Signature on it
              Sending ASCII Text Files Across Different Machine Environments
              Using PGP as a Better Uuencode

    Leaving No Traces of Plaintext on the Disk
    Displaying Decrypted Plaintext on Your Screen

              Making a Message For Her Eyes Only
    Preserving the Original Plaintext Filename
    Editing Your User ID or Pass Phrase
    Editing the Trust Parameters for a Public Key

              Checking If Everything is OK on Your Public Key Ring
    Verifying a Public Key Over the Phone

              Handling Large Public Keyrings
    Using PGP as a Unix-style Filter
    Suppressing Unnecessary Questions:    BATCHMODE
    Force "Yes" Answer to Confirmation Questions:    FORCE
    PGP Returns Exit Status to the Shell
    Environmental Variable for Pass Phrase
    Setting Parameters in the PGP Configuration File
        TMP - Directory Pathname for Temporary Files
        LANGUAGE - Foreign Language Selector
        MYNAME - Default User ID for Making Signatures

                    TEXTMODE - Assuming Plaintext is a Text File
        CHARSET - Specifies Local Character Set for Text Files

         ARMOR - Enable ASCII Armor Output
        ARMORLINES - Size of ASCII Armor Multipart Files
        KEEPBINARY - Keep Binary Ciphertext Files After Decrypting

         COMPRESS - Enable Compression
        COMPLETES_NEEDED - Number of Completely Trusted Introducers Needed
        MARGINALS_NEEDED - Number of Marginally Trusted Introducers Needed
        CERT_DEPTH - How Deep May Introducers Be Nested
        BAKRING - Filename for Backup Secret Keyring

                  PUBRING - Filename for Your Public Keyring
        SECRING - Filename for Your Secret Keyring

         RANDSEED - Filename for Random Number Seed
         PAGER - Selects Shell Command to Display Plaintext Output

        SHOWPASS - Echo Pass Phrase to User
         TZFIX - Timezone Adjustment

        CLEARSIG - Enable Signed Messages to be Encapsulated as Clear Text
        VERBOSE - Quiet, Normal, or Verbose Messages
        INTERACTIVE - Ask for Confirmation for Key Adds

                  NOMANUAL - Let PGP Generate Keys Without the Manual
A Peek Under the Hood     
    Random Numbers
    PGP's Conventional Encryption Algorithm
    Data Compression
    Message Digests and Digital Signatures
    Compatibility with Previous and Future Versions of PGP
Vulnerabilities
    Compromised Pass Phrase and Secret Key
    Public Key Tampering
    "Not Quite Deleted" Files

    Viruses and Trojan Horses
    Physical Security Breach
    Tempest Attacks
    Exposure on Multi-user Systems
    Traffic Analysis
    Protecting Against Bogus Timestamps
    Cryptanalysis
Legal Issues
    Trademarks, Copyrights, and Warranties
    Patent Rights on the Algorithms
    Freeware Status and Restrictions
    Restrictions on Commercial Use of PGP
    Other Licensing Restrictions
    Distribution
    Export Controls
    Philip Zimmermann's Legal Situation
Other Sources of Information on PGP
    Where to Get a Commercial Version of PGP
    Reporting PGP Bugs
    Fan Mail, Updates, and News
    Computer-Related Political Groups
    Recommended Readings
    To Contact the Author
Appendix A:    Where to Get PGP

Cryptanalysis

An expensive and formidable cryptanalytic attack could possibly be mounted by someone with vast
supercomputer resources, such as a Government intelligence agency.    They might crack your RSA key
by using some new secret factoring breakthrough.    Perhaps so, but it is noteworthy that the US
Government trusts the RSA algorithm enough in some cases to use it to protect its own nuclear weapons,
according to Ron Rivest.    And civilian academia has been intensively attacking it without success since
1978.

Perhaps the Government has some classified methods of cracking the IDEA(tm) conventional encryption
algorithm used in PGP.    This is every cryptographer's worst nightmare.    There can be no absolute
security guarantees in practical cryptographic implementations.   

Still, some optimism seems justified.    The IDEA algorithm's designers are among the best cryptographers
in Europe.    It has had extensive security analysis and peer review from some of the best cryptanalysts in
the unclassified world.    It appears to have some design advantages over the DES in withstanding
differential and linear cryptanalysis, which have both been used to crack the DES.   

Besides, even if this algorithm has some subtle unknown weaknesses, PGP compresses the plaintext
before encryption, which should greatly reduce those weaknesses.    The computational workload to crack
it is likely to be much more expensive than the value of the message.

If your situation justifies worrying about very formidable attacks of this caliber, then perhaps you should
contact a data security consultant for some customized data security approaches tailored to your special
needs.    Boulder Software Engineering, whose address and phone are given at the end of this document,
can provide such services.

In summary, without good cryptographic protection of your data communications, it may have been
practically effortless and perhaps even routine for an opponent to intercept your messages, especially
those sent through a modem or E-mail system.    If you use PGP and follow reasonable precautions, the
attacker will have to expend far more effort and expense to violate your privacy.

If you protect yourself against the simplest attacks, and you feel confident that your privacy is not going
to be violated by a determined and highly resourceful attacker, then you'll probably be safe using PGP.   
PGP gives you Pretty Good Privacy.

Next Section : Legal Issues

Data Compression

PGP normally compresses the plaintext before encrypting it.    It's too late to compress it after it has been
encrypted; encrypted data is incompressible.    Data compression saves modem transmission time and disk
space and more importantly strengthens cryptographic security.      Most cryptanalysis techniques exploit
redundancies found in the plaintext to crack the cipher.    Data compression reduces this redundancy in the
plaintext, thereby greatly enhancing resistance to    cryptanalysis.    It takes extra time to compress the
plaintext, but    from a security point of view it seems worth it, at least in my    cautious opinion.

Files that are too short to compress or just don't compress well are not compressed by PGP.        If you
prefer, you can use PKZIP to compress the plaintext before encrypting it.    PKZIP is a widely-available
and effective MSDOS shareware compression utility from PKWare, Inc.    Or you can use ZIP, a PKZIP-
compatible freeware compression utility on Unix and other systems, available from Jean-Loup Gailly.   
There is some advantage in using PKZIP or ZIP in certain cases, because unlike PGP's built-in
compression algorithm, PKZIP and ZIP have the nice feature of compressing multiple files into a single
compressed file, which is reconstituted again into separate files when decompressed.    PGP will not try to
compress a plaintext file that has already been compressed.    After decrypting, the recipient can
decompress the plaintext with PKUNZIP.    If the decrypted plaintext is a PKZIP compressed file, PGP
automatically recognizes this and advises the    recipient that the decrypted plaintext appears to be a
PKZIP file.

For the technically curious readers, the current version of PGP uses the freeware ZIP compression
routines written by Jean-loup Gailly, Mark Adler, and Richard B. Wales.    This ZIP software uses
functionally-equivalent compression algorithms as those used by PKWare's new PKZIP 2.0.    This ZIP
compression software was selected for PGP mainly because of its free portable C source code availability,
and because it has a really good compression ratio, and because it's fast.   

Peter Gutmann has also written a nice compression utility called HPACK, available for free from many
Internet FTP sites.    It encrypts the compressed archives, using PGP data formats and key rings.    He
wanted me to mention that here.

Next Section : Message Digests and Digital Signatures

Decrypting the Message and Leaving the Signature on it

Usually, you want PGP to completely unravel a ciphertext file, decrypting it and checking the nested
signature if there is one, peeling away the layers until you are left with only the original plaintext file.

But sometimes you want to decrypt an encrypted file, and leave the inner signature still attached, so that
you are left with a decrypted signed message.    This may be useful if you want to send a copy of a signed
document to a third party, perhaps re-enciphering it.    For example, suppose you get a message signed by
Charlie, encrypted to you.    You want to decrypt it, and, leaving Charlie's signature on it, you want to send
it to Alice, perhaps re-enciphering it with Alice's public key.    No problem.    PGP can handle that.

To simply decrypt a message and leave the signature on it intact, type:

        pgp -d letter

This decrypts letter.pgp, and if there is an inner signature, it is left intact with the decrypted plaintext in
the output file.

Now you can archive it, or maybe re-encrypt it and send it to someone else.

Next Section : Sending ASCII Text Files Across Different Machine Environments

Displaying Decrypted Plaintext on Your Screen

To view the decrypted plaintext output on your screen (like the Unix-style "more" command), without
writing it to a file, use the -m (more) option while decrypting:

          pgp -m ciphertextfile

This displays the decrypted plaintext display on your screen one screenful at a time.

Next Section : Making a Message For Her Eyes Only

Distribution

In the USA, PGP is available for free from the Massachusetts Institute of Technology, under the
restrictions described above.

The primary release site for PGP is the Massachusetts Institute of Technology, at their FTP site "net-
dist.mit.edu", in the /pub/PGP directory.    You may obtain free copies or updates to PGP from this site, or
any other Internet FTP site or BBS that PGP has spread to. Don't ask me for a copy directly from me,
especially if you live outside the US or Canada.    I recommend that you not use any modified version of
PGP that comes from any other source, other than MIT, ViaCrypt, or me, unless it is accompanied by a
signed endorsement from me personally.    You can get the official release software from many other
distribution sites "downstream" from MIT.    Hopefully, all these other sites are adhering to US export
controls.

The PGP version 2.6.2 executable object release package for MSDOS contains the PGP executable
software, documentation, RSAREF license, sample key rings including my own public key, and
signatures for the software and this manual, all in one PKZIP compressed file called pgp262.zip.    The
PGP source release package for MSDOS contains all the C source files in one PKZIP compressed file
called pgp262s.zip.    The filename for the release package is derived from the version number of the
release.

Next Section : Export Controls

Editing the Trust Parameters for a Public Key

Sometimes you need to alter the trust parameters for a public key on your public key ring.    For a
discussion on what these trust parameters mean, see the section "How Does PGP Keep Track of Which
Keys are Valid?" in the Essential Topics volume of the PGP User's Guide.

To edit the trust parameters for a public key:

          pgp -ke userid [keyring]

The optional [keyring] parameter, if specified, must be a public keyring, not a secret keyring.

Next Section : Checking If Everything is OK on Your Public Key Ring

Editing Your User ID or Pass Phrase

Sometimes you may need to change your pass phrase, perhaps because someone looked over your
shoulder while you typed it in.     

Or you may need to change your user ID, because you got married and changed your name, or maybe you
changed your E-mail address.    Or maybe you want to add a second or third user ID to your key, because
you may be known by more than one name or E-mail address or job title.    PGP lets you attach more than
one user ID to your key, any one of which may be used to look up your key on the key ring.

To edit your own userid or pass phrase for your secret key:

          pgp -ke userid [keyring]

PGP prompts you for a new user ID or a new pass phrase.

If you edit your user ID, PGP actually adds a new user ID, without deleting the old one.    If you want to
delete an old user ID, you will have to do that in a separate operation.

The optional [keyring] parameter, if specified, must be a public keyring, not a secret keyring.    The userid
field must be your own userid, which PGP knows is yours because it appears on both your public keyring
and your secret keyring.    Both keyrings will be updated, even though you only specified the public
keyring.

The -ke command works differently depending on whether you use it on a public or secret key.    It can
also be used to edit the trust parameters for a public key.

Next Section : Editing the Trust Parameters for a Public Key

Environmental Variable for Pass Phrase

Normally, PGP prompts the user to type a pass phrase whenever PGP    needs a pass phrase to unlock a
secret key.    But it is possible to store the pass phrase in an environmental variable from your operating
system's command shell.    The environmental variable PGPPASS can be used to hold the pass phrase that
PGP will attempt to use first.    If the pass phrase stored in PGPPASS is incorrect, PGP    recovers by
prompting the user for the correct pass phrase.

For example, on MSDOS, the shell command:

        SET PGPPASS=zaphod beeblebrox for president

would eliminate the prompt for the pass phrase if the pass phrase were indeed "zaphod beeblebrox for
president".

This dangerous feature makes your life more convenient if you have to regularly deal with a large number
of incoming messages addressed to your secret key, by eliminating the need for you to repeatedly type in
your pass phrase every time you run PGP.

I added this feature because of popular demand.    However, this is a somewhat dangerous feature, because
it keeps your precious pass phrase stored somewhere other than just in your brain.    Even worse, if you
are particularly reckless, it may even be stored on a disk on the same computer as your secret key.    It
would be particularly dangerous and stupid if you were to install this command in a batch or script file,
such as the MSDOS AUTOEXEC.BAT file.    Someone could come along on your lunch hour and steal
both your secret key ring and the file containing your pass phrase.   

I can't emphasize the importance of this risk enough.    If you are contemplating using this feature, be sure
to read the sections "Exposure on Multi-user Systems" and "How to Protect Secret Keys from Disclosure"
in this volume and in the Essential Topics volume of the    PGP User's Guide.

If you must use this feature, the safest way to do it would be to just manually type in the shell command
to set PGPPASS every time you boot your machine to start using PGP, and then erase it or turn off your
machine when you are done.    And you should definitely never do it in an environment where someone
else may have access to your machine.    Someone could come along and simply ask your computer to
display the contents of PGPPASS.

Sometimes you want to pass the pass phrase into PGP from another application, such as an E-mail
package.    In some cases, it may not always be desirable to use the PGPPASS variable for that purpose.   
There is another way to pass your pass phrase into PGP from another application.    Use the "-z" command
line option.    This option is designed primarily for invoking PGP from inside an E-mail package.    The
pass phrase follows the -z option on the command line.    There are risks associated with using this
approach, similar to those risks described above for using the PGPPASS variable.

Next Section : Setting Parameters in the PGP Configuration File

Export Controls

The U.S. Government has made it illegal in most cases to export good cryptographic technology, and that
may include PGP.    They regard this kind of software just like they regard munitions.    This is determined
not by legislation, but by administrative policies of the State Department, Defense Department and
Commerce Department.

The U.S. Government is using export restrictions as a means of suppressing both domestic and foreign
availability of cryptographic technology.    In particular, it is trying to suppress the emergence of an
international standard for cryptographic protocols, until it can establish the Escrowed Encryption
Standard (the Clipper chip) as the dominant standard.

Any export restrictions on PGP are imposed by the US Government.    This does not imply that I or MIT
agree with these restrictions.    We just comply with them.    We do not impose additional licensing
restrictions of our own on the use of PGP outside of the US, other than those restrictions that already
apply inside the US.    PGP may be subject to export controls.    Anyone wishing to export it should first
consult the State Department's Office of Defense Trade Controls.

I will not export this software out of the US or Canada in cases when it is illegal to do so under US
controls, and I urge other people not to export it on their own.    If you live outside the US or Canada, I
urge you not to violate US export laws by getting any version of PGP in a way that violates those laws.   
Since thousands of domestic users got the first version after its initial publication, it somehow leaked out
of the US and spread itself widely abroad, like dandelion seeds blowing in the wind.

Starting with PGP version 2.0 through version 2.3a, the release point of the software has been outside the
US, on publicly-accessible computers in Europe.    Each release was electronically sent back into the US
and posted on publicly-accessible computers in the US by PGP privacy activists in foreign countries.   
There are some restrictions in the US regarding the import of munitions, but I'm not aware of any cases
where this was ever enforced for importing cryptographic software into the US.    I imagine that a legal
action of that type would be quite a spectacle of controversy.

ViaCrypt PGP is sold in the United States and Canada and is not for export.    The following language was
supplied by the US Government to ViaCrypt for inclusion in the ViaCrypt PGP documentation:    "PGP is
export restricted by the Office of Export Administration, United States Department of Commerce and the
Offices of Defense Trade Controls and Munitions Control, United States Department of State.    PGP
cannot be exported or reexported, directly or indirectly, (a) without all export or reexport licenses and
governmental approvals required by any applicable laws, or (b) in violation of any prohibition against the
export or reexport of any part of PGP."    The Government may take the position that the freeware PGP
versions are also subject to those controls.

The freeware PGP versions 2.5 and 2.6 were released through a posting on a controlled FTP site
maintained by MIT.    This site has restrictions and limitations which have been used on other FTP sites to
comply with export control requirements with respect to other encryption software such as Kerberos and
software from RSA Data Security, Inc.    I urge you not to do anything which would weaken those controls
or facilitate any improper export of PGP.

Although PGP has become a worldwide de facto standard for E-mail encryption, and is widely available
overseas, I still get calls from people outside the US who ask me if it is legal to use it in their own
country, for versions that are already available there.    Please don't contact me to ask me if it is legal to

use PGP in your country if you live outside the US.    That question is not up to me.    I've got enough legal
problems of my own with export control issues, without getting involved in giving you legal advice over
my phone.    It might even put me at some legal risk to simply answer a question like that for a foreigner.   
If this question concerns you, ask someone else, like a lawyer.

You may have a need to use PGP in a commercial application outside the US or Canada.    Unfortunately,
at the time of this writing, there is no current commercial source for PGP outside the US or Canada.    I am
trying to find a US-legal way to make a commercially licensed version available abroad, but right now the
US export restrictions make that difficult without putting me at legal risk.    This situation may change.

Some foreign governments impose serious penalties on anyone inside their country for merely using
encrypted communications.    In some countries they might even shoot you for that.    But if you live in
that kind of country, perhaps you need PGP even more.

Next Section : Philip Zimmermann's Legal Situation

Exposure on Multi-user Systems

PGP was originally designed for a single-user MSDOS machine under your direct physical control.    I run
PGP at home on my own PC, and unless someone breaks into my house or monitors my electromagnetic
emissions, they probably can't see my plaintext files or secret keys.

But now PGP also runs on multi-user systems such as Unix and VAX/VMS. On multi-user systems, there
are much greater risks of your plaintext or keys or passwords being exposed.    The Unix system
administrator or a clever intruder can read your plaintext files, or perhaps even use special software to
covertly monitor your keystrokes or read what's on your screen.    On a Unix system, any other user can
read your environment information remotely by simply using the Unix "ps" command.    Similar problems
exist for MSDOS machines connected on a local area network.    The actual security risk is dependent on
your particular situation.    Some multi-user systems may be safe because all the users are trusted, or
because they have system security measures that are safe enough to withstand the attacks available to the
intruders, or because there just aren't any sufficiently interested intruders.    Some Unix systems are safe
because they are only used by one user-- there are even some notebook computers running Unix.    It
would be unreasonable to simply exclude PGP from running on all Unix systems.

PGP is not designed to protect your data while it is in plaintext form on a compromised system.    Nor can
it prevent an intruder from using sophisticated measures to read your secret key while it is being used.   
You will just have to recognize these risks on multi-user systems, and adjust your expectations and
behavior accordingly.    Perhaps your situation is such that you should consider running PGP only on an
isolated single-user system under your direct physical control.    That's what I do, and that's what I
recommend.

Next Section : Traffic Analysis

Fan Mail, Updates, and News

After all this work I have to admit I wouldn't mind getting some fan mail for PGP, to gauge its popularity. 
Let me know what you think about it and how many of your friends use it.    Bug reports and suggestions
for enhancing PGP are welcome, too.    Perhaps a future PGP release will reflect your suggestions.   

This project has not been funded and the project has nearly eaten me alive.    This means you usually
won't get a reply to your mail, unless you only need a short written reply and you include a stamped self-
addressed envelope.    But I often do reply to E-mail.    Please keep it in English, as my foreign language
skills are weak.    If you call and I'm not in, it's best to just try again later.    I usually don't return long
distance phone calls, unless you leave a message that I can call you collect, and even then I might not
return your call.    If you need any significant amount of my time, I am available on a paid consulting
basis, and I always return those calls.

The most inconvenient mail I get is for some well-intentioned person to send me a few dollars asking me
for a copy of PGP.    I don't send    it to them because I'd rather avoid any legal problems with PKP.    Or
worse, sometimes these requests are from foreign countries, and I would be risking a violation of US
cryptographic export control laws.    Even if there were no legal hassles involved in sending PGP to them,
they usually don't send enough money to make it worth my time. I'm just not set up as a low cost low
volume mail order business.    I can't just ignore the request and keep the money, because they probably
regard the money as a fee for me to fulfill their request. If I return the money, I might have to get in my
car and drive down to the post office and buy some postage stamps, because these requests rarely include
a stamped self-addressed envelope.    And I have to take the time to write a polite reply that I can't do it.   
If I postpone the reply and set the letter down on my desk, it might be buried within minutes and won't
see the light of day again for months.    Multiply these minor inconveniences by the number of requests I
get, and you can see the problem.    Isn't it enough that the software is free?    It would be nicer if people
could try to get PGP from any of the myriad other sources.    If you don't have a modem, ask a friend to
get it for you.    If you can't find it yourself, I don't mind answering a quick phone call.

If anyone wants to volunteer to improve PGP, please let me know.    It could certainly use some more
work.    Some features were deferred to get it out the door.    A number of PGP users have since donated
their time to port PGP to Unix on Sun SPARCstations, to Ultrix, to VAX/VMS, to OS/2, to the Amiga,
and to the Atari ST.    Perhaps you can help port it to some new environments.    But please let me know if
you plan to port or add enhancements to PGP, to avoid duplication of effort, and to avoid starting with an
obsolete version of the source code.   

Because so many foreign language translations of PGP have been produced, most of them are not
distributed with the regular PGP release package because it would require too much disk space.    Separate
language translation "kits" are available from a number of independent sources, and are sometimes
available separately from the same distribution centers that carry the regular PGP release software.   
These kits include translated versions of the file    LANGUAGE.TXT, PGP.HLP, and the PGP User's
Guide.    If you want to produce a translation for your own native language, contact me first to get the
latest information and standard guidelines, and to find out if it's been translated to your language already. 
To find out where to get a foreign language kit for your language, you might check on the Internet
newsgroups, or get it from Mike Johnson (mpj@csn.org).

If you have access to the Internet, watch for announcements of new releases of PGP on the Internet
newsgroups "sci.crypt" and PGP's own newsgroup, "alt.security.pgp".    If you want to know where to get
PGP, MIT is the primary FTP distribution site (net-dist.mit.edu).    Or ask Mike Johnson (mpj@csn.org)

for a list of Internet FTP sites and BBS phone numbers.

Next Section : Computer-Related Political Groups

Force "Yes" Answer to Confirmation Questions:    FORCE

This command-line flag makes PGP assume "yes" for the user response to the confirmation request to
overwrite an existing file, or when removing a key from the keyring via the -kr command.    Here is an
example of how to set this flag:

        pgp +force cipherfile
or:
      pgp -kr +force Smith

This feature is useful for running PGP non-interactively from a Unix shell script or MSDOS batch file.

Next Section : PGP Returns Exit Status to the Shell

Freeware Status and Restrictions

PGP is not shareware, it's freeware.    Published as a community service.    Giving PGP away for free will
encourage far more people to use it, which will have a greater social impact.    Feel free to disseminate the
complete unmodified PGP release package as widely as possible, but be careful not to violate U.S. export
controls if you live in the USA.    Give it to all your friends.    If you have access to any electronic Bulletin
Board Systems, please upload the complete PGP executable object release package to as many BBS's as
possible.

You may also disseminate the source code release package.    PGP's source code is published to assist
public scrutiny of PGP to show that it has no hidden weaknesses or back doors, and to help people to find
bugs and report them.    Recompile it and port it to new target machines.    Experiment with the code and
learn from it.

I place no restraints on your modifying the source code for your own use.    However, do not distribute a
modified version of PGP under the name "PGP" without first getting permission from me.    Please respect
this restriction.    PGP's reputation for cryptographic integrity depends on maintaining strict quality
control on PGP's cryptographic algorithms and protocols.    Beyond that, ad hoc "improvements" to PGP
can affect interoperability, which creates user confusion and compatability problems that could damage
PGP's (and my own) reputation and undermine the good will earned by the PGP trademark.

This has already started to happen, which is why I'm making a point of it here.    This creates technical
support headaches, and I get phone calls from confused users who run into problems either because they
have a mutant strain of PGP, or are trying to process a key, signature, or message that came from an
incompatible mutant strain of PGP.    The source code to PGP was not published to help spawn these
mutant strains.

If you want to distribute a modified version of PGP, or use a modified version to send messages to other
people, you should name the program in such a way that no one could mistake it for PGP.    The messages,
signatures, and keys it produces must also be labeled in such a way that no one could mistake them for
material produced by PGP.    If you feel you must modify your copy of PGP, and there is any chance that
the modified version could escape into the environment, please contact me first to discuss some easy
methods for how to prevent people from confusing your version with the standard PGP.    Perhaps we'll
even decide that your changes are appropriate for incorporating into the standard PGP release.

Also, you should note that official executable versions of PGP are always released signed by the PGP
developers, so you can verify their authenticity.    If you find a corrupted copy of PGP, or notice one being
distributed, please contact the people doing the distribution and suggest that they replace this with an
authentic version.

Some older versions of PGP were published under the terms of the General Public License (GPL), a
license designed by the Free Software Foundation to protect the status of free software.    Newer freeware
versions of PGP are no longer published under the GPL.    The RSAREF licensing terms are more
stringent than those of the GPL.    But even if a version of PGP is published without RSAREF, in a
situation or place where the RSA patent does not apply, I still do not want the GPL to apply to PGP, for a
variety of reasons, not the least of which is because the GPL is not optimal for protecting PGP from being
republished with ad-hoc "improvements".

Outside the United States, the RSA patent is not in force, so PGP users there are free to use

implementations of PGP that do not rely on RSAREF and its restrictions.    Canadians may use PGP
without using RSAREF, and there are legal ways to export PGP to Canada.    In Canada, where RSAREF
is not needed, it is easy to modify and recompile the current PGP source code to perform the RSA
calculations without using the RSAREF library, just as it was done in PGP 2.3a.    In such a case, this
modified PGP may be re-released under the identical licensing terms as the current official freeware PGP
release, but without the RSAREF-specific restrictions.    It may not be re-released under the GPL, as
certain older versions were.    And this manual must accompany it.    That modified version of PGP may
not be used in environments where RSAREF would be needed.

Next Section : Restrictions on Commercial Use of PGP

Handling Large Public Keyrings

PGP was originally designed for handling small personal keyrings for keeping all your friends on, like a
personal rolodex.    A couple hundred keys is a reasonable size for such a keyring.    But as PGP has
become more popular, people are now trying to add other large keyrings to their own keyring.   
Sometimes this involves adding thousands of keys to your keyring.    PGP, in its present form, cannot
perform this operation in a reasonable period of time, while you wait at your keyboard.    Not for huge
keyrings.

You may want to add a huge "imported" keyring to your own keyring, because you are only interested in a
few dozen keys on the bigger keyring you are bringing in.    If that's all you want from the other keyring, it
would be more efficient if you extract the few keys you need from the big foreign keyring, and then add
just these few keys to your own keyring.    Use the -kx command to extract them from the foreign keyring,
specifying the keyring name on the command line.    Then add these extracted keys to your own keyring.

The real solution is to improve PGP to use advanced database techniques to manage large keyrings
efficiently.    We are working on this, and should have it done Real Soon Now.    Until this happens, you
will just have to use smaller keyrings, or be patient.

Next Section : Using PGP as a Unix-style Filter

CHARSET - Specifies Local Character Set for Text Files

Default setting:    CHARSET = NOCONV

Because PGP must process messages in many non-English languages with non-ASCII character sets, you
may have a need to tell PGP what local character set your machine uses.    This determines what character
conversions are performed when converting plaintext files to and from canonical text format.    This is
only a concern if you are in a non-English non-ASCII environment.

The configuration parameter CHARSET selects the local character set.    The choices are NOCONV (no
conversion), LATIN1 (ISO 8859-1 Latin Alphabet 1), KOI8 (used by most Russian Unix systems),
ALT_CODES (used by Russian MSDOS systems), ASCII, and CP850 (used by most western European
languages on standard MSDOS PCs).

LATIN1 is the internal representation used by PGP for canonical text, so if you select LATIN1, no
conversion is done.    Note also that PGP treats KOI8 as LATIN1, even though it is a completely different
character set (Russian), because trying to convert KOI8 to either LATIN1 or CP850 would be futile
anyway.    This means that setting CHARSET to NOCONV, LATIN1, or KOI8 are all equivalent to PGP.

If you use MSDOS and expect to send or receive traffic in western European languages, set CHARSET =
"CP850".    This will make PGP convert incoming canonical text messages from LATIN1 to CP850 after
decryption.    If you use the -t (textmode) option to convert to canonical text, PGP will convert your
CP850 text to LATIN1 before encrypting it.

For further details, see the section "Sending ASCII Text Files Across Different Machine Environments".

Next Section : ARMOR - Enable ASCII Armor Output

Checking If Everything is OK on Your Public Key Ring

Normally, PGP automatically checks any new keys or signatures on your public key ring and updates all
the trust parameters and validity scores.    In theory, it keeps all the key validity status information up to
date as material is added to or deleted from your public key ring.    But perhaps you may want to explicitly
force PGP to perform a comprehensive analysis of your public key ring, checking all the certifying
signatures, checking the trust parameters, updating all the validity scores, and checking your own
ultimately-trusted key against a backup copy on a write-protected floppy disk.    It may be a good idea to
do this hygienic maintenance periodically to make sure nothing is wrong with your public key ring.    To
force PGP to perform a full analysis of your public key ring, use the -kc (key ring check) command:

          pgp -kc

You can also make PGP check all the signatures for just a single selected public key by:

          pgp -kc userid [keyring]

For further information on how the backup copy of your own key is checked, see the description of the
BAKRING parameter in the configuration file section of this manual.

Next Section : Verifying a Public Key Over the Phone

INTERACTIVE - Ask for Confirmation for Key Adds
Default Setting:    INTERACTIVE = off

Enabling this mode will mean that if you add a key file containing multiple keys to your key ring, PGP
will ask for confirmation for each key before adding it to your key ring.

Next Section : NOMANUAL - Let PGP Generate Keys Without the Manual

KEEPBINARY - Keep Binary Ciphertext Files After Decrypting

Default setting:    KEEPBINARY = off

When PGP reads a ".asc" file, it recognizes that the file is in radix-64 format and will convert it back to
binary before processing as it normally does, producing as a by-product a ".pgp" ciphertext file in binary
form.    After further processing to decrypt the ".pgp" file, the final output file will be in normal plaintext
form.

You may want to delete the binary ".pgp" intermediate file, or you may want PGP to delete it for you
automatically.    You can still rerun PGP on the original ".asc" file.

The configuration parameter KEEPBINARY enables or disables keeping the intermediate ".pgp" file
during decryption.

For further details, see the section "Sending Ciphertext Through E-mail Channels: Radix-64 Format" in
the Essential Topics volume.

Next Section : COMPRESS - Enable Compression

LANGUAGE - Foreign Language Selector

Default setting:    LANGUAGE = "en"

PGP displays various prompts, warning messages, and advisories to the user on the screen.    For example,
messages such as "File not found.", or "Please enter your pass phrase:".    These messages are normally in
English.    But it is possible to get PGP to display its messages to the user in other languages, without
having to modify the PGP executable program.

A number of people in various countries have translated all of PGP's display messages, warnings, and
prompts into their native languages.    These hundreds of translated message strings have been placed in a
special text file called "language.txt", distributed with the PGP release.    The messages are stored in this
file in English, Spanish, Dutch, German, French, Italian, Russian, Latvian, and Lithuanian.    Other
languages may be added later.   

The configuration parameter LANGUAGE specifies what language to display these messages in.   
LANGUAGE may be set to "en" for English, "es" for Spanish, "de" for German, "nl" for Dutch, "fr" for
French, "it" for Italian, "ru" for Russian, "lt3" for Lithuanian, "lv" for Latvian, "esp" for Esperanto.    For
example, if this line appeared in the configuration file:

    LANGUAGE = "fr"

PGP would select French as the language for its display messages.    The default setting is English.

When PGP needs to display a message to the user, it looks in the "language.txt" file for the equivalent
message string in the selected foreign language and displays that translated message to the user. If PGP
can't find the language string file, or if the selected language is not in the file, or if that one phrase is not
translated into the selected language in the file, or if that phrase is missing entirely from the file, PGP
displays the message in English.

To conserve disk space, most foreign translations are not included    in the standard PGP release package,
but are available separately.

Next Section : MYNAME - Default User ID for Making Signatures

Leaving No Traces of Plaintext on the Disk

After PGP makes a ciphertext file for you, you can have PGP automatically overwrite the plaintext file
and delete it, leaving no trace of plaintext on the disk so that no one can recover it later using a disk block
scanning utility.    This is useful if the plaintext file contains sensitive information that you don't want to
keep around.

To wipe out the plaintext file after producing the ciphertext file, just add the "w" (wipe) option when
encrypting or signing a message, like so:

        pgp -esw message.txt her_userid

This example creates the ciphertext file "message.pgp", and the    plaintext file "message.txt" is destroyed
beyond recovery.

Obviously, you should be careful with this option.    Also note that this will not wipe out any fragments of
plaintext that your word processor might have created on the disk while you were editing the message
before running PGP.    Most word processors create backup files, scratch files, or both.    Also, it
overwrites the file only once, which is enough to thwart conventional disk recovery efforts, but not
enough to withstand a determined and sophisticated effort to recover the faint magnetic traces of the data
using special disk recovery hardware.

Next Section : Displaying Decrypted Plaintext on Your Screen

Trademarks, Copyrights, and Warranties

"PGP", "Pretty Good Privacy", "Phil's Pretty Good Software", and the "Pretty Good" label for computer
software and hardware products are all trademarks of Philip R. Zimmermann.

PGP is (c) Copyright Philip R. Zimmermann, 1990-1994.    All rights reserved.    The PGP User's Guide is
also copyright Philip Zimmermann, 1990-1994.    All rights reserved.    These rights include but are not
limited to any foreign language translations of the manual or the software, and all derivative works of
both.

MIT may have a copyright on the particular software distribution package that they distribute from the
MIT FTP site.    This copyright on the "compilation" of the distribution package in no way implies that
MIT has a copyright on PGP itself, or its user documentation.

The author assumes no liability for damages resulting from the use of this software, even if the damage
results from defects in this software, and makes no representations concerning the merchantability of this
software or its suitability for any specific purpose.    It is provided "as is" without express or implied
warranty of any kind.    Because certain actions may delete files or render them unrecoverable, the author
assumes no responsibility for the loss or modification of any data.

Next Section : Patent Rights on the Algorithms

Making a Message For Her Eyes Only

To specify that the recipient's decrypted plaintext will be shown ONLY on her screen and will not be
saved to disk, add the -m option:

          pgp -sem message.txt her_userid

Later, when the recipient decrypts the ciphertext with her secret key and pass phrase, the plaintext will be
displayed on her screen but will not be saved to disk.    The text will be displayed as it would if she used
the Unix "more" command, one screenful at a time.    If she wants to read the message again, she will
have to decrypt the ciphertext again.

This feature is the safest way for you to prevent your sensitive message from being inadvertently left on
the recipient's disk.    This feature was added at the request of a user who wanted to send intimate
messages to his lover, but was afraid she might accidentally leave the decrypted messages on her
husband's computer.

Note that this feature will not prevent a clever and determined person from finding a way to save the
decrypted plaintext to disk-- it's to help prevent a casual user from doing it inadvertently.

Next Section : Preserving the Original Plaintext Filename

MARGINALS_NEEDED - Number of Marginally Trusted Introducers
Needed

Default setting:    MARGINALS_NEEDED = 2

The configuration parameter MARGINALS_NEEDED specifies the minimum number of marginally
trusted introducers required to fully certify a public key on your public key ring.    This gives you a way of
tuning PGP's skepticism.

For further details, see the section "How Does PGP Keep Track of    Which Keys are Valid?" in the
Essential Topics volume.

Next Section : CERT_DEPTH - How Deep May Introducers Be Nested

Message Digests and Digital Signatures

To create a digital signature, PGP encrypts with your secret key.    But PGP doesn't actually encrypt your
entire message with your secret key-- that would take too long.    Instead, PGP encrypts a "message
digest".   

The message digest is a compact (128 bit) "distillate" of your message, similar in concept to a checksum. 
You can also think of it as a "fingerprint" of the message.    The message digest "represents" your
message, such that if the message were altered in any way, a different message digest would be computed
from it.    This makes it possible to detect any changes made to the message by a forger.    A message
digest is computed using a cryptographically strong one-way hash function of the message.    It would be
computationally infeasible for an attacker to devise a substitute message that would produce an identical
message digest.    In that respect, a message digest is much better than a checksum, because it is easy to
devise a different message that would produce the same checksum.    But like a checksum, you can't
derive the original message from its message digest.   

A message digest alone is not enough to authenticate a message.    The message digest algorithm is
publicly known, and does not require knowledge of any secret keys to calculate.    If all we did was attach
a message digest to a message, then a forger could alter a message and simply attach a new message
digest calculated from the new altered message.    To provide real authentication, the sender has to encrypt
(sign) the message digest with his secret key.   

A message digest is calculated from the message by the sender.    The sender's secret key is used to
encrypt the message digest and an electronic timestamp, forming a digital signature, or signature
certificate.    The sender sends the digital signature along with the message.    The receiver receives the
message and the digital signature, and recovers the original message digest from the digital signature by
decrypting it with the sender's public key.    The receiver computes a new message digest from the
message, and checks to see if it matches the one recovered from the digital signature.    If it matches, then
that proves the message was not altered, and it came from the sender who owns the public key used to
check the signature.

A potential forger would have to either produce an altered message that produces an identical message
digest (which is infeasible), or he would have to create a new digital signature from a different message
digest (also infeasible, without knowing the true sender's secret key).

Digital signatures prove who sent the message, and that the message was not altered either by error or
design.    It also provides non-repudiation, which means the sender cannot easily disavow his signature on
the message.

Using message digests to form digital signatures has other advantages besides being faster than directly
signing the entire actual message with the secret key.    Using message digests allows signatures to be of a
standard small fixed size, regardless of the size of the actual message.    It also allows the software to
check the message integrity automatically, in a manner similar to using checksums.    And it allows
signatures to be stored separately from messages, perhaps even in a public archive, without revealing
sensitive information about the actual messages, because no one can derive any message content from a
message digest.

The message digest algorithm used here is the MD5 Message Digest Algorithm, placed in the public
domain by RSA Data Security, Inc. MD5's designer, Ronald Rivest, writes this about MD5:

"It is conjectured that the difficulty of coming up with two messages having the same message digest is
on the order of 2^64 operations, and that the difficulty of coming up with any message having a given
message digest is on the order of 2^128 operations.    The MD5 algorithm has been carefully scrutinized
for weaknesses.    It is, however, a relatively new algorithm and further security analysis is of course
justified, as is the case with any new proposal of this sort.    The level of security provided by MD5 should
be sufficient for implementing very high security hybrid digital signature schemes based on MD5 and the
RSA public-key cryptosystem."

Next Section : Compatibility with Previous and Future Versions of PGP

MYNAME - Default User ID for Making Signatures

Default setting:    MYNAME = ""

The configuration parameter MYNAME specifies the default user ID to use to select the secret key for
making signatures.    If MYNAME is not defined, the most recent secret key you installed on your secret
key ring will be used.    The user may also override this setting by specifying a user ID on the PGP
command line with the -u option.

Next Section : TEXTMODE - Assuming Plaintext is a Text File

NOMANUAL - Let PGP Generate Keys Without the Manual

Default Setting:    NOMANUAL = off

It is important that the freeware version of PGP not be distributed without the user documentation, which
normally comes with it in the standard release package.    This manual contains important information for
using PGP, as well as important legal notices.    But some people have distributed previous versions of
PGP without the manual, causing a lot of problems for a lot of people who get it.    To discourage the
distribution of PGP without the required documentation, PGP has been changed to require the PGP User's
Guide to be found somewhere on your computer (like in your PGP directory) before PGP will let you
generate a key pair.    However, some users like to use PGP on tiny palmtop computers with limited
storage capacity, so they like to run PGP without the documentation present on their systems.    To satisfy
these users, PGP can be made to relax its requirement that the manual be present, by enabling the
NOMANUAL flag on the command line during key generation, like so:

        pgp -kg +nomanual

The NOMANUAL flag can only be set on the command line, not in the config file.    Since you must read
this manual to learn how to enable this simple override feature, I hope this will still be effective in
discouraging the distribution of PGP without the manual.

Some people may object to PGP insisting on finding the manual somewhere in the neighborhood to
generate a key.    They bristle against this seemingly authoritarian attitude.    Some people have even
modified PGP to defeat this feature, and redistributed their hotwired version to others.    That creates
problems for me.    Before I added this feature, there were maimed versions of the PGP distribution
package floating around that lacked the manual.    One of them was uploaded to Compuserve, and was
distributed to countless users who called me on the phone to ask me why such a complicated program had
no manual.    It spread out to BBS systems around the country.    And a freeware distributor got hold of the
package from Compuserve and enshrined it on CD-ROM, distributing thousands of copies without the
manual.    What a mess.

Next Section : A Peek Under the Hood - Random Numbers

Other Licensing Restrictions

Under no circumstances may PGP be distributed without the PGP documentation, including this PGP
User's Guide.    And, assuming this is an RSAREF version of PGP, the RSAREF license agreement must
be kept with it.    You must also keep the copyright, patent, and trademark notices on PGP and its
documentation.

The standard freeware PGP release is primarily distributed in electronic form, as a single compressed
archive file, containing a collection of files in a "shrink-wrapped" package.    This package should not be
broken up and the components separately distributed -- in the interests of quality control, we want to
make it difficult for users to obtain PGP without getting the full release package.

Next Section : Distribution

PAGER - Selects Shell Command to Display Plaintext Output

Default setting:    PAGER = ""

PGP lets you view the decrypted plaintext output on your screen (like the Unix-style "more" command),
without writing it to a file, if you use the -m (more) option while decrypting.    This displays the decrypted
plaintext display on your screen one screenful at a time.

If you prefer to use a fancier page display utility, rather than PGP's built-in one, you can specify the name
of a shell command that PGP will invoke to display your plaintext output file.    The configuration
parameter PAGER specifies the shell command to invoke to display the file.    For example, on MSDOS
systems, you might want to use the popular shareware program "list.com" to display your plaintext
message.    Assuming you have a copy of "list.com", you may    set PAGER accordingly:

      PAGER = "list"

However, if the sender specified that this file is for your eyes only, and may not be written to disk, PGP
always uses its own built-in display function.

For further details, see the section Displaying Decrypted Plaintext on Your Screen.

Next Section : SHOWPASS - Echo Pass Phrase to User

Patent Rights on the Algorithms

The RSA public key cryptosystem was developed at MIT, which holds a patent on it (U.S. patent
#4,405,829, issued 20 Sep 1983).    A company in California called Public Key Partners (PKP) holds the
exclusive commercial license to sell and sub-license the RSA public key cryptosystem.    MIT distributes a
freeware version of PGP under the terms of the RSAREF license from RSA Data Security, Inc.
(RSADSI).

At the time of this writing (September 1994), it appears that PKP may be breaking up soon, in which case
the patents they hold may fall into other hands.    The RSA patent may end up with RSADSI.

Non-US users of earlier versions of PGP should note that the RSA patent does not apply outside the US,
and at least at the time of this writing, the author is not aware of any RSA patent in any other country.   
Federal agencies may use the RSA algorithm, because the Government paid for the development of RSA
with grants from the National Science Foundation and the Navy.    But despite the fact of Government
users having free access to the RSA algorithm, Government use of PGP has additional restrictions
imposed by the agreement I have with ViaCrypt, as explained later.

I wrote my PGP software from scratch, with my own independently developed implementation of the
RSA algorithm.    Before publishing PGP in 1991, I got a formal written legal opinion from a patent
attorney with extensive experience in software patents.    I'm convinced that publishing PGP the way I did
does not violate patent law.

Not only did PKP acquire the exclusive patent rights for the RSA cryptosystem, but they also acquired the
exclusive rights to three other patents covering other public key schemes invented by others at Stanford
University, also developed with federal funding.    This one company claims to have a legal lock in the
USA on nearly all practical public key cryptosystems.    They even appear to be claiming patent rights on
the very concept of public key cryptography, regardless of what clever new original algorithms are
independently invented by others.    I find such a comprehensive monopoly troubling, because I think
public key cryptography is destined to become a crucial technology in the protection of our civil liberties
and privacy in our increasingly connected society.    At the very least, it places these vital tools at risk by
affording to the Government a single pressure point of influence.

Beginning with PGP version 2.5 (distributed by MIT, the holders of the original RSA patent), the freeware
version of PGP uses the RSAREF subroutine library to perform its RSA calculations, under the RSAREF
license, which allows noncommercial use in the USA.    RSAREF is a subroutine package from RSA Data
Security Inc, that implements the RSA algorithm.    The RSAREF subroutines are used instead of PGP's
original subroutines to implement the RSA functions in PGP.    See the RSAREF license for terms and
conditions of use of RSAREF applications.

PGP 2.5 was released by MIT for a brief test period in May, 1994 before releasing 2.6.    PGP 2.5 was
released under the 16 March, 1994 RSAREF license, which is a perpetual license, so it may legally be
used forever in the US.    But it would be better for PGP's legal and political future for users in the United
States to upgrade to version 2.6 or later to facilitate the demise of PGP 2.3a and earlier versions.    Also,
PGP 2.5 has bugs that are corrected in 2.6, and 2.5 will not read the new data format after September 1,
1994.    (See the section on Compatibility with Previous and Future Versions of PGP.)

The PGP 2.0 release was a joint effort of an international team of software engineers, implementing
enhancements to the original PGP with design guidance from me.    It was released by Branko Lankester

in The Netherlands and Peter Gutmann in New Zealand, out of reach of US patent law.    Although
released only in Europe and New Zealand, it spontaneously spread to the USA without help from me or
the PGP development team.

The IDEA(tm) conventional block cipher used by PGP is covered by a patent in Europe, held by ETH and
a Swiss company called Ascom-Tech AG.    The US Patent number is 5,214,703, and the European patent
number is EP 0 482 154 B1.    IDEA(tm) is a trademark of Ascom-Tech AG. There is no license fee
required for noncommercial use of IDEA. Commercial users of IDEA may obtain licensing details from
Dieter Profos, Ascom Tech AG, Teleservices Section, Postfach 151, 4502 Solothurn, Switzerland, Tel +41
65 242885, Fax +41 65 235761.     

Ascom-Tech AG has granted permission for the freeware version PGP to use the IDEA cipher in non-
commercial uses, everywhere.    In the US and Canada, all commercial or Government users must obtain a
licensed version from ViaCrypt, who has a license from Ascom-Tech for the IDEA cipher.   

Ascom-Tech has recently been changing its policies regarding the use of IDEA in PGP for commercial
use outside the US, and that policy still seems to be in flux.    They tell me that their current thinking is as
follows:    They will allow commercial users of PGP outside the US or Canada to use IDEA in PGP
without paying royalties to Ascom-Tech, because it is not currently possible for commercial users to buy a
licensed version of PGP outside the US or Canada.    If the legal situation in the USA changes in the
future, so that users outside the US or Canada can buy a licensed version of PGP (either from ViaCrypt, or
from me, or from a foreign enterprise licensed by me), then Ascom-Tech will begin enforcing its patent
licensing policies on commercial users who are in a position to buy a licensed version of PGP.    To get a
more up-to-date report on this, contact Ascom-Tech AG.

The ZIP compression routines in PGP come from freeware source code, with the author's permission.   
I'm not aware of any patents on the compression algorithms used in the ZIP routines.

Next Section : Freeware Status and Restrictions

PGP Returns Exit Status to the Shell

To facilitate running PGP in "batch" mode, such as from an MSDOS ".bat" file or from a Unix shell
script, PGP returns an error exit status to the shell.    An exit status code of zero means normal exit, while
a nonzero exit status indicates some kind of error occurred. Different error exit conditions return different
exit status codes to the shell.

Next Section : Environmental Variable for Pass Phrase

PGP's Conventional Encryption Algorithm
As described earlier, PGP "bootstraps" into a conventional single-key encryption algorithm by using a
public key algorithm to encipher the conventional session key and then switching to fast conventional
cryptography.    So let's talk about this conventional encryption algorithm.    It isn't the DES.

The Federal Data Encryption Standard (DES) used to be a good algorithm for most commercial
applications.    But the Government never did trust the DES to protect its own classified data, because the
DES key length is only 56 bits, short enough for a brute force attack.    Also, the full 16-round DES has
been attacked with some success by Biham and Shamir using differential cryptanalysis, and by Matsui
using linear cryptanalysis.

The most devastating practical attack on the DES was described at the Crypto '93 conference, where
Michael Wiener of Bell Northern Research presented a paper on how to crack the DES with a special
machine.    He has fully designed and tested a chip that guesses 50 million DES keys per second until it
finds the right one.    Although he has refrained from building the real chips so far, he can get these chips
manufactured for $10.50 each, and can build 57000 of them into a special machine for $1 million that can
try every DES key in 7 hours, averaging a solution in 3.5 hours.    $1 million can be hidden in the budget
of many companies.    For $10 million, it takes 21 minutes to crack, and for $100 million, just two
minutes.    With any major government's budget for examining DES traffic, it can be cracked in seconds.   
This means that straight 56-bit DES is now effectively dead for purposes of serious data security
applications.   

A possible successor to DES may be a variation known as "triple DES", which uses two DES keys to
encrypt three times, achieving an effective key space of 112 bits.    But this approach is three times slower
than normal DES.    A future version of PGP may support triple DES as an option.

PGP does not use the DES as its conventional single-key algorithm to encrypt messages.    Instead, PGP
uses a different conventional single-key block encryption algorithm, called IDEA(tm).

For the cryptographically curious, the IDEA cipher has a 64-bit block size for the plaintext and the
ciphertext.    It uses a key size of 128 bits.    It is based on the design concept of "mixing operations from
different algebraic groups".    It runs much faster in software than the DES.    Like the DES, it can be used
in cipher feedback (CFB) and cipher block chaining (CBC) modes.    PGP uses it in 64-bit CFB mode.

The IPES/IDEA block cipher was developed at ETH in Zurich by James L. Massey and Xuejia Lai, and
published in 1990.    This is not a    "home-grown" algorithm.    Its designers have a distinguished
reputation in the cryptologic community.    Early published papers on the algorithm called it IPES
(Improved Proposed Encryption Standard), but they later changed the name to IDEA (International Data
Encryption Algorithm).    So far, IDEA has resisted attack much better than other ciphers such as FEAL,
REDOC-II, LOKI, Snefru and Khafre.    And recent evidence suggests that IDEA is more resistant than
the DES to Biham & Shamir's highly successful differential cryptanalysis attack.    Biham and Shamir
have been examining the IDEA cipher for weaknesses, without success.    Academic cryptanalyst groups
in Belgium, England, and Germany are also attempting to attack it, as well as the military services from
several European countries.    As this new cipher continues to attract attack efforts from the most
formidable quarters of the cryptanalytic world, confidence in IDEA is growing with the passage of time.

Every once in a while, I get a letter from someone who has just learned the awful truth that PGP does not
use pure RSA to encrypt bulk data.    They are concerned that the whole package is weakened if we use a
hybrid public-key and conventional scheme just to speed things up.    After all, a chain is only as strong as

its weakest link.    They demand an explanation for this apparent "compromise" in the strength of PGP.   
This may be because they have been caught up in the public's reverence and awe for the strength and
mystique of RSA, mistakenly believing that RSA is intrinsically stronger than any conventional cipher.   
Well, it's not.   

People who work in factoring research say that the workload to exhaust all the possible 128-bit keys in
the IDEA cipher would roughly equal the factoring workload to crack a 3100-bit RSA key, which is quite
a bit bigger than the 1024-bit RSA key size that most people use for high security applications.    Given
this range of key sizes, and assuming there are no hidden weaknesses in the conventional cipher, the weak
link in this hybrid approach is in the public key algorithm, not the conventional cipher.

It is not ergonomically practical to use pure RSA with large keys to encrypt and decrypt long messages.   
A 1024-bit RSA key would decrypt messages about 4000 times slower than the IDEA cipher.    Absolutely
no one does it that way in the real world.    Many people less experienced in cryptography do not realize
that the attraction of public key cryptography is not because it is intrinsically stronger than a conventional
cipher-- its appeal is because it helps you manage keys more conveniently.

Not only is RSA too slow to use on bulk data, but it even has certain weaknesses that can be exploited in
some special cases of particular kinds of messages that are fed to the RSA cipher, even for large keys.   
These special cases can be avoided by using the hybrid approach of using RSA to encrypt random session
keys for a conventional cipher, like PGP does.    So the bottom line is this:    Using pure RSA on bulk data
is the wrong approach, period.    It's too slow, it's not stronger, and may even be weaker.    If you find a
software application that uses pure RSA on bulk data, it probably means the implementor does not
understand these issues, which could imply he doesn't understand other important concepts of
cryptography.

Next Section : Data Compression

Philip Zimmermann's Legal Situation

At the time of this writing, I am the target of a US Customs criminal investigation in the Northern District
of California.    A criminal investigation is not a civil lawsuit.    Civil lawsuits do not involve prison terms. 
My defense attorney has been told by the Assistant US Attorney that the area of law of interest to the
investigation has to do with the export controls on encryption software.    The federal mandatory
sentencing guidelines for this offense are 41 to 51 months in a federal prison.    US Customs appears to be
taking the position that electronic domestic publication of encryption software is the same as exporting it. 
The prosecutor has issued a number of federal grand jury subpoenas.    It may be months before a decision
is reached on whether to seek indictment.    This situation may change at any time, so this description may
be out of date by the time you read it.    Watch the news for further developments.    If I am indicted and
this goes to trial, it will be a major test case.

I have a legal defense fund set up for this case.    So far, no other organization is doing the fundraising for
me, so I am depending on people like you to contribute directly to this cause.    If you care about the
future of your civil liberties in the information age, then perhaps you will care about this case.    The legal
fees are expensive, the meter is running, and I need your help.    The fund is run by my lead defense
attorney, Phil Dubois, here in Boulder.    Please send your contributions to:

      Philip L. Dubois, Lawyer
      2305 Broadway
      Boulder, Colorado 80304 USA
      Phone (303) 444-3885
      E-mail:    dubois@csn.org

You can also phone in your donation and put it on Mastercard or Visa. If you want to be really cool, you
can use Internet E-mail to send in your contribution, encrypting your message with PGP so that no one
can intercept your credit card number.    Include in your E-mail message your Mastercard or Visa number,
expiration date, name on the card, and amount of donation.    Then sign it with your own key and encrypt
it with Phil Dubois's public key (his key is included in the standard PGP distribution package, in the
"keys.asc" file).    Put a note on the subject line that this is a donation to my legal defense fund, so that Mr.
Dubois will decrypt it promptly.    Please don't send a lot of casual encrypted E-mail to him -- I'd rather he
use his valuable time to work on my case.

If you want to read some press stories to find out why this is an important case, see the following
references:

    1)    William Bulkeley, "Cipher Probe", Wall Street Journal, Thursday
            28 April 1994, front page.
    2)    John Cary, "Spy vs. Computer Nerd:    The Fight Over Data
            Security", Business Week, 4 Oct 1993, page 43.
    3)    Jon Erickson, "Cryptography Fires Up the Feds", Dr. Dobb's
            Journal, December 1993, page 6.
    4)    John Markoff, "Federal Inquiry on Software Examines Privacy
            Programs", New York Times, Tuesday 21 Sep 1993, page C1.
    5)    Kurt Kleiner, "Punks and Privacy", Mother Jones Magazine,
            Jan/Feb 1994, page 17.
    6)    Steven Levy, "Battle of the Clipper Chip", New York Times
            Magazine, Sunday 12 Jun 1994, page 44.

    7)    Steven Levy, "Crypto Rebels", WIRED, May/Jun 1993, page 54.
    8)    John Markoff, "Cyberspace Under Lock and Key", New York Times,
            Sunday 13 Feb 1994.
    9)    Philip Elmer-DeWitt, "Who Should Keep the Keys", Time, 14 Mar
            1994, page 90.

There are a great many other articles on PGP from around the world.    I'm keeping a scrapbook.

Next Section : Other Sources of Information on PGP: Where to Get a Commercial Version of PGP

Physical Security Breach

A physical security breach may allow someone to physically acquire your plaintext files or printed
messages.    A determined opponent might accomplish this through burglary, trash-picking, unreasonable
search and seizure, or bribery, blackmail or infiltration of your staff.    Some of these attacks may be
especially feasible against grassroots political organizations that depend on a largely volunteer staff.    It
has been widely reported in the press that the FBI's COINTELPRO program used burglary, infiltration,
and illegal bugging against antiwar and civil rights groups.    And look what happened at the Watergate
Hotel.   

Don't be lulled into a false sense of security just because you have a cryptographic tool.    Cryptographic
techniques protect data only while it's encrypted-- direct physical security violations can still compromise
plaintext data or written or spoken information.   

This kind of attack is cheaper than cryptanalytic attacks on PGP.

Next Section : Tempest Attacks

Preserving the Original Plaintext Filename

Normally, PGP names the decrypted plaintext output file with a name similar to the input ciphertext
filename, but dropping the    extension.    Or, you can override that convention by specifying an output
plaintext filename on the command line with the -o option. For most E-mail, this is a reasonable way to
name the plaintext file, because you get to decide its name when you decipher it, and your typical E-mail
messages often come from useless original plaintext filenames like "to_phil.txt".   

But when PGP encrypts a plaintext file, it always saves the original filename and attaches it to the
plaintext before it compresses and encrypts the plaintext.    Normally, this hidden original filename is
discarded by PGP when it decrypts, but you can tell PGP you want to preserve the original plaintext
filename and use it as the name of the decrypted plaintext output file.    This is useful if PGP is used on
files whose names are important to preserve.

To recover the original plaintext filename while decrypting, add    the -p option, like so:

          pgp -p ciphertextfile

I usually don't use this option, because if I did, about half of my incoming E-mail would decrypt to the
same plaintext filenames of "to_phil.txt" or "prz.txt".

Next Section : Editing Your User ID or Pass Phrase

Protecting Against Bogus Timestamps

A somewhat obscure vulnerability of PGP involves dishonest users creating bogus timestamps on their
own public key certificates and signatures.    You can skip over this section if you are a casual user and
aren't deeply into obscure public key protocols.

There's nothing to stop a dishonest user from altering the date and time setting of his own system's clock,
and generating his own public key certificates and signatures that appear to have been created at a
different time.    He can make it appear that he signed something earlier or later than he actually did, or
that his public/secret key pair was created earlier or later.    This may have some legal or financial benefit
to him, for example by creating some kind of    loophole that might allow him to repudiate a signature.

I think this problem of falsified timestamps in digital signatures is no worse than it is already in
handwritten signatures.    Anyone may write a date next to their handwritten signature on a contract with
any date they choose, yet no one seems to be alarmed over this state of affairs.    In some cases, an
"incorrect" date on a handwritten signature might not be associated with actual fraud.    The timestamp
might be when the signator asserts that he signed a document, or maybe when he wants the signature to
go into effect.

In situations where it is critical that a signature be trusted to have the actual correct date, people can
simply use notaries to witness and date a handwritten signature.    The analog to this in digital signatures
is to get a trusted third party to sign a signature certificate, applying a trusted timestamp.    No exotic or
overly formal protocols are needed for this.    Witnessed signatures have long been recognized as a
legitimate way of determining when a document was signed.

A trustworthy Certifying Authority or notary could create notarized signatures with a trustworthy
timestamp.    This would not necessarily require a centralized authority.    Perhaps any trusted introducer
or disinterested party could serve this function, the same way real notary publics do now.    When a notary
signs other people's signatures, it creates a signature certificate of a signature certificate.    This would
serve as a witness to the signature the same way real notaries now witness handwritten signatures.    The
notary could enter the detached signature certificate (without the actual whole document that was signed)
into a special log controlled by the notary.    Anyone can read this log.    The notary's signature would have
a trusted timestamp, which might have greater credibility or more legal significance than the timestamp in
the original signature.

There is a good treatment of this topic in Denning's 1983 article in IEEE Computer (see references).   
Future enhancements to PGP might have features to easily manage notarized signatures of signatures,
with trusted timestamps.

Next Section : Cryptanalysis

Public Key Tampering

A major vulnerability exists if public keys are tampered with.    This may be the most crucially important
vulnerability of a public key cryptosystem, in part because most novices don't immediately recognize it.   
The importance of this vulnerability, and appropriate hygienic countermeasures, are detailed in the section
"How to Protect Public Keys from Tampering" in the Essential Topics volume.       

To summarize:    When you use someone's public key, make certain it has not been tampered with.    A
new public key from someone else should be trusted only if you got it directly from its owner, or if it has
been signed by someone you trust.    Make sure no one else can tamper with your own public key ring.   
Maintain physical control of both your public key ring and your secret key ring, preferably on your own
personal computer rather than on a remote timesharing system.    Keep a backup copy of both key rings.

Next Section : "Not Quite Deleted" Files

PUBRING - Filename for Your Public Keyring

Default setting:    PUBRING = "$PGPPATH/pubring.pgp"

You may want to keep your public keyring in a directory separate from your PGP configuration file in the
directory specified by your $PGPPATH environmental variable.    You may specify the full path and
filename for your public keyring by setting the PUBRING parameter.    For example, on an MSDOS
system, you might want to keep your public keyring on a floppy disk by:

      PUBRING = "a:pubring.pgp"

This feature is especially handy for specifying an alternative keyring on the command line.

Next Section : SECRING - Filename for Your Secret Keyring

Quick Overview

Pretty Good(tm) Privacy (PGP), from Phil's Pretty Good Software, is a high security cryptographic
software application for MSDOS, Unix, VAX/VMS, and other computers.    PGP combines the
convenience of the Rivest-Shamir-Adleman (RSA) public key cryptosystem with the speed of
conventional cryptography, message digests for digital signatures, data compression before encryption,
good ergonomic design, and sophisticated key management.

This volume II of the PGP User's Guide covers advanced topics about PGP that were not covered in the
"PGP User's Guide, Volume I: Essential Topics".    You should first read the Essential Topics volume, or
this manual won't make much sense to you.    Reading this Special Topics volume is optional, except for
the legal issues section, which everyone should read.

Next Section : Special Topics -    Selecting Keys via Key ID

Random Numbers

PGP uses a cryptographically strong pseudorandom number generator for creating temporary
conventional session keys.    The seed file for this is called    "randseed.bin".    It too can be kept in
whatever directory is indicated by the PGPPATH environmental variable.    If this random seed file does
not exist, it is automatically created and seeded with truly random numbers derived from timing your
keystroke latencies.   

This generator reseeds the disk file each time it is used by mixing in new key material partially derived
with the time of day and other truly random sources.    It uses the conventional encryption algorithm as an
engine for the random number generator.    The seed file contains both random seed material and random
key material to key the conventional encryption engine for the random generator.

This random seed file should be at least slightly protected from disclosure, to reduce the risk of an
attacker deriving your next or previous session keys.    The attacker would have a very hard time getting
anything useful from capturing this random seed file, because the file is cryptographically laundered
before and after each use.    Nonetheless, it seems prudent to at least try to keep it from falling into the
wrong hands.

If you feel uneasy about trusting any algorithmically derived random number source however strong,
keep in mind that you already trust the strength of the same conventional cipher to protect your messages. 
If it's strong enough for that, then it should be strong enough to use as a source of random numbers for
temporary session keys.    Note that PGP still uses truly random numbers from physical sources (mainly
keyboard timings) to generate long-term public/secret key pairs.

Next Section : PGP's Conventional Encryption Algorithm

RANDSEED - Filename for Random Number Seed

Default setting:    RANDSEED = "$PGPPATH/randseed.bin"

You may want to keep your random number seed file (for generation of session keys) in a directory
separate from your PGP configuration file in the directory specified by your $PGPPATH environmental
variable.    This comes in handy for putting your random number seed file in a directory or device that is
more protected than your public keyring.    You may specify the full path and filename for your random
seed file by setting the RANDSEED parameter.    For example, on an MSDOS system, you might want to
keep it on a floppy disk by:

      RANDSEED = "a:randseed.bin"

Next Section : PAGER - Selects Shell Command to Display Plaintext Output

Recommended Readings

Introductory Readings

1)    Bruce Schneier, "Applied Cryptography: Protocols, Algorithms, and
        Source Code in C", John Wiley & Sons, 1993
        (This book is a watershed work on the subject.)
2)    Dorothy Denning, "Cryptography and Data Security", Addison-Wesley,
        Reading, MA 1982
3)    Dorothy Denning, "Protecting Public Keys and Signature Keys",
        IEEE Computer, Feb 1983
4)    Martin E. Hellman, "The Mathematics of Public-Key Cryptography,"
        Scientific American, Aug 1979
5)    Steven Levy, "Crypto Rebels", WIRED, May/Jun 1993, page 54.
        (A "must-read" article on PGP and other related topics.)
6)    Steven Levy, "Battle of the Clipper Chip", New York Times
        Magazine, Sunday 12 Jun 1994, page 44. (Great article, great
        photos.)
7)    William Bulkeley, "Cipher Probe", Wall Street Journal, 28 April
        1994, front page.    (An article on PGP and Zimmermann.)

Other Readings

8)    Ronald Rivest, "The MD5 Message Digest Algorithm", MIT Laboratory
        for Computer Science, 1991
9)    Xuejia Lai, "On the Design and Security of Block Ciphers",
        ETH Series on Information Processing (Ed. J. L. Massey),
        Vol. 1, Hartung-Gorre Verlag, Konstanz, Switzerland, 1992
10) Philip Zimmermann, "A Proposed Standard Format for RSA
        Cryptosystems", Advances in Computer Security, Vol III, edited by
        Rein Turn, Artech House, 1988
11) Paul Wallich, "Electronic Envelopes", Scientific American, Feb
        1993, page 30.    (An article on PGP)
12) William Stallings, "Pretty Good Privacy", BYTE, July 1994, page
        193
13) Philip Zimmermann, "The Official PGP User's Guide", MIT Press,
        1994 (in press)
14) Philip Zimmermann, "PGP Source Code and Internals", MIT Press,
        1994 (in press)

Next Section : To Contact the Author

Reporting PGP Bugs

Bugs in PGP should be reported via E-mail to MIT, the official distribution site of PGP.    The E-mail
address for bug reports is pgp-bugs@mit.edu.    MIT will forward a copy of your bug report to me.   
When you report bugs, be sure to specify what machine and operating system you are using and what
version of PGP you have, and provide enough detail to reproduce the problem.    It would also be a good
idea to find out if you have the latest version of PGP, in case the bug has already been fixed.    Also, it's a
good idea to make sure it really is a bug before you report it.    RTFM.

Next Section : Fan Mail, Updates, and News

Restrictions on Commercial Use of PGP

The freeware version of PGP is for personal, non-commercial use.    For commercial use in the USA or
Canada, contact ViaCrypt in Phoenix, Arizona (phone 602 944-0773, or email viacrypt@acm.org).

I made an agreement with ViaCrypt in the summer of 1993 to license the exclusive commercial rights to
PGP, so that there would be a way for corporations to use PGP without risk of a patent infringement
lawsuit from PKP.    For PGP to succeed in the long term as a viable industry standard, the legal stigma
associated with the RSA patent rights had to be resolved.    ViaCrypt had already obtained a patent license
from PKP to make, use, and sell products that practice the RSA patents. ViaCrypt offered a way out of the
patent quagmire for PGP to penetrate the corporate environment.    They could sell a fully-licensed
version of PGP, but only if I licensed it to them under these terms.    So we entered into an agreement to
do that, opening the door for PGP's future in the commercial sector, which was necessary for PGP's long-
term political future.

Therefore, regardless of the complexities and partially overlapping restrictions from all the other terms
and conditions imposed by the various patent and copyright licenses (RSA, RSAREF, and IDEA) from
various third parties, an additional overriding restriction on PGP usage is imposed by my own agreement
with ViaCrypt: The freeware version of PGP is only for personal, non-commercial use -- all other users in
the USA and Canada must obtain a fully licensed version of PGP from ViaCrypt.    The restrictions
imposed by my agreement with ViaCrypt do not apply outside the USA or Canada.

Finally, if you want to turn PGP into a commercial product and make money selling it, then we must
agree on a way for me to also make money on it.    If you use PGP in such a manner that you must pay
patent royalties or any other software licensing fees to the patent holders for any cryptographic algorithms
used by PGP, then we must agree on a way for me to also be paid in some manner.    Buying PGP from
ViaCrypt is one way to meet this requirement.

Next Section : Other Licensing Restrictions

SECRING - Filename for Your Secret Keyring

Default setting:    SECRING = "$PGPPATH/secring.pgp"

You may want to keep your secret keyring in a directory separate from your PGP configuration file in the
directory specified by your $PGPPATH environmental variable.    This comes in handy for putting your
secret keyring in a directory or device that is more protected than your public keyring.    You may specify
the full path and filename for your secret keyring by setting the SECRING parameter.    For example, on
an MSDOS system, you might want to keep your secret keyring on a floppy disk by:

      SECRING = "a:secring.pgp"

Next Section : RANDSEED - Filename for Random Number Seed

Selecting Keys via Key ID

In all commands that let the user type a user ID or fragment of a user ID to select a key, the hexadecimal
key ID may be used instead.    Just use the key ID, with a prefix of "0x", in place of the user ID.    For
example:

        pgp -kv 0x67F7

This would display all keys that had 67F7 as part of their key IDs.

This feature is particularly useful if you have two different keys from the same person, with the same user
ID.    You can unambiguously pick which key you want by specifying the key ID.

Next Section : Separating Signatures from Messages

Sending ASCII Text Files Across Different Machine Environments

You may use PGP to encrypt any kind of plaintext file, binary 8-bit data or ASCII text.    Probably the
most common usage of PGP will be for E-mail, when the plaintext is ASCII text.   

ASCII text is sometimes represented differently on different machines.    For example, on an MSDOS
system, all lines of ASCII text are terminated with a carriage return followed by a linefeed.    On a Unix
system, all lines end with just a linefeed.    On a Macintosh, all lines end with just a carriage return.    This
is a sad fact of life.

Normal unencrypted ASCII text messages are often automatically translated to some common "canonical"
form when they are transmitted from one machine to another.    Canonical text has a carriage return and a
linefeed at the end of each line of text.    For example, the popular KERMIT communication protocol can
convert text to canonical form when transmitting it to another system.    This gets converted back to local
text line terminators by the receiving KERMIT.    This makes it easy to share text files across different
systems.

But encrypted text cannot be automatically converted by a communication protocol, because the plaintext
is hidden by encipherment.    To remedy this inconvenience, PGP lets you specify that the plaintext should
be treated as ASCII text (not binary data) and should be converted to canonical text form before it gets
encrypted.    At the receiving end, the decrypted plaintext is automatically converted back to whatever text
form is appropriate for the local environment.

To make PGP assume the plaintext is text that should be converted to canonical text before encryption,
just add the "t" option when encrypting or signing a message, like so:

      pgp -et message.txt her_userid

This mode is automatically turned off if PGP detects that the plaintext file contains what it thinks is non-
text binary data.

If you need to use the -t option a lot, you can just turn on the TEXTMODE flag in the PGP configuration
file.    That's what I do.

For PGP users that use non-English 8-bit character sets, when PGP    converts text to canonical form, it
may convert data from the local character set into the LATIN1 (ISO 8859-1 Latin Alphabet 1) character
set, depending on the setting of the CHARSET parameter in the PGP configuration file.    LATIN1 is a
superset of ASCII, with extra characters added for many European languages.

Next Section : Using PGP as a Better Uuencode

Separating Signatures from Messages

Normally, signature certificates are physically attached to the text they sign.    This makes it convenient in
simple cases to check signatures.    It is desirable in some circumstances to have signature certificates
stored separately from the messages they sign.    It is possible to generate signature certificates that are
detached from the text they sign.    To do this, combine the 'b' (break) option with the 's' (sign) option.   
For example:

        pgp -sb letter.txt

This example produces an isolated signature certificate in a file called "letter.sig".    The contents of
letter.txt are not appended to the signature certificate.

After creating the signature certificate file (letter.sig in the above example), send it along with the original
text file to the recipient.    The recipient must have both files to check the signature integrity.    When the
recipient attempts to process the signature file, PGP notices that there is no text in the same file with the
signature and prompts the user for the filename of the text. Only then can PGP properly check the
signature integrity.    If the recipient knows in advance that the signature is detached from the text file, she
can specify both filenames on the command line:

        pgp letter.sig letter.txt
or: pgp letter letter.txt

PGP will not have to prompt for the text file name in this case.

A detached signature certificate is useful if you want to keep the signature certificate in a separate
certificate log.    A detached signature of an executable program is also useful for detecting a subsequent
virus infection.    It is also useful if more than one party must sign a document such as a legal contract,
without nesting signatures.    Each person's signature is independent.

If you receive a ciphertext file that has the signature certificate glued to the message, you can still pry the
signature certificate away from the message during the decryption.    You can do this with the -b option
during decrypt, like so:

        pgp -b letter

This decrypts the letter.pgp file and if there is a signature in it, PGP checks the signature and detaches it
from the rest of the message, storing it in the file letter.sig.

Next Section : Decrypting the Message and Leaving the Signature on it

Setting Parameters in the PGP Configuration File

PGP has a number of user-settable parameters that can be defined in a special PGP configuration text file
called "config.txt", in the directory pointed to by the shell environmental variable PGPPATH.    Having a
configuration file enables the user to define various flags and parameters for PGP without the burden of
having to always define these parameters in the PGP command line.

The filename "config.txt" has been in use for a long time by PGP, but some folks have pointed out that it
may be at odds with naming conventions for configuration files for specific operating systems.   
Accordingly, PGP now tries to open this filename only after first trying to open the file ".pgprc" on Unix
platforms, and "pgp.ini" on other platforms, in the same directory that PGP would look for "config.txt".

Configuration parameters may be assigned integer values, character string values, or on/off values,
depending on what kind of configuration parameter it is.    A sample configuration file is provided with
PGP, so you can see some examples.

In the configuration file, blank lines are ignored, as is anything following the '#' comment character.   
Keywords are not case-sensitive.   

Here is a short sample fragment of a typical configuration file:

      # TMP is the directory for PGP scratch files, such as a RAM disk.
      TMP = "e:\"        # Can be overridden by environment variable TMP.
      Armor = on          # Use -a flag for ASCII armor whenever applicable.
      # CERT_DEPTH is how deeply introducers may introduce introducers.
      cert_depth = 3

If some configuration parameters are not defined in the configuration file, or if there is no configuration
file, or if PGP can't find the configuration file, the values for the configuration parameters default to some
reasonable value.

Note that it is also possible to set these same configuration parameters directly from the PGP command
line, by preceding the parameter setting with a "+" character.    For example, the following two PGP
commands produce the same effect:

        pgp -e +armor=on message.txt smith
or: pgp -ea message.txt smith

The following is a summary of the various parameters than may be
defined in the configuration file.

Next Section : TMP - Directory Pathname for Temporary Files

SHOWPASS - Echo Pass Phrase to User

Default setting:    SHOWPASS = off

Normally, PGP does not let you see your pass phrase as you type it in.    This makes it harder for someone
to look over your shoulder while you type and learn your pass phrase.    But some typing-impaired people
have problems typing their pass phrase without seeing what they are typing, and they may be typing in the
privacy of their own homes.    So they asked if PGP can be configured to let them see what they type
when they type in their pass phrase.

The configuration parameter SHOWPASS enables PGP to echo your typing    during pass phrase entry.

Next Section : TZFIX - Timezone Adjustment

Suppressing Unnecessary Questions:    BATCHMODE

With the BATCHMODE flag enabled on the command line, PGP will not ask any unnecessary questions
or prompt for alternate filenames.    Here is an example of how to set this flag:

        pgp +batchmode cipherfile

This is useful for running PGP non-interactively from Unix shell scripts or MSDOS batch files.    Some
key management commands still need user interaction even when BATCHMODE is on, so shell scripts
may need to avoid them.   

BATCHMODE may also be enabled to check the validity of a signature on a file.    If there was no
signature on the file, the exit code is 1.    If it had a signature that was good, the exit code is 0.

Next Section : Force "Yes" Answer to Confirmation Questions:    FORCE

Tempest Attacks

Another kind of attack that has been used by well-equipped opponents involves the remote detection of
the electromagnetic signals from your computer.    This expensive and somewhat labor-intensive attack is
probably still cheaper than direct cryptanalytic attacks.    An appropriately instrumented van can park near
your office and remotely pick up all of your keystrokes and messages displayed on your computer video
screen.    This would compromise all of your passwords, messages, etc.    This attack can be thwarted by
properly shielding all of your computer equipment and network cabling so that it does not emit these
signals.    This shielding technology is known as "Tempest", and is used by some Government agencies
and defense contractors.      There are hardware vendors who supply Tempest shielding commercially,
although it may be subject to some kind of Government licensing.    Now why do you suppose the
Government would restrict access to Tempest shielding?

Next Section : Exposure on Multi-user Systems

TEXTMODE - Assuming Plaintext is a Text File

Default setting:    TEXTMODE = off

The configuration parameter TEXTMODE is equivalent to the -t command line option.    If enabled, it
causes PGP to assume the plaintext is a text file, not a binary file, and converts it to "canonical text"
before encrypting it.    Canonical text has a carriage return and a linefeed at the end of each line of text.

This mode will be automatically turned off if PGP detects that the plaintext file contains what it thinks is
non-text binary data.    If you intend to use PGP primarily for E-mail purposes, you should turn
TEXTMODE=ON.

For VAX/VMS systems, the current version of PGP defaults TEXTMODE=ON.

For further details, see the section "Sending ASCII Text Files Across Different Machine Environments".

Next Section : CHARSET - Specifies Local Character Set for Text Files

TMP - Directory Pathname for Temporary Files

Default setting:    TMP = ""

The configuration parameter TMP specifies what directory to use for PGP's temporary scratch files.    The
best place to put them is on a RAM disk, if you have one.    That speeds things up quite a bit, and
increases security somewhat.    If TMP is undefined, the temporary files go in the current directory.    If the
shell environmental variable TMP is defined, PGP instead uses that to specify where the temporary files
should go.

Next Section : LANGUAGE - Foreign Language Selector

To Contact the Author

Philip Zimmermann may be reached at:

Boulder Software Engineering
3021 Eleventh Street
Boulder, Colorado 80304    USA
Internet:    prz@acm.org
Phone (303) 541-0140 (voice)    (10:00am - 7:00pm Mountain Time)
Fax available, if you arrange it via voice line.

Next Section : Appendix A:    Where to Get PGP

Traffic Analysis

Even if the attacker cannot read the contents of your encrypted messages, he may be able to infer at least
some useful information by observing where the messages come from and where they are going, the size
of the messages, and the time of day the messages are sent.    This is analogous to the attacker looking at
your long distance phone bill to see who you called and when and for how long, even though the actual
content of your calls is unknown to the attacker.    This is called traffic analysis.    PGP alone does not
protect against traffic analysis.    Solving this problem would require specialized    communication
protocols designed to reduce exposure to traffic analysis in your communication environment, possibly
with some cryptographic assistance.

Next Section : Protecting Against Bogus Timestamps

TZFIX - Timezone Adjustment

Default setting:    TZFIX = 0

PGP provides timestamps for keys and signature certificates in Greenwich Mean Time (GMT), or
Coordinated Universal Time (UTC), which means the same thing for our purposes.    When PGP asks the
system for the time of day, the system is supposed to provide it in GMT.   

But sometimes, because of improperly configured MSDOS systems, the system time is returned in US
Pacific Standard Time time plus 8 hours.    Sounds weird, doesn't it?    Perhaps because of some sort of US
west-coast jingoism, MSDOS presumes local time is US Pacific time, and pre-corrects Pacific time to
GMT.    This adversely affects the behavior of the internal MSDOS GMT time function that PGP calls.   
However, if your MSDOS environmental variable TZ is already properly defined for your timezone, this
corrects the misconception MSDOS has that the whole world lives on the US west coast.   

The configuration parameter TZFIX specifies the number of hours to add to the system time function to
get GMT, for GMT timestamps on keys and signatures.    If the MSDOS environmental variable TZ is
defined properly, you can leave TZFIX=0.    Unix systems usually shouldn't need to worry about setting
TZFIX at all.    But if you are using some other obscure operating system that doesn't know about GMT,
you may have to use TZFIX to adjust the system time to GMT.

On MSDOS systems that do not have TZ defined in the environment, you should make TZFIX=0 for
California, -1 for Colorado, -2 for Chicago, -3 for New York, -8 for London, -9 for Amsterdam.    In the
summer, TZFIX should be manually decremented from these values.    What a mess.

It would be much cleaner to set your MSDOS environmental variable TZ in your AUTOEXEC.BAT file,
and not use the TZFIX correction.    Then MSDOS gives you good GMT timestamps, and will handle
daylight savings time adjustments for you.    Here are some sample lines to insert into AUTOEXEC.BAT,
depending on your time zone:

For Los Angeles:    SET TZ=PST8PDT
For Denver:              SET TZ=MST7MDT
For Arizona:            SET TZ=MST7
      (Arizona never uses daylight savings time)
For Chicago:            SET TZ=CST6CDT
For New York:          SET TZ=EST5EDT
For London:              SET TZ=GMT0BST
For Amsterdam:        SET TZ=MET-1DST
For Moscow:              SET TZ=MSK-3MSD
For Aukland:            SET TZ=NZT-13

Next Section : CLEARSIG - Enable Signed Messages to be Encapsulated as Clear Text

Using PGP as a Better Uuencode

A lot of people in the Unix world send binary data files through E-mail channels by using the Unix
"uuencode" utility to convert the file into printable ASCII characters that can be sent via email.    No
encryption is involved, so neither the sender nor the recipient need any special keys.    The uuencode
format was designed for a similar purpose as PGP's radix-64 ASCII transport armor format described in
the "Sending Ciphertext Through E-mail Channels: Radix-64 Format" section, but not as good.    A
different radix-64 character set is used.    Uuencode has its problems, such as 1) several slightly
incompatible character sets for different versions of uuencode in the MSDOS and Unix worlds, and 2) the
data can be corrupted by some E-mail gateways that strip trailing blanks or do other modifications to the
character set used by uuencode.

PGP may be used in a manner that offers the same general features as uuencode, and then some.    You can
get PGP to just convert a file into PGP's radix-64 ASCII transport armor format, but you don't have to
encrypt the file or sign it, so no keys are needed by either party. Simply use the -a option alone.    For
example:

        pgp -a filename

This would produce a radix-64 armored file called "filename.asc".

If you read the "Sending Ciphertext Through E-mail Channels: Radix-64 Format" section, you will see
that PGP's approach offers several important advantages over the uuencode approach:

 * PGP will break big files up into chunks small enough to E-mail.
 * PGP will append a CRC error detection code to each chunk.
 * PGP will attempt to compress the data before converting it to radix-64 armor.
 * PGP's radix-64 character set is more resilient to E-mail character conversions than the one used by
uuencode.
 * Textfiles can be converted by the sender to canonical text          format, as explained in the Sending
ASCII Text Files Across Different Machine Environments section.

The recipient can restore the sender's original filename by unwrapping the message with PGP's -p option. 
You can use "pgp -a" in any situation in which you could have used uuencode, if the recipient also has
PGP.    PGP is a better uuencode than uuencode.

Next Section : Leaving No Traces of Plaintext on the Disk

Using PGP as a Unix-style Filter

Unix fans are accustomed to using Unix "pipes" to make two applications work together.    The output of
one application can be directly fed through a pipe to be read as input to another application.    For this to
work, the applications must be capable of reading the raw material from "standard input" and writing the
finished output to "standard output".    PGP can operate in this mode. If you don't understand what this
means, then you probably don't need this feature.

To use a Unix-style filter mode, reading from standard input and writing to standard output, add the -f
option, like so:

          pgp -feast her_userid <inputfile >outputfile

This feature makes it easier to make PGP work with electronic mail applications.

When using PGP in filter mode to decrypt a ciphertext file, you may find it useful to use the PGPPASS
environmental variable to hold the pass phrase, so that you won't be prompted for it.    The PGPPASS
feature is explained below.

Next Section : Suppressing Unnecessary Questions:    BATCHMODE

VERBOSE - Quiet, Normal, or Verbose Messages

Default setting:    VERBOSE = 1

VERBOSE may be set to 0, 1, or 2, depending on how much detail you want to see from PGP diagnostic
messages.    The settings are:

0 - Display messages only if there is a problem.    Unix fans wanted this "quiet mode" setting.

1 - Normal default setting.    Displays a reasonable amount of detail in diagnostic or advisory messages.

2 - Displays maximum information, usually to help diagnose problems in PGP.    Not recommended for
normal use.    Besides, PGP doesn't have any problems, right?

Next Section : INTERACTIVE - Ask for Confirmation for Key Adds

Verifying a Public Key Over the Phone

If you get a public key from someone that is not certified by anyone you trust, how can you tell if it's
really their key?    The best way to verify an uncertified key is to verify it over some independent channel
other than the one you received the key through.    One convenient way to tell, if you know this person
and would recognize them on the phone, is to call them and verify their key over the telephone.    Rather
than reading their whole tiresome (ASCII-armored) key to them over the phone, you can just read their
key's "fingerprint" to them.    To see this fingerprint, use the -kvc command:

          pgp -kvc userid [keyring]

This will display the key with the 16-byte digest of the public key components.    Read this 16-byte
fingerprint to the key's owner on the phone, while she checks it against her own, using the same -kvc
command at her end.   

You can both verify each other's keys this way, and then you can sign each other's keys with confidence.   
This is a safe and convenient way to get the key trust network started for your circle of friends.

Note that sending a key fingerprint via E-mail is not the best way to verify the key, because E-mail can be
intercepted and modified.    It's best to use a different channel than the one that was used to send the key
itself.    A good combination is to send the key via E-mail, and the key fingerprint via a voice telephone
conversation.    Some people distribute their key fingerprint on their business cards, which looks really
cool.

For current versions of PGP, the key fingerprint is computed using    the MD5 hash function.    A future
version of PGP will optionally use a new and different hash function, SHA, instead of MD5.

If you don't know me, please don't call me to verify my key over the phone-- I get too many calls like
that.    Since every PGP user has a copy of my public key, no one could tamper with all the copies that are
out there.    The discrepancy would soon be noticed by someone who checked it from more than one
source, and word would soon get out on the Internet.

For those of you who want to verify my public key (included in the standard PGP release package), here
are the particulars:

    UserID: "Philip R. Zimmermann <prz@acm.org>"
    Key Size: 1024 bits;    Creation date: 21 May 1993;    KeyID: C7A966DD
    Key fingerprint:    9E 94 45 13 39 83 5F 70    7B E7 D8 ED C4 BE 5A A6

The information printed above conceivably could still be tampered with in the electronic distribution of
the PGP User's Guide.    But if you read this in the printed version of the manual, available in bookstores
from MIT Press, it's a safe bet that it really is my own key's fingerprint.

Next Section : Handling Large Public Keyrings

Viruses and Trojan Horses

Another attack could involve a specially-tailored hostile computer virus or worm that might infect PGP or
your operating system.    This hypothetical virus could be designed to capture your pass phrase or secret
key or deciphered messages, and covertly write the captured information to a file or send it through a
network to the virus's owner.    Or it might alter PGP's behavior so that signatures are not properly
checked.    This attack is cheaper than cryptanalytic attacks.

Defending against this falls under the category of defending against viral infection generally.    There are
some moderately capable anti-viral products commercially available, and there are hygienic procedures to
follow that can greatly reduce the chances of viral infection.    A complete treatment of anti-viral and anti-
worm countermeasures is beyond the scope of this document.    PGP has no defenses against viruses, and
assumes your own personal computer is a trustworthy execution environment.    If such a virus or worm
actually appeared, hopefully word would soon get around warning everyone.   

Another similar attack involves someone creating a clever imitation of PGP that behaves like PGP in most
respects, but doesn't work the way it's supposed to.    For example, it might be deliberately crippled to not
check signatures properly, allowing bogus key certificates to be accepted.    This "Trojan horse" version of
PGP is not hard for an attacker to create, because PGP source code is widely available, so anyone could
modify the source code and produce a lobotomized zombie imitation PGP that looks real but does the
bidding of its diabolical master.    This Trojan horse version of PGP could then be widely circulated,
claiming to be from me.    How insidious.

You should make an effort to get your copy of PGP from a reliable source, whatever that means.    Or
perhaps from more than one independent source, and compare them with a file comparison utility.

There are other ways to check PGP for tampering, using digital signatures.    If someone you trust signs
the executable version of PGP, vouching for the fact that it has not been infected or tampered with, you
can be reasonably sure that you have a good copy.    You could use an earlier trusted version of PGP to
check the signature on a later suspect version of PGP.    But this will not help at all if your operating
system is infected, nor will it detect if your original copy of PGP.EXE has been maliciously altered in
such a way as to compromise its own ability to check signatures.    This test also assumes that you have a
good trusted copy of the public key that you use to check the signature on the PGP executable.

I recommend you not trust your copy of PGP unless it was originally distributed by MIT or ViaCrypt, or
unless it comes with a digitally signed endorsement from me.    Every new version comes with one or
more digital signatures in the distribution package, signed by the originator of that release package.    This
is usually someone representing MIT or ViaCrypt, or whoever released that version.    Check the
signatures on the version that you get.    I have actually seen several bogus versions of PGP distribution
packages, even from apparantly reliable freeware distribution channels such as CD-ROM distributors and
Compuserve.    Always check the signature when you get a new version.

Next Section : Physical Security Breach

Vulnerabilities

No data security system is impenetrable.    PGP can be circumvented in a variety of ways.    In any data
security system, you have to ask yourself if the information you are trying to protect is more valuable to
your attacker than the cost of the attack.    This should lead you to protecting yourself from the cheapest
attacks, while not worrying about the more expensive attacks.   

Some of the discussion that follows may seem unduly paranoid, but such an attitude is appropriate for a
reasonable discussion of vulnerability issues.

Next Section : Compromised Pass Phrase and Secret Key

Where to Get a Commercial Version of PGP

To get a fully licensed version of PGP for use in the USA or Canada,contact:

      ViaCrypt
      9033 North 24th Avenue, Suite 7
      Phoenix, Arizona 85021    USA
      Phone: (602) 944-0773, or (800) 536-2664
      Fax: (602) 943-2601
      E-mail: viacrypt@acm.org

ViaCrypt has a version of PGP for MSDOS, and a number of Unix platforms.    They also have a
Windows shell version, and other    versions are under development, including Macintosh.    If you have a
need to use PGP in a commercial or Government setting, and ViaCrypt has a version of PGP for your
hardware platform, you should get ViaCrypt PGP.

ViaCrypt has obtained all the necessary licenses from PKP, Ascom-Tech AG, and Philip Zimmermann to
sell PGP for use in commercial or government environments.    ViaCrypt PGP is every bit as secure as the
freeware PGP, and is entirely compatible in both directions with the freeware version of PGP.    ViaCrypt
PGP is the perfect way to get a fully licensed version of PGP into your corporate environment.

If you work in a large company and you are a fan of PGP, I urge you to try to persuade your company to
buy lots of copies of PGP from ViaCrypt.    Not just because that will earn royalties for me.    If ViaCrypt
can make PGP a commercial success, it will go a long way toward cementing PGP's political future as an
unstoppable standard for E-mail encryption in the corporate world.    The corporate world is where the
money is, and that affects public policy like nothing else.    And that includes Government policy to
suppress strong cryptography.

Next Section : Reporting PGP Bugs

