
About SandTiger

SandTiger is a security application that encrypts multiple files into a single archive. It uses
powerful encryption algorithms like CAST-128, Blowfish and Diamond2, along with renouned
hashes like SHA-1, MD5 and RIPEM-160. With SandTiger, you have the ability to archive an
unlimited number of files, while maintaining their relative directories. You also have the
option of enhancing your files by compressing them before encrypting to reduce redundant
code. SandTiger supports multiple passwords in a single archive and has the ability to
scramble filenames, hiding them from hex viewers.

License/Copyrights/Warranty
Ordering SandTiger
Features
Shareware Version
What's New
System Requirements

Version 2.0 comes equipped with 3 encryption algorithms

· Blowfish, a symmetric block cipher that can be used as a drop-in replacement for DES
or IDEA. It takes a variable-length key, from 32 bits to 448 bits, making it ideal for both
domestic and exportable use.

· CAST-128 algorithm supports variable key lengths, anywhere from 40 bits to 128 bits
in length. This ensures that an appropriate security level is given to data for the intended
purpose and enables seamless interoperation with exportable versions of products, where
necessary. CAST uses a 64-bit block size which is the same as the Data Encryption Standard
(DES), making it a suitable drop-in replacement. CAST has been shown to be two to three
times faster than a typical implementation of DES and six to nine times faster than a typical
implementation of triple-DES.

The Diamond2 Block Cipher is a royalty-free, symmetric-key encryption algorithm based on a
combination of nonlinear functions. Diamond uses a block size of 128 bits and a variable
length key.

Credits
- Diamond2 implementation - by Micheal Paul Johnson. (DLOCK2)
- Blowfish implementation - by Eric Young. (SSLeay)
- Random Number Generator - by Matsumoto and Nishimura. (GENRAND)
- Implementation of CAST-128 is copyright 1996 Peter Gutmann, minor modifications for use
with      FastCAST by Leonard Janke
- Another CAST-128 library by Andrew E. Mileski <aem@netcom.ca> was used during the
beta process

Features

- Blowfish encryption - up to 448bits key length, 64bit blocksize - SSLeay 0.8.0 library
- Featuring the strong CAST-128 encryption - up to 128bits key length, 64bit blocksize -
fastcast library
- Powerful Diamond2 encryption - variable key length, 128bit blocksize - Dlock2
- Your choice of MD5, SHA-1 and RIPEM hashes
- Zlib Compression that compresses better than pkzip.
- Encrypt files and Entire directories
- Support for multiple passwords in a single archive
- Scramble filenames to hide them from hex viewers
- Designed for Microsoft Windows95 and WinNT 4.0
- Install/Uninstall Support
- OLE drag and drop

License/Copyright/Warranty

License/Copyright/Warranty

SandTiger(R) version 2.0
Copyright (C) 1997
Selom Ofori. All rights reserved.

Contact Information

e-mail: bishop@ottawa.com
web site: homepage: http://members.tripod.com/~subrosa
snail mail: Selom Ofori
                        144A Woodridge Crescent
                        Nepean, Ontario
                        K2B 7S9
                        Canada

For ordering information, see the file ORDER.TXT.

License Agreement

You should carefully read the following terms and conditions before using this software. Your use of this software
indicates your acceptance of this license agreement and warranty.

This program is copyrighted by the author. You may USE and distribute SandTiger as long as it is in accordance with
CANADIAN LAW and the distribution archive remains intact, without any changes or modifications.    The distribution
archive is in ZIP format; however, you may convert the archive to any format you choose, so long as the above
requirements are met.

Registered Version

One registered copy of SandTiger may either be used by a single person who uses the software personally on one or
more computers, or installed on a single workstation used non-simultaneously by multiple people, but not both.

You may access the registered version of SandTiger through a network, provided that you have obtained individual
licenses for the software covering all workstations that will access the software through the network.    For instance,
if 8 different workstations will access SandTiger on the network, each workstation must have its own SandTiger
license, regardless of whether they use SandTiger at different times or concurrently.

Governing Law

This agreement shall be governed by the laws of the Province of Ontario

Disclaimer of Warranty

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED.    IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Good data processing procedure dictates that any program be thoroughly tested with non-critical data before
relying on it. The user must assume the entire risk of using the program. ANY LIABILITY OF THE SELLER WILL BE
LIMITED EXCLUSIVELY TO PRODUCT REPLACEMENT OR REFUND OF PURCHASE PRICE.

Distribution

SandTiger may be distributed electronically only, and should reside on servers located and operated in the United
States and/or Canada only.

Ordering the full version

The full version is available only to customers in the United
States
and Canada. International orders will be rejected.

Registration entitles you to e-mail support and upgrades for a
year.
Single user copies are $30.00 each. All price quotes in Canadian
Currency.

SandTiger 2.0 Single Copy    ____ copies at $30 each

 
Total payment    = _______

NAME                      :

COMPANY                : _______________________________________

STREET                  :
__

STREET                  :
__

CITY                      :
__

STATE/PROVINCE : __________ POSTAL CODE : ________________

COUNTRY       : __________

TELEPHONE            : __________

E-mail Address : __________          (required) please verify by
mailing to
 
bishop@ottawa.com

Cheques must be made payable to Selom Ofori in Canadian dollars
drawn on a
Canadian bank.

Make Cheques/Money order payable to: Selom Ofori.
Mail to: Selom Ofori

144A Woodridge Crescent
Nepean, Ontario
K2B 7S9   

A valid serial number will be sent via e-mail and snail mail
after a successful purchase.

Contact Information
e-mail: bishop@ottawa.com
web site: homepage: http://members.tripod.com/~subrosa
snail mail: Selom Ofori
                        144A Woodridge Crescent
                        Nepean, Ontario
                        K2B 7S9
                        Canada

WHAT'S NEW - SandTiger version 2.0
- Most of the time was spent on including 'forgiveness'. Eg. if the disk
    becomes full, it asks to retry or abort and won't destroy or ruin the
    archive. Memory leaks, debug info and stuff like that has been taken out

- This is what I intended to create when I started working on this project
    It has been polished and is now out of beta. This is the real thing

- Newer files will always replace older files in an archive.

WHAT'S NEW - SandTiger version 1.6 FULL RELEASE

- This is a full release. CAST-128, Blowfish and Diamond2. You need a serial
    key to install sandtiger.
- Option included to scramble filenames.
- fixed a bug with RIPEMD that caused Sandtiger to refuse to decrypt your files

WHAT'S NEW - SandTiger version 1.6

- CAST-128 has been implemented and is now the default cipher
- Sandtiger now sets the file time to the original after extraction
- fixed the multiple redraw "feature" in v1.5
- fixed the 1000+ icon resource hog
- SandTiger is now released as a demo. 6 character password limit with 3 ciphers
    CAST-128(default), Blowfish(disabled in demo) and Diamond2(disabled in demo).
- compatible with version 1.5

WHAT'S NEW - SandTiger version 1.5

- Zlib compression with Z_BEST_COMPRESSION flag only. It compresses better than
    pkzip, but it's much slower.
- Diamond2 and Blowfish use an initialization vector. Indentical files won't
    produce identical ciphers
- Temp files aren't used during encryption. IF the file has to be decompressed
    however, there is no other way than to use temp files(not true for compression).

Demo Version of SandTiger

This SandTiger demo has the following restrictions

· Only 4 character password limit. The full version has up to 256 chars
· Only CAST-128 cipher is avail in the demo. The full version includes CAST-128, Blowfish

and Diamond2.
· You are limited to MD5 hash, whilst the full version has MD5,SHA-1, and RIPEM-160

System Requirements
Windows95 or Windows NT 3.5/4.0.
minimum 386+ processor, pentium 100+ recommended
The amount of memory required depends on how many files you are encrypting

Diamond2 Block Cipher by Michael Paul Johnson

The Diamond2 Block Cipher is a royalty-free, symmetric-key encryption algorithm based on a
combination of nonlinear functions. This block cipher may be implemented in hardware or
software. Diamond uses a block size of 128 bits and a variable length key. A faster variant of
Diamond2, called Diamond2 Lite, uses a block size of 64 bits.

Introduction
Design of Diamond2
Strength of Diamond2
Legal Issues
Obtaining Diamond2
Advantages of Diamond2
Disadvantages of Diamond2
Diamond2 Challenge

Introduction

General symmetric key block ciphers have numerous applications in computer security,
communications security, detection of data tampering, and creation of message digests for
authentication purposes. The longer any one such algorithm is used, and the more use it
gets, the greater the incentive to break it, and the greater the probability that methods will
be devised to break the algorithm. For example Michael J. Wiener has shown that breaking
DES is within the capabilities of many nations and corporations [1]. This sort of reduction in
the relative security of DES was anticipated several years ago. One proposed solution is the
International Data Encryption Algorithm (IDEA) cipher [2], which was described in [3] and [4]
as the Improved Proposed Encryption Standard (IPES). Another one is the MPJ Encryption
Algorithm [5], which evolved to the Diamond2 Block Cipher. In the field of cryptography, it is
good to have many strong block ciphers available.

Design of Diamond2

Diamond2 was designed to be strong enough to provide security for the foreseeable future.
It was also designed to be easy to generate keys for, and to be practical to implement in
hardware, software, or in a hybrid implementation

Strength

Three major factors influence the strength of a block cipher: (1) key length (and key setup
time), (2) block size, and (3) resistance of the algorithm to attacks other than brute force
(such as differential cryptanalysis) [3] [6]. The key length is variable to allow you to select
your own trade-off between security and volume of keying material needed. The block size is
chosen to make brute force attacks using precomputed tables require an obviously
intractable amount of data storage.

Diamond2 uses a variable length key. The use of at least a key with at least 128 bits of
entropy is recommended for long term protection of very sensitive data, as a hedge against
the possibility of computing power increasing by several orders of magnitudes in the coming
years.

The block size for the Diamond2 Block Cipher is fixed at 128 bits, because larger block sizes
are unlikely to make any practical difference in security, and because this is a convenient
binary multiple (16 bytes). Diamond2 Lite has a block size of 64 bits because this is good
enough for most applications, and because it allows a much faster total avalanche effect and
greater software speed than the 128-bit block size.

The problem of making sure that there is no known attack that is more efficient than brute
force is much more difficult than simply selecting sizes for keys and blocks. This is
attempted by creating a composite function of simpler nonlinear functions in such a way
that the internal intermediate results cannot be solved for and such that there is a strong
dependence of every output bit on every input bit and every key bit. Another important
consideration is that the author and inventor keep up with significant developments in
cryptanalysis. This last requirement is only partially met, in that a large percentage of
significant cryptanalysis technology is shrouded in secrecy.

An ideal 128 bit block cipher would use a z bit key to select one of 2z functions from the set
of all one to one and onto functions that map one input block of 128 bits to one output block
of 128 bits. Ideally, these 2z functions would be the most nonlinear and difficult to analyze
functions out of the (2128)! possible functions. In practice, the key selects one of 2z
functions from an arbitrary selection of possible functions.

The use of purely nonlinear functions makes a large portion of mathematical tools ineffective
for cryptanalysis. The tools that remain are defeated by ensuring adequate complexity in
terms of time and memory requirements that solutions are not practical.

Legal Issues, Diamond2 Copyrights & Legal Notices

The Diamond2 and Diamond2 Lite Block Ciphers may be used for any legal purpose without
payment of royalties to the inventor or his employer, however the names "Diamond2 Block
Cipher" and "Diamond2 Lite Block Cipher" are Trade Marks owned by the inventor, and may
not be used in connection with any algorithm that does not comply with the reference
implementation given herein. The Diamond2 Block Cipher is the same as the Diamond, MPJ
and MPJ2 Encryption Algorithms, with the exception of the key expansion algorithm. Some
governments may restrict the use, publication, or export of strong encryption technology.

Diamond2 and Diamond2 Lite are Trade Marks of Michael Paul Johnson.    Other trade marks
mentioned herein belong to their owners and are mentioned for identification purposes only.

Some cryptographic, cryptanalytic, and key management software and technical data is
subject to export controls and other legal restrictions.    Contact competent legal authority
for more information.    It is your responsibility to comply with all currently valid laws and
treaties that apply to you.    Do not use this software or technical data for any illegal activity.

As far as is permitted by law, permission is hereby granted to copy and use the copyrighted
portions of this distribution for any legal use, provided that you don't misrepresent its source
or modify the documentation without my permission.

CRC.H, CRC.CPP, DIAMOND.H, and DIAMOND.CPP are in the Public Domain.

Conclusion

Diamond2 and Diamond2 Lite are two of several alternatives to the aging and now relatively
insecure DES algorithm. Source code for a software implementation of Diamond2 in C is
available in the USA and Canada on the Colorado Catacombs BBS at 303-772-1062 in the file
DLOCK2.ZIP or on the Internet as
ftp://ftp.csn.net/mpj/I_will_not_export/crypto_???????/file/dlock2.zip, where the ??????? is
revealed in ftp://ftp.csn.net/mpj/README. Comments, questions, and reports of possible
weaknesses should be sent to the author at one of the following. I recommend that you ask
me if any weaknesses have been found in the Diamond2 Block Cipher before using it in any
critical applications.

NOTE: The contact below is for reaching the creator of the Diamond2 cipher, and
has nothing to do with support for SandTiger. It's purely for those interested in
obtaining information about the Diamond2 Cipher(tm).

BBS: 303-772-1062
Internet mail: m.p.johnson@ieee.org, mpj@csn.net, or mpj@netcom.com
CompuServe: 71331,2332

Advantages of Diamond2

No one has broken Diamond2 (or its predecessors, MPJ and MPJ2), yet.    See the US$314.16
challenge.

The block chaining mode is time-tested and well respected.

Complete source code is included for your examination and to facilitate porting to other
platforms.(click here how to go about getting it)

The cipher text is the same size as the plain text.

It is free.(only the cipher)

You are free to use the algorithms and/or code in this distribution to incorporate encryption
into your own applications, without payment of royalties or delays.(applies only to the
original diamond2 cipher.)

Diamond2 and Diamond2 Lite, when incorporated into a system that weakens the effective
key length and resists modification by the user to the satisfaction of the NSA, may be
exportable.    Contact the Department of State and the NSA for details and additional
requirements.

The encryption is too strong to be generally exportable.    There are no intentional
weaknesses or trap doors in the algorithm or the program.

Disadvantages of Diamond2

Key management is all manual.

The ciphertext reveals the size of the plain text (but not its contents).

No 7-bit ASCII armoring (uuencoding or radix-64 encoding) is built in for EMAIL purposes --
use another utility to do that.

The encryption is too strong to be exportable without a lot of hassles and controls on the
destinations.

If you forget your passphrase, your encrypted data is as good as gone.    I can't get it back,
no matter how important it was.

Diamond2 Challenge -- The author of Diamond2 Block Cipher, Mike Johnson

THE US$314.16 CHALLENGE

OK, US$314.16 is not enough to pay for the time it would take to do serious cryptanalysis of
the Diamond2 Encryption Algorithm, but it is enough to prove that data encrypted with
DLOCK2 is secure against the average hacker.    The file 31416.ENC was encrypted with
DLOCK2.EXE.    If you are the first person to (1) decrypt 31416.ENC and (2) follow the
instructions in the decrypted file to claim your prize before noon UTC, 20 September 2000,
then you will get US$314.16 of my hard-earned money.    To claim this prize, you must reveal
how you deciphered the ciphertext.    You must also not break the law (including any
currently valid export laws) in the process of earning this prize.    If the ciphertext is not
broken, I get to keep my money.

The plain text that 31416.ENC was encoded from is plain, uncompressed, 7-bit ASCII with
both CR and LF at the ends of lines.    It contains English text, including instructions on how
to claim the prize and contact the author.

THE FAIR CHALLENGE

The US$314.16 challenge given above is probably unfair, unless I really goofed badly in the
implementation of DLOCK2 or the invention of the Diamond2 Encryption Algorithm.    On the
other hand, if you find what you think is a weakness or error in either DLOCK2 or Diamond2
(other than the disadvantages listed above), please let me know.    There is no cash reward
for such information, but I will use the information to help improve the encryption programs
that I write.

Blowfish Block Cipher

· Block Cipher: 64 bit block
· Variable Key Length: 32 bits to 448bits
· Designed by Bruce Schneier
· Much faster than DES or IDEA
· Unpatented and royalty free
· Free source code available

Description of a New Variable-Length Key, 64-Bit Block Cipher (Blowfish)
Bruce Schneier Counterpane Systems, 730 Fair Oaks Ave, Oak Park, IL 60302
schneier@winternet.com

Abstract

Blowfish, a new secret-key block cipher, is proposed. It is a Feistel network, iterating a
simple encryption function 16 times. The block size is 64 bits, and the key can be any length
up to 448 bits. Although there is a complex initialization phase required before any
encryption can take place, the actual encryption of data is very efficient on large
microprocessors.

The cryptographic community needs to provide the world with a new encryption standard.
DES [16], the workhorse encryption algorithm for the past fifteen years, is nearing the end of
its useful life. Its 56-bit key size is vulnerable to a brute-force attack [22], and recent
advances in differential cryptanalysis [1] and linear cryptanalysis [10] indicate that DES is
vulnerable to other attacks as well.

Many of the other unbroken algorithms in the literatureþKhufu [11,12], REDOC II [2,23, 20],
and IDEA [7,8,9]þare protected by patents. RC2 and RC4, approved for export with a small
key size, are proprietary [18]. GOST [6], a Soviet government algorithm, is specified without
the S-boxes. The U.S. government is moving towards secret algorithms, such as the Skipjack
algorithm in the Clipper and Capstone chips [17].

If the world is to have a secure, unpatented, and freely- available encryption algorithm by
the turn of the century, we need to develop several candidate encryption algorithms now.
These algorithms can then be subjected to years of public scrutiny and cryptanalysis. Then,
the hope is that one or more candidate algorithms will survive this process, and can
eventually become a new standard.

The implementation of Blowfish used in SANDTIGER was from the SSLeay-0.8.0 library.   
Please read the Legal Notices and Copyrights.

Blowfish Copyrights

This package contains a Blowfish implementation written by Eric Young
(eay@cryptsoft.com).

This product includes software developed by Eric Young (eay@cryptsoft.com)

Frequently Asked Questions
What's with the default password?
The default password was used to quickly test out the app without having to
type in the passphrase everytime I encrypted something. I left it in for
people just trying it out to save them from the same tedious job of typing in
the password anytime they encrypted something.

Why do I get the dialog window saying "xxx.xxx - archive not
saved"?
basically when you create a new archive, Sandtiger puts them in a temp file
and considers it temporary until you decide to save it. if you double click
on an unsaved archive or try to extract from an archive that hasn't been
saved, you get that dialog box.

How do I know that my copy has been registered?
The Register menuitem will be disabled if your copy is registered

Can I use the unregistered version to decrypt files encrypted
with the registered version?
Well, kind of. If your password was less than or equal to 4 chars, you would
be able to decrypt files encrypted with the registered version. Future
versions will allow you full keylength during decryption.

Scramble filenames?
By default SandTiger encrypts files, but not their filenames. Anybody who
knows his way around computers can use a hex editor to see the filenames.
Scrambling filenames would prevent anybody from getting a "clue" as to what
kind of files are in the archive.

What about me? will I be able to see the encrypted filenames?
Sure. But only after you enter the correct password.

Can the archive password be different from the password of the
encrypted files?
Yup. Remeber that SandTiger can have many passwords in a Single Archive.

SandTiger User Manual

Getting Started
Basic Operation
ToolBar Operation
Setting Default Options

Basic Operation
SandTigers purpose is simple. To encrypt files and nothing else.

ENCRYPTING
1. You will be prompted for a password. This password will be used to encrypt only the files
you are about to select. You can enter a different password each time you choose to encrypt
a single or group of files.

2. Select a directory containing the files you want to encrypt. You can set a mask to encrypt
only a type of file. Eg, entering *.doc in the mask box will encrypt only file extension ending
with ".doc".

3. After making your selection, press the OK button to encrypt. You'll see a progress bar
telling you the progress of the encryption.

4. The encrypted files are listed in the main Listview window.

5. You may choose to execute steps 1-4 until you have encrypted all the files you want to
encypt, each time using a different or the same password.

5. To save, choose the save or close option in the menu. You will be prompted for a filename
and your encrypted archive is saved.

DECRYPTING
1. Open an archive by choosing the FILE->OPEN menu or dragging the file from explorer and
dropping it into the sandtiger main window.

2. Select the files you'ld like to decrypt (use CTRL + LEFT_CLICK or SHIFT+LEFT_CLICK) to
select multiple files.

3. Choose Action->Extract option in the menu

4. You'll be prompted for a password, and then later to select a directory to decrypt your
files. NOTE: The files will fail to decrypt and the operation aborted if your password is
incorrect.

Toolbar Operation
The toolbar places you a button away from important operations performed in SandTiger.
Initially when SandTiger starts up, some buttons will be grayed indicating the operation is
not available. This feature is used throughout Encrypt-It to conform to the Microsoft Windows
object - action concept. For example, you must first create an archive, by choosing NEW
before you can add encrypted files. If an archive hasn't been created, both the ADD and
EXTRACT buttons will be disabled.

New Archive

This is the first operation you must perform to start encrypting files. It creates a temporary
archive which you encrypt your files into. Most of the buttons will be enabled by now.

Open Archive

To open an existing archive and perform file operations on it

Save Archive

By default, a temporary file is created when you click on the NEW button. This temporary is
marked for deletion immediately after SandTiger exists, so you must save your newly
created archives. SandTiger will prompt you before it exists on the status of this temporary
file

Close Archive

Saves the archive and closes it. You can use this before you create a new archive, although
pressing the NEW button automatically closes an archive and opens a new one

Add

Starts a process where you enter a password, select files, which are encrypted with your
password and saved in the archive. The filenames appear in the main window.

Extract

Extracts selected files from an archive

Delete

Deletes selected files from an archive. Files deleted aren't physically deleted until the
archive is closed.

Find

Searches for a filenames, or filenames in an archive

Find Next

Finds the next matching filename. Press F3 to use a shortcut

Help

Opens this help file

Exit

Exists SandTiger. Sandtiger will prompt    you if it needs to save the archive

Setting Default Options
Click on View->Options in the file menu to get to the options property Sheet. It is separated
into two tabs, Encryption options and General Options.

Encryption Tab
 Encryption

You can set the default encryption algorithm here. Choose between CAST-128, Blowfish and
Diamond2

Hash

The security of your password depends on the security of these hash algorithms. Each of
these hashes will generate a unique ID of your password+random bytes. At this moment
SHA-1 is preferred to the MD5 and RIPEMD-160, although MD5 has been in existence for a
long time and hasn't been broken yet.

Mode

Only CBC mode is used in Version 2.0

General Tab
General Options

Scramble Filenames

By default SandTiger encrypts files, but not their filenames. Anybody who knows his way
around computers can use a hex editor to see the filenames. Scrambling filenames would
prevent anybody from getting a "clue" as to what kind of files are in the archive.

Compress files

Compressing files can drastically reduce the space these archives takes. Compression also
enhances encryption by removing redundant bytes from a file making it more secure. The
bad side to compression is, it's quite slow and increases the time it takes to encrypt files. It's
advantageous to use compression with text files or highly compressible files. It can save you
a lot of space

Show Extended Infomation

Shows additional columns in the Main Window. You can view details about a file, eg whether
it is compressed "CPR" or uncompressed "RAW", and the encryption type etc.

Disable Default Password

The default password is LOCK, and was used for internal purposes to avoid entering a
filename each time the application was tested. Do not use it

Beep After Operation

Beeps after a file operation. Encryption or Decryption

Save Config on Exit

Saves environmental information on exit

Display file association icons

Displays associated Icons of files in the main window. A quick way to tell what type of file,
the filename represents

Update List Window

Not Used anymore. Redundant

Tutorial

Diamond uses a block size of 128 bits and a variable length key.    The use of at least a key
with at least 128 bits of entropy is recommended for long term protection of very sensitive
data, as a hedge against the possibility of computing power increasing by several orders of
magnitudes in the coming years.

Blowfish, a new secret-key block cipher, is proposed. It is a Feistel network, iterating a
simple encryption function 16 times. The block size is 64 bits, and the key can be any length
up to 448 bits.

Message Digest 5 algorithm takes as input a message of arbitrary length and produces as
output a 128-bit "fingerprint" or "message digest" of the input. Your password is the
message of arbitrary length, which is added to 8 randomly generated bytes and then
processed by MD5 to produce the 128-bit "fingerprint" or "message digest". Well tested, but
considered to be too old.

Secure Hash Algorithm takes as input a message of arbitrary length and produces as output
a 160-bit "fingerprint" or "message digest" of the input. Your password is the message of
arbitrary length, which is added to 8 randomly generated bytes and then processed by SHA-
1 to produce the 160-bit "fingerprint" or "message digest". Generally thought of as the
replacement for the ageing MD5. Produces a longer fingerprint too.

RIPEmd-160 algorithm takes as input a message of arbitrary length and produces as output
a 160-bit "fingerprint" or "message digest" of the input. Your password is the message of
arbitrary length, which is added to 8 randomly generated bytes and then processed by
RIPEmd to produce the 160-bit "fingerprint" or "message digest". Generally agreed to be as
good as SHA-1.

CAST uses a 64-bit block size which is the same as the Data Encryption Standard (DES). The
CAST-128 algorithm supports variable key lengths, anywhere from 40 bits to 128 bits in
length

CBC - Cipher Block Chaining Mode

ECB - Electronic Code Book Mode

OFB - Output FeedBack Mode

Normally it only takes a snooper to look at the filenames contained in an archive to see what
the fuss is all about. Scrambling filenames allows SandTiger to encrypt all the file and folder
name strings. You supply the password and this password is used to encrypt all the names.
You MUST enter a valid password or Sandtiger would refuse to open it. You are in effect
"locking" the archive.

Allows you to see various flags to each individual files. ie. The type of encryption, hash, if it's
compressed and so on.

Although slow, compression greatly reduces the size of the archive. Compression technology
replaces repeating bytes with a single character and hence, the compression. Note: Using
compression technology on already compressed files (eg, pictures) is not very useful.
Usually text files compress very well.

Your password is usually used by most ciphers to generate a key that is used to actually
encrypt a file. A "good"    password has a length of 8 bytes or longer, isn't the name of your
girl friend, "QWERTY" or some other common phrase. A nonsensical password mixed with
numbers is secure and preferrable.

Since the password is masked, you should reenter it in this edit box to confirm it was typed
correctly.

Checking this box will instruct SandTiger not to show this dialog box for the remainder of this
session. By doing so, you intend to use the same password for the remainder of this session.
To use a new password, you will have to restart SandTiger.

Folder recursion allows you to encrypt all folders below the folder that you selected. Using
folder recursion along with Save Folder Infomation allow you to maintain your directory
structure. Very useful if you are moving a group of files from one computer to another.

By default SandTiger only saves the filenames of encrypted files. Using this option allows
you to maintain the folder/sub folder the file was located in. For example, sandtiger will
encrypt a file in "C:\HELLO\aboutme.txt" as "aboutme.txt". Checking this option will instruct
sandtiger to save it as "\HELLO\aboutme.txt", the "\HELLO\" part can later be created as a
folder if you wish.

Select a folder and files to work with

Enables the extraction of files whilst maintaining the directory structure

By default SandTiger will not overwrite files that already exist. Use this option to overwrite
existing files.

Your use of this software indicates your acceptance of this license agreement and warranty.

Refusing to accept this license agreement will terminate the program. Your use of this
software indicates your acceptance of this license agreement and warranty.

Please enter    your username and serial number to register this software. Entering
"shareware" and
"evaluation" for the serial number will let you try out this application.

Please enter    your username and serial number to register this software. Entering
"shareware" for USERNAME and "evaluation" for the SERIAL NUMBER will let you try out this
application.

You should carefully read the following terms and conditions before using this software. Your
use of this software indicates your acceptance of this license agreement and warranty.

Initialization vector

One of the problems with encrypting such things as files in specific formats (i.e., that of a
word processor, email, etc.) is that there is a high degree of predictability about the first
bytes of the message. This could be used to break the encrypted message easier than by
brute force. In ciphers where one block of data is used to influence the ciphertext of the next
(such as CBC), a random block of data is encrypted and used as the first block of the
encrypted message, resulting in a less predictable ciphertext message. This random block is
known as the initialization vector. The decryption process also performs the function of
removing the first block, resulting in the original plaintext.

