FIT2.EXE User’s Guide

Michael Courtney
February 11, 1994

Contents

1

2

Installation
General
Improvements

Files

Commands

5.1 . o e e
D2 0D v o e
D.3 0 CP o e e
DA SD o
D5 gd e e
5.6 M1 . o e
BT L o e e e
D8 PP o e e e e
D.9 WD . e
5.10 wl o o e e e
DAL er . . . e e e e s
5.12 md ..o e e
DA3 TP L e
5.14 de o o e e e
5.15 sh o o e e
BIO Wt . o e
BIT CO o o o e e
B8 order . . .o e e
519 ad . . e e
5.20 I o o e
D21 gr. o e
5.22 fp o o e e e
5.23 plot . L
5.24 load e e e
D25 set ..o e e e e
D20 W1 . . e
BT Ve . e e
D28 moset e e e e e s
D.29 Pr L
5.30 Tun or UL L L
D31 g0 Lo e
D.32 pa oo e
5.33 do o e e

6 functions
6.1 gauss
6.2 gaussc L e e
6.3 NEAUSS e e
6.4 lorenz e e
6.5 2lorenz e e
6.6 line e e
6.7 poly . .o e
0.8 NEXP .+« o v o e
6.9 xyquad
6.10 SINCOS e e e
6.11 CONIC o e e

7 Multiple Data Sets

8 gnuplot

16
16
17
17
17
17
17
18
18
18
18
18

19

19

1 Installation

Unzip the zip file in a suitable directory. Move fit2.exe somewhere in your path. If you want
the online help to work, set the environment variable fithelp to point to the file fit.hlp. For
example:

set fithelp=d:\docs\fit.hlp

Under Unix, you should use setenv, something like:

setenv FITHELP /u/docs/fit.hlp

Adding the line to your config.sys (under OS/2) or autoexec.bat (under DOS) or .cshre would
keep you from having to type it in every time you reboot or login. The gnuplot.exe program
should be somewhere in your path. The fit program requires you have gplt33b2.zip or later
under OS/2. Earlier versions work under Unix. This file is available from ftp.cdrom.com
and includes complete documentation. As of 2/11/94 the most recent version of gnuplot is
3.5.

For use on platforms other than OS/2 2.x or DOS, you will have to compile. Have a
look at the makefile and make it suitable for your compiler. You might want to make the
executable fit2 instead of fit2.exze. You should also use the compiler option -DUNIX (instead
of -DOS2), or whatever option will define UNIX for your compiler. I recommend using the
GCC compiler for the most painless compilation on any UNIX platform, but other compilers
have been shown to work as well. You might get some warnings.

Under OS/2 2.x, you should move the *.DLL files to a directory in your LIBPATH.

Under DOS, you should use the DJGPP port of GCC. Borland C++ will not work. To
run in a DOS box under Windows, you must use version 1.10 or higher of DJGPP. Specify
the -DDOS option when you compile under DOS. Plotting is disabled in the DOS version.
You will have to write the fit to a temporary file, and plot with the plotting package of
your choice. DJGPP is not the most usable DOS compiler, but it is free, has a 32 bit DOS
extender, and is good for porting UNIX programs. Consult the DJGPP documentation
and the *.msdos.programmer newsgroups for more info on DJGPP. You must have the file
go32.exe in your path for the DOS version to work.

-DUNIX affects the command used to open gnuplot. Gnuplot writes some error messages
to stderr and some of these make it to the screen. If -DUNIX is specified, stderr is redirected
to the file gnuout. If you want to see the error messages, do not use -DUNIX. Additionally,
some gnuplot terminal types require stderr to go to the screen. If you have one of these, do
not specify -DUNIX; you will have to live with the gnuplot error messages. This is the case
for tekf0zx and similar terminal types. If the -DUNIX option is not specified, temporary
files will be written to the current directory rather than /tmp.

2 (General

fit2 1s a non-linear least-squares fitting program. It uses the Levenberg-Marquardt method
to attempt to minimize the least-squares error between a data file and a model function. See
the books, Data Reduction and Error Analysis in the Physical Sciences by P. R.
Bevington and Numerical Recipes in C by W. H. Press et. al. for more information on
this method.

Due to the generality of the fitting function allowed, and the possible weirdness of the
error function in parameter space, convergance to the true minimum is not guaranteed.
Therefore, it is important to have good initial guesses for the parameters. It is a good idea
to graph your data and the fitting function with your initial guesses, and tweak the initial
guesses until the fitting function is close to the data. Most functions with three or four
parameters will converge quickly if the initial guesses are in the right ballpark. If you have
more than four parameters, you may have to tell the program to vary only four at a time
(the sp command). When the parameters you are varying affect a subset of the data much
more than the rest, you should window the data accordingly (the wi command). If these
tricks do not work, check and make sure that the function is computing the proper value of
the function and derivatives with respect to the parameters. You have to check your source
for this. A sign error is disasterous. It will cause the guess for the parameter to be further
from the correct value than the current value.

The Levenberg-Marquardt method will work for functions which are linear in the pa-
rameters. It is not as fast as linear regression, and it is not guaranteed to converge to an
absolute minimum. However, it will do in a pinch and it is actually a little more robust
if your basis functions are nearly linearly dependent. Of course, if your basis functions are
nearly linearly independent then your parameters will be strongly correlated, and you will
have to sort what is meaningful and what is not.

This program was written by Michael Courtney. I consider this a beta version of the
program. I retain all rights to the program. You may use the program and alter the source
to fit your needs. You may not distribute altered source or executable unless you obtain my
permission. You may port this program to other platforms if you wish. It should compile
and run almost unaltered on the NeXT platform and most Unix platforms. You may not sell
the program or source or receive any money for its distribition. The program is provided as
is and i1s without warranty of guarantee of any kind. The author assumes no responsibility
of any kind for anything the program does.

Please report bugs and suggestions to Michael Courtney at michael@amo.mit.edu. I will
consider bugs to have a higher priority than suggestions, although suggestions are welcome.

I am considering the following future enhancements to the program:

e Multiple data sets — the ability to simultaneously fit multiple data sets to different
functions which share common parameters. Currently, you can effectively accomplish
this, see Multiple Data Sets.

e Ability to handle binary files.

e Command line history.

Please let me know if any of these enhancements are of interest to you.

3 Improvements

This is the 1.5 beta version of the program.
The improvements over the 1.4 beta are the following:

e (Can now take commands from a file. See the do command.

e Can now use the Cset++ compiler under OS/2 2.x.

Minor bug fixes.

The noset command.

The improvements over the 1.3 beta are the following:

e New plotting routine under OS/2 allows viewing of a plot of every attempted fit. See
the fp command.

e Minor bug fixes.

o A simple function for estimating errors in the parameters has been added.

The improvements over the 1.2 beta are the following:
o Linear Least-Squares Fitting
e Minor bug fixes.

e Can change one parameter at a time. See the ¢p command.

4 Files

fit2 opens and stores data in several files. fit.tmp is used if the function is plotted to a file.
fit.dat is used as a default filename if none is specified with the wf command. The wp
command stores the parameters in the file a.dat. In addition, the text output of gnuplot
which is sent to stderr is written in the file gnuout. On non-unix machines, fit2 does not
erase any of these files, unless it overwites them. On UNIX machines fit.tmp and gnuout
are written in the /tmp . They are erased when the program exits, unless debugging is on.
If the debug flag is non-zero, lamda is written to a file called lamda.sts on every successtul
iteration. lamda controls how much the paramerers are changed in attempting to reduce
x%, and changing how lamda is chosen would be one way to improve effeciency of the L-M
algorithm.

5 Commands

The following can be executed at the £1t2> prompt:
help

quit

fn function

ip initialize parameters

cp change one parameter

sp select parameters (to vary)

gd get data

fi fit

pp print parameters

wp write parameters (to a file)

wi write fit (data to a file)

rp read parameters (from a file)
wt weight (for fitting)

co covariant matrix

order order (of data colums in file)
ad allocate data array

If lists functions available

gr graphing flag

plot plot data and fit

load load a gnuplot command file
set set something in gnuplot

wi windows data

ve changes verbosity

noset changes how fit2 sends set commands to gnuplot.

pr plot residual errors

sh shows current settings

md makes data

de debug

ru run a program

gn sends a command to gnuplot

i linear least squares fit

pa pauses for a number of seconds

fp turns the use of fitplot.exe on and off
er estimates errors in the parameters

do executes commands in a file

51 fn

Usage: fn name [#]

fn chooses a function for fitting. If the function has a variable number of parameters,
the number of parameters can be entered after the function name. Example: fn gauss
chooses to fit to a gaussian.

5.2 1ip

Usage: ip a0 al a2 ...

ip initializes the fitting parameters. If the number of parameters changes, the parameters
are initialized to 5 when the fn command is executed. ip can be used at any time to change
the values of the parameters. If you want to leave some parameters unchanged,enter a * in
place of the number. You must enter either a number or a * for all of the parameters.

Example: ip 13.7 * 12 changes a0 to 13.7, leaves al the same, and changes a2 to 12
for a three parameter fit.

5.3 cp

Usage: cp # #

cp changes the parameter specified by the first number to the value specified by the
second number. The first number must be in the range of parameters.

Example: cp 3 3.141 changes a3 to 3.141 and leaves all the other parameters un-
changed.

5.4 sp
Usage: sp # # #

sp selects which parameters to vary. By default, all parameters are selected to be varied
when the fn command is executed. If you only wanted to vary parameters a0 and a2 of a
three parameter fit, you would issue the command:

Example: sp 0 2

5.5 gd

Usage: gd filename

gd geta the data from a file. Data should be in an ascii file with between two and 20
columns. Actually, you can have as many columns as you want in the file, but the program
will only read up to 20. For fitting functions of more than one independent variable, select a
function with the number of independent variables that you want to fit to before reading in
data. This will allow the program to default to interpreting columns 1 through n (where n is
the number of independent variables of the current function) as representing the independent
variables in order. By default, the (n+1)th column is interpreted to be y(x0 ... xn) and the
(n+2)th column is interpreted as the experimental error in the measured y. If you wish to
assign the columns in your data file differently, or if you read in the data before choosing a
function (for more than 1 independent variable), you will have to use the order command.

By default, if no function has been selected, or if a function of one independent variable
has been selected, the first column is x, the second is y, and if there is a third, it is assumed
to be the error in y. If you wish to assign different columns to be x, y, and éy, use the order
command. By default, the program can handle a file with five columns and 1024 rows. The
ad command can be used to allocate the data array differently and handle up to 23 columns
and as many rows as memory allows.

Lines in a data file beginning with the # character are taken to be comments.

5.6 fi

Usage: fi iterations

fi fits the data using the non-linear fitting algorithm. Iterations is the number of iterations
between plots. If no number it given, it defaults the last number used. If none was ever
entered, it defaults to 20. After this number of iterations, the data and fit are plotted, if
graphing if selected. (It is by default. See the gr command.) You are then given the option to
quit iterating (q enter), continue iterating and turn on graphing (g enter), continue iterating
and turn off graphing (n enter), or continue with the same graphing status.

If the fi command is executed from a command file, the fit stops after the selected number
of iterations and does not prompt for user input. This is to facilitate batch processing.

There is no way in general to be sure x? is at an absolute minimum. It might just be at
a local minimum. Starting the fit with several sets of values of initial parameters and having

every fit that converges find the same set of final values and same y? gives some confidence.
Looking at the graph at least tells us we’re not too far away.

It is possible to estimate the errors in the parameters once y? is minimized. Rather than
build this into the program for people to use with more confidence than warranted, I merely
make all the information you need available. You should look at the references and figure it
out. This way you will have an idea of how unreliable error estimates on the parameters can

be.

57 1

Usage: 1i

li fits the data using a linear fitting algorithm. No iteration is required since the best-
fit parameters are uniquely determined by the data and basis functions. The linear fitting
algorithm used is the simplest possible. A matrix equation is set up and solved by Gauss-
Jordan elimination. A singular matrix will cause a failure of the method and probably
indicates a linearly dependent basis set. A near-singular matrix will cause inaccuracies in
parameter values.

li will usually work very well for less than 6 or so basis functions and reasonably well
for up to about 10 basis functions. If you have problems with singular matrices, doubt the
accuracy of your parameters, or want to incorporate errors in the independent parameters, I
suggest that you use li to obtain initial guesses and then use fi for to find the final parameter
values. fi will usually converge quickly if you start with initial guesses obtained from li.

You should be aware that fitting to a subset of parameters with the sp command has
a different effect with i than it does with fi. With fi, the selected parameters are varied
while the unselected parameters are held fixed. With 1i, the selected parameters really define
which basis functions are incorporated in the fit. These are the only parameters found, the
other parameters are set to zero. This may be inconvenient in certain situations, but it
reflects a basic difference between linear and non-linear fitting.

5.8 pp
Usage: pp
pp prints the current value of the parameters to the screen.
5.9 wp
Usage: wp filename mode
wp writes the parameters to a file. If no filename is given, parameters are written to the
file a.dat. Mode should be a (for append) or w (for overwrite). The default mode is w.

Examples:
wp writes the parameters to the file a.dat, overwriting the file if it exists.

10

wp params.dat a writes the parameters to the file params.dat, appending then on to
the end of the file if it already exists.

5.10 wf

Usage: wf filename

wf writes the fitted data to a file, overwriting the file if it exists. If no filename is given,
data is written to the file fit.dat. The fitted data is the value of the fitting function evaluated
at the value of x of the current data set using the current parameters.

5.11 er

Usage: er factor

er provides a simple way to estimate the errors in the parameters. The algorithm is very
simple, and the answer it gives is intuitively satisfying, but not statistically rigorous. The
algorithm varies one parameter at a time and finds two values of the parameter where chisqr
is increased by the given factor. An increase of 10 — 20% in chisqr should give a reasonable
estimate of the errors in the parameter, so I suggest a factor of 1.1 or 1.2. For factors larger
than 2.0, the algorithm may not converge, and you answers would not make sense as error
estimates on the parameters.

5.12 md
Usage: md filenaeme xmin0 xmax0 xstepO xminl xmaxl xstepl
md makes a trial data set. It’s primary use is in testing new fitting functions. At this

time, it is only implemented for functions of one or two independent variables. The trial
data set is created using the current parameter values and the current fitting function.

Examples:
fit2> fn gauss /* defines fitting function as gauss */
fit2> ip 5 1 1 /* initialized parameters */
fit2> md test 0 10 1 /* makes data for 0 <= x0 <= 10%/
fit2> gd test /* reads in data */
fit2> ip 5.1 2 1 /* changes parameters */
fit2> fi /* test to see if fit finds real parameters */
fit2> fn xyquad /* defines fitting function as xyquad */

fit2> ip 56 5 5 5 5 5 /* initialized parameters */
fit2> md test 0 10 1 0 10 1
/* makes data for 0 <= x0 <=10 and 0 <= x1 <= 10%*/

fit2> gd test /* reads in data */
fit2> ip 1 1 1 1 1 1 /* changes parameters */
fit2> fi /* test to see if fit finds real parameters */

11

5.13 rp

Usage: rp filename

rp reads the parameters from a file. If no file is given, it attempts to read the parameters
from the file a.dat.

5.14 de

Usage: de flag

de changes the debugging status of the program. Flag is 0 for no debugging, 1 for light
debugging, and 2 for heavy debugging. Only certain sections of code have been set up for
this. Other sections will be set up as I need to debug them. This option is intended mainly
for use of someone altering the program. If the debugging level is 1, all of the commands
sent to gnuplot are printed, along with other information.

5.15 sh

sh shows the value of current settings.

5.16 wt

Usage: wt [none stat inst other]

The fitting function tries to minimize x?, where x* = > ((y; — f(:)(;z))/az)2 That is, y?
is the sum of the squared error of the difference between the data and the fitting function,
2. The wt command chooses the type

except that each term in the sum is weighted by o7.
of weighting. It chooses what to use for o. Errors in the independent parameters can also
be used for non-linear fitting. See the order command for details. The following weighting
options are available:

none.......... no weighting, all o’s are equal to one.

statistical...o; = \/y;

instrumental..o; = 0y;, as in data file

other......... o; = Y

Example: wt s selects statistical weighting.

5.17 co

Usage: co filename
co prints the covariant matrix. It will overwrite the file if a file of the same name exists.

If no filename is given, the covariant matrix is written to the screen. The covariant matrix
can be used to estimate the error of the fit parameters.

12

5.18 order

Usage: order x0col ... =xncol ycol oycol ogocol ... oyucol

order assigns significance to the columns in the internal data matrix. When a data file
is read with the gd command, the first column in the file is stored in the data[0]. (The
0th column of an 2-D array). The second column is stored in data[l], etc. By default, these
columns are interpteted in a certain way (See the gd command). The order command is
used to change the default behavior.

Errors in the independent variables can be used in the fit by using techniques of error
propagation to calclate a corresponding error in y. That is:

o, = \/o2+ Uzd_yQ

y v T

Each data point has its own value of o, and o,. Each o, must be in a column in the data

file. The weighting for o, should be statistical, instrumental or other if o, is considered in

the fit. You should not select no weighting it you want to use o,. If the order command

selects a column to be .., then this information is used for the fit. If you wish to not use this

information, assign o,col to be -1 (the default value). If the fitting algorithm has a problem

converging when using o,, try the fit without using o,. Then take those parameters as the

initial parameters for the fit considering o,. Note that errors in the independent variables
are not considered during linear least squares fitting.

Examples for one independent variable:

order 2 1 0 x0 is the third column in the file, y is the second column, o, is the first
column.

order 1 4 x0 is the second column, y is the fifth column, o, is not specified.

order 0 1 2 3 x0 is the first column in the file, y is the second column, o, is the third
column, o, is the fourth column and is used in the fit.

order 0 1 2 -1 x0 is the first column in the file, y is the second column, o, is the third
column, o, 1s not used.

Examples for two independent variables:

order 2 1 0 3 x0 is the third column in the file, x1 is the second column, y is the first
column, o, is the third column.

order 1 4 2 x0 is the second column, x1 is the fifth column, y is the third column, o,
is not specified.

order 0 1 2 3 4 5 x0 is the first column in the file, x1 is the second column, y is the
third column, o, is the fourth, o, is in the fifth column and is used in the fit, o,; is in the
sixth column and is used in the fit.

order 0 1 2 3 -1 -1 x0 is the first column in the file, x1 is the second column, y is the
third column, o, is the fourth, 0,0 and o, are not used in the fit.

13

5.19 ad

Usage: ad columns rows

ad re-allocates the internal data matrix. It is 8 columns and 1024 rows by default. You
can have up to 23 columns and as many rows as memory allows. Three rows are used
internally, and up to 20 rows can be used for data from your input file. The ad command
erases any data currently in memory.

Example: ad 11 4096

5.20 1f

Usage: 1f
If lists the functions available for fitting.

5.21 gr
Usage: gr flag

The gr command turns the graphing on and off. gr 0 turns graphing off. gr 1 turns
graphing on. Graphing is on by default.

5.22 fp
Usage: fp flag

The fp command turns the use of the fitplot.exe program on and off. The fitplot.exe
program is a fast plotting program which is used to plot the data and attempted fit every
iteration. This is useful if you want to see what the Levenberg-Marquardt algorithm is doing.

The use of fitplot.exe is off by default, although if there are any command line arguments to
fit2.exe, the use of fitplot.exe is turned on.

5.23 plot
Usage: plot

plot plots the data and fitting function with the current parameters.

5.24 load

Usage: load filename

load loads and executes a gnuplot command file.

14

5.25 set

Usage: set gnuplot stuff

The entire set command is sent to gnuplot.

5.26 wi

Usage: wi [one or more numbers]

wi selects data windowing. It is used if you want to fit the data in a certain range of x
values. If wi has one argument, it turns windowing on and off. wi 1 turns windowing on.
wi 0 turns windowing off. If wi has more than two arguments, windowing is turned on, and
the arguments are the minimum and maximum x values used in fitting. In other words, x?
is computed only for xmin <z < xmax.

Examples:

wi 30 100 fit considers only x values between 30 and 100.

wi 30 100 2 10 fit considers only x0 values between 30 and 100 and x1 values between
2 and 10.

5.27 ve
Usage: ve flag

If lag = 0, the fi command gives little output. If flag = 1, the fi command only gives
the paramters every iteration. If flag = 2, the output is very verbose.

5.28 noset

Usage: noset flag
If flag = 0, then fit2 issues the set command to gnuplot often for setting ranges, labels,

titles, etc. If flag = 1, fit2 only sends gnuplot a set command when absolutely necessary for
performing the requested operation.

5.29 pr
Usage: pr flag

pr plots residual errors. If there is no flag or flag = 1, yfit vs. y is plotted. If flag = 2,
(y-yfit) vs. x is plotted.

15

5.30 run or'!

Usage: run command line

ru sends a command line to the default command processor. It is used to run a program
from within fit2.
Example: run dir *.dat

5.31 gn

Usage: gn gnuplot command

gn sends a command to the gnuplot command processor. It is used to execute gnuplot
commands from within fit2. You need to send a correct gnuplot command. You will get no
error message if you do not.

5.32 pa

Usage: pa seconds

It seconds < 1, the program is paused until enter is hit.

5.33 do

Usage: do file

do executes commands from a command file. Lines beginning with # are comments.
Blank lines are skipped. All other lines are executed. You cannot call one command file
from another under OS/2. It might work under Unix.

6 functions

There are several built in functions. Other functions can be added by adding them to the
file funclib2.c and recompiling. See that file for details. The built in functions are: gauss,
gaussc, ngauss, lorenz, 2lorenz, line, poly, nexp, and xyquad.

6.1 gauss

The function gauss is a gaussian of the form:

r—ag)2

flz) = age”

Fitting to this function converges easily if your initial guesses are even close. For gauss and
most peak-type functions, your initial guesses will probably converge if your function peaks
are a little shorter and wider than you data peaks.

16

6.2 gaussc
The function gauss is a gaussian plus a constant.

m—‘10)2

flz) = aze_(a1

+-G3.

Fitting to this function converges easily.

6.3 ngauss

This function is a sum of gaussians plus a constant. It uses a variable number of parameters.
The number you want must be chosen when you select the function. The function has the
form:

#=aiy2

flz) = Gi+2€_(m) + .

You must choose 3n 4+ 1 parameters, where n is the number of gaussians you want. This
function converges slowly for more than 2 gaussians, but it usually does converge. If the
peaks in your data are separated by several widths, you should window the data and fit the
peaks separately first, and then do a final fit on the whole data set.

6.4 lorenz

This is a lorenzian function of the form:

fz) =

aodq
Hx —ag)* 4+ ay

I chose not to use the usual form, because I thought making the form simple in regards to
the parameters might make for more robust fitting. You have to think to eyeball the initial
paremeters though. If your data is a lorenzian, it will converge without much trouble. If
your data is not really a lorenzian you may have trouble. The gaussian is a better choice to
fit peaks that are not well characterized by a particular function.

6.5 2lorenz

This is the sum of two lorenzians and it has the form:

fz) =

Gadq n A5dy
N —ag)? 4+ a1 4z —az)?*+ay

It sometimes takes some effort to get a fit to this function to converge.

6.6 line

Piece of cake:

flz) =aop + ayx.

17

6.7 poly
This function is a polynomial of the form:
fla)=> a;x’.

Decent initial guesses and fourth order or less converge easily and quickly. Higher orders
might take some work. Using li to obtain initial guesses and fi for final parameter values is
best for polynomials higher than fourth order.

6.8 mnexp

This function is the sum of decaying exponentials. It has the form:

r—ay

flz) = Z®(a¢)ai+zer+f +a,_1,

where O(a;) = 0 if < a, and O(q;) = 1 if + > a. You need to tell the program how many
parameters you want. 4 parameters gives you one exponential, 7 gives you two, etc. If you
know the offset, you should initialize properly and not vary that parameter. For example,
most decaying exponentials are triggered by some event. If you know the time of the event,
don’t vary that parameter.

6.9 xyquad
This is a two dimensional quadratic of the form:
f(u,v) = ap + a1u + ayv + azu® + ag0® + asuv.

u and v are used instead of x and y or x0 and x1, because gnuplot needs to plot the data
parametrically. The linear fitting algorithm works pretty well, but I recommend the result
be checked with a few iterations of the L-M algorithm, for example, issue the command, £1i
5 after the li command.

6.10 sincos
This function is a sum of sines and cosines of the form:
f(x) = ag+ a;sin a; 41 + a4 COS ajq3.

You need good initial guess to get this fitting function to converge quickly, if at all. You
will do well to get the frequencies close. If the zeros of your fitting function with your initial
parameters are close to the zeroes of your data, you have a good chance of converging. For
special cases like Fourier series, you probably want a specialized function. You should take
a Fourier transform if that is what you really want.

6.11 conic

conic does not work very well and I do not reccomend its use.

18

7 Multiple Data Sets

Let’s say that you have several different data sets that you want to fit to functions which
share some common parameters. You can simulate the functionality of multiple data sets.

Put all of your data in the same file , with the same columns being used for x0, x1 . . .
xn, y, any sigma’s etc. Add an extra row to the file containing a number to uniquely identity
the data set. Define your function for n+1 independent variables, and assign the extra row
to be x(n+1). The (n+1)th independent variable will be passed to your fitting function.
Use 1t to decide which data set you are using and return the appropriate function value and
derivatives.

Sure, it’s a kludge, but it’s better than nothing for now.

8 gnuplot

Gnuplot is i1s an interactive plotting program. To use the graphing capability of the fit
program, you must have the gnuplot program correctly installed in your system and it must
be in a directory in the current path.

19

