
D
R

A
FTMagician Programmer's Guide For Java

Alligator Descartes

descarte@arcana.co.uk

c1997-1998 Arcane Technologies Ltd.

November 4, 1998

D
R

A
FT

\The Magician Programmer's Guide" was written, illustrated and prepared

by Alligator Descartes for Arcane Technologies Ltd. using the LATEX type-

setting environment.

Copyright c1997-1998 Arcane Technologies Ltd. { All Rights Reserved

The contents of this document may not be copied or duplicated in any

form, in whole or in part, without the prior written permission of Arcane

Technologies Ltd.

OpenGL is a registered trademark of Silicon Graphics, Inc.

Java is a registered trademark of Sun Microsystems, Inc.

D
R

A
FTContents

Preface vii

Highlights of Magician . vii

Getting Magician . viii

Recommended Reading . viii

Supported Con�gurations . ix

Acknowledgments . x

Documentation Feedback . x

1 An Overview of Magician 1

The White Rectangle Demo . 1

OpenGL-aware AWT Components 6

Composable Pipelines . 8

Associated Magician Demo Programs 10

2 OpenGL Architecture 11

Introduction to OpenGL . 11

The Architecture Of Magician . 13

OpenGL and GLU Pipelines 13

Rendering Contexts & Visual Capabilities 14

Drawing Surfaces . 15

Magician Architecture Summary 15

Magician and the OpenGL ARB 16

3 OpenGL and GLU Composable Pipelines 19

\Composable" Pipelines . 19

OpenGL and GLU Constants . 21

CoreGL and CoreGLU . 23

i

D
R

A
FT

ii CONTENTS

TraceGL and TraceGLU . 24

ProfileGL and ProfileGLU . 25

ErrorGL and ErrorGLU . 26

Swapping Pipelines . 27

Pipeline Conclusions . 31

4 Components, Contexts and Listeners 33

Using OpenGL Components . 33

Creating GLComponents . 34

Sharing Display Lists and Texture Objects 35

Fullscreen GLComponents . 36

Destroying GLComponents . 37

The GLDrawable Interface . 37

Rendering Contexts . 38

Context Capabilities . 38

Context Currency . 41

Context Switching, Locks and Deadlocks 44

\I'm listening." . 47

Adding and Removing Listeners 47

Internal Context Switching and Automatic Repainting 49

Driving Animations with GLComponent 50

Repetitive, Continuous Animation 50

Starting and Stopping Animation 51

Tuning Automatic Repainting 54

\Manual" Thread Animations . 54

Multi-threading . 55

When To Context Switch . 56

Explicit Redraw Control . 57

Associated Magician Demo Programs 59

5 Geometry Producers 61

GLU Quadric Rendering . 61

Using GLU NURBS . 63

Using GLU Tesselators . 66

The Shapes Utility Class . 70

Associated Magician Demo Programs 71

D
R

A
FT

CONTENTS iii

6 Image Input and Output 73

Texture Maps . 73

Image and PostScript Production 76

File Output Writers . 76

Associated Magician Demo Programs 78

7 Fonts 79

Generating Fonts . 80

Using Bitmapped Fonts . 81

Font Copyright . 82

Associated Magician Demo Programs 83

8 Miscellaneous Utility Classes 85

CriticalSection { Mutual Exclusion Lock 85

FrameRateComponent { Measuring Frame Rates 87

MicroTimer { Microsecond Timer 87

accum { Accumulation Jittering . 89

trackball { Quaternion-based Trackball 91

triReader { Reads raw triangle data from a �le 95

Associated Magician Demo Programs 98

9 Extensions, Legacy Code and Magician 99

Legacy Code and Magician . 99

Extensions . 101

The Theory of Extension Access 102

The Extension Functions . 103

Using the EDK Extension Functions 105

D
R

A
FT

iv CONTENTS

D
R

A
FTList of Figures

1.1 Drawing A White Rectangle 2

2.1 Magician Architecture . 16

3.1 OpenGL and GLU Pipeline Stacks 20

4.1 Multi-threaded and Single-threaded Context Switching 44

5.1 GLU Quadric Objects . 62

5.2 A NURBS Surface . 64

5.3 Polygons . 66

5.4 Split Polygons . 67

5.5 \Throwing Shapes" Demo . 71

6.1 The ImageProducer / ImageConsumer Architecture 77

8.1 Triangle File Viewer . 97

v

D
R

A
FT

vi LIST OF FIGURES

D
R

A
FTPreface

Magician is an interface or binding that enables developers to write high-

performance 3D applications in Java using the API de�ned by OpenGL.

OpenGL is a platform-independent API de�ned by the OpenGL Architec-

ture Review Board, or ARB, for writing 3D applications.

This guide serves as an explanation of how Magician implements OpenGL

and how you can write OpenGL applications using Magician. This guide is

not currently designed to be an introduction to, or explanation of, OpenGL.

A more detailed function-by-function reference guide for Magician can be

found in downloadable and on-line formats at the Magician WWW site and

also on the Magician CD.

Highlights of Magician

Magician leverages functionality from Java and integrates this new network-

centric functionality into OpenGL, e.g., for transparently loading texture

data from arbitrary URLs. Using extensions of standard AWT components,

OpenGL-aware objects can be used within your GUIs and can be manipu-

lated in the same way as the bundled AWT classes. Furthermore, Magician

preserves complete portability between both platforms and Java Virtual Ma-

chines enabling you to deploy applications on over 90% of desktops on the

planet immediately. You will also bene�t from the applet features of Java

enabling you to deploy full-blown OpenGL applications on the World Wide

Web.

Magician also enhances OpenGL functionality by providing dynamic access

to extensions, simple and powerful multi-threaded rendering using Java's

vii

D
R

A
FT

viii PREFACE

in-built threading and in-built debugging and pro�ling streams.

Getting Magician

Magician is distributed from Arcane Technologies WWW site at:

http://www.arcana.co.uk/products/magician

The WWW site also contains information on Magician, on-line API docu-
mentation and this manual, mailing list archives and Frequently Asked Ques-

tions on Magician.

Magician can be downloaded for evaluation purposes, and as such is \locked"
by slowing down after a number of screen refreshes. Unlocked versions are
distributed upon licensing Magician from us. For more information on our
licensing policies, please read the Licensing pages on the WWW site.

Recommended Reading

The following book should be purchased as an excellent explanation of how
OpenGL works. This programmer's guide does not explain how OpenGL
can be programmed simply how Magician implements OpenGL. If you do
not know how to use OpenGL, buy this book!

``OpenGL Programming Guide''

-- Mason Woo, Tom Davis, Jackie Neider

Published by Addision Wesley, 2nd edition, 1996

ISBN 0-201-46138-2

There are 3 other books in this series1 that may be perused for additional
information on the workings of OpenGL for di�erent platforms.

The \Blue Book" is

``OpenGL Reference Manual''

-- OpenGL ARB

Published by Addison Wesley, 2nd Edition, 1996

ISBN 0-201-46140-4

1The above book is known as the \Red Book". The others are the \Blue Book", \Green
Book" and \White Book" (or \Alpha Book")!

D
R

A
FT

SUPPORTED CONFIGURATIONS ix

and is a function-by-function reference to OpenGL and GLU. The book is
invaluable for quick reference when writing OpenGL-based applications.

The \Green Book" is a book speci�c to using OpenGL under X Windows
and contains lots of information on special e�ects and bizarre input devices
that can input data to OpenGL. This book is the most advanced in the
series.

``OpenGL Programming for the X Window System''

-- Mark Kilgard

Published by Addison Wesley, 1st Edition, 1996

ISBN 0-201-48359-9

The �nal book in the series is the \White Book" and relates to programming
OpenGL under Win32 for Windows 95 and NT. The book contains a gentle
introduction to OpenGL and 3D graphics and discusses using OpenGL and
MFC. This is an excellent beginners book for OpenGL programming, but
not particularly in-depth.

``OpenGL Programming for Windows 95 and Windows NT''

-- Ron Fosner

Published by Addison Wesley, 1st Edition, 1996

ISBN 0-201-40709-4

Supported Con�gurations

Magician currently supports a wide variety of operating systems and Java
Virtual Machines. The Magician WWW pages at Arcane Technologies Ltd.'s
site should be consulted for up-to-the-minute information on supported con-
�gurations.

D
R

A
FT

x PREFACE

Operating System Java Virtual Machine OpenGL

Windows 95/NT Microsoft IE 4 SGI OpenGL / Microsoft OpenGL
Microsoft IE 3 SGI OpenGL / Microsoft OpenGL
Sun JDK-1.1.x SGI OpenGL / Microsoft OpenGL
Sun JDK-1.2beta3 SGI OpenGL / Microsoft OpenGL
Netscape Navigator 4.04+ SGI OpenGL / Microsoft OpenGL
Symantec Visual Cafe V2.5+ SGI OpenGL / Microsoft OpenGL
SuperCede V2.04+ SGI OpenGL / Microsoft OpenGL

Linux Sun JDK-1.1.x Mesa
RedHat Sun JDK-1.1.5 Mesa
Cambridge OpenGroup JVM Mesa

Solaris Sun JDK-1.1.x Sun OpenGL
Sun JDK-1.2beta3 Sun OpenGL

Irix Sun JDK-1.1.x SGI OpenGL

Acknowledgments

The author would like to thank (in no particular order) Jason \Mr. Wig-
gles" Osgood, Rob DeMillo, Brian Hook, Martin McCarthy, Adrian Cook,
Gary McTaggart, Rob Povey, Craig Setera, Tom Lasseter, Je� Meredith,
Je� White and all other users of Magician for their support. They will,
however, be damned for all eternity for reporting bugs! :-)

Brian Paul should be awarded beer for writing and maintaining the excellent
\OpenGL-a-like" Mesa library. Michael Gold requires thanks for providing
support on the nVidia Riva 128/3D drivers. Mark Kilgard will have a star
named after him for allowing usage of the conversions of his demonstration
programs bundled with Magician and for his excellent examples of advanced
OpenGL techniques.

Documentation Feedback

If you �nd any parts of this manual confusing, misleading or downright
wrong, please let us know about it! You should address all documentation
feedback to

magician-docs@arcana.co.uk

D
R

A
FT

DOCUMENTATION FEEDBACK xi

Please state the date from the front of your manual as well as any other
pertinent page information.

D
R

A
FT

xii PREFACE

D
R

A
FTChapter 1

An Overview of Magician

The simplest way to introduce Magician to you is to present a short example

program then explain each aspect of that program. The subsequent chapters

in this book will then explain each individual aspect of Magician in more

detail.

The example we shall be exploring is the oft-seen \white rectangle" example

that is presented near the beginning of the \OpenGL Programming Guide".

This program simply draws a white rectangle on a black background and

the output can be seen in Figure 1.1.

The White Rectangle Demo

First o�, we need to declare some basic Java constructs for identifying the
class �le, putting the class in a package and importing various other packages
that we'll be using in our application. All the \core" Magician classes live
in the com.hermetica.magician namespace with \utility" classes belonging
to the com.hermetica.util3d package. You will always have to import the
former package.

/** whiteRectangle.java -- Demonstration Magician program */

/** Import classes from some necessary places */

import java.awt.*;

import com.hermetica.magician.*;

1

D
R

A
FT

2 CHAPTER 1. AN OVERVIEW OF MAGICIAN

Figure 1.1: Drawing A White Rectangle

/**

* This is a short demo illustrating the basic structure

* of a Magician application. This doesn't handle keyboard

* or window events.

*/

public class whiteRectangle extends Frame

implements GLEventListener {

.

.

.

This class will create a new window via the standard Java AWT Frame
class. The code has also implemented the GLEventListener interface which
requires that we implement the four core methods de�ned in this inter-
face. The GLEventListener interface gives Magician applications a stan-
dard structure and form.

The next chunk of code sets up some basic variables that we will be us-
ing in the course of the program namely a GLComponent for rendering onto
and a CoreGL object that encapsulates the OpenGL rendering pipeline. The
program is not using any of the functions de�ned within GLU, so there's no
need to have a GLU encapsulation object at all.

.

D
R

A
FT

THE WHITE RECTANGLE DEMO 3

.

.

/** OpenGL pipelines used to render the scene */

GL gl_ = null;

CoreGL coregl_ = new CoreGL();

/** OpenGL rendering context */

GLComponent glc = null;

/** Kicks the whole thing off */

public static void main(String argv[]) {

whiteRectangle t = new whiteRectangle();

}

public whiteRectangle() {

/** Assign the OpenGL pipeline */

gl_ = coregl_;

/**

* Set the layout manager for the Frame. This is BorderLayout

* which will cause the children (the GLComponent) to

* be resized to fill the Frame upon resizing the Frame.

*/

setLayout(new BorderLayout());

/**

* Create a new GLComponent from the factory

* at size (200x200)

*/

glc = GLComponentFactory.createGLComponent(200, 200);

/** Add the GLComponent to the Frame and display it */

add("Center", glc);

pack();

show();

.

.

.

At this stage, your application would pop up a new window with a blank
canvas within it since your GLComponent has neither a rendering context nor
a GLEventListener associated with it. The rendering context is basically a
link between the OpenGL pipeline (a CoreGL object) and the window onto

D
R

A
FT

4 CHAPTER 1. AN OVERVIEW OF MAGICIAN

which the rendering will occur (a GLComponent).

This next section of code will set up the context via the GLCapabilities
mechanism and also register a GLEventListener with the GLComponent. Fi-
nally, you can use the initialize() method de�ned with GLComponent to
tell the component to start processing events and initialize itself.

.

.

.

/**

* Set up the capabilities of the OpenGL

* rendering context

*/

GLCapabilities cap = glc.getContext().getCapabilities();

cap.setDoubleBuffered(GLCapabilities.DOUBLEBUFFER);

cap.setDepthBits(12);

cap.setColourBits(24);

cap.setPixelType(GLCapabilities.RGBA);

/**

* Add the GLEventListener to handle GL events

* and initialize!

*/

glc.addGLEventListener(this);

glc.initialize();

}

.

.

.

Each GLComponent is created with a GLContext associated with it. It is gen-
erally easiest to use this context and manipulate it via the getContext()
method rather than create your own contexts and associate them with
GLComponents.

The GLCapabilities class allows you to specify what visual capabilities the
rendering context should have. For example, is it double-bu�ered or single-
bu�ered? Will it be rendering true colour or indexed colour images? The
permutations of visual quality that can be addressed by GLCapabilities is
vast! Each GLContext object has a GLCapabilities object pre-created and
associated with it. Therefore, using the getCapabilities() method is the
quickest way to set up visual capabilities. However, you can do it manually
in cases where you might wish to initialize three identical rendering contexts.

D
R

A
FT

THE WHITE RECTANGLE DEMO 5

Since this class implements the GLEventListener interface, you must also
provide at least stub implementations of each of the methods that this inter-
face de�nes. These methods are display(), reshape() and initialize()
which handle the three basic fundamental operations that OpenGL programs
exhibit, that is, what happens when the window is drawn, what happens
when the window is resized and what should happen when the window is
�rst created and initialized. There is also a fourth GLEventListenermethod
that allows you to more closely control the internal operations of the draw-
ing surface called getGL(). Almost every OpenGL application will perform
these functions and the GLEventListener interface simply formalises this
into a structure that should be followed.

.

.

.

/**

* Executed exactly once to initialize the

* associated GLComponent

*/

public void initialize(GLDrawable component) {

/**

* Set the background colour when the GLComponent

* is cleared

*/

gl_.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

}

/** Handles resizing of the GLComponent */

public void reshape(GLDrawable component, int x, int y,

int width, int height) {

gl_.glViewport(component, x, y, width, height);

gl_.glMatrixMode(GL.GL_PROJECTION);

gl_.glLoadIdentity();

gl_.glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);

gl_.glMatrixMode(GL.GL_MODELVIEW);

}

/** This method handles the painting of the GLComponent */

public void display(GLDrawable component) {

/** Clear the colour buffer */

gl_.glClear(GL.GL_COLOR_BUFFER_BIT);

/** Set the drawing colour to white */

gl_.glColor3f(1.0f, 1.0f, 1.0f);

D
R

A
FT

6 CHAPTER 1. AN OVERVIEW OF MAGICIAN

/** Draw a square */

gl_.glBegin(GL.GL_POLYGON);

gl_.glVertex3f(0.25f, 0.25f, 0.0f);

gl_.glVertex3f(0.75f, 0.25f, 0.0f);

gl_.glVertex3f(0.75f, 0.75f, 0.0f);

gl_.glVertex3f(0.25f, 0.75f, 0.0f);

gl_.glEnd();

}

/**

* Returns a valid OpenGL pipeline when asked

* by GLComponent

*/

public GL getGL() {

return gl_;

}

}

This demonstration is extremely straight-forward, but illustrates many of

the powerful features inherent in Magician.

OpenGL-aware AWT Components

The GLComponent class is a special AWT component that Magician provides
to allow you to display 3D graphics within standard applications but can be
manipulated in the same way as any other AWT component class such as
Button or Canvas. This feature lets you create potentially complex GUIs
that have windows in which rendering is occurring.

Magician also provides an event handling mechanism in the style of Java
1.1 listeners called GLEventListener. This allows you to quickly route cer-
tain types of event to a particular GLComponent.

For example, when you resize the window in the above application, the
AWT BorderLayout layout manager will automatically resize all the com-
ponents within that window to �ll the window. This causes the reshape()
method in any GLEventListeners registered against any GLComponent ob-
jects present in that window to be invoked.

Similarly, if a repaint of the window is required because you have dragged
the window about or moved the window in front of other windows, AWT
will defaultly call a method called repaint() in all a�ected components.

D
R

A
FT

OPENGL-AWARE AWT COMPONENTS 7

Within Magician, repaint() calls against GLComponent objects are inter-
cepted and the display() method in any registered GLEventListeners are
invoked.

Magician also allows you to build animation into your applications extremely
quickly. Invoking the start() method against a GLComponent will initialize
a thread internal to the GLComponent object which regularly makes calls to
the GLEventListeners' display() methods. Therefore, if you place any
animation update logic into the display() method, it will animate the ob-
jects being rendered.

For example, if you wanted to make the rectangle rotate you could rewrite
the display() method as

public void display(GLDrawable component) {

/** Clear the framebuffer */

gl_.glClear(GL.GL_COLOR_BUFFER_BIT);

/** Set the drawing colour */

gl_.glColor3f(1.0f, 1.0f, 1.0f);

/** Save the current viewpoint settings */

gl_.glPushMatrix();

/** Rotate the rectangle by ``angle'' degrees */

gl_.glRotatef(angle, 0, 0, 1);

/** Draw the rectangle */

gl_.glBegin(GL.GL_POLYGON);

gl_.glVertex3f(0.25f, 0.25f, 0.0f);

gl_.glVertex3f(0.75f, 0.25f, 0.0f);

gl_.glVertex3f(0.75f, 0.75f, 0.0f);

gl_.glVertex3f(0.25f, 0.75f, 0.0f);

gl_.glEnd();

/** Restore the saved viewpoint settings */

gl_.glPopMatrix();

/** Update the angle to spin the rectangle about */

angle++;

if (angle >= 360.0f) {

angle -= 360.0f;

}

}

The update logic is simply to increment the angle variable. Therefore, upon

repeated calls of the display() method, the angle increases causing the

D
R

A
FT

8 CHAPTER 1. AN OVERVIEW OF MAGICIAN

rectangle to spin. You can implement more complex time-critical animations

in Magician, but this is a simple way to perform animation of a non-complex

nature.

Composable Pipelines

Magician de�nes a group of classes known as the pipeline classes. These

classes de�ne the actual OpenGL and GLU functions that form the heart of

your programs.

Magician treats these functions in an unusual way in that the OpenGL and

GLU functions are declared within an interface that is implemented by any

pipeline classes. This ensures that all the functions that need to be present

to form a complete OpenGL and GLU implementation have been de�ned
and it also gives us the exibility to compose pipelines.

For example, Magician uses a class called CoreGL to execute the OpenGL

functions1. In the example shown above, an instance of CoreGL is con-

structed and all OpenGL statements are executed against that.

However, we might also construct an object from the class TraceGL which is

another Magician pipeline class. This class simply prints the name of each

method being executed but does not execute the corresponding OpenGL

function. Therefore, if we were to change CoreGL to TraceGL in the above

example, the OpenGL function names would be printed, but nothing would
be drawn on the screen.

Since both of these pipelines are inherently useful, combining them to both

print the name of the OpenGL function being called and execute the OpenGL

function itself would be a real boon to you for debugging applications.

To create a TraceGL pipeline that also executes the OpenGL functions, you

simply need to write

TraceGL gl_ = new TraceGL(new CoreGL());

Furthermore, Magician provides the functionality to swap pipelines on a
statement to statement basis. For example, if you wished to only trace one

1There is also a corresponding CoreGLU class for executing GLU functions.

D
R

A
FT

COMPOSABLE PIPELINES 9

particular section of your code, you might wish to swap the trace pipeline
with the core pipeline then swap it back again.

Ordinarily that code might look like

CoreGL coregl_ = new CoreGL();

TraceGL tracegl_ = new TraceGL(coregl_);

/** Execute some code with CoreGL */

coregl_.glBegin(GL.GL_POLYGON);

/** Now, trace the vertex calls */

tracegl_.glVertex3f(0.25f, 0.25f, 0.0f);

tracegl_.glVertex3f(0.75f, 0.25f, 0.0f);

tracegl_.glVertex3f(0.75f, 0.75f, 0.0f);

tracegl_.glVertex3f(0.25f, 0.75f, 0.0f);

/** Switch back to coregl */

coregl_.glEnd();

This is just silly and is also compile-time speci�c. Since each pipeline class
in Magician implements the GL interface, you can runtime switch pipelines
in the following way

GL gl_ = null;

CoreGL coregl_ = new CoreGL();

TraceGL tracegl_ = new TraceGL(coregl_);

/** Execute some code with CoreGL */

gl_ = coregl_;

gl_.glBegin(GL.GL_POLYGON);

/** Switch to tracing */

gl_ = tracegl_;

gl_.glVertex3f(0.25f, 0.25f, 0.0f);

gl_.glVertex3f(0.75f, 0.25f, 0.0f);

gl_.glVertex3f(0.75f, 0.75f, 0.0f);

gl_.glVertex3f(0.25f, 0.75f, 0.0f);

/** Switch back to core */

gl_ = coregl_;

gl_.glEnd();

This code may not look radically di�erent, but imagine if you wished to en-

able tracing from a menu in your application? The second approach allows

you to switch pipelines at runtime whereas the �rst method is compile-time

restricted.

I shall be discussing pipelines in more detail in Chapter 3.

D
R

A
FT

10 CHAPTER 1. AN OVERVIEW OF MAGICIAN

Associated Magician Demo Programs

testGL.java This demonstration program simply creates a new window

and draws a shaded black to blue polygon within it.

mtpaperplane.java This demonstration shows simple animation using the

in-built animation features of GLComponent and the use of pro�ling

pipelines.

D
R

A
FTChapter 2

OpenGL Architecture

The architecture of Magician has been largely de�ned by the open architec-
ture that OpenGL implements. OpenGL has a fairly simple design, but one
which allows software and hardware developers to wield considerable power.

Similarly, there are extensions and abstractions present in the architecture of
Magician that allow transparently portable use of all aspects of the OpenGL
architecture especially within a multi-threaded and object-orientated envi-
ronment such as Java. A balance between feature-richness and \recognis-
able" OpenGL has to be found.

Introduction to OpenGL

OpenGL is the industry standard API for 3D graphics development. The
standards for API development are driven by a Consortium formed by many
of the major players in the 3D graphics arena including Silicon Graphics,
Sun Microsystems, Microsoft and Evans and Sutherland. The bene�ts of
this process are mainly that no one company controls the API and that the
API design bene�ts from the shared knowledge of many individuals1. The

1There is a downside to this. Software designed by committee does not have a rapid
development cycle so changes to the OpenGL API may take time. However, OpenGL has
been remarkably well designed from the outset so, in this case, development lag is not
really an issue. Additionally, vendors may de�ne extensions to OpenGL that do not need
to be rati�ed by the ARB.

11

D
R

A
FT

12 CHAPTER 2. OPENGL ARCHITECTURE

body which regulates the development of OpenGL is the OpenGL Archi-

tecture Review Board or OpenGL ARB who meet on a quarterly basis to
discuss extensions and enhancements to OpenGL.

The design of the OpenGL API revolves around 4 main areas

� \Core" OpenGL API

� \Core" OpenGL Utility API or GLU

� Extensions to the OpenGL API2

� Window-system speci�c interfaces such as GLX

The �rst two APIs are completely standard and identical across all operating
systems implementing OpenGL. These two APIs essentially are OpenGL.
They provide what can be classed as being an OpenGL pipeline through
which data is transformed, manipulated and rasterized into images.

However, in order to remain operating-system neutral, the core OpenGL
and GLU pipelines do not actually produce any images. Output of ren-
dered images and input into software using OpenGL is strictly regulated
by the window-system speci�c functions including the glX* functions for X
Windows-based systems and the wgl* functions for Windows 95/NT sys-
tems.

The functions de�ned in these protocols act as a conduit between the in-
put and output devices of the user's computer and the OpenGL and GLU
rendering pipelines. Therefore, the user can perform some action in the ap-
plication using the mouse or keyboard3 which a�ects the operation of the
core OpenGL and GLU pipelines in some de�ned way. The application may
then re-render the scene and the window-system speci�c protocols return an
image that can be displayed on the display device4.

2Extensions are one way in which new additions to the core OpenGL API may be tested
and revised prior to merging into the core API. This also allows additional functionality
to be added quickly without requiring OpenGL ARB activity.

3Or any other relevant input device such as a graphics tablet, VR headset or whatever.
4In common parlance, the OpenGL and GLU pipelines produce an opaque framebu�er

of data which is a standard de�nition of what has been rendered. X Windows uses XImage
or Pixmap data types to copy image data onto the screen andWindows 95/NT use bitmaps.
Therefore, the window-system speci�c protocols automagically convert the opaque frame-
bu�ers into a usable image format for the pertinent window system.

D
R

A
FT

THE ARCHITECTURE OF MAGICIAN 13

Extensions are a slightly more complicated beast as there are several exten-
sions which are standard across platforms providing extensions to the core
OpenGL API. There are also extensions to each window-system speci�c pro-
tocol which are locked to that particular window-system. However, to make
matters even more complicated an extension to a particular window-system,
e.g., X Windows, may not be supported across all X Windows platforms. A
good example of this is the relatively new VideoBu�er extension which re-
quires several pieces of SGI-speci�c hardware to run. Therefore, even though
both SGI Irix and Linux run X Windows, only the SGI version of OpenGL
will support the VideoBu�er extension.

The Architecture Of Magician

The architecture of Magician has been designed with two main goals. Firstly,
to provide a familiar programming environment to developers used to pro-
gramming OpenGL in C. Secondly, to harness the power inherent in the ad-
ditional features of the Java programming language such as multi-threading
and object-orientation.

In addition to the above bene�ts, ensuring cross-platform and window-
system portability was a must to allow developers to write Java software
that was truly \write once, run anywhere". The inclusion of platform- or
window-system speci�c information would render Magician far less portable.

Magician is designed around a small set of classes and interfaces that pro-
vide either direct access to OpenGL or an abstracted API to system-speci�c
functions, such as glX* and wgl* functions. There are also some auxiliary
classes that are supplied for developer usage, but are not considered part of
the core architecture.

OpenGL and GLU Pipelines

The central classes in Magician de�ne the access paths into the native
OpenGL implementation, i.e., functions such as glBegin(), glVertex3f()
and so on. There is a separate class for the GLU functions.

The GL and GLU classes are implemented as interfaces which de�ne all the
OpenGL and GLU functions available within standard OpenGL 1.1. There

D
R

A
FT

14 CHAPTER 2. OPENGL ARCHITECTURE

are also polymorphic methods for all the OpenGL functions. For example,
the functions that de�ne 3-value vertices are:

glVertex3s(short, short, short);

glVertex3f(float, float, float);

To make life easier for you and to use a powerful feature of Java, there
exists a method called vertex() that has overloaded arguments, that is,
if you invoke the vertex() method with short values as arguments, Ma-
gician will route the call down to the underlying glVertex3s() method.
Similarly, if you invoke vertex() with float arguments, Magician will call
glVertex3f() for you. This feature makes type-matching your functions a
lot simpler than explicit speci�cation as in the standard OpenGL 1.1 speci-
�cation.

Additionally, because Magician implements the core OpenGL and GLU
functions as an interface, you can mix and match di�erent pipeline classes
within your program. Magician has several of these alternative pipelines dis-
tributed with its core including tracing and pro�ling pipelines. This powerful
feature lets you swap pipelines on a statement to statement basis allowing
you to �nely tune hotspots in your code or debug sections that have bugs
present in them.

Rendering Contexts & Visual Capabilities

Rendering contexts belong in the category of the speci�cation that is not
platform- and architecture-neutral. Each window system has its own pro-
tocol for linking the window system to the OpenGL pipeline. Therefore, to
be truly portable, Magician must subsume the varying window system dif-
ferences internally and provide a uni�ed, abstracted API to the developer.
This will not only allow you to write immediately portable code without
needing to know or care about the underlying target platforms but also en-
ables end-users to use the same application across a variety of platforms
from Windows PC to high-end SGI workstations.

The manner in which rendering contexts are created is fairly standard across
platforms in that you specify what sort of capabilities you wish the render-
ing context to have. The underlying window-system then checks to see if
an appropriate context is acquirable or not. In Magician, the underlying
window-system code is hidden and a standard API for capability speci�ca-
tion and context operations is provided.

D
R

A
FT

THE ARCHITECTURE OF MAGICIAN 15

To e�ect this, Magician has two separate classes that it uses. These are
GLCapabilities which de�nes a set of methods for setting and querying
capability values and GLContext which de�nes methods for manipulating
the rendering context itself. The GLContext uses a GLCapabilities object
associated with it to specify what sort of context to use.

Drawing Surfaces

Every rendering pipeline terminates at the stage at which an image is dis-
played on a screen5. The window, or drawing surface, that the rendering
context spits data onto is perhaps the most platform-speci�c aspect of graph-
ics software as it can vary wildly between platforms.

Magician extracts the core functionality that a drawing surface requires and
blends it with the functionality that the Java AWT provides to form the
GLComponent class. A further bene�t is that the Java AWT Event handling
mechanisms are similar to those implemented by the popular GLUT library
written by Mark Kilgard. This helps ensure that developers accustomed to
using GLUT will feel at home using Magician.

The encapsulation of a drawing surface as a Java AWT Component is quite
a powerful tool as it can be included within other Java AWT Container

objects and treated in exactly the same way as any other Component. In
this way, powerful GUIs may be built with in-built 3D rendering support
that can be interacted with using standard GUI components.

Magician Architecture Summary

The Magician architecture can be illustrated in the Figure 2.1. This shows
that within any application, only one OpenGL \state machine" is created.
That is, the application will set various states within OpenGL which are
sticky. Since a simple architecture involving only a state machine would
only allow for one active window within an application, the concept of ren-
dering contexts exists allowing rendering to occur onto multiple windows
within a single application.

A rendering context contains a copy of the state of the OpenGL state

5Or rendered to an o�screen image or other storage.

D
R

A
FT

16 CHAPTER 2. OPENGL ARCHITECTURE

AWT Component

Rendering Context

AWT Component

Rendering Context

OpenGL "State Machine"

Application

Figure 2.1: Magician Architecture

machine at any given time. Each window within Magician has an associ-
ated context such that when that window wishes to render something, the
associated context is copied into the state machine and used. When another
window wishes to perform some drawing, the previous context is saved and
the new context copied in place. This preserves the state of the OpenGL
state machine for each window and ensures that they do not interfere with
each other.

Therefore, all OpenGL and GLU methods operate on the current context in
the state machine. Through sophisticated context management, Magician
allows you to perform true multi-threaded rendering with OpenGL.

In Magician, the OpenGL state machine corresponds to the composable
OpenGL and GLU pipeline classes; the rendering contexts are encapsulated
by the GLContext class and the drawing surfaces, GLComponent. We shall
discuss each of these aspects in subsequent chapters.

Magician and the OpenGL ARB

One of the questions we tend to get asked most frequently is \what's happen-
ing with Magician and standardisation within the OpenGL ARB?". Another

D
R

A
FT

MAGICIAN AND THE OPENGL ARB 17

popular one is \if the ARB standardise on something that isn't Magician,
what'll happen to Magician?".

Firstly, Arcane are part of a working group established by the ARB to de-
�ne a speci�cation for Java OpenGL bindings. We have archived the mailing
list discussions of this group on the Magician WWW site for your perusal if
you're interested in seeing what's being talked about.

Secondly, we're con�dent that Magician is the best solution available for
writing OpenGL programs in Java because of our stability, performance
and innovative architecture that no other Java OpenGL bindings even come
close.

D
R

A
FT

18 CHAPTER 2. OPENGL ARCHITECTURE

D
R

A
FTChapter 3

OpenGL and GLU

Composable Pipelines

The OpenGL and GLU pipeline classes contain the declarations for the
portable functions de�ned within the OpenGL 1.1 Speci�cation. That is,
anything that's not either an extension or a window-system speci�c function.

GLU is not actually part of the \core" OpenGL, but contains functions used
so commonly that virtually all OpenGL implementations are distributed
with an implementation of the GLU library. To discern between core OpenGL
and GLU, Magician de�nes them in di�erent classes.

\Composable" Pipelines

Magician is unusual in that it supports the concept of composable pipelines.
Composable pipelines are basically the core OpenGL functions with addi-
tional transparent functionality, for example, in-built tracing or pro�ling.

The base Magician pipeline classes are implemented as Java interfaces which
de�ne all of the required functions that any pipeline implementation must
support. By using interfaces, developers have the ability to transfer control
ow between di�erent types of pipeline on an instantaneous basis as well
as write their own pipeline implementations that will be guaranteed to be
compliant with the core Magician pipelines.

19

D
R

A
FT

20 CHAPTER 3. OPENGL AND GLU COMPOSABLE PIPELINES

The OpenGL and GLU pipeline classes can also be stacked on top of each
other to combine various aspects of functionality. For example, you might
wish error checking enabled via the ErrorGLU and ErrorGLU classes, but you
also might want to pro�le your code via the ProfileGL and ProfileGLU
classes. Magician allows you to do both by pipeline stacking.

The general concept of this is that there exists a \stack" o� which the CoreGL
and CoreGLU classes are always the base. However, on top of those classes
any other pipeline classes can be added by creating them as children of the
preceding class. Now, when you execute an OpenGL or GLU function the
function call executes the corresponding method in the given pipeline class,
then executes the corresponding method within that class' parent and so on
until the actual OpenGL or GLU function is called in CoreGL or CoreGLU.
Figure 3.1 illustrates the operation of this feature of Magician and I shall be
discussing the dynamic switching and extending of pipelines in Section 3.

In addition to the standard core OpenGL and GLU functions, the OpenGL

CoreGL

TraceGL

CoreGLU

ProfileGLU

ErrorGLU

Native OpenGL Methods

Figure 3.1: OpenGL and GLU Pipeline Stacks

and GLU interfaces also de�ne polymorphic, or overloaded methods for all

D
R

A
FT

OPENGL AND GLU CONSTANTS 21

the standard OpenGL calls. For example, to specify a two-dimensional point
in space in OpenGL, there are a battery of methods that can be used de-
pending on the data type with which you want to express the coordinates
with. A few of these methods are:

glVertex2s(short x, short y);

glVertex2f(float x, float y);

glVertex2b(byte x, byte y);

To remember all these functions can be a bit laborious so, to sidestep this,
Magician uses the powerful Java feature of \overloading methods". Using
this feature, all the vertex-speci�cation methods can be accessed using a
single method called vertex(). The neat trick is that this one method will
accept argument of many di�erent types. For example,

vertex(short x, short y);

vertex(float x, float y);

vertex(byte x, byte y);

is a lot easier to remember! The overloaded methods are simply wrappers
around the underlying original methods and are therefore a little slower to
execute.

Finally, the interfaces de�ne alternative names for each OpenGL method.
In the C implementation of OpenGL, each function is pre�xed with gl to
uniquely identify that function as being part of the OpenGL namespace.
However, in an object-orientated environment such as Java, manual imposi-
tion of a namespace is not required. However, to ensure a smooth transition
from C and C++ to Java, Magician retains the original OpenGL function
names. This also makes porting between C/C++ and Java a less time-
consuming operation.

However, to also appease enthusiasts of namespace purity, each OpenGL
function is also available with the leading gl stripped o� and the �rst letter
lower-cased. These generally conform to the overloaded methods discussed
supra.

OpenGL and GLU Constants

One of the prickly problems regarding porting existing C/C++ code to Java
is that you cannot simply use global variables or de�ned values in the same
way as you can with the former languages.

D
R

A
FT

22 CHAPTER 3. OPENGL AND GLU COMPOSABLE PIPELINES

For example, a fragment of C OpenGL code might look like

glBegin(GL_TRIANGLES);

glVertex3f(100.0, 100.0, 100.0);

glVertex3f(200.0, 200.0, 50.0);

glVertex3f(500.0, 1.0, -400.0);

glEnd();

where the GL TRIANGLES value is a globally available constant de�ned by the
OpenGL include �les. The corresponding Java code would generally require
that the GL TRIANGLES value be de�ned within a particular Java class and
be referred to as GL.GL TRIANGLES or similar.

This is the approach that we took for the 1.0.0 release of Magician, with
all the OpenGL constants being de�ned with the GL interface and the GLU
constants in the GLU interface. However, we were fairly sure we could do
something more to make porting from C/C++ much simpler for you.

Magician 1.1.0 introduces two new interface classes in the Magician names-
pace called GLConstants and GLUConstants which contain all the constant
de�nition for OpenGL and GLU respectively. To access these constants,
you need only implement the appropriate interface within your class. For
example

public class myGLProgram extends Frame

implements GLConstants {

.

.

.

glBegin(GL_TRIANGLES);

.

.

.

The implementation of this interface lets you access the constants without
the class pre�x. However, we have also made the GL interface implement
the GLConstants interface which means that your existing Magician appli-
cations won't break and, if you really like the explicit class pre�x, you can

D
R

A
FT

COREGL AND COREGLU 23

keep using it. Similarly, the GLU interface implements the GLUConstants

interface allowing you quick and easy access to the GLU constants.

I shall now more fully discuss each of the pipeline classes distributed with
the Magician core classes that de�ne all of the methods declared abstractly

within the GL and GLU classes.

CoreGL and CoreGLU

The implementations of the abstracted functions in CoreGL and CoreGLU
simply execute the correct OpenGL functions by dispatching them to \na-
tive methods" that interface directly with the underlying OpenGL imple-
mentation on your machine.

To put it simply, CoreGL and CoreGLU give you the results you would get
by writing software in C with OpenGL. The following code stub sets up a
single polygon and smoothly colours it from top to bottom using a CoreGL
pipeline.

/** Create a new GL pipeline using the core functionality */

CoreGL gl_ = new CoreGL();

/** Draw a polygon */

gl_.glBegin(GL.GL_POLYGON);

gl_.glVertex2f(0, 0);

gl_.glVertex2f(10, 0);

gl_.glVertex2f(10, 10);

gl_.glVertex2f(0, 10);

gl_.glEnd();

This example illustrates that an OpenGL or GLU pipeline is instantiated
as an object, or instantiation, of a particular pipeline class. Therefore, any
OpenGL or GLU functions that you wish to call are done as instance methods

on a particular object. This is slightly di�erent to \pure" OpenGL since we
require to route all function calls through an object, but the e�ect is the
same. In actual fact, the creation of a CoreGL object is essentially syntactic
sugar since it has no member variables to store any sort of information in.
The only reason for the existence of this syntax is to enable the transferrence
of pipelines between pipeline classes which I shall elaborate on infra.

D
R

A
FT

24 CHAPTER 3. OPENGL AND GLU COMPOSABLE PIPELINES

TraceGL and TraceGLU

The TraceGL and TraceGLU pipeline classes are extensions of the CoreGL and
CoreGLU classes in that they add to the core functionality de�ned within the
core pipeline classes.

The basic function of these classes are to provide tracing information on
OpenGL and GLU functions being called as they are called. The two classes
operate in two di�erent modes, verbose and summary which give di�ering
levels of information to you.

Summary mode simply prints the name of each method as it is called from
within a Java program. This enables the developer to see exactly where the
program is reaching before some sort of problem manifests itself. The use of
TraceGL and TraceGLU acts as a proactive debugger backtrace! If you use
these classes, you can see where something has crashed rather than have to
debug it after the fact.

The output of summary mode when run against the short code listed supra
looks like:

glBegin()

glVertex2f()

glVertex2f()

glVertex2f()

glVertex2f()

glEnd()

Verbose mode acts in a similar manner to summary mode but it actually
dumps the values of the arguments for each OpenGL and GLU function be-
fore they are called. This can be useful in two important ways. Firstly, you
can use Magician as a code generator. Secondly, you can also use this feature
to sanity check the values that you're passing into methods that are giving
out suspect results. For example, if you make a calculation prior to setting
the viewport via glViewport(), you may �nd that you have forgotten to
cast the dimensions of the viewport to float datatypes prior to dividing
them to calculate an aspect ratio1. Verbose mode of the TraceGL pipeline
would show you what the values being passed into glViewport were and
you would locate the bug more quickly.

The same example code run in verbose mode would generator output corre-
sponding to

1Which would result in the aspect ratio of 0 in Java.

D
R

A
FT

PROFILEGL AND PROFILEGLU 25

glBegin(9)

glVertex2f(0, 0)

glVertex2f(10, 0)

glVertex2f(10, 10)

glVertex2f(0, 10)

glEnd()

Arrays are written as being contained within square brackets ([]) and

only the �rst 8 elements of the array are written.

The mode of the tracing pipelines can be switched at any time with the

setMode() method and will take immediate e�ect. The valid values that

can be passed to setMode() are TraceGL.SUMMARY and TraceGL.VERBOSE

or TraceGLU.SUMMARY and TraceGLU.VERBOSE.

Similarly, you can alter the parent pipeline of any pipeline object at any time

during the program's execution by using the setParent() and getParent()

methods de�ned within each pipeline class.

ProfileGL and ProfileGLU

The ProfileGL and ProfileGLU classes add the ability for developers to
pro�le their programs at run-time. This functionality is extremely useful
for identifying bottlenecks within your software in terms of OpenGL perfor-
mance and also can be used to identify redundant function calls or OpenGL
state changes.

As with the TraceGL and TraceGLU classes, these classes operate in two dif-
ferent modes, summary and verbose. The duration from immediately before
dropping into the parent pipeline class2 until immediately after returning
from the parent pipeline class is timed in microseconds3 .

Summary mode operates by accumulating the times that each function has
taken to execute and presents the sum total upon request. For example, it
will report the total amount of time every called OpenGL or GLU function
has taken and also the number of times the function has been called. This

2The parent pipeline of a ProfileGL or ProfileGLU object should be CoreGL and

CoreGLU for the most accurate results, otherwise the activities of the parent pipeline

might prejudice the timing calculations.
3Or as close to microseconds that the CPU can provide. Magician provides a utility

class called MicroTimer that provides portable timing across di�erent operating-systems

and takes the CPU granularity into account.

D
R

A
FT

26 CHAPTER 3. OPENGL AND GLU COMPOSABLE PIPELINES

is extremely useful for spotting redundant state changes and also analyz-
ing which OpenGL and GLU functions are the most performance intensive.
With more �ne-tuned pro�ling, performance bottlenecks and hotspots can
be attened out.

Summary mode will only display the actual methods called when requested,
not all the OpenGL and GLU methods. This saves you having to wade
through hundreds of functions that have never been used and allows you to
focus on the data that you're interested in.

The summarised pro�ling output of the short OpenGL stub listed supra
looks like

glBegin() was called 1 time, totalling 12us

glVertex2f() was called 4 times, totalling 112us

glEnd() was called 1 time, totalling 14us

Verbose mode displays the time taken for a particular OpenGL function to
execute immediately after it has executed. The name of the function is also
displayed in the style of the TraceGL and TraceGLU classes although the
values of the arguments is not displayed.

The verbose pro�ling output of the OpenGL code is

glBegin() took 12us to execute

glVertex2f() took 32us to execute

glVertex2f() took 24us to execute

glVertex2f() took 30us to execute

glVertex2f() took 26us to execute

glEnd() took 14us to execute

ErrorGL and ErrorGLU

In order to maintain extremely high-performance within Java programs, Ma-

gician does not, by default, perform any error handling. Within the base

interface classes, however, each OpenGL and GLU function is declared to

throw an exception object of class OpenGLException. In the normal ren-

dering pipelines, this exception will never be thrown allowing you to avoid

setting up costly try ...catch clauses in your programs.

However, should you wish to enable error checking during the development

stages of your program, or to extract detailed error logs from a deployed

program, you can use the ErrorGL and ErrorGLU classes which will test for

D
R

A
FT

SWAPPING PIPELINES 27

an error condition having been agged after each OpenGL and GLU call. If

an error has been detected, an OpenGLException will be thrown.

By testing for errors after each call, debugging is extremely �nely-grained

with errors being agged immediately upon triggering them. However, this
exibility comes at a considerable performance penalty and should be used

sparingly.

In addition to enhanced error-checking functionality, ErrorGL and ErrorGLU

also test for a current rendering context prior to executing the method. This

check is useful in cases where you may have forgotten to switch in a ren-

dering context prior to executing OpenGL methods. In cases where this is

true, a GLNoCurrentContextException will be thrown allowing you to �x

your code quickly and accurately.

As with all other pipeline extension classes, these error-checking classes can

be stacked on top of other extension classes. For example, you might wish to
combine the error-checking pipelines with the tracing pipelines for maximum

debugging capabilities.

Swapping Pipelines

Now that we have looked at each of the pipeline classes that are provided
with the base installation of Magician, I shall explain exactly how these can
be used to a�ord maximum exibility and power to you in your programs.

The main concept of the pipeline classes is to provide functionality to dy-
namically change the way in which OpenGL functions. Using the powerful
interface mechanism in Java, this is trivial to add into your programs and
allows you to a�ect any quantity of code from the entire program to single
lines.

In normal operation with the CoreGL class, you would simply allocate a
new CoreGL object and route all OpenGL function calls through that. For
example

.

.

.

CoreGL gl_ = new CoreGL();

D
R

A
FT

28 CHAPTER 3. OPENGL AND GLU COMPOSABLE PIPELINES

.

.

.

gl_.glBegin(GL.GL_QUADS);

gl_.glVertex2f(0, 0);

gl_.glVertex2f(10, 0);

gl_.glVertex2f(10, 10);

gl_.glVertex2f(0, 10);

gl_.glEnd();

This is a perfectly acceptable way to do things if you simply want to use the
basic rendering functionality of OpenGL. However, to change the pipeline
to provide tracing information, you would need to recompile your program.
That's not particularly useful to you. What you really want to be able to
do is dynamically change the pipeline in mid-stride.

Accomplishing this is actually quite easy. Instead of routing all the OpenGL
function calls through an object of class CoreGL, we can instead route the
calls through an reference of class GL, i.e., the interface. Since each pipeline
extension class implements this interface, they can be freely cast between
themselves. Therefore, if you wished to perform some basic rendering using
a CoreGL object then switch on tracing for the �nal functions, you could do

.

.

.

/**

* This is initialized to null since interfaces cannot

* be instantiated.

*/

GL gl_ = null;

/** Core OpenGL pipeline object */

CoreGL coregl_ = new CoreGL();

/**

* Tracing OpenGL pipeline object with the core

* pipeline as a parent

*/

TraceGL tracegl_ = new TraceGL(coregl_);

.

.

.

D
R

A
FT

SWAPPING PIPELINES 29

/** Assign the standard pipeline to the reference */

gl_ = coregl_;

/** Render a square */

gl_.glBegin(GL.GL_QUADS);

gl_.glVertex2f(0, 0);

gl_.glVertex2f(10, 0);

/** Switch the rendering pipeline to trace! */

gl_ = tracegl_;

/** Draw the last two points... */

gl_.glVertex2f(10, 10);

gl_.glVertex2f(0, 10);

gl_.glEnd();

This would result in a square being drawn, as expected. However, since
tracing was turned on half-way through the rendering process, you should
expect to see the following output appear on your screen as well.

glVertex2f()

glVertex2f()

glEnd()

which reects the OpenGL functions that were called after the pipeline was
switched to trace OpenGL calls. We could also switch on verbose tracing
by doing the line

.

.

.

/** Switch the rendering pipeline to trace verbosely! */

tracegl_.setMode(TraceGL.VERBOSE);

gl_ = tracegl_;

Running within the same context, this would produce output of

glVertex2f(10, 10)

glVertex2f(0, 10)

glEnd()

illustrating the code generating capabilities of the TraceGL class.

If you wanted to be truly disturbed, you can happily stack a ProfileGL

D
R

A
FT

30 CHAPTER 3. OPENGL AND GLU COMPOSABLE PIPELINES

object on top of a TraceGL pipeline. This would give you the ability to both
trace and pro�le your program simultaneously.

To e�ect this, when creating the ProfileGL object, instead of setting the
parent object to be the instance of CoreGL, set it to your TraceGL object
then assign the ProfileGL object to the interface reference. For example

.

.

.

GL gl_ = null;

/** Create a new standard OpenGL pipeline */

CoreGL coregl_ = new CoreGL();

/** Create a new tracing pipeline as a child of the core */

TraceGL tracegl_ = new TraceGL(coregl_);

/** Create a new profiling pipeline as a child of the tracer */

ProfileGL profilegl_ = new ProfileGL(tracegl_);

/** Render with the profiler and tracing combined pipeline */

gl_ = profilegl_;

.

.

.

The order in which you assign parents for pipelines is important especially in

the case of when you are using the ProfileGL or ProfileGLU classes. These

classes time the execution of the same method within the parent pipeline

class so, if you have a parent of something other than CoreGL or CoreGLU,

the timings will include not only the actual OpenGL function execution time

but also the time taken to execute whatever additional operations that the

parent pipeline performs. This has the potential to dramatically mess up

your timings and should be watched out for.

If you fail to provide suitable parents for all the pipeline classes right down

to an instance of CoreGL and CoreGLU your code will still execute correctly,

but execution will stop at the point that the parent link is broken.

A �nal note on pipeline objects is that you can safely create as many pipeline

D
R

A
FT

PIPELINE CONCLUSIONS 31

objects as you wish. Pipelines are stateless and contain no useful or per-

sistent information whatsoever. Therefore, if you have multiple subclasses

that need to use OpenGL, you could either pass a pipeline object down into

the subclass or just create a new local one and use that. Both solutions are

possible in Magician.

Pipeline Conclusions

The extended pipeline functionality provided in the core Magician classes

is a powerful aid to developing bug-free and high-performance OpenGL ap-

plications in Java. Template classes, called TemplateGL and TemplateGLU,

are also provided with Magician that have all the methods required by the

OpenGL and GLU interfaces implemented as stubs for developers to adapt

if they need pipeline functionality not provided by the bundled pipelines.
TemplateGL and TemplateGLU are also fully commented in order to produce

high-quality Javadoc API documentation.

However, pipelines on their own are not particularly useful and form only

one third of the requirements of a complete OpenGL implementation. The

remaining aspects are closely interlinked and I shall discuss each in turn.

D
R

A
FT

32 CHAPTER 3. OPENGL AND GLU COMPOSABLE PIPELINES

D
R

A
FTChapter 4

Components, Contexts and

Listeners

AWT provides a platform-independent window toolkit that you can use to

write fairly complicated GUIs. The platform independence is achieved by

extracting the core principles from Windows 95, X Windows and MacOS
amongst others and turning them into an abstracted toolkit that can trans-

late all the AWT methods and classes into the appropriate native window

system functions. The presence of such an abstracted toolkit is extremely

useful since you can write portable code that will have identical functional-

ity on any platform that supports AWT.

Magician leverages the notion of platform-independent rendering and seam-

lessly integrates with the AWT implementation on a particular platform to

provide drawing surfaces, or windows, onto which OpenGL can render. This

functionality makes it trivial to write fully functional 3D applications that

will run automatically on di�erent platforms but look and behave identically.

Using OpenGL Components

Magician provides a class called GLComponent that provides a drawing sur-

face, or window, for OpenGL to render onto. This has the additional bene�t

of being able to be treated as any other standard AWT component and uses

standard AWT Component event handling mechanisms. This functionality

33

D
R

A
FT

34 CHAPTER 4. COMPONENTS, CONTEXTS AND LISTENERS

gives you the ability to embed GUI components into your application that
perform OpenGL rendering directly using the exact same function calls as if
you were manipulating stock AWT objects such as Labels, Checkboxes and
TextFields.

As with the standard AWT classes, the GLComponent class abstracts all
the underlying window-handling functions that di�er on a per-platform ba-
sis into a uni�ed API that will work portably on all platforms.

In addition to this, GLComponent also internally handles the various events

that AWT components can receive in a way that is meaningful in an OpenGL
context, for example, resizing the component, iconifying the component and
handling repainting of newly exposed components.

Creating GLComponents

The GLComponent class is extremely simple to use. To begin with, you
simply create a new object by requesting a component of a given size from
a GLComponentFactory. For example

int width = 200,

height = 200;

GLComponent component =

GLComponentFactory.createGLComponent(width, height);

The GLComponentFactory class is simply used to gloss over di�erences in
AWT design and implementation between Java vendors. Using a factory
allows Magician to internally dispatch you a GLComponent object for the
correct Java virtual machine1.

The GLComponent in this state can be manipulated in the usual ways that
standard AWT components can, most importantly, they can be added into
container components in your GUI for layout.

To be useful within the context of OpenGL, you need to associate the

1This strategy was implemented because of di�erences between the AWT implemen-

tations of Sun and Microsoft. However, this design also future-proofs Magician in case

other virtual machine vendors decide to de-standardise their AWT implementations in the

future. Your code shouldn't require any alteration to work on these new platforms since

Magician does the work.

D
R

A
FT

USING OPENGL COMPONENTS 35

GLComponentwith a GLContext. This completes the architecture of OpenGL
rendering in that the results of the rendering pipeline, as de�ned by a ren-
dering context, are funneled through the context onto the drawing surface
which is encapsulated as the GLComponent object.

By default, every GLComponent has a new GLContext created for it, al-
though you can pass a pre-created context to the GLComponent constructor
if you wish.

Sharing Display Lists and Texture Objects

OpenGL also features the ability to share display lists and texture objects be-
tween rendering contexts to reduce memory overheads. This is an extremely
useful feature. For example, in a 3D editor that has three orthographic views
of an object, if you had stored the object within a display list, you would
need to create a separate display list for each window. This is both expen-
sive in terms of memory consumption and also tricky to synchronize between
windows. By sharing display lists, only one component need make changes
to the list. Similarly, sharing texture objects reduces memory consumption
and makes textures available to all components that are participating in the
sharing.

Magician abstracts the platform-speci�c functionality used to share display
lists and texture objects into a single, easy-to-use mechanism. Firstly, you
should create a standard GLComponent object. Then you create your other
GLComponents passing the �rst GLComponent as an argument to the con-
structor. For example

/** Create the front view */

GLComponent frontComponent =

GLComponentFactory.createGLComponent(200, 200);

/**

* Create the plan view and share the front view's

* display lists

*/

GLComponent planComponent =

GLComponentFactory.createGLComponent(frontComponent,

200, 200);

/**

* Create the side view and share the front view's

* display lists

D
R

A
FT

36 CHAPTER 4. COMPONENTS, CONTEXTS AND LISTENERS

*/

GLComponent sideComponent =

GLComponentFactory.createGLComponent(frontComponent,

200, 200);

After these components have initialized, the display lists and texture objects
are pooled in that if any component creates a display list or texture objects
any other components participating in the share can use it. There is no
restriction that the \�rst" GLComponent create the objects for use by the
other components.

Fullscreen GLComponents

Some popular 3D hardware accelerator cards provide fullscreen-only render-
ing, that is, these cards cannot render into a window as is the standard
behaviour with Magician applications. That said, Magician applications be-
ing run on a fullscreen accelerator will still continue to function correctly
and rendering will occur. The major drawbacks are that the main GUI is
completely hidden by the output from the accelerator card. In fact, your
entire desktop or window manager will be completely obscured by the out-
put of the renderer.

Within Magician applications, this is not a major problem but should you
move your mouse out of the boundaries of the actual AWT window, AWT
events may not be delivered to that window. Therefore, a simple solu-
tion has been implemented within Magician that automatically sizes up a
GLComponent to being the size of the screen.

To use this feature, your application should have only one GLComponent
within it. The only change required by you to your application in this case
is to make the immediate parent container of the GLComponent be of class
GLFullScreenFrame instead of, say, Frame. The simplest way to do this is
as follows

public class myDemoApplication extends GLFullScreenFrame {

GLComponent glc =

GLComponentFactory.createGLComponent(200, 200);

.

.

.

this.setLayout(new BorderLayout());

D
R

A
FT

USING OPENGL COMPONENTS 37

this.add("Center", glc);

.

.

.

When using a GLFullScreenFrame, the width and height arguments given
to the GLComponentFactory are essentially ignored and the component is
resized automatically.

There is one major caveat with this approach. Your desktop will most
probably not be the same size as the rendering output generated by your
hardware acclerator. For example, if your desktop is sized to 1024�768 and
you are using a Voodoo Graphics accelerator, the actual rendering output
will be 640 � 480, not 1024 � 768. Therefore, even though AWT events are
being correctly trapped the dimensions of the underlying window will not
necessarily match the 3D output. In this example, any mouse motion should
be divided by 8=5 to ensure the AWT window and 3D output match up.

Destroying GLComponents

Finally, if you have completely �nished using a particular GLComponent,
you can shut it down completely and deallocate all the internal resources
it's using by invoking the destroy()method against it. This will not remove
the Java AWT component from the GUI but will allow you to safely remove
the GLComponent without causing any strange problems.

The GLDrawable Interface

In Magician, all references to drawing surfaces or rendering contexts are
made via the GLDrawable class instead of GLComponent. For example, if you
are implementing the display() method required by the GLEventListener
interface, the argument passed to that is of type GLDrawable and not GLComponent.

The rationale behind this is that Magician may be extended in the future
to support non-AWT-based drawing surfaces, such as the use of lightweight
\Swing" components or components that can be used on embedded Java de-
vices. If the Magician core code referred to GLComponent, the extension to
other forms of component would require vast code rewrites both for us and
for you. By using the GLDrawable interface, we're future-proo�ng both our

D
R

A
FT

38 CHAPTER 4. COMPONENTS, CONTEXTS AND LISTENERS

code and your code. GLComponent and GLDrawable can generally be used
completely interchangeably, but we recommend using GLDrawable wherever
possible.

Rendering Contexts

In the section discussing the architecture of OpenGL, I touched briey on
the concept of \rendering contexts". Rendering contexts act as a conduit,
or link, between a \drawing surface" and an OpenGL pipeline.

Magician encapsulates the rendering context as a class called GLContext
which provides methods for performing most \context-ish" operations such
as context switching, font handling and swapping frame-bu�ers. This class
is simply created through a standard constructor, for example

GLContext context = new GLContext();

However, it is more common to use a context that is allocated by default
when a new GLComponent is created. A reference to this context can be found
by invoking the getContext() method within the GLComponent class. For
example,

/** Create a new GLComponent */

GLComponent glc =

GLComponentFactory.createGLComponent(width, height);

/** Reference the GLContext associated with the GLComponent */

GLContext context = glc.getContext();

This context object will not automatically or unexpectedly change during
the execution of a Magician application, so, to save on unnecessary method
invocations of getContext(), you might wish to store the value in a global
variable. Of course, if you are using multiple GLComponents within your
application, this is highly unrecommended.

Context Capabilities

When a rendering context is being created, it is de�ned to have certain
capabilities as to how rendering is funnelled through it. For example, for
smoothly animated applications, you might wish to use a technique called
double-bu�ering where OpenGL actually renders the image to an o�screen
framebu�er instead of the screen. You then perform a bu�er-swap which
copies the contents of the o�screen framebu�er to the drawing surface. There

D
R

A
FT

RENDERING CONTEXTS 39

is a corollary capability known as single-bu�ering in which the rendering
pipeline draws directly onto the drawing surface, but this produces tremen-
dously ickery updates especially when repainting the drawing surface or
animating the scene.

The type of bu�ering used within a context is one capability that rendering
contexts support. Other common ones pertain to the number of bits in the
depth bu�er2, the colour bias of your framebu�er, the size of stencil and
accumulation bu�ers & many other di�erent con�guration options.

These options are con�gurable by the developer and are generally chosen
to suit the capabilities of the user's display and video card. For example,
many users may still be using video cards capable of only 256 colour display
whereas other high-powered users might be using a Silicon Graphics work-
station that supports a 32-bit hardware depthbu�er, 32-bit colour, hardware
stencilling and overlay / underlay planes.

There is a default \safe" set of capabilities that most computers can use
provided with each GLContext that you can use. This GLCapabilities
object can be accessed via the getCapabilities() method. However, if
you wish to exercise the full bene�ts of OpenGL's acclaimed image quality,
you'll probably want to hand-tune these capabilities to suit better hardware.
To do this, you simply acquire a reference to the GLCapabilities object
associated with a context and alter the capabilities to suit.

/** Create a new GLComponent */

GLComponent glc =

GLComponentFactory.createGLComponent(width, height);

/**

* Get a reference to the capabilities for the context

* associated with the GLComponent

*/

GLCapabilities cap = glc.getContext().getCapabilities();

/** Set the depthbuffer size to 32 bits */

cap.setDepthBits(32);

/** Set the colour depth to 24 bits */

cap.setColourBits(24);

2The size of depthbu�er dictates exactly how accurate your depth calculation is likely

to be. For example, a small depthbu�er in a huge world will cause depth artifacts where

the depth order of pixels is wrong causing objects that should be hidden to be visible.

D
R

A
FT

40 CHAPTER 4. COMPONENTS, CONTEXTS AND LISTENERS

/** Set the pixel type to RGBA */

cap.setPixelType(GLCapabilities.RGBA);

/** Make the context double-buffered */

cap.setDoubleBuffered(GLCapabilities.DOUBLE_BUFFER);

.

.

.

Some video cards might not be able to cope with a given set of capabili-
ties and in this case a GLContextInitializationException will be thrown
when either the �rst call to GLContext.makeCurrent()or GLComponent.initialize()
is made. These methods will be elaborated on infra, but if you decide to
catch this exception, you can re-specify some advanced aspects of the re-
quested capabilities to be more conservative.

After the context has been internally created, you will not be allowed to
set any of the capabilities of the context as they will have been internally
locked.

Another aspect of the GLCapabilities class is that for every \setter" method
for all the capabilities, there is a corollary \getter" method that allows you
to query back the values currently de�ned. This is quite useful in cases
where you are requesting an unusual capability and you wish to try a new
one relative to the original. For example, if your request for a 32-bit depth-
bu�er fails, you might wish to try 24. If that fails, try 16 bits. If that fails,
fallback to 12 which is your last usable depthbu�er size before saying that
your application simply can't run on such poor hardware!

In cases where you might wish to create several GLComponents within one ap-
plication that all have the same visual capabilities, you can re-use the same
GLCapabilities object to initialize each GLContext instead of manually
setting the capabilities of each one using the setCapabilities() method.
For example, a 3D editor might have 3 window for the orthographic projec-
tions of the front view, side view and plan view. You can initialize each of
these windows to have the same capabilities by writing

GLComponent planComponent = ...;

GLComponent sideComponent = ...;

GLComponent frontComponent = ...;

/** Set up the first context's capabilities */

GLCapabilities cap =

planComponent.getContext().getCapabilities();

D
R

A
FT

RENDERING CONTEXTS 41

cap.setDepthBits(12);

cap.setDoubleBuffered(GLCapabilities.DOUBLE_BUFFERED);

cap.setColourBits(24);

cap.setPixelType(GLCapabilities.RGBA);

/** Set up the other two context's with identical capabilities */

sideComponent.getContext().setCapabilities(cap);

frontComponent.getContext().setCapabilities(cap);

When creating the actual rendering contexts internally, Magician will con-
vert the values set in the appropriate GLCapabilities object into values
meaningful for each platform. This again abstracts all the unportable and
unpleasant initialization of X Visuals and Win32 PIXELFORMATDESCRIPTOR

away from you.

Context Currency

Rendering contexts contains a snapshot of the state of the OpenGL state
machine at a given point in time. Therefore, from the point of view of
a rendering context, it is \made current", i.e., the snapshot of \OpenGL
state" is copied back into the OpenGL state machine, OpenGL functions
are called and then the context is \swapped out" or \switched out" leaving
the OpenGL state machine in a potentially unde�ned state.

When the context is switched out, the current state of the OpenGL state
machine is copied back into the context which allows us to provide consis-
tency when multiple rendering contexts are in use. The process of switching
contexts in and out is known as \context switching". This is typically quite
an expensive operation since it involves the copying of a reasonably large
quantity of state.

This leads to an interesting problem in that only one rendering context may
be active at any given time. This is an obvious progression of the idea that
a snapshot of \state" is copied to and from the current context. If a second
context was to be made current at the same time as another context was
current, corruption of at least one, if not both, contexts would be inevitable.

With Magician, multiple contexts are handled transparently and safely within
a multi-threaded environment by sophisticated high-speed internal locking
code. However, knowing the facts about contexts can help you in writing
applications that minimises on context switching which can boost perfor-
mance by appreciable amounts.

D
R

A
FT

42 CHAPTER 4. COMPONENTS, CONTEXTS AND LISTENERS

The corollary issue that context switching brings to light is that without
a current rendering context, the results of executing any OpenGL or GLU
methods are unde�ned. Some implementations of OpenGL are more toler-
ant than others and you will see the expected output, but others may cause
immediate crashes or otherwise unde�nable results.

In a multi-threaded GUI environment such as Java and AWT, it becomes
more problematic to keep track of where and when context switching oc-
curs and where and when it should occur. Magician simpli�es the issue
through the GLEventListener interface which places a structure onto Ma-
gician applications. Each of the methods de�ned by GLEventListener and
implemented in GLComponent will automatically perform context switching
for you. That is, you do not need to perform any explicit context switching
in your own applications in these methods.

However, any other method not directly invoked by any of the GLEventListener
methods in your application code that performs any OpenGL or GLU ac-
tivity should perform context switching. AWT event listener methods are
key places in which this activity should be performed.

For example, we might wish to jazz up our white rectangle example such
that when the user presses a key the colour of the rectangle changes to a new
random colour. The AWT event listener method that handles this activity
simply reads

/** Handles keyboard events */

public void keyPressed(KeyEvent evt) {

/**

* Check if we've pressed 'c' or 'C'. If so, change

* the colour!

*/

if (evt.getKeyChar() == 'c' || evt.getKeyChar() == 'C') {

/** Set the new colour */

gl_.glColor3d(Math.random(),

Math.random(),

Math.random());

return;

}

}

This example would not work well depending on which OpenGL implemen-
tation you were using. You forgot to make a context current! To correct
this method, it should be written as

/** Handles keyboard events */

D
R

A
FT

RENDERING CONTEXTS 43

public void keyPressed(KeyEvent evt) {

/**

* Check if we've pressed 'c' or 'C'. If so, change

* the colour!

*/

if (evt.getKeyChar() == 'c' || evt.getKeyChar() == 'C') {

/** Make a rendering context current */

((GLComponent)evt.getComponent()).getContext().makeCurrent();

/** Set the new colour */

gl_.glColor3d(Math.random(),

Math.random(),

Math.random());

/** Release the rendering context */

((GLComponent)evt.getComponent()).getContext().unlock();

return;

}

}

This might look really weird at �rst glance, but it's actually pretty straight-
forward. The bizarre line involving makeCurrent() is using the object-
orientation features within Java's AWT event listeners to ensure that the cor-
rect rendering context is made current. You could use a global GLComponent
variable, for example, glc as

glc.getContext().makeCurrent();

but this would not necessarily be accurate in applications where multiple
GLComponents exist. If the colour was set in the wrong context, very strange
e�ects might arise!

The makeCurrent() method simply attempts to switch in the given render-
ing context. If another context is in operation, the makeCurrent() call will
sit and wait inde�nitely until the other context switches out. At this point,
the waiting context will switch in and processing will continue. This be-
haviour explains the unlock() call that the program makes after the colour
has been set in that the context is switched out allowing other contexts to
switch in and process.

D
R

A
FT

44 CHAPTER 4. COMPONENTS, CONTEXTS AND LISTENERS

Context Switching, Locks and Deadlocks

Since Magician is operating within the multi-threaded and asynchronous
environment of Java and AWT, extra-special care must be taken to ensure
that rendering contexts are not switched in when others are still being used.
Single-threaded are generally not subject to this problem illustrated in Fig-
ure 4.1.

Magician enforces the idea that two contexts cannot be simultaneously

Make context current

Keyboard Event Handler

Switch out context

Make context current

Switch out context

Make context current

Switch out context

Keyboard Event Handler

Switch out context

Make context current

Make context current

Switch out context

Single-Thread Environment

Event processing delayed

Context Switch In

Wait for lock release

Context Switch In

Wait for lock release

Multi-Threaded Environment

Figure 4.1: Multi-threaded and Single-threaded Context Switching

current by using an internal mutual exclusion lock or mutex. This mutex
is acquired by a context when makeCurrent() or lock() is called and is
released when swapBuffers() or unlock() is called. The mutex is shared
between all GLContexts within a given application and is called the global
context lock.

The aforementioned functions are split into two groups which are makeCurrent()
and swapBuffers() and lock() and unlock(). Both groups of functions
acquire and release the mutex but lock() only acquires the mutex and does
not perform a context switch in. unlock() is a bit more complicated in that
it will both release the mutex and switch out the current rendering context.

D
R

A
FT

RENDERING CONTEXTS 45

In the example above, the code used makeCurrent() to acquire the mutex
and make a rendering context current since an OpenGL operation needed
to be executed. However, we used unlock() to release the mutex. Why
not use swapBuffers() instead? Well, swapBuffers() does exactly what it
says it does. It will ip the frame-bu�ers of the rendering context over and
refresh the GLComponent as well as switching out the context and releasing
the mutex. This is not perhaps what you want to happen in a lot of cases
so the unlock() method will do the same things as swapBuffers() but
invisibly.

The lock() method is not really just there for symmetry but can be used
to \choke" context switching for whatever reason. A potential use for this
is to prevent AWT event listeners from updating things when \dangerous"
operations are happening.

For example, you might have a stock market visualization application that
does real-time 3D modelling of stock market uctuations. A Java thread con-
tinuously renders the datasets. However, the main program thread also con-
tinuously reads the stock price changes over a network and re-calculates the
datasets. You obviously don't want the rendering to occur when the datasets
are being recalculated or the image output will be completely wrong. To
stop the rendering occurring during dataset calculation, you could simply
call lock() and acquire the context lock which would prevent the rendering
thread from running until you had �nished calculating the datasets. At that
point, you can call unlock() to start rendering again.

Therefore, the mechanism that Magician uses to ensure context switching
is a safe operation is extremely powerful and exible. However, there is a
fairly deadly caveat known as deadlock.

Deadlocking occurs when a mutex has been acquired but not released and
the process or thread currently acquiring the mutex is waiting on another
resource and therefore cannot release the original mutex.

The simplest way in which deadlock can occur is to overlock in one thread.
That is, after calling lock() or makeCurrent(), you call it again from the
same thread. The following code will cause an overlock.

/** Handles key presses */

public void keyPressed(KeyEvent evt) {

/** Switch in a context */

((GLComponent)evt.getComponent()).getContext().makeCurrent();

D
R

A
FT

46 CHAPTER 4. COMPONENTS, CONTEXTS AND LISTENERS

if (evt.getKeyChar() == 'c' || evt.getKeyChar() == 'C') {

/** Switch in the context */

((GLComponent)evt.getComponent()).getContext().makeCurrent();

.

.

.

The second invocation to makeCurrent() would inde�nitely wait on the
global context lock being released. Given that it had been acquired pre-
viously in the same method, this is unlikely to occur! At this point, your
application would hang. The only solution in this case is for another thread
to release the lock.

Overlocking is quite common when �rst programming with Magician. As I
mentioned in a previous section, the methods de�ned in GLEventListener

and implemented by GLComponent perform internal context switching. How-
ever, you might inadvertently add your own context switching which would
cause an overlock to occur. You should be extremely careful if you wish
to perform manual context switching within any of the GLEventListener

methods!

A true deadlock is a far nastier problem in which two threads have locked
each out. Two resources are usually required here and therefore is quite
unusual to occur within a Magician application. The basic premise here is
that thread A acquires lock A and requests lock B whereas simultaneously
thread B acquires lock B and requests lock A. Since each thread is waiting
on the other's lock, neither can ever free their locks.

Lock-based systems nowadays sometimes have deadlock resolution algorithms
which force one thread to \back o�" and release their lock allowing the
other thread to complete. Since deadlocking is an extremely unusual, and
user-induced, occurrence within Magician applications, Magician does not
implement any deadlock resolution procedures.

The class used to implement the mutexes is supplied with Magician and
is a utility class called CriticalSection. This can be enabled to verbosely
trace locking operations and is detailed in Chapter 8.

D
R

A
FT

\I'M LISTENING." 47

\I'm listening."

Java 1.1 features a radically di�erent AWT event-handling interface to Java
1.0 in that the concepts of listeners and adapters are now being used in place
of the old explicit event handlers.

Listeners are de�ned as interfaces for which you must implement suitable
method bodies. For example, if you wished to handle keyboard input, you
would declare a class as implementing KeyListener. This would require
you to implement three methods

public void keyPressed(KeyEvent event)

public void keyReleased(KeyEvent event)

public void keyTyped(KeyEvent event)

Additionally, within the body of your code you would register the listener
with the AWT component which you wish to handle the events of using the
event handles de�ned within this listener.

Adding and Removing Listeners

Magician provides an interface called GLEventListener3 that de�nes meth-
ods to handle various standard procedures that GLComponents will need to
handle including window resizing, window repainting and initialization of
the GLComponent. The methods currently de�ned within GLEventListener
are

/**

* Is called upon registration of the listener via

* GLComponent.initialize()

*/

public void initialize(GLDrawable component)

/**

* Is called when the window has become exposed and

* requires redrawing

*/

public void display(GLDrawable component)

/** Is called when the window is resized */

public void reshape(GLDrawable component, int x, int y,

3This interface was called GLComponentListener in Magician 1.0.0, but has been re-

named for releases 1.1.0 upwards to be applicable to components other than AWT-based

GLComponents.

D
R

A
FT

48 CHAPTER 4. COMPONENTS, CONTEXTS AND LISTENERS

int width, int height)

/** Returns an OpenGL pipeline object to the listener */

public GL getGL()

These methods provide a framework in which the most standard building
blocks of an OpenGL program can be placed. For example, the initialize()
method might be implemented to contain lighting setup and global OpenGL
state setup since this may only be required once within the lifetime of the ap-
plication since initialize() is invoked once only. The display() method
is called by either AWT when the GLComponent becomes partially or com-
pletely visible and the screen requires redrawing or it can be called man-
ually by you via the standard AWT repaint() method to force a screen
redraw. This is most likely in cases where you are driving animated scenes
within your applications. The reshape() method is invoked when the
GLComponent requires resizing. This usually occurs when the container con-
taining the GLComponent is resized and the AWT LayoutManager associated
with the container is set to make child components automatically �ll the
available space, for example, as exhibited by the BorderLayout manager.
Finally, the getGL() method is invoked when a GLDrawable object, such
as a GLComponent, needs to use OpenGL internally. This is usually just to
ush OpenGL drawing commands via glFlush(). By forcing you to return
an OpenGL pipeline object, you will be able to maintain any tracing or
pro�ling information or use your own custom pipelines internally instead of
having the drawing surface behave as a black box.

Simple applications such as the \white rectangle" demo usually don't im-
plement a large number of listeners which makes it perfectly acceptable to
implement the code for the GLEventListenermethods within the main Java
program.

To add the class containing these methods to the GLComponent as a lis-
tener, the class must be declared as implementing the GLEventListener
interface. For example, the whiteRectangle demo class is declared as

public class whiteRectangle extends Frame

implements GLEventListener, ... {

Therefore, to register this class as being a listener, you only need invoke the
addGLEventListener() method against a GLComponent object. In the case
of the whiteRectangle class, this is achieved by doing

glc.addGLEventListener(this);

Once the initialize()method has been invoked against that GLComponent
object, the methods registered in each listener will be invoked as needed.

D
R

A
FT

\I'M LISTENING." 49

It is also possible to remove registered GLEventListeners from a GLComponent
by invoking the removeGLEventListener() method. This removes the lis-
tener given as the argument from the list of listeners registered against the
given drawing surface.

In order to be able to support advanced multi-pass rendering techniques,
Magician also supports the notion that a GLComponent can have multiple

listeners associated with it. Therefore, one listener might handle the ren-
dering of polygons whereas a second listener might handle computation of
lighting, view volume culling or feedback or selection bu�er operations.

Internal Context Switching and Automatic Repainting

All the methods provided by the GLEventListener interface are imple-
mented within the GLComponent class as performing the appropriate context
switching for you. Thus, when you implement your listener methods in your
program, you need not worry about any context switching operations at all.
These are handled internally for you. Of course, this does not restrict you
from manually managing context switches if you so desired.

The functionality inherent within the display() handling code operates
in a way that automatically updates the GLComponent by bu�er ushing or
swapping. This may not be desired if you are drawing, say, a rubber-banded
box in a 3D editing tool. You might wish to render the rubber-band over the
scene in an overlay or underlay plane without causing automatic repaints to
occur.

This automatic behaviour can be disabled by using the setFlushOnRepaint()
method de�ned within GLComponent. This method takes a boolean value
as an argument. A value of true speci�es the default behaviour of auto-
matic bu�er updating whereas a value of false will disable bu�er ush-
ing completely for that GLComponent. You must now manually invoke
swapBuffers() to update the component.

A �nal note regarding listeners is that even though they are a Java 1.1
feature, Magician has implemented listeners in such a way that they can be
used within Java 1.0 compliant browsers such as Microsoft Internet Explorer
3. This helps ensure that applications that you write using Magician will

D
R

A
FT

50 CHAPTER 4. COMPONENTS, CONTEXTS AND LISTENERS

work portably on a large number of machines.

Driving Animations with GLComponent

The basic functionality of the GLComponent and GLEventListener classes
is quite likely to satisfy most application requirements. However, if your
application is in some way dynamic in that it animates the scene in some
way, then can GLComponent cope?

By default, GLComponent objects react to events generated against them,
for example, reshape and redraw events. However, in the case of animation
scene refreshes need to take place on a regular basis.

There are two ways in which you can enable animation in your applica-
tions, the simple way and the complicated, but more powerful, way. The
di�erences between these are that the simple method uses the GLComponent
to drive animation automatically and the second method requires that you
set up your own thread to drive component repainting on a scheduled basis.
I shall explore the subject of complex animations in Chapter 4.

Repetitive, Continuous Animation

The simplest and most portable way to drive animated scenes is to let
GLComponent drive it for you. This method requires little additional coding
to your applications and is guaranteed to perform optimally and safely.

To switch a GLComponent into a mode that can drive animations, you sim-
ply need to invoke the method start() against a GLComponent after you
invoke initialize(). This initializes a thread within the component which
repeatedly causes scene redraws to occur at regular intervals. What actu-
ally happens in these cases is that the display() method of any registered
GLEventListeners of that component is called regularly.

Therefore, to implement animation, you can simply put any application
logic that moves objects in the scene into the display() method, prefer-
ably after the rendering has taken place. For example, if you wanted the
white rectangle demo to spin the square, you can implement the display()
method as

/** Renders the scene */

public void display(GLComponent component) {

D
R

A
FT

DRIVING ANIMATIONS WITH GLCOMPONENT 51

/** Clear the window */

gl_.glClear(GL.GL_COLOR_BUFFER_BIT);

/** Set the drawing colour to white */

gl_.glColor3f(1.0f, 1.0f, 1.0f);

/** Draw the rectangle */

gl_.glPushMatrix();

gl_.glRotatef(angle, 0.0f, 0.0f, 1.0f);

gl_.glBegin(GL.GL_POLYGON);

gl_.glVertex3f(0.25f, 0.25f, 0.0f);

gl_.glVertex3f(0.75f, 0.25f, 0.0f);

gl_.glVertex3f(0.75f, 0.75f, 0.0f);

gl_.glVertex3f(0.25f, 0.75f, 0.0f);

gl_.glEnd();

gl_.glPopMatrix();

/** Update the spin angle */

angle += 5;

if (angle >= 360.0f) {

angle -= 360.0f;

}

}

This example demonstrates that animation-based applications can be writ-
ten quickly and easily with Magician.

Starting and Stopping Animation

The ability to drive animation from within GLComponent is only one facet of
the overall issue. It is also necessary to able to shut o� the animation. For
example, if the application has been minimized you may not want the anima-
tion to continue running sucking up processor time when no one is watching!

In addition to the start() method, the GLComponent class de�nes three
other methods that can be used to control the thread internal to each com-
ponent. The stop() method completely shuts down the rendering thread
and reverts the GLComponent back to being purely reactive. A good exam-
ple of this is in the \Molecule Viewer" demonstration program bundled with
Magician in that when you spin a molecule about it will automatically con-
tinue spinning at that angle. This is easily achieved by invoking start()
on the GLComponent when the mouse is released thus starting the spinning.
Once the mouse is clicked once more, the stop() method is invoked ceasing
the spinning of the molecule. Simple and powerful.

D
R

A
FT

52 CHAPTER 4. COMPONENTS, CONTEXTS AND LISTENERS

However, in cases such as when a window containing a GLComponent is
minimized, use of stop() and start() to control the rendering thread exe-
cution is quite hefty as these require safe shutdown and creation and initial-
ization of Thread objects. A far quicker and cheaper alternative is to use
the suspend() and resume() methods that simply \pause" the animation.

For example, minimization of the white rectangle demonstration program
could be implemented quite easily by adding a WindowListener to the Frame
which contains the GLComponent and implementing the windowIconified()
method as

/** This method is invoked when the window is minimized */

public void windowIconified(WindowEvent evt) {

/** Assuming we have a GLComponent called ``glc'' */

glc.suspend();

}

Similarly, the windowDeIconified() method which is invoked when the
window is restored can be implemented as

/** This method is invoked when the window is restored */

public void windowDeIconified(WindowEvent evt) {

/** Assuming we have a GLComponent called ``glc'' */

glc.resume();

}

These methods are extremely useful when Magician-enhanced applets are
being used within web pages. For example, say you have an applet contain-
ing the spinning white rectangle on a web page. If you move from that page,
if you don't do something about the animation, it will continue to run in
the background. Imagine that you have visited several pages that each have
animations running. Before long your machine will be running like treacle
under the weight of numerous applets animating with no one to watch them!

The Applet class de�nes several methods that are invoked at various stages
within the applet's life-cycle and these can be used to control the animation
of your applets. The methods are

init() Invoked once when the applet is created.

destroy() Invoked once when the applet is destroyed. This is usually when
the browser is exited.

D
R

A
FT

DRIVING ANIMATIONS WITH GLCOMPONENT 53

start() This is called whenever the applet is started after initialization.
Also, if you have moved from the page and returned to it, start() is
called again.

stop() This is called when you \leave" the web page with the applet on it.

With these method descriptions available to you, it's actually quite easy to
see how GLComponent animation controls can be added in. Each method
can be implemented as follows

public void init() {

/** No action required for init() */

}

public void destroy() {

/** We want to completely zap the GLComponent here */

glc.destroy();

}

public void start() {

/** Resume the GLComponent's thread, if it exists */

glc.resume();

}

public void stop() {

/** Pause the GLComponent's thread if it exists */

glc.suspend();

}

A �nal note on the stop(), suspend() and resume() methods is that if
start() has not been invoked against that GLComponent, these methods
will have no e�ect whatsoever! It's perfectly safe (although completely
pointless!) to invoke them against a non-animating GLComponent.

There are some utility methods that you can use to detect the current status
of a GLComponent, i.e., whether it has had start() called or whether it is
suspended or not. These methods are

isInitialized() Returns true or false signifying whether or not initialize()
has been invoked against this component.

isSuspended() Returns true or false signifying whether or not the com-
ponent is suspended, i.e., has suspend() been called.

D
R

A
FT

54 CHAPTER 4. COMPONENTS, CONTEXTS AND LISTENERS

isRunning() Returns true or false signifying whether or not start() has

been invoked against this component.

The animation capabilities provided within GLComponent are therefore ex-

tremely simple and repetitive and are invoked on a reasonably regular, but

not time-accurate, basis. If you require accurately timed updates for key-

frame animations or video stream editing, this form of driving animation is

probably too simplistic for your needs.

However, if you simply require things to move about using these capabilities

is an extremely easy way to achieve it.

Tuning Automatic Repainting

By default, using the built-in functionality of GLComponent to drive anima-

tions uses some internal code that works out how to nicely schedule threads

smoothly across each JVM implementation to reduce \choppiness".

In general, each frame of animation delays by 15ms to avoid CPU hog-

ging. If you don't want your animations to be particularly equitable and are

looking for the full speed-kick available to you, you can reduce this value

all the way down to 0ms, i.e., no delay at all. To e�ect this, you can use

the setSleepDuration() and getSleepDuration()methods de�ned within

GLComponent which set and return the current delay respectively.

\Manual" Thread Animations

The most common way in which you are likely to implement animations

withinMagician, without using the internal functionality, is viamulti-threading.

That is, a new thread of execution will be created to drive your animation.

This technique also incurs di�culties regarding thread management across

di�erent Java VMs. For example, Java 1.2 does not support various thread

management methods that Java 1.1 supported. Similarly, Netscape has

never supported certain thread methods such as suspend() and resume()

which implies that you must be very careful about the way in which you

shutdown your animation threads or pause animation.

D
R

A
FT

\MANUAL" THREAD ANIMATIONS 55

However, you may have complex time-based systems that require more ac-

curate, �ne-grained control over the animation updates than the internal

GLComponent-driven functionality can provide.

Multi-threading

The main way in which you may handle animation with Java's multi-threading
is to update the animation values from within the run() method supplied
by the Runnable interface, then call repaint() against the component or
components in your application. For example

/** The thread to drive the animation */

private Thread aThread =

new Thread(this, "animation thread");

/** The OpenGL Component */

GLComponent component = ...;

aThread.setPriority(Thread.MIN_PRIORITY);

aThread.start();

/** Implements the method required by the Runnable interface */

public void run() {

while (aThread != null) {

/** Update spin angle */

angle++;

if (angle >= 360.0) {

angle -= 360.0;

}

/** Repaint the component */

component.repaint();

}

}

This approach is fairly simplistic and will partially emulate the capability
available within GLComponent. To extend this to handle more accurate tim-
ing, you can simply sleep the thread for a given period of time after the
repaint() method has been invoked. For example,

/** Sleep for 1 second */

try {

Thread.currentThread().sleep(1000);

} catch (InterruptedException e) {

D
R

A
FT

56 CHAPTER 4. COMPONENTS, CONTEXTS AND LISTENERS

e.printStackTrace();

}

This will give you a fairly accurate once-per-second update and drive the

animation accordingly.

There are several downsides to this approach that are worth mentioning.

Firstly, the accuracy of thread timing may di�er slightly between Java Vir-

tual Machines leading to slightly di�erent results. Secondly, you will have

to perform your own thread management and �nally, you cannot necessarily

guarantee that a thread will be restarted by the thread scheduler at any

given time.

This problem is quite a tricky one to circumvent. To give your animation

thread a better chance to switch back in again, you might wish to assign a

higher thread priority to it. This will certainly help it be selected by the

thread scheduler, but it may also swamp the system and block out other im-

portant threads such as those that drive AWT event handling. Therefore,

your application may start processing your animations 100% of the time but

the GUI will be unresponsive and, worse still, the results of the rendering

are unlikely to ever appear!

A saner solution is to calculate the di�erence between the last update and

the current update in terms of time and sleep for that variable amount.

This will smooth out the frame rate of the application somewhat and still

be gentle on other threads within the system.

When To Context Switch

The second way in which you might wish to use Java's multi-threading to
drive animation is to execute OpenGL commands from within the anima-
tion loop instead of simply updating variables and letting the display()
method take care of things.

This technique is slightly more tricky as it involves additional context switch-
ing work by you. However, if you have read the appropriate sections on
context switching in this guide, you'll have no problems!

The previous example simply invoked the repaint() method to render the
scene. This is perfectly safe as repaint() invokes the display() meth-
ods of each GLEventListener attached to the component and this manages

D
R

A
FT

\MANUAL" THREAD ANIMATIONS 57

its own context switching. However, say you wish to change the state of
OpenGL in your animation? What do you need to do in addition?

The only additions you need make are to make a context current prior to
executing any OpenGL commands and switching the context out after all
the OpenGL commands have executed but before you call repaint(). For
example

/** Implemented by the Runnable interface */

public void run() {

while (aThread != null) {

/** Make the context current */

component.getContext().makeCurrent();

/** Do some OpenGL stuff */

gl_.glColor3f(1.0, 0.0, 0.0);

gl_.glRotatef(angle, 0.0, 1.0, 0.0);

/** Release the context lock */

component.getContext().unlock();

/** Refresh the scene */

component.repaint();

/** Update the angle of rotation */

angle++;

if (angle >= 360.0);

angle -= 360.0;

}

}

}

Explicit Redraw Control

After repaint() has returned, you can make the OpenGL context current
again to perform other operations if you so desired given you the ability to
perform multiple updates within one animation loop. You may wish to use
this functionality with multi-pass rendering techniques or stereo rendering.
For example, we might wish to render once into the left bu�er and once into
the right bu�er for stereo rendering. However, when we call repaint(), we
don't actually want a bu�er swap to occur until after both bu�ers have been
drawn into. In this scenario, we would invoke setFlushOnRepaint() with
a parameter of false against the GLComponent to disable automatic bu�er
swapping and manually call swapBuffers(). The following code illustrates

D
R

A
FT

58 CHAPTER 4. COMPONENTS, CONTEXTS AND LISTENERS

the process

/** Implemented by the Runnable interface */

public void run() {

while (aThread != null) {

/** Switch off automatic buffer swapping */

component.setFlushOnRepaint(false);

/** Make the context current */

component.getContext().makeCurrent();

/** Select the left buffer */

gl_.glDrawBuffer(GL.GL_LEFT);

/** Switch out the context */

component.getContext().unlock();

/** Draw the left scene */

component.repaint();

/** Switch in the context again */

component.getContext().makeCurrent();

/** Select the right buffer */

gl_.glDrawBuffer(GL.GL_RIGHT);

/** Switch out the context */

component.getContext().unlock();

/** Redraw the scene into the right buffer */

component.repaint();

/** Flush the complete scene */

component.getContext().makeCurrent();

component.getContext().swapBuffers();

}

}

Thus, Magician can be used to exert powerful control over the updating of

scenes through animation and Java's multi-threading model.

D
R

A
FT

ASSOCIATED MAGICIAN DEMO PROGRAMS 59

Associated Magician Demo Programs

testGL.java This demonstration program simply creates a new window

and draws a shaded black to blue polygon within it.

mtpaperplane.java This demonstration shows simple animation using the

in-built animation features of GLComponent and the use of pro�ling

pipelines.

multiView.java This demonstration creates three components and drives

animations in all three simultaneously.

molview/molview.java This demonstration illustrates the use of GLComponent-

driven animation to start and stop automatic spinning of molecules.

hud/hud.java This demonstration illustrates the use of multiple GLEventListeners

attached to a single GLComponent allowing you to perform layered

multi-pass rendering extremely simply.

D
R

A
FT

60 CHAPTER 4. COMPONENTS, CONTEXTS AND LISTENERS

D
R

A
FTChapter 5

Geometry Producers

The GLU de�nes three groups of functions that can be used to generate

complex geometry in a simple way. The three types of geometry in question

are Quadric Objects which are shapes that can be expressed with a quadric

equation, NURBS surfaces and tesselated polygons.

These three function groups are quite discrete and are represented in Ma-

gician in two di�erent ways. Each group has the methods related to it imple-

mented within one of three classes GLUQuadric, GLUNurbs and GLUTesselator.

Similarly, these methods are also implemented within the GLU pipeline

classes to maintain compatibility with the GLU speci�cation. However, both

access paths end up using the method de�ned within the special classes.

GLU Quadric Rendering

Quadric objects are geometrical shapes that can be described with a quadratic
equation. This is outside the scope of this guide, but it allows us to create
various shapes easily such as cones, spheres and disks.

Magician provides a special class called GLUQuadric that encapsulates an
object described by a quadratic equation. The GLUQuadric class is used
internally by the GLU pipelines. GLU de�nes various methods for manipu-
lating quadric objects and it is these methods that are replicated into the
GLUQuadric class. Therefore, when the GLU method gluNewQuadric()
is invoked, it actually internally routes the call to the constructor to the

61

D
R

A
FT

62 CHAPTER 5. GEOMETRY PRODUCERS

GLUQuadric class. This allows you to therefore take full advantage of any
overloaded GLU pipelines when using quadric objects.

The following example program demonstrates the use of GLUQuadric ob-
jects with Magician and renders the output shown in Figure 5.1.

Figure 5.1: GLU Quadric Objects

.

.

.

/** Initialization stuff */

public void initialize(GLComponent component) {

/** Build some quadrics! */

GLUQuadric qobj = glu_.gluNewQuadric();

/** Define the sphere */

glu_.gluQuadricDrawStyle(qobj, GLU.GLU_FILL);

D
R

A
FT

USING GLU NURBS 63

glu_.gluQuadricNormals(qobj, GLU.GLU_SMOOTH);

glu_.gluSphere(qobj, 0.75, 15, 10);

/** Define the cylinder */

glu_.gluQuadricDrawStyle(qobj, GLU.GLU_FILL);

glu_.gluQuadricNormals(qobj, GLU.GLU_FLAT);

glu_.gluCylinder(qobj, 0.5, 0.3, 1.0, 15, 5);

/** Define the disk */

glu_.gluQuadricDrawStyle(qobj, GLU.GLU_LINE);

glu_.gluQuadricNormals(qobj, GLU.GLU_NONE);

glu_.gluDisk(qobj, 0.25, 1.0, 20, 4);

/** Define the partial disk */

glu_.gluQuadricDrawStyle(qobj, GLU.GLU_SILHOUETTE);

glu_.gluQuadricNormals(qobj, GLU.GLU_NONE);

glu_.gluPartialDisk(qobj, 0.0, 1.0, 20,

4, 0.0, 225.0);

}

Using GLU NURBS

NURBS (Non-Uniform Rational B-Spline) are either curves or surfaces that
can be described mathematically using evaluators. These describe polyno-
mial or rational splines or surfaces of any degree and cover B�ezier splines
and surfaces and Hermite splines. The mathematics of this is beyond the
scope of this book.

To the programmer, NURBS can be used to represent surfaces and curves
that may be subdivided mathematically to produce \�ner" surfaces with a
higher degree of tesselation.

OpenGL, through the GLU interface, provides you with a set of functions
that allow you to describe and generate 1- and 2-dimensional NURBS, that
is, curves and surfaces.

As with quadrics, Magician encapsulates a NURBS object within the GLUNurbs
class. This class is used within the Magician GLU interface as GLUQuadric
is for quadrics. The following source code shows how GLUNurbs can be used
for generating and rendering a 2-dimensional NURBS surface, the output of
which can be seen in Figure 5.2.

.

D
R

A
FT

64 CHAPTER 5. GEOMETRY PRODUCERS

Figure 5.2: A NURBS Surface

.

.

/** Control points for the bezier surface */

float[][][] ctlpoints = new float[4][4][3];

/** NURBS renderer object */

GLUNurbs theNurb = glu_.gluNewNurbsRenderer();

/** Initialization stuff */

public void initialize(GLComponent component) {

/** Create the control points for the surface */

for (int u = 0 ; u < 4 ; u++) {

for (int v = 0 ; v < 4 ; v++) {

ctlpoints[u][v][0] = (float)(2.0 * (u - 1.5));

ctlpoints[u][v][1] = (float)(2.0 * (v - 1.5));

if ((u == 1 || u == 2) &&

(v == 1 || v == 2)) {

ctlpoints[u][v][2] = 3.0f;

D
R

A
FT

USING GLU NURBS 65

} else {

ctlpoints[u][v][2] = -3.0f;

}

}

}

/** Setup the NURBS state */

theNurb.nurbsProperty(GLU.GLU_SAMPLING_TOLERANCE,

25.0f);

theNurb.nurbsProperty(GLU.GLU_DISPLAY_MODE,

GLU.GLU_FILL);

}

/** Draws the scene */

public void display(GLComponent component) {

float knots[] =

{ 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f };

/** Do the OpenGL stuff */

gl_.glClear(GL.GL_COLOR_BUFFER_BIT |

GL.GL_DEPTH_BUFFER_BIT);

gl_.glPushMatrix();

gl_.glRotatef(330.0f, 1.0f, 0.0f, 0.0f);

gl_.glScalef(0.5f, 0.5f, 0.5f);

theNurb.beginSurface();

theNurb.nurbsSurface(8, knots, 8, knots,

4 * 3, 3, ctlpoints,

4, 4, GL.GL_MAP2_VERTEX_3);

theNurb.endSurface();

/** Render the vertices, if desired */

if (showPoints) {

gl_.glPointSize(5.0f);

gl_.glDisable(GL.GL_LIGHTING);

gl_.glColor3f(1.0f, 1.0f, 1.0f);

gl_.glBegin(GL.GL_POINTS);

for (int i = 0 ; i < 4 ; i++) {

for (int j = 0 ; j < 4 ; j++) {

gl_.glVertex3f(ctlpoints[i][j][0],

ctlpoints[i][j][1],

ctlpoints[i][j][2]);

}

D
R

A
FT

66 CHAPTER 5. GEOMETRY PRODUCERS

}

gl_.glEnd();

gl_.glEnable(GL.GL_LIGHTING);

}

gl_.glPopMatrix();

}

Using GLU Tesselators

OpenGL is restricted in the types of polygon it can render to triangles and
convex polygons. That is, if you draw a line joining any two points in the
polygon, that line must not intersect with any other lines. If you look at
the top-right polygon in Figure 5.3, you can see that a line drawn between
two points has a good chance of intersecting with the polygon shape.

Under OpenGL, the resulting shape drawn by a concave or non-convex

Convex Polygons Concave Polygons

Figure 5.3: Polygons

polygon is unde�ned. It may draw the shape correctly, or it might draw
part of the shape or nothing at all. To render these polygons correctly, you
need to split them down into either triangles or convex polygons as shown
in Figure 5.4. This procedure is known as tesselation, or if the non-convex
polygons are split completely into triangles, triangulation.

D
R

A
FT

USING GLU TESSELATORS 67

Fortunately, OpenGL provides a tesslelator within GLU that can be used

Figure 5.4: Split Polygons

to perform tesselation for you. This operates in C by allocating a tesselator
object, specifying polygons and feeding vertices into the tesselator. You also
register callback functions for di�erent aspects of tesselation which are called
by the tesselator as it's working.

The basic tesselator callbacks are called when a new polygon is to be written,
when a vertex is being written and when a polygon de�nition ends. These
functions usually correspond to glBegin(), glVertex3f() and glEnd() be-
ing called. For example, code to initialize a simple tesselator in C might look
something like

/** Create a new tesselator and setup the callbacks */

GLUtriangulatorObj *tobj;

tobj = gluNewTess();

gluTessCallback(tobj, GLU_BEGIN, glBegin);

gluTessCallback(tobj, GLU_VERTEX, glVertex3Dv);

gluTessCallback(tobj, GLU_END, glEnd);

/** Start a new polygon definition to tesselate */

gluBeginPolygon(tobj);

This system is extremely powerful as any callback function can be used
which can arbitrarily warp the tesselator vertex data if desired before send-
ing to OpenGL.

D
R

A
FT

68 CHAPTER 5. GEOMETRY PRODUCERS

However, callbacks can be extremely �ddly to use and there is no simi-
lar corresponding functionality within Java that can be used.

Magician takes a simpler approach to the problem and has de�ned a special
tesselator class called GLUTesselator. When created, this class automati-
cally registers default callbacks for each of the standard tesselator functions.
These special callbacks, instead of routing data directly to OpenGL, pass the
data back into a Java class which can use the standard Magician OpenGL
pipelines to render the tesselated data. There are methods corresponding
to each standard callback being begin(), end(), vertex(), error() and
edgeFlag().

For example, the above C code can be re-written as

GLUTesselator tobj = new GLUTesselator();

glu_.gluBeginPolygon(tobj);

However, using the standard GLUTesselator class will result in messages
such as

GLUTesselator: begin(): override this method!

being displayed as tesselation occurs. The GLUTesselator class itself should
not be used for tesselation but should be subclassed and the 5 standard
methods overridden with your own functionality. For example, a Magician
tesselator object corresponding to the C fragment above can be written as

public class SomeTesselator extends GLUTesselator {

/** The functionality for the GLU_BEGIN callback */

public void begin(int mode) {

gl.glBegin(mode);

}

/** The functionality for the GLU_VERTEX callback */

public void vertex(float[] data) {

gl.glVertex3fv(data);

}

/** The functionality for the GLU_END callback */

public void end() {

gl.glEnd();

}

}

D
R

A
FT

USING GLU TESSELATORS 69

and the C code fragment re-implemented as

/** Create a new tesselator */

SomeTesselator tobj = new SomeTesselator();

/** Start polygon tesselation */

glu_.gluBeginPolygon(tobj);

The GLU tesselators operate in subtly di�erent modes depending on what
data is pushed into them and which callbacks are registered. If possible, the
tesselator will tesselate the incoming vertex data into triangle strips instead
of triangles which are then passed to the appropriate callbacks for process-
ing. However, this behaviour only occurs when the \edge ag" callback isn't
registered at all.

By using the default GLUTesselator constructor, all the GLU 1.1 callbacks
are registered being, begin, end, vertex, edgeFlag and error. However,
you can specify which callbacks you wish to register in a new GLUTesselator
constructor which takes an integer bitmask as an argument. For example,
the following code snippet only registers the begin, end and vertex call-
backs, i.e., the bare minimum to actually tesselate something!

/** Create a new tesselator with only the given callbacks */

someTesselator tess = new someTesselator(BEGIN_CALLBACK |

END_CALLBACK |

VERTEX_CALLBACK);

A point of interest regarding the OpenGL pipeline object that is used within

the tesselator implementation example above is worth mentioning. The

GLUTesselator base class contains CoreGL and CoreGLU objects called gl

and glu that can be used within any subclasses of GLUTesselator to route

OpenGL and GLU methods through. This saves you declaring your own,

although if you want to take advantage of a composable pipeline, you can

declare your own locally within your tesselator subclass and use those in-

stead.

A �nal point is that Magician currently only portably implements the GLU

1.1 tesselator speci�cation.

D
R

A
FT

70 CHAPTER 5. GEOMETRY PRODUCERS

The Shapes Utility Class

Magician also supplies a utility class called com.hermetica.util3d.shapes
which de�nes methods that will generate many common geometrical shapes
that you can use within your programs. C programmers will be familiar with
these shapes as these routines were implemented �rstly in the tk toolkit that
historically was supplied with some implementations OpenGL and latterly
in GLUT.

The various shapes that can be generated are the cone, cube, tetrahedron,
dodecahedron, icosahedron, octahedron, sphere, torus and teapot. These func-
tions operate in two di�erent modes that generate either solid or wire-
frame objects. Therefore, to generate a solid teapot you would call the
solidTeapot() method with appropriate arguments. A wire-frame teapot
can be generated by invoking wireTeapot(). All the methods de�ned within
this class are declared as being static. Therefore, to use them, simply
invoke shapes.wireTeapot() and so on. You must remember to have a
current rendering context before you invoke any of these methods or unpre-
dictable results may ensue.

The methods within the shapes class are all written in pure Java which
ensures that they will operate portably across all platforms Magician sup-
ports. This also implies that on unoptimized Java VMs, performance on
complex objects such as the teapot may be poor. To avoid repeated perfor-
mance impacts, it is wise to create a display list encapsulating each object
that you plan on using. This will reduce the quantity of Java code that needs
to be interpreted in order to produce the shape. For example, encapsulating
a solid teapot in a display list can be written as

/** Generate a new display list identifier */

int teapotList = gl_.glGenLists(1);

/** Create the display list with the teapot */

gl_.glNewList(teapotList, GL.GL_COMPILE);

shapes.solidTeapot();

gl_.glEndList();

Some of the shapes take arguments allowing you to specify the �neness of

tesselation. That is, a higher degree of tesselation will produce a �ner shape

using many triangles whereas a lower degree of tesselation will produce a

rougher shape but with far less triangles. For example, you might wish to

render a highly tesselated sphere for close-up objects and a roughly tesse-

lated sphere for distant objects. This will give you maximum exibility of

the tradeo� between visual quality and rendering speed. The \Molecule

D
R

A
FT

ASSOCIATED MAGICIAN DEMO PROGRAMS 71

Figure 5.5: \Throwing Shapes" Demo

Viewer" demo bundled with Magician illustrates this technique.

The shapes generated with the shapes class also generally automatically

generate texture coordinates that can be used to map textures onto the

shapes. The texture coordinate mapping can be altered by manipulating

the OpenGL texture stack as normal. The \USS Enterpoop" demo bundled

with Magician demonstrates warping textures on a cube.

Finally, the \Throwing Shapes" demo demonstrates the visual qualities of

all the shapes that can be generated with the shapes class. An example

of this in action can be seen in Figure 5.5. The full source code for this

demonstration is available with Magician and demonstrates the ability to

encapsulate shapes within display lists and to scale the shapes while ensur-
ing the normals are still correct amongst other things.

Associated Magician Demo Programs

redbook/quadric.java This demonstration illustrates the use of GLU Quadric

objects within Magician applications

redbook/bezcurve.java This demonstration uses 1D NURBS evaluators

D
R

A
FT

72 CHAPTER 5. GEOMETRY PRODUCERS

to draw a single curve and its control points.

redbook/bezsurf.java This demonstration draws a wireframe 2D NURBS
surface

redbook/bezmesh.java This demonstration draws a shaded 2D NURBS

surface

redbook/texturesurf.java This demonstration draws a textured 2D NURBS

surface where the texture has also been generated using the NURBS
evaluator functions

redbook/surface.java This demonstration draws a NURBS surface with

toggleable control point display

glut/tessdemo.java This demonstration allows you to draw complex poly-

gons on a grid and then tesselate those polygons for rendering by
OpenGL

glut/dinoball.java This demonstration tesselates complex polygons into

a three-dimensional dinosaur!

glut/dinoshade.java This demonstration tesselates complex polygons into

a three-dimensional dinosaur and also allows you to control various
environmental and rendering e�ects such as reection and shadow-

casting all in real-time!

throwShapes.java This demonstration allows you to selectively display

each of the primitive available through the utility shapes class.

enterprise.java This demonstration draws the USS Enterpoop chasing a
Borg cube over a planet's surface. The planet's surface and Borg cube

are both textured from images stored at URLs.

D
R

A
FTChapter 6

Image Input and Output

This chapter discusses several advanced features of Magician that can be

used to provide powerful texture-map handling and the production of high-
quality output from rendered scenes.

Texture Maps

Texture-mapping is an extremely common activity in 3D applications today
as the speed of processors increases and dedicated graphics cards become
cheaper and more widely available.

OpenGL features several functions that allow for the mapping of textures
declared as blocks of data to be mapped onto the surface of geometries in a
scene. However, there are no standard image loading mechanisms de�ned in
OpenGL for loading external images that can be converted into data blocks
suitable for texture-mapping. This requires that OpenGL developers using
C or C++ must either write their own image decoding routines or integrate
existing image decoding libraries into their applications.

Magician provides a more seamless method to load external image data for
texture-mapping that uses the existing image decoding routines that stan-
dard Java uses. Java features the notion of an abstracted Image class that
encapsulates images in many common formats such as GIF and JPEG. Java
images also have the ability to be loaded over the network by specifying
their location as a URL instead of simply as a �lename on a local disk.

73

D
R

A
FT

74 CHAPTER 6. IMAGE INPUT AND OUTPUT

Magician uses this remote image loading and decoding functionality in the
com.hermetica.util3d.Texture class which provides a portable way to
load texture-map data. This class can load and decode images from any net-
work location via URLs and produces data in the format that can be used by
OpenGL's texture-mapping routines. This functionality allows developers
to write network-aware OpenGL applications and standard OpenGL appli-
cations that both use texture-mapping with minimum fuss. For example, a
short code stub to load texture data from a URL can be written as

Texture tableTexture = null;

if (tableTexture == null) {

try {

Image tableImage =

Toolkit.getDefaultToolkit().getImage(

new URL("http://www.arcana.co.uk/img/logo.gif"));

tableTexture =

new Texture(tableImage, glc, Texture.SCALE_NEAREST);

} catch (Exception e) {

e.printStackTrace();

}

}

while (tableTexture.isValid() == FALSE) {

/** Wait 100ms and retest */

Thread.currentThread().sleep(100);

}

.

.

.

OpenGL has the limitation that texture-map data must be dimensioned as

being to the power of 2 on each axis. For example, a texture-map of 129�140

would be illegal whereas a texture-map of 128 � 256 would be legal. The

Texture class features the ability to automatically scale textures as they are

downloaded to provide legal texture-map data to you.

To access this functionality, an additional argument may be passed in the

constructor of a new Texture object. There are several options to scaling

the texture.

SCALE DONT This value speci�es that your texture data is already correctly

dimensioned and that the Texture class should not attempt to inter-

D
R

A
FT

TEXTURE MAPS 75

nally scale the texture. Using this value on pre-scaled textures will
result in much faster processing of the texture as the texture is down-
loaded.

SCALE NEAREST This value speci�es that each axis of the image should be
independently scaled to the nearest power of two. For example, an
image originally sized at 129 � 255 will be scaled to 128 � 256. If the
image is already correctly scaled, no scaling will occur. This option is
the default if no overriding value is set via the Texture constructor.

SCALE MAGNIFY This value scales both axes of the image up to the next
power of two. If the image is already scaled correctly, no scaling will
happen. For example, an image of dimension 129� 257 will be scaled
to 256 � 512 using this setting.

SCALE MINIFY This value is the corollary of SCALE MAGNIFY in that both
axes of the original image are scaled down to the nearest power of
two. For example, an original image of dimensions 127 � 255 will be
scaled to 64 � 128. Again, if the original image is already correctly
scaled, no rescaling will occur.

Since texture loading uses the underlying Java AWT Image mechanisms,
the actual retrieval and decoding of the texture data uses the asynchronous
ImageProducer interface. This has the knock-on e�ect that the texture data
may not be ready for fetching for some seconds after you invoke the Texture
constructor. To alleviate problems that may occur with trying to use tex-
ture data that has not completely downloaded, the Texture class features
a method isValid() which returns a boolean value signifying whether the
texture data has been downloaded and validated. Only when isValid()
returns true should the texture data be used.

Other useful methods de�ned within the Texture class for ascertaining infor-
mation on the downloaded texture are getWidth() and getHeight() which
return the size of the texture after any scaling has occurred. These meth-
ods can be used to return the size of the texture for passing into OpenGL
texture-mapping routines.

These aspects of texture handling can be used easily within your code when
setting up texture objects. For example, if you wished to use gluBuild2DMipmaps()
to create a group of mip-mapped texture from your texture data, you only
need to write

Texture texture = null;

D
R

A
FT

76 CHAPTER 6. IMAGE INPUT AND OUTPUT

/** Fetch the texture */

/** Setup texturing in OpenGL */

if (texture.isValid()) {

glu_.gluBuild2DMipmaps(GL.GL_TEXTURE_2D, 4,

texture.getWidth(),

texture.getHeight(),

GL.GL_RGBA, GL.GL_UNSIGNED_BYTE,

texture.getTexture());

/** Other texture setup here, e.g., glTexParameteri() */

}

Once the Texture object has been downloaded and validated, it may be
re-used over and over again as the texture is now managed within OpenGL.
If you are �nished with a texture completely, you should �rstly invoke
glDeleteTextures() within OpenGL to clear the texture cache, then set
the Texture object to null to ensure it is garbage-collected.

Image and PostScript Production

Magician can be used to directly dump images, or snapshots, of the frame-
bu�er as it is rendering through the extension of the standard Java ImageProducer
interface. Similarly, high-quality PostScript output can be easily generated
using the same interface.

The GLComponent class implements the Java ImageProducer interface mean-
ing that you may request any GLComponent to transmit image data, in this
case the framebu�er contents, to registered ImageConsumers which operate
in some way upon the data. Figure 6.1 illustrates the principles involved.

File Output Writers

Magician provides two output writer classes with the standard distribution
which write Portable Pixmap, or PPM, format images and Encapsulated
PostScript documents. Adding extra writer formats is extremely straight-
forward and the source code of the two supplied writers should be used as
guidelines.

D
R

A
FT

IMAGE AND POSTSCRIPT PRODUCTION 77

EPSWriter
ImageConsumer

PPMWriter
ImageConsumer

GLComponent
ImageProducer

Writes EPS file

Writes PPM file

Figure 6.1: The ImageProducer / ImageConsumer Architecture

These two classes simply create a new �le within the current directory from
which the Magician application was started. The EPSWriter class writes
images in the format of epswriter?.eps where ? is replaced with a unique
integerial index. Similarly, the PPMWriter class writes �les with the naming
convention of ppmwriter?.ppm. The standard pre�x for �lenames can be
set from the constructor of each class.

Using these classes within your Magician applications is extremely straight-
forward and generally involves adding a single line of code! For exam-
ple, to write out a defaultly named PPM �le containing the contents of
a GLComponents framebu�er, you need only write code like

/** Render the scene */

public void display(GLDrawable component) {

/** Render the scene */

...

/** Write out the buffer contents */

PPMWriter writer = new PPMWriter(component);

}

This will cause the contents of the back-bu�er to be written out to a uniquely
named �le. The EPSWriter class can be used in exactly the same way.

By default, the back bu�er is used to read the framebu�er contents from
to ensure a cleaner image grab, however, this behaviour can be changed by
invoking the GLComponent method named setReadBuffer() with an argu-
ment value of the bu�er from which you wish the reading to occur. For
example, if you wished to perform stereo reading, you might wish to create
images from the left and right bu�ers. The code to accomplish this is

D
R

A
FT

78 CHAPTER 6. IMAGE INPUT AND OUTPUT

/** Do left-stereo read into files prefixed with leftbuffer */

component.setReadBuffer(GL.GL_BACK_LEFT);

PPMWriter leftWriter = new PPMWriter(component, "leftbuffer");

/** Do right-stereo read into files prefixed with rightbuffer */

component.setReadBuffer(GL.GL_BACK_RIGHT);

PPMWriter rightWriter = new PPMWriter(component, "rightbuffer");

This would then write out two sets of images named leftbuffer?.ppm and
rightbuffer?.ppm containing the appropriate bu�er date.

The functionality to switch the target read bu�er is also pertinent in cases
where a single-bu�ered OpenGL context is being used instead of a double-
bu�ered context. As no back bu�er will exist in single-bu�ered contexts, the
results of reading from such a bu�er, as happens by default, will be unde-
�ned leading to potentially strange results. In single-bu�ered contexts, the
front bu�er should be used for reading, but be careful to ensure that all the
OpenGL commands have been ushed by calling glFlush() or glFinish()
before creating the EPSWriter or PPMWriter.

Associated Magician Demo Programs

mesa/reect.java This demonstration reads an image from a URL and
texture-maps it onto a spinning surface. The two geometric shapes
are reected on the surface in real-time.

enterprise.java This demonstration draws the USS Enterpoop chasing a
Borg cube over a planet's surface. The planet's surface and Borg cube
are both textured from images stored at URLs.

D
R

A
FTChapter 7

Fonts

The window-system speci�c OpenGL protocols, such as GLX and WGL all
allow developers to use system fonts as bitmaps that can be rendered onto
the drawing surface.

This is a major problem within a portable environment such as Magician in
that there is no straight-forward way to abstract the way in which fonts are
represented and manipulated on di�erent operating-systems. For example,
X Windows speci�es fonts as massive strings such as

-adobe-times-medium-r-normal--12-120-75-75-p-64-iso8859-1

whereas Windows requires you to populate C structures with the desired font
characteristics. In addition to this, neither operating system seems to share
much information and use di�erent methods of specifying font characteris-
tics, for example, character width and height, baseline positioning and so on.

A problem closer to the heart of the developer is guaranteeing that a particu-
lar font is present on the machine upon which the application is running. For
example, you might have written an application that displayed illuminated
manuscripts using a half-Uncial font. After shipping this application, you
discover that if the appropriate half-Uncial font isn't available on a user's
machine, it defaults to Courier! This somewhat ruins the e�ect and visual
splendour invested in the application as can be seen in Table 7.

Instead of even attempting to work out some abstracted API for font

79

D
R

A
FT

80 CHAPTER 7. FONTS

perclucuNt illum
perclucunt illum...ack!

Table 7.1: Fallback Fonts

access, Magician side-steps the issue and provides a slightly di�erent but
more powerful solution. Magician generates Java classes containing bitmap
data representing each character in a particular font at a given font size.

This has several immediate bene�ts to you. Firstly, it allows you to dis-
tribute the exact fonts that you wish to use within your application with
your application. Secondly, you can distribute these fonts over networks in
exactly the same way in which any other Java classes can be distributed.

Generating Fonts

Magican is supplied with utility programs that can be used on various oper-
ating systems to automatically generate Java code that encapsulates a font
at a given point size. These programs generate bitmap fonts, that is each
character is represented as a small picture of the character at the given font
size. It is important to rememeber that if you wish to use a larger font, it
is better to generate a new Java class �le for the font at the larger point
size otherwise the bitmap representing the font at the smaller point size will
start to pixelate as it is made larger.

The programs shipped with Magician for generating the Java code encap-
sulating fonts are called generate-xfont for X Windows platforms and
generate-ttf for Windows. generate-xfont connects to the X server
speci�ed by the DISPLAY environment variable and generates the appropri-
ate bitmaps from the X fonts available to you. You can check which fonts
are installed by running xlsfonts or browse them with xfontsel.

generate-ttf will take a TrueType font and generate Java source code
from that. This requires that the TrueType font is installed on your ma-
chine.

D
R

A
FT

USING BITMAPPED FONTS 81

Using Bitmapped Fonts

Magician is also supplied with Java classes encapsulting several common
fonts at commonly used point size. These fonts can be found in the
com.hermetica.magician.fonts package. The correlation between fonts
and class names are as follows

GL8x13BitmapFont X Windows 8x13 font
GL9x15BitmapFont X Windows 9x15 font
GLHelvetica10BitmapFont 10 point Helvetica / Arial
GLHelvetica12BitmapFont 12 point Helvetica / Arial
GLHelvetica18BitmapFont 18 point Helvetica / Arial
GLTimesRoman10BitmapFont 10 point Times Roman
GLTimesRoman24BitmapFont 24 point Times Roman

All Magician font classes are subclasses of the GLBitmapFont class and can
therefore all adhere to the same format and structure and can be used in-
terchangably. Within each font, each character is de�ned as a chunk of data
that is used with glBitmap() to render the character. However, each font
contains a drawString() method that enables you to simply pass the string
you wish to draw as an argument and the string will be rendered at the
current screen position in the appropriate font.

For example, rendering a string to the screen in 24 point Times Roman
can be achieved by doing

/** TimesRoman24 */

GLTimesRoman24BitmapFont font =

new GLTimesRoman24BitmapFont();

/** Draw the string */

font.drawString("A String");

Switching between fonts on the y is also extremely easy and can be e�ected
by writing

/** Generic font */

GLBitmapFont font = null;

/** TimesRoman24 */

GLTimesRoman24BitmapFont timesRoman24 =

new GLTimesRoman24BitmapFont();

/** 18 point Helvetica */

D
R

A
FT

82 CHAPTER 7. FONTS

GLHelvetica18BitmapFont helvetica18 =

new GLHelvetica18BitmapFont();

/** Render the first string in Times Roman */

font = timesRoman24;

font.drawString("String 1 is Times Roman 24");

/** Render the second string as Helvetica 18 */

font = helvetica18;

font.drawString("String 2 is Helvetica 18");

A downside of rendering fonts in this manner is that they cannot be rotated

or projected onto the screen. This is because glBitmap() is used to draw the

characters when drawString() is invoked and this always draws characters

\at" onto the screen.

Font Copyright

It is perhaps worth mentioning some of the legal issues regarding the gen-

eration and inclusion of font data within your applications for distribution.

Within the USA, the position appears to be that typefaces are not copy-

rightable, bitmapped fonts are not copyrightable but scalable fonts are sub-

ject to copyright. With regards to the font data generated for use with

Magician, the information generated is that of a bitmap font, not a scalable

font. Therefore, it would appear that distribution of encapsulated bitmap

font data with your applications is perfectly acceptable under general rules.

The position in Europe or other continents may be somewhat di�erent.

You should also check the distribution agreements that are distributed with

purchased fonts. The author believes that Adobe, for example, allow bitmapped

font distribution, but always double-check. This situation may di�er on a

font-by-font basis.

Arcane Technologies Ltd. do not bundle any non-public-domain bitmapped

fonts with Magician and cannot be held responsible for any legal issues aris-

ing from the use of Magician regarding breach of font copyright.

D
R

A
FT

ASSOCIATED MAGICIAN DEMO PROGRAMS 83

Associated Magician Demo Programs

glut/bitfont.java This demonstration draws strings on the window using

various bitmapped fonts.

glut/fontdemo.java This demonstration draws various strings on the win-

dow. You may also select di�erent strings to display, change the colour

of the strings and the font used to render them.

solarSystem.java This demonstration uses Magician's bitmapped font ca-

pabilities to display the current selected planet in the solar system.

Moving your mouse over a planet will display its name.

D
R

A
FT

84 CHAPTER 7. FONTS

D
R

A
FTChapter 8

Miscellaneous Utility Classes

Magician comes bundled with a group of utility classes that in some cases

are used internally by Magician. Other classes are provided as conveniences

to you for programming OpenGL applications.

All these classes are contained within the com.hermetica.util3d pack-

age and serve a wide variety of tasks from high-speed thread locking to

calculating view volume jittering for accumulation rendering.

CriticalSection { Mutual Exclusion Lock

The CriticalSection class has been provided as a utility class to allow
developers to take advantage of a high-performance mutual exclusion lock in
Java. This solution is advantageous as it removes the requirement to declare
methods requiring synchronization as synchronized.

Several of Magician's core classes use CriticalSection objects to handle
high-speed internal locking, for example, GLContext and GLComponent both
use internal locking.

New lock objects can be created by executing the default constructor of
CriticalSection. For example,

CriticalSection lock = new CriticalSection();

This will create an anonymous lock that is currently unlocked. For more
accurate tracing and debugging, it is recommended that you name your

85

D
R

A
FT

86 CHAPTER 8. MISCELLANEOUS UTILITY CLASSES

locks. This can be accomplished by either setting the lock name via a
constructor

CriticalSection lock = new CriticalSection("context lock");

or via the setName() method.

CriticalSection lock = new CriticalSection();

lock.setName("context lock");

Using a lock object is simplicity itself. To attempt to acquire a lock, you
simply need to invoke the lock() method. If the lock is not currently held,
the lock will be acquired and processing will continue. However, if the lock
is currently held your code will spin on the lock until the lock is released.

Similarly, to release a lock you need to call the unlock() method. This
will immediately free the resource and notify any threads waiting on the
lock. The waiting process that acquires the lock cannot be guaranteed.

If you experience problems in your code such as deadlock, you can enable
tracing on all operations being carried out by the lock. This can be done by
invoking the setTraceStatus() method with the argument true to enable
locking and false to disable it. The information generated by tracing is
extremely informative and can pinpoint any locking problems you may be
having. For example, when a thread acquires a lock, a message similar to

-> GLComponent@0-choke: Thread[GLComponent@0,1,main]

acquired lock

will be printed to your console. This shows that the thread has now entered
a critical section of code that can only execute exclusively. Similarly, when
a thread releases a lock, a message similar to

<- GLComponent@0-choke: Thread[GLComponent@0,1,main]

unlocking mutex

will be displayed. This show that the thread has exited the section of code
that must be executed exclusively. A third type of tracing message may be
displayed if a thread spins on a lock. This message takes the form of

-| GLComponent@0-choke: Thread[GLComponent@0,1,main]

waiting on lock acquisition

Therefore, the correct sequence of messages that will occur in code where
the locking is correctly functioning would be

D
R

A
FT

FRAMERATECOMPONENT { MEASURING FRAME RATES 87

-> ... acquired lock

-| ... waiting on lock acquisition

<- ... unlocking mutex

with the middle message being optional.

FrameRateComponent { Measuring Frame Rates

The FrameRateComponent class is provided to enable you to fairly accu-

rately calculate the frame rate of your Magician applications. This activity

is similar to using the ProfileGL or ProfileGLU pipelines but provides a

more general �gure rather than microsecond accurate timings.

The class functions by taking a number of \samples" across a number of

iterations of a rendering and averages the times. The default number of

samples to take is 16 but this can be changed if machine performance is

\spiky" and a smoother average across a higher number of samples is de-

sired. Generally speaking, the more samples you take, the better the results.

This utility class has two ways in which it can be used namely as a graphical

representation of frame rates that can be embedded within your GUI or it

can simply print its results to a standard PrintStream object.

Using a FrameRateComponent is extremely easy to add into your program.

The two main methods that you will be using are start() and stop() which

signify when timing is to start and stop respectively. The timing sample is

taken as being the cumulative time that all the statements between these

two calls take to execute. After the number of samples has been taken, the

frame rate is either printed to the output stream or the graphical component

is updated automatically.

MicroTimer { Microsecond Timer

Within the java.lang.System class, Java provides a method called
currentTimeMillis() which can be used for millisecond accurate timing of
programs. For timing large, time-consuming operations this method of time
measurement is generally acceptable and will give fairly accurate results. A
good example of this is the timing of frame rates where a sample of tim-
ings are taken cumulatively and the frame rate averaged over the number of

D
R

A
FT

88 CHAPTER 8. MISCELLANEOUS UTILITY CLASSES

samples.

However, Magician provides the ProfileGL and ProfileGLU pipelines which
allow you to time each OpenGL command. In most cases, these operations
can take tiny fractions of milliseconds to complete which would result in
completely incorrect timing information being reported. For example, the
output of verbose pro�ling might read

glBegin() took 0ms to execute

glVertex2f() took 0ms to execute

glVertex2f() took 0ms to execute

glVertex2f() took 0ms to execute

glVertex2f() took 0ms to execute

glEnd() took 0ms to execute

This would result in the program taking a total of 0ms to execute. Pretty
fast software, huh?

This is quite obviously wrong and destroys the point of being able to pro�le
things. The solution to this problem is to use a more accurate timer which
will give better results when measureing extremely short time quantums.

The MicroTimer class is a small Java class that implements its main func-
tionality in platform-speci�c native code. That is, it uses the underlying
timing mechanisms available for each platform in order to measure more
accurate time quantums. There is a caveat here in that the timing functions
for each operating systems may themselves be slightly inaccurate due to the
clock speed of the processor. This is known as the granularity of measure-
ment and MicroTimer takes this into account when computing timings.

Using a MicroTimer in your own software is very easy. You simply cre-
ate a new MicroTimer object and invoke the start() method when you
wish timing to begin. When you wish it to stop timing, invoke the stop()
method. The delta, or di�erence, between starting and stopping can be re-
trieved by invoking getDelta() which returns the number of microseconds
timing was enabled. For example

/** Create a new MicroTimer */

private MicroTimer timer = new MicroTimer();

/** Start timing! */

timer.start();

/** Do some really pointless stuff */

int total = 0;

D
R

A
FT

ACCUM { ACCUMULATION JITTERING 89

for (int i = 0 ; i < 100000 ; i++) {

total += 2;

}

/** Stop timing! */

timer.stop();

/** How long did this take? */

System.out.println("The useless loop took " +

timer.getDelta() +

" microseconds to execute.");

If you are so inclined, you can also retrieve the granularity at which your

processor is operating by invoking the getFrequency()method. This is not

guaranteed to return anything useful on some platforms and will return 0

in these cases. This value represents the smallest number of microseconds

that the operating system's timing mechanisms can di�erentiate between.

For example, a value of 17 would indicate that the operating system's timer

\ticks" every 17 microseconds. This implies that operations taking less than

17 microseconds will return slightly incorrect measurements for the same

reasons that millisecond timing is wrong.

accum { Accumulation Jittering

OpenGL can be used to perform sophisticated multipass rendering that can
generate the e�ects known as scene anti-aliasing. This e�ect renders the
given scene several times slightly moving, or jittering, the view frustum
each render to move the objects in the scene around by very small amounts.
Each render of the scene is accumulated in the accumulation bu�er and by
the �nal render, the slight movement of the view volume softens or anti-
aliases the sharp edges within the scene given a more realistic image.

Magician provides the accum class that has several methods and variables
that can be used to fractionally jitter the view frustum to produce scene anti-
aliased images. The following example illustrates the use of these methods.

/** Setup the accumulation buffer with GLCapabilities */

GLCapabilities cap = glc.getContext().getCapabilities();

cap.setAccumRedBits(4);

cap.setAccumGreenBits(4);

cap.setAccumBlueBits(4);

D
R

A
FT

90 CHAPTER 8. MISCELLANEOUS UTILITY CLASSES

/** Draws the scene */

private void displayObjects() {

float[] torus_diffuse = { 0.7f, 0.7f, 0.0f, 1.0f };

float[] cube_diffuse = { 0.0f, 0.7f, 0.7f, 1.0f };

float[] sphere_diffuse = { 0.7f, 0.0f, 0.7f, 1.0f };

float[] octa_diffuse = { 0.7f, 0.4f, 0.4f, 1.0f };

/** Do the OpenGL stuff */

gl_.glPushMatrix();

gl_.glTranslatef(0.0f, 0.0f, -5.0f);

gl_.glRotatef(30.0f, 1.0f, 0.0f, 0.0f);

gl_.glPushMatrix();

gl_.glTranslatef(-0.80f, 0.35f, 0.0f);

gl_.glRotatef(100.0f, 1.0f, 0.0f, 0.0f);

gl_.glMaterialfv(GL.GL_FRONT, GL.GL_DIFFUSE,

torus_diffuse);

shapes.solidTorus(0.275, 0.85, 16, 16);

gl_.glPopMatrix();

gl_.glPushMatrix();

gl_.glTranslatef(-0.75f, -0.50f, 0.0f);

gl_.glRotatef(45.0f, 0.0f, 0.0f, 1.0f);

gl_.glRotatef(45.0f, 1.0f, 0.0f, 0.0f);

gl_.glMaterialfv(GL.GL_FRONT, GL.GL_DIFFUSE,

cube_diffuse);

shapes.solidCube(1.5);

gl_.glPopMatrix();

gl_.glPushMatrix();

gl_.glTranslatef(0.75f, 0.60f, 0.0f);

gl_.glRotatef(30.0f, 1.0f, 0.0f, 0.0f);

gl_.glMaterialfv(GL.GL_FRONT, GL.GL_DIFFUSE,

sphere_diffuse);

shapes.solidSphere(1.0, 16, 16);

gl_.glPopMatrix();

gl_.glPushMatrix();

gl_.glTranslatef(0.70f, -0.90f, 0.25f);

gl_.glMaterialfv(GL.GL_FRONT, GL.GL_DIFFUSE,

octa_diffuse);

shapes.solidOctahedron();

gl_.glPopMatrix();

gl_.glPopMatrix();

D
R

A
FT

TRACKBALL { QUATERNION-BASED TRACKBALL 91

}

/** Renders the scene with jittering */

public void display(GLComponent component) {

int[] viewport = new int[4];

int jitter = 0;

/** Render the scene */

gl_.glGetIntegerv(GL.GL_VIEWPORT, viewport);

gl_.glClear(GL.GL_ACCUM_BUFFER_BIT);

for (jitter = 0 ; jitter < ACCUM_SIZE ; jitter++) {

gl_.glClear(GL.GL_COLOR_BUFFER_BIT |

GL.GL_DEPTH_BUFFER_BIT);

accum.accPerspective(50.0,

(double)(viewport[2] /

viewport[3]),

1.0, 15.0,

accum.j8[jitter][0],

accum.j8[jitter][1],

0.0, 0.0, 1.0);

displayObjects();

gl_.glAccum(GL.GL_ACCUM,

(float)(1.0 / ACCUM_SIZE));

}

gl_.glAccum(GL.GL_RETURN, 1.0f);

gl_.glFlush();

}

The \OpenGL Programming Guide" contains a good section of scene anti-

aliasing and frustum jittering and should be consulted closely for more in-

formation on this topic.

trackball { Quaternion-based Trackball

One of the more common capabilities that 3D graphical applications uses is
the ability to spin objects about by clicking and dragging the mouse in a
window. This is used in many places, for example, molecular modelling, the
\examiner" viewers in VRML browsers, perspective views in 3D modelling
applications and sundry others.

This functionality is normally implemented by using a \virtual trackball"

D
R

A
FT

92 CHAPTER 8. MISCELLANEOUS UTILITY CLASSES

which e�ectively tightly encloses a 3D object in a sphere which you \roll
around" with your mouse1

Magician provides the utility class called trackball which provides exactly
this functionality in an easy to use fashion. The trackball class uses quater-
nions to represent the rotations generated by the movement of your mouse
and these are used to generate rotational matrices that can be applied to
your scenes.

The �rst stage in using a trackball within your applications is to link it
with a MouseMotionListener which will give you the ability to track the
movement of the mouse around a GLComponent. Using a MouseListener
also gives you the ability to handle miscellaneous mouse events.

You then need to declare three variables within your class for the track-
ball itself, the current rotation represented as a quaternion and the 4 � 4
matrix representing the quaternion. It's also useful to have a couple of vari-
ables for storing the previous mouse coordinates. These can be declared as
follows

/** The trackball */

private trackball ball = new trackball();

/** The quaternion -- This is always formed from 4 values */

private float[] curQuat = new float[4];

/** The rotational 4x4 matrix */

private float[][] m = new double[4][4];

/** Previous mouse position for tracking motion deltas */

private int prevx = 0,

prevy = 0;

The next operation that needs to be carried out is to initialize the quaternion
currently associated with the trackball. This is done via the buildQuaternion()
method provided in the trackball class and can be written as

curQuat = ball.buildQuaternion(0.0f, 0.0f, 0.0f, 0.0f);

Now we're ready to start handling mouse motion and scene rotating!

The two mouse event handles that are of pertinent interest are mousePressed()
and mouseDragged()which belong to the MouseListener and MouseMotionListener

1A�cionados of the arcade machine \Centipede" will know what I'm talking about.

D
R

A
FT

TRACKBALL { QUATERNION-BASED TRACKBALL 93

interfaces respectively. mousePressed() is of primary use in setting the co-
ordinates at which the mouse was clicked, i.e., the starting point of the
mouse drag. This method can be implemented as

/** Handles mouse clicking and sets the coordinates */

public void mousePressed(MouseEvent evt) {

prevx = evt.getX();

prevy = evt.getY();

}

The mouseDragged()method is slightly more involved as it will be perform-
ing the actual quaternion calculations and using the trackball. The basic
premise here is that a new quaternion is created using buildQuaternion()
calculated from the size of the viewport and the amount the mouse has been
dragged. This new quaternion is added to the current quaternion which re-
sults in the new rotation of the object. This code can be implemented as2

/** Handles mouse dragging and calculates quaternions */

public void mouseDragged(MouseEvent evt) {

/** Get the dimensions of the source component */

int width = evt.getComponent().getSize().width;

int height = evt.getComponent().getSize().height;

/** Get the current mouse coordinates */

int x = evt.getX();

int y = evt.getY();

/** Calculate the new quaternion... */

float[] tmpQuat =

ball.buildQuaternion((float)(2.0f * prevx - width) /

(float)width,

(float)(height - 2.0f * beginy) /

(float)height,

(float)(2.0f * x - width) /

(float)width,

(float)(height - 2.0f * y) /

(float)height);

/** Add the new quaternion to the current one */

curQuat = ball.addQuats(tmpQuat, curQuat);

/** Repaint the GLComponent */

((GLComponent)evt.getComponent()).repaint();

2And fortunately, this code is extremely cut-and-pastable!

D
R

A
FT

94 CHAPTER 8. MISCELLANEOUS UTILITY CLASSES

/** Update the mouse coordinates */

prevx = x;

prevy = y;

}

That piece of code has now calculated the new quaternion representing the
current rotation of the trackball. The �nal stage is to rotate the object
that the trackball is applied to by that quaternion and to do this you need
to convert the quaternion into a 4 � 4 matrix. This matrix will then be
multiplied onto the matrix stack. Therefore, the display() method of this
application can be written as

/** Renders the scene */

public void display(GLDrawable component) {

/** Clear the frame and depth buffers */

gl_.glClear(GL.GL_COLOUR_BUFFER_BIT |

GL.GL_DEPTH_BUFFER_BIT);

/**

* Push the current matrix onto the matrix stack

* for safety.

*/

gl_.glPushMatrix();

/** Convert the quaternion rotation into a matrix */

/** ``m'' was declared above as float[4][4] */

m = ball.buildMatrix(curQuat);

/** Multiply this rotation with the current rotation */

gl_.glMultMatrixf(m);

/** Render the objects! */

/** Restore the saved matrix */

gl_.glPopMatrix();

}

It is also possible to easily implement the ability to continue spinning an
object along the same rotation automatically using quaternions. Once you
have rendered the scene, you can simply add the new quaternion calculated
in the mouseDragged() method to the current quaternion again. This will
continue the rotation. For example,

...

D
R

A
FT

TRIREADER { READS RAW TRIANGLE DATA FROM A FILE 95

/** Restore the saved matrix */

gl_.glPopMatrix();

/** Add the new quaternion again to rotate the scene again */

curQuat = ball.addQuats(tmpQuat, curQuat);

}

For this to work correctly, the tmpQuat variable would also need to be de-

clared globally to the class.

The \Molecule Viewer" demonstration program bundled with Magician uses

the technique to automatically continue spinning a molecule and uses the

animation features of GLComponent to drive the movement.

triReader { Reads raw triangle data from a �le

In the course of writing applications, it is quite likely that you will wish to
use a fairly complex model that is not easily expressed with simple geometry
producers such as quadrics or NURBS surfaces. For example, you may be
writing a game in which complex humanoid models run about.

Importing these models into your application can be slightly tricky and
there are several ways in which it can be done. One approach is to convert
the vertex and polygon data of the model into variable declarations which
can then be pasted directly into the source code of your application. This
approach works well in that no external �les are required to be loaded but
can drastically bloat the size of the compiled Java classes. Furthermore,
in JDK-1.2 this might cause the class to be invalid due to class �le format
limitations.

The other approach is to load the model data from an external data source.
As there are about a gazillion di�erent 3D model formats currently in use,
we've decided to just supply a �le reader for an extremely simple one. You
can use this as a template to write your own, if you so desired.

The class in question is called triReader and reads �les containing nothing
more than a long list of triangles. For example, each line of a triangle �le
contains 9 oating point values and a hexadecimal string all separated by
spaces. For example,

1.666 0.4380 4.161 1.821 0.3786 0.671 1.864 0.4643 0.671 0xFFFF00

D
R

A
FT

96 CHAPTER 8. MISCELLANEOUS UTILITY CLASSES

The 9 oating point values represent three vertices speci�ed in (x; y; z) for-
mat and the hexadecimal string represents the colour of the triangle spec-
i�ed in RGB format. The colour of the triangle shown above is yellow or
(255; 255; 0). The triReader class will automatically calculate polygon nor-
mals for each triangle.

The triReader class is extremely exible and can be used to load trian-
gle �les from either a local drive or via the WWW by specifying a URL at
which a triangle �le can be found.

Using the triReader class is extremely simple. You simply pre-create 3
array of float values and pass them into the triReader.readTrifilef()
method which performs the �le read along with the location of the data
�le. Providing no exceptions are thrown, the number of vertices read will be
returned and the three arrays populated with the vertex data, colour data
and normal data for each vertex. For example

/** The arrays to contain the vertices, normals and colours */

private static final int MAX_VERTICES = 30000;

private float[][] vertices = new float[MAX_VERTICES][3];

private float[][] normals = new float[MAX_VERTICES][3];

private float[][] colours = new float[MAX_VERTICES][3];

private int numVertices = 0;

.

.

.

/** Read some triangle data in */

try {

numVertices =

triReader.readTriFilef(new URL("http://www.arcana.co.uk/..."),

vertices, normals, colours);

} catch (Exception e) {

System.err.println("Exception caught in readTriFilef: " +

e.toString());

e.printStackTrace();

return;

}

System.err.println("Read " + numVertices + " vertices from file");

/** Build a display list for this object */

gl_.glNewList(objectList, GL.GL_COMPILE);

D
R

A
FT

TRIREADER { READS RAW TRIANGLE DATA FROM A FILE 97

for (int i = 0 ; i < numVertices ; i+=3) {

gl_.glBegin(GL.GL_TRIANGLES);

gl_.glNormal3fv(normals[i]);

gl_.glMaterialfv(GL.GL_FRONT, GL.GL_DIFFUSE, colours[i]);

gl_.glVertex3fv(vertices[i]);

gl_.glVertex3fv(vertices[i + 1]);

gl_.glVertex3fv(vertices[i + 2]);

gl_.glEnd();

}

gl_.glEndList();

This code chunk simply reads the triangle data from the given URL and
then creates an OpenGL display list for the object. If you didn't wish to do
this, for example, if your code further modi�ed or perturbed the model, you
can draw the model using glNormal3fv() and glVertex3fv() as usual by
sequentially scanning through the array. The \Triangle File Object Viewer"
demo bundled with Magician builds display lists for each model the �rst
time they are loaded only. Some sample output from this demo is shown in
Figure 8.1.

The AC3D modeller can be used to generate triangle �les. This software

Figure 8.1: Triangle File Viewer

is available from

D
R

A
FT

98 CHAPTER 8. MISCELLANEOUS UTILITY CLASSES

http://www.comp.lancs.ac.uk/computing/users/andy/ac3d.html

Arcane Technologies Ltd. are in no way associated with the development or
sales of AC3D.

Associated Magician Demo Programs

molview/molview.java This demonstration uses a trackball to allow you

to spin molecules about.

redbook/accanti.java This demonstration uses the accumulation bu�er

to perform scene anti-aliasing and uses the accum utility class.

redbook/accpersp.java This demonstration uses the accumulation bu�er

to perform scene anti-aliasing and uses the accum utility class.

redbook/dof.java This demonstration uses the accum class to perform

multi-pass rendering to produce a \depth-of-�eld" e�ect which simu-

lates lens focus.

mtpaperplane.java This demonstration uses the FrameRateComponent class

to produce accurate frame rates for this demonstration.

objViewer.java This demonstration uses the triReader class to load tri-

angle data �les over the WWW and allows you to spin them about

with your mouse.

D
R

A
FTChapter 9

Extensions, Legacy Code and

Magician

As we have discussed in previous chapters, Magician is an extremely power-

ful toolkit that can be used to write high-performance and totally portable

OpenGL code. However, real world situations dictate that Java does not in

most cases perform as well as a compiled language such as C. Additionally,

organizations have already invested vast amounts of programmer hours in

writing applications using OpenGL and another language.

Furthermore, these applications might take advantage of OpenGL implementation-

speci�c extensions. How does Magician help you in these cases? The follow-

ing sections in this chapter examine the relationship that your legacy code

and Magician can form giving you possible migration paths from legacy
code to Java and how speci�c extensions can be accessed and used through

Magician.

Legacy Code and Magician

Hopefully by this chapter, you're completely sold on writing code using Ma-
gician in order to take advantage of all the powerful features that are on o�er.
There is, however, one drawback to embracing Magician whole-heartedly.

Legacy code. You've got millions of lines of legacy code written in C, C++,

99

D
R

A
FT

100 CHAPTER 9. EXTENSIONS, LEGACY CODE AND MAGICIAN

FORTRAN, ADA or something even stranger. Now, much as we'd love you
to start converting all this code into Java, we're not so na�ive to think that
you would. Nor do we think you should. Therein lies the path to madness.

However, a less ambitious, but equally useful exercise might be to port
the GUI aspects of your code to Magician and leave the back-end processing
using the core OpenGL and GLU functions in whatever language you've
used. After all, those core functions are completely portable and have no
platform- or window-system-speci�c aspects to them anyway.

Therefore, if you let Magician handle any context switching and drawing
surfaces in your application, your legacy code can be wrapped with native
methods and called directly from Java as needed. For example, if you have
an original piece of code for X Windows that draws a white rectangle to the
screen, it might look something like

/** X Display */

Display dpy;

/** Window to draw onto.. */

Drawable w;

/** OpenGL rendering context */

GLXContext context;

/** Make the context current somewhere */

glXMakeCurrent(dpy, w, context);

/** Draws a rectangle */

void drawRectangle() {

glBegin(GL_POLYGON);

glVertex3f(0.25, 0.25, 0.0);

glVertex3f(0.25, 0.75, 0.0);

glVertex3f(0.75, 0.75, 0.0);

glVertex3f(0.75, 0.25, 0.0);

glEnd();

}

With Magician, you don't need to replace the drawRectangle() method (
imagine it's 2000 lines long!), but you could easily declare a native method
within a Java class such as

private native void drawRectangle();

D
R

A
FT

EXTENSIONS 101

This method can then be called within your display() method. Because

Magician automatically acquires contexts for you, you are always guaranteed

to be given the correct context and drawing surface to draw onto. Therefore,

when you drop into the legacy code to execute drawRectangle(), you can

be assured that the results will be the same as if you had drawn it in your
original program.

This approach allows you to selectively replace parts of your legacy code with

Java code and slowly phase out the legacy code in favour of new portable

sections.

A secondary use for this approach is to implement large, expensive sec-

tions of rendering code in C or C++ which will give you slightly better

performance than Java for large execution blocks1.

For more information on Java native method programming, the book \Java

Native Method Programming" written by the author and published by O'Reilly
& Associates should be consulted2.

Extensions

OpenGL features a powerful way to arbitrarily extend the functionality of

OpenGL without requiring large OpenGL speci�cation changes. This al-

lows vendors implementing OpenGL to make implementation- or hardware-
speci�c capabilities available quickly without causing inconsistencies in the

core OpenGL speci�cation.

Extensions, by their very nature, are generally not available on every plat-

form and implementation of OpenGL which implies that a mechanism to

access these extensions must be available within Magician in a way that

does not compromise its platform-neutrality.

There are two realistic approaches to handling extensions from within Ma-

gician. Firstly, to provide standard implementations of all extensions within

1This is totally dependent on the speed of your Java Virtual Machine. Some JVMs are

approaching the speed of compiled C, whereas others, typically those on UNIX platforms,

tend to be quite sluggish compared to compiled code.
2Currently not published.

D
R

A
FT

102 CHAPTER 9. EXTENSIONS, LEGACY CODE AND MAGICIAN

the Magician core with standard access paths. Secondly, to provide an \Ex-

tension Developer's Kit" allowing developers to add handling for speci�c

extensions to Magician themselves.

The �rst approach has the merit of providing tested and guaranteedly avail-
able extension support but is unwieldy in that it is highly unlikely that

Magician could ever support all extensions available on all supported plat-

forms. Additionally, it is unlikely that Arcane Technologies Ltd. would be

capable of tracking each an every extension change or implementation on all

supported platforms.

Therefore, to ensure that you can always get access to the extensions you

need when you need them, Magician has a small set of �les distributed with

it known as the \Extension Developer's Kit" (EDK). This kit contains two

main elements being a C include �le containing some functions and a small

program that is used to help you auto-generate Java method declarations

and their associated native methods.

However, after reading the following sections on writing extensions, you

might decide that you don't want to bother. To cover these occasions, Ar-

cane Technologies Ltd. will gather together pre-generated and pre-compiled

versions of as many extensions as they can for easy download and installa-

tion.

The Theory of Extension Access

Accessing OpenGL extensions from Magician can be a slightly convoluted
process due to the ways in which OpenGL extensions are added and the
limitations of the Java language.

The theory behind extension access is fairly simple in that we wish to declare
a Java method that drops into native code and accesses the extension. In
order for this to work you need to �rstly write the Java method declaration
and secondly write the native method body that implements that method.

For example, say we wished to provide access to the polygon o�set ex-
tension. This extension is accessed via the glPolygonOffsetEXT() function
and takes arguments of two floats. Therefore, you could write the Java
declaration of this method as

/** Java method that enables access to glPolygonOffsetEXT() */

D
R

A
FT

EXTENSIONS 103

public native void glPolygonOffsetEXT(float factor, float bias);

As this method has been declared as being implemented natively, that is,
with compiled code, you need to write an appropriate native method body
to complement it. For JNI-based Java virtual machines, this can be written
as

/** Native method implementation of glPolygonOffsetEXT() */

JNIEXPORT void JNICALL

Java_aClass_glPolygonOffsetEXT(JNIEnv *env, jobject arg,

jfloat factor, jfloat bias) {

/** Make the actual glPolygonOffsetEXT() call */

#ifdef GL_EXT_polygon_offset

glPolygonOffsetEXT(factor, bias);

#endif /** GL_EXT_polygon_offset */

}

Therefore, when you wished to perform a polygon o�set operation, you could

now call the new Java method that drops down into native code and exe-

cutes the correct operation for you.

This process is complicated by the fact that you might have, for example, a
set of native methods that handle extensions under X Windows. However,

not all OpenGL implementations on X Windows supports these particular

extensions. These instances are negotiated around with the #define state-

ments in the small code snippet above. Furthermore, it is good practice

to \probe" for extensions prior to attempting to execute them within your

code. Magician provides such probing methods for you and these will be

detailed infra.

Fortunately, much as this looks absolutely ghastly, the EDK comes with

a small program that will take the arguments that you feed into it and pro-

duces all the appropriate Java and native code stub functions that you'll
need.

The Extension Functions

The include �le bundled with the EDK de�nes certain functions that can
be used to extract window system-speci�c information from Magician that
may be required to use certain extensions. The polygon o�set extension
detailed above is quite straight-forward and doesn't require any information
or arguments speci�c to any platform, but some extensions, for example,
stereo rendering, do.

D
R

A
FT

104 CHAPTER 9. EXTENSIONS, LEGACY CODE AND MAGICIAN

/** Sets the SGI stereo buffer to render into */

XSGISetStereoBuffer(Display dpy, Window win,

int stereoBuffer);

The Display and Window parameters are both XWindows-speci�c. How can
this be translated to being useful within Magician and, more importantly,
portable? Furthermore, doesn't this sort of information make it di�cult to
change Magician internals at a later date?

The solution we provide with Magician is both portable and abstracts the
internal workings of Magician away from your extensions ensuring that your
code will always work with any modi�cations between Magician versions.
Similarly, your extensions will work on multiple platforms should multiple
platforms support the extensions in question.

The EDK de�nes 3 functions that can be used by you within your extension
native method bodies to extract various pieces of window system informa-
tion. To use these functions, simply pass a GLComponent object into the
native method as well as the parameters required by that extension. The
EDK functions operate on GLComponent objects and extract the low-level
information from there.

The EDK functions and their platform-dependent return types are shown
in the following table

EDK function X Windows Windows95/98/NT OS/2

edkGetWindow() Window / Drawable HWND HWND

edkGetWidget() Widget HDC HAB

edkGetGLContext() GLXContext * HGLRC HGC

These functions do not necessarily return all the sorts of useful information
that you might require, but you may use the window system-speci�c func-
tions to extract those. For example, the EDK does not de�ne a function to
fetch the X Display of a GLComponent. You can easily �nd that by fetching
the Widget then call XtDisplay(widget).

Therefore, the Java method declaration for XSGISetStereoBuffer() would
be

D
R

A
FT

EXTENSIONS 105

/** Java declaration for XSGISetStereoBuffer() */

public native void XSGISetStereoBuffer(GLComponent component,

int stereoBuffer);

Notice how the two window system-speci�c arguments have been replaced
by a single GLComponent. The native code can be written fairly simply as

/** Native implementation of XSGISetStereoBuffer() */

JNIEXPORT void JNICALL

Java_aClass_XSGISetStereoBuffer(JNIEnv *env, jobject arg,

jobject component,

jint stereoBuffer) {

/** Make the extension call */

#ifdef GL_XSGI_stereo_buffer

XSGISetStereoBuffer(XtDisplay(edkGetWidget(component)),

edkGetWindow(component),

stereoBuffer);

#endif

}

Thus, this technique retains platform-independence and abstracts the inter-
nal functionality of Magician away from you but gives you access to all the
pertinent information you might require when implementing extensions.

Using the EDK Extension Functions

The functions detailed above are to be found in the C++ include �le bun-
dled with the EDK called edk.h. This �le should be included by any native
C++ �les that you have written that require access to the EDK functions.

Furthermore, a small C++ source �le called edk.cpp is also distributed with
the EDK that you must link into your own extension code. This source �le
contains the implementations of the various EDK functions and interfaces
directly with Magician's internals. You should always use the supplied EDK
functions for accessing Magician internals as the internal access path may
be subject to change at any time and should not be directly used.

These two EDK �les use preprocessor #defines to regulate the way in which
they operate. If you are building extensions for use with a JNI-based Virtual
Machine, you should de�ne the HAVE JNI symbol in your project or Make�le
prior to compilation. Similarly, if you are using Microsoft's Virtual Machine,
the HAVE RNI symbol should be de�ned.

D
R

A
FT

106 CHAPTER 9. EXTENSIONS, LEGACY CODE AND MAGICIAN

Furthermore, you should also indicate which platform you are building ex-
tensions for by de�ning either HAVE LIBX11 if you are using X Windows or
WIN32 if you are building for Windows95/NT.

