
Whitepaper

IBM WebSphere Application Server

Standard and Advanced Editions

Best Practices for Admin Performance and
Scalability

By Gennaro (Jerry) Cuomo
Hiroyuki Tarusawa

IBM WebSphere
 Document Draft Version 1.0

12/12/2000

Best Practices for Admin Performance and Scalability

Page - 1

IBM WebSphere

Page - 20E-Fixes referenced within this Paper .

Page - 19Glossary of Terms .

Page - 19Summary .

Page - 14
Best Practices for Admin Performance and
Scalability .

Page - 13Admin Repository Configurations .

Page - 12Servers and Clones .

Page - 12DataSources .

Page - 12
Servlet Re-director and Remote SRP Bean

. .

Page - 12
Plug-in Configuration Regeneration

. .

Page - 11
Autoloaded Servlets

. .

Page - 11Servlet Container .

Page - 10
Bean Naming

. .

Page - 10
Packaging of EJBs

. .

Page - 9
Number of EJBs

. .

Page - 9EJB Container .

Page - 9
Factors Influencing Admin Performance and
Scale .

Page - 8Startup Breakdown .

Page - 7Process of Starting the Trade 2 Server .

Page - 7Server Startup .

Page - 5
The Swiss Army(tm) Knife of WebSphere

. .

Page - 4
Built using WebSphere Technology

. .

Page - 4
A Single Logical Image

. .

Page - 4Systems Management Overview .

Page - 3Overview .

Page - 3Related Documents and Tools .

Page - 3Acknowledgments .

Page - 3Intended audience .

Best Practices for Admin Performance and Scalability

Page - 2

IBM WebSphere

Intended audience
This paper is intended for IT Specialists or Application Administrators who are planning to deploy
production eBusiness solutions with IBM Websphere Application Server Advanced or Standard Edition. This
paper assumes the reader is familiar with the WebSphere product, as well as the basic concepts of web
applications, Enterprise Java Beans and Java.

Acknowledgments
The following paper was written with help from several members of the IBM WebSphere team as well as
several WebSphere customers. In particular, I would like to thank Hiroyuki Tarusawa, Arihiro Iwamoto and
Toshimasa Shimizu from IBM Japan and Michael Fraenkel, Erik Daughtrey, Daniel Julin, Brian K. Martin,
Nataraj Nagaratnam, Carolyn Norton, Stan J. Cox, Tom Alcott and Ruth Willenborg from the WebSphere
Development Team.

Related Documents and Tools
The following documents provide additional information related to WebSphere performance and tuning:

? IBM WebSphere Application Server Standard and Advanced Editions, Version 3.0 Performance Report
http://www-4.ibm.com/software/webservers/appserv/whitepapers.html

? WebSphere V3 Performance Tuning Guide (SG24-5657-00)
http://www.redbooks.ibm.com/abstracts/sg245657.html

? WebSphere 3.5 Resource Analyzer -
 http://www-4.ibm.com/software/webservers/appserv/download_ra.html

? WebSphere Application Server Development Best Practices for Performance and Scalability-
 http://www-4.ibm.com/software/webservers/appserv/ws_bestpractices.pdf

? WebSphere Application Server - A Methodology for Production Performance Tuning
 http://www-4.ibm.com/software/webservers/appserv

Overview
The following document provides insight into how to maximize the performance and scalability of the
Administrative System of WebSphere. Although most of these concepts apply to WebSphere Advanced
Edition, some concepts can be applied to Standard Edition as well.

First, a general overview of Systems Management is presented including the main design point, functions and
implementation. Next, an overview of System startup is described using an example application. A detailed
profile of where time is spent during startup is illustrated for the Trade 2 Application. An analysis of the
factors influencing Admin startup performance and scalability is detailed. This includes factors involving the
EJB Container, Servlet Container, Datasource and Clones. Lastly, this paper presents a summary of the best
practices for administering a high performance and scalable Admin System in WebSphere Advanced Edition.
 Customers who have applied these best practices to their installation of WebSphere Advanced Edition
have seen up to a 3X improvement in startup performance and scalability.

Best Practices for Admin Performance and Scalability

Page - 3

IBM WebSphere

Systems Management Overview
Before describing methods by which we can improve the total effectiveness of the WebSphere Admin System,
 it is important to understand some of the key design points of this system. The following section provides an
overview of WebSphere Systems Management, focusing on three concepts:

1. Design- A Single Logical Image

2. Implementation- Built Using WebSphere Technology

3. Function- The Swiss Army(tm) Knife of WebSphere

A Single Logical Image

WebSphere Advanced Edition supports a design notion of a Single Logical Image. The value proposition of
this design is very powerful. It ultimately allows a system administrator to define and manage complex
clusters of WebSphere Application Servers from a single logical management point. The Single Logical
Image is housed in the WebSphere Admin Repository, which is a standard JDBC compliant database. Within
this repository the entire Administrative Domain is represented. The Domain is the root of the admin
hierarchy. Under the Domain, there are System nodes, which are the physical server machines (i.e.,
hardware) in your cluster. Nodes contain Servers, each of which represent an individual process running a
Java Virtual Machine (JVM). The Servers are the Application Server instances that run your WebSphere
applications. Servers hold containers. The two primary types of containers are EJB Containers and Servlet
Containers.1

Admin Domain

Node 1

Node 2

Server 1

Server 2

EJB Container

Servlet Engine

Figure. Admin Hierarchy

From this Single Logical Image, servers can be started and stopped and configurations across servers can be
customized and copied. With the WebSphere Admin model, configurations can be easily replicated to other
nodes or within the same node. This is done using a technique called Modeling and Cloning. The idea of
models/clones is very much like cut/paste. For example, modeling is similar to the action of selecting an
object and copying it to a clipboard. Cloning would be the pasting of that object from the clipboard to create
a new but identical configuration.

Built using WebSphere Technology

The WebSphere Admin Server is built using WebSphere Technology. In particular, the Admin Server is a
special case of an ordinary Managed Server. A Managed Server, in architectural terms, is a Java Virtual
Machine that runs Java 2 Enterprise Edition (J2EE) applications. In WebSphere Standard/Advanced
Editions, the Admin Server as well as instances of Application Servers all share a common, Managed Server,
code base. The Admin Server is an EJB application that uses Session Bean and Bean Managed Entity Beans

Best Practices for Admin Performance and Scalability

Page - 4

IBM WebSphere

1 In the WebSphere Admin Console the Servlet Container is actually referred to as a ServletEngine.

(BMP Entities). It is configured to run a set of EJBs, called Repository Beans, that mediate requests between
Admin clients and the Admin Repository Database. The Repository Beans handle configuration and
operation requests for all WebSphere components (i.e., nodes, application servers, servlet engines, EJB
containers, etc.) running in the WebSphere Admin Domain. Configuration requests include setting and
clearing parameters to the components, and operation requests on components include starting, stopping,
creating, and deleting.

Admin
Repository
Database

A
dm

in
D

at
aS

ou
rc

eEJB Container

Repository Objects

Admin Server
JDBC

XML
Config

WebSphere Admin Console

console

Admin Clients

...

RMI/IIOP

Figure. Admin Server - Built using WebSphere Technology

WebSphere Standards/Advanced Editions have several styles of Admin clients:

? Admin Console- The Admin Console provides a graphical user interface to the Admin Server(s) in a
WebSphere Admin Domain. Property sheets and wizards are used to change configuration of a
WebSphere component.

? Web-based Admin- A web-based version of the Admin Console that provides a subset of the
functionality of the stand-alone Java client. Most of the functionality of the web-based Admin is for
creating and modifying web applications.

? XML Import/Export- An alternative to GUI-based consoles is the XMLConfig utility that began
shipping with WebSphere Application Server 3.02. The utility provides a way to use XML files to
import or export WebSphere configuration data. XML files have the advantage of automating the
configuration of multiple WebSphere components. For example, an application that consists of multiple
servlets, JSPs, and EJBs can be configured with one XML file.

? Scripting - Yet another alternative to the GUI-based administrative client is the WebSphere scripting
processor. Originally called ejscp in WebSphere 3.02, wscp operates in two modes: script file processing
mode, and interactive mode.

One of the Admin best practices recommended later in this document is to use the Admin Console when
developing applications or during pre-production tests. Prior to a production implementation the now
stabilize configuration should be exported into an XML file utilizing the XMLConfig tool . Once in
production, it is common for customers to solely use XMLConfig or WSCP to administer their systems.

The Swiss Army(tm) Knife of WebSphere

The Admin Server’s role in systems management goes beyond that of configuration management. The
Admin Server also manages critical runtime components of WebSphere. In addition to configuration
management, the Admin Server provides the following services:

? Name and Location Service - A centralized naming service that exports Datasources and EJB Homes,
as defined in the deployment descriptor, into a global name space. The Name Service uses the Java
Naming and Directory Interface (JNDI) to implement a naming service.

? Security Service- A security service that handles authentication and authorization for principals that
need to access WebSphere resources.

Best Practices for Admin Performance and Scalability

Page - 5

IBM WebSphere

? Nanny Service- A Nanny Service starts and monitors the Admin Server. In turn, the Admin Server
monitors the health of Application Server Instances.

? Tracing and Monitoring- A service to control when and how data is gathered for tracing or
performance monitoring.

Best Practices for Admin Performance and Scalability

Page - 6

IBM WebSphere

Server Startup
The following section examines the processes of starting up a WebSphere Application Server instance. In
order to understand how to improve performance and scaling of the WebSphere Admin System, it is
important to understand what happens when a Server starts and the sub-processes the occur.

Process of Starting the Trade 2 Server

The following section describes the process of starting an Application Server. An Application Server
configured with a representative application called Trade 2 is used as an example. Trade 2 is a standard
performance application benchmark used by the WebSphere development team. It contains a collection of
EJBs, Servlets, Java Server Pages and a Datasource definition.

There are two major phases of activity that occur when an Application Server is started. Phase 1, as
illustrated in the figure below, is initiated by the WebSphere Admin Console. When the console requests that
a server be started, a new JVM process is spawned on the specified server node. The Admin Server passes
arguments pertaining to the Trade 2 Server via the command line.

Admin
Repository
Database

WebSphere Admin Console

console start Trade 2 Server

Admin Server

Trade 2 Server

0

start process Trade 2 Server

1

get configuration for Trade 2 Server

2
1a

2a

initialize Managed Server

fetch Trade 2 configuration
from Admin Repository

2b initialize Trade 2 Configuration

Figure. Process of Starting the Trade 2 Server

The majority of Phase 1, labeled 1a above, is spent initializing the basic services of a Managed Server. For
example, during initialization the ORB, Logging, Security and Transaction Services are initialized. Phase 1
concludes with the newly initialized Trade 2 server notifying the Admin Server that it is ready to start Phase
2.

Phase 2 involves configuring the Trade 2 Server with its specified application resources. During the first part
of Phase 2, labeled 2a above, the Admin Server gathers the Trade 2 Server configuration from the Admin
Repository Database. It then packages the configuration and passes it in one single message back to the
Trade 2 server. Phase 2b involves the Trade 2 Server parsing through its configuration and initializing the
relevant run time components. For example, during this Phase application Jars are loaded, EJBs are
registered, connections are made to the Web Server plug-in and the Datasources make contact with their
respective databases. Once Phase 2 concludes, the server is “open for e-business”.

Best Practices for Admin Performance and Scalability

Page - 7

IBM WebSphere

Startup Breakdown

This section breaks down the time spent during the 2 startup phases of the Trade 2 Server.2

Phase 1. The following pie chart illustrates the individual aspects of Phase 1 startup. The chart gives some
perspective of how time is spent during Phase 1 and the percentage of time spent during these phases.

Figure. Startup Phase 1- Server
Initialization

The most significant operation
performed during this Phase is the
initiating of the Transaction Manager
(36%), which establishes the
Transaction Log that is used for EJB
transaction recovery. The initialization
of the XML parser and the ORB
combine for 25% of this Phase. The
remaining times are well distributed
over a variety of activities. Lastly, 15%
of the overall time is spent requesting
and retrieving the Trade 2 Server
configuration.

Phase 2. The following pie chart characterizes startup performance of Phase 2, which is the configuration
of the Trade 2 Server.

Startup Phase 2- Server
Configuration

There are three major activities that
make up the Phase 2. They are the
loading of Servlets (20%), the loading
and registering of the Trade EJBs
(23%) and the loading of the Trade
Datasource (29%). The remainder of
the time is distributed across a variety
of other activities.

Best Practices for Admin Performance and Scalability

Page - 8

IBM WebSphere

2 These measurements were taken on Microsoft Windows 2000, Intel PIII 1-way 500mhz, 512meg Ram.
WSAE 3.5.2 was used with "best practices items" 1, 2, 3, 4, 5, 7 and 10 applied.

Phase 1= 6400 ms
LSD
0%

Parse Cmd
1%

VersionInfo
3%

ORB
10%

Logging
0%

Security
0%

ConnectMgr
0%

NameServer
4%

Trace
6%

Parse Cmd
1%

Misc
5%

Register
w ith Node

Agent
15%

PerfMonitor
5%

XML
14%

TranMgr
36%

Phase 2= 5800 ms

Hostnames
2%

Transport
3%

Misc
7%

SEUpdates
1%

Servlets
20%

SEMisc
4%

UserProfile
1%

SessionMgr
2%

DataSource
29%

PerfMon
1%

Load Trade2
Jar
7%

Load/Bind
Trade Beans

23%

Factors Influencing Admin Performance and Scale
The following section provides a cost analysis of managing EJBs, Servlets, DataSources and Server/Clones.
Cost is measured from the perspective of factors that influence performance and scalability of Managed
Server startup. Examining Managed Servers has the dual benefit of providing insight into the performance
and scalability of both Application Server Instances as well as the Admin Server itself. This is because both
are derived from a common Managed Server code base.

As we will see there are factors that influence startup time which are purely time based. Some of these
factors, however, cause “side-effects” that will also have an impact on scalability. For example, loading
classes or Jars is a factor that purely effects performance. Class loading is a localized operation and only
effects the performance of the local machine performing the action. Loading an EJB, however, is both a local
and remote operation. EJB initialization involves interactions with the Admin Server and the Admin
Repository, which can effect the overall Admin System’s scalability.

EJB Container
This section examines three factors related to EJBs that influence the performance and scalability of the
WebSphere Admin System. They are the Number of EJBs, Packaging of EJBs and Bean Naming.

Number of EJBs

Each EJB deployed within a container has an overall influence over startup and scalability. As you increase
the number of EJBs, you increase the overall startup time of your system. At a high level, there are two
phases involved in initializing an EJB in a container. Phase 1 involves loading the bean and parsing its
deployment descriptor. Phase 2 involves registering the EJB with the Global Name Space. Phase 1 is
covered in more detail in the next section, Packaging EJBs. Since Phase 1 is a local operation with no side
effects, it can be considered a constant activity. Hence, it will not vary based on the conditions of the entire
WebSphere Admin System. Phase 2 is very different because it does influence the entire WebSphere Admin
System. An EJB registers with the Global Name Space by calling remote EJB methods on the WebSphere
Name Service, which is built into the Admin Server. Under normal conditions this operation is quite
constant. However, performance begins to vary as the Admin Server and Admin Database become busy
servicing other requests.

 Figure. Container with 50 EJBs versus 100 EJBs
The following figure illustrates the results of an
experiment that measured the startup time of a container
with 50 EJBs versus 100 EJBs.3 The startup time of the
container increased 1.83x from 50 to 100 EJBs. In both
cases, Phase 1 and Phase 2 of initialization of a single
EJB took place in under 110ms. Extrapolating from this
data, we can estimate that it would take under 1 ½
minutes to start a Container containing 500 EJBs.

WebSphere Enterprise Edition has support for “lazy”
initialization of business objects. If this option is
specified, a remote object is not initialized until a client

calls a method on it. As you can imagine, this option will enable a server with many thousands of objects to
be initialized very quickly.

Best Practices for Admin Performance and Scalability

Page - 9

IBM WebSphere

3 Experiment was conducted using WebSphere Advanced Edition 3.5.2 on Windows 2000 on an 8-way Intel PIII 550mhz per processor with 2
Gig of Ram. The Admin Repository Database was DB/2 6.1 and was running on the same machine.

6396

11724

0

2

4

6

8

10

12

14

T
ho

us
an

ds
M

ill
iS

ec
on

ds

1st Bean Others

50 EJBs
1 Jar

107 ms
per Bean

100 EJBs
1 Jar

102 ms
per Bean

Packaging of EJBs

The manner in which an EJB is packaged can influence the overall startup time of the EJB Container.

Figure. Beans per Jar. The following figure
illustrates that packaging all related EJBs in a
single Jar file is slightly more efficient than
deploying each EJB in a separate Jar. In the case of
50 EJBs, the packaging difference was less than
2%. In the 100 EJB case, the difference was less
than 4%. This experiment also illustrates, as one
would expect, the time to load the first EJB takes
longer if all beans are in the same Jar. In normal
circumstances, where the Jar exclusively holds
EJBs, this is not a problem. However, this
experiment also illustrates a case where loading a
single EJB has a significant impact if it is in housed
in a large Jar file. In this example, the Remote

Servlet Request Processor Bean (Remote SRP Bean) takes over 1 second to load. This is because this bean is
housed in the 2.8MB ibmwebas.jar. This is a multipurpose Jar that contains many artifacts related to the
WebSphere Servlet Container. When the SRP bean is loaded, a majority of the time is spent loading and
parsing this large Jar.

Bean Naming

When a WebSphere Container is started it binds each of its EJBs into the Global Name Space. This process
can be exacerbated if the JNDI Home Names of these beans are deeply nested.

Figure. Many contexts versus one context. The
following figure shows deploying beans to the same
naming context is more efficient then deploying to
different contexts. In the “50 Contexts" case, fifty
EJBs are deployed to fifty different JNDI naming
contexts. (For example, \App01\Ejb01,
\App02\Ejb02, \App03\Ejb03, etc.) In the “Single
Context” case, fifty beans are all deployed to the same
context. (For example, \myApp\myEjb01,
\myApp\myEjb02, \myApp\myEjb03, etc.). This study
shows that the Single Context case is 20% faster than
the Multiple Context case.

Best Practices for Admin Performance and Scalability

Page - 10

IBM WebSphere

536 1135 515 1620

7604 7495

13333
12833

0

5

10

15

T
ho

us
an

ds
M

ill
iS

ec
on

ds

RemoteSRP Other Beans 1st Bean

50 EJBs
50 Jars

50 EJBs
1 Jar

100 EJBs
100 Jars

100 EJBs
1 Jar

7604

5765

9432

7541

50 EJBs 50 Contexts
50 Beans 1 Context

0

2

4

6

8

10

Th
ou

sa
nd

s
M

ill
iS

ec
on

ds

Other Servlets Container

Figure. Bean Registration. The following figure describes the messages
sent between the Managed Server and the Admin Server during the
registration of a bean. In the “Multiple Context” case Steps 1-3 are
followed for each bean. In the “Single Context” case, Step 1-3 is followed
for only the first bean. All other beans that are part of the same context
simply repeat Step 3, which is the rebind phase. This explains why the
Single Context case is more efficient then the multiple context case.

Servlet Container
This section examines three factors related to the Servlet Container that influence the performance and
scalability of the WebSphere Admin System. The three factors are Autoloaded Servlets, Plug-in
Configuration Regeneration and Servlet Re-director / Remote SRP Bean. The following figure illustrates
the overall impact of these factors as realized when starting up the Trade 2 Server.

3445 3325

1141 992

4927
4436

2002
1722

baseline
minus Plugin

minus Audit
minus Both

0

1

2

3

4

5

6

Th
ou

sa
nd

s
M

ill
iS

ec
on

ds

Other SE Session/Profile Web App

Figure. Factor related to Servlet Container

Autoloaded Servlets
Servlets can be defined to automatically load during the startup sequence of an Application Server.
Otherwise, the Servlet will be initialized upon its first request for service. Autoloading Servlets will have an
impact on Server startup. There are several considerations that need to be made when using Autoloaded
Servlets. When Servlets are loaded, their init() methods are called. Servlet engineers sometimes use this
method to initialize services, like connection management to backend systems or initializing large pools of
static data. These heavy weight init() processes can dominate startup time. Therefore, one must be mindful
of the cost of a Servlet’s initialization and treat it accordingly.

When a Servlet is loaded, it generates several serious event messages, called Audit messages, which are
logged backed to the Admin Repository, by way of the Admin Server. When Autoloading Servlets, these
messages can congest the Admin Server. An e-Fix exists for WebSphere Advanced Edition 3.0.2 and 3.5 that
will allow these messages to be simply written to Standard Output. For example, the above figure shows the
impact of using this e-Fix on the Trade 2 Server. With this fix, the Trade 2 Server starts better than twice
as fast!

Best Practices for Admin Performance and Scalability

Page - 11

IBM WebSphere

M
an

ag
ed

 S
er

ve
r

A
dm

in
 S

er
ve

r1. Bind new Container

Error! Already Bound

2. Resolve bean

ok

3. ReBind bean

ok

Plug-in Configuration Regeneration
When Servlets are added to a Web Application, the configuration for these Servlets needs to be “pushed” out
to the WebSphere Web Server Plug-in. This is done in order for these new Servlets to be recognized by the
Web server. Plug-in Configuration Regeneration, Regen, is performed by the Admin Server. The Admin
Server generates three properties files that are referenced periodically by the Plug-in. The Default behavior of
WebSphere Admin is that a Regen occurs each time a new Application Server is started. An e-Fix exists for
WebSphere Advanced Edition 3.0.2 and 3.5 that will allow this behavior to be relaxed. With this fix, the
only time Plug-in Configuration is regenerated is when the Regen button is pressed via the WebSphere
Admin Console. The above figure illustrates the impact of Regen during startup. Although a Regen only
seems to add an additional 10% to startup cost, Regen has an even greater impact as you start servers
concurrently within your Admin System. This is because the Regen action involves interactions between the
Application Server and the Admin Server. Customers have witnessed up to 3X improvement when
disabling Regen within Admin Systems with dozens of servers defined.

Servlet Re-director and Remote SRP Bean
The Servlet Re-director and Remote SRP Bean are typically used in Firewall configurations to forward a
Servlet request from a Servlet Container to a remote Servlet Container. If your configuration does not require
this function, there is no need to configure the SRP Bean because it takes considerable time to load and
register. This is illustrated in the Packaging of EJB section above. In this example, the SRP Bean was
taking 1 second, out of the 7 seconds it took to load the 50 Bean server. Hence, if the Servlet Re-director is
not being used, delete the Remote SRP bean from your EJB Container.

DataSources
There are two aspects of Datasources that will influence the startup of the Managed Servers that use them.
The first aspect is the time it takes to lookup the Datasource in the Global Name Space. The other is the time
it takes the Datasource to create the initial set of connections to its database. For example, the lookup,
creation and connection initialization of the Trade Datasource takes 1.3 seconds out of the 7 seconds it took
to load the entire Trade 2 Server. Hence to improve startup time, one should consider setting the Minimum
Connection Pool Size setting, on the Advanced Tab of the Datasource property sheet, to a small number.

Servers and Clones
This section examines the effects of starting multiple Application Servers.

Figure- Admin Points of Contention. The following
figure illustrates two Admin scenarios. Scenario 1, is a
vertical configuration where two Application Servers are
defined to run on the same machine. Scenario 2, is a
horizontal configuration with one Application Server,
Admin Server pair running on each machine. As
described in the Server Startup section of this document,
there are two phases to Application Server startup. Phase
1 is predominately composed of local operations. Hence,
in Scenarios 1 or 2, provided the hardware is sufficiently
supplied with memory and CPU power, two Application
Servers can perform Phase 1 startup without contention.
It is Phase 2 that has the potential to cause contention. In
Scenario 1, there is potential for congestion at the Admin
Server for performing operations like configuration
retrieval or EJB registration. This congestion tends to

only impact performance when many Application Servers are started at once. In Scenario 2, there is less
contention at the Admin Server, however, congestion can form at the Admin Repository Database. Again,
this only tends to impact performance when many Application Servers are started concurrently.

Best Practices for Admin Performance and Scalability

Page - 12

IBM WebSphere

Admin
Repository
Database

Admin ServerTrade 2 Server

Node 1

Node 2

Admin ServerAnother Server

2

Admin
Repository
Database

Admin ServerTrade 2 Server

Another Server

Node 1

1

 Figure. Starting 4 clones concurrently.
The following figure shows the results of a series
of experiments where starting Clones of an
Application Server containing 101 EJBs and 25
Servlets. First, one Clone was started, then two,
three and four. The 4 bars in the foreground
represent the average time to start each
Application Server. The bars in the back ground
are the time it took to start each of the Clones.

The most important observation from this figure
is that Applications Server startup only increases
1.9x from 1 to 4 Servers. The figure also
illustrates that as we increase the number of
concurrent Clones, the EJB Container startup
seems to proportionately increase to 1.8x from 1
Clone to 4 Clones. This implies that the

additional startup time can be attributed to contention in registering the 400 EJBs (100 per Server).

Admin Repository Configurations
An option exists in the WebSphere Admin System to specify a specific schema for the Admin Repository
data. By doing this a single database “instance” can be configured with multiple schemas, each representing
a unique instance of an Application Server. This configuration is a “contention free” configuration and is
highly optimized for scale and performance. However, the downside to this configuration is that it breaks the
Single Logical Image design point. Although the WebSphere Admin Console will still provide a single point
of management for this cluster, key functions like Model/Clone are not supported.

Figure. Single database instance,
multiple schema. The following
figure illustrates 3 Application Server
instances, App1, App2 and App3, all
running against the same database
instance, called WAS. Each Server
instance has its own schema, named
App1, App2 and App3. In this
configuration there is no contention
between Nodes, Admin Servers or the
Admin Repository.

On each node a property must be set in
websphere\appserver\bin\admin.config
For example, the following property
was added to support the APP1

Schema. "Com.ibm.ejs.sm.adminServer.dbSchema=APP1".

Best Practices for Admin Performance and Scalability

Page - 13

IBM WebSphere

15145
16932

21604

27568

1 Clone 2 Clones 3 Clones 4 Clones
0

5

10

15

20

25

30
T

ho
us

an
ds

M
ill

iS
ec

on
ds

Other Servlet Container EJB Container

19474

23692

29063

WAS db instance

App1 Schema

App2 Schema

App3 Schema

WebSphere Admin Console

console

Admin ServerApp1 Server

Node 1

Admin ServerApp2 Server

Node 2

Admin ServerApp3 Server

Node 3

App1
App2
App3

Best Practices for Admin Performance and
Scalability

The following section is a summary of the best practices for administering a high performance and scalable
Admin System in WebSphere Standard and Advanced Editions. Each best practice includes a brief summary
as well as a rating of its overall impact. A High rating has the greatest impact on Admin performance and
scalability. A Low rating has a marginal, but measurable impact. Where applicable, the instructions for
applying the best practice, usually in the form of setting a property in a property file, is specified. Most of
these practices are derived from analysis in the previous section, Factors Influencing Admin Performance and
Scale.

HighWebSphere Standard/Advanced Edition 3.5.21

WebSphere Standard/Advanced Edition 3.5.2 (or later) has significant improvements, over past versions, in
the area of Admin startup performance and scale. One of the major reasons for 3.5.2’s improvement is that it
contains JNDI reference caching that significantly improves startup times of all Managed Server (Admin or
Application) as well as start up time of any Client including the Admin Console and XML Config.

In general, using WAS 3.5.2 in conjunction with the other best practices described in this section, can lead to
improved Admin behavior and startup improvements of up to 300%.

MedJava Heap Settings2

Currently, the Admin Server does not set a minimum starting heap size (-Xms) parameter. Since a "vanilla"
Managed Server takes about 30 megabytes to operate, setting the -Xms to at least 48M will help start up time.
 Depending on the size of the application(s) running in this Managed Server, this value can be set even
higher. By modifying this setting, startup time of the Admin Server can be improved by up to 20%.
(Note: The adminServerJmArgs property supports a series of values. Do not disturb the other settings, simply append
these new values to the end of this setting.)

/websphere/appserver/bin/admin.configFor 3.0.2 set:
com.ibm.ejs.sm.util.process.Nanny.adminServerJvmArgs=
-ms48m
For 3.5.x set:
com.ibm.ejs.sm.util.process.Nanny.adminServerJvmArgs=
-Xms48m

LocationProperty Name

MedAdmin Table Creation3

By default, the Admin Server attempts to create approximately 35 tables in the Admin Repository, regardless
if they exist or not. (Using JDBC there is currently no elegant way to test if a table exists.) If the table
already exists, which will be the case in all but the first time the Admin Server is run, the create operation
will obviously fail with an “Already Exists” exception. This exception occurs after the create operation times
out. In some configurations this can impede startup performance, especially when the Admin database is
configured remotely. For example, customers have measured as high as 2 seconds per table for the table
request to fail in a remote DB2 config.

Best Practices for Admin Performance and Scalability

Page - 14

IBM WebSphere

WebSphere has a property that will disable the creation of tables on Admin Server startup. The property is:

/websphere/appserver/bin/admin.configcom.ibm.ejs.sm.adminServer.dbInitialized=true

LocationProperty Name

HighAdmin Server EJB Method Calling Model4

As described in the Systems Management Overview section of this paper, the Admin Server is, itself, a
Managed Server running an EJB application. Like any Application Server, the Admin Server can be run
using the Call-by-Reference method calling convention instead of the default, Call-by-Value. Doing this will
increase the performance of local EJB interactions. When the Admin Server is run in this mode, performance
of many operations including: Admin and Application Server Startup times, Admin Client Startup,
XMLConfig and WSCP all improve up to 40%. Any time the calling model of an EJB container is
changed to Call-by-Reference, there is a risk because the local/remote transparency of EJBs is violated. This
can lead to unexpected side effects because the EJB programmer may be counting on parameter copying
behavior that Call-by-Value provides. However, since this application is written by the WebSphere
development team, we can control its behavior and ensure that we obey the proper calling guidelines.

To configure the WebSphere Admin Server to run using the Call-By-Reference model, set the following
property: (Note: The adminServerJmArgs property supports a series of values. Do not disturb the other settings, simply
append these new values to the end of this setting.)

/websphere/appserver/bin/admin.configcom.ibm.ejs.sm.util.process.Nanny.adminServerJvmArgs=
-Djavax.rmi.CORBA.UtilClass=com.ibm.CORBA.iiop.Util
-Dcom.ibm.CORBA.iiop.noLocalCopies=true

LocationProperty Name

HighPlug-in Configuration Regeneration5

During the initialization of an Application Server instance, the Web server plug-in configuration is
regenerated during a server startup. This action is performed whether it needs to be or not. This process is
described under Servlet Container, in the Factors Influencing Admin Performance and Scale section of this
paper. An option was described that disables the automatic regeneration behavior and will only allow plug-in
configuration to be generated on demand. Configuring this option can lead to Admin startup time
improvements ranging from 10% all the way up to 100% depending on the number of server starting
concurrently.

To configure this option create a file called global.properties in the /websphere/appserver/properties
directory. Add the following property to the file:

/websphere/appserver/properties/global.propertiescom.ibm.servlet.engine.disableAutoPluginCfg=true

LocationProperty Name

An e-fix is required in order to apply this best practice. See the E-Fixes referenced within this Paper
section for details on how to get this fix.

Best Practices for Admin Performance and Scalability

Page - 15

IBM WebSphere

MedDNS Configuration6

WAS works best on network systems that use static IP addresses. Using Dynamic Host Configuration
Protocol, DHCP, can sometimes lead to admin operations taking a long time to execute. The most common
form of this problem has to do with the fact that the WebSphere Admin Server sometimes stores IP addresses
in the Admin Repository. Since with DHCP an IP address can change dynamically, an address that was valid
when the Admin Server was last started, might not be valid if the Admin is recycled. Hence, when the
Admin Server tries to contact that address, it will pause until the attempt DNS name resolution times out.
This can take as long as 5 seconds for each failed contact. Hence, it is recommended that WAS is not run
using DHCP. If DHCP must be used, be aware of operations that seem to “stall” (i.e.,CPU idle time nears
100%) before the operation finishes.

MedEJB Naming 7

When an instance of a WAS server is starting containing an EJB Container, the time it takes to bind the EJBs
into the JNDI name space can be exacerbated by naming the EJB Homes with names that are deeply nested.
 This is described under EJB Container, in the Factors Influencing Admin Performance and Scale section of
this paper. Keeping EJB Home names simple can improve the startup time of your EJB Container up to
20%.

MedAuto Loading Servlets9

Using the Servlet Autoloader option can influence the startup times of your WAS server. This is described
under Servlet Container, in the Factors Influencing Admin Performance and Scale section of this paper.

HighDisabling Servlet Audit Logging10

Audit logging of Servlet information is a very expensive operation. This is described under Servlet
Container, in the Factors Influencing Admin Performance and Scale section of this paper. For example,
WAS issues several audit messages for each servlet loaded into the system. Given a system with many
servlets, running across many nodes, message congestion can become a real issue. Disabling Audit Logging
can improve the startup time of you're WAS server by as much as 2X, depending on the number of
Servlets defined as AutoLoaded in your system. To configure this option create a file called global.properties
in the /websphere/appserver/properties directory. Add the following property to the file:

/websphere/appserver/properties/global.propertiescom.ibm.servlet.engine.disableServletAuditLogging=true

LocationProperty Name

An e-fix is required in order to apply this best practice. See the E-Fixes referenced within this Paper
section for details on how to get this fix.

LowDatasource Connections11

When a Datasource is initialized within a WAS server it creates an inital set of connections to the database as
specified in the Minimum Connection Pool Size setting in the Advanced Tab of the Datasource property

Best Practices for Admin Performance and Scalability

Page - 16

IBM WebSphere

sheet. If this setting is too large (e.g., greater than 50), it can impact the startup time of the WAS server.
Keeping this setting small (e.g., 10 connections or less) will minimize the impact on Server startup.

LowAdmin Datasource Tuning12

In WAS 3.0.2, the Datasource, which is used to connect the Admin Server to the Admin Repository Database,
is not optimally tuned. This is described under Datasource, in the Factors Influencing Admin Performance
and Scale section of this paper. In particular, in 3.0.2, there are too many connections defined in the
connection pool of the Admin Server’s Datasource. This leads to several problems. One problem is that the
Prepared Statement Cache, which typically aids in the performance of database interactions, is not being
utilized. To improve the hits on this cache, one can increase the size of the case.

/websphere/appserver/properties/admin.configcom.ibm.ejs.sm.util.process.Nanny.adminServerJvmArgs=
-Dcom.ibm.ejs.dbm.PrepStmtCacheSize=200

LocationProperty Name

MedClass Loading and Jar File Arrangements13

An estimated 40% of overall Managed Server startup time is spent in loading classes, Jars, and resource
bundles. Here are the “rules of thumb” for ensuring that class loading is optimally performed:

1. System Classpath. It is often common practice for Servlets or EJBs to share common Java class libraries
containing either third party Java packages (e.g., class libraries for managing XML or connectivity to
proprietary services). These classes are typically placed in large Jars and/or class files. It is typically
more efficient to place these classes or Jars on the WebSphere System Classpath rather than the Web
Application Classpath. This is done by adding an entry to the com.ibm.ejs.sm.adminserver.classpath
property in the Admin.Config file.

/websphere/appserver/bin/admin.configcom.ibm.ejs.sm.adminserver.classpath=

LocationProperty Name

2. Packaging of EJB in Jars. This is described under EJB Container- Packaging of EJBs, in the Factors
Influencing Admin Performance and Scale section of this document. The conclusion presented in this
section is that it is slightly more efficient to group EJB into single Jars, rather than packaging each EJB
in its own Jar.

3. Class loading e-Fix. There is an e-Fix for WAS 3.0.2 and 3.5 that provide a general optimizations for
class loading. See the E-Fixes referenced within this Paper section for details on how to get this fix.

MedServlet Redirector and Remote SRP Bean14

This is described under Servlet Container- Servlet Redirector and Remote SRP Bean, in the Factors
Influencing Admin Performance and Scale section of this document. Removing Servlet Redirector and
Remote SRP Bean configuration can help startup performance. If the Servlet Redirector service is not being
used, simply right click on the Servlet Redirector entry in the left pane of the WebSphere Admin Console and
select Delete. You will also have to go into each EJB Container and delete the Remote SRP Bean as well. If

Best Practices for Admin Performance and Scalability

Page - 17

IBM WebSphere

your application is not using EJBs you can delete the EJB container in which the Remote SRP Bean was
contained.

MedStart Production Servers using XML Config15

It is much more efficient, from a performance and scalability perspective, to start WebSphere Application
Server instances and/or Clones using either XMLConfig or WSCP. Starting servers using the WebSphere
Admin Console will cause more interactions between the Admin Server and the Application Server instance.
These interactions are allow the Admin Console to display the correct property sheet information or state
information in the iconic view of the resources displayed in the Admin Tree. When using either XMLConfig
or WSCP to start servers, there is no extraneous communication, hence the startup process can be
significantly enhanced. This is especially true, if there are many resources being loaded within a given server
(e.g., many Servlets and/or EJBs) For this reason, it is recommend that the Admin Console be used during
developing and during pre-production tests. Prior to a production implementation the now stabilize
configuration should be exported into an XML file utilizing the XMLConfig tool. Once in production, it is
common for customers to solely use XMLConfig or WSCP to administer their systems. Lastly, if the Admin
Console must be used, collapsing all containers views under a Server definition, will maximize the startup
process.

MedSerious Event Table16

WebSphere Admin infrastructure allows for auditing of serious events. Examples of such events are a critical
application exception or messages indicating a server has been started or stopped. When a serious event is
generated it is logged backed to the Admin Repository. By default, WebSphere does not set bounds on this
log. As the log grows, the time it takes to update this log will increase. This will eventually start to impact
the overall performance and scalability of the WebSphere Admin System. For example, it will impact the
time to start the Admin server or an instance of an Application Server. An option is available which will
prevent this log from growing past a specified number of entries. This is done by adding the following
property in the admin.config file.

/websphere/appserver/properties/admin.configcom.ibm.ejs.sm.adminServer.seriousEventLogSize=1024

LocationProperty Name

MedOne Admin Server per Node17

WebSphere Advanced Edition allows a single Admin Server to service multiple Server Nodes. However, for
availability and performance reasons it is best to run a WebSphere Admin Server on each Node in the
WebSphere Admin Domain.

Best Practices for Admin Performance and Scalability

Page - 18

IBM WebSphere

Summary

WebSphere Application Server has a sophisticated Administrative system that provides the powerful ability of
a single point of management for a cluster of servers. This document providee a series of insights into how
to maximize the performance and scalability of the WebSphere Administrative System. This paper presents a
summary of the best practices administering a high performance and scalable Admin System in WebSphere
Advanced Edition. Customers who have applied these best practices to their installation of WebSphere
Advanced Edition have seen up to a 3X improvement in performance and salability.

Glossary of Terms
Admin. Short term of Administration. A typical reference to some component of Administering WebSphere

Admin Repository - Database containing the WebSphere configuration

Application Server. An Application Server or Application Server instance, refers to the Java Virtual
Machine that is running your Servlets, Java Server Page, and/or Enterprise Java Bean based applications.

Domain. An Admin Domain is the root of the WebSphere Admin hierarchy. The Admin Domain contains
all associated Nodes (i.e., machines) and Servers (Application Server Instances) as well as a variety of other
definitions including Datasources, Models and Clones.

EJB Container. A container for EJBs. Manages transactions between EJBs and the persistence of EJBs.

Managed Server. A Managed Server is an abstract term that applies to either an Application Server
Instance or an Instance of the Admin Server. Since both the Application Server and the Admin Server are
derived from the same code base, certain behaviors apply equally to both servers.

ServletEngine/ServletContainer. A ServletEngine is a container for Web Applications. A Web Application
can contain a combination of Servlet and JSP definitions. A ServletEngine is synonymous with
ServletContainer.

System/Server Nodes. A machine that is part of the WebSphere Admin Domain.

WAS. Abbreviation for the WebSphere Application Server. If an Edition is not specified, the reference
typically applies to both Standard and Advanced Edition.

Best Practices for Admin Performance and Scalability

Page - 19

IBM WebSphere

E-Fixes referenced within this Paper
Several of the best practices, referenced in this paper, requires electronic fixes to either WebSphere 3.5 or
WebSphere 3.0.2. The following table lists the aforementioned fixes:

3.0.2.2 - PQ41070 — Improve performance of Jsp
tag and Servlet engine classloader.

3.5.2 - PQ42952 — Jarfileclassprovider does not
cache contents for efficient class loading

Class Loading and Jar File Arrangements
Best Practice #13

3.0.2.2 -

3.5.2 -

Disabling Servlet Audit Logging
Best Practice #10

3.0.2.2 -

 3.5.2 -

Plug-in Configuration Regeneration
Best Practice #5

Fix versions and descriptionBest Practice

Best Practices for Admin Performance and Scalability

Page - 20

IBM WebSphere

