Interactive Financial Services

Customizable Web Server (CWS) Guide

Note
Before using this information and the product it supports, be sure to read the general information under Notices .

Draft for Beta - Fourth Edition (April 2002)

This edition applies to the Version 1 Release 6 Modification 1 part of the Interactive Financial Services Solution.
Order publications through your IBM representative.
IBM welcomes your comments. A form for readers comments is provided at the back of this publication.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2002. All rights reserved.

Note to U.S. Government Users Documentation related to restricted rights Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule contract with IBM Corp.

ii IFS Customizable Web Server (CWS) Guide Fourth Edition

Contents

L0 o o =T 41T iiii
o 11 =R X
Trademarks and Service Marks.........cccciiiiiiiiiiiiii s s s sn e e e e s e nn e e s s nn e e eaan Xi
o1 o= xii
N« Xo 10T I 0 =0 = o T xiii
L g F= L e TE= T =To o) Q07] a1 ¢= 1] o 1< PSSRSO Xiii
LI (00110101 oo PSP PRPI Xiii
WHhO Should REad THiS BOOK.........cciiiiieiiiiiie e ittt e ettt e e ettt e e e st e e e e estee e e e ssbeeeessaeeeeantaeteaeeantaeeesasseeeeensees Xiii
What You May Find Useful Before Reading This BOOKooiiiiiiiiiiii e Xiii
Where t0 FINd More INfOrMatioN........ooo ittt e ettt e e e s e e ataeeeesnaeee e e Xiv
Do You Have Comments, Problems, or SUGGESHIONS?oviiiiiiiiiiiie e e Xiv
TypographiC CONVENLIONS..........ccccciiiiiiiiiccccecerrr e ss s s sssre e e e s s s s s s s sss s e s e e s ee s s s s s ssmseneeeeesansssnmsessansssnnmnnnnsnnssnnsnnnns XV
£ 14T 0 F= 1V oY 03 1 T- 1 4 Ve 1= S XVi
Chapter 1. Customizable Web Server (CWS) OVEIrVIEWccccceeeriiiisicisssmerreessses 1
Components of the CWS CUSIOMIZATIONoiiiiiii e e e e e e e e e e raee e e 1
LAY = o T = SO 1
The Customizable WED SErver (CWS).......oooo ittt ettt ettt e e tte e e e st e e e s ssbaeeeesstneeeeessseeenans 1
Transaction DElIVErY MEaNAGEToii ittt ettt e ettt e e s bttt e e st bt e e e e e sbeeeesanbreeeeaas 2
The Financial INSHIULION ... et e e e e et e e e e e e e e nnee s e e e e e e e e e ennreneeaaeens 2
Understanding the CWS ENVIrONMENT ittt ettt et e e e et e e et e e e seeeeemneeeeneeenes 3
The Development ENVIFONMENT..........oo et e e e e e e e e e e e e e e e e eae e e e seabaaeeaaeeas 3
Chapter 2. Migrating to VIR6M1 and WebSphere 4 e sss s ssssssssss s s s ssssss s s sssssssssmssnsees 4
Benefits of USING WEDSPNEIE 4.0......cc ettt e et e e ettt e e e e e et e e e anbaeeeeantaeaeees 4
Migrating from V1R6 with WAS 210 VIRB With WAS 4 ... e 4
SOftWArE Prer@QUISITES ...ttt e e e e e e et e e e e e e e et s b e e abbaeeeeeeesesnsbaeeaaaeeas 5
CWS DistribDULION FOMMAL....... oottt e e ettt e e e st ee e e e ente e e e e nnbeeeeennees 5
Installation and Configuration 0f the CWS e e e e sneeeeneeas 6
Updates to CWS CuStOMEr JAVa COAE.........oo ittt ettt et e et e e et e et e e saeeesmaeeanneeeeaneeeanneas 6
[fSSYStEM.PrOPErtiES FlEo ittt e et e et e e em e e e 2 e ae e e steeeemeeeeaneeeanneas 6
(O] g F=T = Yot (=1 gl =1 g TeToTo [1aTo JRS 10T o o] SRS 6
Migrating from VRS 10 VARG ...ttt e e h bt e e e bt e e e e e abe e e e e anbe e e e e anbeeeeaes 6
NLS/DBCS ...ttt ettt ettt e e ettt e e sttt e e e eataeeeeasta e e e e asseeee e s se e e e e ss et e e ans s e e e e anRteee e e e ennaeeeenanaeeeannneeeannneenn 7
Code-t0-TeXE TraNSIAtIONSoiiiiiii ettt e e et e e e sttt e e e et teeeeanteeeeeanbeeeeannees 7
RESOUICE BUNGIE ...ttt ettt e e ettt e e ettt e e entb et e e amte e e e e anss ittt e e sansteeeannsaeeeannnneens 8
(O = T o (0] 1 L= O F= T g Vo 1= SRR 9
TranSacCtioN APICRANGESueiiiieiie ettt ettt e e e sttt e e e sttt e e e e atbeeeeebeesbeeeesnteeeeeanneeeaen 9
YR @A S I 1 (=T o | = Vi o] o USRS 9
N SR o F=T o 1= 1T o | SRR 11
Gold Manager Wide CharaCter SUPPOIToo i ittt e e et e e see e e enee e e naeeesnee e s e eneeeenneeans 11
D EST=T o] LT Fo Y= Lo o OSSR 11
MQ Maximum NUMDBEN HANAIESeeiiiiiiiii ettt e e et e e s et e e s entbe e e s e e ennteeeeenees 11

© Copyright IBM Corp. 2002 Contents i

Chapter 3. Installing CWS COMPONENLS ... s sms s s s s s amn e e s e a s mmnn e e e s 12

INSTAIIATION OVEIVIEW ...ttt ettt e et e e ekt eem e e e et e e ase e e amteeeaeeeemeee e 2 emteeeaneeeanneeanseeeanneeanneeans 12
INStall SOftWAre Prer@QUISIIES......ooi ittt ettt e e e et e et e e saee e et ae e e eteeeemeeeenneeenes 12
LN D o= g (o] g a =T aTeT =T U o] o o [PPSR 12
D] S P2 7= (U] o T O RRUO PP UUPRRNE 13
Creating @ CWS INSEANCEeiii ittt e ettt e e sttt e e e sttt e e e aateeeeeatbeeeeabaeebeeeesntaeeeeanneeaeen 15
(@ g LT O7eT g][0 [=T = 1o o F= USSP 24
RUNNING MUItIPIE CWS INSTANCES ... eeiiiiiiiiie ettt e e et e e et e e e ntee eeaeenreeeeenees 24
[l ololg r=T a1 sl =do] &SSO PP UURRRNE 25
Sample [HS Configuration Fileooi it et e e ettt e e eeeataeeeestaeee e e 25
Establishing A Secure HTTP CONNECHON.oiiiiieiie ettt e e e e e eneeeenes 25
T oS o g =T = 1 Y TR g o I I o1 ORI 27
T oS] o g =T = o] o o | =T o] ST PRSR 27
CWS Parameter Setups and ReCOMMENAALIONSiiiiiiiiie ettt e e e sneeeeeas 27
CWS Performance ReCOMMENAALIONSoiiiiiiiieiie ettt e e e e e et e e saeeesnneesneeeeeneeens 27
TN LN @0 o U = o] o SR 27
1T oL (e G OAU S (o] 44T T IS N NSRRI 27
UPAALE SNA FIIES .ot e e et ettt e e e e e st a e e e e e e e e e aabbeeeeee eeeaeeaeaanbareeaaeeeaaane 28
MQ Configuration for a Test ENVIFONMENT..........ooiiiiiiiii e e 28
MQ Configuration for a Production ENVIFONMENTooiiiiiiiiiii e e 29
Chapter 4. Writing Java Servlets for the IFS CWS e sms e e e nmn e s 32
=T (o] g I o Ul = 7= || o PO PRR 32
B Fo Y= =T Y T (=3O 32
SEIVIEE AQVANTAGES eeieiiiieiiie ittt ettt e ettt e ekt eeee et e ettt e eaeeeameee e teeeeaeeeameeeamseeeannmaeeenseeaneeeaneeeaneean 33
LIS 1= 2 0 AN USRS 33
HHPServietReqUEST ODJECTttt e et e et e e s mee e e ee e e e neeeeemeeeenneeenes 34
HHPServietReSPONSE ODJECToi ittt et e et e e enee e e et e e e e seeeeameeeenneeenes 34
ST Y (oL 1Y =1 T Yo PRSPPI 34
0] oo [@0 e {1 RSP 35
Loty fo] gV F= T F=To 1T o 0= o | USRS 36
JAVASEIVEL PAQES (USP) ..ttt e ettt e ettt e e e eat et e e e eh bt e e e e tbe e e eeeataeeeeabeeeeeanraaaeans 37
USING IFSHEPSEIVIET ...ttt ettt e e ettt e e e e st et eeeesanteeeesantbeeesnaneeesnneeeeas 37
1T L E= 1722 e o PP SR 37
Creating and Reusing Gold Objects within Multiple Serviet Pagescccoceeiiiiiieeciii e 38
Settings Fields within Gold Transaction ODbJECES e 39
Removing Objects from the Http Session Cache.........oooiiiiiiii e e 41
Handling Errors following Transaction EXECULION...........ooi i 41
(O7oT a1 1] | 1aTe l =T [T V= 1Y/ To F- i o] o ISR 42
(DL o 0o fo [T To l o= To TSI T =T a1 OSSR 43
Sorting Gold ODJECES DY FIEIASoiieiee et e et eee e stae e e e ataeee e e 43
6] lo I LSl C o] o [@ o] =T TSR 44
Required INPULS fOr SECUIILY CIASSESooiiiiiiiiiiieeie et et baeeaaeeeeaans 45
Preventing Multiple Executions of a Transaction INStanCe ... 46
ST e LY oY T = o USSP 46
QUL (o] 0 aT2= o] g TN 1Y/ L1 1 oo L= SRS 48
DL o1 e o] g le B I =1 7= o7 (o] o F= PSPPI 51
UNit TESHNG PAge SEIVIELSottt ettt et e e et e e et e e s mte e e 2 e emeeeemeeeaeeeesnneeanneeans 54
ReauthentiCationN/BEIOGON..........coi ettt ettt e e aae ettt e e s eab e e e s nbae e e snneee s 54
Using Resource Bundles for Gold Message Return Codes to Text Translationccccccovciiieiiiiiee e 55
Normal TranSaction BERAVIONo ittt e e e e e 57
(g o] gl o F=T o | 1Yo T PSSR 57
Lo g 1 Tez= 1 B =) =SSR 57
National Language ENabDIEMENT.........ooo ittt e et e e e st e e e e e e snebe e e s eneaeeeanneeeas 58
RESOUICE BUNGIE ...ttt e ettt e e n bt e e e sttt e e e nte e e e anntnteeeeennbeeeeannbeeeeannees 58
Using Resource Bundles for LOCAlIZAtIONc..eiiiiiiiie ettt e e 58
ReSOUICE BUNAIE INAMESooiiiiiiiiiie ettt e e ettt e et e e et e e e e nbe e e e an enteeeeanbeeeeannees 58
Auto-Generation of CTT Properties FileSoo it e eneee e 59

iv IFS Customizable Web Server (CWS) Guide Fourth Edition

Code-tO-TEXt TraNSIAtIONSo 59

DYNAMIC SESSION LOCAIE ... ettt ettt ettt et e et e e et e et e e e emteeemeeeeneeeemeeeeneeaeeeasaeeameeeenneeenes 60
Using the NLS Utility Class - IFSNLSo ettt e e e e ee e e e e e seee e e emeeeeneeesnneeanneeans 61
Locating a Resource Bundle: IfsNLS.getBundle() vs ResourceBundle.getBundle()ccccovevevvveeviiieeennnen. 61
Textual Representation of Gold Primitives in Localesensitive Manner............cccccovveeiiieiiiiciiieece e 63
| O @] g =T [T =1 To] 1 PSPPSR 66
]S O @] o1 e U] = 11 (o] o [OSSR 67
Host Database Table ChanGgeseoiiiiiiie ettt et e e et e e e eneeeeeenees 67
Procedures to Establish Connection to DB2 Database using JDBCcoooiiiiiiiiii e 69
Considerations in USiNg MUIIPIE USEI ISuuiiiiiiiiee et e e e e e e nntee e e 71
(= gl E= I [g o= o7 £ PSPPSR 71
(€ 172V [0 1o T=ToToT g To F=T Y[©0] o 1= U [0 g1 SRR 71
GtChangeSeCONArYCONSUMENeii e eitie et e tee e et e etee e e e e e ateeeameeeamaee e teeeameeeanseeaseeeaneeeaseeeaneeeeemneeanneeans 72
GCIOSESECONAAINYCONSUIMIET ... eiieeieeeieeatieeetee e et e e aueeeaseee e aeeeaseeeameeeameeeaseeeameeeanseeaseeeanseeannee e saneeeanneeanneeans 73
GtReSetSECONArYCONSUME!ottt ettt et e e ekt e e et e e amaeeanteeeameeeeneeaseeeaneeeenteeean seeeeamneeanneean 73
GtSecondaryCoONSUMEITNQUITYoo ittt e e e st e e e ee e e e e e te e e smteeeeee e seeesmeeeenee e sanseeamneeaaneeans 73
Potential ISSUES aNd PrODIEIMSoiiiiiiie ettt ettt e sttt e e sttt e e sttt e e e e e ansbeeesnnaeaesnneeens 73
Instance Variables Of @ SEIVIET......... ... et et e e e e 73
Duplicate Transaction ProbIEmooo it e e e e e et st e e e e e e e e aaes 74
U] ool @] o] =] f O o] 1= T PP 75
Chapter 5. Troubleshooting Java in the CWS........... i srccrsss s e e ssss s s s s s sssn e e s s sassssnmsnnnees 76
[R Y= o] o T=To IS =T V] OSSR 76
JAVA CWS AP CIASSESeeieeiieiiie ittt ettt ettt ettt e e et e em et e e ettt e emteeemae e et e e e emte e e ae e e seeeemsmeeeamneeanseeeamseeanneeannes 76
Traditional CWS DEDUGGING -...eeueeeiieieitieeiie ettt ettt e et e et e e st eeesmteeeaee e teeeamteeeaeeaaseeeamseeeeenneeaseeeanneeenneeannes 77
O TSI I = Vot 1= OSSPSR 77
[L] Lo I I = Vot 1 =T SR URSR 77
O TSR Y =TT Vo = 1Ko T USSR 77
LO70] £ 1= PP SOURRRRRR 77
Java Specific Debugging Capabilities.eii it e e araeae e 77
IfsSystem.properties and ifS.SYSIEM.AEDUGoiiiiiiiie e e 77
V= (oo (= o] TSP UOPPPPPPPRRRR 78
SPECITIC ETOr IMESSAGESeeeieiitiie ettt ettt e ettt e e e ettt e e e e s te e e e e ette e e e ettt e e e e tbeeeeaeeanteeeeeanbeeeeannaeeeeannees 78
78 - TIMEOUL HAS OCCUITEA ..ottt ettt ettt e e e sttt e e e shte e e e e s tbe e e e abaeeeeeeesnbaeeeeannaeeaens 78
L0z 1 1= N o] o] o [PPSR 78
801 - UNarchiteCted ErTOr COUEueieieie ittt ettt ettt et e e e e e e meeeeteeesneeeemteeeeesneeeamneeanneeans 78
Chapter 6. CWS Developer’s TOOIKIt ... s 79
11 0o [o o o PR 79
LIS 22 = T 0 OO ST RPI 80
USING the BASIC TOOeeiiiiieiie ettt e e e et e e e ettt e e e e eab e e e s bbbt e e s nbne e e annreee s 80
[(=T = To [T (=T PP OUP PP UURRRNE 81
WEDSPhEre INSTAlIAtIoNveeiiiii e e e e e e e e e e e e e e e e e s aeeaaee s 81
INSTAlliNG the CWS TOOIKILooiiiiiieee ettt e et e e et e e e e nt e e e e e enbeeeeenbeeeeennees 81
CWS COoNfIGUIALION FlE ..ottt e ettt e e e sttt e e e sttt e e e e ntabaeeeesnbaeeeeanteeaeens 83
Configure the CWS ToOIKit SErVEr PrOogramSeiiiiiiieie ettt e et ee e st eeean snaeeeeans 83
RUNNING the TOOIKIL.......eeii ettt e e ettt e e ettt e e e s sn et e e e et e e e e ennbe e e e annes 84
Using the Java Serviet EXAMPIES. ittt et e e s mee e e e e e en sene e emeeeenneeeanes 84
= o) [T aTo RS T Y=Y gl = o] Y o] T] o OSSR 84
Using the Enhanced Simulation TOOL...... ..o ittt e e seee e e smee e e e e e emeeeanneeans 85
D72 @0 o1l U] = L1 {o] o ST 85
CWS Configuration File for ENNANCEA TOOcoiiiiiiiieiiee ettt e e see e snee e e smeeeaneeens 87
Running the ENhanCed TOOIKILeiiiie ettt e e e et e e et e e e e s e e e enees 87
BasiC Data ManagemeEntttt e e et e e e e et e e e e nre e e e enees 87
Data Management using AppProach OF EXCEl.........cooiiiiiiiiie e 88
Development and Test ENVIFONMENToooii et e e e e e e e et s e et rae e e e e e e e eans 88
THE TEeSE ENVIFONIMENT ...ttt e e et e e e sa bt e e e ehte e e e e atteeeeantaeeeeeeantbeeeeanbeeeeeanteeaeaans 88

© Copyright IBM Corp. 2002 Contents v

CWS Trace and LOG FaCIlItI®Soeieeiiiieiie ettt ettt e e et et e e enee e eae e e eneeeeemeeeaneeans 89

O TR Y =TT Vo = 1Ko T SRR 89
CWS INternal EXECULION TTACEei ittt ettt ettt et e et e et e e em e e et e e seeeen e e eneeeeenneeeamneeaneeans 89
(C L] o 1Y TS TS = To Lo I = o= OSSR 90
(070 To L= (o T =Y (Bl (0] o] =T o £ 1= USSP 93
(oo o 11 aTo I o] gl 1o 1o o RSP 94
D= oTU o I o oo =T RSP 94
D=1 o] U e o |1 T [SRS 94
(D L=] oTW o I LU o o o < USROS 95
[DL=] oTW e o 1 T RN N =S PSPPSR 95
10 o] 1] il =T [T O RTRRR 96
Gold Transactions Serviced By Enhanced Simulationccooiiiiii e 96
Predefined RESPONSES.ottt ettt e e ettt e e et bt e a bt n e annee s 99
IMportant POINES TO CONSIAET ... ittt ettt e e et e e et e e ete e e eneeeembeeeeeneeeeanneeanneean 100
ENVIFONMENT VANADIES ...ttt oo ettt e e e e e e et e e e e e e e aeeeeeaaanennneeeaaeaeannes 100
User ConfIQUIation FlESo ittt ettt et e e et e e et e e e stee e s e emeeeeneeeeamaeeanneeans 100
RESPONSE DALA FIES ..ottt e ettt e e e ettt e e e ettt e e e e e anttee e e anbeeeeenees 101
REPEAL IHEIMS ...ttt e et e e e sttt e e e ettt e e e ettt e e e entaeeeean s anbeeeeeanbeeeeeanbeeeeannees 102
(€ To] o[0T T OSSR 102
Appendix A. Web Server Program (WSP) Error Messages and Codes.......ccccccvvvccvcmcemmnninssssssssseressssssssssnnes 104
WSP Component REIUINN COAESueiiii ittt e e e e e e e et e e e e e e et e e e beeeaaeeesanrereees 104
WSP PFM REIUIMN COUESceiiiiiiee ettt ettt e e ettt e e et e e e et e e e e sntaeeeesabaeeesasbaeeesssssaeeesntseeassnsanaenns 104
Reason Codes Used in the Gold Header for the PEM Server ... 104
WeD Server REIUIM COOES........ ittt ettt et et e e em e e e et e e anseeemee e e 2 eneeesaneeamneeeaneeennes 105
O TSy o B 2 =T 0=y A 0o T [T SR 106
(C L] o N1V =T F=To [T g @Yo = O 106
Codes Processing Java REQUEST...........oiiii ettt ettt ettt e et e e et e e sse e e enee e e nbe e e e eneeeanneeeaneeeanes 106
Internal Errors in Gold Manager - LOCating ATOMSouiiiiiiiiie et e e e e 107
Gold Manager Error Codes While Creating the Output Response Buffer ... 107
Internal Conversion Errors (GMNIBBLE)c..ouuiiiii it e e e e e ettt baeeaaeeeeaans 107
Gold Manager INtialiZation COUESooiiiiiii ettt e ettt e e e sttt e e e atbeaeeeeanteeeaesnneeeaens 107
g ol gAY o] 1 T= T WeTe T 11T O i SRR 108
e = T =l o g ©o T [SRR 108
Appendix B. IFS Web Page Performance/Response Time Tuning Recommendations...........ccccccccvnnreennn. 109
1 0o [Lo 1o o OSSR 109
o NV (0 o o 1= o | USSR 109
T AV (ot o (o) o =T OSSPSR 109
[(o Ey C=To Y o] o] [Tor=T1] o 1= F PSPPSR 109
1SR R (=] oTo] a1 N0 0T USSR 109
Response TiMe CONSIAEIAIONSoiiiiiiiiieie et e e e e e e e e e st e e e e e e e s e eataeeebraeeeaeeeeanns 109
Other ReSPONSE TiME FACIOIS.......uuiiiiiiiii ittt e e e e e e e e e e e et s e asba e e e e e e e e s aarsrees 110
[N =0 1 USSP RR 110
What DOES All THIS IMEANT ...ttt et e e ettt e e st e e s st e e e et e e e e sntteeeeeeanseeeesanneeens 110
BaACKENA LAENCY ...ttt e e e e e et e e e e e e e et e e e e e e s te e e e e e e etaraaaaaeeaaaaes 110
gz o L= =TT To] o P PRSP 110
L =T o] o= OSSP 110
Multiple TranSactioNS ON @ PAgEcoii ittt ettt e e e e b e e e eees 112
(=Yoo Tt o 1= PP PR P PRR 113
LT LT o =T o1 oo OSSP 113
R £= 1Yo} g = 10T (o = SRS 113
Client SIAE JAVASCIIPL ...t e e e et e e e e e e s et e e e e e e e e et b e e e e baeeeeeeseeennbraaeaaeaas 113
IS (] g To T =T [T PR RP 114
Page IMPIEMENTALIONottt e e e e ettt e e e e ae et e e e n bt e e e e e e sbe e e e anbeeeeennaeeeeennees 114
(€ To] o 1Y/ F=ToF=To [T o @ Ted o1 o o [OOSR 114
L IR T=T V=T o O T 1 o o OSSR 115

vi IFS Customizable Web Server (CWS) Guide Fourth Edition

Appendix C. Gold Message Interface Tool (GMIT)coocvvcmiiiiimmiirr e 116

] o Te (Vo i o] o RO PRSP 116
THE TEST DAL FIOW ..ottt e et e e ettt e e e e s e e e e e nbe e e e annees 116
L 0T o OO E 117
(O T a1 Yo IS r= T (=T PSPPSR PTRRP 117
[=T To (U1 (=T OSSP RR R OPOPPPPPPRRIN 117
1S3 2= 1] g To T 1Y SRR RRR 118
MQISENES ANA GIMIT ...ttt b oot eb et s et e sttt et e e e sebe e st e e sebeesabeean 118
AddiNg @ QUEUE MBNAGETviiiiiieitee ettt ettt b et bt re e et e e e b s e nneeenee 118
Starting @ QUEBUE MBNAGET ..ottt rb ettt seb e e n b e e nenees 119
Adding Default ODJECES. ... ettt e et et te e et e e e e e anee e nnee e e 119
DT T T oo T =T T SRS 120
AdAING LOCAI QUEUES ...ttt ettt ettt e ettt e et eete e et e e e amte e e seeeaeeeameeeeenaeeaaneeeameeeeaneeanes 120
Adding the REMOE QUEBUEeoiiiii ettt e e et e e et e e e e e e seeeeaeeeameeeeaaeeeanseeeeaneeeeaneeennes 121
AdAING AlIAS QUEUES ...ttt ettt e et e et e et e e ettt e emeeeamte e e s e e e amte e e seeaaseeeameeeaseeeeaseeeaneeeeaneeanes 121
Adding Channel DefiNItIONSoieiiii ettt et e et e e e te e e sen e e e e see e e emeeeenneeennes 122
Adding Process DEfiNITIONSoiiiiiiiii ettt e e et e e e s st e e e ntee e e nees 123
Starting @ Channel INIGATOToouiii e e et e e e e et e e s st e e e snnneeeas 123
Displaying Channel STAtUSooioiiiiie ettt e et e e e e e sntte e e e anbee e e e nees 123
o To] o [01T T PSP PS 123
Modifying ReqUEST Data FilesS ...ttt e e e 123
RUNNING GOIAMINE...... ettt e et e e e bt e e et bt e e e et et e e e aabe e e e e anbeeeeannees 126
o To] o] oF=T o G ST PPOTPPPTT 127
Modifying the goldbank Configuration Fileooo e 127
RUNNING GOIAD@NK........eeie ettt ettt e e ettt e e e anb et e e e nnb e e e e ennees 128
REQUEST DA FlES ...ttt et e et e e e bt e et e e e b bt e e e nb et e e annbe e e e nnes 129
Y T To L= TR T o I 0o o L= USSR 135
FoTo] Lol o Tz 0] [1Y =T sT= oo PR TRP 135
FoTo] Lo g g T e 1Y =T oT= T o PRSP 136
IMTT COAES ...ttt b ettt e b1 et e bt e ekt e e eab e et e be e e e bn e e st e e e naneenaneeaa 137
Appendix D. FISim (Financial Institution Simulator) ..o s 138
TligeTo (¥ o] o] o RO P TSSO O VPP PPROPIN 138
THE TESE DALA FIOW ...t ettt et e b e 139
10y =111 T TN 1 U ST 140
PrEIEOUISITES. ... ettt e e h et e e h et e e e bt e e e e a b bt e e e e e e anbe e e e e anbe e e e e nbe e e e annes 140
1 gFS] e=1] = 1o o PP PRP T PRR 141
Y L@ ST g =T 3R= g o I 71 o USRS 142
All Local MQSeEries CONFIGUIATIONciiiiiieiiieiitet et e et e et et e et ee e st e e s e e e saeeesseeeamteeesaneeanseeeeaneeeeanneennes 142
Remote MQ Series Configuration for FISIM..........oooiii e e 146
Remote MQ Series Configuration for CWS Web SErver............coiiiiiiiiiiiiii e 151
L] T I £ o PP 156
D] 72 O] o1 T 8] =11 T] o I SRR RRR 156
(YU aT T Te T] £ o SRR 158
BasiC Data Managementt et e et et e e e nnba e e nees 159
Data Management using Approach OF EXCEl.........cooiiiiiiiiiiii e 159
AREIING RESPONSE COUES ... ettt ettt et e et e e e ket e ea e e e eme e e e mte e e emeeeemeeeamaeeaeneeeamseeaseeeaneeeansenans 160
(O70] 401 F=TaTo B T= Tl 1] o o -SSP 160
ez g 0] o] =T PP RP P PRP 161
Entering Commands Directly Through DB2ooo ittt et e e seeeesee e e e eneeeas 161
Ll (e0 1 o] (=<1 gToTe) 1] Vo NPT PP O PPTP 162
FISIM Trace FleS @Nd LOGSuveiieiiiiie ettt ettt e e ettt e e e ettt e e e ettt e e e entae e e e ant sntaeeeeanbeeeeenees 162
FISim Returns a BRC of 247 Due to SQLCODE Of -954cociiiiiiiiiii e 162
Predefined RESPONSES.ot e e e et e e e e e e et e e e e e e e e e et baeeee eeeaaeeeaaababaaaaaaeaaane 163
IMportant POINES 10 CONSIAEuiiiiiii et e e e e e e e e e e e s e et b e e e e e e e e anaes 163
ENVIFONMENT VAKTADIES ...ttt e e bt nnee e 164
RESPONSE DAA FIlESeveeiiiieiiceee et e e e e e e et e e e e e s ae e e e e e e ebaba e e e e e e e e anes 165
REPEAL HEIMS ...ttt a et e e e h et e e o bt e e e e ab bt e e e s e anb e e e e e anbe e e e e anbeeeeannees 165

© Copyright IBM Corp. 2002 Contents Vii

GOIAMIN G <. et 166

Appendix E. IFS PVC Starter Kit ... ms e s mns s s mmmn e e e 167
1 0o [Lo 1o o OSSR 167
Yo (U LiTo] I N (ol 11 (=T (U = SO SOUT SR 167
FUNCHIONS SUPPOIEA ...t e e e e et e e e e e e st e e e e e e e saeaeeeseenbasaeeaeeeaeannes 168
SYSIEM REQUIFEMENTS ...t e et e e e e e e s et e e e e e e e e et b e e e e e e e seeeeeseseaarseeeeaeeas 169
IFS PVC SUPPOIt INSTAIIATION......coiiiiiiieeeie et e et e e e e e e et a e e e e eeeeaeeesenbsbeeeaaeeaaaanes 169
Configuration on CWS fOr [FS PVC SUPPOIT ..ottt 169
S To] (UL Te] g T B =<1 o | o R SPURRPPRRPN 170
O =Tl 1) (=Y g = Lot =T L= T o | o SRR PR 170
IFS PVC SEIVIEES DESIGNieiieiiiiitie ettt ettt et e ettt e st e e s e e e e ee e e eaeeeemeeeameeeeeneeeamsmeeeeseeeanneeanneeans 170
Data Security CONSIAEIATION........cci ittt et e e sttt e st e e e teeesaeeeameeeaneeeesseeeameeseeaaneeeanneeaneeans 172
AN IS = =T 1 o o OSSR 172
(O Tl 1= {1 11170 o [P RSP RRUPRRRPN: 172
(070) 001 40T g IR T=T oV Tt TSP OPT RS 172
USEr AUTNOTIZATION ...ttt e ettt e e e e e e e ettt e e e e e e e e e n e eeeeeeaeeeeeaeeeaaannnnneeeaeeaaannes 175
ACCOUNE INQUITIES ...ttt e ettt e e e e e e st e e e e e e s e ettt e e e e e eeesan e e s e sassbaaeeaaeeesanssaeees 176
DT aTo B I = a1 £ SRR 178
(OS] (o] g o RS T o o= OSSR 182
IFS PVC Serviets NOrmal Page FIOWcooiiiiiiiiie ettt st e e et e e e e naee e e e 183
IFS User Interface on Handheld DEVICEoiiiiiiiieiie ettt nee e e 185
oo To T TS o] (=TT o OSSR 185
Y =T I a1 o] TS Yo == o RSP ERPTPRT 186
FUuNd Transfer FUNCHION SCIEEN............iiiiiiee ettt e e e et e e e et ae e e e et ae e e e sntes aeeeeanraeeeenees 188
SEIVICES FUNCHION SCIEENoeiiiiiiiie ettt et e ettt e e sttt e e sttt e e anss e e e s ansseeesensaesaeeesassseeesnnnaeens 191
[oo o) 3 S To] (=TT o SRS 192
Appendix F. Basic WebSphere 4 Administration ... 194
WEDSPNEIE 4.0.2 OVEIVIEW ...ttt e e e e e e e e e e e e e s et b e et e e e e e sasats sessbaeeeeaeessanrnreees 194
Starting WebSphere AdmiIniStration SEIVEToooiiiii it saaeeeees 194
Launching the Graphical Administrative ClIENT..........ooo i 194
WINAOWS INSITUCTIONS.eeiiiiieiie ettt ettt e e sttt e e snee e e e ante e e e e e e eneteeesneeeeeanneeens 195
1 (0] o] o] Ao IR LT o1 o] T = RS UURRPPPRPP 195
Starting an APPHCAION SEIVET ...ttt e e ettt e e e ettt e e e e e e teeeeeataeeeesnneeeaens 195
S100]o] o] TaTo J=Ta I AN o] o] [Tor=LiTo] g IS 1T =T TR 196
The wscp.sh Command Line ULIIRYooiiiii ettt e e e e e e e e emeeeeneeans 196
N SRR 197
Appendix G. Migrating from Java 1.1.8 to Java 1.3.0......ccccciiimmiinimrrr s 198
N Fo Y= Y o T O g =T o o USRS 198
WebSphere 4.0.2 SUPPOIEA APIS ...ttt ettt e e e e e et e e smee e e aeeeneeeeeneeeanneas 198
Changes iNThe JOWSAPottt ettt e e et et e e ettt e e snteeeeeeeeanseeeesanneeens 198
Common Migration Problems and RESOIULIONSoiiiiiiiiiiiie e e e saaeea e 203
THE INVOKEE SEIVIET ...ttt s e e e ettt e e e st e e e e st e eeeeenbeeeeenteeeeannees 203
Cannot Forward After Obtaining SIrEaMeiii et ee e snneeees 204
Effective Call To sendRedirect() MEthOdoooiiiiiiiiee e e e e e e 206
ST Sl IS}V 01 r= D' g To =0T o] 1] (=T RS RSR 207
LTS TU o o o] (=To BN o I = 1| OSSR 210
Recompilation and Deprecated MethOdSoiiiiiiiiiiii e e 211
MISCEIANEOUS PrODIEMS ...ttt e ettt e e e e e e e ettt e e e e e e e e neeeeeeaeeeaaann s e aannnnnneeaaeaaannns 211
Appendix H. Building And Deploying CWS Web Applications In WebSphere 4.........ccciiiiiiiiiciiiinnnenen. 213
B P2 @ =T g oS SUPPPR 213
J2EE Packaging and Deployment Concepts and TeIMSccuuiiiiiiiiiiiiiiiee e 213
SrUCUrE OFf The IfSIWAT FlE ...ttt e ettt e e sttt e e e ee e ettt e e e anbaeeeesnaeeeeeans 215

viii IFS Customizable Web Server (CWS) Guide Fourth Edition

o (o TR (10 R TP 215

<doC_root>/META-INF ... 215
<doC_roOt>/WEB-INF ... 216
Extending The Base ifS.War File ..ot 218
Uninstall/Reinstall APPrOACKHoviiiiiiiiiee e e e e e e e e e e e e e e aas s e st b eeeeeeeeeanes 220
(070] o) 7/ RT=T o] F= Lot Y o] o] o =T s IO PP SO PPRI 221
Glossary of Terms and ABDBreviations..........cccciiiiicccicciiniii s sssme e e e e e s s s sn e e e e e e s s s snnnns 222
=11 0] [T'e Yo T] 47/ 230
Interactive Financial SErviCes LIDIaryooo oot e e e e e e e e et e e e e e e 230
OtNEI DOCUMENTS ...t e ettt e e e e e e et e e e e e e s e ettt e e e e e e e e e eatebaeeeaeeeeaaeeeseassbaeeeaaeeesnsrsrees 230
(O IV o | I R SPURRRPPRPP: 230
(@ gL g e U1 o] [To=1 i o] o < T RSP RRRPTRRPN: 230
Reader’'s Comments — We’d Like to Hear from YOU ... ems e 231

© Copyright IBM Corp. 2002 Contents X

Figures

Figure 1. Basic Areas of CUSIOMIZALION.ot et e et e e e e e 1
Figure 4. Java Servlet and JSP programming in IFS CWS ... 32
Figure 5. CWS ToOIKit ENVIFONMENToiiiiiieiie ettt ettt e e st e e e ane snee e e s ennaeeeanneeeas 79
Figure 6. CWS TOOIKit DAt FIOW........coueiiieiiiiii ettt et e et e e e sttt e e s e e e anteeeesnnaeeeanneeens 80
Figure 7. CWS Toolkit DIreCtory STrUCTUIE........c...i ittt e et e smeeeanneeens 83
Figure 8. GMIT Program FIOWoieioieiii ettt et e et e te e e st e e et e e eaeeeaseeeameeeesee e eaneeeanneeeanneeanneas 117
oW =T o T T e - SRR 126
o0 = O e o To 1 e U | SRR 127
Figure 11. goldDanK.CONTIGeiii ittt e e b e e e et e e e b e e e ennes 128
o0 = 2 (o Te o) i {o] £ o PP 129
Figure 13. FISim Configurations without a Core Controller...............oi i 138
Figure 14. FISim Configurations with @ Core CONIOIErooiiiiiii i 139
Figure 15. FISim Data Flow with @ Core CONtrOllENc.oiiiiie it 140
Figure 16. FISIM DIireCtOry SITUCIUEooo ittt ettt e e mee e et e e e e eneeeane e e snneeenneas 141
Figure 17. IFS Architecture for PVC SUPPOIT ... ittt ettt ee e e e neee e e e 168
Figure 18. FIow chart Of IFS PVC SEIVIEL..........oiiiieiee et et e nee e e 171
Figure 19. The Inheritance Hierarchy of IFS PVC Servlets. ... 172
[To 0 (20 I oo o] g S o] £ Y= o USRS 186
Figure 21. Main FUNCHON SCIEEN........ooiiiiii ittt ettt e e et e e e nte e e e eeeeanbeeeeenbeeeeennees 186
Figure 22. ACCOUNS FUNCLION SCIEEN........oiiiiiiii ittt et e et e e e et e e e e ntee e e e nees 186
Figure 23. ACCOUNT SUMMEAIY SCIEEMoi ittt e ee et et e et e e s tee e e te e e aaeeeameeeamteeeaeseeameeeeeneeesnneesnneas 187
Figure 24. ACCOUNt DETAIIS SCIEENcooiiiiii ettt ettt ettt e e e s e e s e e e ntee e e e eneeeaneeeanneesnneas 187
Figure 25. Transaction SEAIrCH SCIEENcoouiiii ittt e e e et e e e e neee e e enees 187
Figure 26. Transaction HISTOrY SCIrEEN ...t et e e e nee e e 188
Figure 27. BalanCe INQUINY SCIEENM ..ottt ettt et e e et e e e e e e aaeeeaneeeameeeaateeeaeaneeeaneeeanseesnneas 188
Figure 28. INterest RAteS SCIEENooi ittt ettt et e e eee e e smee e e ee e e eneeeenneeesnneesnneas 188
Figure 29. FUNA TranSfer SCIEEN........co ittt e e et e et e e e ee e et e e e e nbeeeeenees 189
Figure 30. Add FiXed TranSfer SCIrEEN.........coo ittt et e ettt e e e s et e e e e neee e e enees 189
Figure 31. Add Variable Transfer SCrE@Nottt et e e e e e e e eneeeeneeas 189
Figure 32. Search TranSfer SCIrEEN ... ettt ettt e e mee e e te e e e e enee e e ne e e snneesnneas 190
Figure 33. Change Fixed TranSfer SCIrEENooi ittt e e e e eneee e e nees 190
Figure 34. Change Variable Transfer SCreENev e 190
Figure 35. Delete Fixed TranSfer SCrEENo i ittt et e e e e e e e e eneeesneeas 191
Figure 36. Delete Variable Transfer SCrEEMooii oottt et e s e et e e e e nee e e sneeeeneeas 191
Figure 37. Transfer INQUINY SCIEENeiii ettt et e et e e e eeeeante e e e e nbeeeeennees 191
Figure 38. Service FUNCLON SCIEENoiiiiiiie ittt e et e e e e e et e e e e ntee e e enees 191
Figure 39. Check COPY OFAEr SCIEEMcoiuii ittt ettt et e et e e e ate e e aaeeeaseeeameeeaaeeeeanee e e enneeeanneeanneas 192
Figure 40. Check BOOK REOIEI SCIEENooiiiiieiiie ettt ettt et e e e e e e eeae e amee e e e enneeeenneeanneas 192
Figure 41. Stop Cheque PaymeENnt SCrEENooi ittt et e e et e e e e e nnree e e e nees 192
o0 =T 2 W eTo To 1 IS 1] £ o SRR 193

X IFS Customizable Web Server (CWS) Guide Fourth Edition

Trademarks and Service Marks

The following terms used in this book are trademarks or service marks of the companies indicated, in the United

States or other countries or both:

AIX IBM Corporation
CICs IBM Corporation
CICS/ESA IBM Corporation
DB2 IBM Corporation
FlowMark IBM Corporation
IBM IBM Corporation

IBM Global Network
IMS

Integrion

Language Environment
Lotus Notes

NetView IBM Corporation
Money Microsoft Corporation
MQ IBM Corporation
MQSeries IBM Corporation
MVS/ESA IBM Corporation
MVS IBM Corporation
0s/2 IBM Corporation
Quicken Intuit Inc.

RACF IBM Corporation
SOMobjects IBM Corporation
SP IBM Corporation
SP2 IBM Corporation
System/390 IBM Corporation
VTAM IBM Corporation
WebSphere IBM Corporation

IBM Corporation
IBM Corporation
Integrion

IBM Corporation
IBM Corporation

Microsoft, Windows, and the Windows 95 logo are trademarks or registered trademarks of Microsoft

Corporation. Java is a trademark of Sun Microsystems, Inc. Lotus Notes is a registered trademark of Lotus
Development Corporation.

Other company, product, and service names may be trademarks or service marks of other companies.

© Copyright IBM Corp. 2002

Trademarks and Service Marks

Xi

Notices

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of
this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785 U.S.A

Those interested in enabling programs to exchange information with IFS using the Gold Standard Message
Specification should contact:

IFS Publications Coordinator
IBM Manassas

10511 Battleview Parkway
Manassas, VA 20109

United States of America

xii IFS Customizable Web Server (CWS) Guide Fourth Edition

About This Book

What This Book Contains

This book contains information about the Interactive Financial Services (IFS) Customizable Web Server (CWS).
It describes how a financial institution can:

e Customize IFS through the Customizable Web Server (CWS)

Terminology

This book refers to:

Consumer financial institutions (CFls) as financial institutions (Fls)
The following terms are used interchangeably: customer, end user, subscriber, and consumer. These
terms mean the same thing; namely, the customer of a financial institution and the user of the financial
institution s electronic solution (IFS).

e Gold Standard for Electronic Financial Services as standard message

Who Should Read This Book

This book is for financial institution personnel, application programmers, system programmers, and anyone else
who plans to customize IFS and integrate it with a financial institution s existing systems.

What You May Find Useful Before Reading This Book

Before you read this book, it may be helpful for you to have some knowledge of or experience with some of the
following hardware and software products and services, depending on which IFS components you Il be working
with:

e End-user interface:
- Windows NT operating system
- Netscape Communicator
- Microsoft Internet Explorer
e Customizable Web server:
- HTML
IBM WebSphere Application Server
- Sun Microsystems, Java Programming Language (Java)
- Java Servlets
- Java Server Pages (JSPs)
e Standard Messages
o IFS Interface Module:
- System/390 (S/390) CMOS processors
- The Multiple Virtual Storage (MVS) operating system
- The Customer Information Control System (CICS) program
- The IBM (DB2) Universal Database program
- The Message Queuing Series (MQSeries) program
- The Application Integration Feature (AIF) of the Flowmark for MVS/Enterprise Systems Architecture
(MVS/ESA) program, including:

AlIF mapping

The messaging application programming interface (MAPI)
- RISC System/6000 (SP2) processors

© Copyright IBM Corp. 2002 About This Book Xxiii

- The Advanced Interactive eXecutive (AlX) operating system

Where to Find More Information

Where necessary, this book refers to information in other publications. Additional information is also available
through the Internet.

Do You Have Comments, Problems, or Suggestions?

Your suggestions and ideas can contribute to the quality and the usability of this publication. If you have

suggestions for improving this publication or if you have any problems using it, please send us your comments
by mail. See Communicating Your Comments located at the end of the book.

xiv IFS Customizable Web Server (CWS) Guide Fourth Edition

Typographic Conventions

The following typographic conventions are used in this library:

Convention What It Means

Bold Bold words and characters represent system elements (commands, for example) that you use
literally.

Italic Italic words and characters represent variable values that you specify. Italics are also used as

follows:

e For book titles

e For textual emphasis

¢ When a glossary term is first introduced in the text.

Constant width

Constant width words and characters represent examples of information that the system
displays.

[l

Brackets enclose optional items in command format and syntax descriptions.

{} Braces enclose a list of items you choose from in command format and syntax descriptions.
I Vertical bars represent the word or. They separate items in a list of choices. Vertical bars can
also represent a pipe in Unix.
Ellipses indicate that you can specify the preceding item one or more times.
<> Angle brackets (less than and greater than) enclose the name of a key on the keyboard.
<Ctrl-x> <Ctrl-x> represents a control-character sequence. For example, <Ctrl-c> means: hold down the
control key <Ctrl> while pressing <c>.
Note: On some AlX platforms <Ctrl-x> is an actual signal (interrupt).
<Return> <Return> represents the key on your workstation keyboard labeled with the word Return or

Enter, a left arrow, or both (word and arrow).

© Copyright IBM Corp. 2002

Typographic Conventions XV

Summary of Changes

Summary of Changes for Interactive Financial Services Customizable Web Server
Guide Version 1 Release 6 Fourth Edition

The Fourth Edition of the document reflects the change from WebSphere 2.03 to WebSphere 4.0.x as the
environment supporting CWS for V1IR6M1.

New Information

Chapter 2, Migrating to VIR6M1 and WebSphere 4
Appendix F, Basic WebSphere 4 Administration
Appendix G, Migrating from Java 1.1.8 to Java 1.3.0
Appendix H, Updating the IFS WAR File

Changed Information

e Extensive information on administering and configuring CWS for WebSphere Application Server 4.0
have been added including sections on WebSphere administration, deploying CWS on WebSphere, and
migrating Java code.

o All references to the Netscape IPlanet Server product have been removed as this server product is no
longer supported.

e Customizable Web Server (CWS) Overview

e Extensive information on migrating to viR6M1

Moved Information

e Chapter 2, Customizable Web Server (CWS) Overview moved to Chapter 1

Summary of Changes for Interactive Financial Services Customizable Web Server
Guide Version 1 Release 6 Third Edition

This was an internal edition only. These changes are included in the fourth edition.

Changed Information

e Chapter 2, Customizable Web Server (CWS) Overview
Chapter 4, Writing Java Servlets for the IFS CWS
e Appendix B. IFS Web Page Performance/Response Time Tuning Recommendations

Summary of Changes for Interactive Financial Services Customizable Web Server
Guide Version 1 Release 6 Second Edition

Changed Information

Chapter 3, Installing CWS Components

Chapter 4, Writing Java Servlets for the IFS CWS
Appendix E, IBM IFS PvC Starter Kit
Bibliography

Deleted Information

e [ndex

XVi IFS Customizable Web Server (CWS) Guide Fourth Edition

Summary of Changes for Interactive Financial Services Customizable Web Server
Guide Version 1 Release 6 First Edition

This First Edition supports Version 1 Release 6 Modification 1 of the Interactive Financial Services solution.
Version 1 Release 6 technical changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

In addition to the changes indicated below, this book has been reorganized and has a new title (IFS
Customizable Web Server (CWS) Guide). Maintenance, terminology and editorial changes have also been
included.

New Information

Chapter 1, CWS Migration Considerations from V1R5M1 to V1R6M1
Chapter 3, Installing CWS Components

Appendix D, FISim (Financial Institution Simulator)

Appendix E, IBM IFS PvC Support

Changed Information

iPlanet Web Server, Enterprise Edition 4.0SP4 has replaced the Netscape Enterprise Server
Chapter 2, Customizable Web Server (CWS) Overview

Chapter 4, Writing Java Servlets for the IFS CWS

Chapter 5, Troubleshooting Java in the CWS

Chapter 6, CWS Developer s Toolkit

Appendix A, Web Server Program (WSP) Error Messages and Codes

Appendix B, IFS Web Page Performance/Response Time Tuning Recommendations
Appendix C, Gold Message Interface Tool (GMIT)

Moved Information

e Chapter 1, Introduction to IFS. This information can be found in the IFS Overview and Release Changes
Guide.

e Chapter 6, Customizing the Messaging Server. This information will be available in a stand-alone IFS
Messaging Server Guide.

e Appendix A, The Interactive Financial Services Infrastructure: Software. This information can be found in
the IFS Planning Guide.

e Appendix B, IFS Gold Message Descriptions and Usage. This information can be found in the IFS Gold
Standard Message Transaction Specification.

e Appendix E, IFS Business Response Codes. This information can be found in the IFS Gold Standard
Message Transaction Specification.

e Appendix H, IFS Service Provider Adapter 2.1.A Guide for 98.2.3 and V1R5. The Service Provider
Adapter information will be available in a stand-alone Service Provider Adapter Guide.

e Appendix I, A Well Behaved Service Provider. The information will be available in the stand-alone
Service Provider Adapter Guide.

e Appendix K, OFX/GOLD Translator Messaging Mapping and Service Provider Adapter (SPA)
Development Guide. This OFX information will be available in a stand-alone OFX Guide.

o Appendix L, Master OFX Support Matrix. This OFX information will be available in a stand-alone OFX
Guide.

Deleted Information

e Chapter 4, Customization Via the JavaScript API. With Release V1R6, IFS no longer supports
JavaScript.

e Chapter 7, Bill Presentment - Business Flows
Chapter 8, Bill Presentment - Retrieval of Bill Image
Appendix F, JavaScript API Support. With Release V1R86, IFS no longer supports JavaScript.

© Copyright IBM Corp. 2002 Summary of Changes XVii

Chapter 1. Customizable Web Server (CWS) Overview

Interactive Financial Services (IFS) provides each Financial Institution (FI) with the capability to customize
the look and feel of its system through customized development for the Customizable Web Server (CWS).
By developing for the CWS, a Fl can provide its end-users (customers) with a system whose user interface
reflects the unique style and functions desired by that Fl. This chapter describes the relevant components in
customization, the CWS environment, and significant design issues.

Note: Any new page development must be Java pages and not JavaScript pages. It is highly
recommended to convert the JavaScript pages to Java pages as soon as possible. See Chapter 4.
Writing Java Servlets for the IFS CWS for more information.

Components of the CWS Customization

Before beginning customizing, the FI must understand the IFS architecture. Figure 1 illustrates the most
basic components of this customization.

S

F 7§
RS6000
Transaction Delivery
o Manager (TDM)
CWS Server 4>
WebSphere : S
DB2 Financial Institution
F F1
Financial
Data

Figure 1. Basic Areas of Customization

Web Browser

End users who have never connected to the Internet, can, as an option at the financial institution, be
provided with either a starter package complete with current browser release or with start-up requirements.

See the IFS Planning Guide for details on the software requirements for IFS.

The Customizable Web Server (CWS)

The CWS encompasses all hardware and software required to serve the IFS Web pages to the Internet.
Working with the CWS to permit customized look, feel, and function of the financial institution is the primary
focus of this chapter.

The primary method of customizing the CWS server is through the programming interface. Besides
familiarity with standard messages the programmer should understand the Application Programming
Interface JCWSAPI for Java. This section explains some of the considerations when using the API.

© Copyright IBM Corp. 2002 Chapter 1. Customizable Web Server (CWS) Overview 1

Additional information on the JCWSAPI can be found in the JavaDoc in the cws/docs/jcwsapi/JavaDocs
directory of the virém1_yymmadd.tar.Z file.

The FI may choose to work with IBM Global Services or another third party to customize the Web server on
a contract basis. Or, they may choose to use a graphic designer to design the Web pages, and another
service provider to implement the Web pages. The graphic designer must understand the flexibility and
limitations of building dynamic Hypertext Markup Language (HTML) pages.

Web Interface: The Web interface gives end users a means to access the financial institution to perform
desired financial institution transactions. This interface is implemented with HTML pages delivered to the
customer s browser upon the selection of a Uniform Resource Locator (URL).

Java code is contained within the HTML pages, to allow access to Fl data, customer preferences, and other
database or legacy system information. The CWS, using IBM WebSphere Application Server (WebSphere)
and the Java Virtual Machine (JVM), provides the tools necessary to interpret Java code and send data to
and access data returned with standard messages.

Except for temporary cached information obtained during its normal operation, the CWS does not store
customer data of any kind. This reduces the chance of data theft, preserves the status of the Fl s data center
as the primary data source, and eliminates the need for database replication. The architecture isolates
functions to machines that are most efficient at their dedicated tasks, which makes processing very efficient.

JCWSAPI and Java: The Java CWSAPI (JCWSAPI) provides a programming interface between the HTML
pages and the software that communicates with the Transaction Delivery Manager (TDM). The objective of
the JCWSAPI is to make every unique data element in the standard message data definition available in its
atomic form to the Java Servlet Writer. These data elements are presented to the HTML page in the form of
methods on Java objects. By creating an instance of a particular JCWSAPI Java object, the customizer of a
Web page can embed any standard message data element in the HTML file at the desired location.

After the JCWSAPI is invoked, and the data or transaction request has been made and processed, data
elements (or errors) are retrieved from the Fl by the TDM, and are placed into the Java object. These
methods can be displayed on an HTML page.

Transaction Delivery Manager

The Transaction Delivery Manager (TDM), also known as the Core Controller (CC), is responsible for
retrieving data elements from the Fl based on requests made by standard messages. The data is then
passed with MQSeries to the standard message manager and logged. There can be one TDM for many Web
servers. However, each Fl s transactions and the Fl data center links are separate from all others.

Normally all data will be stored at the Fl s data center, if the FI chooses to use strip files rather than a direct
connection to the TDM. The TDM will maintain customer profile information, account information, and
transaction records.

The TDM also passes standard messages (such as structured messages), to the messaging server where
they are handled by the Fl s customer service messaging work queue.

The Financial Institution

The Fl is responsible for handling the standard messages sent to existing systems. Therefore, the FI must
make any necessary modifications to its back end to interoperate with the IFS system; IFS will, however,
work closely with the Fl by providing tools necessary to translate standard messages to messages usable by
the Fl s systems. Each Fl data item must be matched up to a standard message field; for example, the bank
must choose the appropriate account balance item to be displayed to the consumer on the appropriate Web

page.

Most Fls will choose to establish a direct link between the Fl and the TDM. Frequently this link will be frame
relay, using protocols such as SNA with LU 6.2 (a minority of financial institutions may choose IP for the
link). Other financial institutions may utilize strip files pulled from the Fl s data. In the former case, data will
be real time; in the latter, financial data on the TDM and the financial institution s existing systems will not be
synchronized until both databases are updated.

2 IFS Customizable Web Server (CWS) Guide Fourth Edition

Understanding the CWS Environment

Before beginning to customize, it is important to understand the CWS environment.

The Development Environment

AIX: IFS uses the IBM AIX operating system on an IBM e-server pSeries or RS/6000 hardware platform. As
IBM s premier UNIX operating system, AIX was designed especially for commercial client-server
environments requiring scalability, multi-tasking and multi-user functionality. The developer uses AlX to
install and manage components as well as compile, test, and debug various subsystems.

IBM WebSphere Application Server Software: The IBM WebSphere Application Server software
allows the user to deploy and manage various Enterprise and Web applications across multiple systems.
The Administrative console lets an administrator check the status of many servers and deploy an application
such as CWS to any of the servers Versions of WebSphere also include support for Enterprise Java Beans,
XML, CORBA and IBM MQ Series.

Java Servlets: CWS uses Java Servlets to perform many tasks on the server. This includes validating
customer input, communicating with the TDM, and formatting data before it is sent to the client web browser.
Typical high level banking tasks include logging on and off, checking financial records, transferring funds,
and requesting information. Servlets are often used to present customized, dynamic web pages to the
customer.

Java Servlet Pages (JSPs): CWS uses JSPs to help with presentation oriented tasks. These JSPs

can contain customized tags that can aid in rapid development of customized web pages presenting financial
institution data.

© Copyright IBM Corp. 2002 Chapter 1. Customizable Web Server (CWS) Overview 3

Chapter 2. Migrating to VIR6M1 and WebSphere 4

This chapter discusses what is involved in migrating your V1R5 or V1R6 with WebSphere Application Server
version 2 to V1R6 with WebSphere Application Server version 4.

Benefits of Using WebSphere 4.0

Delivery of V1IR6M1 provides the capability of running the CWS as a web application inside of the
WebSphere 4.0.2 environment. As a result, all of the benefits and features of the Java/2 Enterprise Edition
version 1.2 (J2EE) specification are now available to developers of CWS applications including the following
APIs (Application Programming Interfaces):

Java Servlet 2.2

Java Server Pages 1.1

Enterprise Java Beans 1.1

JDBC (Java Database Connectivity) 2.0
JTAMTS (Java Transaction API) 1.1

JNDI (Java Naming and Directory Interface) 1.2.1
JAF (JavaBeans Activation Framework) 1.0
XML4J (XML parser) 3.1.1

XSL (Extensible Stylesheet Language) 2.0
RMI-IIOP (Remote Method Invocation) 1.0
JMS (Java Messaging Services) 1.0.1

Java Mail 1.1

In addition to the support for the above APIs, the following features are available in WebSphere 4.0.2:

Full J2EE compliance

Web services support

Database connection management pooling

XML parsing

Expanded database support

Built-in web server

Firewall support

Multiple application servers

Operating system, LDAP or custom authentication
Directory services

There are many other features of WebSphere 4.0.2 not included in the list above. For a full description of
these features please refer to Chapter 2 of the IBM RedBook-RedPiece SG24-6176-00 WebSphere Version
4.0 Advanced Edition Handbook. For more information about the J2EE 1.2 specification, please refer to
Chapter 3 of the IBM RedBook-RedPiece SG24-6176-00 WebSphere Version 4.0 Advanced Edition
Handbook, or Sun s on-line documentation found at http://java.sun.com/j2ee/.

Migrating from V1R6 with WAS 2 to V1R6 with WAS 4

First time users of CWS may skip to Chapter 3. Installing CWS Components. However, previous users of
CWS must perform the following steps when upgrading to VIR6M1:

Software prerequisites

CWS distribution format

Installation and Configuration of the CWS
Updates to CWS Customer Java code
Character Encoding Support

a0~

Each of these issues is discussed in detail below.

4 IFS Customizable Web Server (CWS) Guide Fourth Edition

Software Prerequisites
CWS V1R6M1/WebSphere 4 has the following software prerequisites:

o AIX 4.3.3 Fix pack 9 or AIX 5.1

o WebSphere 4.0.2 Advanced Edition

e IBM HTTP Server (IHS) 1.3.19.1 (comes bundled with WebSphere 4.0.2)

e DB27.2.3 (DB2 7.1 Fix pack 5)

o MQSeries 5.2 Configured to use the system management tool (smitty)
AIX

AIX must be upgraded to the appropriate level before CWS prerequisite software can be upgraded or
installed. Systems running AIX 4.3.3 must be upgraded to recommended maintenance level 9 (4.3.3.0.09).
Instructions on how to download and install fixes for AIX can be found on-line at
http://techsupport.services.ibm.com/server/nav?fetch=pm.

WebSphere

CWS requires WebSphere 4.0.2 Advanced Edition to function properly. Previous versions of CWS used
WebSphere 2.0.3; unfortunately, there is no supported upgrade path from version 2.0.3 to 4.0.2. WebSphere
2.0.3 should be uninstalled from the system and WebSphere 4.0.2 installed. WebSphere 4.0.2 installation
instructions are included with the WebSphere 4.0.2 distribution and in chapter 10 of the IBM RedBook-
RedPiece SG24-6176-00 WebSphere Version 4.0 Advanced Edition Handbook.

IBM HTTP Server

Netscape s iPlanet HTTP Server has been replaced in V1IR6M1/WebSphere 4 with IBM HTTP Server (IHS)
1.3.19.1. IBM HTTP Server (IHS) is included with WebSphere 4.0.2 and is installed as an optional
component during WebSphere 4.02 installation. For more information on installing IHS please refer to the
installation documentation included with WebSphere 4.0.2 and chapter 10, section 10.3 of the IBM RedBook-
RedPiece SG24-6176-00 WebSphere Version 4.0 Advanced Edition Handbook.

DB2

WebSphere 4.0.2 stores all configuration information inside of a DB2 database. Therefore, a connection to a
database must be made available to WebSphere through either a full installation of DB2 UDB (Universal
Database) on the local system or by using DB2 Connect to communicate with a remote database server.

Note: The choice of using DB2 UDB or DB2 Connect is beyond the scope of this chapter, please refer to
Chapter 3. Installing CWS Components for more information about DB2 topology.

If DB2 UDB or DB2 Connect is currently installed on your system it may be upgraded to the appropriate level
by downloading and installing FixPaks. Both DB2 UDB and DB2 Connect must be at level 7.2.3, which is the
same as 7.1 FixPak 5. More information, and downloads, can be found on-line at http://www-4.ibm.com/cgi-
bin/db2www/data/db2/udb/winos2unix/support/download.d2w/report.

MQSeries

MQSeries must be at level 5.2 for the CWS to function properly. Installations of MQSeries may be upgraded
to level 5.2 by downloading and installing FixPaks. More information about upgrades can be found on-line at
http://www-3.ibm.com/software/ts/mgseries/support/.

Note: existing MQSeries queue managers and queues may be used with WebSphere 4.0.2 if MQSeries has
be updated to version 5.2.

CWS Distribution Format

The CWS is now packaged inside of a Web Archive (WAR) file as a J2EE web application. Distributing the
CWS in this format provides support for J2EE functionality and simplifies the installation process. More

© Copyright IBM Corp. 2002 Chapter 2. Migrating to V1R6M1 and WebSphere 4 5

information about the J2EE and WAR files can be found in Appendix H. Building And Deploying CWS Web
Applications In WebSphere 4.

Installation and Configuration of the CWS

Installation of CWS has changed significantly in WebSphere 4.0.2 and detailed, step-by-step, instructions
are provided in Chapter 3. Installing CWS Components.

Changes have been made to the CWS configuration file and it is strongly discouraged to use configuration
files from older versions of CWS. However, the majority of options and values have remained unchanged. It
is recommended to read through the sample CWS configuration file before making updates. Configuration of
the CWS is described in detail in Chapter 3. Installing CWS Components

Updates to CWS Customer Java Code

Changes were made to the JCWSAPI to support the move from WebSphere 2.0.3 to WebSphere 4.0.2. As a
result, code that uses the JCWSAPI must be recompiled in the WebSphere 4.0.2 environment, and in some
cases, updated. More information about the changes, and possible migration problems, can be found in
Appendix G. Migrating from Java 1.1.8 to Java 1.3.0.

IfsSystem.properties File

The values for all public static variables in the com.ibm.ifs.gold.lfsSystem class can now optionally be set
in the Java properties file IfsSystem.properties; which can be found in the WEB-INF/classes directory.
IfsSystem.java should no longer be edited and recompiled, if variable values need to be changed the
appropriate updates should be made to IfsSystem.properties and CWS restarted. Please read the
instructions in the IfsSystem.properties file for more information.

Character Encoding Support

The process of configuring CWS to use different character encodings has changed from WebSphere 2 to
WebSphere 4. To use an encoding such as UTF-8, set the JVM (Java Virtual Machine) system property
client.encoding.override to UTF-8. This process is further explained in the Update the Application Server
Configuration section in Chapter 3.

Migrating from V1R5 to V1IR6

This section will address only the changes that need to be made to the customer s existing servlets and the
server config files written for V1R5, in order to run on V1R6.

Delivery of V1IR6M1 provides the capability for implementing National Language Support/Double Byte
Character Set and Small Business Enhancements. For a description of these enhancements, see the IFS
Overview and Release Changes Guide.

Table 1. VIR5M1 to VIR6M1 CWS Migration Steps

Set ulimit setting for CWS See Preparing to Install the Customizable Web Server (CWS) on AIX for the ulimit
settings.

Customizable Web Server Follow the directions presented with the Release Tar file. Additionally, see Installing

(CWS) and Configuring the CWS .

CWS Configuration File Make changes to the configuration file as described in Resource Bundle . Also refer
to the Sample CWS Configuration File .

CWS Toolkit A new CWS Toolkit was shipped. See Installing the CWS Toolkit .

Ifs.war/tools/startweb script See NLS Enablement .

NLS/DBCS Enablement See NLS/DBCS .

Implement NLS on the CWS | Refer to Writing Java Servlets for the IFS CWS .

6 IFS Customizable Web Server (CWS) Guide Fourth Edition

Handling code-to-text See Code-to-Text Translations .
translations

User Profile Changes Refer to User Profile Changes .
Transaction API Changes Refer to Transaction API Changes .
Integrate CWS information Refer to MRM/CWS Integration .
into the MRM

Removed Java Classes Refer to Removed Java Classes .

Attribute Names Changes Refer to Attribute Name Changes .

Wide Character Support Refer to Gold Manager Wide Character Support .

Disable JavaScript Refer to Disable JavaScript .

IBM HTTP Server 1.3.19.1 Netscape Enterprise Server has been replaced by IBM HTTP Server 1.3.19.1 and IBM
WebSphere 4.0.2 Advanced Edition

WebSphere - Install IBM Referto WebSphere .

WebSphere 4.0.2 Advanced

Edition

Java Servlet Development Refer to Writing Java Servlets for the IFS CWS .
Kit

Writing Java Servlets Refer to Writing Java Servlets for the IFS CWS .
Property Files Refer to Resource Bundle .

Implement Multiple User IDs | Refer to Considerations in Using Multiple User Ids .

MQ Handles Refer to MQ Maximum Number Handles .
SNA Configuration No changes required.
MQ Configuration No changes required.

NLS/DBCS

In VIR6, many new functions have been introduced to support the NLS/DBCS enablement. The IFS Web
Server now supports a locale object, called the session locale object, for each user session. This locale
object is created and cached in the user session. The session locale object can be dynamically set based on
each client s request during runtime. The contents of the web pages are created using the current session
locale. This allows end users to view the same web page in different locales. Also, there is DBCS support
using UTF-8 charset. Multiple currency is enabled. Refer to Writing Java Servlets for the IFS CWS for
details about these new functions.

Code-to-Text Translations

In previous releases, every transaction class (Gt*.java) or data class (Gs*.java) that had a field holding a
non-descriptive code also had a corresponding translated text field. The name of this field had the same
name as the code, but appended with _text . Like other fields, this field was also extracted from the
response buffer of the GOLD transaction and had corresponding setters and getters to set and get the field
values respectively.

In the current release, a mechanism has been defined to handle code-to-text translations using the getters of
the text fields i.e., get”_text() methods of transaction and data classes to encapsulate the locales, resource
bundles, and the encoded values inside these methods. All physical fields *_text of transaction and data
classes are removed. The translated descriptive text of encoded values are now retrieved in classes using
get*_text() methods based on the current session locale. For instance, the GsAccount class has a method
called getType_text() which gives the descriptive text for a type of account whose value is obtained by the
method getType(). The getType_text() method uses getType() as the key for the lookup in the auto-
generated resource bundle using the locale provided (see sample code below).

public class GsAccountS extends IfsObject
{

protected String type;
public void setType(String type)
{

© Copyright IBM Corp. 2002 Chapter 2. Migrating to V1R6M1 and WebSphere 4 7

this.type = type;
}

public String getType()
{

return type;
}

public String getType_text() throws IfsException

{
return IfsNLS.getText(“IfsAcctSubTpClResources”, getlfsSession().getlocale(),getType())

}

}

All the get”_text() methods use the static method of a utility class called IfsNLS to retrieve the locale-specific
text encoded in a resource bundle using the code (key) and the locale. The description of this class is
defined in Writing Java Servlets for the IFS CWS .

The following two changes need to be made to the customer s existing code or server configuration for the
code to text translation:

e The property files need to be generated and stored on the web server for the resource bundles used
in the get*_text() methods. How to generate such property files will be explained in the next section.

o All get*_text() methods throw an IfsException. Any servlet that calls the get*_text() method needs to
wrap the method in a try/catch block.

Resource Bundle

Gold messages can contain fields that are defined as code-to-text fields. Such a field in the message
normally contains a coded value which can be correlated to a text phrase. In V1R5, ListResourceBundle
classes, which are generated based on the code to text tables in the Core Controller, are used for the code
to text translations. In that design and implementation, any future changes made to the contents of the
resource bundles require recompilation of the resource bundle classes.

In V1R, in order to support easier maintenance of the code to text table contents, the resource bundles are
changed to PropertyResourceBundle. For the naming convention and the contents of the property files,
please see Writing Java Servlets for the IFS CWS . The property files replace the previous resource bundle
classes, IfsBrcErrorTextBundle, Ifs3tkErrorTextBundle, IfsCwsErrorTextBundle, and
IfsSystemErrorResourceBundle. In addition, many other property files, one for each code to text field type,
are created during the web server startup time. The building of the property files is under the control of
several variables in the CWS server config file:

e The first entry, wsp_ctt_active, will indicate whether the Code-to-Text to PropertyResourceBundles
function is active. If wsp_ctt_active=0 then no property files will be created. A value of 1 indicates
that the files will be created. Since WebSphere 4 doesn t keep files from a previous installation of an
Enterprise Application, you will need to create the files (set wsp_ctt_active to 1) the first time the
application is started after you deploy (or redeploy) the application.

e The second entry, wsp_ctt_prb_path, will indicate the pathname in which to store the property files.
The new entry will be wsp_ctt_prb_path=path If path begins with a / it will be treated as an
absolute path (from root). If the path does not begin with / it will be treated as a relative path from
the application deployment path.

e The third entry, wsp_ctt_iso_length indicates the length of the ISO fields used to return the country
code and language code in the CODERFSH transaction. Currently only a value of 3 is supported
(wsp_ctt_iso_length=3).

No mechanism to dynamically update the property files after server startup is provided. The server will need
to be stopped and restarted to receive recent code-to-text table updates. Note that the startup time of the
CWS will now be dependent on the quantity of CTT tables downloaded.

The above are necessary changes to make the existing customer code and server config files to run under
the V1R6. In order to use other new functions, such as the dynamic session locale object, UTF-8 charset
support, new currencies, IfsNLS class, and the formatting of currency, date, and time, please see Writing
Java Servlets for the IFS CWS .

8 IFS Customizable Web Server (CWS) Guide Fourth Edition

User Profile Changes

Release V1R6 introduced changes to the User Profile in support of Small Businesses. One change to the
User Profile is a new field for a Primary Consumer ID. The User Profile that is returned by the Fl as a
response to a Logon or Self-Registration message must include a non-blank and non-null value for
this Primary Consumer ID. The Primary Consumer ID value returned at Logon or Self-Registration is
placed in the gold message header of every gold message sent to the Fl.

Note: The Primary Consumer ID value is placed in the gold message for every gold message executed,
not just the new set of messages for small businesses.

Transaction APl Changes

In V1R6, the execute method of every gold transaction now throws an IfsException. This requires changes to
every servlet developed with IFS gold transactions prior to release V1R6. Specifically, any servlet that calls
the execute method of a gold transaction must do so within a try/catch block.

MRM/CWS Integration

The integration of CWS information into the Message Repository Manager (MRM), and the corresponding
formalization of business rules into the MRM, has introduced variations between the V1R5 and V1R6 IFS
CWS Java Class public interfaces. The result is a more heterogeneous interface, though many variances
within the interface are still preserved. The changes are categorized as follows:

e Removed Java Classes
e Attribute Name Changes

Removed Java Classes

Table 2. Removed Java Classes

Java Class Resolution Comments

GsAcctld

Use GsAccount The Java class GsAcctld serves the same purpose as the hand-written
class GsAccount: both represent account identifiers. Using two distinct
types for the same information introduces unnecessary complexity and
incompatibility between fields within the interface, due to Java s strong
type checking. Therefore all uses of the previously generated class

GsAcctld has been replaced with GsAccount.
Note the following differences between GsAcctld and GsAccount:
e The attribute goldNdx in GsAcctld is removed from GsAccount.

e The attribute subType in GsAcctld is renamed to
accountSubType in GsAccount.

e The attribute clrgHseFild in GsAcctld is renamed to
clearinghouseFIID in GsAccount.

GsDestFiDtl
GsGetDestFiClhsTpDtl
Gs classes in general

Enable appropriate Gt
class in MRM

A Gs class is produced only if it is used by an appropriately enabled Gt
class in the MRM. This includes Gt classes generated by the MRM CWS
Emitter (marked Emit Java in the MRM) and hand-written classes
(marked Java Enabled).

GtApplicationLogon

System message, not appropriate for CWS Java Classes

GtLogoffCTW

CTW message, not appropriate for CWS Java Classes

GtLogonCTW

CTW message, not appropriate for CWS Java Classes

GtPayeelnquiryData

Use GtPayeelnquiry

The MRM tool design supports the generation of a single java class to
represent each transaction. GtPayeelnquiry and GtPayeelnquiryData
are two separate java classes representing the same transaction. The
purpose of GtPayeelnquiryData was to represent a particular use of the
payee inquiry transaction, thereby simplifying the coding process.
GtPayeelnquiryData is a degenerate form of GtPayeelnquiry.

GtSelfDef Use GtSelfDefininginfo Redundant/duplicate message.
GtServerShutdown System message, not appropriate for CWS Java Classes
GtServerStartup System message, not appropriate for CWS Java Classes

© Copyright IBM Corp. 2002

Chapter 2. Migrating to VIR6M1 and WebSphere 4

Attribute Name Changes

The following table lists all changes between the V1R5 and V1R6 attribute names. The scope of this section
does not include new fields added to the Java Classes in V1R6.

Note that the focus of this table is the V1R5 attributes in the second column; IFS Java Classes may occur in
multiple rows in the first column. If the number of occurrences of a class is more than one, then the
occurrence and total number of occurrences of that class are shown as (occurrence/total) following the

name.

Table 3. Attribute Name Changes

Java Class(es)

V1RS5 Attribute

V1R6 Attribute

Comments

Various account_packed removed Removed with change from GsAcctld to
GsAccount.
Various *_packed removed Internally used field, removed where not

required for internal use. These fields should
probably be marked private.

GsBusIinvPymtRec

invLineNunber

invLineNumber

Spelling correction

GtReportBillPayProblem (2/2)

GsGrntrinfoDtl reqGrntrincDtl grntrincDtl Only request message fields are prefixed by
req.

GslraAcctDtl ifsPDisttransitRoutingNumberlD | removed Descoped in the MRM.

transitRoutingNumberID removed

GsStaffPrflitem staffTitlteCode_text removed The new attribute enables generation of a
code-to-text translation method. (See Note
1)

GtAuthorizeAccountRegistration reqConsumerID removed Autofilled (See Note 2)

GtDisclosureAcceptance reqChangeableConsumeriD removed

GtBillPayVerification (1/2) reqHomePhone removed Autofilled (See Note 2)

GtCreditCardDispute reqWorkPhone removed

GtReportBillPayProblem (1/2)

GtBillPayVerification (2/2) reqFaxNumber removed Autofilled (See Note 2)

GtCSRConsumerStart
GtUserProfile

cnsmrinform

consumerinformation

Conform with use of this field in other
contexts.

GtCancelStopCheckPayment reqContactfreeFormText reqFreeFormText Conform with use of this field in other

GtCheckCopy contexts.

GtCustomerEmailToFI

GtFIEmailToCustomer

GtGPCustomerMessage

GtSalesSlipCopyRequest

GtSmallBusStopRecurDraft

GtStatementCopy

GtGetDestClearinghouseProfile moreF moreFlag Changing to the V1R5 names will bring

GtGetSecuritiesDescriptions moreF_text moreFlag_text these commonly used fields out-of-sync with

GtinvestmentAccountHistory (1/2) totTxnMtchVal totalTransactionsMatched | the names used in other messages for the
totTxnSndVal totalTransactionsSent same elements. Common name simplifies
crsr cursor future maintenance using the MRM.

GtinvestmentAccountHistory (2/2) reqMaxNbrRecVal reqMaxNumberRecords Changing to the V1R5 names will bring

GtStopCheckPaymentinquiry reqLstNbrRecVal regLastNumberRecords these commonly used fields out-of-sync with
reqCrsr reqCursor the names used in other messages for the

same elements. Common name simplifies
future maintenance using the MRM.

GtinvestmentOrderCancel respCodeCl responseCode Changing to the V1R5 names will bring

GtinvestmentOrderCancelChange (1/2) | respCodeCI_text responseCode_text these commonly used fields out-of-sync with

GtinvestmentOrderStock (1/2) fiRfrNbrld referenceNumber the names used in other messages for the
srvcPrvdRfrid serviceProviderReference | same elements. Common name simplifies
fIProcind fiProcind future maintenance using the MRM.
fiProcInd_text fIProcind_text

GtinvestmentOrderCancelChange (2/2) | cnsmrld consumerID Changing to the V1R5 names will bring

GtinvestmentOrderStatusinquiry chCnsmrld changeableConsumerlD | these commonly used fields out-of-sync with

GtinvestmentOrderStock (2/2) permUserld permUserID the names used in other messages for the

same elements. Common name simplifies
future maintenance using the MRM.

Notes:

1. The rules for establishing/generating a Code-To-Text translation for an attribute are:

A valid-value must be defined for the element (in the MRM), in the context of at least one message

(valid values are defined in message context).

10 IFS Customizable Web Server (CWS) Guide Fourth Edition

The attributes immediate context of use must be in a reply message.

2. For V1R5 the set values (via the public set methods for these attributes were ignored, and the values
were (re)populated in the CWS - much like the autofilled attributes. In previous releases the values set
using the public interface were ignored and overwritten within CWS, therefore an external interface is not
necessary. The choice was made to preserve the V1R5 behavior, as opposed to the interface, of the IFS
Java Classes. Therefore these attributes have been formally marked as autofilled in the MRM tool. The
previous state that allowed such fields to exist has been eliminated from generated code.

NLS Enablement

The ifs.war/tools/startweb script must assign and export the value of the environment variable
MTINLS . This is currently set to the location of the cws/nls/lib subdirectory under the CWS instance

installation.

Gold Manager Wide Character Support

This function added the following configuration options to the config file:

these parameters are inserted into the gold header for startup functions:
web_country_code=USA
web_Tlanguage_code=ENG

These parameters are inserted into the Gold header during startup functions.

Disable JavaScript

This function removes JavaScript support from the CWS.

MQ Maximum Number Handles

The maximum number of MQ handles must be increased because of the increase in the number of Gold
messages that can potentially be transferred over different queues.

This number needs to be increased in the Operating System. The default is 256 and should be raised to 600
via the smitty tool.

© Copyright IBM Corp. 2002 Chapter 2. Migrating to VIR6M1 and WebSphere 4 11

Chapter 3. Installing CWS Components

Installation Overview

This chapter outlines the software requirements and steps needed to install CWS V1R6M1 using IBM
WebSphere 4.0.2 in your IFS environment. The instructions that are given were created and tested on an
IBM RS/6000 running AlX 4.3.3 FixPak 9 and AIX 5.1 and are specific to the environments of those systems
(i.e. software installation roots, location of home directories, etc.). The environment of the system on which
you are installing should be taken into consideration when running any of the specific commands listed
below. The following are the general steps that are required to install CWS on AlX:

Install Software Prerequisites
AlIX Performance Tuning
DB2 Setup

Creating a CWS Instance

The following instructions detail the process of installing CWS to connect to FISim using the All Local
MQSeries Configuration described in appendix D. Information on using other configurations, such as the
Remote MQSeries Configuration can also be found in appendix D.

Note: If you are migrating an existing CWS instance please read Chapter 2. Migrating to VIR6M1 and
WebSphere 4 before continuing.

Install Software Prerequisites

CWS requires the following software to be installed for proper functioning. See the installation instructions
and manuals for each of the prerequisites listed below for more information on installing and configuring
each respective product.

AIX 4.3.3 Fix pack 9 or AIX 5.1

WebSphere 4.0.2 Advanced Edition

IBM HTTP Server (IHS) 1.3.19.1 (comes bundled with WebSphere 4.0.2)
DB2 7.2.3 (DB2 7.1 FixPak 5)

MQSeries 5.2 Configured to use the system management tool (smitty)

Note: The IBM RedBook-RedPiece SG24-6176-00 WebSphere Version 4.0 Advanced Edition Handbook
gives very detailed instructions on installing WebSphere 4.0 advanced edition on AIX. Please reference this
material before installing.

AIX Performance Tuning

The AlX system ulimits, paging space, and bound processes must all be set correctly to achieve maximum
performance.

ulimit Settings: The system limits for all parameters must be set to unlimited . This is true for both the
soft limits and hard limits.
Hard limits for the system are reported by:
ulimit -H
Which should report :
Unlimited
For the UID of the webserver the soft limits can be inspected by:

ulimit -a (assuming the user running this command is the UID of the webserver)

time(seconds) unlimited
file(blocks) unlimited
data(kbytes) unlimited

12 IFS Customizable Web Server (CWS) Guide Fourth Edition

stack(kbytes) unlimited
memory(kbytes) unlimited
coredump(blocks) unlimited
nofiles(descriptors) unlimited

See the AIX System Manual for more information on the u7imit command.

Paging Space: Sufficient AIX paging space must be available. The actual amount will vary by the amount
of memory installed in the system as well as by the number of CWS instances and other applications run by
the customer, including whether the customer is using early or late paging space allocation (using the
PSALLOC environment variable). The following formula should yield sufficient paging space for most
environments.

Total paging space = 512 MB + (memory size - 256 MB) * 1.25

See The Paging Space Overview in AIX Version 4.3 System Management Guide: Operating System and
Devices and the IBM Redbook AIX 64-bit Performance in Focus (SG24-5103-00) for more information.

Bound Processes: Run the Java and web server process as unbound on all servers.

Subsequent chapters will address installing the CWS and configuring the different server types, as well as
installing the CWS Toolkit.

DB2 Setup

Product Level

WebSphere Application Server version 4.0.2 requires DB2 version 7.2.3 to function properly, for clarification,
DB2 7.2.3 is really DB2 7.1 plus official FixPak 5. You can run the ,db2level- command to determine what
version of DB2 you are using. For DB2 v7.2.3 the db2level command should return the following product
signature:

dbZlevel
DB210851 Instance “db2instl” uses DBZ code release “SQL07023” with level
identifier “03040105” and informational tokens “DB2 v7.1.0.55”, “s011211” and “U480359”.

You want the ,code release- to be ,SQL07023- when you run the db2level command.

You must also run the /usr/lpp/db2 07 01/javal2/usejdbc2 script after installing or updating to
DB2 7.2.3. This script installs the JDBC 2.0 support needed by WebSphere Application Server 4.0.2.

Configuring the Database Manager to Use Shared Memory

WebSphere 4.0.2 requires the DB2 database manager to use extended shared memory; this can be
accomplished by following the steps outlined below:

Assuming the db2instance owner’s userid is db2inst1

Log in as the DB2 instance owner, db2inst1, using the su command as follows:

su - dbZinstl
Note that when you log in as db2inst1, the command prompt changes from the # symbol to a dollar sign ($)
to indicate a change in your login identity.

If this is the first time that you have logged in as the DB2 instance owner, you may be prompted to change
the password. Enter a new password and press Return. When prompted, type the new password again and
press Return.

Note: DB2 requires a password of eight or fewer characters.

Next, turn on the use of extended shared memory by setting the EXTSHM environment variable using the
following commands:

$ db2stop
© Copyright IBM Corp. 2002 Chapter 3. Installing CWS Components 13

$ export EXTSHM=0N
$ dbZset DBZENVLIST=EXTSHM
$ db2start

These commands must be executed each time you stop and start the DB2 database manager. If DB2 is
configured to start when the system is rebooted you can add the above commands to the /etc/rc.db2 file.

Creating a Database for WebSphere Application Server

Perform the following steps to create a database named was and set the DB2 application heap size:

Note: If WebSphere 4.0.2 is already installed on your system then you don t have to create the WAS
database. Follow the steps below substituting the name of the currently installed WebSphere administrative
database for was.

1. Login as the DB2 instance owner, db2inst1.

2. Create a database named was by using the db2 create database command, as follows:
$ db2 create database was

This process can take several minutes to complete.

3. Set the application heap size by using the db2 update db config command, as follows:
$ db2 update db config for was using applheapsz 256

If an application heap size of 256 does not work for your system, increase it to 512.

4. Stop and start the database for your changes to take effect.

$ dbZstop

$ export EXTSHM=0ON

$ dbZset DBZENVLIST=EXTSHM
$§ dbZstart

Potential Problems

TCP/IP Loopback

If using local DB2 databases for data access by session clients, in some cases, multiple connections for
session clients cannot be established successfully and you may see errors in the WebSphere application
server s stdout.txt log and the graphical administration client like the following:

/c9ael?6 SeriousEventD F ADMSO027E: Could not initialize persistent storage for serious events.
Got exception COM.ibm.dbZ2.jdbc.DBZException: [IBMI[CLI Driver] SQLI1224N A database agent could
not be started to service a request, or was terminated as a result of a database system
shutdown or a force command. SQLSTATE=55032

To avoid stale connections when there are large numbers of session clients, catalog the DB2 databases to
use a TCP/IP loopback by following these instructions:

1. Setup a TCP/IP port in /etc/services file, if a port for remote DB2 clients has not been established yet. If
the port has been claimed you should see a line like the following:

dbZcdbZinstl 50000/tcp # Connection port for DBZ2 instance db2instl

2. Ensure that the TCP/IP communication protocol has been specified in the DB2COMM registry
parameter.

- To check the current setting of the DB2COMM parameter, enter db2set DB2COMM.
- To update the DB2COMM registry variable to include TCP/IP, use the db2set command.

For example:

db2set DB2COMM=existing_protocol_names, tcpip

14 IFS Customizable Web Server (CWS) Guide Fourth Edition

3. Update the SVCENAME database manager configuration parameter to the connection service name
as defined in /etc/services (step 1).
For example:
db2 update dbm cfg using svcename connection_service_name
connection_service_name would be db2cdb2inst1 from the example in step 1.

4. Catalog the loopback node. For example:

db2 catalog tcpip node node_name remote 127.0.0.1 server
connection_service_name

5. Catalog the database as follows:

db2 catalog db database_name as database_alias
db2 uncatalog db database_name
db2 catalog db database_alias as database_name at node node_name

This allows you to implement a TCP/IP loopback without needing to change the application to connect to
the new alias.

6. Stop DB2 and start it again to refresh the directory cache.

Reinitialize WebSphere Administrative Database

If you experienced a problem connecting to the database when starting WebSphere for the first time, and as
a result updated the database configuration or created a TCP/IP loopback, then the WebSphere
administrative database may not have been initialized. In order for WebSphere to reinitialize the database
you need to update the /usr/WebSphere/AppServer/bin/admin. conf file and set the following
properties values to true:

com.ibm.ejs.sm.adminServer.createTables=true
install.initial.config=true

This causes WebSphere to create and initialize the database tables that are necessary for it to function
properly. This process can also be used to repair a broken WebSphere instance without having to reinstall
the entire application.

Warning: This process will destroy all changes that have been made to WebSphere since installation. For
example, all application servers and enterprise applications will be removed. This should only be attempted if
the administrative database was never created in the first place or when attempting to repair a corrupted
administrative database.

Creating a CWS Instance

The following steps describe the process of installing, configuring and testing a CWS instance on a system
with all of the software prerequisites using the All Local MQSeries Configuration and FISim.

Create An Instance AIX userid

All CWS instances are executed under unique shared AIX userids with the following values:

e Add userid to group mgm and db2iadm1 (MQSeries and DB2 administrators)
e All other fields are default values.

This can be accomplished by executing the following instructions:
1. Logon as root

2. Atthe command line type
smitty users

© Copyright IBM Corp. 2002 Chapter 3. Installing CWS Components 15

3. Select Add a User

4. Specify a value for the User NAME field (will be referenced as <userid> for the rest of this chapter), and
the groups db2iadm1 and mqgm for the Group SET field.

5. Press enter
6. Press F10 to exit back to the command line

7. Type:
passwd <userid>

and enter a password for the new user

Create Directory Structure - Logs Directory

CWS, IHS, WAS 4 and FISim all produce a number of different log and error files. It is a good idea to place
these files in a common directory for quick examination and cleanup. The following commands will produce
the recommended directory structure that will be referenced throughout the rest of this chapter:

1. Logon as user <userid>

2. $ cd

3. $ mkdir -p CWS/logs

Create a WebSphere Application Server

The CWS was designed and packaged to run inside of a WebSphere 4 application server environment. For
each CWS instance that will be installed on a system you must create a new application server that will run
under the userid created in step 1. To create the application server use the following instructions:

1. Open a WebSphere administrative console (see Appendix F)

2. Click Console->New->Application Server...

3. Click the General tab

4. Value for the Application Server name text field is <userid>

5. Value for the Working directory text field is /home/<userid>/CWS/logs

6. Click the Advanced tab

7. Value for the User ID text field is <userids>

8. Value for the Group ID text field is the groupid that the WebSphere files and directories are owned by,
(usually system). The groupid can be determined by running the command

1s -1 /usr/WebSphere

the groupid is the text in the fourth column, for example
drwxr-xr-x 20 root system 1024 Jdan 21 15:24 AppServer
9. Click the OK button.

10. A dialog box containing command completed successfully will appear. Click on ok to complete this step.

16 IFS Customizable Web Server (CWS) Guide Fourth Edition

Create a WebSphere Virtual Host

Each instance of CWS must have its own virtual host defined in WebSphere that specifies which hostnames
and ports an application will listen for requests on. Each instance of CWS listens for requests on all possible
hostnames but only one port. To create the virtual host, use the following instructions:

1. Open a WebSphere administrative console (see Appendix F)

2. Click Console->New->Virtual Host...

3. Click the General tab.

4. Value for the Name text field is <userid>

5. Click the Add button.

6. Click in the text field under the HostAliases label type * * : <port> where <port> is an integer between 1
and 65535 and is the port this CWS instance will listen on

7. Click the OK button.

®

A dialog box containing command completed successfully will appear. Click on ok to complete this step.

Create an IHS Virtual Host

Each instance of CWS must have its own virtual host defined in IHS. A virtual host specifies which
hostnames and ports IHS will listen for requests on and eventually forward to the corresponding CWS
instance. To create the virtual host, use the following commands/instructions:

1. Logon as user root

2. Change into IHS configuration directory

cd /usr/HTTPServer/conf

3. Back up the current configuration file
cp httpd.conf httpd.back

4. Open the httpd.conf file for editing using your favorite editor

5. Search for the text Listen 80
6. If the line is proceeded with a pound sign (#) then uncomment the line by removing the # character

7. Inthe line immediately beneath Listen 80 type ,Listen <ports>" where <port> is the same integer
specified in step 4.

8. Define the virtual host by searching for the text ,</VirtualHost>- and immediately beneath it place the
following:

<VirtualHost [hostname]:[port]>
ServerAdmin [admin_emaill]
DocumentRoot
/usr/WebSphere/AppServer/installedApps/[userid].ear/ifs.war/docs
ServerName [hostname]
ErrorLog /home/[userid]/CWS/Togs/http-error.log
TransferLog /home/[userid]/CWS/1ogs/http-access.log
</VirtualHost>
Where:

© Copyright IBM Corp. 2002 Chapter 3. Installing CWS Components 17

[hostname] is the fully qualified hostname of the system (i.e.
Host.some_domain.com)

[port] is the port specified in step 4

[admin_email] is the Internet e-mail address of the server administrator
(i.e. Someone@somewhere.com)

[userid] is the userid the CWS instance is running as

9. Save thefile
10. Restart IHS
/usr/HTTPServer/bin/apachect] restart
11. A confirmation that restart is complete appears with the following message:

/usr/HTTPServer/bin/apachectl] restart: httpd restarted

Update and Deploy the ifs.war File

The CWS is now distributed as a Web Archive (WAR) file named ifs.war which is found in
virém1_yymmdd.tar.Z under cws/bin. This base WAR file must be updated to include your custom CWS
application (see Appendix H for more details). The updated ifs.war file must be deployed into a unique
WebSphere application server for each instance of CWS that you wish to run on a given system. To deploy
the ifs.war file use the following instructions:

1. Update the distributed base ifs.war file to include your custom CWS application (see Appendix H for
more details).

2. Logon as user root

3. Open a WebSphere administrative console (see Appendix F)

4. Click Console->Wizards->Install Enterprise Application

5. Click the Install stand-alone module (*.war, *jar) radio button

6. Click the Browse... button to search for the ifs.war file or enter the fully qualified path to the ifs.war file
including ifs.war in the Path text field. Make sure that the ifs.war file is not on an NFS mounted directory,
if it is make a local copy on your local subdirectory.

7. Value for the Application Name text field is <userid>

8. Do not change the text field labeled Context root for web module.

9. Click the Next> button (repeat this 7 times until Virtual Host selection)

10. Click the Select Virtual Host... Button

11. Select the virtual host you created in step 4 and click the OK button

12. Click the Next> button

13. Click the Select Server... Button

14. Select the Application Server you created in step 3 and click the OK button

15. Click the Next> button

16. A confirmation box appears saying that the application will be installed on the following nodes with
installed directory setting with each node as /usr/WebSphere/AppServer/installedApps/<user id>.ear.

18 IFS Customizable Web Server (CWS) Guide Fourth Edition

17. Click the Finish button.

18. A confirmation box will appear saying the command completed successfully. Click @K .
19. In the left pane expand the WebSphere Administrative Domain item

20. In the left pane expand the Nodes item

21. In the left pane right click on the <hostname> item under Nodes and select the Regen Webserver Plugin
menu option

22. On the lower pane, an event message saying ,Plugin Regeneration Completed Succesfully- confirms
that the ifs.war file is now considered to be deployed into the WebSphere environment.

Update the Application Server Configuration

The CWS application server that was created in step 3 may optionally be updated to explicitly specify the

location of the CWS configuration file and supported character set. By default, CWS will attempt to use the

file Jusr/WebSphere/AppServer/installedApps/<userid>.ear/ifs.war/etc/config. To specify a different file you

can set the Java system property ifs.config.file using the graphical administration client. To update the

application server use the following instructions:

1. Open a WebSphere administrative console (see Appendix F)

2. Inthe left pane expand the WebSphere Administrative Domain item

3. Inthe left pane expand the Nodes item

4. Inthe left pane expand the <host> item where <host> is the hostname of the system

5. In the left pane expand the Application Servers item

6. Inthe left pane click on the <userid> item underneath Application Servers

7. Inthe right pane click on the General tab

8. Change the Node startup state combo box to Stopped

9. Click the JVM Settings tab

10. In the System Properties box click the Add button

11. To Update Configuration File Location
Two text fields are created, the value for the Name field is ifs.config.file and the value for the Value field
is the path to the CWS configuration file. If the path that is entered begins with a / it is considered to be
an absolute path; if the / is omitted the path is considered to be relative to the deployment directory
lusr/WebSphere/AppServer/installedApps/<userid>.ear/ifs.war/etc/config. Note that the etc/config is the
addition to the absolute path.

To Update Supported Character Set

Two text fields are created, the value for the Name field is client.encoding.override and the value for
the Value field is the character set CWS will use (e.g. UTF-8, ISO-8859-1, etc.).

To Update The Java Library Path

Two text fields are created, the value for the Name field is java.library.path and the value for the Value field
is the path to the java servlets. If the path that is entered begins with a /it is considered to be an absolute

© Copyright IBM Corp. 2002 Chapter 3. Installing CWS Components 19

path; if the / is omitted the path is considered to be relative to the deployment directory
lusr/WebSphere/AppServer/installedApps/<userid>.ear/ifs.war/bin. Note that the bin is the addition to the
absolute path

12. Click the Apply button.

13. On the event message of the lower pane, a ,command completed successfully- should appear.

Change AIX Permissions

When WebSphere installs a WAR file it is exploded into the
/usr/WebSphere/AppServer/installedApps directory. Each file contained in the WAR is copied to
the file system with a default set of AIX permissions. The default permissions given to files must be changed
for some of the tools and executables to work properly. To change the permissions of the CWS files use the
following commands/instructions:

1. Logon as user root
2. Input the following commands:

cd /usr/WebSphere/AppServer/installedApps/

chmod -R 755 <userid>.ear

chmod 777 <userid>.ear/ifs.war/WEB-INF/classes/com/ibm/ifs/resource
chmod 777 <userid>.ear/ifs.war/ebiller_logos

cd /usr/WebSphere/AppServer/temp

mkdir -p <hostname>/<userid>/<userid>/ifs.war

chmod -R 775 <hostname>/<userid>

R H W RR

Where:
<userid> is the userid created in step 1
<hostname> is the hostname of the system

Note: The hostname of the system can be determined using the hostname command

hostname

Note: The last command changes the permissions of the
lusr/WebSphere/AppServer/temp/<hostname>/<userid> for members of the group to be able to write to
the directory it is owned by. It is recommended to limit membership of said group to trusted users only.

Initialize FISim Database (if applicable)

Skip this section if you are not using FISim. FISim stores some sample accounts in a DB2 database that can
be used to test the CWS installation. FISim can be setup to read configuration information from shell
environment variables or the command line. Use the following instructions to setup FISim.

1. Logon as user <userids>
2. Create a bin directory for the user with the following command:
$ mkdir ~/bin

3. Create a new file named cwsWas4 in the bin directory with the following lines (update for your
environment as appropriate)

Environment for CWS and WebSphere Application Server 4.0.2
export USERID=${LOGIN}

export WAS=/usr/WebSphere/AppServer

export CWS=${WAS}/installedApps/${USERID}.ear/ifs.war

20 IFS Customizable Web Server (CWS) Guide Fourth Edition

export JAVA HOME=/usr/WebSphere/AppServer/java
export DB2DIR=/usr/lpp/db2 07 01

export DB2INSTANCE=db2instl

export DB2INSTHOME=/home/db2instl

export DB2INSTLIB=3${DB2INSTHOME}/sqllib

export DB2JAVA=${DB2INSTLIB}/java

Fisim and Mgseries queues

export FISQMGR=${USERID}qgm

export FISDB2INST=${USERID}

export FISDB2USER=${USERID}

export FISXMIT=${USERID}.xmit

export FISIM LOG PATH=/home/${USERID}/CWS/logs

Misc. environment variables

export PATH=${CWS}/tools:${WAS}/java/bin:${PATH}

export LIBPATH=/usr/lib:${JAVA HOME}/lib:${CWS}/bin

export LD LIBRARY PATH=${LIBPATH}:${DB2INSTLIB}/1lib

export CLASSPATH=${CWS}/WEB-INF/lib/jcwsapi.jar:${CWS}/WEB-
INF/classes:${CWS}/bin:${WAS}/1lib/j2ee.jar

Add DB2 admin environment Fisim
${DB2INSTLIB}/db2profile

Save and exit the file.

Read the environment file using the following command:

$. ~/bin/cwsWas4

. Create the FISim database using the following commands (this step can be skipped if you are using a

database that has previously been setup for FISim use):

$§ db2 create db <userid>

$ db2 connect to <userid>

$ db2 create bufferpool <userid>pool size 1000 pagesize 16k

$§ db2 disconnect current

$ dbZstop (*Note: if db2 will not stop because other applications are currently accessing a database
you can use the ,db2 list applications- command to determine the active connections)

$ dbZstart

$ db2 connect to <userid>

$ db2 “create tablespace <userid>space pagesize 16k managed by system using
(‘<userid>space’) bufferpool <userid>pool”

$§ db2 disconnect current

$ db2stop

$ export EXTSHM=0N

$ dbZ2set DBZENVLIST=EXTSHM

$ dbZstart

$ cd /usr/fis/data (assuming Fisim install root is /usr/fis)

$./setupfis -d <userid> -u <userid> -p <password>

Configure MQSeries

CWS and FISim use MQSeries queues to communicate. The following example uses the All Local MQSeries
Configuration from Appendix D. to configure the MQSeries queues use the following commands/instructions:

. Create MQSeries queue manager and queues using smitty by following the instruction in the All Local

MQSeries Configuration in Appendix D or by executing the following commands as user <userid> at a
shell prompt:

© Copyright IBM Corp. 2002 Chapter 3. Installing CWS Components 21

$ /usr/bin/crtmgm -c ‘Queue manager for <userid> CWS instance’ -u
‘SYSTEM.DEAD.LETTER.QUEUE’ -h ‘512’ <userid>qm

$ /usr/bin/strmgm <userid>qm

$ /usr/Ipp/mgm/smit/chamqattr “define” QLOCAL==’<userid>.xmit’ DESCR=='FISim
transmission queue’ USAGE=’XMITQ’ <userid>qm

$ /usr/1pp/mgm/smit/chamqattr “define” QLOCAL==’<userid>.reply’ DESCR==’FISim
reply queue’ <userid>qm

$ /usr/1pp/mgm/smit/chamqattr “define” QREMOTE==’<userid>’
ROQMNAME=="<userid>’ XMITQ==’<userid>.xmit’ <userid>qgm

Update the CWS Configuration File

An example CWS configuration file is provided with the base ifs.war file but must be updated to reflect your
environment. By default, CWS will attempt to read from the configuration file
/usr/WebSphere/AppServer/installedApps/<userid>.ear/ifs.war/etc/config. You can specify a different
configuration file by following the instructions in step 7.

To update the CWS configuration file use the following commands/instructions:
1. Logon as user root
2. Backup the example configuration file

cd /usr/WebSphere/AppServer/installedApps/<userid>.ear/ifs.war/etc
cp config.sample config

3. Open the file ,config- for editing and change the following parameter values:

web server name=<userids>

wsp_exe name=/usr/WebSphere/AppServer/installedApps/<userids>.ear/ifs.war/bin/web
Srvr

wsp_sharedmem file=/home/<userid>/CWS/logs/<userids>.sharedmem

wsp_trace file=/home/<userid>/CWS/logs/<userids>.trace

wsp_log file=/home/<userid>/CWS/logs/<userid>.msglog

wsp_gold trace=/home/<userid>/CWS/logs/<userid>.goldtrace

mg request gmgr=<userid>gm

mg remote gmgr cc=<userids

mg_reply queue cc=<userids>.reply

wsp_encrypt file=/usr/WebSphere/AppServer/installedApps/<userids>.ear/ifs.war/etc
/pubkey.cbsf

Note: These are the minimum set of parameters that must change in order for CWS to function properly with
an All Local MQSeries configuration. Other parameters may be changes as needed in accordance with the
environment in which CWS will be running. For example, you can change the web server type by changing
the values of the following parameters:

Web server types:

WSP To enable a WSP server, set wsp_enable_web=1. WSP cannot be enabled if CTW is
enabled.

CSR To enable a CSR server, set wsp_enable_web_server=1 and set Csr_web_server=1.
CTwW To enable a CTW server, set wsp_enable_ctw=1. CTW cannot be enabled if WSP is
enabled.

SELFREG To enable self registration, set selfreg_server=1 if the server is to only be used as a self

registration server or set selfreg_server=2 if the server is to be used as both a self registration server and a
WSP server.

More information about the available parameters is available in the sample CWS configuration file.

22 IFS Customizable Web Server (CWS) Guide Fourth Edition

Sample CWS Configuration File

A sample CWS configuration file is distributed with CWS. The sample provides information about the
available mandatory and optional CWS configuration parameters. The default path to the file is
/usr/WebSphere/AppServer/installedApps/<userid>ear/ifs.war/etc/config.sample.

Starting and Stopping CWS

At this point CWS has been installed and configured. The preferred way to start and stop CWS is to use the
WebSphere Advanced Administative Console (see Appendix F). Use he following instructions to start and
stop the newly created CWS instance:

To Start CWS
1. Start WebSphere (see Appendix F)

2. Logon as user <userid>

3. Start the back end and the MQSeries queue manager. For instance, if you are using FISim:
$. ~/bin/cwsWas4 (source the environment file)
$ /usr/bin/strmgm <userid>qm (start the MQSeries queue manager)
$ cd /usr/fis/bin
$./runfis -d <userid> -u <userid> -p <password> -1 & (start FISim)

4. Start CWS with the Administrative Console (see Appendix F), or with the startweb command:
$ cd /usr/WebSphere/AppServer/installedApps/<userid>.ear/ifs.war/tools
$ startweb

To Stop CWS

Use the Administrative Console to stop the CWS instance, or use the stopweb command:
1. Logon as user <userid>
2. Execute the following commands:

$. ~/bin/cwsWas4 (source the environment file)
$ cd /usr/WebSphere/AppServer/installedApps/<userid>.ear/ifs.war/tools
$ stopweb

ifs.war/tools/1sweb, startweb, and stopweb are tools for controlling the CWS server located in the
ifs.war/tools directory under the web application instance directory. There are many command line
options for selecting server instances, configuration files, runtime and HTTP server directories. Execute
these commands with the -H option to view extended help and command line options.

The startweb and stopweb scripts use the current path to help determine which instance of CWS to start
and stop. You should change to the tools directory of the cws instance before running startweb and
stopweb.

Test Environment Workaround

It is possible to install the base ifs.war file without updating it with a custom CWS application. The following
is a workaround allows the base ifs.war file to be installed by manually copying the example servlets into the
ifs.war directory after deployment. This approach is not recommended, but may be used to set up a quick
test environment. Use the instructions below to install and run the example Servlets after installing the base
ifs.war:

1. Stop CWS

© Copyright IBM Corp. 2002 Chapter 3. Installing CWS Components 23

2. Logon as user root
3. Change into the application server s WEB-INF directory

cd /usr/WebSphere/AppServer/installedApps/<userid>.ear/ifs.war/WEB-INF
4. Open the file ibm-web-ext.xmi for editing

5. Change the property serveServietsByClassnameEnabled=false to
serveServletsByClassnameEnabled=true

6. Save the file

7. Copy the test JSP files into the parent directory. Note that this step is done automatically by WebSphere
when the ifs.war file is deployed.

cp /ViIR6M1/cws/testdocs/examples/*.jsp ..
Assuming the CWS tar file has been extracted into the /V1R6M1 directory.

8. Copy the test class files into the classes directory. Note that this step is done automatically by
WebSphere when the ifs.war file is deployed.

cp /VIR6M1/cws/testdocs/examples/*.class classes
Assuming the CWS tar file has been extracted into the /v1RéM1 directory.

9. Copy the images into the docs directory. Note that this step is done automatically by WebSphere when
the ifs.war file is deployed.

cp -R /VIR6M1/cws/docs/images ../docs
cp -R /VIR6M1/cws/docs/ifsgif ../docs

Assuming the CWS tar file has been extracted into the /V1R6M1 directory.
10. Start CWS

11. Connect with a web browser by opening the URL http./server:port/serviet/l ogon where server is the
hostname of the system and port is the same port specified in step 4.

12. You will be prompted to input a username, PIN and password, enter the following

Username: ARF10nn (01 < nn < 10)
PIN: 10nn
Password: 10nn

nn must be the same for the username pin and password. Values shown are the default for Fisim.

After a successful test you should reverse the changes that you just made by stopping CWS, setting
BGerveServletsByClassName=false in the ibm-web-ext.xmi file and removing the test files that were copied.
Leaving the ibm-web-ext.xmi as is and/or not removing the test files will allow them to be accessed by other
users and could be a potential security risk in a production environment.

Other Considerations

Running Multiple CWS Instances

Running multiple instances of CWS has been greatly simplified within the WebSphere 4 environment. No
longer do you need to install multiple instances of an HTTP server or WebSphere. IHS and WebSphere 4

24 IFS Customizable Web Server (CWS) Guide Fourth Edition

can be configured to handle multiple requests for different CWS instances on the same system by listening
on different ports.

To install another instance of CWS on the same system follow the instructions above beginning with step 1
and continuing to step 14 with the caveat that no two CWS instances can run on the same port. That is,
follow the same instructions that you did to create the first instance but create a different userid in step 1 and
specify a different port in step 4.

The new instance does not have to be the same server type as the previous one. For example, the first
installed CWS instance may have been configured as a CTW server and the second as a CSR server.

You can even deploy base ifs.war files that have been updated with different custom CWS applications. For
example, you could have updated one base ifs.war file to include the user interface for one financial
institution while the second has a user interface from a totally different financial institution.

Important Ports

There are 4 ports of interest when running CWS on WebSphere 4, these ports must be unique on the same
machine:

1. IHS administration server port - defined in
/usr/HTTPServer/conf/admin.conf
2. CWS instance port - defined in both

/usr/HTTPServer/conf/httpd.conf
/usr/WebSphere/AppServer/config/plugin-cfg.xml

3. WebSphere administration server port - defined in
/usr/WebSphere/AppServer/bin/admin.conf
4. CWS instance WebSphere HTTP transport port - defined in

/usr/WebSphere/AppServer/config/plugin-cfg.xml

Sample IHS Configuration File

One of the necessary steps when installing and configuring a CWS instance is updating the IHS
configuration file to listen for requests on a specified port and creating virtual hosts. A sample IHS
configuration file is distributed with CWS with the following path :

/usr/WebSphere/AppServer/installedApps/<userid>.ear/ifs.war/etc/httpd.conf.sample.

The sample httpd.conffile provides example virtual hosts for two fictitious users: user? and user2. The
virtual hosts illustrate how to configure the same CWS instance to listen for requests on two different ports;
one configured for http and the other for https.

Establishing A Secure HTTP Connection

In today s computing environment security is a very important consideration. CWS can be configured to
listen for connections on secure ports using SSL (secure socket layers), better known as https. To
accomplish this you must first configure IHS to use SSL; this process is thoroughly outlined in the IHS
InfoCenter documentation that is bundled with IHS or can be found on-line at http://www-
4.ibm.com/software/webservers/httpservers/doc/v1319/index.html. The InfoCenter documentation describes
the process of enabling SSL using the IHS Administration Server GUI interface. To use the Administration
Server GUI interface use the following steps:

1. Logon as user root

© Copyright IBM Corp. 2002 Chapter 3. Installing CWS Components 25

2.

5.

Create an IHS administration server userid and password

/usr/HTTPServer/bin/htpasswd -m /usr/HTTPServer/conf/admin.passwd
<login_name>

You will be prompted to created a password for this user.
Start the IHS administration server
/usr/HTTPServer/bin/adminct] start

In a web browser load the Administration Server by going to the URL http./server:8008

Note that 8008 is the default port for the IHS administration server and server is the hostname of the
system.

You will be prompted to enter a user id and password, use the one you created in step 2.

To enable a secure connection you must follow the ,how-to- in the InfoCenter documentation. To find the
how-to use the following instructions:

1.

o

4.

5.

Use a web browser to load the InfoCenter.

In the left pane click on the ,IBM HTTP Server- link to expand it.
In the left pane click on the ,How to- link to expand it.

In the left pane click on the ,Get started- link to expand it.

In the left pane click on the ,With secure connections- to load the how-to in the right pane.

Read through the documentation on certificates and follow the steps in the ,Setting up SSL using the IBM
Administration Server- section.

Finally, you have to configure WebSphere to listen for requests on the secure port. To accomplish this you
must update the Virtual Host you defined for the CWS instance using the following instructions:

1.

o

26

Open a WebSphere administrative console (see Appendix F)
In the left pane click on the & next to the WebSphere Administrative Domain item.
In the left pane click on the Virtual Hosts item to highlight it.

In the top right pane click on the virtual host you created for the CWS instance requiring a secure
connection.

In the middle right pane click on the General tab

In the middle right pane click on the Add button which creates a new text field under the *Host Aliases
label.

In the new text field enter the text *:<port> where <port> is the port you assigned for the secure
connection.

In the middle right pane click on the Apply button.

Stop and start the CWS application (See Appendix F)

IFS Customizable Web Server (CWS) Guide Fourth Edition

WebSphere Hints and Tips

Some of the basic WebSphere administrative topics are briefly discussed in Appendix F, such as starting
and stopping WebSphere Administration Server and starting and stopping application servers. For more
information about WebSphere administration and problem resolution please refer to the InfoCenter
documentation that comes bundled with the product or can be found on-line at http:/www-
3.ibm.com/software/webservers/appserv/doc/v40/ael/infocenter/index.html and the IBM RedBook-RedPiece
SG24-6176-00 WebSphere Version 4.0 Advanced Edition Handbook.

WebSphere Topography

The installation and configuration process outlined above was very simple in the fact that each WebSphere
instance had its own administrative domain and each system had a full installation of DB2 7.2.3. Both
WebSphere and DB2 can be configured using different topologies for load balancing and centralization and
backup of data. The appropriate choice for WebSphere and DB2 topographies is dependent upon many
factors, including the hardware resources available to your organization, expected traffic, etc., and is beyond
the score of this document. More information about WebSphere and DB2 topologies can be found in chapter
5 of the IBM RedBook-RedPiece SG24-6176-00 WebSphere Version 4.0 Advanced Edition Handbook.

CWS Parameter Setups and Recommendations

The values for all public static variables in the com.ibm.ifs.gold.lfsSystem class can now optionally be set
in the Java properties file IfsSystem.properties; which can be found in the WEB-INF/classes directory.
IfsSystem.java should no longer be edited and recompiled, if variable values need to be changed the
appropriate updates should be made to IfsSystem.properties and CWS restarted. Please read the
instructions in the IfsSystem.properties file for more information.

CWS Performance Recommendations

Parameter Setting | Analysis

WSp_max_sessions TBD TBD

wsp_worker_threads TBD TBD

wsp_trace_flag 0 It is recommended that web server internal tracing not be done on
production web servers unless needed for diagnostic purposes.

wsp_gold_trace_active | O It is recommended that gold tracing not be done on production web
servers unless needed for diagnostic purposes. It is recommended that
development and test web servers trace all gold messages.

wsp_ping_timeout TBD TBD

SNA Configuration

Refer to the SNA Installation manual for more information.

Steps for Customizing SNA

For SNA configuration, the following three files should be modified or created.

e /etc/snalsna_domn.cfg
e /etc/sna/sna_node.cfg

© Copyright IBM Corp. 2002 Chapter 3. Installing CWS Components 27

e /etc/snalsnha_tps.cfg
Remember to be logged in as ,root- when you do this.

Whenever these files are edited, follow the steps below to restart SNA to make the new settings effective:

1. Enter SMIT by typing:
smitty SNA
2. Select ,Manage SNA Resources-

- Select,Stop SNA Resources-
- Select,Stop SNA-

3. Return to the section ,Manage SNA Resources-

- Select, Start SNA Resources-
- Select, Start SNA-

- Select, Start Node-

- Select,Start SNA Link Station-

Update SNA files

The following files need to be edited:

e sna_domn.cfg
e sna_node.cfg
e sna_tpse.cfg

MQ Configuration for a Test Environment

MQSeries is used to route messages between CWS and the core controller. The following MQ objects must
be defined for production (see Figure 2):

Local Queue Manager

Local Transmit Queue to fictitious TDM
Local Target Queue for CWS

Remote Queue

QMgr

Figure 3. CWS with FISim emulation of both a TDM and an FI.

Define and Start Queue Manager

e Set @ueue manager name to QM1
crtmgm QM1

e Start the queue manager

strmgm QM1

Local Transmission Queue

e Set @ueue name to rq. XMIT
e Set Qusage to XMITQ
e All other fields are default values.

28 IFS Customizable Web Server (CWS) Guide Fourth Edition

runmgsc QM1
define QLOCAL (‘rq.XMIT’) +
USAGE (XMITQ)

Local Target Queue

e Set @Queue name to a.REPLY

o All other fields are default values.
runmgsc QM1

define QLOCAL (‘a.REPLY’)

Remote Queue

Note: A remote queue is used by CWS to map a remote queue manager to a local transmit queue.

e Set @Queue name to remote queue manager name.
e Set Mame of remote queue manager to remote queue manager name.
e Set @ransmission queue to the name of the transmission queue defined in ,Local Transmission
Queue-.

e All other fields are default values.
o NOTE: QREMOTE and RQAMNAME must be the same.

runmgsc QM1

define +

QREMOTE (‘rq’) +

RQMNAME (‘rq’) +

XMITQ (‘rq.XMIT’)

MQ Configuration for a Production Environment

MQSeries is used to route messages from CWS to the core controller, logger and OLSS. The following MQ
Objects must be defined for production (see Figure 3):

Queue Manager

Local Transmission Queue to TDM

Process Definition

Local Target Queue for CWS

Local Target Queue for core controller, logger and IGATE
Remote Queue

Sender Channel

Receiver Channel

QMgr QMgr

Sender

Receiver

Figure 4. CWS and TDM with FISim emulation of an FI.

Figure shows two queue managers on AlX development system to facilitate comprehension of message flow
between the IFS components. Only one queue manager on the AlIX development system is required.

Define and Start Queue Manager
e Set @Queue manager name to QM1

© Copyright IBM Corp. 2002 Chapter 3. Installing CWS Components 29

crtmgm QM1
e Start the queue manager
strmgm QM1

Local Transmission Queue to TDM

Set @ueue name to rq. XMIT
Set sage to XMITQ
Set @rigger process to process definition defined in ,Process Definition-
All other fields are default values.
runmgsc QM1
define +
QLOCAL (‘rq.XMIT’) +
PROCESS (‘rq.SEND.PROCESS’)+
USAGE (XMITQ)

Process Definition

o Set @rocess name to rq.SEND.PROCESS

o Set @pplication type to UNIX

o Set Wser data to sender channel name (QM1.TO.rq)
o All other fields are default values.

runmgsc QM1

define process(‘rq.SEND.PROCESS’) +
APPLTYPE (UNIX) +

APPLICID (°‘QM1.T70.rq’)

Local Reply Queue for CWS

e Set @Queue name to a.REPLY

o All other fields are default values.
runmgsc QM1

define QLOCAL (‘a.REPLY’)

Remote Queue

Note: A Remote Queue is used by CWS to map a remote queue manager to a local transmit queue.
QREMOTE and RQMNAME must be the same.

e Set @Queue name to remote queue manager name.
e Set Mame of remote queue manager to remote queue manager name.
e Set @ransmission queue to the name of the transmission queue defined in ,Local Transmission
Queue to TDM-
e All other fields are default values.
runmgsc tQMdnnmm
define +
QREMOTE (‘rq’) +
RQMNAME (‘rq’) +
XMITQ (‘rq.XMIT’)

Sender Channel

Set @hannel name to QM1.TO.rq

Set @hannel type to SDR

Set connection name to 7?77

Set @ransmission protocol to LU62

Set lame of transmission queue to the name of the transmission queue defined in ,Local
Transmission Queue to TDM-

o All other fields are default values.

runmgsc QM1

define +

CHANNEL (‘QM1.T0.rq’) +

30 IFS Customizable Web Server (CWS) Guide Fourth Edition

CHLTYPE (SDR) +
CONNAME (°?227227) +
TRPTYPE (LU6Z2) +
XMITQ (‘rq.XMIT’)

Receiver Channel

Set @hannel name to rq.TO.QMH1
Set @hannel type to RCVR
Set @ransmission protocol to LU62
All other fields are default values.
runmgsc QM1
define +
CHANNEL (‘rq.T0.QMI1°) +
CHLTYPE (RCVR) +
TRPTYPE (LU62)

© Copyright IBM Corp. 2002 Chapter 3. Installing CWS Components 31

Chapter 4. Writing Java Servlets for the IFS CWS

Beta Warning: This chapter contains code snippets that will not work with VIR6M1/WAS 4. See Appendix
G for updates to jcwsapi.

Before You Begin

Writing Java Servlets for the IFS CWS is not a tutorial for writing Java servlets. There are numerous books
on the market for that purpose. This chapter specifically addresses the utilities in the IFS CWS Toolkit that
were designed for use in writing Servlets to be used on the IFS platform. It is assumed that the developers
will already be familiar with Java, Java Servlets and web development. It is also assumed that the
developers will have read other IFS publications and will have some understanding of the IFS Customizable
Web Server (CWS) architecture. One choice of software to use for Java Servlet development is [Beta TBD
correct development tool is to be determined]. This, along with the String Data supplied in the IFS CWS
Toolkit will enable the developer to perform preliminary unit testing of the Servlets developed. See ,Unit
Testing Page Servlets- on page 54 for more details.

JSP Engine

T
S

Static Static
Document Document WebSphere Application Server

IBM HTTP Server

HTTP Request :EE Eequest HTTP Request ¢
HTTP Response esponse HTTP Response

N

Figure 2. Java Serviet and JSP programming in IFS CWS

Java Serviets

A servlet is a program written in the Java programming language that runs on the server, as opposed to the
browser (applets). Java servlets provide web developers with a simple, consistent mechanism for extending
the functionality of a web server and for accessing existing business systems. A servlet can almost be
thought of as an applet that runs on the server side without a face. Servlets are designed to work within a
request/response processing model. In such a model, a client sends a request message to a server and the
server responds by sending back a response message. Java servlets have made many web applications
possible. Although servlets are mostly used to generate dynamic HTML pages, they can be used to do many

32 IFS Customizable Web Server (CWS) Guide Fourth Edition

other things, such as reading or writing information to/from a database, generating images using Java 2D
API, parsing/generating XML documents, and sending serialized objects to and reading serialized objects
from other applications.

Servlets are the Java platform technology of choice for extending and enhancing Web servers. Servlets
provide a component-based, platform-independent method for building web-based applications, without the
performance limitations of CGI programs. Servlets offer a number of advantages over other approaches,
including portability, power, efficiency, extensibility, and elegance.

Servlet Advantages

Portability: Because servlets are written in Java and conform to a well-defined and widely accepted API,
they are server- and platform-independent. They are highly portable across operating systems and server
implementations. With servlets, one can truly ,write once, run everywhere.-1 This makes it possible to select
a ,best of breed- strategy for servers, platforms, and tools.

Power: Written in Java, servlets can take advantage of Java s memory management and have access to
the entire family of the Java APls, including networking and URL access, multithreading, image
manipulation, data compression, database connectivity, internationalization, remote method invocation
(RMI), and Enterprise JavaBeans (EJB), among others.! Therefore, they enjoy all the benefits of the mature
Java language - portability, performance, reusability, and crash protection.

Efficiency: Serviet invocation is highly efficient. Once a servlet is loaded, it generally remains in the
server s memory as a single object instance. Thereafter, the server invokes the servlet to handle a request
using a simple, lightweight method invocation. Separate threads handle multiple concurrent requests, so
servlets are highly scalable.’

Extensibility: The Serviet APl and servlet code are object oriented and so support encapsulation and
inheritance. The Servlet API includes methods and classes to handle many routine chores of servlet
development, such as request parameter parsing, cookie handling, and session tracking. The APl is
designed to be easily extensible. It can be extended and optimized by the financial institution using class
inheritance. As a matter of fact, IfsHttpServlet, included in the IFS CWS Toolkit is extended from HttpServlet
and has added a set of utility methods to handle common servlet functions, such as creating objects based
on request parameters, caching objects, setting request parameters, page navigation, error handling, sort,
etc. These utility methods will be discussed in detail in later sections.

The Servlet API

The basic Servlet is not protocol-specific. However, because a large proportion of servlets are likely to use
HTTP as the basis of their communication, the HttpServlet - a subclass of the Servlet class is provided to
give additional support methods that are useful when handling the HTTP protocol. Focus is on HttpServiet
and other HTTP related classes.

HTTP is a simple, stateless protocol. A client, such as a web browser, makes a request, the web server
responds, and the transaction is done. The main behavior of the servlet is to respond to a request and
perform the requested HTTP command, called a method, such as GET, POST, PUT, DELETE, etc.

The Servlet interface defines methods to initialize a servlet, to receive and respond to client requests, and to
destroy a servlet and its resources. These are known as life-cycle methods, and are called by the web server
in the following manner:

1. Servlet is created and then initialized via an init() method.

2. The service() method can be called zero or more times to handle client requests.

3. Servlet is destroyed via destroy() method.

" Java Servlet Programming by Jason Hunter with William Crawford. Copyright November 1998, Pages 11-12.

© Copyright IBM Corp. 2002 Chapter 4. Writing Java Servlets for the IFSCWS 33

The service() method carries out a single request from the client. The method implements a request and
response paradigm. It accepts two parameters: a request object and a response object. The request object
contains information about the service request, including parameters provided by the client. The response
object is used to return information to the client.

HttpServietRequest Object

An HttpServiletRequest object extends the servlet object. It encapsulates information about a single client
request, including request parameters, implementation-specific attributes, and an input stream for reading
binary data from the request body. It provides additional functionality specifically for HTTP servlets, including
support for cookies, session tracking, access to HTTP header information, and parsing HTTP form data.

The following are some of the frequently used request methods.

Javax.serviet.ServietRequest

{
public abstract String getParameter(String paramName) ;
public abstract Enumeration getParameterNames();
public abstract String [] getParameterValues(String paramName) ;
public abstract String getRemoteAddr();
}
Javax.serviet.http.HttpServietRequest
{
public abstract String getRequestURI();
public abstract Enumeration getHeaderNames();
public abstract int getIntHeader(String headerName) ;
public abstract Cookie [] getCookies();
public abstract HttpSession getSession(boolean creationFlag);
}

HttpServletResponse Object

HttpServlet objects use HttpServietResponse objects to send MIME encoded data back to the client. The
ServletResponse class is extended to allow manipulation of HTTP protocol-specific data, including response
headers, status codes, setting cookies, sending redirects, etc. The servlet engine creates this object and
passes it to the servlet s service() method. To send binary data, use the ServletOutputStream returned by
getOutputStream(). To send character data, use the PrintWriter returned by getWriter(). The output s MIME
type can be set using the setContentType() method.

The following are some of the frequently used request methods.

Jjavax.serviet.ServietResponse

{
public abstract ServietOutputStream getOutputStream() throws I0Exception;
public abstract PrintWriter getWriter() throws IOException;
public abstract void setContentType(String type);
public abstract void setContentlength(int Tength);
}
Jjavax.serviet.http.HttpServietResponse
{
public abstract void addCookie(Cookie cookie);
public abstract void setStatus(int statusCode);
public abstract void sendError(int statusCode) throws I0Exception;
public abstract void sendRedirect(String url) throws I0Exception;
}

Service Method

The service() method is the heart of the servlet. It handles the setup and dispatching to all the doXXX()
methods. Therefore, a concrete subclass of HttpServlet usually does not override the service method.
IfsHttpServlet extends the HttpServlet and overrides the service() method to provide some common service
functions for concrete servlets, including setting the locale object for the session, initialization of the OID
table, and authentication checking. An HttpServlet can override the doGet() and doPost() methods to handle
GET and POST requests, respectively. These methods are where one can use the HttpServietRequest API

34 IFS Customizable Web Server (CWS) Guide Fourth Edition

to process request parameters, use JDBC API to access the enterprise databases, and generate the
dynamic HTTP page to send back to the client through HttpServietResponse API.

It is important to realize that there can be multiple service requests being processed at once. If your service
method requires any outside resources, such as files, databases, or some external data, you must ensure
that resource access is thread safe (to be thread safe dont create any class variables outside the doGet or
doPost method).

Example:

The following servlet generates a complete HTML page to say ,Hello World- and ,Current time is:... , where
the time is the dynamic content.

import java.io.*;
import java.servilet.*;
import java.serviet.http.*;

public class HelloWoridServiet extends HttpServiet
{
public void doGet(HttpServietRequest request, HttpServietResponse response)
throws ServietException, I0Exception
{
response.setContentType(“text/html”);
printWriter out = response.getWriter();
out.printin(“<HTML>");
out.printin(“<HEAD><TITLE>Hello World</TITLE></HEAD>");
out.printin(“<BODY>");
out.printin(“<BIG>Hello World</BIG>");
out.printin(“<BIG>Current time is “ + (new Date()).toString() + “</BIG>");
out.printin(“</BODY></HTML>");

Using Cookies

A cookie is a named piece of data used for session tracking. A web server sends a cookie to a browser that
can later be read back from that browser. Since HTTP connections are stateless, a cookie can be used to
store persistent information across multiple HTTP connections.

To set cookie information, do the following:

create a cookie which contains a name, value, and some other attributes
set the content type of the HttpServletResponse response

add the cookie to the response

send the output.

The cookie must be added after setting the content type, but before sending the output, as the cookie is sent
back as part of the HTTP response header.

Cookie theCookie = new Cookie (“ID”, “123”);
response.setContentType(“text/html”);
response.addCookie(theCookie);

It is necessary to remember that all cookie data are strings. Information such as int data must be converted
to a String object. By default, the cookie lives for the life of the browser session. To enable a cookie to live
longer, call the setMaxAge(interval) method. When positive, this allows the number of seconds a cookie
exists to be set. A negative setting is the default and destroys the cookie when the browser exits. A zero
setting immediately deletes the cookie.

Retrieving cookie data is a little awkward. It is not possible to ask for the cookie with a specific key. It is
necessary to ask for all cookies, then find the specific one you are interested in.?

2 hitp://java.sun.com/products/servlet/index.html

© Copyright IBM Corp. 2002 Chapter 4. Writing Java Servlets for the IFS CWS 35

The following code finds the setting of a single-valued cookie:

Cookie theCookie = null;
Cookie cookies[] = request.getCookies();
if (cookies != null)
{
for(int i=0, n=cookies.length; i < n; i++)
{
if (cookiel[i].getName().equals(“ID”))
{
// the required cookie is found
theCookie = cookies[i];
break;

}

The IFS system uses cookies to communicate between servlets and the IFS Server during a user session.
The cookie can be provided by the servlet, or it will be automatically generated by the toolkit as part of
transaction execution and saved in the HttpSession. During the execution of a transaction, the system will
first look for the cookie from the HitpSession object using a name that matches the
IfsSystem.cwsCookieName. If it finds the cookie it is used for communication. If a cookie of that name is not
found in the session, the system will look for the cookie from the browser.

If this is the first transaction processed in a session, and the cookie is not found in either place, a new cookie
with a default value is used. By IFS rules this first transaction must be either a logon or self-registration
transaction. If this first transaction is processed successfully the system-generated cookie is stored in the
HttpSession.

When the user session ends, the cookie is destroyed, thus requiring the user to logon again to establish a
new session and cookie. If your business logic requires servlets to save the cookie in the browser after
communications has been established, the cookie value must be reset before attempting to create a new
user session. If not, the IFS system will attempt to use this old cookie to communicate with the server, and
the server will fail because it will not know anything about the old cookie. To reset the cookie value, use the
default cookie value of NoCookie.

if (ifsSession.getSessionKey() !="NoCookie”)
{

ifsSession.setSessionKey(“NoCookie”);
}

The cookie name used to communicate within the IFS system is defined in two places, the IfsSystem object
and in the CWS config file. The IfsSystem object uses a static variable, cwsCookieName, to store the name
of the cookie. The CWS config file uses a parameter called cookie_name. The default value for the cookie
name is IBANK.

Session Management

A session consists of a series of requests after authentication from the same browser over a fixed period of
time. Cookies are usually used to identify a session and each cookie s size is limited to 4096 bytes.
Therefore, in order to share application-specific data among requests, HTTP servlets allow one to maintain
session information with the HttpSession class. The HttpServietRequest provides the current session with
the getSession(boolean) method. If the boolean parameter is true, a new session will be created when a new
session is detected. This is, normally, the desired behavior. In the event the parameter is false, then the
method returns null if a new session is detected. 2

This is an example of how to get the session:

public void doGet (HttpServietRequest request, HttpServietResponse response)
throws ServietException, I0Exception
{

HttpSession session = request.getSession(true);

}

Once an HttpSession has been created for a consumer, subsequent calls to request.getSession(true) will
return the same HttpSession up until the session expires. If a parameter of true is used and the session

36 IFS Customizable Web Server (CWS) Guide Fourth Edition

becomes invalid, a new one will be created. After accessing an HttpSession, it is possible to maintain a
collection of key-value-paired information, for storing any sort of session-specific data. The developer
automatically has access to the creation time of the session with getCreationTime() and the last accessed
time with getLastAccessedTime(), which describes the time the last servlet request was sent for this session.

To store session-specific information, use the method:

public void putValue(String key, Object value)

To retrieve the information, ask the session using the method:

public Object getValue(String key)

Note: Both of these methods require, as inputs, an IfsSession object and an object identifier (OID). There
is a public override of putObject that takes an HttpSession object.

When the consumer logs off the servlet should invalidate the session by using the method invalidate().

IfsHttpServlet provides an enhanced object caching and retrieving mechanism for session management that
will be described later.

JavaServer Pages (JSP)

The preferred way to generate dynamic HTML pages is to use JavaServer Pages (JSP). JSP pages are the
pages created by the web developer that include JSP technology-specific tags, declarations, and possibly
scriptlets, in combination with other static (HTML or XML) tags. A JSP technology-based page has the
extension .jsp; this signals to the web server that the JSP technology-enabled engine will process elements
on this page. 2 All JSP implementations support a Java programming language-based scripting language,
which provides inherent scalability and support for complex operations.

JSP technology-based pages are compiled into servlets, so theoretically, the power of JSP pages to support
web-based applications is equivalent to that of servlets. However, JSP technology was designed to simplify
the process of creating pages by separating web presentation from web content. In many applications, the
response sent to the client is a combination of template data and dynamically generated data. In this
situation, it is much easier to work with JSP technology-based pages than to do everything with servlets. ?

Using IfsHttpServlet

The IFS CWS toolkit provides an extension to the HttpServlet class called IfsHttpServlet. The IfsHttpServiet
provides additional functions to the page servlet developer making it easier to create and initialize objects,
store and retrieve objects in the http session, share objects between multiple web pages, sort objects,
control page navigation, process IFS gold transactions errors, and debug page servlet code. Since
IfsHttpServlet is an abstract class, a concrete servlet class extends IfsHitpServlet to take advantage of these
functions. Example uses for most of the methods listed below can be found in the IFS toolkit example pages.

Initialization

Each servlet page should consider the IfsHttpServlet static boolean variable called debugOn and perform
appropriate diagnostic messages when it is set to true.

Additionally, for the first rendered servlet page, at the beginning of the doXXX (doGet, doPost, etc.) method
the first servlet page should call the IfsSystem initlfs static method and the IfsHttpServlet setDefaultHeader
method. The initlfs method performs important initialization action for the IFS Java framework. The
setDefaultHeader sets the content type to text/html and the following parameters and values in the http
header.

e Pragma to No-cache
e Cache-Control to no-cache
e Expiresto 0

© Copyright IBM Corp. 2002 Chapter 4. Writing Java Servlets for the IFS CWS 37

Creating and Reusing Gold Objects within Multiple Servlet Pages

Gold objects can be created and processed from any servlet page. Once created, these objects can be
shared with other servlet pages by utilization of the http session cache. References to objects within the http
session cache are passed between the pages as hitp request parameters. The http request parameter
names and values may be in either basic or compound formats. A basic format is one in which you have a
single field name or single value such as type=CDA. A compound format is one in which a gold transaction
or object is followed by a ,.- then one of the fields of the object or transaction. If the field of the object or
transaction is also an object, it can also be followed by a , .- and one of its fields. Any of the fields within this
compound format may represent an array of the fields followed by a , .- and a positive integer value
representing the element of the array. There are no limits to the number of ,.- and fields that can be listed
within a compound format. Again, both the name and value or either the name or value for an http request
parameter can be in compound format.

In addition to the compound format, an http request parameter can contain a composite value. A composite
value is one in which the value begins with , ??- followed by two or more name=value pairs each separated

by the ,&-. Here is an example of an http request parameter with a compound name and a composite value:
,userProfile.accountDetail.0. account=??type=CDA&number=12345678&nickname=MyAccount-.

Objects are placed in the session cache via the putObject method and retrieved from the cache with the
getObject method. Both of these methods require, as inputs, an IfsSession object and an object identifier
(OID). The OID is used to maintain uniqueness of objects within the session cache, and the IfsSession
object identifies which http session. In addition, the putObject method requires the object to be stored. An
OID can be automatically generated by the IFS system, or specifically provided by a page servlet developer.
In either case, the OID must begin with two underscore characters -. OIDs can be passed between
servlet pages as http request parameters.

[p—

In addition to the putObject and getObject methods, objects can be both stored and retrieved from the http
session cache with the createlnstance method. The createlnstance method requires three input parameters,
an IfsSession object, a fully qualified object name, and an http request parameter name that will associate to
an OID value. Method implementation consist of:

o Retrieve an OID value from the http request using the supplied http request parameter name
e If the http request parameter value is not an OID or it is a composite value (a value that begins with
two question mark characters (?7?) followed by two or more name=value pairs)
- Object is created using the fully qualified object name
- Object is returned
o |f the http request parameter value retrieved is an OID
- Object is found in the http session cache using OID value

Retrieved object is returned

- Object is not found in the http session cache and the OID is not a compound type (an OID that
contains ,.- characters separating fields of the transaction the OID represents)

Object is created according to the fully qualified object name
Newly created object is stored in the hitp session cache using the OID value
Object is returned.

In each of these scenarios, the method returns an instance of an IFS gold object.

The benefits of using the createlnstance method versus the combination of the putObject/getObject methods
are twofold. First, in error free conditions, the createlnstance method always returns an IFS object. The
getObject method will only return an object when one is found in the http session cache. Second, if the
servlet page that contains the createlnstance method is loaded repeatedly, as could be the case with an
impatient viewer, the object is not going to be created, discarded, and garbage collected over and over
again. The gold object will be created and stored in the session cache the first time the page is loaded. Any
repeated loading of this page retrieves the same object from the session cache.

In this same impatient viewer example, creating a gold object the conventional way using new and storing
the object in the session cache with the putObject method creates two unwanted side effects. First a gold
object will be repeatedly created and stored in the cache every time the page is loaded. Second, if the OID

38 IFS Customizable Web Server (CWS) Guide Fourth Edition

value used to store the new object in the session cache is the same, the previous gold object will be marked
for garbage collection. However, if a new OID is used each time the gold object is stored in the cache, each
object will remain in the session cache even though only the last one saved is used.

Examples:

Using the putObject/getObject combination of methods from a page a gold object can be created, and stored
in the http session cache. For this illustration, the OID used to store the object in the cache will be a user-
defined value. This OID value will be passed to the next page as an http request parameter.

Page 1:

IfsSession session = new IfsSession(request, response);
GtUserProfile userProfile = new GtUserProfile(session);
putObject(session, “__sharedUserProfile”, userProfile);
response.sendRedirect(“Page2?0id=__sharedUserProfile”);

Page 2:
IfsSession session = new IfsSession(request, response);
String oidParm = (String) getRequestParameter(session, “0id”);

GtUserProfile up (GtUserProfile) getObject(session, oidParm);

The next example will use the createlnstance method to create and store the gold object. Notice the object in
this example is not created until the second page. Also, the OID used to store the object will be generated by
the IfsHttpServiet getNewOid method within the first page and passed as an http request parameter. A form
example will be used to pass the OID as a hidden field to Page 2.

Page 1:

IfsSession session = new IfsSession(request, response);
String oidValue = getNewOid(session, “GtUserProfile”);
PrintWriter pw = response.getWriter();

pw.printin(“<FORM METHOD="post’ ACTION='serviet/Page2’>");
pw.printIn(“<INPUT TYPE=’submit’ NAME=’test’ VALUE=’Test’>”");
pw.printin(“<INPUT TYPE="hidden’ NAME=’o0id’ VALUE="” + oidValue + “’>”);
pw.printin(“</FORM>");

Page 2:

IfsSession session = new IfsSession(request, response);

GtUserProfile up = null;

up = (GtUserProfile) createlnstance(ifsSession, “com.ibm.ifs.gold.auto.GtUserProfile”, “o0id”);

Settings Fields within Gold Transaction Objects

Once a gold transaction object has been created and before it is executed, it may be necessary to set
several of its fields with input data. The source of the input data for a transaction s fields can be a form from
a browser window, or output fields from a previously executed gold transaction stored in the http session
cache. In either case the data for the fields typically comes from a previous page. The IfsHttpServlet
provides a method called setFields to facilitate the setting of a transaction s fields. This method attempts to
match the name of each input field of the transaction with each name from the http request parameters. The
method can drill down compound http request parameter names and values, as well as composite values, to
set the appropriate fields of the specified transaction object. If a match is found, the value of the field is
retrieved from the http request parameter and set into the transaction.

It is important to note here that when dealing with compound http request parameter names and values, it is
only necessary to save the top object in the http session cache and not each individual field within the
compound or composite formats. The setFields method is smart enough to traverse down the hierarchy
starting with the top-level object.

Examples:

This example will use simple field names from a form on Page 1. Page 2 will create the GtLogon transaction
object and have its fields, userlID, pin, and passwordID set from the previous page.

Page 1:

IfsSession session = new IfsSession(request, response);
String oidValue = getNewOid(session, “GtlLogon”);
PrintWriter pw = response.getWriter();

pw.printin(“<FORM METHOD=’post’ NAME=’my_logon’ action=’serviet/Page2’>");

© Copyright IBM Corp. 2002 Chapter 4. Writing Java Servlets for the IFSCWS 39

pw.printin(“<TABLE WIDTH=’350" BORDER=’0" CELLPADDING="0’ HEIGHT=’100’>");
pw.printin(“<TR>");

pw.printin(“<TD NOWRAP HEIGHT='27’ WIDTH="27%’>Customer ID:</TD>");
pw.println(“<TD>");

pw.printin(“<INPUT TYPE=text NAME=userID SIZE=30 VALUE=">");
pw.printin(“</TD>");

pw.printin(“</TR>");

pw.printin(“<TR>");

pw.printin(“<TD NOWRAP HEIGHT='27’ WIDTH="27%’>PIN:</TD>");
pw.printin(“<TD>");

pw.printin(“<INPUT TYPE=password NAME=pin SIZE=30 VALUE=">”);
pw.printin(“</TD>");

pw.printin(“</TR>");

pw.printin(“<TR>");

pw.printin(“<TD NOWRAP HEIGHT=’27’ WIDTH="27%’>Password:</TD>");
pw.println(“<TD>");

pw.printin(“<INPUT TYPE=password NAME=passwordID SIZE=30 VALUE=">”);
pw.printin(“</TD>");

pw.printin(“</TR>");

pw.printin(“</TABLE>");

pw.printin(“<INPUT TYPE=hidden NAME=Togon VALUE=’” + oidValue + “’>”);
pw.printin(“<p>”);

pw.printIn(“<INPUT TYPE=’image’ VALUE=’Togon’ SRC=’/images/enter.gif’”);
pw.printin(“WIDTH="85" HEIGHT="25" ALIGN="CENTER’”);
pw.println(“BORDER="0">");

pw.printin(“</pP>");

pw.println(“</FORM>");

Page 2:

IfsSession session = new IfsSession(request, response);

GtlLogon myLogon = null;

mylLogon = (GtlLogon) createlnstance(ifsSession, “com.ibm.ifs.gold.GtLogon”, “logon”);
setfields(session, “mylLogon”, mylogon);

This next example will demonstrate using hierarchical field names within Page 1 for a transaction that will be
created in page 2. Page 2 will create a GtAccountDetail transaction and using setFields the transaction s
account field will have its type, number, nickname, and accountSubType fields set from the previous page.

Page 1:

IfsSession session = new IfsSession(request, response);

GtUserProfile up = new GtUserProfile(session);

String oidValue = getNewOid(session, “GtAccountDetail”);

up.execute();

PrintWriter pw = response.getWriter();

pw.println(“<FORM METHOD="post’ ACTION=’/serviet/Page2’>");

pw.printIn(“<INPUT TYPE=’submit’ NAME=’test’ VALUE=’Test’>");

pw.printIn(“<INPUT TYPE=’hidden’ NAME=’acctDetail.account.type’VALUE="" +

up.getAccountDetail ()[0].getAccount().getType() + “’>7);

pw.println(“<INPUT TYPE=’hidden’ NAME=’acctDetail.account.number’ VALUE="" +

up.getAccountDetail()[0].getAccount().getNumber() + “’>”);

pw.println(“<INPUT TYPE=’hidden’ NAME=’acctDetail.account.nickname’VALUE="" +

up.getAccountDetail()[0].getAccount().getNickname() + “’>”);

pw.printIn(“<INPUT TYPE=’hidden’ NAME="acctDetail.account.accountSubType’ VALUE="" +

up.getAccountDetail()[0].getAccount().getAccountSubType() + “’>”);

pw.println(“<INPUT TYPE=hidden NAME=accountDetail VALUE=’” + oidValue + “’>7”);

pw.printin(“</FORM>");

Page 2:

IfsSession session = new IfsSession(request, response);

GtAccountDetail acctDetail = null;

acctDetail = (GtAccountDetail) createlnstance(ifsSession, “com.ibm.ifs.gold.auto.GtAccountDetail”,
“accountDetail”);

setfields(session, “acctDetail”, acctDetail);

This last example will use basically the same data to demonstrate specifying hierarchical field names with
composite values within Page 1 for a transaction that will be created in page 2. Page 2 will create a
GtAccountDetail transaction and using setFields the transaction s account field will have its type, number,
nickname, and accountSubType fields set from the previous page.

Page 1:

IfsSession session = new IfsSession(request, response);
GtUserProfile up = new GtUserProfile(session);

String oidValue = getNewOid(session, “GtAccountDetail”);

up.execute();
PrintWriter pw = response.getWriter();

40 IFS Customizable Web Server (CWS) Guide Fourth Edition

pw.println(“<FORM METHOD="post’ ACTION=’/serviet/Page2’>");

pw.printIn(“<INPUT TYPE=’submit’ NAME=’test’ VALUE=’Test’>");

pw.printIn(“<INPUT TYPE="hidden’ NAME=’acctDetail.account’ VALUE=’??type=" +
up.getAccountDetail()[0].getAccount().getType() + “&number=" +
up.getAccountDetail()[0].getAccount().getNumber() + “&nickname=" +
up.getAccountDetail()[0].getAccount().getNickname() + “&accountSubType =” +
up.getAccountDetail()[0].getAccount().getAccountSubType() + “’>7);

pw.println(“<INPUT TYPE=hidden NAME=accountDetail VALUE=’” + oidValue + “’>7”);

pw.printin(“</FORM>");

Page 2:

IfsSession session = new IfsSession(request, response);

GtAccountDetail acctDetail = null;

acctDetail = (GtAccountDetail) createlnstance(ifsSession, “com.ibm.ifs.gold.auto.GtAccountDetail”,

“accountDetail”);

setFields(session, “acctDetail”, acctDetail);

Removing Objects from the Http Session Cache

Currently, there are two ways to dispose of objects that have been put into the session cache. The simplest
way is when the current session ends. When the http session ends, all of the objects within the cache are
removed. The session can end for various reasons such as executing the GtLogoff transaction, an explicit
call to httpSession.invalidate() or by experiencing a session timeout condition. A session timeout condition
will occur when an http session is idle for some period of time. This period of time is programmable, and
controlled via the session.invalidationtime parameter of the WebSphere session.properties file.

The controlled way to remove objects from the http session cache is via the removeObject method. Either
the actual object to be removed or its OID is needed in order to remove the object from the cache.

Example:

This example will remove the GtUserProfile from the session cache, using the actual object.

Any Page:
IfsSession session = new IfsSession(request, response);
GtUserProfile up = new GtUserProfile(session);

up.execute();
putObject(session, up);

removeObject(session, up);

Handling Errors following Transaction Execution

After executing a transaction, its processing state must be checked to verify the contents of the returned
data. The handleErrors method provides a convenient way to verify the state of a transaction and, if
necessary, to forward processing control to a set of pages designed to display this information. If a
transaction state is bad, the method redirects the browser to one of three locations specified with the call to
handleErrors. However, if the transaction state is good the method just returns.

The handleErrors method requires as input, the transaction to check, the name of an error page servlet, the
name of an information page servlet, and the name of a redo servlet. All of these pages are passed an http
request parameter called txn and the value is the OID that can be used to retrieve the transaction from the
http session cache. Warning here about redirection. Java servlets can be redirected using a method of the
response object. However, if anything is written to the response writer before attempting a redirection, the
redirection will fail. Therefore, it is wise to put all logic at the beginning of the servlet before any statements
are written to the response object.

Most all executed transactions are returned a Business Response Code (BRC). Most BRCs fall into one of
three major classifications, Fatal Error, Information, or Redo. An error condition indicates that some major
problem occurred and processing should be rerouted to an error page where the error information can be
displayed. Information conditions require a separate page for viewing the information returned before
processing can continue. A redo condition typically means that a viewer entered incorrect information and
reentry is required. Therefore, the redo page is usually the same page that executed the transaction. Error
Handling will be discussed in some further detail in a later section.

© Copyright IBM Corp. 2002 Chapter 4. Writing Java Servlets for the IFS CWS 41

Example:

This example demonstrates a transaction execution and error processing.

Page 1:
IfsSession session = new IfsSession(request, response);
GtUserProfile up = new GtUserProfile(session);

up.execute();
handleErrors(up, “ErrorPage”, “InfoPage”, “Page 1”);

//If processing returned here no problems were detected during execution of the transaction
ErrorPage:

IfsTxn txn = (IfsTxn) getRequestParameter(req, “txn”);

if (nulll=txn)

{
pw.printin(“errorCode = “ + txn.getErrorCode() + “
");
pw.printin(“brc = * + txn.getBrc() + “
”):
pw.printin(“status = “ + txn.getStatus() + “
");
pw.printin(“compCode = “ + txn.getCompCode() + “
”);
pw.printin(“reasonCode = “ + txn.getReasonCode() + “
");
pw.printin(“errorFunctionName = “ + txn.getErrorFunctionName() + “
");
pw.printin(“errorModuleName = “ + txn.getErrorModuleName() + “
");
pw.printin(“message = “ + txn.getMessage() + “
”):
pw.printin(“gmMessage = “ + txn.getGmMessage() + “
”);
pw.printin(“senseData = “ + txn.getSenseData() + “
");
pw.printin(“senseDatalength = “ + txn.getSenseDatalength() + “
");

}

else

{
String message = (String) getRequestParameter(req, “Exception”);
if (null!=message)

pw.printin(“Exception occurred, text value is “ + message);
}

Controlling Page Navigation

There are times when page navigation needs to be restricted, as in locking the browser to a particular page
until all required information is provided. The browser is locked to a page with the lockNavigation method.
Once navigation is locked, the IfsHttpServlet prevents a consumer from going to any servlet page other than
the locked page. If an attempt is made, the browser will automatically be rerouted back to the locked page. A
page can be unlocked using the unlockNavigation method. This method returns the browser to normal page
navigation. When navigation is locked to a particular page, the page developer must remember to unlock
navigation from the locked page.

There are two additional helper methods concerning page navigation isNavigationLocked and
getLockedPage. getLockedPage returns the name of the page that is currently locked.

Example

This example locks navigation to a particular page, and unlocks navigation from the locked page.

Page 1:

IfsSession session = new IfsSession(request, response);

//Logon BRC indicated the consumer must change his password. Lock consumer to that page.
lockNavigation(session, “ChangePassword”);

ChangePassword:
IfsSession session = new IfsSession(request, response);
GtChangePinPassword change = new GtChangePinPassword(session);

//Set fields to transaction

//Execute transaction

change.execute();

handleErrors(change, “ErrorPage”, “InfoPage”, “ChangePassword”);

//Execution was successful, unlock navigation and continue
unlockNavigation(session);

42 IFS Customizable Web Server (CWS) Guide Fourth Edition

Debugging Page Serviets

Output of debug information within a page servlet is available via the debug method. Enabling the debug
mode is via a static debug variable debugOn in each servlet page. Full enable/disable control and output
location specification available through static variables in the IfsSystem class. Full enable of debug
information means that all debug statements within all servlet pages and all transactions will be written to the
output. Specific enable/disable control of servlet pages and gold transactions is available.

Debug enable options are defined in the IfsSystem class as DEBUG_OFF, DEBUG_ON, and
DEBUG_SOME_CLASSES. Debug statements can be enabled/disabled via the static variable
IfsSystem.debugMode. Debug statements can be sent to the browser window or to a file via static variables
IfsSystem.debuglnfoToHtmI and IfsSystem.debuginfoToFile, respectively. The debug file name can be
specified via the static method IfsSystem.setDebuglLogFileName. The initial installation values are debug is
set to off, output to html and file set to off, and the debug log file name is set to null. Specific enable of gold
transactions and servlet pages requires setting the IfsSystem.debugMode to
IfsSystem.DEBUG_SOME_CLASSES and then setting the static variable debugOn to true for each desired
servlet page and gold transaction.

WARNING: If debug statements are sent to the browser window, and a debug statement is placed before a
redirection command, the output of the debug statement to the browser window will cause the redirection to
fail. A redirection command is executed within the handleErrors method if an error was detected from a
processed transaction.

Example:

This example enables debug statements, for all servlet pages and all gold transactions, sending them to a
file called /tmp/debug.log.

public class Pagel extends IfsHttpServiet
{
public static boolean debugOn = false;
public void doGet (HttpServietRequest req, HttpServietResponse res)
throws ServietException, I0Exception
{
IfsSystem.debugMode = IfsSystem.DEBUG_ON;
IfsSystem.debugInfoToFile = true;
IfsSystem.setDebuglogFileName(“/tmp/debug.10g”);
debug(res, “Inside Pagel.doGet()”);

This example enables debug statements for the current servlet page and for the GtAccountHistory
transaction. Statements will be sent to the browser.

public class Pagel extends IfsHttpServiet
{
public static boolean debugOn = false;
public void doGet (HttpServietRequest req, HttpServietResponse res)
throws ServietException, IOException
{
IfsSystem.debugMode = IfsSystem.DEBUG_SOME_CLASSES;
GtAccountHistory.debugOn = true;
Debug0On = true;
IfsSystem.debugInfoToHtm] = true;
debug(res, “Inside Pagel.doGet()”);

Sorting Gold Objects by Fields

IFS gold objects within an array are sorted based on fields of the object as long as the field to sort on is one
of the Java primitive types, a String, or one of the four gold primitives GsDate, GsCurrency, GsDecimal, or
GsTime. All of the gold objects in an array must contain the name of the field that is to be used for sorting.
Upon return from the sort method, the target array supplied as input contains all of the objects in the
specified sorted order. Sorting can be specified for ascending or descending order. Three separate methods
are provided for sorting Java primitives, gold primitives and Strings. If a gold primitive is used as the sort
field, an IComparator object must be supplied as a sort parameter. An IComparator is nothing more than an
instance of the gold primitive. For example, to sort an array of gold elements according to a field that is a
currency field, the sort method requires a GsCurrency object instance to perform the sort.

© Copyright IBM Corp. 2002 Chapter 4. Writing Java Servlets for the IFSCWS 43

Example:

This example will sort an array of GsAcctDtl objects based on the Java int field of fIProductDescriptionType
in ascending order.

public class Pagel extends IfsHttpServiet
{
public static boolean debugOn = false;
public void doGet (HttpServietRequest req, HttpServietResponse res)
throws ServietException, I0Exception
{
GtUserProfile up = new GtUserProfile();
up.execute();
handleErrors(up, “ErrorPage”, “InfoPage”, “Pagel”);
GsAcctDt1[] accountDetail = up.getAccountDetail();
sort(accountDetail, “fIProductDescriptionType”, true); //true means ascending
//accountDetail is in ascending fIProductDescriptionType order.

This example will sort an array of GsAcctDtl objects based on the gold primitive GsCurrency field of
ledgerBalanceAmount in descending order.

public class Pagel extends IfsHttpServiet
{
public static boolean debugOn = false;
public void doGet (HttpServietRequest req, HttpServietResponse res)
throws ServietException, I0Exception
{
GtUserProfile up = new GtUserProfile();
up.execute();
handleErrors(up, “ErrorPage”, “InfoPage”, “Pagel”);
GsAcctDt1[] accountDetail = up.getAccountDetail();

//set last parm to false to sort in descending order.
sort(accountDetail, “ledgerBalanceAmount”, GsCurrency.fromString(“$1.00”), false);
//accountDetail is in descending ledgerBalanceAmount order.

This last example will sort an array of GsAcctDtl objects based on the accountStatusType field in descending
order. The accountStatusType field is a String.

public class Pagel extends IfsHttpServiet
{
public static boolean debugOn = false;
public void doGet (HttpServietRequest req, HttpServietResponse res)
throws ServietException, I0Exception
{
GtUserProfile up = new GtUserProfile();
up.execute();
handleErrors(up, “ErrorPage”, “InfoPage”, “Pagel”);
GsAcctDt1[] accountDetail = up.getAccountDetail();

// Create Collator object.
Collator collator = Collator.getinstance();

// set last parm to false to sort in descending order.
sort(collator, accountDetail, “accountStatusType”, false);
//accountDetail is in descending accountStatusType order.

Using IFS Gold Objects

The IFS CWS toolkit provides transaction objects that are used to send and receive data between the servlet
pages and an Fl (Financial Institution). The transaction objects are built on a framework that provides
customization methods, mechanism for defining additional fields for any transaction, and debug control at a
transaction level. The framework supports a multitude of transactions tailored for most business needs. Even
though there are many different types of transactions, the approach to using them is the same.

Create transaction

Set Required Fields

Validate inputs

Perform Request Ready Actions
Execute

44 IFS Customizable Web Server (CWS) Guide Fourth Edition

e Perform Response Ready Actions
e Error Processing
e Access returned data

Some transactions contain fields that require input before the Fl can return any data. The specifics on which
fields are required are set by the FI. The IFS framework does place a few restrictions on required input fields
for the security transactions. These restrictions are discussed in the next section. Validation rules, request
ready and response ready actions are handled via the customization methods.

A transaction s execute method provides the main behavior for the object. The data source for a transaction
may be the Fl or the CWS Gold Manager cache. The Gold Manager cache is a convenient place to store
data that can be reused reducing the need to communicate again with the FI. A transaction can specify the
source of the data via one of three flags. They are FI (default), CACHE, and CACHEFI. These static
constants are defined in the IfsTxn object. The Fl flag means to go to the Fl for the transaction data. The
CACHE flag means to return the transaction data from the Gold Manager cache. The CACHEFI flag means
to attempt to return the transaction data from the Gold Manager cache, but if there is no current data within
the cache for this transaction, retrieve the data from the FI. The actions performed during the execute
method are:

The cookie is retrieved from the session cache
Validates input data via registered or default methods
Creates/Populates GM Input Buffer with input data
Performs Registered Request Ready Action
Transfers GM Input Buffer to Gold Manager
Performs error processing on returned data

Parses GM Output Buffer into transaction fields
Performs Registered Response Ready Action
Cleans up GM Buffers

Following execution of a transaction, the IfsHitpServlet method handleErrors should be used to process any
error information. For more information on error processing refer to the section titled, ,Error Handling- on 57.

Required Inputs for Security Classes

The security classes are the only transactions that have required input fields. The security classes and their
required fields are:

e GtlLogon
- userlD
- pin
- password
¢ GtChangePinPassword
- oldPassword
- oldPin
- newPassword
- newPin
e GtReauthentication
- pin
- password
Some fields from the security classes have length restrictions. It is the responsibility of the servlets to provide
validation. Methods of validation are discussed in the section ,Customization Methods- on page 48. The
fields and max length values are:

User ID - 30 bytes

Encrypted data fields such as pin, password, consumer data - 117 bytes
Country code - 3 bytes

Language code - 3 bytes

Product Name - 32 bytes

Product Release Version - 12 bytes

Client OS - 16 bytes

Certificates - 4000 bytes

© Copyright IBM Corp. 2002 Chapter 4. Writing Java Servlets for the IFS CWS 45

Preventing Multiple Executions of a Transaction Instance

Before executing a transaction, the developer can set the execution mode. Three execution states are
available NOT_EXECUTE, EXECUTE, and EXECUTE_SMART. All three of these values are defined as
static variables in the IfsTxn object. The default execution state is EXECUTE. Provided there are no errors
returned from input validation, or request ready actions, this state ensures that the transaction will be sent to
the FI for processing. An execution mode value of NOT_EXECUTE means the transaction will never be
processed. The final execution mode available is the EXECUTE_SMART. Again, if there are no validation or
request ready action errors the transaction will be sent to the bank for processing only if it has not already
been processed

Remembering the impatient viewer example discussed earlier, if the servlet page that has been double-
clicked by the consumer contains a transaction exec ute statement, the transaction will be processed
multiple times. However, setting the execution mode to EXECUTE_SMART can prevent this type of problem.

Self-Defining Fields

The ability to define, transmit and receive additional data fields within a transaction is known as self-defining
fields. This enables a bank to pass additional information between a servlet page and the FI without having
to create a new or extended transaction. Using self-defining fields, in lieu of, an extended or new transaction
may be more desirable provided the number of fields to add are relatively small in number.

Each self-defining field must be defined using a GsGmSelfDefiningFieldDef object. Each
GsGmSelfDefiningFieldDef object is placed in an array in the order the field is expected and the array is
loaded into the transaction, using the setRegSelfDef method, for transmission to the FI. A transaction may
contain either request, or response or both types of self-defining fields. A request self-defining field is a field
that transmits additional data to the FI. A response self-defining field is a field that receives additional data
from the Fl. These types are defined in the IfsObject as IfsObject.SD_RESPONSE and
IfsObject.SD_REQUEST. A transaction object owns Field definitions. Ownership values for a transaction can
be obtained from a transaction via the getSD_OWNER method.

The possible data types for self-defining fields are defined in the I1fsObject as:

SD_TYPE_STRUCT
SD_TYPE_LONG
SD_TYPE_DOUBLE
SD_TYPE_CHAR
SD_TYPE_BINARY
SD_TYPE_CURRENCY
SD_TYPE_DATE

Each field is identified with a TaglD. The MTI defines pre-defined field TaglDs. The application developer
defines self-defined field TagIDs. The starting level for self-defined field TaglDs is defined by the MTI.

Self-defining fields may be organized within self-defining structures. If so, each field must be chained to its
self-defining parent structure using the parent TagID. The Chain TagID is a fixed format of 12 characters with
padding of ,0- characters to the left if necessary. A self-defining structure may contain both pre-defined and
self-defined fields.

Response self-defining data is retrieved from a transaction via the getRespSelfDefData method.

Example:

This example defines a response self-defining field structure and its fields for an account history transaction
that will return data as repeating items. Notice that the definition of the structures and its fields below is the
same regardless of whether the data returned is a single instance or multiple instances as would be the case
for a repeating structure.

In an actual program other fields of the GtAccountHistory transaction would have to be set before executing
the transaction, but for clarity within this example, they have been omitted.

46 IFS Customizable Web Server (CWS) Guide Fourth Edition

GtAccountHistory ah = new GtAccountHistory();
GsGmSelfDefiningFieldDef[] reqSD = new GsGmSelfDefiningFieldDef[3];
reqSD[0] = new GsGmSelfDefiningFieldDef();

reqSD[1] = new GsGmSelfDefiningFieldDef();

reqSD[2] = new GsGmSelfDefiningFieldDef();
reqSD[0].setFlags(IfsObject.SD_RESPONSE);
reqSD[0].setOwner(ah.getSD_OWNER());
reqSD[0].setDataType(IfsObject.SD_TYPE_STRUCT);
reqSD[0].setStructurelnstanceCount(3);
reqSD[0].setPropertyName(“ExampleRepeatStructure”);
reqSD[0].setTagID(56001);
reqSD[1].setfFlags(IfsObject.SD_RESPONSE);
reqSD[1].setOwner(ah.getSD_OWNER());
reqSD[1].setDataType(IfsObject.SD_TYPE_CURRENCY);
reqSD[1].setPropertyName(“MyPaymentTg”);
reqSD[1].setTagID(56002);

//Chain child field to parent structure using parents TagID. TagID in chain must be exactly
//12 characters in length. Pad with zero characters to the left.
reqSD[1].setTagIDChain(“0000000560017”);
reqSD[2].setFlags(IfsObject.SD_RESPONSE);
reqSD[2].setOwner(ah.getSD_OWNER());
reqSD[2].setDataType(IfsObject.SD_TYPE_DATE);
reqSD[2].setPropertyName(“MyDateTg”) ;

reqSD[2].setTagID(56003);

reqSD[2].setTagIDChain(“0000000560017”);

ah.setReqSelfDef(reqSD);

ah.execute();

//process the self-defining data returned
//For the example below, assume a PrintWriter was previously obtained as out.
GsGmSelfDefiningFieldDef[] respSD = ah.getRespSelfDefData();
//For each field within the structure, elements 1 and 2 of the structure, get the data returned
//Test to see if the data returned is a single instance or multiple
if (null==respSD[1].getMulti())
{
//Data returned is a single instance, get the data from the individual field of the structure
out.printin(“A payment was made on “ + respSD[2].getSdDate().toString());
out.printin(“The payment made was “ + respSD[1].getSdCurrency().toString());
}
else
{
//Data returned contains multiple instances
GsGmSelfDefiningFieldDatal] myPaymentData = respSD[1].getMulti();
GsGmSelfDefiningFieldDatal] myDateData = respSD[2].getMulti();
for (int 1 = 0; 1 < myPaymentData.length; i++)
{
//use length from either data struct, the lengths of each must be the same
out.printin(“A total of “ + Integer.toString(myPaymentData.length) + “ have been made:”);
out.printin(“Payment “ + Integer.toString(i + 1) + “ for “ +
myPaymentDatal1i].getSdCurrency().toString() + “ was made on “ +
myDateDatal[i].getSdDate().toString() + “.”);

}

The last example will define two request self-defining fields within a self-defining field structure for the logon
transaction. In an actual program other fields of the GtLogon transaction would have to be set before
executing the transaction, but for clarity within this example, they will be omitted.

GtLogon logon = new GtlLogon()

GsamSelfDefiningFieldDef[] sdarray = new GsGmSelfDefiningFieldDef[3];
sdarray[0] = new GsGmSelfDefiningFieldDef();

sdarray[1] = new GsGmSelfDefiningFieldDef();

sdarray[2] = new GsGmSelfDefiningFieldDef();

sdarray[0].setFlags(IfsObject.SD_REQUEST);
sdarray[0].setTagID(56001);
sdarray[0].setOwner(mylLogon.getSD_OWNER());
sdarray[0].setDataType(IfsObject.SD_TYPE_STRUCT);
sdarray[0].setPropertyName(“AddlLogonInfoTg”);
sdarray[0].setStructurelnstanceCount(3);
sdarray[1].setfFlags(IfsObject.SD_REQUEST);
sdarray[1].setTagID(56002);
sdarray[1].setOwner(mylLogon.getSD_OWNER());

© Copyright IBM Corp. 2002 Chapter 4. Writing Java Servlets for the IFS CWS 47

sdarray[1].setDataType(IfsObject.SD_TYPE_LONG);
sdarray[1].setPropertyName(“TermsAndCondsF1gTg”);
sdarray[1].setSdlLong(1);
sdarray[1].setTagIDChain(“000000056001”);

sdarray[2].setFlags(mylLogon.SD_REQUEST);
sdarray[2].setTaglID(56003);
sdarray[2].setOwner(mylLogon.getSD_OWNER());
sdarray[2].setDataType(IfsObject.SD_TYPE_CHAR);
sdarray[2].setPropertyName(“Hsh1dIdTg”);
sdarray[2].setlength(44);

sdarray[2].setSdChar(“10 Downing Street, London England”);
sdarray[2].setTagIDChain(“000000056001”);
logon.setReqSelfDef(sdarray);

Togon.execute();

Customization Methods

The customization methods can be used to specify unique banking rules and policies for any given
transaction. Validate, request ready action, response ready action, toString, and fromString are the type of
customized methods that can be provided for a transaction. Customized methods for transactions must be
registered with each specific class using the registry methods. The following registry methods are defined in
the IfsObject class:

e registerMethod
e deregisterMethod
o hasRegisteredMethod

Every customized method returns a results string. If the value of the results string is ,OK-, excluding the
quotes, then the method is assumed to have completed successfully. Any other value is assumed a failure
and the results string is copied to the message field of the transaction. After registering a validate, request
ready or response ready action for a transaction class, specific instances of that class can enable the
methods via setValidateActionRequired(true), setRequestReadyActionRequired(true), and
setResponseReadyActionRequired(true) respectively.

The IFS security classes GtLogon, GtChangePinPassword, and GtReauthentication come with default
validation methods that check to ensure that field values are provided. If any one of these values is not
provided, the default validation routines will fail. Registering customized validation rules for classes overrides
the default validation behavior.

The GtLogon default validation routine checks for any data values for the user id, pin, and password fields.
No lengths or data content is validated.

The GtChangePinPassword default validation routine checks for any data values for the old and new user id,
old and new pin, and old and new password fields. No lengths or data content is validated.

The GtReauthentication default validation routine checks for any data values for the pin and password fields.
No lengths or data content is validated.

Example:

The following example registers validation and response ready action methods for the GtAccountHistory
class. This specific response ready action builds response self-defining data for the transaction. This will
enable a bank to unit test servlet pages requiring self-defining data without the Gold manager and a FI.

public class Pagel extends IfsHttpServiet

{
public static boolean debugOn = false;
private static boolean initialized = false;

public void doGet (HttpServietRequest req, HttpServietResponse res)
throws ServietException, I0Exception
{
PrintWriter pw = res.getWriter();
setDefaultHeader(res);
IfsSystem.initIfs();

48 IFS Customizable Web Server (CWS) Guide Fourth Edition

IfsSession ifsSession = new IfsSession(req,res);
GtAccountHistory ah = new GtAccountHistory(ifsSession);
GtUserProfile up = null;

if (linitialized)
{

try

{
debug(res, “Creating the registration class for BankCustomizedMethods”);
Class theClass = Class.forName(“BankCustomizedMethods”);
debug(res, “Created the registration class for BankCustomizedMethods”);
//Register the Response Ready Action method for GtAccountHistory transaction
debug(res, “Registering responseReadyAction for GtAccoutHistory class”);
ah.registerMethod(“responseReadyAction”, theClass.getMethod(“responseReadyAction”,
new Class[] {GtAccountHistory.class}));
debug(res, “Registered responseReadyAction for GtAccoutHistory class”);
debug(res, “Registering validate for GtAccoutHistory class”);
ah.registerMethod(“validate”, theClass.getMethod(“validate”,
new Class[] {GtAccountHistory.class}));
debug(res, “Registered validate for GtAccoutHistory class”);

}

catch(Exception e)

{
debug(res, “Exception in BankCustomizedMethods registration, value is “ +
e.toString());

}

initialized = true;

try

up = (GtUserProfile)createlnstance(ifsSession, “com.ibm.ifs.gold.auto.GtUserProfile”,
“_UserProfile”);
//Use Execute_Smart flag so that if the instance of user profile received came
//from the cache and has already been executed, it will not be resent to the FI.
debug(res, “Getting ready to set Execution mode”);
up.setExecutionMode(IfsTxn. EXECUTE_SMART);
debug(res, “Getting ready to set execute up”);
up.execute();
ah.setReqAccount(up.getAccountDetail()[0].getAccount());
ah.setReqgMaximumNumberOfRecords(10);
ah.setReqTransactionType(“1”);
GsGmSelfDefiningFieldDef[JreqSD = new GsGmSelfDefiningFieldDef[5];
reqSD[0] = new GsGmSelfDefiningFieldDef();
reqSD[1] = GsCurrency.asSelfDefiningFieldDef();
reqSD[2] = GsCurrency.asSelfDefiningFieldDef();
reqSD[3] = GsDate.asSelfDefiningFieldDef();
reqSD[4] = GsDate.asSelfDefiningFieldDef();
reqSD[0].setFlags(IfsObject.SD_RESPONSE);
reqSD[0].setOwner(ah.getSD_OWNER()) ;
reqSD[0].setDataType(IfsObject.SD_TYPE_STRUCT);
reqSD[0].setStructurelnstanceCount(5);
reqSD[0].setPropertyName(“CCDt1Tg”);
reqSD[0].setTagID(56004);
reqSD[1].setflags(IfsObject.SD_RESPONSE);
reqSD[1].setOwner(ah.getSD_OWNER());
reqSD[1].setDataType(IfsObject.SD_TYPE_CURRENCY);
reqSD[1].setPropertyName(“MinPymtAmtTg”);
reqSD[1].setTagID(130);
reqSD[1].setTagIDChain(“000000056004”);
reqSD[2].setfFlags(IfsObject.SD_RESPONSE);
reqSD[2].setOwner(ah.getSD_OWNER()) ;
reqSD[2].setDataType(IfsObject.SD_TYPE_CURRENCY);
reqSD[2].setPropertyName(“LastStmtBalAmtTg”);
reqSD[2].setTagID(425);
reqSD[2].setTagIDChain(“000000056004”);
reqSD[3].setfFlags(IfsObject.SD_RESPONSE);
reqSD[3].setOwner(ah.getSD_OWNER());
reqSD[3].setDataType(IfsObject.SD_TYPE_DATE);
reqSD[3].setPropertyName(“StmtEndDtTg”) ;
reqSD[3].setTagID(63);
reqSD[3].setTagIDChain(“000000056004”);
reqSD[4].setfFlags(IfsObject.SD_RESPONSE);

© Copyright IBM Corp. 2002 Chapter 4. Writing Java Servlets for the IFSCWS 49

}

reqSD[4].setOwner(ah.getSD_OWNER());
reqSD[4].setDataType(IfsObject.SD_TYPE_DATE);
reqSD[4].setPropertyName(“PymtDueDtTg”);
reqSD[4].setTagID(134);
reqSD[4].setTagIDChain(“000000056004) ;
ah.setReqSelfDef(reqSD);
ah.setResponseReadyActionRequired(true);
ah.setValidateActionRequired(true);

debug(res, “
Executing the Account History transaction”);
ah.execute();

debug(res, “
Executed the Account History transaction”);

}
catch(Exception e)
{
debug(res, “Exception occurred, value is “ + e.toString());
}

pw.printin(“<HTML>");
pw.printin(“<HEAD>");
addCopyright(res);

pw.printin(“<TITLE>");
pw.printin(“Bank Unit Test Serviet”);
pw.printin(“</TITLE>”);

pw.printin(“</HEAD>");
GsGmSelfDefiningFieldDef[] respSD = ah.getRespSelfDefData();
if (null==respSD)
pw.println(“

respSD is null
");
else
{
pw.println(“

respSD is not null
");
pw.println(“

The number of response fields is: “ +
Integer.toString(respSD. length));
if (respSD[1].getSdCurrency()!=null)

{
pw.println(“

The Self Defining Field Name that was retrieved 7is:
respSD[1].getPropertyName() + “
”);
pw.printin(“

The value for that field is: “ +
respSD[1].getSdCurrency().toString(“\n”) + “
”);
}
if (respSD[2].getSdCurrency()!=null)
{
pw.println(“

The Self Defining Field Name that was retrieved 7s:
respSD[2].getPropertyName() + “
");
pw.printin(“

The value for that field is: “ +
respSD[2].getSdCurrency().toString(“\n”) + “
”);
}
if (respSD[3]getSdDate()!=null)
{
pw.println(“

The Self Defining Field Name that was retrieved 7s:
respSD[3]getPropertyName() + “
”);
pw.println(“

The value for that field is: “ +
respSD[3]getSdDate().toString(“\n”) + “
”);
}
if (respSD[4]getSdDate()!=null)
{
pw.println(“

The Self Defining Field Name that was retrieved 7is:
respSD[4]getPropertyName() + “
”);
pw.println(“

The value for that field is: “ +
respSD[4]getSdDate().toString(“\n”) + “
”);
}

}
pw.printin(“</BODY>");
pw.printin(“</HTML>");

public class BankCustomizedMethods

{

50

public static String responseReadyAction(GtAccountHistory ah)

{

try
{
ah.debug(“Creating GsCurrency for $100.66 and storing as first element

IFS Customizable Web Server (CWS) Guide Fourth Edition

}

ah

ah.

ah
ah

ah.

ah

ah.

“of self-defining array”);
.getRespSelfDefData()[1].setSdCurrency(GsCurrency.fromString(“$100.66”));

debug(“Creating GsCurrency for -$456.79 and storing as second element “ +

”of self-defining array”);
.getRespSelfDefData()[2].setSdCurrency(GsCurrency.fromString(“-$456.79”));
.debug(“Creating GsDate for 09/24/1999 and storing as third element “ +
”of self-defining array”);

getRespSelfDefData()[3]setSdDate(GsDate. fromString(“09/24/1999”));

.debug(“Creating GsDate for 01/01/2000 and storing as fourth element “ +
”of self-defining array”);

catch(Exception e)

{

}

getRespSelfDefData()[4]setSdDate(GsDate. fromString(“01/01/2000”));
return “0K”;

ah.debug(“Exception in BankCustomizedMethods responseReadyAction, value is “ +
e.toString());
return (“Exception in BankCustomizedMethods responseReadyAction, value is “ +
e.toString());

public static String validate(GtAccountHistory ah)

{

try
{

}

ah.debug(“Performing validation for GtAccountHistory”);
//Specific rules go here
if (goodStatus)

return “0K”;

else

return “Failure Message String”;

catch(Exception e)

{

ah.debug(“Exception in BankCustomizedMethods validate, value is “ + e.toString());
return (“Exception in BankCustomizedMethods validate, value is “ + e.toString());

Debugging Transactions

The debug control for IFS transaction objects is similar in nature to the control provided by the IfsHttpServlet.
Refer to that section for further details on how to enable and direct statement output.

The additional information provided at the transaction level is a dump of both the input and output buffers of
a transaction, and the detailed information concerning transaction parsing of the output buffer into individual

fields.

Example:

Thu
Thu
Thu
Thu
Thu

Nov
Nov
Nov
Nov
Nov

11
11
11
11
11

arguments

Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu

Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov

11
11
11
11
11
11
11
11
11
11
11

11
11:
11
11:
11:

11:
11
11:
11
11:
11:
11:
11:
11
11:
11

*A KA A KA K GMJI

:48:
48:
:48:
48:
48:

48:
:48:
48:
:48

04
04
04
04
04

04
04
04

:04
48:
48:
48:
48:
:48:
48:
:48

04
04
04
04
04
04

;04

EST
EST
EST
EST
EST

EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST

*A KA A KA K

© Copyright IBM Corp. 2002

1999
1999
1999
1999
1999

1999
1999
1999
1999
1999
1999
1999
1999
1999
1999
1999

Entry to executeTxn.

Executing transaction of name com.ibm.ifs.gold.GtLogon

Before initGMJI().

DEBUG:

DEBUG:

DEBUG:

DEBUG:

DEBUG:

DEBUG:

DEBUG:

DEBUG:

DEBUG:

DEBUG:

Done with signature GMJI
Done putting two spaces for number of bytes and

The httpServietRequest is not null
Done putting the ServietPath

The cookie is null

Done with getCookies()

We got into the for Toop

We got into the for Toop

We got into the for Toop

Done with putting getRemoteAddr

Calling addGoldToGMJI().

Calling invokeGoldManage().

Chapter 4. Writing Java Servlets for the IFS CWS

51

Size of gmji buffer is 4096 bytes.
There are 218 bytes used in the buffer.

0000 474D4A49 000000DA 0000000E 00000004 [GMJII............]
0010 00000013 2F6A6176 612F5072 6F636573 [..../java/Proces]
0020 734C6F67 6F6E0000 00000400 00000F49 [slLogon......... 1]
0030 42414E4B 3D4E6F43 6F6F6B69 65000000 [BANK=****xxxx_]
0040 00040000 000A392E 31342E33 2E363700 [...... 9.14.3.67.]
0050 00000004 00000002 64000000 00040000 [........ deooo...]
0060 00034745 00000000 04000000 02300000 [..GE......... 0..]
0070 00000400 00000347 45000000 00040000 [....... GE.......)
0080 00023000 00000004 00000003 55530000 [..0......... us..J
0090 00000400 00000365 6E000000 00040000 [....... en....... 1
00A0 00094E65 74736361 70650000 00000400 [..Netscape...... 1
00B0 00000434 2E360000 00000400 00000657 [...4.6......... W]
00C0 696E4E54 00000000 04000000 0D303030 [inNT......... 000]
00D0 30303030 30303030 3000 [000000000. 1

*AXXXAAX FND OF GMJI FH****%%

Thu Nov 11 11:48:04 EST 1999

IfsTxn:invokeGoldManager calling gmdavaReq native interface.$$$
Thu Nov 11 11:48:04 EST 1999

LogoffTxn = false

Thu Nov 11 11:48:04 EST 1999
DEBUG: We are calling the gmdavalogonReq
Thu Nov 11 11:48:04 EST 1999

IfsTxn:invokeGoldManager return from gmdavaReq native interface.
Thu Nov 11 11:48:05 EST 1999

KA A A A A A K GMJO KAk A A A A K

Size of gmjo buffer is 5388 bytes.

0000 474D4F42 30303030 30303030 30303030 [GMOB000000000000]
0010 30303030 30303161 31303030 30303030 [0000001a10000000]
0020 30303030 31613035 2D313436 38393531 [00001a05-1468951]

0030 35202020 20202020 20202020 20202020 [5]
0040 20202020 38362D36 37313832 31383520 [86-67182185]
0050 20202020 20202020 20202020 20202020 []

0060 20203331 2D343730 39353333 38202020
0070 20202020 20202020 20202020 20202020
0080 20202020 20202020 20202020 20202020 1

0090 20202020 20202020 2020204A 6F6E6573 Jones]

[31-47095338]
[
[
[
00A0 20202020 20202020 20202020 20202020 []
[
[
[

7

00B0 20202020 20202020 20467265 64202020 Fred]

00C0 20202020 20202020 20202020 20202020]

00D0 20202020 20202061 68666277 70202020 ahfbwp]

00E0 20202020 20202020 20202061 20203030 [a 00]

00F0 30303030 30303030 30316135 39332039 [0000000001a593-9]
0100 32362D36 30333320 20206163 66797477 [26-6033 acfytw]
0110 20206167 67303030 30303030 30303030 [agg00000000000]
0120 31613639 34322052 69766572 20437420 [1a6942 River Ct]

0130 20202020 20202020 20202020 20202020 [7
0140 20202020 20202020 20202020 20202020 [7
0150 20202020 20202020 20202020 20202020 [7

1310 20202020 30303030 30303030 30303032 [000000000002]
1320 30303030 30303030 30303031 30303030 [0000000000010000]
1330 30303030 30303031 61555344 39383431 [00000001aUSD9841]
1340 36352020 20202020 20202030 30303030 [65 00000171
1350 30303030 30303230 30303030 30303030 [0000002000000000]
1360 30303030 30303030 30303030 30303161 [000000000000001a]
1370 55534431 20303030 30303030 30303030 [USD1 00000000000]
1380 31613030 30303030 30303030 30323030 [1a00000000000200]
1390 30303030 30303030 3030436F 72656261 [0000000000Coreba]
13A0 6E£6B3030 30303030 30303030 30316130 [nk000000000001a01]1
13B0 30303030 30303030 30303142 696C6C20 [00000000001Bi11]
13C0 50617930 30303030 30303030 30303161 [Pay000000000001a]
13D0 61626368 7A6A7677 687A6262 7A736873 [abchzjvwhzbbzshs]
13E0 79202020 20202020 20202020 20202020 [y 1

13F0 20202020 20202020 30303036 34393031 [00064901]

1400 33373532 61613030 30303030 30303030 [3752aa0000000000]
1410 30316130 30303030 30303030 30303230 [01a00000000000201
1420 30303030 30303030 30303030 30303233 [00000000000000231
1430 33343735 35353630 30303030 30303030 [3475556000000000]

52 IFS Customizable Web Server (CWS) Guide Fourth Edition

1440
1450
1460
1470
1480
1490
14A0
14B0
14C0
14D0
14E0
14F0
1500

30303161
30303034
30303030
20613030
6D70626C
20202020
20202020
20202020
20202020
30303030
30303030
30303030
30303031

30303030
31383535
30303031
30303030
6C746E72
20202020
20202020
20202020
20202020
30303030
30303030
45424330
45433146

30303030
39313731
61617666
30303030
70686368
20202020
20202020
20202020
20202020
30303549
30303332
33454144
41353231

30303031
30303030
78632020

[001a000000000001]
[0004185591710000]
[00000001aavfxc]
30316161 [a000000000001aa]
6£782020 [mpblltnrphchnx]
20202020 [1
20202020 [1
20202020 [1
20202030 [0]
42414E4B [000000000051BANK]
30303030 [0000000000320000]
30303030 [0000EBCO3EAD0000]
[0001ECIFA521]

*AXXXAAL FND OF GMJIO FH****%%

Thu
Thu

11
11

11:48:05
11:48:05
11:48:05

11:48:05

Nov
Nov
Thu Nov 11
Thu Nov 11
VaTlue=0000.
Thu Nov 11
Thu Nov 11
Thu Nov 11
Thu Nov 11
Thu Nov 11
Thu Nov 11
Thu Nov 11
Thu Nov 11
Value=a.
Thu Nov
Thu Nov
Thu Nov
Thu Nov
Thu Nov
146895
Thu Nov 11 11:48:05
Value=86-67182185.
Thu Nov 11 11:48:05
47095338.

11:
11:
11:

48:
48:
48:05
11:48:05
11:48:05
11:48:05
11:48:05
11:48:05

05
05

11
11
11
11
11

11:48:
11:48:
11:48:
11:48:
11:48:

05
05
05
05
05

Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu

:05
:05
:05
:05
:05
:05
:05
:05
:05
:05
:05
:05

Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Thu Nov
Thu Nov
Value=avfxc.
Thu Nov 11
Thu Nov 11
Thu Nov 11
Thu Nov 11
Value=a.
Thu Nov

:05
:05
:05
:05
11 11:

48:05

EST
EST
EST
EST

EST
EST
EST
EST
EST
EST
EST
EST

EST
EST
EST
EST
EST

EST

EST

EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST

EST
EST
EST
EST

EST

Value=ampblltnrphchnx.

Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu

11
11
11
11
11
11
11
11

11:48:
11:48:
11:48:
11:48:
11:48
11:
11:
11:

05
05
05
05
:05
48:05
48:05
48:05
48:05
:48:05

Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Thu Nov 11 11:
Thu Nov 11 11
VaTlue=000000

EST
EST
EST
EST
EST
EST
EST
EST
EST
EST

1999
1999
1999
1999

1999
1999
1999
1999
1999
1999
1999
1999

1999
1999
1999
1999
1999

1999

1999

1999
1999
1999
1999
1999
1999
1999
1999
1999
1999
1999
1999

1999
1999
1999
1999

1999

1999
1999
1999
1999
1999
1999
1999
1999
1999
1999

00EBCO3EADOO00000IECIFAS2I.

© Copyright IBM Corp. 2002

Calling setErrorStatus().

In IfsTxn setErrorStatus()

Extracting char, Offset:0, Name:GMOB_Acronym, Len:4, Value=GMOB.
Extracting char, Offset:4, Name:GMOB_Return_Code, Len:4,

setErrorStatus() BRC

Extracting char, Offset:8, Name:brc, Len:3, Value=000.

After setErrorStatus().

Calling getGoldFromGMJO()

Extracting char, Offset:8, Name:responseCode, Len:3, Value=000.
Extracting int, Offset:11, Name:responseCode_text, Value=I.

End of getLongFromGMJo

Extracting char, Offset:23, Name:responseCode_text, len:1,
Extracting char, Offset:24, Name:fIProcInd, Len:1, Value=I.
Extracting int, Offset:25, Name:fIProclInd _text, Value=I.

End of getlLongFromGMJo

Extracting char, Offset:37, Name:fIProcInd_text, Len:1, Value=a.
Extracting char, 0Offset:38, Name:consumerlID, Len:30, Value=05-

Extracting char,

Extracting char, Offset:98, Name

End of getlLongFromGMJO
Extracting int,
End of getLongFromGMJo
Extracting char,
Extracting int, Offset:5188, Nam
End of getlLongFromGMJO

Extracting int,
End of getLongFromGMJo
Extracting int,
End of getlLongFromGMJo
Extracting char,

Extracting char, Offset:5233, Name:slLASampleflag,
Extracting int, Offset:5234, Name:slLASampleflag_text,

End of getlLongFromGMJo

Extracting char, Offset:5246, Name:slLASampleflag_text,

Extracting char,

<DEBUG> in getNextCookieFromGMJO
Extracting int, Offset:5327, Nam
End of getlLongFromGMJO

<DEBUG> after getting cookieName
Extracting char,
<DEBUG> after getting cookieName
Extracting int,
End of getlLongFromGMJo

<DEBUG> after getting cookielalu
Extracting char,

Offset:68, Name:changeableConsumerlID,

:permUserlID,

Offset:5175, Name:cnsmrinfolx,

Offset:5187, Name:cnsmrinfoTlx,

e:GoldNdx,

Offset:5200, Name:cnsmrinfoCl,
Offset:5212, Name:cnsmrInfolx,

Offset:5224, Name:cnsmrinfoTlx,
Extracting char, Offset:5225, Name:queueQualifier,

Offset:5247, Name:tokenInformation,

e:cookieName,

Length

Offset:5339, Name:cookieName,

Offset:5344, Name:cookielValue,

elLength

Offset:5356, Name:cookielalue,

Len:30,

Len:57, Value=31-

Value=1.

Len:1, Value=a.

Value=1.

Value=418559171.
Value=1.

Len:1, Value=a.
Len:8,

Len:1, Value=a.
Value=1.

Len:1,

Len:80,

Value=5.

Len:5,

Value=32.

Len:32,

Chapter 4. Writing Java Servlets for the IFS CWS

Value=IBANK.

53

Thu Nov 11 11:48:05 EST 1999 <DEBUG> after getting cookielalue
Thu Nov 11 11:48:05 EST 1999
Calling executeTxnCleanup().

Unit Testing Page Serviets

This section will discuss a simple WinNT environment for developing servlet pages. There are other
environments that can be used, but this is a simple setup that development and testing of page servlet code.

Java/2 Extended Edition and the WebSphere Application Server 4.0 or later contain most of the functions
required to support page development and testing. The environment requires import statements for the
com.ibm.ifs.gold, com.ibm.ifs.gold.auto, com.ibm.ifs.resources, and the com.ibm.ifs.servlets packages. This
provides all of the IFS classes necessary for development.

The IFS CWS toolkit provides data for executing all gold transactions without being connected to the CWS
Gold Manager. This is done with the use of string data files. These files are in the cws/docs/jcwsapi/data
directory structure of the build. These are binary files that contain ASCII data, with no CR/LF characters
imbedded in the data. String data file editing is discouraged.

To use these files, servlets must tell the IFS CWS toolkit where to find the string data files. This is done using
the ifs.system.strings.path property in the IfsSystem.properties file located in WEB-
INF/classes directory. For instance, if the string data is installed on the C: drive in the data directory, the
following statement in the IfsSystem.properties properties file identifies the location to the Java
classes:

ifs.system.strings.path=d:\\data

Ifthe ifs.system.strings.path property is set to null, the IFS CWS toolkit will attempt to retrieve a
transaction s data through the Gold Manager.

Reauthentication/Relogon

The CWS Gold Manager maintains two separate inactivity timers for the purpose of minimizing the number
of active stale user sessions. These timers prevent a user from tying up valuable system resources in
scenarios such as logging onto the system and at some point walking away from the browser without logging
off the system; then at some later time coming back to the browser and attempting to pick up working where
they left off. The two timer values are maintained by the Financial Institutions and are retrieved by the CWS
GM during server start up via the gold message Get IFS Profile Inquiry (GETIFSPR). The variable names
are ,reauth_tm_val- and ,inact_tm_val- and their values are in seconds, with the value of the
reauth_tm_val being smaller than the value of the inact_tm_val.

Each time a Gold Message is executed by a servlet page it is forwarded to the CWS GM for processing. The
CWS GM determines the elapsed time between the previous Gold Message that was processed and the
current time. It then compares this elapsed time value with the reauth_tm_val. If the elapsed time value is
larger than the reauth_tm_val but smaller than the inact_tm_val, the CWS GM returns a completion code
value back to the servlet page indicating that a reauthentication condition has occurred. If the elapsed time
value is larger than both the reauth_tm_val and the inact_tm_val the CWS GM returns a completion code
value back to the servlet page indicating that a relogon condition has occurred. Detection of the
reauthentication and relogon completion codes in a servlet page is performed by the handleErrors() method
of the IfsHttpServlet class. (See ,Error Handling- on page 57.)

The handleErrors method in the IfsHttpServlet object processes completion code values returned in gold
transactions. This method provides special processing for returned values representing a reauthentication or
relogon condition. Both the reauthentication and relogon completion code values are specified in the
IfsSystem.properties file located in WEB-INF/classes directory via the ifs.system.reauth.brc
and ifs.system.relogon.brc properties. If the handleErrors method is overridden by a subclass of
IfsHttpServlet, the special reroute processing to a reauthentication or relogon page will not work correctly.
Additionally, for the reauthentication condition, if the service method of IfsHttpServlet is overridden by a
subclass, the special reroute processing to a reauthentication page will not work correctly.

54 IFS Customizable Web Server (CWS) Guide Fourth Edition

In a relogon condition, the handleErrors method reroutes the browser to a servlet page specified by the
ifs.system.pages.reauth.page property in the IfsSystem.properties file located in WEB-
INF/classes directory.

In a reauthentication condition, the handleErrors method saves the current URL, all HTTP request
parameters and values sent to the current page, and the servlet request method type in the HTTP Session
cache before rerouting the HTTP browser to a reauthentication form page. The reauthentication form page is
specified by the ReauthenticationPage parameter in the IfsSystem object. An example Reauthentication
Form Page servlet is supplied with the build and CWS toolkit. The file is Reauth. java.

Within the Reauthentication Form Page servlet, an HTTP form is created with two entry fields, one for the
user s pin and one for the user s password and a number of hidden fields. The hidden fields written to the
form consist of a new field called reauth and all of the HTTP request parameters and values that were sent
to the servlet page that was interrupted by the reauthentication condition. The HTTP form statement is
declared using the following lines of code:

PrintWriter pw = response.getWriter();

String page = IfsHttpServiet.getPreviousPage(request);

if (IfsHttpServiet.isPreviousPageMethodPost(request))

pw.printin(“<FORM METHOD=’post’ NAME=’refer_page’ action=’"" + page + “’>”);
else

pw.printin(“<FORM METHOD="get’ NAME=’refer_page’ action=’" + page + “’>”);
IfsHttpServiet.addPreviousPageRequestParameters(request,pw);
pw.printin(“<INPUT TYPE=hidden NAME=reauth VALUE=’_GtReauth’>");

The static method getPreviousPage in the IfsHttpServlet object returns the servlet page name that was
stored in the HTTP session cache during the execution of the handleErrors method. This enables the form to
return control back to the servlet page that was interrupted by the reauthentication condition. The HTTP form
method type can be determined with the static method isPreviousPageMethodPost in the IfsHttpServiet
object. If this method returns a boolean value of true, the form method of the servlet page that was
interrupted by the reauthentication condition was a post. Otherwise, if this method returns a boolean value of
false, the form method of the servlet page that was interrupted by the reauthentication condition is assumed
to be a get. The static method addPreviousPageRequestParameters in the IfsHttpServlet object adds all of
the HTTP request parameters to the form as hidden parameters. These parameters were the ones that were
saved in the HTTP Session cache during execution of the handleErrors method.

When the Reauthentication Form Page is displayed in the browser, the user enters the pin and password
and then submits the form by clicking the Enter button. This will transfer control back to the servlet page that
was interrupted by the reauthentication condition. The service method in the IfsHttpServlet object for the
page looks for a specific HTTP Request Parameter to determine if a GtReauthentication transactions needs
to be processed. The request parameter is the hidden field reauth that specifies an object id to be used for
the GtReauthentication transaction. An example of the object id is shown as __GtReauth. If this special
HTTP Request parameter is valid, the pin and password values from the form are input to an instance of the
GtReauthentication transaction, and the transaction is executed. If the execution of the transaction was
successful, reauthentication is complete and control is passed on either to the doPost or doGet method of
the servlet page. If the transaction execution failed, the browser is rerouted to the Error Page where the
appropriate error message text is displayed.

Using Resource Bundles for Gold Message Return Codes to Text
Translation

To be National Language Support (NLS) enabled, the IFS CWS has placed a large amount of the ,Code To
Text- (CTT) functionality in the Java construct ,Resource Bundles-. Currently supplied with the IFS CWS is a
set of four ,default- property files (see ,National Language Enablement- for more detail) in the
,com.ibm.ifs.resource- package that contain English text to be used for CTT for Gold Message ,return
codes-. They are installed in the WEB-INF/classes/com/ibm/ifs/resource directory.

1. |Ifs3tkErrorTextBundle
2. IfsCwsErrorTextBundle

3. IfsPendingTransactionStatus

© Copyright IBM Corp. 2002 Chapter 4. Writing Java Servlets for the IFSCWS 55

4. IfsSystemErrorResourceBundle

Any financial institution (FI) should be able to:

e use these classes ,as is-

e modify or augment them as required

¢ mimic the English version by creating similar properties files using text in whatever language(s) they
require (naming them appropriately - see ,National Language Enablement-).

The other resource files that are related to return codes are generated at server startup (see , Error Handling-
for more information). For instance, the ,IfsBrcErrorTextBundle.properties- file which contains resources
related to the ,Business Response Code- is auto-generated.

The term ,return codes- applies to the data received in the response from the invocation of a Gold Message
by a Financial Institution (FI). The response data received is parsed into appropriate fields for later use by
servlets or Java Server Pages (JSP). The data which comprises the return codes, is the ,error code-,
,completion code- and ,Business Response Code- (BRC), and reflects the success or failure of the Gold
Message execution. There could be additional data reflecting more details of errors and other information, in
the message but this is not discussed here.

The error code is the most important field and is the main item of data used to determine the transaction s
success or failure. There are three possible error codes resulting from the execution of Gold Messages.
They are ,0000-, ,3TK- and ,CWS- error codes.

e If the error code is ,0000-, the transaction is normally successful, but there could still be a BRC
reflecting additional information the servlet should act upon.

o [fthe error code is a , Three Token- (3TK) error, there could still be a BRC returned, and if so should
be considered the true result of the transaction.

e If the error code is a ,CWS- error, the web server itself has experienced an error situation.

For 3TK and CWS errors there will be a ,completion code- reflecting additional information on the success or
failure of the transaction. There will also be a reason code and sensedata for 3TK errors.

Each type of completion code and BRC will have an associated hashtable and resource bundle. The
hashtables contain data that reflect the severity of the completion code or BRC and will be discussed later. If
multiple languages are supported, each language must have its own set of the three bundles available with
text messages translated to that language. The three error code types and their associated resource bundles
are:

e ,Successful-, which could also be accompanied by a Business Response Code (BRC) and normally
would come from the FI (resource bundle IfsBrcErrorTextBundle).

e 3TK error code, which comes from the Fl or the Core Controller, which could also be accompanied
by a BRC. The resource bundle related to 3TK errors is the Ifs3tkErrorTextBundle. If a BRC also
exists, the IfsBrcErrorTextBundle is used to extract the test associated with the code.

e ,Customizable Web Server- error code, which comes from the web server itself (resource bundle
IfsCwsErrorTextBundle).

Normally only one of these would happen at a time, but there are occurrences where a 3TK error code could
be returned as well as a BRC for a given transaction. In this case, the BRC is assumed to be valid and is
what should be acted upon by the servlet rather than the 3TK error code.

For each of the above types of completion codes and BRC s, there exists in the ,IfsSystem- class a
hashtable that reflects the ,severity- of the error. Current possibilities include:

,SUCCESS-

,INFO- (for information to be conveyed to the consumer)

,REDO- (normally reflects that the consumer tried to do something incorrect or not allowed by the FI)
,FATAL- (reflects that some error has happened in the CWS, Core Controller, or Fl that could
warrant termination of the consumer s session or some other drastic action).

e ,SPECIAL- (require special handling)

e ,LOGON- (error occurred during logon)

e ,LOGOFF- (error occurred logging off the customer)

The IFS Java CWS currently has data in the three hashtables (brc s, 3tk and cws types) defined in the
IfsSytem class. The tables can be loaded in a servlet by calling the initifs().

56 IFS Customizable Web Server (CWS) Guide Fourth Edition

Note: IfsSystem is a class extending HttpServiet.

Normal Transaction Behavior

After a server is initially started, and upon the first consumer logging on, the above-mentioned hashtables
are populated and a constant is set which reflects the current ,Locale- of the server. The Locale is
information stored in the machine s operating system that reflects the country and language that machine is
configured for.

Upon invocation of a Gold Message, the returned response will have one or more return codes included. The
IfsTxn class will parse the Gold Message response and assign the appropriate data within the message to
the ,error code-, ,completion code- and BRC fields.

e If the data values for error code and BRC are ,0000- and ,000- respectively, this is considered a
successful transaction.

e [f the error code is ,0000- (successful), and a BRC other than ,000- (successful) exists, the BRC is
used to determine the severity of the error condition by doing a lookup in the BRC hashtable.

e If the error code is a 3TK error, and there is no BRC, the completion code is used to determine the
severity of the error condition by doing a lookup in the 3TK hashtable.

e If the error code is a 3TK error, and there is a BRC, then the BRC is used to determine the severity
of the error condition by doing a lookup in the BRC hashtable.

o [fthe error code is a CWS error, the completion code is used to determine the severity of the error
condition by doing a lookup in the CWS hashtable.

A second lookup is then performed to find the language translation in the associated resource bundle for this
completion code and/or BRC, using the ,Locale- of the server. The browser locale may be used instead if the
browserLocaleUsage property in IfsSystem indicates to do so. The Locale is used to determine which
resource bundle is used for the text lookup. When a completion code or BRC is retrieved from the Gold
Message response, the actual text for it will be retrieved from the appropriate resource bundle using the
completion code or BRC and the Locale value (see ,National Language Enablement- for more details). If a
completion code or BRC value from a gold message does not exist in the hashtable it will be considered a
FATAL error. If it does not exist in the associated resource bundle, a message indicating this will be
returned.

Error Handling

Within the IfsHttpServlet class there is a method, ,handleErrors-, which should be called after each Gold
Message execution. If an error is detected, this method uses the resulting severity of the transaction to
determine the appropriate action to perform. In the IfsSystem class there are values initialized which define
the default servlet to be executed upon the occurrence of the 3 types of severity. Based on the value of the
severity the ,handleErrors- method will execute the appropriate serviet. These servlets are:

¢ InfoPage - used to display pertinent information resulting from a (normally) successful transaction
execution (that is, , The date you requested for a transfer was changed due to holidays-).

e RedoPage - used to display information resulting from a (normally) unsuccessful transaction (that is,
, Transfer to and from accounts are identical-).

e FErrorPage - used to display more drastic failure information, and are typically either programmer
error or technical problems in the execution of your transaction (that is, ,An internal system level
error has occurred-).

These servlets display appropriate values based on the results of the transaction. Alternatively, the
developer can elect to handle return codes in a customized way. For example, within their servlet, changing
the values for InfoPage, RedoPage, or ErrorPage to a servlet different than what was initialized in I1fsSystem
to redirect to a custom page(s), or by writing their own ;handleError- routine(s).

Technical Details

The following is a list and description of the error fields within a transaction:

e compCode - Fl condition codes
e reasonCode - additional backend condition codes
e ErrorFunctionName - CWS function that failed

© Copyright IBM Corp. 2002 Chapter 4. Writing Java Servlets for the IFSCWS 57

e ErrorModuleName - CWS module that failed

message - BRC translated text from resource bundles. For CWS errors, the message is retrieved
from the com.ibm.ifs.resource.lfsCwsErrorTextBundle.

responseCode - BRC translated text from GM tables

gmMessage - CWS, CC translated text

senseData - CC error text string

senseDatalength - length of error text

The following methods are provided which return the data referred to in the text above:
Method Name Method Function

getBrc This method returns the BRC associated with the Gold Message. A value of ,000- is
a successful transaction. Any other value would reflect an INFO, REDO, or FATAL
condition (see getStatus).

getStatus This method returns the severity of the completion code or BRC which was present
in the Gold Message response, and will have a value of INFO, REDO, or FATAL.
Doing a lookup in the appropriate hashtable returns this value. If no value is found in
the hashtable, a value of ,FATAL- is returned.

getCompCode This method returns the value of the ,completion code-, which is returned by the core
controller or Fl. This is a value that is used for indexing into the hashtable and the
appropriate resource bundle.

getMessage This method is used to retrieve the BRC text string from the ,message- field which
would have been populated by the lookup in the BRC resource bundle from the
execution of the Gold Message.

getGmMessage This method is used to retrieve the 3TK or CWS text string from the ,gmMessage-
field which would have been populated by the lookup in the 3TK or CWS resource
bundle from the execution of the Gold Message.

National Language Enablement

Resource Bundle

A resource bundle is a set of resources such as strings, numbers and images. A resource can be any
subclass of Object. Every resource in a resource bundle has a unique case-sensitive name (a string), called
the key, which is used to retrieve the resource from the resource bundle. The resource here means the
textual descriptive text of the key. Since a resource bundle is a live Java object that holds the resources,
each resource bundle can be implemented by a different class. However, there is a special case in which
there is no need to declare a new Java class to handle resources that are stored in a properties file (see
Java s Properties class for more detail). In the current releases of the IFS CWS, properties files are used
rather than a Java class.

Using Resource Bundles for Localization

The IFS CWS uses Java s resource bundle as the primary mechanism for localizing applications. In fact, an
application should store all of its localizable resources in resource bundles. This makes it possible to create
a version of the application for a particular locale by duplicating the set of resource bundles (with slightly
different names) and then replacing the resources with localized versions. There are rules for naming the
localized resource bundles that make it possible to avoid modifying the application at all. These rules are
explained in the following sections.

Resource Bundle Names

The name of a resource bundle has two parts the base name and the locale identifier. The base name is any
valid Java class name such as IfsBrcErrorTextBundle. The locale identifier has three parts the language

58 IFS Customizable Web Server (CWS) Guide Fourth Edition

code, the country code, and a variant code each separated by an underscore character. An example of
locale identifier is en_US_MAC, where en is the language code, US is the country code and MAC is the
variant code. The complete resource bundle name would be IfsBrcErrorTextBundle_en_US_MAC.
International Standards Organization documents ,ISO 639 Language Codes- and ,ISO 3166 Country Codes-
defines the 2-character symbol for the majority of possible supported languages and countries, and can be
found at the ISO web sites:, http://www.ics.uci.edu/publ/ietf/http/related/iso639.txt, and
http://userpage.chemie.fu-berlin.de/diverse/doc/ISO3166.html, respectively.

In general, when an application is being built, the localized resources are placed in resource bundles whose
names do not include a locale identifier. These resources are called default resource bundles. To build a
localization for a particular language, append the two-character language code onto the resource bundle s
base name, separated by an underscore character. Similarly, to build a localization for a particular country,
the name of the language-localized resource bundle is appended with the two-character country code
separated by an underscore character. Finally, if the resources in a resource bundle have to be different for
different dialects or platforms, the resource bundle can be further localized to a dialect/platform.

As previously mentioned, the IFS CWS has a set of four ,default- (English) resource bundles which can be
used as a model for additional languages. In the previous releases, the four bundles (Java classes)
provided were Ifs3tkErrorTextBundle, IfsCwsErrorTextBundle, IfsSystemErrorResourceBundle and
IfsBrcErrorTextBundle, while in the current release the four bundles (properties files) are
Ifs3tkErrorTextBundle, IfsCwsErrorTextBundle, IfsSystemErrorResourceBundle and
IfsPendingTransactionStatus). Supporting an additional language would require the creation of these four
classes similar to the four bundles mentioned above but appending the locale identifier to the filename
filename (that is, ,IfsBrcErrorTextBundle_fr_FR.properties- for ,French-) for a specific language or country.

Auto-Generation of CTT Properties Files

In addition to the four resource bundles mentioned before, there are some more resource bundles that
require code translation. These bundles are auto-generated during server startup. In previous releases the
resource bundles used were of type , ListResourceBundle-. In the current and all future releases, code to text
resource bundles are changed from the ListResourceBundle to PropertyResourceBundle. The code to text
mappings are maintained in the code to text tables on the Core Controller databases. During the web server
startup time, the code to text tables are retrieved by issuing the CODERFSH gold message and the
corresponding code to text property files are created. Such a mechanism allows updating and deploying
code to text property files without recompilations of the Java code, and enables multiple web servers to
retrieve the up-to-date code to text tables dynamically at the server startup time.

Note: When using WebSphere, the properties files will be loaded during web server startup as they are
placed in the classpath. So the changes made to the properties files when the server is running, are
not visible to the end-user.

The generation of these resource files is controlled by the parameters: wsp_ctt_active wsp,
wsp_ctt_prb_path in the web server config file. Setting the value of wsp_ctt_active wsp to ,1- prior to
server startup activates the generation of the properties files and stores them in the directory specified by
wsp_ctt_prb_path. Note the path specified by this parameter is the relative pathname of the web server and
not the complete pathname. The code-to-text properties files generated use the , Ifs- prefix, the Gold tag
name excluding the ,Tg- suffix if present, and the ,Resources- suffix. for example, IfsAcctTpCIResources.

Code-to-Text Translations

In previous releases, every transaction class (Gt*.java) or data class (Gs*.java) that had a field holding a
nondescriptive code also had a corresponding translated text field. The name of this field had the same
name as the code, but appended with ,_text-. Like other fields, this field was also extracted from the
response buffer of the gold transaction and had corresponding setters and getters to set and get the field
values respectively.

In the current release, a mechanism has been defined to handle code-to-text translations using the getters of
the ,text- fields that is, get*_text() methods of transaction and data classes to encapsulate the locales,
resource bundles, and the encoded values inside these methods. All physical fields *_text of transaction and
data classes are removed. The translated descriptive text of encoded values are now retrieved in classes
using get*_text() methods based on the current session locale. For instance, the GsAccount class has a

© Copyright IBM Corp. 2002 Chapter 4. Writing Java Servlets for the IFS CWS 59

method called getType_text() which gives the descriptive text for a type of account whose value is obtained
by the method getType(). The getType_text() method uses getType() as the key for the lookup in the auto-
generated resource bundle using the locale provided (see sample code below).

public class GsAccountS extends IfsObject
{

protected String type;
public void setType(String type)
{
this.type = type;
}

public String getType()
{

return type;
}

public Sring getType_text() throws IfsException
{

return IfsNLS.getText(“IfsAcctSubTpClResources”, getlfsSession().getlocale(), getType())
}

}

All the get*_text() method use the static method of a utility class called IfsNLS to retrieve the locale-specific
text encoded in a resource bundle using the code (key) and the locale. The description of this class is
explained below.

Note: All get*_text() methods throw an IfsException. Any servlet that calls the get*_text() method needs to
wrap the method in a try/catch block.

Dynamic Session Locale

The IFS Web Server supports a locale object, called the session locale object, for each user session. This
locale object is created and cached in the user session. This occurs during Logon, OBOLogon and Self
Registration.

//fromGtLogon’s execute method

if (IfsSystem.browserlocallUsage==IfsSystem.USE_SERVER_LOCALE)

{
try{ sess.setlocale(IfsSystem.SERVER_LOCALE); }
catch(IfsException e) {}

}

else
IfsHttpServiet.checkBrowserlocale(sess.getHttpServietRequest());

The session locale object can be dynamically set based on each client s request during the runtime using the
browser s language preference or using the programming interfaces in servlets. The contents of the web
pages are created using the current session locale. This allows end users to view the same web page in
different locales.

The following methods can be used in the servlets to get and set the session locale object:

IfsObject.getLocale()
IfsSession.getLocale()
IfsSession.setlLocale()

The default session locale is defined by IfsSystem.SERVER_LOCALE. A servlet can change the session
locale to any specific locale based on the HttpRequest, using the IfsSession.setLocale() method. The locale
information can either be passed explicitly as a request parameter or defined in the request header through
the browser s language preference feature. However, several scenarios are possible. For example, an Fl
may want to allow the end user to use the browser s language preference to change locale at any time. Or it
may check the browser s language setting only at logon time. After logon, the FI might only allow the user to
change language choices using a dropdown list or buttons in the web pages.

In order to support these possible FI customization scenarios, the following flag is available in the
IfsSystem.properties file:

60 IFS Customizable Web Server (CWS) Guide Fourth Edition

If set to 1, specifies that the browser's HTTP request header,

ACCEPT-LANGUAGE from the Togon page is to be used to set this session's

locale. If the logon page does not contain a valid ACCEPT-LANGUAGE

attribute the server's locale is used to set the locale for this session.

If set to 2, specifies that the browser's ACCEPT-LANGUAGE attribute

1s checked on each page. If the browser's ACCEPT-LANGUAGE

attribute is valid and it is different from this session's Jlocale,

this session's locale is updated to the new locale. Whenever, the

browser page does not contain a valid ACCEPT-LANGUAGE attribute and the

session locale is not initialized, the server's locale is used to set the

locale for this session.

#ifs.system.browser.locale.usage=1

In IfsHttpServlet s service method, the Accept-Language in a HttpRequest header will be processed and the
session locale will be properly set based on the ifs.system.browser.locale.usage property.

Using the NLS Utility Class - IfsNLS

This class contains a set of static methods to be used to facilitate the Locale-based string translation.
Although this class was intended to be used by the get”_text() methods, it can be used in servlets as well.
Following is a list of methods in the IfsNLS class used for extracting the textual resource:

public static String getString(String bundleName, String key) throws IfsException

public static String getText(String shortBundleName, String key) throws IfsException

public static String getText(String shortBundleName, Locale locale, String key) throws IfsException
public static String getString(String bundleName, Locale locale, String key) throws IfsException

All these methods return the text associated with the key parameter. The resource bundle used for the
lookup has the name, bundleName appended by the locale identifier (if provided). If the locale object is not
provided as an argument then the web server Locale object is used. The argument bundleName is a fully
qualified package name such as com.ibm.ifs.resource.lfsBrcErrorTextBundle. The shortBundleName refers
to the name of the resource bundle. This name is not a fully qualified name. The method adds the package
name to the provided bundle name (shortBundleName). An example of such a class name is
IfsBrcErrorTextBundle. These methods are used mainly in the gold transaction (Gt*) and data (Gs*) classes.

The key may contain Unicode characters including space. In other words, the key in the resource bundles
can be localized. The space and other invalid characters put a constraint in locating the text resource for the
key. For this reason the key is encoded using the URLEncode class before the lookup in the resource bundle
is triggered. If the key contains a space, then the key in the resource bundle (properties file) has to be
URLEnNcoded. Also since the textual resource (or the string returned in above methods) contains UTF-8
encoded characters, they are converted to Java Unicode characters using the toUnicodeString method of
IfsHttpServlet.

Note: The key is UTF-8 encoded in the properties file of the auto-generated resource (properties) files. So
the key passed in the argument of the above methods is first UTF-8 encoded and then URLEncoded
to match the encoding of the key in the properties file.

The methods internally handle the MissingResourceException thrown during the search for either the
resource bundle or the text resource. If the exception is thrown during the search for the resource bundle
then the method throws IfsException, whose message contents include the resource bundle name and
locale information. On the other hand, if the exception is thrown inside the method due to the missing
resource (key), then an attempt is made to search for the default ,ZZZ- key in the resource bundle. If found,
its resource value is returned, otherwise an IfsException is thrown. The message contents of this exception
includes the resource bundle name and locale information.

Locating a Resource Bundle: IfsNLS.getBundle() vs
ResourceBundle.getBundle()
To locate a resource bundle, the static method getBundle() of either IfsNLS or Java s ResourceBundle class

can be used. Since the functionality of these two methods are different, precautions should be taken to make
sure they fit the purpose.

© Copyright IBM Corp. 2002 Chapter 4. Writing Java Servlets for the IFSCWS 61

Consider how these methods differ. To retrieve a bundle using either of these methods, two pieces of
information are required: the fully qualified base name of the resource bundle and a locale identifier. These
two strings are concatenated together, separated by an underscore character, to form a class name. An
attempt is then made to load a class with that class name (using the default system class loader). An
example of such a class name is com.ibm.ifs.resource.lfsBrcErrorTextBundle_en_US, where
com.ibm.ifs.resource.lfsBrcErrorTextBundle is the fully qualified base nhame and en_US is the locale
identifier. If a class with the class name cannot be loaded or instantiated, the class name is then
successively shortened until a resource bundle class is successfully loaded and instantiated.

The shortening process is as follows. First, the complete class name base name plus the desired locale
identifier is used. If this fails, the locale identifier is continually shortened by removing the rightmost
underscore and subsequent characters until a resource bundle class is successfully loaded and instantiated.
This is where the the two methods differ. In the getBundle method of IfsNLS the search goes up to the base
name and if the base resource bundle is found it is loaded and instantiated, whereas in Java s
ResourceBundle class the base name is ignored and the process starts again using the locale identifier of
the default locale.

To demonstrate the above process of class names attempted, here is an example using a base name of
com.ibm.ifs.resource.lfsBrcErrorTextBundle and a desired locale of Locale.JAPAN with a WIN_95 variant.
The default locale is Local. ENGLISH.

In the ResourceBundle class, the attempts made are in the following order,

1. com.ibm.ifs.resource.lfsBrcErrorTextBundle_jp_JA_WIN_95

2. com.ibm.ifs.resource.lfsBrcErrorTextBundle_jp_JA_WIN

3. com.ibm.ifs.resource.lfsBrcErrorTextBundle_jp_JA

4. com.ibm.ifs.resource.lfsBrcErrorTextBundle_jp

5. com.ibm.ifs.resource.IfsBrcErrorTextBundle_en_US

6. com.ibm.ifs.resource.lfsBrcErrorTextBundle_en

7. com.ibm.ifs.resource.lfsBrcErrorTextBundle

In the IfsNLS class, the attempts made are in the following order,

1. com.ibm.ifs.resource.lfsBrcErrorTextBundle_jp_JA_WIN_95

2. com.ibm.ifs.resource.lfsBrcErrorTextBundle_jp_JA_WIN

3. com.ibm.ifs.resource.IfsBrcErrorTextBundle_jp_JA

4. com.ibm.ifs.resource.IfsBrcErrorTextBundle_jp

5. com.ibm.ifs.resource.lfsBrcErrorTextBundle

6. com.ibm.ifs.resource.lfsBrcErrorTextBundle_en_US

7. com.ibm.ifs.resource.lfsBrcErrorTextBundle_en

Whenever a class name fails to produce a resource bundle object, a check is made to see if a properties file
with the same name exists. In particular, the class name is appended with the string ,.properties-. If such a
file exists, a PropertyResourceBundle object is created for that properties file. To demonstrate more
concretely the sequence of files attempted, consider the following example.

In ResourceBundle,

1. com.ibm.ifs.resource.lfsBrcErrorTextBundle_jp_JA_WIN_95

62 IFS Customizable Web Server (CWS) Guide Fourth Edition

2. com.ibm.ifs.resource.lfsBrcErrorTextBundle_jp_JA_WIN_95.properties
3. com.ibm.ifs.resource.lfsBrcErrorTextBundle_jp_JA_WIN

4. com.ibm.ifs.resource.lfsBrcErrorTextBundle_jp_JA_WIN.properties
5. com.ibm.ifs.resource.lfsBrcErrorTextBundle_jp_JA

6. com.ibm.ifs.resource.lfsBrcErrorTextBundle_jp_JA.properties

7. com.ibm.ifs.resource.lfsBrcErrorTextBundle_jp

8. com.ibm.ifs.resource.lfsBrcErrorTextBundle_jp.properties

9. com.ibm.ifs.resource.lfsBrcErrorTextBundle_en_US

10. com.ibm.ifs.resource.lfsBrcErrorTextBundle_en_US.properties

11. com.ibm.ifs.resource.lfsBrcErrorTextBundle_en

12. com.ibm.ifs.resource.lfsBrcErrorTextBundle_en.properties

13. com.ibm.ifs.resource.lfsBrcErrorTextBundle

14. com.ibm.ifs.resource.lfsBrcErrorTextBundle.properties

In IfsNLS,

1. com.ibm.ifs.resource.lfsBrcErrorTextBundle_jp_JA_WIN_95

2. com.ibm.ifs.resource.lfsBrcErrorTextBundle_jp_JA_WIN_95.properties
3. com.ibm.ifs.resource.lfsBrcErrorTextBundle_jp_JA_WIN

4. com.ibm.ifs.resource.lfsBrcErrorTextBundle_jp_JA_WIN.properties
5. com.ibm.ifs.resource.lfsBrcErrorTextBundle_jp_JA

6. com.ibm.ifs.resource.lfsBrcErrorTextBundle_jp_JA.properties

7. com.ibm.ifs.resource.lfsBrcErrorTextBundle_jp

8. com.ibm.ifs.resource.lfsBrcErrorTextBundle_jp.properties

9. com.ibm.ifs.resource.lfsBrcErrorTextBundle

10. com.ibm.ifs.resource.lfsBrcErrorTextBundle.properties

11. com.ibm.ifs.resource.lfsBrcErrorTextBundle_en_US

12. com.ibm.ifs.resource.lfsBrcErrorTextBundle_en_US.properties

13. com.ibm.ifs.resource.lfsBrcErrorTextBundle_en

14. com.ibm.ifs.resource.lfsBrcErrorTextBundle_en.properties

Textual Representation of Gold Primitives in Localesensitive Manner

The textual presentation of the GsCurrency, GsDecimal, GsDate, GsTime objects are formatted based on
the current session locale. The exception to this is when one of these objects has been constructed with a

© Copyright IBM Corp. 2002 Chapter 4. Writing Java Servlets for the IFSCWS 63

specific format or when the format has been specifically set. In these cases, the format that has been
constructed or set, overrides the current session locale.

GsCurrency: The GsCurrency class is used to represent IFS-supported currencies. The class is NLS
enabled. Currencies may be constructed and formatted in the Java-supported Locales. By the use of an
associated class, GsCurrencyFormat, custom formats can be constructed.

In general, formatting is based on the convention that a particular locale L wants to see foreign currencies
formatted in locale L s format with the exception of the use of the correct currency symbol. This requires a
dynamic alteration of the currency pattern for a particular locale to use the correct currency symbol. In rare
cases, when the pattern s decimal separator is contained in the foreign currency symbol, this approach will
not work and the pattern for the foreign currency is used without alteration. Also, if Java 1.1.x does not
contain a locale corresponding to a given ISO code, formatting will be done using the current session locale.

The formatting process described above is slightly different for the Euro. When given an ISO code of EUR,
the current local is checked for support. If it does not support the EUR, an attempt is made to access a Euro
variant locale. If the result of that attempt does not yield a locale that supports the EUR, the process above is
used to insert the Euro symbol into the current session locale currency pattern.

Certain multiple-currency situations require the use of the correct method signatures. NLS capabilities and
restrictions will be noted in the affected method s documentation.

There are two types of NLS support offered through GsCurrency:

1. If auser wants a GsCurrency object to be formatted according to the current Locale (which may be
changed during a session), then constructors should be used that do not pass in a GsCurrencyFormat
object. Also, direct setting of the object s format via the setFormat method must be avoided.

Example:

ifsSession.setlocale(Locale.FRENCH);
GsCurrency amount = new GsCurrency(“0000123456789”, 2, 1, “USD”, ifsSession);
String result = amount.toString();

The result would be: 1 234 567,89 $

2. If a user wants a GsCurrency object to be formatted a certain way regardless of the current Locale, then
constructors can be used that pass in the GsCurrencyFormat object or the format can be set via the
setFormat method.

Example:

ifsSession.setlocale(Locale.FRENCH);

GsCurrency amount = new GsCurrency(“0000123456789”, 2, 1, “USD”, ifsSession);
GsCurrencyFormat usFormat = new GSCurrencyFormat(Locale.US);
GsCurrency.setformat(usfFormat, amount);

String result = amount.toString();

The result would be: $1,234,567.89

GsDecimal: GsDecimal class extends GsDecimalS. It provides function for the construction, formatting
and comparing of GsDecimal instances.

Just as in GsCurrency above, there are two types of NLS support offered through GsDecimal:

1. If auser wants a GsDecimal object to be formatted according to the current Locale (which may be
changed during a session), then constructors should be used that do not pass in a GsDecimalFormat
object. Also, direct setting of the object s format via the setFormat method must be avoided.

Example:

ifsSession.setlocale(Locale.FRENCH);
GsDecimal amount = new GsDecimal (“0000123456789”, 2, 1, ifsSession);
String result = amount.toString();

The result would be: 1 234 567,89

64 IFS Customizable Web Server (CWS) Guide Fourth Edition

2. If a user wants a GsDecimal object to be formatted a certain way regardless of the current Locale, then
constructors can be used that pass in the GsDecimalFormat object or the format can be set via the
setFormat method.

Example:

ifsSession.setlocale(Locale.FRENCH);

GsDecimal amount = new GsDecimal (“0000123456789”, 2, 1, ifsSession);
GsDecimalFormat usfFormat = new GsDecimalFormat(Locale.US);
GsDecimal.setFormat(usfFormat, amount);

String result = amount.toString();

The result would be: 1,234,567.89

GsDate: To represent a GsDate textually in locale-sensitive manner, the toString() method should be
called. To represent it in a specific format, toString(GsDateFormat) can be used. The toString() method uses
default locale or system locale. Prior to the method call, the specific format can be set by invoking
setLocaleFormatter(GsDateFormat). This will set the localeFormatter field of GsDate. If the localeFormatter
is never set then the call to toString() method will use the current session locale, in which case, if it is not set
then it uses the default locale.

To illustrate, consider the following example:

GsDate date = new GsDate(*“06/14/2000”, “MM/dd/yyyy”, ifsSession);

// assume ifsSession is created using HttpServietRequest and HttpServietResponse
// and encapsultes locale, Locale.JAPAN date.toString();

// returns in Japanese format (short) “00/06/14”

date.setlocaleformatter(new GsDateformat(Locale.US));
date.toString(); // returns in USA format (short) “6/14/00”
//subsequent calls to toString() returns in USA format even if the session locale is changed.

GsTime: The process involved in representing GsTime in a locale-sensitive manner is similar to GsDate.
The toString() method should be used in locale-specific format. Subsequent calls to the method will return in
current session locale format if a specific format is not set. To set a format,
setLocaleFormatter(GsTimeFormat) is used. The toString() method utilizes getLocaleFormatter() to
represent local-sensitive format. If a format is set, then the call to getLocaleFormatter() will always return that
format.

To emphasize this process, consider the following example:

GsTime time = new GSTime(“08:40 AM”, “hh:mm a”, ifsSession);

// assume ifsSession is created using HttpServietRequest and HttpServietResponse
// and encapsultes locale, Locale.JAPAN

date.toString(); // returns in Japanese format (short) “8:60”

date.setlocaleFormatter(new GsDateFormat(Locale.US));
date.toString(); // returns in USA format (short) “8:40 AM”
//subsequent calls to toString() returns in USA format even if the session locale is changed.

Charsets and Conversions
o Definition of the webserver charset:

The charset used on an IFS webserver can be configured using the IfsSystem.cwsBrowserCharSet
variable. It s value can be set to either ,UTF-8- or ,8859_1-.

o IfsHttpServiet.getParameterValues() method:

When the IfsSystem.cwsBrowserCharSet is set to ,UTF-8-, the HTTP request parameter value strings
are presented in the UTF-8 format. Since the getParameterValues methods in the
javax.servlet.ServletRequest class do not correctly convert from UTF-8 to unicode, the following method
is provided in the IfsHttpServlet class to get the request parameter strings and convert them to unicode
strings:

public static String[] getParameterValues(String name, String charSet, HttpServietRequest req)
e Set charset in the page content type:

© Copyright IBM Corp. 2002 Chapter 4. Writing Java Servlets for the IFS CWS 65

The method IfsHttpServlet.setDefaultHeader() now sets the charset in the page content type using
IfsSystem.cwsBrowserCharSet. It is important that the charset for the page be set prior to getting a
PrintWriter so the correct writer is obtained for the charset.

JDBC Considerations

IFS CWS V1R6M1 introduces new function that enables applications to input data directly into DB2 tables
without sending the data through the CWS Gold Manager and the TDM. Additional software is required for
connectivity between the AIX machines and the host DB2 tables. Refer to the IFS Planning Guide for a list of
the required software programs and any special installation instructions.

Two additional DB2 tables must be created and configured before using the transactions listed below. The
database schema for these new tables can be found in the IFS Transaction Delivery Manager Guide.

Five new classes have been defined to manipulate data in the new DB2 tables. They are:

IfsdDBC,
IfsPendingTransactionlnstance,
IfsPendingTransactioninstanceDetail,
IfsWebTransactionActivity, and
IfsWebTransactionActivityDetail.

These classes enable a servlet page to create, list, read, update and delete rows from the DB2 tables. Refer
to the V1R6 JavaDocs for information on the methods available for these new classes.

The IfsUDBC class is the ancestor for both the IfsPendingTransactioninstance and the
IfsWebTransactionActivity classes, providing common routines used by both.

The IfsPendingTransactionInstanceDetail is the storage structure holding the result set returned, for a query
from IfsPendingTransactionlnstance.

The IfsWebTransactionActivityDetail is the storage structure holding the result set returned, for a query from
IfsWebTransactionActivity.

Host database connections require a user id and password. These values can be set by the page
programmer using the setUserID() and setPassword() methods of the transaction classes or by using the
default values from the IfsSystem class. The default values are maintained within the IfsSystem class under
the attributes IFS_WDBC_USERID, and IFS_WDBC_PSWRD respectively. A database driver name is
required for the database. This value can be set by the page programmer using the setDriverName() method
or by using the defaultDriverName value from the IfsSystem class. If no driver name is set by the page
programmer, the default value from IfsSystem is used. Finally, a URL address to the database is required for
connection to the database. This value can be set by the page programmer using the setUrl() method or by
using the default value from the IfsSystem class. The default value is maintained within the IfsSystem class
under the attribute IFS_WDBC_DBALIAS.

A programming example is supplied in virém1_yymmdd.tar.Z under the cws/testdocs/jcbc directory. To
install the example, copy pendingTransactioninstanceForm.jsp and pendingTransactioninstanceServlet.jsp
into the root of the ifs.war directory, and copy PendingTransactioninstanceServiet.class,
PendingTransactioninstanceForm.class MethodViewBean.class and PendingTxnViewBean.class into the
ifs.war/WEB-INF/classes directory.

The example uses the Model-View-Controller concept. The JDBC example consists of these files:
PendingTransactioninstanceForm.java, pendingTransactioninstanceForm.jsp,
PendingTransactioninstanceServlet.java, pendingTransactioninstanceServlet.jsp,
PendingTxnViewBean.java, and MethodViewBean.java. The PendingTransactioninstanceForm servlet and
pendingTransactionlinstanceForm.jsp are used for inputting data into the form. The
PendingTransactioninstance servlet and pendingTransactioninstanceServlet JSP process and display the
data, using PendingTxnViewBean and MethodViewBean.

To Convey Error Messages: Since this functionality is provided in the model of an API, error
messages for connection errors and validation errors are given in the form of exceptions. Therefore, when

66 IFS Customizable Web Server (CWS) Guide Fourth Edition

the methods provided by these classes are used, they must be enclosed in a try-catch block (to catch the

exceptions thrown by these methods).

JDBC Configuration

JDBC access requires changes to both AlX and WebSphere configurations.

1.

in user s $SHOME/.profile,
add following path to CLASSPATH:

export

CLASSPATH=$CLASSPATH: ${INSTHOME}/sql1ib/java/db2java.zip:{INSTHOME}/sql1ib/java/runtime.zip:

{INSTHOME}/sqllib/java/sqlj.zip

add following path to LD_LIBRARY_PATH:

export LD_LIBRARY_PATH=$(LD_LIBRARY_PATH):${INSTHOME}/sq11ib/1ib

Note: INSTHOME is the DB2 instance home directory in our case is: /home/db2inst1

To establish connections to DB2 through JDBC providers and Data Sources, you will need to configure

JDBC providers and Data Source. To accomplish this, use the WebSphere Administrative Console.
Follow the directions for configuring JDBC providers and DataSources in the IBM RedBook-RedPiece

S$G24-6176-00 WebSphere Version 4.0 Advanced Edition Handbook, Chapter 16: Configuring
WebSphere resources. The RedBook is available at:
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246176.html|?Open

Host Database Table Changes

The database tables associated with the JDBC servlets have been modified slightly. The revised DDL is

shown below and should replace the existing tables:

e PNDING_TXN_INST
e REL_TXN_ACTY

provided with the OS/390 R811 delivery without requiring changing any other R811 components.

Licensed Materials - Property of IBM
5648-A06

- © Copyright IBM Corp. 1996 A1l Rights Reserved

US Government Users Restricted Rights - Use, duplication
or disclosure restricted by GSA ADP Schedule Contract
with IBM

Use This version of DDL if ‘DB2 UDB for 0S/390 V6’
is NOT installed. It uses a datatype of VARCHAR(31000).

Changed 01/19/01 - TDMVIR6_015 - the following columns have been
changed from “not null” to nulls allowed:

PNDING_TXN_INST.TXN_AMT
PNDING_TXN_INST.TXN_AMT_PRC
PNDING_TXN_INST.TXN_CURR_TP
REL_TXN_ACTY.TXN_AMT
REL_TXN_ACTY.TXN_AMT_PRC
REL_TXN_ACTY.TXN_CURR_TP
REL_TXN_ACTY.TXN_BENF
REL_TXN_ACTY.TXN_VAL_DT

SET CURRENT SQLID = ‘#TBLOWNR’;

CREATE TABLESPACE #TSPREFX411

IN #DBNAME

USING STOGROUP #STOGRP PRIQTY 480 SECQTY 96
FREEPAGE 0 PCTFREE 20

SEGSIZE 64

© Copyright IBM Corp. 2002

Chapter 4. Writing Java Servlets for the IFS CWS

67

LOCKSIZE ANY

LOCKMAX SYSTEM

BUFFERPOOL BP32K

CLOSE NO;

. Header name PNDTXNA

CREATE TABLE PNDING_TXN_INST
(

FI_ID CHAR(8)
PRIM_CNSMR_ID CHAR(30)
TXN_INIT_CNSMR_ID CHAR(30)
SRVC_RQST_NM CHAR(8)
TXN_INIT_TMSTP TIMESTAMP
SRVC_NM CHAR(8)

TXN_DB_ACCT_CLH_ID CHAR(Z28)

TXN_DB_ACCT_TP CHAR(3)

TXN_DB_ACCT_SUB_TP SMALLINT

TXN_DB_ACCT_NBR CHAR(22)

TXN_DB_ACCT_NKNM — CHAR(30)
FOR BIT DATA

TXN_AMT DECIMAL(15,0)
TXN_AMT_PRC SMALLINT
TXN_CURR_TP CHAR(3)
TXN_BENF CHAR(40)

FOR BIT DATA
TXN_REF CHAR(40),
TXN_VAL_DT DATE
TXN_STAT_CD SMALLINT
TXN_AUTH_CNSMR_ID CHAR(30)
TXN_AUTH_TMSTP TIMESTAMP
TXN_DATA VARCHAR(31000)

)
IN #DBNAME.#TSPREFX411;
COMMENT ON TABLE PNDING_TXN_INST
IS “PENDING TXN INSTANCE (VARCHAR)’;
CREATE TYPE 2 UNIQUE INDEX PNTIX001
ON PNDING_TXN_INST
(

FI_ID ASC,
PRIM_CNSMR_ID ASC,
TXN_INIT_TMSTP ASC,
TXN_INIT_CNSMR_ID ASC,
SRVC_RQST_NM ASC,
TXN_STAT_CD ASC

)
USING STOGROUP #STOGRP PRIQTY 96 SECQTY 96
FREEPAGE 0 PCTFREE 20
CLUSTER
BUFFERPOOL BPO
CLOSE NO;

COMMIT ;

CREATE TABLESPACE #TSPREFX401

IN #DBNAME

USING STOGROUP #STOGRP PRIQTY 480 SECQTY 96
FREEPAGE 0 PCTFREE 20

SEGSIZE 64

LOCKSIZE ANY

LOCKMAX SYSTEM

BUFFERPOOL BP32K

CLOSE NO;

. Header name RELTXNA

CREATE TABLE REL_TXN_ACTY

(

FI_ID CHAR(8)
PRIM_CNSMR_ID CHAR(30)
TXN_INIT_CNSMR_ID CHAR(30)
SRVC_RQST_NM CHAR(8)
TXN_LOGGED_TMSTP TIMESTAMP
TXN_AMT DECIMAL(15,0)
TXN_AMT_PRC SMALLINT
TXN_CURR_TP CHAR(3)
TXN_BENF CHAR(40)

NOT NULL
NOT NULL
NOT NULL
NOT NULL

s
’
’
’

NOT NULL WITH DEFAULT,

NOT NULL
NOT NULL WITH

NOT NULL

NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL WITH

68 IFS Customizable Web Server (CWS) Guide Fourth Edition

s

s
’
’
’

DEFAULT,

’

’

DEFAULT,

’
’

’

FOR BIT DATA

TXN_REF CHAR(40) ,
TXN_VAL_DT DATE s
TXN_LOG_REASON_CD INTEGER NOT NULL s
TXN_AUTH_CNSMR_ID CHAR(30) ,
TXN_AUTH_TMSTP TIMESTAMP s
TXN_DATA VARCHAR(31000) NOT NULL

)

IN #DBNAME . #TSPREFX401;

COMMENT ON TABLE REL_TXN_ACTY

IS ‘TRANSACTION ACTIVITY (VARCHAR)’;
CREATE TYPE 2 UNIQUE INDEX RTATX001
ON REL_TXN_ACTY

(
FI_ID ASC,
PRIM_CNSMR_ID ASC,
TXN_LOGGED_TMSTP ASC,

TXN_INIT_CNSMR_ID ASC,
SRVC_RQST_NM ASC

)

USING STOGROUP #STOGRP PRIQTY 96 SECQTY 96
FREEPAGE 0 PCTFREE 20

BUFFERPOOL BPO

CLOSE NO;

Procedures to Establish Connection to DB2 Database using JDBC

There are 2 ways to establish connection to desired databases.

1.

Use the defaults in If£sSystem. java. By specifying defaults in IfsSystem. java we can establish
connection to database without using setters and getters. There are 5 constants defined in
IfsSystem. java, which needs to be specified.

/**

. Name of default JDBC driver. Used if a driver name is not set within

. the IfsJdDBC class.

*/

public static String defaultDriverName = “COM.7ibm.dbZ2.jdbc.app.DB2Driver”;

/**

. Name of default database url used to establish a JDBC connection.
. Used if a url is not explicitly set within

. the IfsJdDBC class.

*/

public static String IFS_WDBC_DBALIAS = “jdbc:db2:DBTIFAV”;

/**

*Name of the default region name used in one’s database schema.
*This has to be set in IfsSystem.java.

*/

public static String IFS_WDBC_SCHEMA = “DBTIF91C”;

This constant is accessed in IfsPendingTransactionlnstance.java and
IfsWebTransactionActivity.java.

/**

. Name of default database user id used to establish a JDBC connection .
- Used if a user id is not explicitly set within

. the IfsJdDBC class.

*/

public static String IFS_WDBC_USERID = “”;

/**
« Name of default database password used to establish a JDBC connection.
. Used if a password is not explicitly set within
. the IfsdDBC class.
*/
public static String IFS_WDBC_PSWRD = “;
- defaultDriverName: Remains the same for DB2 databases.
- IFS_WDBC_DBALIAS: In this, constant gdbc:db2: remains the same but ®BTIFAV will change
according to the desired database name or region.

© Copyright IBM Corp. 2002 Chapter 4. Writing Java Servlets for the IFSCWS 69

- IFS_WDBC_SCHEMA: This is the qualifier needed to identify the correct table being accessed.
This has to be set in IfsSystem.java.

- IFS_WDBC_USERID: Should be the Id of the person who created the database specified in
OFS_WDBC_DBALIAS .

- IFS_WDBC_PSWRD: Should be the password of user id specified in 0FS_WDBC_USERID .

2. Using setters and getters of IfsUDBC. Developers can use following methods to connect to desired
database.

Set Driver name:

/*This method is used to set the Driver Name.

*It must be set before establishConnection is called
*@param o - driver name.

*/

public void setDriverName(String o)

Example:
xClass.setDriverName(“COM.ibm.db2. jdbc.app.DB2Driver”)
For DB2 databases driver name ,COM.ibm.db2.jdbc.app.DB2Driver- remains the same.

To set Database URL:

/**
. This method is used to set the url property.
. It must be set before establishConnection is

. called.
e @param o—The url of the database
*/

public void setUrl(String o)
Example:
xyzClass.setUrl(“jdbc:db2:DBTIFAV”);

Where Qdbc:db2 remains the same for DB2 database and @BTIFAV should be changed according to
desired database name or region.

To set User Id:

/**
Used to set a user’s database id
. <p>
e @param id. The user 1id.
*/

public void setUserID(String id)
Example:
xyzClass.setUserID(“abc”);

Where @bc, should be the Id of the person who created the database

To set Password:

/**
Used to set a user’s database password
<p>
e« @param password. The user’s password.
*/
public void setPassword(String o)

Example:
xyzClass.setPassword(“def”);

Where @ef, should be the password of user id specified in setUserID meth

Other Dependencies on IfsSystem.java and locale: The following are default values set in
IfsSystem.java:

70 IFS Customizable Web Server (CWS) Guide Fourth Edition

public static boolean IS_VALIDATE_ACTION_REQUIRED = true;
public static boolean IS_REQUEST_READY_ACTION_REQUIRED = false;
public static boolean IS_RESPONSE_READY_ACTION_REQUIRED = false;

The Currency Type for the Transaction Amount is picked up from the locale information.

Considerations in Using Multiple User Ids

Financial Impacts

User Interface (Ul) servers such as the Web Server, CSR server, etc., may be customized to authenticate a
consumer s transaction authority. This is an Fl implementation choice. Internal IFS service providers, such
as transfer, will verify authorities but the FI may negotiate with external service providers as to whether the
verification is done in the Ul customizable server or at the external service provider on a service by service
basis.

The new secondary consumer messages are routed directly to the Fl. It is the Fl s responsibility to respond.
This includes gathering all data in response to the Secondary Consumer Inquiry and provide for Gnore
processing when those results exceed the capacity of the message size. No order is implied in the
Secondary Consumer Inquiry results.

The FI may need/wish to develop servlets to implement specific business logic. The following sections
outline a possible suggested set of business logic that can be implemented in an Fl-developed servlet.

GtAddSecondaryConsumer

The servlet cannot invoke the GtAddSecondaryConsumer class unless the user has their Secondary
Consumer Maintenance authority flag in their IFS Consumer Profile set to ,Y-. The servlet will need to
provide the client with a list of available services/accounts to choose from based on the services/accounts
available to the Primary Consumer. The user may select all or a subset of the presented services/accounts.
The services/accounts are based on the service/accounts (including transactions limits in the accounts base
currency code).

The primary consumer should be able to specify the initial PIN for a secondary consumer so the serviet must
prompt for the PIN and prompt for the primary consumer to re-enter the PIN. The servlet should compare the
initial PIN to the re-entered PIN and either reject the add or complete the transaction depending on whether
the PINs match. Before actually transmitting the transaction the servlet should prompt the primary consumer
to confirm the addition. Whether the servlet does this will be controlled by the Service Request Confirmation
Flag (CFRM_RQRD column) in the IFS Service Request Profile (SRVC_REQ table) for the Add Secondary
Consumer message. When prompting for confirmation, the servlet should redisplay the contents of the Add
Secondary Consumer transaction (in human readable form) to the primary consumer. The servlet should not
issue the transaction unless the primary consumer confirms.

A transaction limit value of $0.00 is valid.

The default service/account authorization if the primary consumer selects a service and account but does not
select the authority will be , Inquiry Only-.

When submitting an Add Secondary Consumer transaction, the servlet should not fill in the following fields in
IFS_CNSMR_PRFL_DTL as they will be completed by the FI or completed by the TDM during a later logon:

CnsmrEffDtTg,

CnsmrEndDtTg,

NewMsgFTg,

LastCnsmrSsnChrgTg,

CnsmrldTg in IFS_CNSMR_ID in IFS_CNSMR_PRFL_DTL.

Also, the new profile fields (Date of Last PIN Change, Date of Last Successful Logon and FI Consumer
Status) should not be filled in by the servlet since they will be completed by the FI prior to the first logon.

© Copyright IBM Corp. 2002 Chapter 4. Writing Java Servlets for the IFS CWS 71

The following fields in IFS_CNSMR_PRFL_DTL should be filled in by customizable code since the FI should
control what values are placed in these fields for a secondary consumer. Typically, the Fl should want the
values to come from the primary consumer s profile:

CnsmrSignupSrcTg,
FIEmpTpIndTg,
CnsmrAddrDtITg,
SrvcChrgPInTg,
CnsmrTpCITg,
CnsmrMktSegTg,
CnsmrDivisionTg,
CnsmrLgINmTg,
ChrgBasisTpCITg,
DailyLmtAmtTg

The primary consumer should be prompted to complete the rest of the profile fields.

PrimCnsmrldTg in IFS_CNSMR_ID in IFS_CNSMR_PRFL_DTL should be set to the primary consumer s
permanent consumer ID.

GtChangeSecondaryConsumer

In order to invoke the servlet for the GtChangeSecondaryConsumer class, a prior invocation for the
GtSecondaryConsumerlnquiry class must have been done (for full profile data) and cached the results
(which included the consumer profile for each secondary consumer a primary consumer has created). The
cached data about a secondary consumer should be displayed in order for the primary consumer to change
what they wish.

The servlet cannot be invoked for the GtChangeSecondaryConsumer class unless the user has their
Secondary Consumer Maintenance authority flag in their IFS Consumer Profile set to , Y-. When submitting a
Change Secondary Consumer, the servlet should show the current values but not allow change for the
following fields in IFS_CNSMR_PRFL_DTL as they should never be changed by the primary consumer:

CnsmrEffDtTg
CnsmrEndDtTg
NewMsgFTg
LastCnsmrSsnChrgTg
ChCnsmrldTg, CnsmrldTg (as well as PrimCnsmrldTg) in IFS_CNSMR_ID,
CnsmrSignupSrcTg
FIEmpTpIndTg
CnsmrAddrDtiTg
SrvcChrgPInTg
CnsmrTpCITg
CnsmrMktSegTg
CnsmrDivisionTg
CnsmrLgINmTg
ChrgBasisTpCITg
DailyLmtAmtTg

Also, the new profile fields (Date of Last PIN Change, Date of Last Successful Logon and FI Consumer
Status) should only echo back the current values since they are never changed by the primary consumer.
The primary consumer should be prompted to change (if desired) any of the rest of the profile fields with
similar rules as listed for GtAddSecondaryConsumer.

If a field is not changed, the Change Secondary Consumer transaction should contain the original value for
that field since this a full replacement of the secondary consumer s profile. The primary consumer must be
able to add/change/remove services or accounts for a secondary consumer. They must also be able to
change transaction limits and change the Secondary Consumer Maintenance authority setting. Once the
primary consumer has changed everything they wish to, the servlet should validate that no invalid selections
have been made then a confirmation process similar to the one specified in the previous section for
GtAddSecondaryConsumer should be followed. No transaction will be issued unless the primary consumer
has confirmed the change.

72 IFS Customizable Web Server (CWS) Guide Fourth Edition

GtCloseSecondaryConsumer

The servlet cannot be invoked for the GtCloseSecondaryConsumer class unless the user has their
Secondary Consumer Maintenance authority flag in their IFS Consumer Profile set to , Y-.

In order to use the servlet for this class, a prior servlet invocation for the GtSecondaryConsumerinquiry class
must have been done (for full profile data) and cached the results (which included the consumer profile for
each secondary consumer a primary consumer has created). The cached data about a secondary consumer
should be displayed in order for the primary consumer to select secondary consumers to close. Confirmation
of a close secondary consumer will be implemented similarly to confirmation of add secondary consumer.
The servlet will invoke the IFS certificate agent to send an encrypted message to the Certificate Authority
requesting that the certificate be added to the revocation list maintained by the Certificate Authority s
directory server. Currently, the IFS certificate agent is on the IFS registration server and will have to be
ported to the CWS in order to be locally available to the servlet.

GtResetSecondaryConsumer

The servlet cannot be invoked for the GtResetSecondaryConsumer class unless the user has their
Secondary Consumer Maintenance authority flag in their IFS Consumer Profile set to , Y-.

Confirmation of a reset secondary consumer will be implemented similarly to confirmation of add secondary
consumer.

GtSecondaryConsumerlnquiry

The servlet cannot be invoked for the GtSecondaryConsumerinquiry class unless the user has their
Secondary Consumer Maintenance authority flag in their IFS Consumer Profile set to , Y-.

The servlet will issue the Secondary Consumer Inquiry request message defined in this DCR. The invoker
will need to be able to specify whether they wish just a list of secondary consumers or the list of secondary
consumers with their profile data.

Potential Issues and Problems

The following are a few issues or problems to be aware of when using the IFS CWS Toolkit.

Instance Variables of a Servlet

In an HitpServlet, an instance variable is shared by all concurrent executions of doGet, doPost methods in
responding to concurrent HTTP requests. Therefore, instance variables can not store data specific to a
particular session. The following servlet code caused one customer to see details of another customer s
account:

public synchronized class GtAccountDetaildava_Test extends HttpServiet
{

private PrintWriter pageWriter = null;

public void doGet (HttpServietRequest req, HttpServietResponse res)
throws ServietException, IOException
{

// Set the socket to print the page
try
{
pagelWriter = res.getWriter();
}
catch(Exception ex)
{

}
}

© Copyright IBM Corp. 2002 Chapter 4. Writing Java Servlets for the IFS CWS 73

}

Here, the instance variable pageWriter caused the problem. An instance variable in a servlet is shared by all
concurrent HTTP requests. When request 1 came in, the pageWriter was set to the response 1 associated
with request 1. During the execution of the transaction 1 for request 1, request 2 came in, and the
pageWriter was then reset to the response 2. Therefore, when transaction 1 completed and the information
was written to the pageWriter, the output went to response 2 instead of response 1. Therefore, the browser
that issued request 2 saw the account info for both customers.

Variables that belong to the processing of an individual request should not be defined as instance variables.
They should be defined inside doGet, doPost, etc.

Duplicate Transaction Problem

Page developers and Fls should be aware that consumers can cause unwanted duplicate transactions to be
sent to a web server. The following are some possible scenarios.

1. Multiple Clicks: If a consumer clicks multiple times on a ,submit- button, the browser may submit
multiple identical transactions to the web server. This behavior differs based upon which browser and
version is used, the HTML type of submit button, and how many times the button was clicked.

2. Enter-Back-Enter: The consumer submits a transaction by clicking on a submit button. The consumer
sees the response. The consumer uses the browser s ,Back- button to go to the previously submitted
transaction and clicks on submit again.

3. Enter-Reload: The consumer submits a transaction by clicking on a submit button. The consumer sees
the response and then clicks on the browser s ,Reload- button. Clicking the reload button causes the
transaction to be sent to the web server again.

4. Resizing: Sometimes, resizing the browser window may cause the browser to behave as if the Reload
button had been clicked.

Currently, the use of client-side JavaScript can help prevent the first scenario, the multiple click. For the
<FORM> page elements, an onSubmit JavaScript even handler routine can be specified as follows:

<FORM method = ...onSubmit = “return checkIfSubmitted()”>

For the HREF page elements, an onClick JavaScript routine can be specified as follows:

The following is a sample checklfSubmitted() JavaScript event handler routine:

<SCRIPT>
var isFormSubmitted = “no”;

function checkIfSubmitted()
{
if (isFormSubmitted == “no”)
{
isFormSubmitted = “yes”
return (true);

return (false);
}
}
</SCRIPT>

The use of onSubmit and onClick event handlers prevent duplicate transactions from being submitted from
multiple clicks of submit buttons. However, this technique introduces one drawback dealing with a normal
usage scenario. If a consumer enters one invalid field on the form and submits the transaction, the execution
of the transaction will return an error message indicating the invalid input field. Then, if the consumer uses
the ,Back- button on the browser to get the cached form page, makes the correction on the input field, and
clicks the submit button to re-submit the transaction, the checklfSubmitted() will prevent such re-submit. To
allow for this, the form page should be coded such that a reload will retain the input data previously entered.

74 IFS Customizable Web Server (CWS) Guide Fourth Edition

In addition, this client-side technique can only prevent the ,multiple click- scenario. It can not prevent the
three other causes of duplicate transactions mentioned above.

Using Object Cache

In IfsHttpServlet, an object cache mechanism is provided with APIs: putObject(...), getObject...(), and
removeObiject(...) to allow multiple pages to share objects. Due to the dynamic nature of the page navigation,
it is hard to find a proper spot to remove cached objects. Thus, when system-generated OIDs are used,
frequent reload of pages that create a new transaction object and put it in the session cache will cause many
unused transaction objects to remain in the session cache without being able to be garbage collected. With
hundreds and thousands of consumers online at the same time, such usage scenarios may exhaust the
server memory space.

Therefore, the servlet pages that create objects and put them in cache need to be coded carefully to
minimize the memory usage. The following are a few approaches to deal with this problem assuming that
PageA is a form for inputting data; and PageB handles the POST and creates the transaction object and
puts it into the cache.

1. When using a system-generated OID, PageA can use getNewOid() to get a system generated OID in
advance even before the actual object is created. PageA can pass the OID on the HTTP request as
follows:

out.printin(“");

When PageB receives this request, it tries to get the transaction object from the cache using the OID in
the request and can not find the transaction object. Then, PageB creates a new transaction object and
caches it under the OID. Since the OID is defined in the request, when PageB is reloaded, the
transaction will be retrieved from the cache to be reused. Therefore, the transaction object will not be
created or cached multiple times.

2. If no multiple pages of the same servlet are required on the client s screen at the same time, a
customized OID can be used to minimize the usage of the cache.

On PageB when creating the transaction object and putting it in the cache, Instead of using:

GtAddVariablePayment payment = new GtAddVariablePayment(ifsSession);
putObject(ifsSession, payment);

use:

GtAddVariablePayment payment = new GtAddVariablePayment(ifsSession);

putObject(ifsSession, “__Payment”, payment);

In this way, every time the page is reloaded, a new transaction object is created; the previous transaction
object cached under the OID ,__Payment- is removed from the cache; and the new transaction object is

cached under the OID. Thus, there will be no unused multiple transaction objects in the cache due to the
reload.

Better yet, the transaction object does not have to be created every time. The following code illustrates
how to reuse the transaction object:

“

GtAddVariablePayment payment = (GtAddVariablePayment)getObject(ifsSession, “__Payment”);
if (payment == null)
{

payment = new GtAddVariablePayment(ifsSession);

putObject(ifsSession, “__Payment”, payment);

}

If multiple pages of the same servlet on the client s screen at the same time are required, a system
generated OID is the best way to handle the situation.

© Copyright IBM Corp. 2002 Chapter 4. Writing Java Servlets for the IFSCWS 75

Chapter 5. Troubleshooting Java in the CWS

Within CWS, JSPs are used to generate HTML to be shipped to the browser. To execute Java code within
the CWS, a Java interpreter, called the Java Virtual Machine (JVM), is now included within the CWS. This
capability is provided through the inclusion of the IBM Websphere product within the CWS.

Servlets are written as a combination of Fl-provided capability, along with CWS-provided interfaces for
common functionality, Gold interface, etc. This latter set of functionality is called the Java Configurable Web
Server (CWS) Application Program Interface (API), or JCWSAPI.

Fl-Developed Servlets

Any time CWS servlets are created and compiled that had previously been referenced and executed within a
CWS, that CWS must be brought down (with the Administrative Console or the tools/stopweb command)
and restarted (with the Administrative console or the tools/startweb command). An exception to this
requirement for FI-Developed Servlets is contained within the path specified by the Reloadable Servlet
Classpath within WebSphere (see the servlets.properties file).

For full information on how to replace or deploy Java classes under WebSphere, see ,Appendix H. Building
And Deploying CWS Web Applications In WebSphere 4-.

Java CWS API Classes

The relevant Java CWS API classes for troubleshooting include the ,system- classes, the ,security- classes,
the ,Gold- classes and the ifs.system.debug system property in IfsSystem.properties file in the
WEB-INF/classes directory. If values in any of these files (the files with the java extension) are changed,
they must be recompiled with the javac command. If any Java files are changed or the debug property is
changed, the CWS must be brought down and restarted.

The system classes contain system-wide definitions for common data types and system inheritance
structure from the Java http servlet class. Some of these data types include Accounts (GsAccount), Date
(GsDate), Decimal Data (GsDecimal), Decimal Format (GsDecimalFormat), Time (GsTime), Currency
(GsCurrency), Currency Format (GsCurrencyFormat), Self-Defining Fields
(GsGmSelfDefiningField{Data,Def}). The class IfsSystem, contains system-wide definitions for an instance of
the CWS that includes country codes, language codes, page colors, layout parameters, Fl identification,
location of images as well as default values for various CWS parameters. These files should not be changed.
These files are located in the directory cws/docs/jcwsapi/com/ibm/ifs/gold.

The , security- classes implement certain Gold transactions that require encryption of data and session
management rather than just transmission of that data from the browser to the Fl. These include classes for
Logon (GtLogon), Change Pin / Password (GtChangePinPassword), Self Registration (GtSelfRegistration),
Reauthentication (GtReauthentication), Logoff (GtLogoff) and Small Business Wire Transfer
(GtSmallBusWireTransfer{Init,Cancel,Inquiry}). These files should also not generally be changed. These files
are also located in the directory cws/docs/jcwsapi/com/ibm/ifs/gold.

The ,Gold- classes implement the remaining Gold transactions not covered above. These files are
automatically generated and should definitely not be changed. These files are located in the directory
cws/docs/jcwsapi/com/ibm/ifs/gold/auto.

The ,Resource- classes are Java resource bundles that contain mappings for CWS error codes and their
respective error messages, as well as the Code To Text data. The error code resource bundles
(Ifs3tkErrorTextBundle, IfsCwsErrorTextBundle, IfsBrcErrorTextBundle, and IfsSystemErrorResourceBundle)
are provided as part of the Java CWS API installation. The Code To Text resource bundles are generated
from the information in the TDM Code To Text database table that is downloaded during CWS startup or
when a Code To Text table refresh is requested (CODERFSH transaction.

76 IFS Customizable Web Server (CWS) Guide Fourth Edition

Note: The TDM Code To Text table can contain thousands of rows of data and use of this feature may
increase the CWS startup time significantly.

Traditional CWS Debugging

CWS Trace Files

If tracing has been enabled (setting ,wsp_trace_flag=1- in the cws/config file, specifying
,wsp_trace_file=XXXXX- [for example, tmp/xyz], and setting the value of ,wsp_max_trace_size=YYYYYY-
[for example, 1000000], setting the file to be truncated at startup ,wsp_erase_log_at_startup=1- and
stopping and restarting the CWS), an internal trace of CWS will be performed. It provides timing information
on transaction processing through various parts of the CWS and can help to pinpoint locations where
timeouts may be affecting the operation of the CWS. The resulting trace file (a binary file) can be displayed
using the tool ifs.war/tools/tracefmt. To run tracefmt, the path to ifs.war/bin must be in the LIBPATH.

Gold Trace Files

A trace of the Gold transactions issued from the CWS to the Fl is managed by the value of the CWS config
file variable ,wsp_gold_trace_active- (setting to ,1- enables this capability) and the variable
,wsp_gold_trace-, which specifies the file to which the Gold messages will be dumped.

Note: Due to system and AlX file system flushing, this file may not always contain a complete message
transaction for the last transaction issued.

CWS Message Log

The messages delivered from the CWS to the ,console- can also be maintained in a log file. This file is
specified by the value of the variable ,wsp_log_file-, which can be truncated at server startup by setting the
value of the variable ,wsp_erase_log_at_startup- to ,1-.

Core Files

Sometimes the program will perform an operation that causes an exception to occur. The AIX Operating
System will generate a core file that contains the values of the data structures in use at the time an exception
occurs (most commonly a signal SIGSEGV - @). Sometimes CWS will itself determine that it has an internal
inconsistency, report an error and call the necessary routines to create the core file as well. This core file
should be saved, along with all available trace files and other logs for development to investigate. It is not
uncommon for this file to be as much as 400 - 500 megabytes long. Occasionally this file will be truncated
because of disk space limitations or because the shell under which the command tools/startweb was
started had limited the size of generated core files (issue the command ,limit- to see the current settings in
csh).

Java Specific Debugging Capabilities

IfsSystem.properties and ifs.system.debug

Enabling debugging tracing within the CWS via the i fs.system.debug system property in
IfsSystem.properties file inthe WEB-INF/classes directory:

1. Change the value of i fs.system.debug from false to true.
2. Determine the output destination and medium of the debug statements by changing the

ifs.system.debug.to.std.out, ifs.system.debug.to.html, and
ifs.system.debug.to.file properties.

© Copyright IBM Corp. 2002 Chapter 5. Troubleshooting Java in the CWS 77

3. If using debuginfoToFile, changing the value of ifs. system.debug. log. file.name from null to the
name of the file for the debugging output (for example, ,fmp/USERID.javadebuglog-);

4. Stop and restart the CWS.

Note: Enabling this level of debugging functionality will cause SEVERE performance degradation within
the CWS and generate a significant amount of additional output, which has the potential for filling up
filesystem space if not monitored.

javacore.txt file

The file javacore.txt has some similarities and some differences from the traditional AIX core file. The
javacore.txt file is generated by the Java Virtual Machine (JVM) upon instances where it determines an
internal inconsistency has occurred. The javacore.txt file consists mainly of a backtrace of the execution of
the JVM at the time of the inconsistency. Unlike the traditional AIX core file, there is no data , state-
information maintained about the execution of the CWS at the time that the file is generated, so it is not
possible to connect a debugger to the javacore.txt file and look around at the values of the data at the time
the exception occurred. The javacore.txt file is particularly useful in determining whether callouts have been
made to the Java Native Interface (JNI) functionality along the path leading to the exception occurrence.

To turn off the javacore.txt file generation in order to obtain an AlX core file with more state information, set
the JVM system property DISABLEJAVADUMP to true. This can be done on the JVM Settings page of your
Application Server in the Administrative Console.

Specific Error Messages

78 - Timeout Has Occurred

Receipt of this error during webserver startup can indicate that the TDM or SPA may have gone down.
Receipt of this error during the operation of CWS may indicate that either the MQ timeout for this Gold
message has expired or that either the TDM or SPA may have gone down.

404 - File Not Found

This is a classic http protocol error. It occurs both when the http server is unable to find a page as specified
by the Universal Resource Locator (URL) provided by the browser, or when the WebSphere process is
unable to find a servlet. In the first case, review the logs/errors and logs/access files under the directory in
which the CWS was started. Unless the paths have been changed, the root path for pages to be delivered to
the browser is the cws/docs directory. In cases where WebSphere is unable to find a servlet, check the value
of the CLASSPATH variable in the environment before the CWS was started. It may need to be updated
when new installations of CWS are performed in new locations.

801 - Unarchitected Error Code

This is a result of attempting to run a transaction through the CWS before the back end (the websrvr
process) has completed its initialization. The delay could be due to a number of problems - timeout with the
Financial Institution (FI) for the various messages at server startup time (Code to Text data, E-Biller Logos
and Clearinghouse data) or misconfiguration with the Core Controller for routing of the messages are the
most likely candidates.

78 IFS Customizable Web Server (CWS) Guide Fourth Edition

Chapter 6. CWS Developer’s ToolKit

Introduction

This chapter will outline the specific steps for installing and running the Customizable Web Server (CWS)
Toolkit for developers. The CWS Toolkit is a collection of programs, procedures and documentation used to
assist in the development and testing of the bank s Customizable Web Server pages. The CWS Toolkit is
also referred to as the Toolkit.

The Toolkit provides a CWS-like environment for bank web page developers to write and test bank web
pages. It accepts CWSAPI requests made from a web page, and returns test data appropriate to the request.
The Tool provides the CWS environment in a standalone manner. It does not require network connections to
a Transaction Delivery Manager (TDM) or other Interactive Financial Services (IFS) Interface Modules.

CWS Test Tool
De

CWS Test Tool
RS6000 De
AIX
CWS Server
WebSph
¢ D;’z o CWS Test Tool
Developer 1

.
Test
| Data

Figure 3. CWS Toolkit Environment

The Tool simplifies the task of the web page developer. The developer can focus on writing and testing web
pages, rather than on the setup and debug of the underlying network. The Toolkit allows the developer to
perform the following tasks:

e Visual test of the page

o Verify the linkage and flow from one page to another

o Verify the correct syntax is used when making CWSAPI requests

o Verify the returned data correctly populates the corresponding Java properties.

An optional enhanced simulation capability enables the developer to verify additional content in gold
requests from the customized pages and enables the Toolkit user to modify the returned data. This
enhanced simulation capability requires DB2 to be installed.

Information is presented for configuring the WebSphere server and the optional DB2 setup for use with the
Toolkit. A section is also included on tips and techniques for developing and testing web pages in the CWS
environment.

The Toolkit runs in a self-contained environment, and can be installed multiple times by multiple users in a
system. Each developer configures and uses his/her own copy of the tool as depicted in Figure 5.

© Copyright IBM Corp. 2002 Chapter 6. CWS Developer s ToolKit 79

Test Data Flow

In the bank s production environment, Gold transactions are sent from the web server to the Fl, and the FI
returns Gold data. In the Toolkit environment, Gold transactions are sent to the Toolkit, and the Toolkit
returns Gold data.

Without DB2 installed, the Toolkit contains one Gold transaction response message for every Gold request
message. The Tool returns the same response data for each request type, regardless of the request
message parameters. The tool neither examines nor verifies the correctness of the request message; it
simply returns a static response for each request.

With DB2 installed, the Toolkit examines the Gold request message to determine whether the transaction is
supported by the enhanced simulation capability. Table 2 lists the supported transactions. If the transaction
is not supported by the enhanced simulation capability, then the tool returns the same response as it would
without DB2 installed.

When the request is supported by the enhanced simulation capability, the Toolkit examines the request to
determine whether the request is valid based on the contents of the database. If the request is valid, the
Toolkit returns a Gold transaction response based on data in the database. If the request is not valid based
on the database contents, the Toolkit returns a Gold transaction to indicate the error. For example, the logon
request will provide the account summary data if the user ID, password, and PIN match the database or it
will return a logon failure message.

Figure 4 shows the data flow between the Toolkit and the web page.

Trace Files

Gold
Bitstream

I

Test Data

Figure 4. CWS Toolkit Data Flow

When a CWSAPI request is made from a page, the request is routed to the Toolkit which returns data based
on an internal table for the transaction or from the database.

Using the Basic Tool

It is suggested you use the tool initially without the DB2 option, so you get acquainted with the test programs
and procedures. It is also suggested that initially you verify the tool installation for the first user before
installing the tool for additional users.

As your expertise and familiarity increases, you can install DB2 to use the enhanced simulation capabilities,
and include additional users for concurrent use of the tool.

The first step in getting started is to review the hardware and software environment needed to install the
Toolkit.

80 IFS Customizable Web Server (CWS) Guide Fourth Edition

Prerequisites

Hardware

The CWS Developer s Toolkit is installed on an IBM e-server pSeries or RS/6000. For a typical, three-user
configuration, the following hardware environment is suggested:

Entry level IBM e-server pSeries or RS/6000 system
256MB+ RAM

4GB+ disk space

Graphics attachment for local user access

LAN attachment for remote user access

Software

See the IFS Planning Guide for a listing of all of the IFS Software Prerequisites.

WebSphere Installation

The WebSphere requirements for using CWS Toolkit are the same as any CWS instance. After installing
WebSphere and IBM HTTP Server (IHS), you must configure the following items:

1. CWS instance,

2. application server,
3. virtual host and

4. port number.

These steps are covered in Chapter 3. Installing CWS Components in the subheading ,Creating a CWS
Instance-. If you have not done so, please refer to that section and create them.

Installing the CWS Toolkit

Deploying the CWS Toolkit is similar to deploying any CWS instance. The primary difference is in the
configuration options specified in etc/config.toolkit.

The CWS Toolkit may be deployed using the WebSphere Administrative Console method discussed in
Chapter 3. Installing CWS Components, "Update and Deploy the ifs.war File- or manually by unpacking the
compressed CWS Toolkit file on top of a previously deployed CWS instance. Regardless of deployment
method, after deployment, configuring and running the CWS toolkit is the same.

The file name for the Toolkit will be something like virém1_020325tk.tar.Z. The first part is the MTI level,
followed by ,m1_-, the date, and .tar.Z. If the file is downloaded to a system other than AlX, the browser may

modify the file name. If this happens, rename the file to include the ,.tar.Z- ending after it is transferred to the
AIX system.

WebSphere Deployment

[Editor s Note: At the time this section was written, the Austin build was not corrected to create the CWS
toolkit ifs.war file. These deployment steps were not tested so this may change slightly.]

The first step is to unpack the file containing the CWS toolkit files.
1. Create a temporary directory and place the *tk.tar.Z file in the directory.

2. Unpack the file with zcat virém1_020325k.tar.Z | tar -xvf

© Copyright IBM Corp. 2002 Chapter 6. CWS Developer s ToolKit 81

3. Deploy the ifs.war file contained in the cws /bin directory. Do this with the WebSphere Administrative
Console ,Install Enterprise Application- Installation Wizard.

The deployment of the ifs.war file is the same process discussed in Chapter 3. Installing CWS Components
subheading ,Update and Deploy the ifs.war File-.

This ,Install Enterprise Application- Installation Wizard creates the CWS toolkit directory structure under the
WebSphere Application Server instance directory. If you followed the instructions with default values this
directory would be /usr/WebSphere/AppServer/installedApps/<userids>.ear/ifs.war.

Manual Deployment

Assuming you already have an installed CWS instance, another method to deploy the CWS toolkit is to
overlay the CWS tookit files on top of the installed CWS instance. To do this, follow these steps:

1. Create a temporary directory and place the *tk.tar.Z file in the directory.
2. Unpack the file with zcat virém1_020325k.tar.Z | tar -xvf

3. Copy or move the resultant tree to the WebSphere Application server instance. For example, go to the
directory just above the unpacked CWS toolkit cws directory and recursively copy the all cws directory
files including toolkit bin, docs, tools, and fis directories to the WebSphere Application server. If you
followed the instructions with default values this cws directory would be under
lusr/WebSphere/AppServer/installedApps/<userid>.ear/ifs.war.

CWS Toolkit Package Contents

The CWS Toolkit is composed of the following elements:

e Toolkit programs

e The CWS programs

e Java servlet examples

e Test data files for use with DB2

After unpacking, the cws directory contains the docs directory which is the document root for the web
server. The cws directory also contains the bin directory for the CWS executables and the tools directory
for executable scripts. The docs directory contains the subdirectories b1d, jcwsapi, and servlets. The
servlets directory contains example Jave servlets.

The £is directory is parallel to the cws directory. The fis directory contains the data directory for the DB2
based simulation data, the bin directory for the Toolkit executables, and the testdata directory for the
response data file templates.

The Toolkit is organized using the directory structure shown in Figure 5.

82 IFS Customizable Web Server (CWS) Guide Fourth Edition

N

CWS Installation
directory

CWS Tool
Tool Server Programs
Programs

CWS Java APls Example Java Serviets

Toolkit
Directory

Programs DB? Tesct Data Response Data Files

Figure 5. CWS Toolkit Directory Structure

CWS Configuration File

The name of the sample CWS configuration file distributed with the CWS Toolkit is config.toolkit and is
located in the cws directory. WebSphere installations must make the application server instance point to
config.toolkit and then modify the new file for their web server name. You should always use the
config.toolkit file distributed with the CWS as a base for your own configuration file.

To change the WebSphere Application server instance to point to the CWS toolkit config.toolkit file:

1. Start the WebSphere Administrative Console.

2. Select and highlight the Application Server instance.

3. Select and highlight the ,JVM Settings- tab on the configuration notebook.

4. Add or modify a system property named ,ifs.config.file-. The value of this property should be a relative
path to your CWS toolkit config file. For example, enter etc/config.toolkit.

Please note that when making changes to configuration and sample files, you need to ensure that no

extraneous characters are inserted. For example, if you use a DOS based editor, you need to remove the
CR-LF and EOF characters from the file before using it with AIX.

Configure the CWS Toolkit Server Programs

To get started, you only need to do the following:

© Copyright IBM Corp. 2002 Chapter 6. CWS Developer s ToolKit 83

e Substitute your web server name for WEBNAME.

If you did not install the server at the recommended path, then the paths in the config file will have to be
modified accordingly.

Other setting modifications such as running code to text or ebiller logos follow the same procedure as
desribed in the normal CWS server.

As you begin to develop and debug web pages, you may want to change additional parameters. The
descriptions of these parameters are included in comments in the config. toolkit file. For example, the
sim_exe_name is initially set to fisimtkm which provides a pre-stored response for each transaction type.
Change this value to fisimtkd (last letter ,d- instead of ,m-) to run the DB2 based simulation after you have
installed DB2.

Running the Toolkit

To start the Toolkit manually use the following command from
/usr/WebSphere/AppServer/installedApps/<userid>.ear/ifs.war

tools/startweb

You may verify the toolkit started by using any of the normal methods. First, check the WebSphere
Administrative Console event queue to see the message ,WSVR0023I: Server <userid> open for e-
business-. The next step is to read the stdout . txt and stderr. txt files produced when starting up the
toolkit. Normally, these files are under the websphere4 /working directories. Use the messages in these
files to see if the configuration file was read properly and no error messages are produced.

If the CWS server (websrvr) did not start properly as indicated by the above messages, you will need to read
the WebSphere Administrative Console Event Message log and determine the problem. The most common
problems are typos in either the config file or in the classpath or libpath files used in running the ifs.war file.

Using the Java Servlet Examples

The Java example servlets provided with the toolkit require that WebSphere be installed and correctly
configured for the user instance. The example servlets can be run with either the ,fisimtkm- (canned data) or
,fisimtkd- (DB2 data) configurations.

The example servlets reside in the directory:
/usr/WebSphere/AppServer/installedApps/<userid>.ear/ifs.war/cws/docs/servlets

To access the servlets, first setup the config file with the desired bank simulator (that is, ,fisimtkm-,
,fisimtkd-) and then start the CWS. On the browser enter the URL to call the Logon servlet. The URL format
is ,http(s)://<IPName>:<port number>/serviet/Logon-. Dependant on the bank simulator being used, enter
valid DB2 values for User ID, pin and password (for ,fisimtkd-) or any value for user id, pin and password (for
fisimtkm-). The AccountSummary servlet will be called and the example page displayed. By following the
instructions in each page display, most of the servlets, with the exception of QIF download functions, can be
exercised. Exercise the QIF download servlets by entering ,QIFDownLoadForm- after logging in.

The CSR OBO servlets require that the CWS be configured for a CSR user. After the cws is started, the
IfsLogon servlet initiates the access to the OBO logon.

Note: Additional servlets may be provided as requested by the banks. All servlets for V1IR6M1 are located
in the servlets directory (i.e., http-<instance id>/cws/docs/servlets). All users should review the
contents of this directory whenever a new Toolkit delivery is available.

Enabling Server Encryption
When testing web pages with the Toolkit, you should be running without certificates or security. However, if
you want to test using SSL, you need to obtain a server certificate from a certificate authority and install it.

For the time being, recall that the objective is for you to test the pages, and that security (certificate and
encryption) is beyond the scope of the current Toolkit.

84 IFS Customizable Web Server (CWS) Guide Fourth Edition

Using the Enhanced Simulation Tool

The enhanced simulation tool requires DB2 version 7.1 with fix pack 5 or later be installed, setup and a
change to the CWS config file.

DB2 Configuration

DB2 installation for use of the Toolkit may be done with either the panels included with the DB2 Version 7.1
product or with SMIT panels and some command line entries. The DB2 Quick Beginnings (S105-8148) book
contains detailed instructions for this installation. This book can be used online starting with the web site
http://www.software.ibm.com/data/db2/library/ and following the links to ,DB2 Publications- and then ,Quick
Beginnings for Unix-. Additional information can be found by downloading the FAQs, hints and tips, or
Redbooks (extensive product use guides) at this web site:

http://www-3.ibm.com/software/data/db2/udb/support.html.

The next two sections summarize these instructions.

Using DB2 Installation Panels

DB2 installation for use of the Toolkit may be done with the following steps:
1. Logon as root.

2. Create a Journal File System with mount point /home/db2inst1 and size 122000 blocks of 512 bytes or
equivalent.

3. Mount the CD ROM containing the DB2 product using SMIT panels.
4. Run the “db2setup” program on the CD and install the following:
DB2 Client Application Enabler
DB2 UDB Workgroup Edition

DB2 Product Library - customize for en_US

o

From these same panels, create a DB2 Instance and optionally create a DB2 Fence user and an
Administration server. Go to ,Completing DB2 Setup-.

Using SMIT Panels

Instead of the DB2 panel, installation for use of the Toolkit may be done with the following steps:
1. Logon as root.
2. Create a group ,db2-.
3. Create a user ID for ,db2inst1- with ,db2- as primary group.
4. Add the ,db2- group to all users of the tool.
5. Create a Journal File System with mount point /home/db2inst1 and size 122000.
6. Use the SMIT panels to install the following:
DB2 Client Application Enabler Software Bundle
DB2 Server(s) Software Bundle

© Copyright IBM Corp. 2002 Chapter 6. CWS Developer s ToolKit 85

DB2 Client Application Enabler

Code Page Conversion Tables - Uni Code Support
DB2 Connect

DB2 Communication Support for TCP/IP

DB2 Engine

DB2 Run-time Environment

DB2 Product Document (HTML) - English

Java Database Connectivity (JDBC) Support
Open Database Connectivity (ODBC) Support
License Support for DB2 UDB Workgroup Edition

7. Go to the /usr/lpp/db2_05_00/instance directory and create an instance with

./db2icrt -u db2instl db2instl
8. As root, go to the /usr/lpp/db2_05_00/cfg directory and create links with

./db21n
9. Go to the /usr/lpp/db2_05_00/cfg directory and update the product licenses

./db2licinst /usr/Ipp/dbZ_05_00/install/db2work.1ic
If you want to use a Lotus Approach or Excel spreadsheet on a Windows 95 system to view and change
database tables, then do these steps on the AlX system and see below.

1. Type these commands:

db2set DB2COMM=TCPIP
ab2
update database manager configuration using
SVCENAME dbZcdbZinstl
quit
2. Asroot, edit the /etc/services file to add these lines:

db2cdb2instl 50000/tcp # Communications port for DB2
db2idb2instl 50001/tcp # Interrupt port for DBZ

3. As auser, stop and then restart the database manager with these commands:

db2stop
dbZstart

Completing DB2 Setup

1. Logon as a toolkit user and add this line to your .profile

. /home/db2instl/sqllib/db2profile
2. Type db2 and the following commands:

dbZstart
create database <userid>
list database directory
quit
3. Change to the /usr/WebSphere/AppServer/installedApps/<userid>.ear/ifs.war/fis/data directory and type
“setupfis -t” to load the initial data in the database. A large number of messages from the database

86 IFS Customizable Web Server (CWS) Guide Fourth Edition

manager will be displayed. Some of these messages will indicate a failure to delete a table the first time
you run setupfis. These ,delete- commands will be needed when you rerun setupfis to restore the initial
data. When this step completes successfully, the printout will include a statement near the end that says:

Binding was ended with “0” errors and “0” warnings.

Each time you reboot the machine, you must start the database manager again. This can be automated if
root would add this line to /etc/inittab

rcdbZ:2:wait:/etc/rc.db? >/dev/console 2>&1 # Start dbZ
and create a file in the /etc directory containing the following:
#!/bin/ksh

Start dbZ database manager

#

Note: We do this by becoming the db2instl user,
and running the script:

/home/db2instl/sqllib/adm/dbZstart

#

#

su - db2instl ‘-c \
. /home/dbZ2instl/sqllib/dbZprofile; \
/home/db2instl/sqllib/adm/dbZ2start *

CWS Configuration File for Enhanced Tool

For the enhanced simulation, change the CWS config file as follows:

e Change ,sim_exe_name- by changing the last character from ,m- to ,d- to read
-fis/bin/fisimtkd-

e Set,sim_db2_name- equal to <userid> (your database name) if this was not already done.

o Setthe wsp_code_to_text_active and wsp_ebiller_logos_active to the recommended values for the
enhanced tool.

Running the Enhanced Toolkit

As with the regular Toolkit, go to the directory
/usr/WebSphere/AppServer/installedApps/<userids>.ear/ifs.war, and type:

tools/startweb

You may verify the toolkit started by using any of the normal methods. First, check the WebSphere
Administrative Console event queue to see the message ,WSVR0023I: Server <userid> open for e-
business-. The next step is to read the stdout . txt and stderr. txt files produced when starting up the
toolkit. Normally, these files are under the websphere4 /working directories. Use the messages in these
files to see if the configuration file was read properly and no error messages are produced.

Basic Data Management

The simplest way to view the contents of the DB2 database is to issue direct queries. Try the following:

abz

dbZstart (if needed)

connect to <database name> (database name should be your user ID)

select user_id from ifs_user

select * from ifs_user where user_id='ARF1001’

list tables

quit
Note that DB2 is not case sensitive except inside the quotes, which must be single quotes. As you can see,
,ifs_user- is a table name and ,user_id- is a column name. Using the ,select- statement, you can view all
data in the tables provided with the enhanced simulation.

© Copyright IBM Corp. 2002 Chapter 6. CWS Developer s ToolKit 87

Using the ,update- and ,insert- statements, you could modify and augment the data in the tables provided
although these updates will have to satisfy the rules of the database. See the DB2 Command Reference for
syntax of these commands.

A recommended approach for modifying data is to create a DB2 script containing only the required changes.
This script can then be rerun to restore the values to a known state after installing a new release and after
experimenting with temporary changes. Please note, however, that future updates of the Toolkit will have to
add columns as Gold message definitions change. Also, design changes in the Toolkit could significantly
alter table layouts. This means that your data updates may have to be reworked to accommodate table
definition changes.

Data Management using Approach or Excel

A Lotus Approach or Microsoft Excel spread sheet on a Windows Operating System system can be used to
view and update data in the DB2 tables on the AlIX system with some additional setup.

On the Windows system, do the following:

1. Install Lotus Approach or Microsoft Excel.

2. Install IBM Universal Database Version 7 - DB2 Connect Personal Edition.

3. Using the DB2 Client Configuration Assistant, add the database on the AIX system using manual
;:;ng%ugagr-ion, TCP/IP, LAN based, your host name and port 50000, your database name, and register

4. Using the spread sheet program, open with file type of ODBC and find your database name.

5. When viewing a table, overtype an entry and press enter to change the value in the database on the AlX
system. Use control-r to refresh the view from AIX.

Please note that future updates of the Toolkit will add columns as Gold message definitions change. Also,
design changes in the Toolkit could significantly alter table layouts. This means that your data updates
through the spread sheet will be lost when you move to a new version of the Toolkit because you will have to
reload new tables from the new version.

Development and Test Environment

Once installed, you have a development and test environment that allows you to create and modify web
pages. You should be using your own server port so that other users can run their own copies of the server
and the Toolkit without interfering with each other.

The development and test environment contains the complete CWS programs as released with the product
with one exception. For the Toolkit, the CWS message server has been modified to simplify operations. In
the Toolkit, the CWS message server communicates directly with the Financial Institute (FI) simulator
instead of using MQ Series queues to communicate with the FI. Also, pin and password encryption is not
used in the Toolkit.

The Test Environment

As you develop and customize your CWS applications, you will probably like to quickly inspect the results to
ensure the look-and-feel of the pages is correct.

At this point, it is likely you are not too concerned with performance or security, since you simply want to
make sure that the user interface is efficient and easy to use.

88 IFS Customizable Web Server (CWS) Guide Fourth Edition

Note that for the basic Toolkit, all the returned data is static in nature and can not be changed by your
application. With the DB2 enhanced Toolkit, you can modify the tables to test additional aspects of your
customized pages.

If you have problems restarting the web server, delete your trace and log files
(rm /tmp/*.your-queue-name, rm /tmp/*.port-number), prior to starting the server. To start the server use the
ifs.war/tools/startweb script.

Note: If you start your server as root, you might have problems later accessing the trace files. You should
always run the server under your userid and not as root. You can verify your userid and the
processes you have started by entering “ps x”” under your name.

CWS Trace and Log Facilities

The CWS contains several logging facilities which can be used to gather diagnostic information. These
facilities are:

1. A message log
2. An internal execution trace

3. Alog file for Gold messages

CWS Message Log

The CWS message log file contains operational and error messages generated by the CWS. Messages such
as startup messages and failure messages are written to this file.

The CWS message log file is identified in the CWS configuration file by the wsp_log_file= parameter. The
AlX userid under which the CWS executes must have AlX file permissions to write to the message log file.
Following is a sample parameter:

wsp_Tlog_file=/tmp/WEBNAME.msglog

The CWS always writes messages to the message log. Logging of messages can not be turned off. CWS
operations personnel should periodically review the message log and remove messages from it. The CWS
always writes new messages to the end of the existing log. The CWS never deletes messages from the log.

CWS Internal Execution Trace

The CWS contains a facility for tracing internal web server execution activity. This facility is useful for
debugging internal web server problems. The internal execution trace contains trace records identifying entry
and exit to key CWS functions.

CWS internal execution tracing is optional. The CWS configuration file contains parameters containing the
name of the trace file, the maximum size of the trace file and whether or not internal tracing is to be active
when the CWS is started. Following are sample parameters:

wsp_trace_flag=1
wsp_trace_file=/tmp/WEBNAME. trace
wsp_max_trace_size=100000

The above parameters indicate that trace should be active, the name of the trace file, and the maximum
trace file size is 100000 bytes.

The CWS clears the contents of the trace file at CWS start time. The trace file wraps when the maximum
trace file size is encountered.

Internal trace execution can be turned on and off during the execution of the web server. The CMDSRV
utility can be used to turn it on and off. Following are the CMDSRV commands to turn tracing on and off:

© Copyright IBM Corp. 2002 Chapter 6. CWS Developer s ToolKit 89

cmdsrv trace system on
cmdsrv trace system off

The ,cmdsrv- utility program is installed in directory ifs.war/tools/. To run cmdsrv, the path to ifs.war/bin must
be in the LIBPATH. You will also need to export the environment variable WSP_SHAREDMEM_FILE to
point to the shared memory file. For example:

export LIBPATH=$LIBPATH:
/usr/WebSphere/AppServer/installedApps/<userid>.ear/ifs.war/bin
export WSP_SHAREDMEM_FILE=/home/<userid>/CWS/logs/<userids>.sharedmen

It is recommended that production web servers do not run with internal execution tracing active for
performance reasons. However, it is recommended that production web servers specify an internal trace file
in the CWS config file to allow it to be turned on as needed.

Viewing the Internal Execution Trace

The internal execution trace file is not in a human readable format. The tracefmt utility, contained in the
ifs.war/tools directory, is provided to format the trace file into a readable format. To run tracefmt, the path to
ifs.war/bin must be in the LIBPATH. It is invoked from an AIX console, and takes a single parameter, the
name of the internal trace file to format. Tracefmt outputs formatted trace records. These trace records can
be redirected to an output file for viewing with a text editor. Following is a sample invocation of tracefmt
which pipes the output to a file called mytrace:

tracefmt /tmp/WEBNAME.trace > ~/mytrace

This assumes that the tracefmt program is contained in a directory in your AIX PATH variable.

Gold Messages Trace

The CWS contains a facility for logging Gold messages which are generated or received by the web server.
This facility is also referred to as the Gold trace facility.

Gold trace is very useful for debugging problems related to the content of gold messages. Goldtrace allows
you to see the content of messages sent by the web server to the FI. It also allows you to see the content of
messages returned to the web server from the FI.

It is often necessary to see the actual gold messages which are sent and received in order to diagnose why
a web page may not contain the expected information. There may be problems in the web page because the
web page does not pass the correct information when the request gold message is built. Or, there may be
problems because the Fl does not put the correct data in the response message. The gold trace facility
allows you to see the content of these messages.

The tracing of gold messages is optional. The CWS configuration file contains parameters containing the
name of the goldtrace file, an indicator whether or not gold tracing is to be active when the CWS is started,
and a userid for whom gold tracing should be done. Following are sample parameters:

wsp_gold_trace_active=I
wsp_gold_trace=/tmp/WEBNAME.goldtrace
wsp_trace_userid=WwEBNAME

The above parameters indicate that gold trace should be active when the web server starts, the name of the
gold trace file, and the userid to gold trace.

The CWS clears the contents of the gold trace file at CWS start time. The CWS appends new gold trace
records at the end of the file. The gold trace file size always grows when the CWS is tracing gold messages.
The CWS config file variable wsp_gold_trace_active determines the state of the gold trace facility at CWS
startup. The following values are supported:

0 -> gold trace not active
1 -> gold trace active for all userids
2 -> gold trace active only for userid specified in wsp_trace_userid

90 IFS Customizable Web Server (CWS) Guide Fourth Edition

Gold tracing can be turned on and off during the execution of the web server. The CMDSRYV utility can be
used to turn it on and off. Following are the CMDSRV commands to turn tracing on and off:

cmdsrv trace gold on
cmdsrv trace gold off

It is recommended that production web servers do not run with gold tracing active for performance reasons.
However, it is recommended that production web servers specify a gold trace file in the CWS config file to
allow gold trace to be turned on as needed.

Viewing the Gold Trace Messages

The gold trace file is in standard ASCII text format, and can be viewed with a text editor. The gold trace
includes each request and response. It will start with a ,SRVSTART- pair of messages, a ,GETIFSPR- pair
of messages, and numerous ,CODERFSH- pairs of messages prior to the first ,LOGON- pair of messages.
The short names in Table 2 can be used to relate these gold messages to the enhanced simulation
transaction names.

The following is an excerpt from a gold trace for an ,ACCTHIST- (Account History Transaction) Both the
request and response include a message header and body. The structure of these messages and the codes
used for values are defined in the file ifscstrs.h which is part of the Gold Message Translation Interface
(MTI).

===== REQUEST MESSAGE
. Message Translation Interface: MTI/GOLD 99 RO1 MOZ * Message Header:
Message Info:

HeaderType: [1]

OriginatorType: [2001]

Message Mode: [5001]

Code Page: [850]

Request Type: [ACCTHIST] Interval Number: [0]
TimeStamp: [1998-10-23-14.57.03.000000]
GMTOffsetMinutes: [0]

Server Context: []

remoteAddress = [9.53.131.169]

Session Info:

Userld: [ARF1001]

Serverld: [donjames]

FI Id: [IBANKA]

Session Num: [2]

IFS Trace ID:

Server Instance Number: [1]

Service Request Reference: [5]

Return Code Info:

Comp Code: [0]

Reason Code: [0]

senseData = []

Extra Phase 2 Header Fields:
2 MsgHdrTg (Id: [2019])
2.1 TrnUIdTg (Id: [20069], Len: [1], Val: [])

Message Body:
IfsCnsmrIdTg ((IFS_CNSMR_ID) Id: [14])
1 cnsmr_id: [ARF1001]
.2 ch_cnsmr_id: [ARF1001]
3 perm_user_id: []
IfsTxnRqstDt1Tg ((IFS_TXN_RQST_DTL) Id: [59])
acct: (IFS_ACCT_ID)
acct_tp_cl: [CCA]
.2 acct_nbr_id: [ARF1I001CCAl]
acct_nck_nm: [ARF1001 CREDIT CARD 1]
txn_dt_rng: (IFS_DT_RNG)
strt_dt: (GOLD_DATE)
dt_val: []
2 dt_fmt_code_cl: [IS0]
end_dt: (GOLD_DATE)
.1 dt_val: []
.2 dt_fmt_code_cl: [IS0]
txn_amt: (IFS_AMT_RNG)

[y

—

NN NN NN NN NN N NN =
NN N ===

GQOMN NN NN NN = =

© Copyright IBM Corp. 2002 Chapter 6. CWS Developer s ToolKit 91

2.3.1 Tow_amt: [USD 0.0]
2.3.2 high_amt: [USD 0.0]

2.4 chk_nbr_rng: (IFS_CHK_RNG)
2.4.1 Tow_sri_nbr_id: [0]
2.4.2 high_sri_nbr_id: [0]
2.5 txn_prd_tp_cl: []

2.6 txn_tp_ind: [1]

2.7 txn_srce_val: []

2.8 fi_refr_nbr_id: []

2.9 txn_rec_cntl: (IFS_REPEAT_CNTL)
2.9.1 max_nbr_rec_val: [15]
2.9.2 Ist_nbr_rec_val: [0]

===== RESPONSE MESSAGE

. Message Translation Interface: MTI/GOLD 99 RO1 MOZ * Message Header:
Message Info:

HeaderType: [1]

OriginatorType: [2001]

Message Mode: [5002]

Code Page: [850]

Request Type: [ACCTHIST] Interval Number: [0]
TimeStamp: [1998-10-23-14.57.03.000000]
GMTOffsetMinutes: [0]

Server Context: []

remoteAddress = [9.53.131.169]

Session Info:

Userld: [ARF1001]

Serverld: [donjames]

FI Id: [IBANKAJ

Session Num: [2]

IFS Trace ID:

Server Instance Number: [1]

Service Request Reference: [5]

Return Code Info:

Comp Code: [0]

Reason Code: [0]

senseData = []

Extra Phase 2 Header Fields:
2 MsgHdrTg (Id: [2019])
2.1 TrnUIdTg (Id: [20069], Len: [1], Val: [])

Message Body:
IfsRespCodeTg ((IFS_RESP_CODE) Id: [44])
resp_code_cl: [000]
fi_proc_ind: []
IfsTxnRespSumTg ((IFS_TXN_RESP_SUM) Id: [58])
info_dt: (GOLD_DATE)
dt_val: [1998-10-23]
.2 dt_fmt_code_cl: [ISO]
acct_id_dtl: (IFS_ACCT_ID)
acct_tp_cl: [CCAT
.2 acct_nbr_id: [ARFI001CCA1]
3 acct_nck_nm: []
txn_info: (IFS_REPEAT_INFOQ)
more_f: []
tot_txn_mtch_val: [1]
tot_txn_snd_val: [0]
rpt_txn_resp_dtl: (IFS_TXN_RESP_DTL, Occurs:[1])
rpt_txn_resp_dtl: ((IFS_TXN_RESP_DTL), Occur: [1/1])
txn_orig_dt: (GOLD_DATE)
dt_val: [1997-10-02]
.2 dt_fmt_code_cl: [ISO]
ldgr_bal_amt: [USD 0.00DR]
txn_tp_cl: [2]
txn_code_cl: []
txn_srce_val: []
txn_tp_desc: [CREDIT CARD TRANSACTIONS]
txn_pst_dtl: (IFS_TXN_PST_DTL)
txn_pst_dt: (GOLD_DATE)
dt_val: [1997-10-03]
dt_fmt_code_cl: [ISO]
fi_refr_nbr_id: [19971005]
srvc_provd_refr_id: [19971005]

W N = [—

[ASIEACEE S SR S SR SR SR SR SR SR S SR CIE SR SRS G R SR SR S S S SR S SRR
[

AAANAAANAAMAANANDNARANARANRDNDNWQOWWWNMNNN R R R
L T S e ey e .
NN NNNNOOHOOWN =~

o N
N =

IFS Customizable Web Server (CWS) Guide Fourth Edition

2.4.1.7.4 txn_amt: [USD 125.14DR]

2.4.1.7.5 frgn_curr_amt: [0.0]

2.4.1.7.6 exch_rate: [0.0]

2.4.1.8 txn_chk_id: (IFS_TXN_CHK, Occurs:[0])
2.4.1.9 atm_txn_id: (IFS_ATM_TXN_ID, Occurs:[0])
2.4.1.10 txn_pymt_to_amt: (IFS_TXN_PYMT_TO_AMT, Occurs:[0])
2.4.1.11 ach_id: (IFS_ACH, Occurs:[0])

2.4.1.12 mortgage_dtl: (IFS_TXN_MORTGAGE, Occurs:[0])
2.4.1.13 dep_term_mat: (IFS_DEP_TERM_MAT, Occurs:[0])
2.4.1.14 dep_term_dep: (IFS_DEP_TERM_DEP, Occurs:[0])
2.4.1.15 trnst_rout_nbr_id: [0]

2.4.1.16 to_pncpl_amt: [0.0]

2.4.1.17 to_int_amt: [0.0]

2.4.1.18 to_escrw_amt: [0.0]

2.4.1.19 to_od_amt: [0.0]

2.4.1.20 comm_amt: [0.0]

Selective Userid Gold Tracing

The gold trace facility provides the ability to trace all gold messages sent or received by the web server. It
also provides the ability to only trace messages sent to or received by a selected userid. The selective gold
tracing ability allows traces to be gathered for a selected userid that may be having problems without having
to write all gold trace messages to the gold trace file.

Selective userid gold trace can be specified in the CWS config file via the following parameters. The example
uses a userid of WEBNAME:

wsp_gold_trace_active=2
wsp_trace_userid=WEBNAME

Selective userid gold trace can be also be enabled via the emdsrv utility command:
cmdsrv trace gold userid WEBNAME
All gold tracing can be stopped with the following cmdsrv utility command:
cmdsrv trace gold off
Tracing gold messages for all users can be started with the following cmdsrv utility command:

cmdsrv trace gold on

Reducing the Size of a Gold Trace

Another utility, parefile works with huge Gold traces. It takes 2 arguments:

e The name of the input file
e The search string to look for to start writing records out

The utility outputs <input file>.out which contains the gold trace starting at the first record where the search
string was found, and an <input file>.strip which contains 1 line for each gold request and response item in
the file. The type of transaction (response or request), userid, time, transaction name, completion code,
reason code, and session number are formatted for each request or response block.

Another utility, golduser reduces the size of a gold trace. This utility will search a goldtrace and create a
goldtrace output file with only the transactions for the specified user. The tool takes 2 input parameters:

e The name of the gold trace file
e The userid to search for

The output file is the input goldtrace file name with the userid to search for appended to the end.

Code to Text Problems

Code To Text tables lookup problems can be diagnosed with a program called qcodes. It uses input data
files obtained via the cmdsrv interface to verify or display text from user entered tag/code data pairs.

cmdsrv codes dumpmti - generates a binary image file of the currently loaded table as filename codetbl.mti
© Copyright IBM Corp. 2002 Chapter 6. CWS Developer s ToolKit 93

cmdsrv codes dump - generates a text file of the currently loaded table as filename codetbl.out
gcodes codetbl.mti - invokes interactive selection of Tag/Code and displays the text found

gcodes codetbl.mti codetbl.out - invokes verify mode, which checks that all tag/code identified in
codetbl.out can be found in codetbl.mti

Logging for FISim

There are currently two forms of logging for FISim: FISim Event Messages and Gold Request/Reply Dumps.
The Gold Request/Reply Dumps are hard-coded to be in /tmp/<login-id>.fisgold. There is no flexibility with
these log files. FISim always dumps the request and all replies. The FISim Event Messages are in
/tmp/<login-id>.ifsdlog. FISim startup messages are always logged until a GOLD Request is processed. The
ftimp/<login-id>.<cnsmr_id> is also available for review. The login-id is the environment variable for LOGIN
and the cnsmr_id is retrieved from the Gold Request.

When a Gold Request is processed, in the enhanced toolkit, flags are retrieved from the DB2 table,
IFS_SYSTEM. These flags help to define the Logging Level. Logging can be turned off if all flags in the
IFS_SYSTEM table are set to zero. That is logging is turned off once the first Gold Request has been
processed. The initial startup events will be reported in /tmp/<loginpid>.ifsdlog. Gold Request/Reply
messages are always logged.

Debug Process

This may be the most time consuming phase after you have created new pages.

Debugging

Before you start debugging, you should ensure that all the necessary processes are running.

Type “ps x”

Something similar to the following will be displayed:
PID TTY STAT TIME COMMAND

39790 - A 0:26 /usr/WebSphere4/AppServer/java/jre/bin/java -classpath
41128 - A 0:03 websrvr /usr/WebSphere4/AppServer/installedApps/userid

56904 pts/0 A 0:00 ps x

Potential Problems: If any of the processes above are missing from your list it s an indication that you
have a configuration problem. Possible problems are:

e The configuration of the CWS under the WebSphere Administrative Console has errors. Check the
Event Message log for possible errors.

e The Interactive Financial Systems Web Module under Enterprise Applications has not been
deployed properly. Reinstall the Entrerprise Application (perhaps using the Install Enterprise
Application Wizard) and check the Event Message log for errors.

e The Interactive Financial Systems Web Module under the Application Server has not been installed
properly. Check the Application Server for proper settings in the properties tabbed notebook.

e The trace files (*.<userid>), or server files (*.your-port-number) are owned by a different user, and
your server can not access them.

The server has no access to the Web application. Try changing the directory permissions to 755.
Hardware problem (insufficient memory, problems with disk segments, etc.).

94 IFS Customizable Web Server (CWS) Guide Fourth Edition

Debug Functions

There are several functions available in the CWSAPI to assist the developer during the test phase of the
project. By using functions around code that you may be having trouble with, you can get additional hints in
isolating the problem.

The Debug functions display information during development to help you troubleshoot problematic areas in
your code. The Debug functions are included in the CWSAPI library.

These debug functions write output to the same browser windows to which normal output is directed, so they
should be removed or disabled prior to deploying production code. Also, you should retest your programs to
ensure that you have not accidentally removed necessary code. In order to use these functions, you should
become familiar with the CWSAPI document.

Debugging Tips
Errors Returned by the CWSAPI: If you are getting an error from a CWSAPI call, you should inspect
the error-log and trace files. Errors in the CWSAPI are probably related to:

e Calling a function with the incorrect number of parameters
e Calling the function with an incorrect data type

A common mistake is to send an integer data type instead of an character string value. For example,
specifying value=1 instead of value=-1-. If you get a numeric error without a meaningful string associated
with it, locate the error number in the CWS include files to find its description.

Gold Definitions in the CWS: The include file ,cws/bld/\gmdef.h- contains Gold values used by the
CWS. Inspection of this file can be helpful in identifying internal values that may be reported in error and
diagnostic messages.

The Igmdef.h include file is segmented in the following areas:

o Definitions and Value Assignments for Gold Fields. For example:

#define Atm_IfsRespDtiTg 1 /* StructNode */
#define Atm_IfsRespDti1Tg_RespCodeClTg 2 /* LeafNode */
#define Atm_IfsRespDtiTg_FiRfrNbridTg 3 /* LeafNode */
#define Atm_IfsRespDt1Tg_SrvcPrvdRfridTg 4 /* LeafNode */
#define Atm_GMSelfDefiningInfoTg 5 /* StructNode */
#define Atm_GMSelfDefiningInfoTg_GMSDFieldDefTg_repeatCounter 6 /*LeafNode /
#define Atm_GMSelfDefiningInfoTg_GMSDFieldDefTg 7 /* LeafNode */

e Gold Top-Level Structure Definitions. For example:

#define LogonTxnTg 1
#define LogoffTxnTg 2
#define IfsPingTxnTg 3
#define AccountHistoryTxnTg 4
#define UserProfileTxnTg 5
#define BpProblemTxnTg 6
#define AcctNicknameTxnTg 7

e Gold Transaction Names. For example:

#define GMREQ_GENUNDLYV 1
#define GMREQ_QSELFDEF 2
#define GMREQ_ADDACCT 3
#define GMREQ_BALINQ 4
#define GMREQ_ACCTDTL 5
#define GMREQ_ACCTHIST 6
#define GMREQ_NICKNAME 7

If you get a diagnostic message stating that certain ,transaction x- with ,atom y- is in error, or that can not be
accessed, it is likely that you have an error on a particular CWSAPI request. In that case, look through the
Ilgmdef.h file to locate the name of the transaction and the corresponding atoms.

Error in Constructor: If you are not getting an error in the CWSAPI but not all the attributes are set on
the object created, you are probably having a problem in the CWS Programs (wsp.so and websrvr).

© Copyright IBM Corp. 2002 Chapter 6. CWS Developer s ToolKit 95

Run-time error in the CWS programs are probably related to:

e Your data files being from a different version of the Gold Data Definition.
e Your library path might be pointing to an old version of cws.so.

Miscellaneous Debugging Tips: Debugging requires certain knowledge about how the Enterprise
Server manages your application. After you make changes and compile your code, your application must be
restarted. Normally you do not need to shutdown the server, but simply use the Application Manager to
restart your web application.

Before you make changes to the source code, you should study the flow of the web page. Use your client
browser to run the original, unmodified web applications and inspect the page dependencies. Pay particular
attention at the URL entry field where the HTML file name is going to be displayed, and the links that will be
taken from this page, including possible help text where needed. Once you understand the flow and
dependencies of the page you can start making changes. As a good programming practice always keep
copies of the original work for reference.

As you modify your pages, you may want to identify your changes for easy reference and future
maintenance. Instead of deleting unneeded sections of code, you should comment out those sections.

Also, the consistency of style when making changes will pay back many times over, especially when new
versions of the CWS are installed.

Support Pages

Some of the CWS Customization APIs require HTML pages for interaction with a client. These pages will
typically not be seen by end-users under normal operation.

error.html: This page is used by the Raise Exception function for message display at the client.

Gold Transactions Serviced By Enhanced Simulation

Table 4. Transactions Serviced by DB2 Based Simulation

Request Message Short Name Meaning

ACCOUNT_HISTORY_TXN ACCTHIST Account History Inquiry
ACCT_DTL_TXN ACCTDTL Account Detail Inquiry
ACCT_NICKNAME_TXN NICKNAME Change Account Nickname
ACCT_PINPSWD_TXN PINPSWD PIN / Password Change
ACCT_TAX_DTL_TXN TAXDTL Account Tax Detall

ADD_ACCT_TXN ADDACCT Add Account to Service Profile
ADD_BILLER_TXN ADDBILR Add Biller
ADD_BUSINESS_INVOICE_TXN ADDBSINV Add Business Invoice Transaction
ADD_FIX_PYMT_TXN AFIXPYMT Add Fixed Amount Recurring Payment Transaction
ADD_FIX_TFR_TXN AFIXTFR Add Fixed Amount Recurring Transfer
ADD_PAYEE_TXN ADDPAYEE Add Payee

ADD_SRVC_TXN ADDSRVC Add Service

ADD_VAR_PYMT_TXN AVARPYMT Add Variable Amount Single Payment
ADD_VAR_TFR_TXN AVARTFR Add variable Amount Single Transfer
AUTH_ACCT_TXN AUTHACCT Authorize Online Registration Accounts
BAL_INQ_TXN BALINQ Balance Inquiry

BILLER_DTL_TXN BLRDTL Biller Detail

BILLER_INQ_TXN BLRINQ Biller Inquiry

BP_PROBLEM_TXN BILLPROB Report Bill Pay Problem

96

IFS Customizable Web Server (CWS) Guide Fourth Edition

Request Message

Short Name

Meaning

BP_VERIF_TXN BPVERF Request Bill Pay Verification
BUSINESS_INVOICE_INQR_TXN BSINVINQ Business Invoice Inquiry Transaction
CC_DSPUT_TXN CCDSPUT Report Credit Card Dispute
CHECK_COPY_TXN CHKCOPY Check Copy Order

CHK_BOOK_TXN CHKBOOK Check Book Reorder
CNCL_STOP_CHK_PYMT_TXN CNCSTPMT Cancel Stop Check Payment
CHNG_BILLER_TXN CHNGBILR Change Biller

CHNG_CC_LMT_TXN CHGCCLMT Request Change Credit Card Limit
CHNG_FIX_PYMT_TXN CFIXPYMT Change Fixed Amount Recurring Payment
CHNG_FIX_TFR_TXN CFIXTFR Change Fixed Amount Recurring Transfer
CHNG_PAYEE_TXN CHGPAYEE Change Payee
CHNG_PYMT_INSTN_TXN CPYMTINS Change Payment Instance
CHNG_VAR_PYMT_TXN CVARPYMT Change Variable Amount Single Payment
CHNG_VAR_TFR_TXN CVARTFR Change Variable Amount Single Transfer
CNSMR_BP_AUDT_INQR_TXN CBPAUDIN Consumer Bill Pay Audit Inquiry
CNSMR_MSG_CFRM_TXN CNSMCFRM Consumer Message Confirmation
CNSMR_SSN_START_TXN CONSSEVT IFS Consumer Session Start Transaction
CODE_REFRESH_TXN CODERFSH Code Refresh

CR_APPL_TXN CRAPPL Small Business Credit Application
CSR_CNSMR_STRT_TXN STRCNSMR CSR Consumer End
CSR_CNSMR_END_TXN ENDCNSMR CSR Consumer Start
CSR_CUST_PRFL_TXN CSGNSMR CSR - Consumer Profile Request
CSR_FORCE_USR_TXN FORCEUSR IFS CSR Force User
CSR_SHRT_CNSMR_PRFL_TXN CSSCNSMR CSR Short Consumer Profile
CSR_UPDT_CUST_PRFL_TXN CSUCNSMR CSR - Update Customer Profile
CUST_FI_EMAIL CSTEMAIL Customer Reply or Communications to Fl
DEL_BILLER_TXN DELBILR Delete Biller
DEL_BUSINESS_INVOICE_TXN DELBSINV Delete Business Invoice Transaction
DEL_FI_MSG DELMSG Delete a FI Initated Message
DEL_FIX_PYMT_TXN DFIXPYMT Delete Fixed Amount Recurring Payment
DEL_FIX_TFR_TXN DFIXTFR Delete Fixed Amount Recurring Transfer
DEL_PAYEE_TXN DELPAYEE Delete Payee

DEL_PYMT_INSTN_TXN DPYMTINS Delete Payment Instance
DEL_VAR_PYMT_TXN DVARPYMT Delete Variable Amount Single Payment
DEL_VAR_TFR_TXN DVARTFR Delete Variable Amount Single Transfer
DISCLOSURE_ACPT_TXN ACPTDSCL Agreement Online Registration Disclosure
DISCLOSURE_INQ_TXN DISCLINQ Disclosure Inquiry
EBILL_ACT_DLVRY_TXN EBACTBLR Activate Electronic Biller Delivery
EBILL_BILL_INQ_TXN EBBILINQ Electronic Bill Inquiry
EBILL_BILLER_INQ_TXN EBBLRINQ Electronic Biller Inquiry
EBILL_CHG_STATE_TXN EBCHGST Change Electronic Bill State
EBILL_DEACT_DLVRY_TXN EBDEABLR Deactivate Electronic Biller Delivery
EBILL_BILLER_DLVRY_INQR_TXN EBDLINQ Electronic Biller Delivery Inquiry
EXCH_RATE_INQR_TXN EXCHRATE Exchange Rate Inquiry Transaction
FI_PROFILE_TXN FIPROF FI Profile

© Copyright IBM Corp. 2002

Chapter 6. CWS Developer s ToolKit

97

Request Message Short Name Meaning
GET_CHG_CNSMR_ID_TXN GCHCNSMR Get Changeable Consumer ID
GET_CLHS_TP_TXN GCLHSTYP Get Clearinghouse Type Table
GET_CNSMR_ID_TXN GCNSMRID Get Consumer ID
GET_DEST_CLHS_TXN GDESTCLS Get Destination FI Clearinghouse Type Table
GET_DEST_FI_TXN GDESTFI Get Destination Fl table
GET_DEST_CLHS_PRFL_TXN GDSTCLSP Get Destination FI Clearinghouse Profile
GET_EUR_EXCH_RT_TXN GETEURRT Get Euro Exchange Rates Inquiry Transaction
GET_EXCH_CAL_TXN GEXCHCAL Get Exchange Calendar
GET_FI_MSG READMSG Read FI Initiated Message
GET_IFS_PROFILE_TXN GETIFSPR Get IFS Profile Inquiry
GET_INV_SVC_DTL_TXN GINVDTL Get Investment Service Details
GET_NO_PAY_ADVC_TXN GNPAYADV Get No-Pay Advice
GET_SEC_DESC_TXN GSECDESC Get Security Descriptions Transaction
GET_TFR_DT_ADJ_ADVC_TXN GTFRDTAV Get Transfer Date Adjustment Advice
GET_UNDLVD_MSG_LIST_TXN CCUMSGLS Get Undelivered List
GET_UNDLVD_MSG_TXN CCUMSG Get Undelivered Message
IFS_PING_TXN IFSPING IFS Ping

IFS_REAUTH_TXN REAUTH Reauthenication
IFS_UNDELIVERED_TXN UNDELIV Undelivered Transaction
INQ_SRVC_TXN INQSRVC Service Inquiry
INV_ACCT_INFO_TXN INVACCT Investment Account Info
INV_ACCTDTL_TXN IACCTDTL Investment Account Detail
INV_ACCTHST_TXN IACCTHST Investment Account History
INV_ORD_STOCK_TXN INVORDS Investment Order - Stock Transaction
INV_ORD_CANC_TXN IORDCANC Investment Order Cancel Transaction
INV_ORD_CAN_CHG_TXN IORDCHG Investment Order Cancel/Change Transaction
INV_ORD_STAT_INQ_TXN IORDINQ Investment Order Status Inquiry
LIST_FI_MSG LISTMSG List FI Initiated Messages
LOAN_ADV_TXN LOANADV Loan Advance

LOAN_REPYMT_TXN LOANRPYM Loan Repayment

LOGOFF_TXN LOGOFF Logoff

LOGON_TXN LOGON Logon

MASS_LOGOFF_TXN MASSLGOF Mass Logoff

OBO_LOGON_TXN OBOLOGON On Behalf Of (OBO) Logon
PAY_DCSN_RQST_TXN RPAYDCSN Request Pay No Pay Decision
PAYEE_DTL_TXN PAYEEDTL Payee Detail

PAYEE_INQ_TXN PAYEEINQ Payee Inquiry

PAYMENT_INQ_TXN PAYINQ Payment Instance Inquiry
PYMT_DEFN_INQR_TXN PYMTDEFI Payment Definition Inquiry
REM_ACCT_TXN REMACCT Remove Account From Service File
REM_SRVC_TXN REMSRVC Remove Service
REV_BP_RQST_TXN RVBPRQST Reverse Bill Pay Request
RSET_CNSMR_SCRTY_TXN RSCNSCRT Reset Consumer Security
SALES_CPY_TXN SALESSLP Sales Slip Copy Order
SELF_REGIS_TXN SELFRGST Self Registration

98 IFS Customizable Web Server (CWS) Guide Fourth Edition

Request Message Short Name Meaning

SERVER_START_TXN SRVSHUTD Server Startup

SERVER_STOP_TXN SRVSTART Server Shutdown

SETTL_2_ACCT_TXN SETTLACT Settle to Account

SRCH_CNSMR_PRFL_TXN SRCHCNSM Exchange Rate Inquiry Transaction
STOP_CHK_PYMT_TXN STPCKPMT Stop Check Payment Transaction
STOP_CHK_PYMT_INQR_TXN STPMTINQ Stop Check Payment Inquiry
STOP_RCUR_DRFT_TXN STPRCPMT Stop Recurring Draft

STMT_COPY_TXN STMTCOPY Statement Copy Order

STMT_PERIODS_TXN STPDSINQ Request Statement Period Information
TERM_DEP_INQR_TXN TDEPINQR Term Deposit Inquiry

TERM_DEP_RQST_TXN TDEPRQST Term Deposit Account Request
TERM_DEP_OPN_TXN TDEPOPN Term Deposit Account Open
TFR_PROBLEM_TXN TFRPROB Report Transfer Problem Transaction
TFR_INQ_TXN TFRINQ Transfer Inquiry

UPDT_CH_CNSMR_ID_TXN UPCHCNSM Update Changeable Consumer ID
UPDT_CLHS_TP_TXN UCLHSTYP Update Clearinghouse Type Table
UPDT_CNSMR_DTL_TXN UCNSMRDL Update Consumer Details
UPDT_EXCH_CAL_TXN UEXCHCAL Update Exchange Calendar
UPDT_DEST_CLHS_TXN UDESTCLS Update Destination FI Clearinghouse Type Table
UPDT_DEST_FI_TXN UDESTFI Update Destination FI Table
GET_INV_SVC_DTL_TXN GINVDTL Get Investment Service Details
UPD_INV_SVC_DTL UINVDTL Update Investment Service Details
UPDT_SRVC_TXN UPDTSRVC Update Service

USER_PROFILE_TXN USERPROF FI Consumer Profile Inquiry
WIRE_TFR_CNCL_TXN WTFRCNCL Cancel Repetitive / Standing Wire Transfer Model
WIRE_TFR_INIT_TXN WTFRINIT Initiate Repetitive Wire Transfer
WIRE_TFR_INQR_TXN WTFRINQR Repetitive/Standing Wire Transfer Model Inquiry

Predefined Responses
Transaction responses are generated in one of the following ways:

1. If there is a predefined response file indicated for the particular transaction in the user configuration file,
then the contents of the specified response file will be returned as the Gold Response. The response file
can be either a binary file containing Gold bitstream data, or a text file containing a description of a Gold
Response in the required format.

2. If using fisimtkd and no predefined response file was indicated, the internal business logic is used to
generate a Gold response based on the contents of the database.

3. If using fisimtkm or if no logic has been implemented for a particular transaction, the MQWeb library will
be used to return a ,canned- Gold response.

This section deals with responses of the first type, and shows how to configure predefined responses for the
CWS Developer s Toolkit.

In order to use predefined responses, the user submitting the request must have an associated user
configuration file that maps response files to transaction types. These files are described in more detail
below.

© Copyright IBM Corp. 2002 Chapter 6. CWS Developer s ToolKit 99

Important Points To Consider

e Response files can contain either Gold bitstream data or a goldmine input. If the response file is a
text file, the file will be converted to a Gold bitstream format by passing it to an internal goldmine
converter. This can delay the delivery of the response message. The default timeout value in the
goldbank configuration file can be increased accordingly to avoid timeout errors. For more
information on goldmine and goldbank, please reference the Appendix C, ,Gold Message Interface
Tool (GMIT)-.

e The response file contains the whole response, including the message header. Any fields left
unspecified are not returned in the response.

e If any errors are encountered during the processing or delivery of a response file, a 247 BRC will be
returned in the IFS_RESP_CODE structure instead, indicating Technical Difficulties

Environment variables

The FISIM_PATH environment variable can be set using a directory name or a colon-separated list of
directory names to indicate the directories to be searched when the system looks for user configuration files.
Path names should be fully qualified to avoid ambiguity.

For example, if FISIM_PATH=/home/fisim/test:/home/fisim/old/test, then /home/fisim/test will be searched
first, followed by /home/fisim/old/test.

The header file, ifscstrs.h is also required when generating responses via data files. This header file is
usually located in /usr/fis/bin. The FISIM_PATH environment variable is also used to locate this file. The
directory or directories specified in FISIM_PATH will be searched first. If ifscstrs.h cannot be found, the
Toolkit will crash.

User Configuration Files

There must be one user configuration file for the user submitting the transaction. This is a text file that maps
the user s response files to their respective transactions, and names the directory containing all of the
response files. A sample user configuration is included in /usr/fis/bin called fis. ARF1001.config. SAMPLE.

A response file will be used as the transaction response if both of the following conditions are met:

1. A configuration file for the user is located in one of the directories specified in FISIM_PATH, as
described above.

2. The configuration file contains a transaction line for the specified Gold transaction (described below).

If either of these conditions is not met, then the transaction response must be constructed from the backend
business logic or the MQWeb library.

Configuration files are named fis. USERID.config, where USERID must match the user ID specified in the
SessionKey.userlD in the header of the incoming Gold Request Message. The file name fis.config is
reserved for use with transactions (e.g., SRVSTART or CODERFSH) where the user ID is not specified.

User configuration files may be edited while the Toolkit is running. A configuration file will automatically be
reloaded when the timestamp of the file indicates that it has been modified. (Files accessed over network-
mounted file systems may have unreliable timestamps.)

The contents of a user configuration file follow the following rules:

Blank lines and lines starting with a @&- character (used for comments) are ignored.

e The first non-blank, non-comment line in the file must be the name of a directory. This indicates the
location of all of the user s response files. This line must begin with a whitespace character, and the
directory name should be fully qualified.

e Aline that does not begin with a whitespace character is a transaction line. It consists of the short
name of a transaction in all capital letters. This line is followed by one or more file specification lines,
which indicate response files for this type of transaction.

100 IFS Customizable Web Server (CWS) Guide Fourth Edition

e Aline that begins with a whitespace character is a file specification line. It contains the name of a file
(which must be present in the previously-defined directory).

e There may be multiple file specification lines for a single transaction type. When the Toolkit needs to
generate a response for a transaction of this type, it will rotate through the different responses in the
order that they appear in the file.

A sample user configuration file appears below:

Sample UserConfig file (fis.ARF1001.config)

Comment line

Search Directory for response files
/homeffisim/test1001

First Transaction (LOGON) - Alternate responses
LOGON

ARF1001.LOGON.resp.dat
ARF1001.LOGON_FAIL.resp.dat

(LOGOFF) - Always respond with same response

LOGOFF

ARFI1001.LOGOFF.resp.dat

(BALINQ) Cycle responses through CHECKING/SAVINGS/IRA
BALINQ

ARF1001.BALINQ_CHECKING.resp.dat
ARF1001.BALINQ_SAVINGS.resp.dat
ARF1001.BALINQ_IRA.resp.dat

Response Data Files

All response files for a particular user are stored in a single directory. As seen above, the user configuration
file indicates the location of the response files and maps the response files to their respective transactions.

The fis/testdata directory contains response file templates for every transaction supported by the current MTI
level. The names of all of the files in this directory end with the suffix, ,.resp.dat-. The simplest approach to
creating new response data files is to copy a response file of the appropriate type from this directory, edit its
contents as necessary, and place the file in the user s response directory, taking care to ensure that the file
name matches the entry in the user configuration file.

These response data files contain two sections; a Header and a Message Body. The fields in the Header are
the Gold header fields defined by IFS. <Header> indicates the beginning of the Header section, and
</Header> indicates the end of the Header section. The following are examples of fields that may be edited
in the Header section:

Table 5. Response Header Editable Fields

<Header> Section Function

RequestType Defines the request/response type for the Gold Message being built. For example:
RequestType LOGON

SessionKey.fi Defines the FI bank name used for testing. For example:
SessionKey.fi IBANKA

SessionKey.userlD Defines the name of a consumer s userid. For example:
SessionKey.userID ARF1001

The Message Body contains the structures and fields as defined in the Gold Message Responses.
<Message_Body> indicates the beginning of the Message Body section, and </Message Body> indicates
the end of the Message Body section. The structures in the Message Body are composed of tag-value pairs
representing the various fields in the format:

© Copyright IBM Corp. 2002 Chapter 6. CWS Developer s Toolkit 101

<Tag Name> <Tag Data> # <Tag Description> (<Data Type> <Length>)

Comments are always preceded with #. Do not place comments within structure level tags unless they follow
a tag-value pair.

Repeat Items

Structures that can have multiple occurrences are defined in the data files with the comment value , ...
(Repeat Item)-. Each occurrence is referred to as a single structure instance. By default the data files are
generated with only a single occurrence of Repeat ltem structures. Data files that contain Repeat ltems
structures can be modified to include multiple structure instances of a Repeat ltem structure. To include
multiple structure instances of a Repeat Item structure the structure instance(s) must be enclosed by a
<Repeat_Structure> and </Repeat_Structure> statements with the number of structure instances specified
on the <Repeat_Structure> line.

Using the ADDBSINV (Add Business Invoice Transaction) data file as an example the structure tag
InvLineDtITg is defined as a Repeat ltem, as shown:

<Structure> InvLineDtITg # . (Repeat Item)
InvlineNbridTg 1 # Invoice Line Number (char [12])
<Structure> InvLineAmtTg #o...
<Structure> AmtTg # Amount
DcmiDatalValTg 6835 # Decimal Data (char [15])
DcmlPreclValTg 2 # Decimal Precision (long)
DrCrindTg 1 # Debit/Credit Indicator (long)
</Structure>
IsoCurrCodeTg USD # IS0 Currency Code (char[3])
</Structure>
InvLineMemoNmTg memo txt # Line Memo Text (char[80])
</Structure>

To create multiple structure instances of the Repeat Item structure edit the data file as shown:

<Repeat_Structure> 2 # repeat count of 1 or greater must be specified
<Structure> InvLineDtITg # (Repeat Item)Structure Instance 1
InvlLineNbridTg 1 # Invoice Line Number (char [12])
<Structure> InvLineAmtTg # ..
<Structure> AmtTg # Amount
DcmiDatalValTg 6835 # Decimal Data (char [15])
DcmlPreclValTg 2 # Decimal Precision (long)
#

DrCrindTg Debit/Credit Indicator (long)
</Structure>
IsoCurrCodeCiTg USD # IS0 Currency Code (char[3])
</Structure>
InvLineMemoNmTg memo txt # Line Memo Text (char[80])
</Structure>

<Structure> InvLineDtITg
InvLineNbridTg 2
<Structure> InvLineAmtTg

(Repeat Item)Structure Instance 2

#

#o...
<Structure> AmtTg # Amount

#

#

#

Invoice Line Number (char[12])

DcmiDatalValTg 2503 Decimal Data (char [15])
DcmlPreclValTg 2 Decimal Precision (long)
DrCrindTg 1 Debit/Credit Indicator (long)

</Structure>

IsoCurrCodeCiTg USD # IS0 Currency Code (char[3])
</Structure>

InvLineMemoNmTg memo txt # Line Memo Text (char[80])
</Structure>

</Repeat_Structure>

The Repeat Count specified on the <Repeat_Structure> line must equal the number of Structure Instances
you add, otherwise and error will occur informing you that there are to many or to few structure instances
defined. The structure instances must be defined inside the <Repeat_Structure> and </Repeat_Structure>
statements.

Goldmine

A response file can be converted into Gold binary format by running it through goldmine first, and using the
resulting .gold file as the response file. In any case, it is a good idea to use goldmine to verify your source

102 IFS Customizable Web Server (CWS) Guide Fourth Edition

file syntax prior to running any tests. For more information on goldmine, please reference Appendix C, ,Gold
Message Interface Tool (GMIT)-.

© Copyright IBM Corp. 2002 Chapter 6. CWS Developer s Toolkit 103

Appendix A. Web Server Program (WSP) Error Messages and
Codes

WSP Component Return Codes

The following return codes can be set by the WSP Component:

Code Error Message

1 Security failure - Unable to Logon

2 Security failure - Authentication Failure
3 Security failure - Auto-registration failure
4 Security failure UserID revoked

WSP PFM Return Codes

Code Error Message

10 PFM Initialization failed
20 MTI Add-header failed
30 MTI Add-CStruct failed

40 MTI Failure writing message to trace log
50 MTI Put-Message-to-Bitstream failure
60 MTI Memory allocation failure

70 MTI Terminate-message failure

80 Name to Index failure

1000 MQ Send/Receive failure

Reason Codes Used in the Gold Header for the PFM Server

Code Error Message

12001 Bad originator type

12002 Invalid FI name

12003 Invalid message mode

12004 Not a logon request

12005 One of the following failures:
MTIGetMessageElement failed to get the IFS_CNSMR_DATA_ID structure
MTIGetCStructCopy failed to get the IFS_CNSMR_DATA_ID structure
MTIAddHeader failed to add updated header to request
MTIPutMessageToBitstream failed for request
MTlInitializeMessage failed to for gold response from CC
MTIGetMessage from bitstream failed on gold response
MTIGetHeader failed on gold response
MTIGetMessageElement failed to get the consumer profile detail structure
MTIGetCStructCopy failed to get the consumer profile detail structure
MTIGetMessageElement failed on the IFS_CNSMR_ID structure
MTIGetCStrucCopy failed to get the IFS_CNSMR_ID structure

12006 Userid in header does not match consumer id in body (logon)
The changeable consumer ids didn t match (request)

12007 nameZ2index failed on request type

12008 MQ timed out waiting for a response

12009 MQ returned a Gold response message length of 0

12010 Response from CC is not for the request we sent

12011 Invalid ip address

104 IFS Customizable Web Server (CWS) Guide Fourth Edition

Code Error Message

12013 The call to encryptRSA encryption of the password failed

12014 User is already logged on when a logon transaction is encountered
12012 The unchangeable consumer ids didn t match

Web Server Return Codes

Code Error Message

100 User previously logged on
Note: Error return codes 101 - 110 are used by the certificate validation

101 Certificate Revoked

102 No Certificate

103 Invalid Signature on Certificate

104 Certificate is Expired

105 CRL is Expired

106 Certificate Invalid Extensions

107 Certificate No Extensions

108 No CRL Distribution Point

109 Certificate Has Expired

110 CRL Invalid Signature

200 Maximum number of users logged on

300 Verify failed

400 Security failure

500 Reauthentication failure

600 reauthcpw_required

699 Session already in progress

700 Missing certificate

701 Encryption failure

702 Bad Post data

703 Missing cookie

704 Password PIN mismatch

705 User rejected cookie

706 Memory allocation error

707 Certificate encode failure

708 CA certificate cannot be retrieved from directory server

709 Record cannot be retrieved from directory server

710 Invalid certificate

711 Certificate suspended

712 Missing CRL

800 The LOGON request cannot be completed. The service is unavailable.

801 The request cannot be completed. No service is available.

802 The request cannot be completed. AIC IPC services are not available to the web server (lock
failed).

803 The request cannot be completed. AIC IPC services are not available to the web server (mutex
failed).

804 The request cannot be completed. AIC IPC services are not available to the web server
(msgsend failed).

805 The request cannot be completed. AIC IPC services are not available to the web server (msgrcv
failed).

806 No response to the request.

© Copyright IBM Corp. 2002 Appendix A. Web Server Program (WSP) Error Messages and Codes 105

CWSAPI Request Codes

Code Error Message

1000 Bad Message Index
Internal error codes

2000 Invalid start flag
2001 Invalid shutdown flag

Gold Manager Codes

Code Error Message

1001 Gold Request - Bad input buffer

1002 Gold Request - Missing parameter

1003 Gold Request Parameter type incorrect

1004 Gold Request - Invalid request Flag

1005 Gold Request - Invalid Request

1006 Gold Request - Incorrect Number of parameters

1007 Gold Request - Invalid Transaction number

1008 Gold Request - Repeat type is invalid

1009 Gold Request - Invalid MTI structure

1010 Gold Request - Incorrect type for Repeat Count

1011 Gold Request - Cache Transaction not allowed

1012 Gold Request - FI Transaction not allowed

1013 Gold Request - MTI error (Wrong element class)

1014 Gold Request - Internal error ((bad user session)

1015 Gold Request - Parameter references a negative index
1016 Gold Request - Invalid On-behalf-of response

1017 Gold Request - MQ Send/Receive message is zero length
1018 Gold Request - Gold Dictionary mismatch

1019 Gold Request - Too many Repeat-structures

1020 Gold Request - Invalid Repeat Argument

1021 Gold Request - Invalid Integer type

1022 Gold Request - Invalid Repeat String Length

1023 Gold Request - Memory allocation failure

1024 Gold Request - MTI error processing request

1025 Gold Request - Internal error (GM_GMREQ_PARENT_CHAIN_NOT_FOUND)
1026 Gold Request - Null transaction name

1027 Gold Request - Cache transaction name required
1028 Gold Request - Number too short

1029 Gold Request - Malformed repeat

Codes Processing Java Request

Code Error Message

2001 Internal Error (unable to allocate memory) - Deprecated
2002 Too much data passed

2003 Java request - Unsupported data type

2004 parameter1_wrong_type

2005 parameter2_wrong_type

2006 parameter3_wrong_type

2007 bad_gmjo_acronym - Deprecated

2008 bad_gmjo_error_code - Deprecated

2009 unexpected_data_type

106 IFS Customizable Web Server (CWS) Guide Fourth Edition

Code Error Message

2010 bad_logon_cookie
2011 arg_count_error
2012 MaxField length error

Internal Errors in Gold Manager - Locating Atoms

Code Error Message

3001 Locate index is too short

3002 Locate index is negative

3003 Locate index is too large

3004 Unable to find toplevel Structure
3005 Locate contains a bad atomid
3006 Invalid toplevel structure

3007 Invalid repeat index

3008 copy unlike atoms

3009 copy unknown type

3010 Put atom of unknown type

3011 Put atom of the wrong type
3012 Memory allocation failure

3013 Get numeric atom was not type long
3014 No space

Gold Manager Error Codes While Creating the Output Response Buffer

Code Error Message

4001 Locate error

4002 Invalid atom type
4003 Invalid atom need long
4004 Index array overflow
4005 Index array underflow
4006 Buffer overflow

4007 Single multi error
4008 Multi underflow

4009 Code lookup error
4010 Filter format error

Internal Conversion Errors (GMNIBBLE)

Code Error Message

5001 Output area too small
5002 Input string not even
5003 Invalid nibble char

Gold Manager Initialization Codes

Code Error Message

6001 Initialization failure

6002 Fl name too long

6003 web server name too long

6004 Logon userid too long

6005 Logon Memory Allocation failure

© Copyright IBM Corp. 2002 Appendix A. Web Server Program (WSP) Error Messages and Codes 107

Code Error Message

6006 No data returned on Logon
6010 Logon response too short

6011 Logon response bad eyecatcher
6012 Logon response bad errflag
6012 Logon response cws error

6014 Logon response 0000 no BRC
6015 Logon response 0000 bad BRC
6016 Logon response CC too short
6017 Logon response CC no BRC
6018 Logon response CC bad BRC

Errors While Logging Off

Code Error Message

6020 No data returned

6021 Invalid session

6021 RSTCACHE Invalid Session
6022 Invalid request

Extra Error Codes

Code Error Message

6050 Missing parameter

6051 Wrong data type

6052 Malloc failure

6053 Unsupported request

6054 Incorrect length for transaction id
6055 Bad session in transaction id
6060 Required number mismatch
6061 Transaction name not found

108 IFS Customizable Web Server (CWS) Guide Fourth Edition

Appendix B. IFS Web Page Performance/Response Time
Tuning Recommendations

Introduction

This appendix is an introduction and primer for IFS Web page performance. It is intended to assist those
designing or implementing IFS pages primarily. Factors that influence the other components of response
time are identified but not the focus of this appendix. The information contained herein is based upon IFS
production experience.

Environment

Service Provider

This service provider environment is defined by the online real time processing of the banking transaction by
the bank s in-house systems or the systems of a third party. In a given implementation a financial institution
may have both connections to the in-house systems for banking and connection to a third party for services
such as bill presentment. A request for a transaction is received from the web client browser via the IFS web
server. It is then converted to a Gold message and passed to the core controller instance. The core
controller performs its necessary processing (such as logging or routing) then passes the message to the
service provider for processing. A reply is generated by the service provider, sent through the core controller
to the web server, formatted into a web page, and sent along to the client browser.

Hosted Applications

This hosted application environment is similar in most respects to the service provider with the difference
being in the processing site of the Gold message. There are three current applications hosted at IFS:

e The strip file application to respond to core banking.
e The bill payment engine for IFS Bill Payment.
e The messaging server for secure bank mail.

The core controller sends the Gold message to the hosted application and receives its reply from it. In a
given implementation a financial institution may have both connections to the service provider for selected
transactions and connections to hosted applications for services such as core banking or messaging.

IFS Response Times

Response Time Considerations

The IFS ,cloud- is defined for purposes of response time as starting at the web server and running through
the core controller until the message exits onto an MQ channel (either to a hosted application or a service
provider). Production experience has shown that well designed and implemented pages can achieve an
elapsed time, round trip, of only a few seconds on average in the IFS cloud. Therefore, the response time as
seen by the consumer is dominated by other parts of the end-to-end transaction.

© Copyright IBM Corp. 2002 Appendix B. IFS Web Page Performance/Response Time Tuning Recommendations 109

Other Response Time Factors

Networks

The Web

The World Wide Web is by definition an internetwork, that is a network of networks. The elapsed time that it
takes to send data between two points is known as latency. Latency on the web will vary based on several
factors, most of which are outside the control of IFS or the bank:

e Local POTS (Plain Old Telephone Service) - Most consumers access the web via a dial in
connection to an ISP. The quality of this connection will affect the overall response time and
consumer experience. To date, with several localized exceptions, this has not been a problem. Most
consumers seem able to obtain a reasonably reliable connection at or above 28.8Kb/sec which has
proven sufficient for the production banking pages. Note that when the quality of the connection is a
problem, it can be difficult and time consuming to track the problem through the web and
demonstrate its source.

e ISP - The number of lines, modems, routers and router speeds can also be significant. Again, with
only localized exceptions, ISP has not been a problem to date. As with POTS, when these problems
do arise they are difficult and time consuming to track down.

e ISP Connections - Many ISPs purchase connections to the Internet backbone from the long distance
providers and then connect the consumer via a local modem pool. If this connection is not sufficient
the consumer can experience widely varying response times based upon the number of other users
connected at the ISP and their level of traffic. Typically, this happens during peak usage hours.

e Backbone Bandwidth and Routing - The Internet backbones themselves are owned by different
companies and maintained to differing levels of performance. Routes through the Internet can
dramatically affect the response times for consumers. The IBM Global Network maintains custom
links and connections points with several other high speed backbone provides in order to ensure
consistent bandwidth and predictable routes.

What Does All This Mean?

The Internet will likely never be able to provide entirely consistent and speedy response times in the style
(private corporate networks) to which many of us have become accustomed. However, good page design,
careful system construction, and tuning can help to create a fast, reliable online banking application.

Backend Latency

In the case of online banks (that is, service providers for core banking) there is additional latency introduced
by the connection from the core controller to the service provider and by the elapsed time to process the
transaction within the service provider. In the experiences of production banks to date, this back end
processing/network time (called backend latency) is a large component of consumer response time. Thus it
can be seen that back end network performance and data center throughput/response time will contribute to
the consumer experience. Banks planning for production should focus on this area if they expect to provide
speedy response times for their consumers.

Page Design
As detailed in an earlier section, the IFS infrastructure can deliver dynamic banking pages with consistently

short response times. There are several areas of page design, however, that influence the consumer
perception of response time.

Graphics
Graphics can enhance the overall consumer experience. They can reinforce the bank s brand, assist with

page navigation, and advertise new services. However, graphics add to the overall complexity and latency of
the pages and will degrade response time when compared to a text only implementation. So choosing

110 IFS Customizable Web Server (CWS) Guide Fourth Edition

graphics for your pages is a matter of trading off speed for the other benefits. You will have to balance these
considerations in order to provide a high-performing and usable consumer experience.

Some factors to consider:

Caching - Many ISPs provide a system cache for frequently referenced URLSs. In a region with a lot of
consumers referencing popular sites, perceived response times can be quite fast since the consumer is
really hitting a local cache and not loading off the actual Internet server. Additionally, the browser will cache
these URLs to disk.

However, SSL encrypted sessions cannot be cached (outside of the browser) because the data is
encrypted and the cache has no way of knowing what page/URL is being transferred. So, if your browser
cache does not contain the required item, in an SSL session, it must always load from the Internet
banking server.

Furthermore, Netscape Communicator (4.x) only caches encrypted pages in the memory cache. Thus
every time you start Communicator it will need to reload the GIFs and client side JavaScript from the
server. It will then cache them in memory for the duration of your session.

Internet Explorer (4.x and 5) will cache encrypted pages to both the memory and disk cache. Thus it will
not have to reload the GIFs and client side JavaScript each session. This is the default behavior and can
be changed on the advanced configuration screen. Note, that from a security perspective, Netscape s
behavior is superior.

e Start-up Delay - Most informational web pages are static. That is, the page is defined once as a file
and does not change very often. The HTML is downloaded, the GIFs are listed inline, and the
browser can start loading them right away.

IFS banking pages, in contrast, are dynamic. When you request a transaction, the Gold message must
complete the transaction before the dynamic page can be built. Thus the browser will not see the GIF
URLs, and cannot start loading them, until after the transaction is complete and the dynamic HTML has
been delivered to the browser. Thus dynamic pages with lots of GIFs will load slower than the same
page implemented as static. The other benefits of dynamic pages outweigh this limitation, but it is a good
idea to know about it and to keep the number of GIFs to a minimum.

The page designer can improve response time by implementing ,early emit-. If you place the
informational and navigational items at the top of the page and the dynamic data (obtained from a Gold
transaction) below them; you can flush the server page buffer just before you begin the Gold transaction.
To do this you build and output all the page HTML up to the dynamic portions, then use the Java flush()
operative to begin sending the page to the browser.

The browser can therefore ,see- the GIFs and will begin loading them and rendering the page to the
screen in parallel with the cloud and legacy processing of the Gold message. This overlapping of the
page load/render and transaction processing will reduce total page elapsed time.

Additionally, the consumer perception of system responsiveness is dramatically improved because the
page will ,flip- and begin to render almost instantly compared to the otherwise several second delays
(with the hourglass on screen) before the consumer perceives that something is happening.

Experience has shown that consumers dislike the hourglass wait (they seem to become uncertain and
worry that something has gone wrong) but once the page begins to render, are more forgiving of the time
taken (they can see incremental progress). Note that if you use this technique you CANNOT issue a
redirect once the flush() is done since the HTTP header has been sent.

e Size - It may seem obvious to mention this, but keep the size of GIFs to a minimum to reduce
network latency during transfer.

e Color palette selection can dramatically affect GIF size and therefore latency. A 20x100 pixel GIF
with 4-bit color (16-color palette) takes about .35 seconds over a 28.8 modem connection to send
the data. Use a color from the 16-bit color palette (64K colors) that same GIF is going to take 1.4
seconds to send. If you just have to have that ,perfect- color from the 24-bit palette (16 Million
colors) its going to cost you 2 seconds for the GIF to cross the modem.

© Copyright IBM Corp. 2002 Appendix B. IFS Web Page Performance/Response Time Tuning Recommendations 111

Consider that only graphic designers have large color corrected monitors. The rest of us mostly make do
with 14 inch PC monitors with limited color accuracy so we are not going to see the color the way you do
anyway.

e JPEG s - Can you beat the color palette size problem by using a JPEG? Possibly, if you use a
mostly solid color. But JPEG includes poor compression, which means you can lose
information/resolution when the image is uncompressed. This is a real concern when perfect image
restore is needed (for example, medical imaging), but it is not a problem with banking web pages.

So, in theory, the transform can allow a larger image to be compressed and sent as a smaller package.
In practice the efficacy of the transform depends on the image. A solid color image or one without a lot of
color variation compresses nicely. However, mottled color or an image with significant bleed or color
blending compresses poorly.

¢ Quantity - Quantity might not be as obvious as size but is very important. Browser levels prior to
Netscape 4.x and Internet Explorer 4.x used HTTP Version 1.0 (or, 0.9). Many users (AOL, for
example) are still on these versions. These browsers will open one TCP socket for EVERY URL
needed on a page (each GIF is a new URL).

The overhead of opening an SSL TCP socket is not trivial and often exceeds the overhead and latency
of transmitting the GIF data itself. Furthermore, browsers are asked to behave well in the standards
documents. Good behavior consists of never opening more than four sockets to a single server
concurrently. Most browsers comply with the good behavior guidelines (intended to limit network storms
and avoid choking the Internet). This means that if you have lots of GIFs on the page, they will be loaded
sequentially in batches of four. This is compounded by the short duration of the socket connections,
preventing TCP pacing from taking effect. So pages with a large number of (even small) GIFs will load
more slowly than those with only a few (even if somewhat larger) GIFs, and will contribute to clogging
the network in the process.

Later browser levels (4.x and above) implement HTTP V1.1 or better. They still limit themselves to only
four concurrent connections, but can make multiple requests over each connection. Thus much of the
penalty of establishing multiple TCP connections is reduced. However, GIFs will still load sequentially in
batches of four.

e Rendering - Graphics (and other advanced page elements like frames, etc.) take the browser a long
time to render and display as compared to plain text.

o Recommendation: Reuse GIFs. Use GlFs on more than one page (they only get loaded once per
session) so that subsequent pages will load and render much more quickly. NEVER use a different
directory path for the same GIF on different pages; the browser cache will NOT recognize them as
the same and will load a second copy.

e A ,text only- setting is a good idea for advanced users and those who prefer speed. It will reduce
their time at the browser and may lead to overall improved customer perceptions.

e Always use ALT attributes on images (other than purely decorative) so users can understand the
page if they have graphics turned off.

o Always pre-scale graphics and explicitly provide correct values for height and width attributes.

Multiple Transactions on a Page

Gold messages issued by the web server are processed synchronously. Some web pages have been coded
to issue more than one Gold message in order to construct pages with complex combinations of consumer
financial data. As these messages are processed one after the other, the total elapsed time is cumulative.
Thus four messages issued from a single web page (with an average IFS cloud time of 2 seconds and a
backend latency of 5 seconds) will take 4x the average Gold time (or 28 seconds in this example) before the
page completes. While it may not be possible to entirely avoid this type of page, they should be reduced to
an absolute minimum. Frankly, the consumer may prefer to navigate a small set of rapidly responding pages
rather than wait a minute for that page with all information consolidated. Performance is as much perception
as reality.

This is not to say that one should not code such pages when it makes sense. The Logon sequence is often
used to gather some general information from multiple sources (such as pending messages and payments).
Another exampile is a bill payment screen where you may allow the consumer to enter data for several
payments and then process them all with one click. Just know and test the effects on response time when
making such tradeoffs.

112 IFS Customizable Web Server (CWS) Guide Fourth Edition

Large Messages

Several of the Gold messages can contain large amounts of data, and they can also contain replicated
structures (account and payment history are examples). These messages add powerful capabilities to the
IFS system. However, the overhead of processing extremely large messages can overwhelm the benefits of
cramming all this data into one transaction. It is recommended that banks limit the number of history items
that are viewed on one screen and provide a ,more- or ,next- function to scroll through additional data (with a
subsequent transaction). This will provide faster perceived response time to the consumer and help the web
server to maintain consistent throughput. In practice we have found 15 history items to be a good tradeoff.
Enough items are supplied to the consumer so that they do not have to reissue too many requests, and the
system can handle this number in an efficient manner.

Web Caching

The web server contains functions for caching consumers data during the duration of their session. Page
designers should take advantage of these functions and avoid purging the cache. Production experience has
shown that inefficient use of the cache or excessive purging of the cache can severely degrade throughput
and response time as well as drive up the Gold message rate.

Stay on Budget

Game designers must strictly keep to a polygon budget in order to stay within response time constraints. If
you want snappy banking pages you must set a budget per page (total bytes) and stick to it.

The slowest link in the response time chain is the consumer modem. If we assume that we want our pages
to perform well for a consumer on a 28.8Kbps connection, then we use the following formula to calculate the
effects of page size:

ML = (B x 10) / 28800 (or replace with your typical speed)

ML is modem latency

B is total page size in bytes

10 is used as bits per byte because it helps account for TCP overhead, packet headers, etc.
28800 is the modem speed in bits/second

So if we have a page with 10K bytes (all data, HTML, GIFs, etc. combined) it will take approximately:
(10000 x 10) / 28800 = 3.5 seconds to cross the modem.

But change that page to 35K and it takes 12 seconds.

Now let s see what effect this has on the consumer. Let s assume that the IFS cloud is processing your

page/transaction in approximately 2 seconds and your backend latency is 4 seconds. Then the consumer
response time (not including browser render time, Internet latency, etc.) is:

ML + Backend + Cloud or 3.5 + 4 + 2 = 9.5 seconds for a 10K byte page
But, 12 + 4 + 2 = 18 seconds for that 35K byte page.

Client Side JavaScript

Client side JavaScript can be a wonder in helping users navigate the pages and in validating their input
rapidly. It can also destroy the performance of the system if overused. It must be used in moderation.

e Because the consumer can disable client side JavaScript, do not use it to implement essential
functions.

¢ Client side validation can be performed to ensure that all required fields are filled in. This validation
is a good use of client side JavaScript.

o Field types, that eliminate the need for validation (like pull downs or radio buttons), are preferred to
those, that require validation (text fields or other input fields that must be checked to insure that the
consumer has entered the correct type of data).

© Copyright IBM Corp. 2002 Appendix B. IFS Web Page Performance/Response Time Tuning Recommendations 113

e Remember that size counts. Track the size of the JavaScript you write, and stay within your page
budget. All those bytes have to be sent as data to the browser. If you have to use client side
JavaScript follow the rules:

Always put it into a file. Never use embedded JavaScript (unless it is VERY SMALL). Embedded
JavaScript is sent with the page each time it is referenced. So if the consumer hits the back button or
has to enter transactions many times on the same page (pay bills, etc.) you get to pay the latency
freight every time the page is referenced. If you put it in a separate file, then it is only downloaded
once per session. Subsequent references to the logic by the page will fetch from the browser cache.

Reuse routines from page to page. Once the JavaScript file is loaded into the cache it can be fetched
directly.

Split up the routines. Several smaller files with JavaScript routines are preferred to one big file. It is
easier to put it all in one big basket, but this will tend to take a long time to load and probably will be
needed on the very first page. Thus the initial consumer interaction with the system is poisoned.

Use the right URLs. The browser will recognize the file as cached and not reload it if the fully resolved
(qualified) URL is the same. Do not play tricks with alternate or symbolic links on the server file
system if they are going to show up as different URLs to the browser and preclude it from hitting the
cache.

Scrub your files. JavaScript is an interpreted language. As such the entire source file is sent to the
browser. This includes any formatting or white space you included to make your code readable. The
interpreter doesn t need this. So strip out all white space and readability formatting, etc. to minimize
the bytes being sent over the network. Think this is trivial? Well we have found in production that
scrubbing reduces the typical file from 40-60%. Not bad when you consider many of these
JavaScript files are 10-40K bytes in length to start with.

Testing Pages

Do not test the pages only on your workstation which is connected via a high-speed backbone connection. If
you do so, you are testing the look but not the feel of the system. Instead, test the pages using a connection
at the typical speed you expect your consumers to attain. This can vary from a 28.8 dial up modem to a high-
speed cable (or other fast) connection. You then experience what the consumer will experience. Run the
pages normally (with graphics on), then shut down and restart the browser (flush the cache also if Internet
Explorer) then turn graphics and JavaScript off in the browser to see how the pages run without all the pretty
frills. This test provides a good indicator of how page design is impacting system performance.

Page Implementation

Gold Manager Caching

The CWS Gold Manager contains caching routines to improve the efficiency of Gold transaction processing
and the resulting response times. Typically, a consumer session will need various items of information more
than once. Examples would include account details (the accounts, rules, and so forth that apply to the
consumer) and history data (the consumer might select various filter parameters to control display of his
transaction history). It would be quite inefficient, expensive, and time consuming to perform a Gold
transaction to the legacy system each time an item of data was needed.

The Gold Manager Cache is, to a great extent, under control of the page implementers who must ensure
proper and efficient cache management. Proper cache management is achieved by using the Gold manager
option flags passed when a transaction is requested. These are:

FI - Get results from the Fl legacy system.

CACHE - Get results from cache.

CACHEFI - If results exist in cache, use them; otherwise, send transaction to legacy system.
CACHEFIDATA - Similar to CACHEFI but used by HTML Native Formatter to allow multiple hits with
differing sort and select filters.

e FIDATA - Get results from FI but save for future use by CACHEFIDATA.

114 IFS Customizable Web Server (CWS) Guide Fourth Edition

Important Note: This discussion is general and not intended to be exhaustive. There are several different
Gold Manager Cache types and variations on these option flags. Please see the IFS CWS documentation for
detailed information on proper cache usage and options.

Web Server Caching

The previous section described the use of the Gold Manager to cache messages for optimum efficiency and
response time. This section discusses caching in the actual web server. There are times when caching is
necessary to ensure good response times, efficient Java processing, and maximum system capacity.
Typically caching is needed when you want to maintain information for a consumer session and make it
available to some or all pages.

In Java, caching is implemented using the IfsHttpSession object, which allows you to save information during
a session. Caching is a fast and reliable way to insure good page performance.

There is a second condition when the Web Server Cache should be used. Some Gold data might be needed
quite often. The Gold Manager Cache is excellent for reducing unnecessary calls to the legacy systems. But
even when a Gold transaction is fetched from the Gold Manager Cache the data must be processed through
Java object instantiation via a byte array.. For trivial messages, which are not referenced too often, this is not
a problem; however, if the transaction contains many fields to be processed and if it is referenced frequently,
then server capacity and page response time can be hurt.

A perfect example is the consumer profile. Returned at Logon, it typically contains a wealth of information.
As part of page generation and input validation, some page designers have seen the need to refer to some
of the profile fields on nearly every page. As services are added, options fielded, and account types and
quantities increase, the consumer profile can grow to many fields. Thus, the overhead of creating
attributes/objects for each field every time it is fetched from the Gold Manager can dominate page response
time.

Caching the user profile resolves this difficulty.
Bill Presentment Logos

The bill presentment function provides the ability to display the electronic biller s logo on the consumer page.
To minimize the overhead involved in handling these binary images, the CWS has implemented a cache
strategy for these logos. At CWS boot time, the CWS will fetch the set of supported logos via an
EBILLERINQ message. It will then save the individual logos to the file system, using the path specified in the
CWS configuration and the logo names specified in the EBILLERINQ response message.

When coding a consumer bill presentment page, you can include the electronic biller logo by specifying its

name (returned in the BILLERINQ message) with the correct path from the CWS configuration, on an HREF
tag.

© Copyright IBM Corp. 2002 Appendix B. IFS Web Page Performance/Response Time Tuning Recommendations 115

Appendix C. Gold Message Interface Tool (GMIT)

Introduction

This appendix assumes the reader is familiar with the Gold Message Standard. The Gold Message Interface

Tool (GMIT) provides programs to generate Gold messages and then send these messages to a Financial

Institution (FI) server. The two programs included in GMIT; goldmine and goldbank are summarized below.

Table 6. goldmine and goldbank Functions

Program | Function

Input Files

Output Files

files.

Goldmine | Generates Gold message
dump and Gold bit stream

One <request>.dat

<request>.out (An MTI| dump of the
generated Gold message.)

<request>.gold (Gold bit stream file)

Goldbank | Send the Gold message via
MQSeries, in the form of a bit- | (Gold bit stream file
stream, to the FI server.

One <request>.gold

generated by
goldmine)

<request>.gresp (Gold bit stream response
file)

<request>.fgresp (MTI dump file which is a
readable dump of the Gold response from
the Fl server.)

GMIT provides a set of sample request data files. Each data file represents a single request. For example,
the following table shows you a subset of the request types with their descriptions, followed by the

associated request data file name:

Table 7. Subset of Request Data Files

Request type Description Request data file name
ABLRVLD Add biller account ablrvld.dat

ACCTDTL Account details acctdtl.dat

ACCTHIST Account history accthist.dat

ACCTINFO Account information accinfo.dat

ADDACCT Add account addacct.dat

The Test Data Flow

The test data flow for GMIT is shown below.

116 IFS Customizable Web Server (CWS) Guide Fourth Edition

Request data
file (.dat)

goldmine

Goldbit stream file (.gold)

goldbank

MQ Series
queue

y

FI server

Response files
(.fgresp and
gresp)

Figure 6. GMIT Program Flow

Glossary

Acronym
BE

CWsS
CWSAPI
Fl

IFS

GMIT
MTI
SMIT
TDM

Explanation

Back-End

Customizable Web Server

CWS Application Interface
Financial Institution

Interactive Financial Services

Gold Message Interface Tool

Gold Message Translation Interface
System Management Interface Tool
Transaction Delivery Manager

Getting Started

Prerequisites

To use GMIT, you need the following hardware and software:

© Copyright IBM Corp. 2002

Appendix C. Gold Message Interface Tool (GMIT)

117

Hardware

e Entry level IBM e-server pSeries or RS/6000 system
e LAN attachment for remote user access

Software

e AIX Operating System (Version 4.3.3 or newer, which includes TCP/IP)

e MQSeries Version 5.2 (configured using the System Management Interface Tool (SMIT). If you do
not have SMIT installed, you can install it from:
http://www.software.ibm.com/ts/mqgseries/txppacs/txpm1.html

¢ Financial Institution Simulator (FISim), if back-end is not available.

Installing GMIT

The GMIT filename is delivered in the format of gmitvirém1_yymmdd.tar.Z. Where, yy=year, mm=month and
dd=day. To install GMIT:

e Create a new directory.
o Copy gmitvirém1_yymmdd.tar.Z into that directory.
o Type zcat gmitvirém1_yymmdd.tar.Z | (cd new directory; tar xvf -)

MQSeries and GMIT

The following instructions assume GMIT and the Fl server reside on different machines. In these
instructions, the machine on which GMIT resides is called the source machine since it is the source of Gold
message requests. The Fl server machine is called the destination machine. Before using GMIT, install
MQSeries and System Management Interface Tool (SMIT) on both the source and destination machines.
To install MQSeries, see [Beta TBD].

On each machine, you define:

A queue manager

A transmission queue for sending messages, which is a local queue
A queue for receiving messages, which is a local queue

A remote queue (for the queue manager on the other machine)

A sender channel

A receiver channel

A trigger process for sending messages, which is a local queue

Adding a Queue Manager
Once you install MQSeries, add a queue manager. This queue manager will provide queuing services to
applications and manage the queues that belong to it. The queue manager also ensures that messages are

put on the correct queue. Each queue manager must have a unique name. Multiple users may share a
queue manager. Only the first user on each machine needs to add the queue manager.

In the following steps, qmgrname (all lowercase) is the name you assign to the queue manager.
userid (all lowercase) is your userid. These must be different on the source and the destination
machines. Use SMIT to add a queue manager as follows:

1. Type smit. Press the ENTER key.

2. On the System Management screen, select Communications Applications and Services.
3. On the Communications Applications and Services screen, select MQSeries.

4. On the MQSeries screen, select Work with MQSeries Queue Managers.

5. On the Work with MQSeries Queue Managers screen, select Add a queue manager.

6. On the Add a queue manager screen, in the Queue Manager Name entry field, type gmgrname.

118 IFS Customizable Web Server (CWS) Guide Fourth Edition

Note: Names in MQSeries are case sensitive.

In the Description entry field, type gmgrname queue manager for GMIT.

In the Dead Letter Queue entry field, type SYSTEM.DEAD.LETTER.QUEUE. Press Enter.
SMIT displays the Command Status screen. At first, the screen will read Command: Running. Then it will
read Command: OK and MQSeries queue manager created and objects created or Command: failed and
indicate why it failed. Do not complete the steps for adding a default object if the Command: failed was
displayed.
Note on dead letter queues: A dead letter queue is a local queue where messages are routed if they
cannot be routed to their correct destination. If you do not specify a dead letter queue, application program
errors may cause channels to be closed. For example, if an application tries to put a message on a queue on
another queue manager but a failure occurs, the channel is stopped and the message remains on the
transmission queue. Then, other applications are blocked from using that channel for their messages. If you

have a dead letter queue, the undelivered message is simply put on the dead letter queue at the receiving
end, leaving the channel and its transmission queue available.

Starting a Queue Manager

Once you add the queue manager, start it through SMIT as follows:

1. Type smit. Press the ENTER key.

2. On the System Management screen, select Communications Applications and Services.
3. Onthe Communications Applications and Services screen, select MQSeries.

4. On the MQSeries screen, select Work with MQSeries Queue Managers.

5. On the Work with MQSeries Queue Managers screen, select Start a queue manager.

6. On the Queue Manager Name screen, move the cursor to select the queue manager you want to start:
gmgrname.

SMIT displays the Command Status screen. At first, the screen will read Command: Running. Then it will
read Command: OK and MQSeries queue manager started or Command: failed and indicate why it failed.

Adding Default Objects

Once you start the queue manager, add default objects to it through SMIT as follows:

1. Type smit. Press ENTER.

2. On the System Management screen, select Communications Applications and Services.

3. On the Communications Applications and Services screen, select MQSeries.

4. On the MQSeries screen, select Work with MQSeries Queue Managers.

5. On the Work with MQSeries Queue Managers screen, select Add default objects to a queue manager.

6. On the Queue Manager Name screen, move the cursor to select the queue manager you want:
gmgrname.

SMIT displays the Command Status screen. At first, the screen will read Command: Running. Then it will

read Command: OK and display several messages about MQSeries queues, channels, and processes
created or Command: failed and indicate why it failed.

© Copyright IBM Corp. 2002 Appendix C. Gold Message Interface Tool (GMIT) 119

Defining Queues

After you start the queue manager and add the default objects, add the queues you need to be able to use
GMIT programs. In MQSeries, there are three general types of queues:

e Local queues
¢ Remote queues
e Alias queue objects

A local queue belongs to the queue manager to which the application is connected. GMIT requires that you
add two local queues: one for transmitting messages and one for receiving messages.

A remote queue belongs to another queue manager. This queue is defined as a local queue to that
queue manager. The information that you specify when you define a remote queue object allows the
local queue manager to find the remote queue manager so that any messages that are destined for
the remote queue manager get to the correct queue manager. Before applications can send messages
to a remote queue, you must define a transmission queue and channels between the queue
managers.

An alias queue object allows applications to access a queue by referring to it indirectly in MQI
calls. An alias queue object is not a queue, but an object that you can use to access another queue.
When an alias queue object is used in an MQI call, the name is resolved to the name of either a
local or a remote queue at run time. This way, you can change the queues that your application uses
without changing the application, you just have to change the alias queue object definition to reflect
the name of the new queue. GMIT does not require alias queues, but you may need alias queues to
map goldbank queue names to the queue names used by your FI server.

Adding Local Queues

To use GMIT, add two local queues as follows:

e A queue for transmitting messages
e A queue for receiving messages

1. Type smit. Press ENTER.

2. On the System Management screen, select Communications Applications and Services.
3. Onthe Communications Applications and Services screen, select MQSeries.

4. On the MQSeries screen, select Work with MQSeries Queues.

5. On the Work with MQSeries Queues screen. select Local Queues.

6. On the Local Queues screen, select Add a local queue.

7. On the Queue Manager Name screen, click the cursor to select the local queue manager to be added:
gmgrname.

8. On the Add a local queue screen, in the Queue Name entry field, type the transmission queue name
userid .xmit. This is the queue that will send your application messages to the remote queue manager for
processing.

9. In the Description entry field, type GMIT transmission queue.

10. Toggle the MQGET operations and the MQPUT operations fields to ENABLED.

11. In the Usage field, press TAB to toggle to XMITQ (transmission queue).

12. Toggle the Trigger Enabled field to yes.

13. In the Initiation Queue field, type SYSTEM.CHANNEL.INITQ .

120 IFS Customizable Web Server (CWS) Guide Fourth Edition

14. In the Trigger Process field, type userid_CHL_PROCESS.
15. Press ENTER.
SMIT displays the Command Status screen. At first, the screen will read Command: Running. Then it

will read Command: OK or Command: failed with information about the success or failure of the
command. You will see information like the following:

1 : define +

: QLOCAL (*<USERID>.xmit’) +

: DESCR (“GMIT Transmission queue’) +
: USAGE (XMITQ)

Use the same SMIT screens to add the queue for receiving messages. Unlike the transmission queue, this
queue will use the defaults for all fields except the queue name.

16. Type a Queue Name of userid.receive. Press Enter. The queue is added.

Adding the Remote Queue

Add the definition of the remote queue, which is used for the transmission to the remote queue manager.

1. Type smit. Press ENTER

2. On the System Management screen, select Communications Applications and Services.

3. Onthe Communications Applications and Services screen, select MQSeries.

4. On the MQSeries screen, select Work with MQSeries Queues.

5. On the Work with MQSeries Queues screen, select Remote Queues.

6. On the Remote Queues screen, select Add A Remote Queue.

7. On the Queue Manager Name screen, click the cursor on the desired queue manager name: gmgrname.

8. On the Add a remote queue screen, in the Queue Name entry field, type the name of the queue
manager for the other machine.

In the Name of remote Queue Manager Entry field, type the name of the queue manager for the other
machine.

In the Transmission queue entry field, type userid.xmit. Press Enter.

SMIT displays the Command Status screen. First, the screen reads Command: Running. Then it reads
either Command: OK or Command: failed with information about the success or the failure of the
command. Toward the bottom of the screen, you should see something like:

1 : define +

: QREMOTE (“<USERID>’)

AMQ8006: MQSeries queue created
1 MQSC commands read.

0 commands have a syntax error.
0 commands cannot be processed.

Adding Alias Queues

1. Type smit. Press ENTER.

2. On the System Management screen, select Communications Applications and Services.
3. Onthe Communications Applications and Services screen, select MQSeries.

4. On the MQSeries screen, select Work with MQSeries Queues.

© Copyright IBM Corp. 2002 Appendix C. Gold Message Interface Tool (GMIT) 121

5. On the Work with MQSeries Queues screen, select Alias Queues.
6. On the Alias Queues screen, select Add an alias queue.

7. On the Queue Manager Name screen, click the cursor to select the alias queue manager to be added:
gmgrname.

8. On the Add an alias queue screen, in the Queue Name entry field, type the transmission queue name
userid .xmit.

9. Inthe Like existing queue field, select from the list of queues.

10. In the Description entry field, type GMIT transmission queue.

11. Toggle the MQGET operations and the MQPUT operations fields to ENABLED

SMIT displays the Command Status screen. At first, the screen will read Command: Running. Then it will

read Command: OK or Command: failed with information about the success or failure of the command.
You will see information like the following:

1 : define +

: QALIAS (‘<alias_name>.xmit’) +
: LIKE (‘<USERID>.xmit’) +

: DESCR (“GMIT’)

Adding Channel Definitions

1. Type smit. Press ENTER

2. On the System Management screen, select Communications Applications and Services.

3. On the Communications Applications and Services screen, select MQSeries.

4. On the MQSeries screen, select Work with MQSeries Channels.

5. On the Work with MQSeries Channels screen, select Add/Change/Show/Delete channel definitions.

6. On the Add/Change/Show/Delete channel definitions screen, select Sender channel definitions.

7. On the Sender channel definitions screen, select Add a Sender channel.

8. On the Queue Manager Name screen click the cursor on the name of the queue manager, gmgrname.

9. SMIT displays the Add a sender channel screen. In the Channel Name field, type a name composed of
the local gmgrname, a slash, and the remote gmgrname.

In the Connection Name field, type the IP address and MQSeries port number for the remote (other)
machine in the format nnn.nnn.nnn.nnn(pppp). The default port number for MQSeries is 1414.

In the Name of transmission queue field, type userid.xmit. Press Enter.
10. Back on the Add/Change/Show/Delete channel definitions screen, select Receiver channel definitions.
11. On the Receiver channel definitions screen, select Add a Receiver channel.
12. On the Queue Manager Name screen click the cursor on the name of the queue manager, gmgrname.

13. SMIT displays the Add a receiver channel screen. In the Channel Name field, type a name composed of
the remote gmgrname, a slash, and the local gmgrname.

14. Press OK.

122 IFS Customizable Web Server (CWS) Guide Fourth Edition

Adding Process Definitions

1. On the MQSeries screen, select Work with MQSeries Process Definitions.

2. On the Work with MQSeries Process Definitions screen, select Add a process definition.

3. On the Queue Manager Name screen, click the cursor on the queue manager name, gmgrname.

4. Onthe Add a process definition screen, in the Process Name field, type userid_CHL_PROCESS.
In the Application Type field, type UNIX.

In the User Data field, type the sender channel name defined above. Press Enter.

Starting a Channel Initiator

1. On the MQSeries screen, select Work with MQSeries Channels.

2. On the Work with MQSeries Channels screen, select Start/Stop channel initiators.

3. On the Start/Stop channel initiators screen, select Start channel initiator.

4. On the Queue Manager Name screen, click the cursor on the queue manager name, gmgrname
To use inetd to start channels, configure two files.

1. Add aline in the /etc/services file:

MQSeries 1414/TCP
2. Add aline in the /etc/inetd.conf file:

MQSeries stream tcp nowait mqm /usr/lpp/mgm/bin/amqcrsta amqcrsta -m gmgrname

Displaying Channel Status

1. On the MQSeries screen, select Work with MQSeries Channels.

2. On the Work with MQSeries Channels screen, select Display channel status. Display current status.
3. On the Queue Manager Name screen, move the cursor to queue manager name, gmgrname.

4. On the Queue Name screen, click the cursor on the queue name for which you want to display status.

If the status of the channels looks incorrect, either the sender or receiver machine is set up incorrectly, the
process definitions are incorrect, or the channels are not started.

goldmine

goldmine generates a Gold bit stream file by reading input from a request data file. The Gold bit stream file
is then used as input to the goldbank program. The request data file, which ends in .dat, contains
information for building a Gold bit stream file and is explained in more detail later in this section. The
complete set of request data files is shown in ,Request Data Files-.

Modifying Request Data Files

Request data files contain information needed to construct a Gold bit stream, which goldmine writes to a
Gold bit stream file that ends with .gold. The request data file contains two sections:

© Copyright IBM Corp. 2002 Appendix C. Gold Message Interface Tool (GMIT) 123

e <Header>
e <Message_Body>

The <Message_Body> section contains <Structure> sections.

Table 8. Request Data File Section Contents

Section

Contains

<Header>

Gold header fields defined by IFS.

<Message_Body>

Structures and fields defined by IFS for each request type.

Structures are tag-value pairs representing the fields defined by IFS. For
example:

<Message_Body>

<Structure> IfsCnsmrDataldTg # IFS CONSUMER ID
CnsmrDataldItemTg ARF1010 # Consumer Id char 30

CnsmrDataEncryptTg 0
</Structure>
</Message_Body>

If a field is not needed, set the value to NULL or leave blank. Represent any
nested or additional structures by <Structure> and </Structure> tags.

Consumer Encrypt Flag

<Header>: You can modify these fields in the <Header> section:

Table 9. <Header> Record Functions

<Header> record

Function

FileName Controls the name of the output files added by goldmine. The file names
generated by goldmine start with the name given on this record and end in either:
e .out for the Gold message file
e .gold for the Gold bit stream file
For example, this FileName record creates the files logon.gold and logon.out:
FileName Togon
RequestType Defines the request type for the Gold message being built. See Request Data

Files for a complete list of request types. For example:
RequestType LOGON

SessionKey fi

Defines the Fl bank name used for testing. For example:
SessionKey.fi IBANKA

SessionKey.userlD

Defines the name of a client userid. For example:
SessionKey.userID ARF1010

<Message_Body>: You can modify the <Message_Body> records within the <Structure> tags in the
request data file. For example, from logon for MTI V1R6M1.

Table 10. <Message_Body> Record Definitions

<Message_Body> Record

Defines

CnsmrDataldlitemTg

Consumer identifier. For example:
CnsmrDataldltemTg ARF1010

CnsmrDataEncryptTg Password encryption flag. For example:
CnsmrDataEncryptTg 0
PswdldTg Password. For example:
PswdldTg 1010
ScrtyldTg Security identifier. For example:
ScrtyldTg 1010
PswdEncryptTpCITg Password encryption flag. For example:
PswdEncryptTpClTg 0
ScrtyEncryptTpCITg Security Encryption Flag. For example:
ScrtyEncryptipClTg 0
124 IFS Customizable Web Server (CWS) Guide Fourth Edition

Comments: In the request data file, precede comments with #. Place comments after each tag-values
pair. Do not place comments within structure level tags unless they follow a tag-value pair.

A conversion tool creates the comments for tags and structures in GMIT supplied request data files. The
record format of these comments is:

<Tag Name> <Tag Data> # <Tag Description> <Data Type> <Length>
Examples:

PswdIdTg 1010 # Password binary 256
ScrtyldTg 1010 # Security ID binary 256

Note: goldmine does not encrypt data.

Repeat Items: Structures that can have multiple occurrences are defined in the data files with the
comment value ,...(Repeat Item)-. Each occurrence is referred to as a single structure instance. By default
the data files are generated with only a single occurrence of Repeat ltem structures. Data files that contain
Repeat Items structures can be modified to include multiple structure instances of a Repeat ltem structure.
To include multiple structure instances of a Repeat Item structure the structure instance(s) must be enclosed
by a <Repeat_Structure> and </Repeat_Structure> statements with the number of structure instances
specified on the <Repeat_Structure> line.

Using the ADDBSINV (Add Business Invoice Transaction) data file as an example the structure tag
InvLineDtITg is defined as a Repeat Item, as shown;

<Structure> InvLineDt1Tg #...(Repeat Item)
InvlLineNbrIdTg 1 # Invoice Line Number (char [12])
<Structure> InvLineAmtTg #. ..
<Structure> AmtTg # Amount
DcmiDatalValTg 6835 # Decimal Data (char [15])
DcmlPrecValTg 2 # Decimal Precision (long)
DrCriIndTg 1 # Debit/Credit Indicator (long)

</Structure>
IsoCurrCodeTg USD # IS0 Currency Code (char[3])
</Structure>
InvLineMemoNmTg memo txt # Line Memo Text (char[80])
</Structure>

To create multiple structure instances of the Repeat Item structure edit the data file as shown;

<Repeat_Structure> 2 # repeat count of 1 or greater must be specified
<Structure> InvLineDtlTg #...(Repeat Item) Structure Instance 1
InvlLineNbrIdTg 1 # Invoice Line Number (char [12])
<Structure> InvLineAmtTg #.o..
<Structure> AmtTg # Amount
DcmiDatalValTg 6835 # Decimal Data (char [15])
DcmlPreclValTg 2 # Decimal Precision (long)
DrCriIndTg 1 # Debit/Credit Indicator (long)
</Structure>
IsoCurrCodeClTg USD # IS0 Currency Code (char[3])
</Structure>
InvLineMemoNmTg memo txt # Line Memo Text (char[80])
</Structure>

<Structure> InvLineDtITg #...(Repeat Item) Structure Instance 2
InvlLineNbrIdTg 2 # Invoice Line Number (char [12])
<Structure> InvLineAmtTg #. ..

<Structure> AmtTg # Amount
DcmiDatalValTg 2503 # Decimal Data (char [15])
DcmlPrecValTg 2 # Decimal Precision (long)
DrCriIndTg 1 # Debit/Credit Indicator (long)
</Structure>
IsoCurrCodeClTg USD # IS0 Currency Code (char[3])
</Structure>
InvLineMemoNmTg memo txt # Line Memo Text (char[80])
</Structure>

</Repeat_Structure>

The Repeat Count specified on the <Repeat_Structure> line must equal the number of Structure Instances
you add; otherwise an error will occur informing you that there are to many or to few structure instances
defined. The structure instances must be defined inside the <Repeat_Structure> and </Repeat_Structure>
statements. Process the modified data file using goldmine as specified.

© Copyright IBM Corp. 2002 Appendix C. Gold Message Interface Tool (GMIT) 125

Sample Request Data File: The following is an example of a goldmine request data file for building a
LOGOFF request:

Test case data file

FileName Togoff # name used to generate Gold message files
- Gold binary msg (*.GOLD)
- Gold msg dump (*.0UT)

<Header>

comments or {valid values}

HeaderType 1 {0001x }

OriginatorType WEB_SERVER {see “ifscstrs.h” for 1ist of valid originatorTypes}
MessageMode REQUEST {REQUEST, RESPONSE, NOTIFICATION, IFS_NOTIFY,

OTHERMODE, UNDELIVERED_RESPONSE, SAVE_RESPONSE,
OBO_REQUEST}
CodePageNumber 850

RequestType LOGOFF {see “ifscstrs.h” for 1ist of valid requestTypes}
SessionKey.fi IBANKA {ex. IBANK, IBANKA}
SessionKey.userID ARFI001 # Client user id

Remaining <Header> fields do not need to be filled in.
Values can be specified for testing purposes.

server name (filled in by the server)

unique LOGON session number (filled in by server)
unique server instance nmbr (filled in by server)
unique request reference nmbr (filled in by server)
used by Core Controller

if NULL, timestamp will be generated

if NULL, GMT offset will be generated

fixed data area for context information

Client’s IP address (filled in by server)

used for return code (OQUTPUT only)

used for returning error reason codes (QUTPUT only)
used for returning error descriptions (OUTPUT only)

SessionKey.serverID NULL
SessionKey.sessionNum 0
IfsTracelD.srvInstNum 0
IfsTracelD.srvcReqRefNmbr 0
IntervalNum 0

TimeStamp NULL
GmtOffsetMinutes NULL
SrvContext NULL
RemoteAddress NULL

CompCode 0

ReasonCode 000

SenseData NULL

</Header>

<Message_Body>

<Structure> IfsCnsmrDataldTg # IFS CONSUMER DATA IDENTIFICATION

#
#
#
#
#
#
#
#
#
#
#
#

CnsmrDataldItemTg ARF1001 # Consumer Data Identification Item (BINARY_ITEM)
CnsmrDtaEncryptTg H # Consumer Data Encryption Type (char[1])
</Structure>

</Message_Body>
Figure 7. Logoff.dat

Running goldmine

When goldmine runs, it uses header file ifscstrs.h. The ifscstrs.h file must reside in the same directory as
goldmine, which is assumed to be the current directory. To run goldmine type:

goldmine filename.dat

Filename.dat is the name of the request data file. The request data file must be in the current directory or the
path to the file must be provided. A list of available request data files is provided in ,Request Data Files-. The
actual files are provided with the system in the data subdirectory. To use the request data files either
reference the data directory path or copy the files to the current directory.

When goldmine runs, it creates two output files:
1. Gold bit stream file ending with .gold,
2. Gold message file ending with .out

The filename.out can be viewed to verify the data. Canned response files are provided in the response
subdirectory. Here is an example of a .out file for a LOGOFF request:

S5k ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok sk o sk b ok sk ok sk sk bk kA kA ok o

. Message Translation Interface: MTI/GOLD 99 RO1 M0OZ *

EESR
Message Header:

Message Info:
HeaderType: [1]

126 IFS Customizable Web Server (CWS) Guide Fourth Edition

OriginatorType: [2001]

Message Mode: [5001]

Code Page: [850]

Request Type: [LOGOFF] Interval Number: [0]
TimeStamp: [1999-04-20-08.57.44.000000]
GMTOffsetMinutes: [300]

Server Context: []

remoteAddress = []

Session Info:

Userld: [ARF1001]

Serverld: []

FI Id: [IBANKAJ

Session Num: [0]

IFS Trace ID:

Server Instance Number: [0]

Service Request Reference: [0]

Return Code Info:

Comp Code: [0]

Reason Code: [0]

senseData = []

Extra Phase 2 Header Fields:

2 MsgHdrTg (Id: [2019]1)

2.1 TrnUIdTg (Id: [20069], Len: [1], Val:[]1)
Message Body:

1 IfsCnsmrDataldTg ((IFS_CNSMR_DATA_ID) Id: [839])
1.1 cnsmr_data_id_item: [41] Len: [7]

1.2 cnsmr_data_encrypt_tp_cl: [H]

Figure 8. Logoff.out

When you run goldmine, you may receive one or more error messages or return codes. See ,Messages and
Codes- for information on these messages and codes.

The first request to be made by goldmine and subsequently goldbank must be logon. Any of the remaining
request data files may be used after logon is complete. When the session has been complete, goldmine and
goldbank must run the logoff request.

goldbank

Goldbank reads the goldbank.config file, which should be modified before running goldbank. The name of
the gold bit stream file (i.e., logoff.gold that is built by goldmine) must be passed into goldbank at runtime.
This section describes both files in detail.

Modifying the goldbank Configuration File

Goldbank reads the configuration file, goldbank.config, each time it runs. You can edit these values in the
file:

Table 11. goldbank Configuration File Values

Value Specifies

AlF When AIF is set to 0, goldbank does not build an AIF header and the transaction is sent to
the target queue.

When AIF is set to 1, goldbank builds an AIF header in EBCDIC and the transaction is sent
to a queue named FDK.servicename.FIName where servicename is read from the
RequestType field of the <Header> section of the request data file and FIName is read from
goldbank.config.

DefaultTimeout The time, in seconds, that goldbank waits for a response message to arrive in the specified
reply queue. Set this to a value greater than 0 which means no response is expected.

LocalQManager The name of the local queue manager to which goldbank will connect.

RemoteQManager The name of the queue manager to which goldbank sends the message.

© Copyright IBM Corp. 2002 Appendix C. Gold Message Interface Tool (GMIT) 127

TargetQueue The queue to which goldbank is sending a message.

ReplyQueue The queue from which goldbank expects to receive a reply to the message that it sent.

FIName The Fl name.

Here is an example of goldbank.config:

GOLDBANK configuration file
<INIT>

AIF 1

DefaultTimeout 10
LocalQManager QMGRNAME
RemoteQManager REMQMGRNAME
TargetQueue USERID.xmit
ReplyQueue USERID.reply
FIName IBANKA

</INIT>

Figure 9. goldbank.config

Running goldbank
To run goldbank type:

goldbank filename target-queue target-qmgr
Where:

filename, required, is the name of the gold bit stream file. Do not include the .gold ending. For example,
a valid file name is logoff.

target-queue, optional, is the name of the MQSeries queue to which to send the gold bit stream file.

target-gmgr, optional, is the name of the MQSeries remote queue manager in which the target queue
exists.

In order forgoldbank to create the files there must be an existing operating BE system.goldbank creates
these files:

e Gold bit stream response file ending with .fgresp
e Gold message dump response file ending with .gresp

Once goldbank runs, goldbank places these files in the test directory, but only the files from the last run of
a given test case. For example, if test case logoff.gold runs three times during a test run, only logoff.fgresp
and logoff.gresp for the third run of the test remain in the directory. Goldbank overwrites the first two sets of
files. goldbank may return informational and error messages. See ,Messages and Codes-.

The Gold Bit Stream Response File

The gold bit stream response (.fgresp) file contains a readable gold message dump for the response
received by goldbank. This file should be viewed to check the data. The following is an example of
information returned for a LOGOFF request in the file logoff.fgresp:

FA A A AR AR AR A AR AR AR A AR AR AR A AR AR AR A AR AR AR A AR AR A A A AR AR A KA A KA

Message Translation Interface: MTI/GOLD 99 RO1 M0OZ *

Message Header:

Message Info:

HeaderType: [1]

OriginatorType: [2001]

Message Mode: [5002]

Code Page: [850]

Request Type: [LOGOFF] Interval Number: [0]
TimeStamp: [1999-04-20-08.57.44.000000]
GMTOffsetMinutes: [300]

Server Context: []

remoteAddress = []

Session Info:

Userld: [ARF1001]

Serverld: []

128 IFS Customizable Web Server (CWS) Guide Fourth Edition

FI Id: [IBANKA]

Session Num: [0]

IFS Trace ID:

Server Instance Number: [0]
Service Request Reference: [0]
Return Code Info:

Comp Code: [0]

Reason Code:

[oi

senseData = []

Extra Phase 2 Header Fields:

2
2.1

MsgHdrTg
TrnUIdTg

Message Body:

1
1.1
1.2

IfsRespCodeTg

fi_proc_ind: []

Figure 10. logoff.fgresp

(Id: [2019])
(Id: [20069]1, Len: [1], Val: [])

((IFS_RESP_CODE) Id: [44])
resp_code_cl: [000]

Request Data Files

The following table lists the available server test cases for MTI level V1R6.

Table 12. Server Test Cases for MTI Level V1R6

Request Request Message Meaning Request Data
Type File
ABLRVLD ADD_BILLER_ACCT_VLD_TXN Add biller account validation rule. ablrvid.dat
ACCTDTL ACCT_DTL_TXN Account detail inquiry. acctdtl.dat
ACCTHIST ACCOUNT_HISTORY_TXN Account history inquiry. accthist.dat
ACCTINFO ACCT_INFO_TXN Ask about account. acctinfo.dat
ACPTDSCL DISCLOSURE_ACPT_TXN Agreement online registration acptdscl.dat
disclosure.
ADDACCT ADD_ACCT_TXN Add account to service profile. addacct.dat
ADDBILR ADD_BILLER_TXN Add biller. addbilr.dat
ADDBSINV ADD_BUSINESS_INVOICE_TXN Add business invoice transaction. addbsinv.dat
ADDCRMIT ADD_CUST_REMIT_DATA_TXN Add customer remittance data addcrmit.dat
transaction.
ADDMPBEN ADD_MP_BENF_TXN Add multiple payment beneficiary. addmpben.dat
ADDPAYEE ADD_PAYEE_TXN Add payee. addpayee.dat
ADDPPBEN ADD_PP_BENF_TXN Add priority payment beneficiary. addppben.dat
ADDRCAT ADD_RGSTR_CAT_TXN Add register category. addrcat.dat
ADDREGEN ADD_RGSTR_ENTR_TXN Add register entry. addregen.dat
ADDSECN ADD_SEC_CNSMR Add secondary consumer. addsecn.dat
ADDSO ADD_STDG_ORDR_TXN Add standing order. addso.dat
ADDSRVC ADD_SRVC_TXN Add service transaction. addsrvc.dat
AFIXPYMT ADD_FIX_PYMT_TXN Add fixed amount recurring payment afixpymt.dat
transaction.
AFIXTFR ADD_FIX_TFR_TXN Add fixed amount recurring transfer. afixtfr.dat
APPLOGON APPL_LOGON_TXN Application logon. applogon.dat
AUTHACCT AUTH_ACCT_TXN Authorize online registration accounts. authacct.dat
AVARPYMT ADD_VAR_PYMT_TXN Add variable amount single payment. avarpymt.dat
AVARTFR ADD_VAR_TFR_TXN Add variable amount single transfer. avartfr.dat
BALINQ BAL_INQ_TXN Balance inquiry. baling.dat

© Copyright IBM Corp. 2002

Appendix C. Gold Message Interface Tool (GMIT)

129

Request Request Message Meaning Request Data
Type File
BBPAUDIN BLR_BP_AUDT_INQR_TXN Biller bill pay audit inquiry. bbpaudin.dat
BILLPROB BP_PROBLEM_TXN Report bill pay problem. billprob.dat
BLRDTL BILLER_DTL_TXN Biller detail. birdtl.dat
BLRINQ BILLER_INQ_TXN Biller inquiry. blring.dat
BLRVLDI BILLER_ACCT_VLD_INQR_TXN Biller account validation inquiry. birvidi.dat
BPMTADD BILL_PYMT_ADD_TXN Add bill payment. bpmtadd.dat
BPMTDEL BILL_PYMT_DEL_TXN Delete bill payment. bpmtdel.dat
BPMTINQ BILL_PYMT_INQR_TXN Bill payment inquiry. bpmtadd.dat
BPVERIF BP_VERIF_TXN Request bill pay verification. bpverif.dat
BSINVINQ BUSINESS_INVOICE_INQR_TXN Business invoice inquiry transaction. bsinving.dat
CBLRVLD CHNG_BILLER_ACCT_VLD_TXN Change biller account validation rule. cblrvid.dat
CBPAUDIN CNSMR_BP_AUDT_INQR_TXN Consumer bill pay audit inquiry. cbpaudin.dat
CCDSPUT CC_DSPUT_TXN Report credit card dispute. ccdsput.dat
CCSTART IFS_CCSTARTUP_TXN CC startup. ccstart.dat
CCUMSG GET_UNDLVD_MSG_TXN Get undelivered message. ccumsg.dat
CCUMSGLS GET_UNDLVD_MSG_LIST_TXN Get undelivered list. ccumsgls.dat
CFIXPYMT CHNG_FIX_PYMT_TXN Change fixed amount recurring cfixpymt.dat
payment.
CFIXTFR CHNG_FIX_TFR_TXN Change fixed amount recurring cfixtfr.dat
transfer.
CHGBSINV CHNG_BUSINESS_INVOICE_TXN Change business invoice transaction. chgbsinv.dat
CHGCCLMT CHG_CC_LMT_TXN Request change CC limit chgcclmt.dat
CHGCRMIT CHNG_CUST_REMIT_DATA_TXN Change customer remittance data chgcrmit.dat
transaction.
CHGDDSO CHG_DIR_DR_STDG_ORDR_TXN Change direct debit / standing order. chgddso.dat
CHGMPBEN CHG_MP_BENF_TXN Change multiple payment beneficiary. chgmpben.dat
CHGPAYEE CHNG_PAYEE_TXN Change payee. chgpayee.dat
CHGPPBEN CHG_PP_BENF_TXN Change priority payment beneficiary. chgppben.dat
CHGRCAT CHG_RGSTR_CAT_TXN Change register category. chgrcat.dat
CHGREGEN | CHG_RGSTR_ENTR_TXN Change registry entry. chgregen.dat
CHGSECN CHG_SEC_CNSMR Change secondary consumer. chgsecn.dat
CHKBOOK CHK_BOOK_TXN Check book reorder. chkbook.dat
CHKCOPY CHECK_COPY_TXN Check copy order. chkcopy.dat
CHNGBILR CHNG_BILLER_TXN Change biller. chngpbilr.dat
CHPYMTHS CHNG_PYMT_HIST_TXN Change payment history. chpymths.dat
CLSSECN CLS_SEC_CNSMR Close secondary consumer. clssecn.dat
CNCSTPMT CNCL_STOP_CHK_PYMT_TXN Cancel a Cancel-Payment request. cncstpmt.dat
CNSMCFRM | CNSMR_MSG_CFRM_TXN Consumer message confirmation. cnsmcfrm.dat
CNVRPYTP CNVR_PAYEE_TP_TXN Convert payee type. cnvrpytp.dat
CODERFSH CODE_REFRESH_TXN Code refresh. coderfsh.dat
CONSSEVT CNSMR_SSN_START_TXN IFS consumer session startup. conssevt.dat
CPYMTINS CHNG_PYMT_INSTN_TXN Change payment instance. cpymtins.dat
CRAPPL CR_APPL_TXN Request loan/line of credit. crappl.dat
CRMITINQ CUST_REMIT_DATA_INQR_TXN Retrieve customer remittance data. crmiting.dat
CSGCNSMR | CSR_CUST_PRFL_TXN CSR - Customer profile request. csgensmr.dat
CSGERRLG GET_ERROR_LOG_TXN CSR - Error log request. csgerrlg.dat
130 IFS Customizable Web Server (CWS) Guide Fourth Edition

Request Request Message Meaning Request Data
Type File
CSGEVGLD GET_EVENT_GOLD_TXN CSR - Event Gold request. csgevgld.dat
CSGEVLOG GET_EVENT_LOG_TXN CSR - Event log request. csgevlog.dat
CSGFISTF GET_FISTAFF_PRFL_TXN CSR - Staff profile request. csqfistf.dat
CSGSCRGL GET_SCRTY_GOLD_TXN CSR - Security Gold request. csgscrgl.dat
CSGSCRLG GET_SCRTY_LOG_TXN CSR - Security log request. csgscrlg.dat
CSGTXNGD GET_GOLD_LOG_TXN CSR - Transaction Gold request. csgtxngd.dat
CSGTXNLG GET_TXN_LOG_TXN CSR - Transaction log request. csgtxnlg.dat
CSGTXNLS GET_TXN_LIST_TXN CSR - Transaction list request. csgtxnls.dat
CSGUSSSN GET_USER_SESSION_TXN CSR - User session query. csgusssn.dat
CSLOGOFF LOGOFF_CTW_TXN CSR - Logoff CTW. cslogoff.dat
CSLOGON LOGON_CTW_TXN CSR - Logon CTW. cslogon.dat
CSSCNSMR CSR_SHRT_CNSMR_PRFL_TXN CSR - Short consumer profile csscnsmr.dat
transaction.
CSTEMAIL CUST_FI_EMAIL Customer reply or communication to FI. | cstemail.dat
CSUCNSMR | CSR_UPDT_CUST_PRFL_TXN CSR - Update customer profile. csucnsmr.dat
CSUFISTF UPDT_FISTAFF_PRFL_TXN CSR - Update staff profile. csufistf.dat
CVARPYMT CHNG_VAR_PYMT_TXN Change variable amount single cvarpymt.dat
payment.
CVARTFR CHNG_VAR_TFR_TXN Change variable amount single cvartfr.dat
transfer.
DBLRVLD DEL_BILLER_ACCT_VLD_TXN Delete biller account validation rule. dblrvid.dat
DDSODTL DIR_DR_STDG_ORDR_DTL_TXN Direct debit / standing order detail. ddsodtl.dat
DDSODLIST DIR_DR_STDG_ORDR_LIST_TXN Direct debit / standing order list. ddsolist.dat
DELBILR DEL_BILLER_TXN Delete biller. delbilr.dat
DELBSINV DEL_BUSINESS_INVOICE_TXN Delete business invoice transaction. delbsinv.dat
DELCRMIT DEL_CUST_REMIT_DATA_TXN Delete customer remittance data delcrmit.dat
transaction.
DELDDSO DEL_DIR_DR_STDG_ORDR_TXN Delete direct debit / standing order. delddso.dat
DELMPBEN DEL_MP_BENF_TXN Delete multiple payment beneficiary. delmpben.dat
DELMSG DEL_FI_MSG Delete a Fl initiated message. delmsg.dat
DELPAYEE DEL_PAYEE_TXN Delete payee. delpayee.dat
DELPPBEN DEL_PP_BENF_TXN Delete priority payment beneficiary. delppben.dat
DELRCAT DEL_RGSTR_CAT_TXN Delete register category. delrcat.dat
DELREGEN DEL_RGSTR_ENTR_TXN Delete registry entry. delrcat.dat
DEPBOOK DEP_BOOK_TXN Request deposit book. depbook.dat
DFIXPYMT DEL_FIX_PYMT_TXN Delete fixed amount recurring payment. | dfixpymt.dat
DFIXTFR DEL_FIX_TFR_TXN Delete fixed amount recurring transfer. | dfixtfr.dat
DISCLINQ DISCLOSURE_INQ_TXN Disclosure inquiry transaction. discling.dat
DPYMTINS DEL_PYMT_INSTN_TXN Delete payment instance. dpymtins.dat
DVARPYMT DEL_VAR_PYMT_TXN Delete variable amount single payment. | dvarpymt.dat
DVARTFR DEL_VAR_TFR_TXN Delete variable amount single transfer. | dvartfr.dat
EBACTBLR EBILL_ACT_DLVRY_TXN Activate electronic biller delivery ebactblr.dat
transaction.
EBBILINQ EBILL_BILL_INQ_TXN Electronic bill inquiry transaction. ebbiling.dat
EBBLRINQ EBILL_BILLER_INQ_TXN Electronic biller inquiry transaction. ebblring.dat
EBCHGST EBILL_CHG_STATE_TXN Change electronic bill state transaction. | ebchgst.dat

© Copyright IBM Corp. 2002

Appendix C. Gold Message Interface Tool (GMIT)

131

Request Request Message Meaning Request Data
Type File
EBDEABLR EBILL_DEACT_DLVRY_TXN Deactivate electronic biller delivery ebdeablr.dat
transaction.
EBDLINQ EBILL_BILLER_DLVRY_INQ_TXN Electronic biller delivery inquiry ebdling.dat
transaction.
ENDCNSMR CSR_CNSMR_END_TXN CSR consumer end. endcnsmr.dat
ERRORNOT IFS_ERRORNOTIFY_TXN Error notify transaction. errornot.dat
EXCHRATE EXCH_RATE_INQR_TXN Exchange rate inquiry transaction. exchrate.dat
FBPAUDIN FI_BP_AUDT_INQR_TXN F1 bill pay audit inquiry. fopaudin.dat
FICUST FI_CUST_EMAIL Fl to customer communication. ficust.dat
FIPROF FI_PROFILE_TXN FI profile. fiprofat
FORCEUSR CSR_FORCE_USR_TXN IFS CSR force user. forceusr.dat
GACIADJN GET_ACI_ADJ_NOTE_TXN Get ACI adjustment note. gaciadjn.dat
GACPTMPL GET_ACP_TMPL_TXN Get ACP template. gacptmpl.dat
GBILELMT GET_BILL_ELMT_TXN Get billing elements. gbilelmt.dat
GBILENTR GET_BILL_ENTR_TXN Get billing entries. gbilentr.dat
GBPSRVC GET_BP_SRVC_DTL_TXN Get bill pay service details. gbpsrvc.dat
GCLHSTYP GET_CLHS_TP_TXN Query CLEARINGHOUSE_TYPE table. | gclhstyp.dat
GDESTFI GET_DEST_FI_TXN Get information from DESTINATION_FI | gdestfi.dat
table.
GDESTCLS GET_DEST_CLHS_TXN Get clearing house ids for a destination | gdestcls.dat
FI ID.
GDSTCLSP GET_DEST_CLHS_PRFL_TXN Queries DESTINATION_FI and gdstclsp.dat
DEST_FI_CLHS_TYPE tables (for
CWS).
GETACP GET_ACP_TXN ACP request. getacp.dat
GETEURRT GET_EUR_EXCH_RT_TXN View local currency/Euro exchange geteurrt.dat
rate.
GETIFSPR GET_IFS_PROFILE_TXN Get IFS profiles inquiry. getifspr.dat
GETOOBLG GET_OOB_LOG_REF_TXN OOB log reference request. getooblg.dat
GETSPACI GET_SPACI_TXN Service provider ACI. getspaci.dat
GETSPACP GET_SPACP_TXN Service provider ACP. getspacp.dat
GETSRACI GET_SRACI_TXN Service request ACI. getsraci.dat
GETTCALG GET_TCA_LOG_TXN Get TCA log records. gettcalg.dat
GETTCAT GET_TCA_TOT_TXN Get TCA totals. gettcat.dat
GEXCHCAL GET_EXCH_CAL_TXN Get operating hours of supported gexchcal.dat
markets.
GFIHOL GET_FI_HOLIDAY_TXN Get FI holiday list. gfihol.dat
GINTEGPR GET_INTEG_PRFL_TXN Get Integrion profile. gintegpr.dat
GINVDTL GET_INV_SVC_DTL_TXN Request investment service profile. ginvdtl.dat
GNPAYADV GET_NO_PAY_ADVC_TXN Get no-pay advice. gnpayadv.dat
GOBSRACI GET_OOB_SRACI_TXN OOB service request ACI. gobsraci.dat
GORDCOMP | GET_ORD_COMPL_ADV_TXN Retrieve order completion advice gordcomp.dat
messages.
GPCUSTFI GP_CUST_FI_TXN General purpose customer to Fl gpcustfi.dat
communication.
GPINQ GP_INQ_TXN General purpose inquiry. gping.dat
GPMON GP_MON_TXN General purpose monetary. gpmon.dat
GPNONMON | GP_NON_MON_TXN General purpose non-monetary. gpnonmon.dat

132 IFS Customizable Web Server (CWS) Guide Fourth Edition

Request Request Message Meaning Request Data
Type File
GSCRTYLV GET_SCRTY_LVL_TXN Get security levels. gscrtylv.dat
GSECDESC GET_SEC_DESC_TXN Retrieve securities information. gsecdesc.dat
GTCASRLS GET_TCASR_LST_TXN Get TCASR list. gtcasrls.dat
GTFRDTAV GET_TFR_DT_ADJ_ADVC_TXN Get transfer date adjustment advice. gtfrdtav.dat
GTFRSRVC GET_TFR_SRVC_DTL_TXN Get transfer service details. gtfrsrvc.dat
IACCTDTL INV_ACCTDTL_TXN Request account information details. iacctdtl.dat
IACCTHST INV_ACCTHST_TXN Request investment account history. iaccthst.dat
IFSPING IFS_PING_TXN IFS ping. ifsping.dat
INQFILE FILE_DOWNLOAD_INQR_TXN File download inquiry. ingfile.dat
INQMPBEN INQR_MP_BENF_TXN Multiple payment beneficiary inquiry. ingmpben.dat
INQPPBEN INQR_PP_BENF_TXN Priority payment beneficiary inquiry. ingppben.dat
INQSRVC INQ_SRV_TXN Service inquiry transaction. ingsrvc.dat
INTRATE INT_RATE_TXN Interest rates. intrate.dat
INVACCT INV_ACCT_INFO_TXN Associates settlement/charge account invacct.dat
with an investment account.
INVORDS INV_ORD_STOCK_TXN Transaction to buy/sell stock. invords.dat
IORDCANC INV_ORD_CANC_TXN Requests cancellation of an existing iordcanc.dat
order.
IORDCHG INV_ORD_CAN_CHG_TXN Request order parameter changes iordchg.dat
(quantity, etc).
IORDINQ INV_ORD_STAT_INQ_TXN Request order status. iording.dat
LISTMSG LIST_FI_MSG List Fl initiated messages. listmsg.dat
LOADADV LOAN_ADV_TXN Requests funds be credited to deposit loanadv.dat
account and line of credit incremented.
LOANRPYM LOAN_REPYMT_TXN Allows transfer of funds from deposit loanrpym.dat
account to line of credit.
LOGOFF LOGOFF_TXN Logoft. logoff.dat
LOGON LOGON_TXN Logon. logon.dat
LOSTCARD LOST_CARD_TXN Report lost card. lostcard.dat
MASSLGOF MASS_LOGOFF_TXN Mass logoff. masslgof.dat
MPMTADD MULTI_ACCT_PYMT_TXN Multiple account payment. mpmtadd.dat
MPMTDEF MULTI_ACCT_PYMT_DEFN_TXN Multiple account payment definition. mpmtdef.dat
MPMTDEL DEL_MULTI_ACC_PYM_DEF_TXN Delete multiple account payment mpmtdel.dat
definition.
MPMTINQ PNDG_MULTI_AC_PYM_INQ_TXN | Pending multiple account payment mpmting.dat
inquiry.
NEWCERT NEW_DIGITAL_CRTF_TXN New Digital Certificate. newcert.dat
NICKNAME ACCT_NICKNAME_TXN Change account nickname. nickname.dat
NOPAYADV NO_PAY_ADVC_TXN No-pay advice. nopayadv.dat
OBOLOGON | OBO_LOGON_TXN On behalf of (OBO) logon. obologon.dat
ORDCOMPL | ORD_COMPL_ADV_TXN Order status (from Fl to IFS Message ordcompl.cat
Server).
PAYEEINQ PAYEE_INQ_TXN Payee inquiry. payeeing.dat
PAYINQ PAYMENT_INQ_TXN Payment instance inquiry. payinqg.dat
PINPSWD ACCT_PINPSWD_TXN PIN/password change. pinpswd.dat
PPMTADD PRTY_PYMT_ADD_TXN Add priority payment. ppmtadd.dat
PPMTDEL PRTY_PYMT_DEL_TXN Delete priority payment. ppmtdel.dat

© Copyright IBM Corp. 2002

Appendix C. Gold Message Interface Tool (GMIT)

133

Request Request Message Meaning Request Data
Type File
PPMTINQ PRTY_PYMT_INQR_TXN Priority payment inquiry. ppmting.dat
PYEEDTL PAYEE_DTL_TXN Payee detail. payeedtl.dat
PYMTDEFI PYMT_DEFN_INQR_TXN Payment definition inquiry. pymtdefi.dat
QRYPOSTX QUERY_PSTD_TXN Query posted transactions. grypostx.dat
QRYTCHPB QUERY_TECH_PRBLM_TXN Query technical problem. grytchpb.dat
RCATINQ RGSTR_CAT_INQ_TXN Register category inquiry. rcating.dat
READMSG GET_FI_MSG Read Fl initiated message. readmsg.dat
REAUTH IFS_REAUTH_TXN Re-authentication. reauth.dat
RECVFILE RECV_FILE_TXN Receive file transfer. recvfile.dat
REGINQ RGSTR_INQ_TXN Register inquiry. reging.dat
REMACCT REM_ACCT_TXN Remove account from service profile. remacct.dat
REMSRVC REM_SRVC_TXN Remove service transaction. remsrvc.dat
RENUCERT RENEW_DIGITAL_CRTF_TXN Renew digital certificate. renucert.dat
RESCERT RESUME_DIGITAL_CRTF_TXN Resume digital certificate. rescert.dat
RESETUSR CSR_RESET_USR_TXN IFS CSR reset user. resetusr.dat
REVCERT REVOKE_DIGITAL_CRTF_TXN Revoke digital certificate. revcert.dat
RPAYDCSN PAY_DCSN_RQST_TXN Request pay no pay decision. rpaydcsn.dat
RSCNSCRT RSET_CNSMR_SCRTY_TXN Reset consumer security. rscnscrt.dat
RSTSSECN RSET_SEC_CNSMR Reset secondary consumer. rstssecn.dat
RVBPRQST REV_BP_RQST_TXN Reverse bill pay request. rvbprgst.dat
SALESSLP SALES_CPY_TXN Sales slip copy order. salesslp.dat
SECNINQ SEC_CNSMR_INQ Secondary consumer inquiry. secning.dat
SECURITY IFS_SECURITY_TXN Security. security.dat
SELFRGST SELF_REGIS_TXN Self registration. selfrgst.dat
SETTLACT SETTL_2_ACCT_TXN Settles account (between back office settlact.dat
and bank).
SRCHCNSM SRCH_CNSMR_PRFL_TXN Search consumer profile. srchcnsm.dat
SRVCPROF SRVC_PROFILE_TXN Service profile inquiry. srvcprof.dat
SRVCSTAT UPDT_SRVC_STAT_TXN Service status change. srvcstat.dat
SRVSHUTD SERVER_STOP_TXN Server shutdown. srvshutd.dat
SRVSTART SERVER_START_TXN Server startup. srvstart.dat
STATENOT IFS_STATENOTIFY_TXN State notify. statenot.dat
STMTCOPY STMT_COPY_TXN Statement copy order. stmtcopy.dat
STPCKPMT STOP_CHK_PYMT_TXN Stop check payment. stpckpmt.dat
STPMTINQ STOP_CHK_PYMT_INQR_TXN Request details of all stop payment stpmting.dat
orders.
STPRCPMT STOP_RCUR_DRFT_TXN Allows cancel of Recurring Draft stprcpmt.dat
Payment.
STRCNSMR CSR_CNSMR_STRT_TXN CSR consumer start. strcnsmr.dat
SUSCERT SUSPEND_DIGITAL_CRTF_TXN Suspend digital certificate. suscert.dat
SUSPCNS SUSP_CNSR_MSG Suspends account with FI. suspcns.dat
TAXDTL ACCT_TAX_DTL_TXN Account tax detail. taxdtl.dat
TDEPINQR TERM_DEP_INQR_TXN Term deposit inquiry. tdepinqgr.dat
TDEPOPN TERM_DEP_OPN_TXN Term deposit account open. tdepopn.dat
TDEPRQST TERM_DEP_RQST_TXN Term deposit account request. tdeprgst.dat
TFRDTADV TFR_DT_ADJ_ADV_TXN Transfer date adjustment advice. tfrdtadv.dat

134 IFS Customizable Web Server (CWS) Guide Fourth Edition

Request Request Message Meaning Request Data
Type File
TFRINQ TFR_INQ_TXN Transfer inquiry. tfring.dat
TFRPROB TFR_PROBLEM_TXN Report a transfer transaction problem. tfrprob.dat
TRANPRFL TXN_PROFILE_TXN Transfer profile. tranprfl.dat
UACIADJN UPDT_ACI_ADJ_NOTE_TXN Update ACI adjustment note. uaciadjn.dat
UACPTMPL UPDT_ACP_TMPL_TXN Update ACP template. uacptmpl.dat
UBILELMT UPDT_BILL_ELMT_TXN Update billing elements. ubilelmt.dat
UBPSRVC UPDT_BP_SRVC_DTL_TXN Update bill pay service details. ubpsrvc.dat
UCLHSTYP UPDT_CLHS_TP_TXN CLEARINGHOUSE_TYPE table uclhstyp.dat
maintenance.
UCNSMRDL UPDT_CNSMR_DTL_TXN Update consumer details. ucnsmrdl.dat
UDESTCLS UPDT_DEST_CLHS_TXN DEST_FI_CLHS_TYPE table udestcls.dat
maintenance.
UDESTFI UPDT_DEST_FI_TXN Update DESTINATION_FI table. udestfi.dat
UEXCHCAL UPD_EXCH_CAL_TXN Update market calendar. uexchcal.dat
UFIHOL UPDT_FI_HOLIDAY_TXN Update FI holiday list. ufihol.dat
UFIPRFL UPDT_FI_PRFL_TXN Update FI profile. ufiprfl.dat
UILLENTR UPDT_BILL_ENTR_TXN Billing entry update. uillentr.dat
UINTEGPR UPDT_INTEG_PRFL_TXN Update Integrion profile. uintegpr.dat
UINVDTL UPD_INV_SVC_DTL Update Investment Service Profile uinvdtl.dat
(CTW).
UNDELIV IFS_UNDELIVERED_TXN Undelivered transaction. undeliv.dat
UPDTGCDE CSR_UPDT_GOLD_CODE_TXN CSR update gold code. updtgcde.dat
UPDTSRVC UPDT_SRVC_TXN Update service transaction. updtsrvc.dat
UPSRRQPR UPDT_SRVC_RQST_DTL_TXN Update service request profile. upsrrgpr.dat
UPSRVCPR UPDT_SRVC_PRFL_DTL_TXN Update service profile. upsrvcpr.dat
USCRTYLV UPDT_SCRTY_LVL_TXN Update security levels. uscrtylv.dat
USERPROF USER_PROFILE_TXN FI consumer profile inquiry. userprof.dat
UTFRSRVC UPDT_TFR_SRVC_DTL_TXN Update transfer service details. utfrsrvc.dat
WTFRCNCL WIRE_TFR_CNCL_TXN Cancel a wire transfer transaction. wifrencl.dat
WTFRINIT WIRE_TFR_INIT_TXN Request to wire funds to an FI. wifrinit.dat
WTFRINQR WIRE_TFR_INQR_TXN Request details of standing wire wifringr.dat
transfers.

Messages and Codes

GMIT programs, goldmine and goldbank, issue error and informational messages. MTI issues error codes
and sense data. The following sections detail these messages and codes.

goldbank Messages

Table 13. goldbank Messages

goldbank Error

Explanation

Error reading <INIT> tag.

The <INIT> tag in goldbank.config is incorrect.

filename.

Error reading configuration file

goldbank could not read the configuration file filename.

goldbank cannot open {bit
streamlformatted responselresponse

hit Adtvanns) fila filanmanmaa

bit stream file

goldbank cannot open file filename, which is one of the following files:

© Copyright IBM Corp. 2002

Appendix C. Gold Message Interface Tool (GMIT)

135

goldbank Error

Explanation

bit stream} file filename.

formatted response file
response bit stream file

goldbank found no <INIT> tag in file
filename.

goldbank did not find an <INIT> tag in file filename.

goldbank is not compiled for AIF
support.

goldbank is not compiled for AIF support.

MQ function failed with return code
rc.

MQ function failed with return code rc.

The bit stream file flename does not
contain a valid Gold message.

The bit stream file filename does not contain a valid Gold message. You
may need to rerun goldmine to regenerate the .gold file.

The ConnectQM() failed with return
code rc.

The ConnectQM function failed with return code rc.

goldbank filename Gold request is n
bytes.

The goldbank file flename Gold request length is n.

goldbank read n bytes from bit
stream file filename.

goldbank read n bytes from bit stream file filename.

goldbank received n bytes. [The AIF
header is n1 bytes. The Gold
message length is n2 bytes.]

goldbank received n bytes. The AIF header length is n1. The Gold
message is n2.

goldbank successfully processed file
filename.

goldbank successfully processed file filename.

goldbank file.gold target-queue
target-qmgr

To run goldbank, enter:
goldbank file.gold target-queue target-gmgr

goldmine Messages

Table 14. goldmine Messages

goldmine Error

Explanation

goldmine cannot find a <Header> tag
in file filename.

filename does not contain a <Header> section. Define a <Header>
section.

goldmine cannot find a
<Message_Body> tag in file filename.

filename does not contain a <Message_Body> section. Define a
<Message_Body> section.

goldmine cannot find file filename.

goldmine cannot find file filename. Copy filename to the current directory.

goldmine cannot find IFS tag tag in
file filename.

Tag tag not found in header file filename. Make sure that the header file is
in the current directory and that the tag is spelled correctly.

goldmine cannot find the IFS define
in file filename.

define not found in header file filename. Make sure that the header file is
in the current directory and that the define is spelled correctly.

The tag tag does not match expected
field field.

Tag tag is out of order or is not valid.

The tag tag is incorrect for this Gold
MTI version.

This MTI level does not support tag tag.

The tag tag is incorrect within the
<Header> section.

Tag tag is incorrect within the <Header> section.

Not expecting additional repeat
structure instances, repeat_count =
<value>

Number of structure instances added to Repeat_Structure exceeds
Repeat_Structure count.

Repeat count value incorrect, value
<value>

Count specified on <Repeat_Structure> line must be 1 or greater.

expecting additional repeat structure
instances, repeat_count = <value>

Either reduce Repeat_Structure count to equal number of structure
instances defined or add Structure instances to equal Repeat_Structure
count.

The tag tag is incorrect within the
<Message_Body> section.

Tag tag is incorrect within the <Message_Body> section.

136

IFS Customizable Web Server (CWS) Guide Fourth Edition

goldmine Error Explanation

incorrect.

The request data file name filename is | Verify filename.

MTI Codes

See MTI documentation for more information about these return codes and sense data.

The variables in these messages are:

program:
sensedata:

rc:

program error:
program error:
program error:
program error:
program error:
program error:
program error:
program error:
program error:
program error:
program error:
program error:
program error:
program error:

program error:

© Copyright IBM Corp. 2002

Program issuing the message.

Sense data.

Return code.
Sense data is sensedata.
MTIAddField() failed with return code rc.
MTIAddFieldInstance() failed with return code rc.
MTIAddHeader failed() with return code rc.
MTIAddStructure failed() with return code rc.
MTIAddStructurelnstance() failed with return code rc.
MTIDumpMessage failed() with return code rc.
MTIGetHeader failed() with return code rc.
MTIGetMessageFromBitstream() failed with return code rc.
MTIGetPreDefinedStructureDefinition() failed with return code rc.
MTlInitialize() failed with return code rc
MTlInitializeMessage() failed with return code rc
MTIPutMessageToBitstream() failed with return code rc

MTITerminate() failed with return code rc.

Sense data is sensedata.

Appendix C. Gold Message Interface Tool (GMIT)

137

Appendix D. FISim (Financial Institution Simulator)

Introduction

FISim is a Financial Institution (FI) simulator and a Core Controller (CC) simulator for use with the
Customizable Web Server (CWS). When FISim is used without a CC, it simulates both the Fl and the CC.
When FISim is used with the CC, it simulates the FI only.

FISim runs on an RS6000 with the AIX operating system, DB2, and MQ Series. A version of FISim that does
not use MQ Series is available in the CWS Toolkit. This document only describes the MQ Series version of
FISim for AIX.

When FISim is used without a Core Controller, FISim may reside be on a different AIX machine or the same
machine as the CWS web server. Since the Core Controller runs on an MVS machine and FISim runs on an
AIX machine, FISim used with a Core Controller will always be on a different machine from the Core
Controller though it may still be on the same machine as the CWS. A previous version of FISim ran on an
MVS machine with the Core Controller.

FISim Configurations
without Core Controller

Figure 11. FISim Configurations without a Core Controller

Figure 13 shows configurations without a Core Controller and Figure 14 shows configurations with a Core
Controller.

138 IFS Customizable Web Server (CWS) Guide Fourth Edition

FISim Configurations with
Core Controller

=

§ iy

e

L e e %

ORI

Figure 12. FISim Configurations with a Core Controller

The Test Data Flow

FISim provides for testing the CWS web pages, the CWS web server and the Core Controller without a
connection to a real Fl. FISim receives Gold request messages through an MQ Series transmit queue and
provides Gold response messages to an MQ Series reply queue.

Without a Core Controller, FISim receives requests from the CWS web server and returns the responses to
the CWS web server. With a Core Controller, the CWS web server requests are first routed to the Core
Controller. The Core Controller handles some requests itself and returns the response for these requests to
the CWS web server. For all other transactions, the Core Controller sends the requests to FISim which
responds to the Core Controller. The Core Controller may augment the FISim response before returning the
response to the CWS web server. For the Logon and Self-Registration transactions, FISim responses to the
Core Controller contain less data than the FISim responses to the CWS web server without a Core
Controller.

When FISim receives a Gold request, it first checks to see of there is a predefined response file available for
the request. If so, it attempts to deliver the response file as a response, as detailed in ,Predefined
Responses-. If not, FISim examines the request to determine if the transaction is supported by the DB2
based portion of the simulation.

When the request is supported by the enhanced simulation capability, FISim examines the request to
determine whether the request is valid based on the contents of the database. If the request is valid, the
FISim returns a Gold transaction response based on data in the database. If the request is not valid based
on the database contents, the FISim returns a Gold transaction to indicate the error. For example, the logon

© Copyright IBM Corp. 2002 Appendix D. FISim (Financial Institution Simulator) 139

request will provide the account summary data if the user ID, password, and PIN match the database or it
will return a logon failure message.

For those transactions not supported by the DB2 based simulation, FISim returns a canned response that
depends only on the transaction type (for example, logon and account history) regardless of the request
message parameters. For these transactions, FISim neither examines nor verifies the correctness of the
request message; it simply returns a static response for each request.

Figure 15 shows the data flow between the web page and FISim with a Core Controller.

Trace Files;

Gold Bitstream
viga M Series l

Gold Bitstream
via MQ Series

Test Data

Figure 13. FISim Data Flow with a Core Controller

When a CWSAPI request is made from a page, the request is routed to FISim, which returns data based on
the database or from an internal table for the transaction.

Installing FISim

Prerequisites

Hardware

The FISim must be installed on an IBM e-server pSeries or RS/6000 system. The following hardware
environment is suggested as a minimum.

o Entry level IBM e-server pSeries or RS/6000 system

140 IFS Customizable Web Server (CWS) Guide Fourth Edition

e 64MB+ RAM

o 4GB+ disk space

e Graphics attachment for local user access

e LAN attachment for remote user access
Software

The list of prerequisite software needed by FISim is as follows:

e AIX Operating System, Version 4.3.3 (Includes TCP/IP)
¢ MQ Series, Version 5 - Configured using the System Management Tool (SMIT).
e The C++ Run Time Environment version 4.0.2 (or newer).

Use the, Islpp -L xIC.* , command to determine the currently installed version.
e |BM DB2 UDB (Version 7.1 or newer) for AIX

Optional software to view DB2 data on a remote system

o |BM DB2 (Version 7.1 or newer) for Windows
e Lotus Approach or Microsoft Excel for Windows

Installation

FISim can be installed by copying the subdirectory ,fis- and its subdirectories from the export subdirectory
under the desired build.

cp -r /desiredbuild/export/fis destination
If FISim has been provided in a tar file, execute the tar command to extract the files in the desired directory:
tar xvf fisim_tarfilename.tar

Once the FISim software has been installed, MQ Series and DB2 must be configured to run with FISim.
Please refer to ,MQSeries and FISim- to set up MQ Series for your configuration. Please refer to ,DB2
Configuration- to set up the DB2 database for use with FISim.

The Package Contents

FISim is composed of the following elements:

e The FISim program
e Test data files for use with DB2
e Scripts for updating database with test data and starting/stopping FISim

FISim is organized using the following directory structure.

Toolkit
Directory

Test Data Programs Documentation

Figure 14. FISim Directory Structure

The ,fis- directory contains the ,data- directory for the DB2 based simulation data and the ,bin- directory for
FISim executables.

© Copyright IBM Corp. 2002 Appendix D. FISim (Financial Institution Simulator) 141

MQSeries and FISim

MQSeries allows AlX applications to use message queuing to participate in message-driven processing.
MQWeb utilizes several MQSeries queues in its functionality. This appendix assumes the user has already
installed MQSeries and the SMIT GUI panels. To install MQSeries, see [Beta TBD].

Three different MQ Series configurations will be described. One configuration has the CWS web server on
the same machine as FISim without a Core Controller. This may be thought of as an all local configuration.
The second MQ Series configuration is for FISim receiving request from a remote web server or Core
Controller. The third MQ Series configuration is for the CWS web server sending requests to FISim running
on a different machine.

The MQ Series configuration for the Core Controller sending requests to a remote FISim is basically the
same as this third case except that MVS doesn t provide SMIT panels. In the case of the CWS web server
and FISim in the same AlX machine and a Core Controller on an MVS machine, both machines have two
pairs of queues defined. One pair is used by the CWS web server and the Core Controller, and the other pair
is used by the Core Controller and FISim.

All Local MQSeries Configuration

Without a Core Controller and with FISim on the same machine as the CWS web server, the MQ Series
setup is simplified since everything is local. For this local only configuration, you need to define

A queue manager

A transmission queue, which is a local queue, for FISim to get messages from the web server
Another local queue for the web server to receive messages from FISim

A remote queue which relates a remote queue manager name to the local transmission queue

In this case, the remote queue is defined on the local machine as a trick to simplify setup. The reason is that
the CWS web server addresses requests to multiple queues on the remote queue manager with one queue
per transaction type (logon, account history, etc.). With a remote queue definition, the local queue manager
places all these requests from the web server in a single transmission queue which FISim reads. The
alternative would be to define alias queues (for nearly 200 transaction types) that point to the transmission
queue.

Adding a Queue Manager: [If you will be using an already defined queue manager then you should
skip to ,Queue Definitions-.]

Once you install MQSeries, add a queue manager. This queue manager will provide queuing services to
applications and manage the queues that belong to it. The queue manager also ensures that messages are
put on the correct queue.

Each queue manager must have a unique name. A queue manager may be shared by multiple users. Only
the first user on each machine needs to add the queue manager.

In the following steps, gmgrname (all lowercase) is the name you assign to the queue manager and userid
(all lowercase) is your user ID.

Use SMIT to add a queue manager as follows:

1. Type smit. Press ENTER.

2. On the System Management screen, select Communications Applications and Services.
3. Onthe Communications Applications and Services screen, select MQSeries.

4. Onthe MQSeries screen, select Work with MQSeries Queue Managers.

5. On the Work with MQSeries Queue Managers screen, select Add a queue manager.

6. On the Add a queue manager screen, in the Queue Manager Name entry field, type gmgrname

142 IFS Customizable Web Server (CWS) Guide Fourth Edition

Note: Names in MQSeries are case sensitive.

In the Description entry field, type gmgrname queue manager for CWS

In the Dead Letter Queue entry field, type SYSTEM.DEAD.LETTER.QUEUE

Click on OK.

SMIT displays the COMMAND STATUS screen. At first, the screen will read Command: running. Then

it will read Command: ok and MQSeries queue manager created or Command: failed and indicate

why it failed.
Note on dead letter queues: A dead letter queue is a local queue where messages are routed if they
cannot be routed to their correct destination. If you do not specify a dead letter queue, application program
errors may cause channels to be closed. For example, if an application tries to put a message on a queue on
another queue manager but a failure occurs, the channel is stopped and the message remains on the
transmission queue. Then, other applications are blocked from using that channel for their messages. If you

have a dead letter queue, the undelivered message is simply put on the dead letter queue at the receiving
end, leaving the channel and its transmission queue available.

Starting a Queue Manager: Once you add the queue manager, start it through SMIT as follows:
1. Type smit. Press ENTER.

2. On the System Management screen, select Communications Applications and Services.

3. Onthe Communications Applications and Services screen, select MQSeries.

4. Onthe MQSeries screen, select Work with MQSeries Queue Managers.

5. On the Work with MQSeries Queue Managers screen, select Start a queue manager.

6. On the Queue Manager Name screen, move the cursor to select the queue manager you want to start:
gmgrname.

Click on OK.
SMIT displays the COMMAND STATUS screen. At first, the screen will read Command: running. Then

it will read Command: OK and MQSeries queue manager started or Command: failed and indicate
why it failed.

Adding Default Objects: [Default objects may be added automatically during the Add queue manager
step. If the default objects are already added then the (Add default objects to a queue manager option
mentioned in step 5 below will not be available and this section should be skipped.]

Once you start the queue manager, add default objects to it through SMIT as follows:

1. Type smit. Press ENTER.

2. On the System Management screen, select Communications Applications and Services.

3. Onthe Communications Applications and Services screen, select MQSeries.

4. On the MQSeries screen, select Work with MQSeries Queue Managers.

5. On the Work with MQSeries Queue Managers screen, select Add default objects to a queue manager.

6. On the Queue Manager Name screen, move the cursor to select the queue manager you want:
gmgrname.

Click on OK.

© Copyright IBM Corp. 2002 Appendix D. FISim (Financial Institution Simulator) 143

SMIT displays the COMMAND STATUS screen. At first, the screen will read Command: running. Then
it will read Command: OK and display several messages about MQSeries queues, channels, and
processes created or Command: failed and indicate why it failed.

Queue Definitions: After you start the queue manager and add the default objects, add the queues you
need to be able to use the CWS and FISim programs.

In MQSeries, there are three general types of queues:
Local queues, for transmitting and receiving messages
Alias queue objects

Remote queues

A local queue belongs to the queue manager to which the application is connected. CWS web server and
FISim share two local queues: one for transmitting messages from CWS to FISim and one for receiving
messages by CWS from FISim.

An alias queue object allows applications to access a queue by referring to it indirectly in MQl calls. An
alias queue object is not a queue, but an object that you can use to access another queue. When an alias
queue object is used in an MQl call, the name is resolved to the name of either a local or a remote queue at
run time. This way, you can change the queues that your application uses without changing the application,
you just have to change the alias queue object definition to reflect the name of the new queue.

The MQSeries setup for FISim could use a number of alias queues to map the output queue names from the
Core Controller or from the CWS web server into the single transmit queue from which FISim reads.
However, it is easier to define single remote queue which effects the desired concentration.

A remote queue is a type of alias queue that relates a remote queue manager name to a local
transmission queue. A remote queue may be defined so that an application can send messages to a
remote application as if it were a local application. A remote queue can also be used to direct
requests for a remote queue manager to a local transmission queue. FISim uses a remote queue
definition for this second reason and is thereby able to read web server requests addressed to
multiple queue on a remote queue manager from a single transmission queue.

Adding Local Queues: For FISim to exchange messages with the CWS web server, add two local queues
as follows:

e A queue for transmitting messages from the web server to FISim
e A queue for receiving messages from FISim by the web server

1. Type smit. Press ENTER.

2. On the System Management screen, select Communications Applications and Services.
3. On the Communications Applications and Services screen, select MQSeries.

4. On the MQSeries screen, select Work with MQSeries Queues.

5. On the Work with MQSeries Queues screen, select Local Queues.

6. On the Local Queues screen, select Add a local queue.

7. On the Queue Manager Name screen, click the cursor to select the queue manager to which you want to
add a local queue: gmgrname.

8. On the Add a local queue screen, in the Queue Name entry field, type the transmission queue name
userid.xmit. This is the queue that FISim will read from.

In the Description entry field, type FISim transmission queue.

144 |IFS Customizable Web Server (CWS) Guide Fourth Edition

Toggle In the Usage field to transmission queue
Click on OK.

SMIT displays the COMMAND STATUS screen. At first, the screen will read Command: running. Then
it will read Command: OK or Command: failed with information about the success or failure of the
command. You will see information like the following:

1 : define +

: QLOCAL (‘userid.xmit’) +

: DESCR (‘FISim Transmission queue’) +

: USAGE (XMITQ) AMQ8006: MQSeries queue created
AMQ8006: MQSeries queue created

1 MQSC commands read.

0 commands have a syntax error.

0 commands cannot be processed.

Use the same SMIT screens to add the queue for the web server to receive messages. Unlike the
transmission queue, this queue will use the defaults for all fields except the queue name.

1.

2.

Type smit. Press ENTER.

On the System Management screen, select Communications Applications and Services.
On the Communications Applications and Services screen, select MQSeries.

On the MQSeries screen, select Work with MQSeries Queues.

On the Work with MQSeries Queues screen, select Local Queues.

On the Local Queues screen, select Add a local queue.

On the Queue Manager Name screen, click the cursor to select the queue manager to which you want to
add a local queue: gmgrname.

On the Add a local queue screen, in the Queue Name entry field, type the queue name userid.reply. This
is the queue that FISim will write responses to.

In the Description entry field, type FISim reply queue.
Click on OK.

SMIT displays the COMMAND STATUS screen. At first, the screen will read Command: running. Then
it will read Command: OK or Command: failed with information about the success or failure of the
command. You will see information like the following:

1 : define +

: QLOCAL (‘userid.reply’) +

: DESCR (“FISim reply queue’)
AMQ8006: MQSeries queue created
1 MQSC commands read.

0 commands have a syntax error.
0 commands cannot be processed.

Adding the Remote Queue: Add the definition of the remote queue, which is used for concentrating
the CWS web server requests.

1.

2.

3.

4.

5.

Type smit. Press ENTER.

On the System Management screen, select Communications Applications and Services.
On the Communications Applications and Services screen, select MQSeries.

On the MQSeries screen, select Work with MQSeries Queues.

On the Work with MQSeries Queues screen, select Remote Queues.

© Copyright IBM Corp. 2002 Appendix D. FISim (Financial Institution Simulator) 145

6. On the Remote Queues screen, select Add a remote queue.
7. On the Queue Manager Name screen, click the cursor on the desired queue manager name gmgrname.
8. On the Add a remote queue screen, in the Queue Name entry field, type userid.

In the Name of remote queue manager entry field, type userid.

In the Transmission queue entry field, type userid.xmit

Click on OK.

SMIT displays the COMMAND STATUS screen. First, the screen reads Command: RUNNING. Then it
reads either Command: OK or Command: failed with information about the success or the failure of the
command. Toward the bottom of the screen, you should see something like:

1 : define +

: QREMOTE (‘userid’) +

: RQMNAME (‘userid’) +

D XMITQ (‘userid.xmit’)
AMQ8006: MQSeries queue created
1 MQSC commands read.

0 commands have a syntax error.
0 commands cannot be processed.

Remote MQ Series Configuration for FISim

The MQ Series configuration for FISim handling request from either a CWS web server or a Core Controller
on a remote machine requires:

A queue manager

A transmission queue for sending messages to the remote machine

A transmission queue for receiving messages from the remote machine

A remote queue for the queue manager on the other machine

A remote queue for relating a remote queue manager to the transmission queue that FISim reads
A sender channel

A receiver channel

A trigger process for sending messages

Like the all local configuration, a remote queue is used to concentrate the requests into a single queue since
they are addressed to multiple queues on a fictitious remote queue manager. The MQ Series configuration
for the requestor (web server or Core Controller) is setup to send the requests to FISim machine for a multi-
hop transfer to the fictitious queue manager. The remote queue used for concentrations points to a
transmission queue that has no channel enabling FISim to read from it. The other remote queue does point
to a transmission queue with a channel for returning responses to the requestor.

The following steps use the symbolic names which follow:

requestor_qgm - queue manager on the requestor machine running the CWS web server or the Core
Controller

responder_qm - queue manager on the responder machine running FISim
fictitious_gm - nonexistent queue manager
userid - user 1D running FISim

It may be convenient to name the queue managers the same as the TCP/IP hostname when you need only
one queue manager on a machine.

The Queue Manager: Creating the queue manager, starting the queue manager, and adding default
objects are the same as for All Local Configuration described above. On the FISim machine, use
responder_qm for the queue manager name instead of gmgrname used in the above section.

146 IFS Customizable Web Server (CWS) Guide Fourth Edition

Queue Definitions: See ,Queue Definitions- for a brief description of different queue types.

Adding Local Queues: For FISim to exchange messages with the CWS web server or Core Controller,
add two local queues as follows:

e A queue for transmitting reply messages to the requestor machine
e A queue for receiving request messages from the requestor machine

1. Type smit. Press ENTER.

2. On the System Management screen, select Communications Applications and Services.
3. On the Communications Applications and Services screen, select MQSeries.

4. On the MQSeries screen, select Work with MQSeries Queues.

5. On the Work with MQSeries Queues screen, select Local Queues.

6. Onthe Local Queues screen, select Add a local queue.

7. On the Queue Manager Name screen, click the cursor to select the queue manager to which you want to
add a local queue: responder_gm.

8. On the Add a local queue screen, in the Queue Name entry field, type the transmission queue name
userid.reply. This is the queue that will be used to send response messages to the remote machine.

In the Description entry field, type reply transmission queue.

Toggle In the Usage field to transmission queue.

Toggle the MQGET operations and the MQPUT operations fields to ENABLED.

Toggle the Trigger Enabled field to yes.

In the Initiation Queue field, type SYSTEM.CHANNEL.INITQ.

In the Trigger Process field, type userid_CHL_PROCESS.

Click on OK.

SMIT displays the COMMAND STATUS screen. At first, the screen will read Command: running. Then

it will read Command: OK or Command: failed with information about the success or failure of the
command. You will see information like the following:

1 : define +

: QLOCAL (° userid.reply’) +

: DESCR (° reply transmission queue’) +
: USAGE (XMITQ)

AMQ8006: MQSeries queue created

1 MQSC commands read.

0 commands have a syntax error.

0 commands cannot be processed.

Use the same SMIT screens to add the queue for receiving messages from the requestor machine.
1. Type smit. Press ENTER.

2. On the System Management screen, select Communications Applications and Services.

3. On the Communications Applications and Services screen, select MQSeries.

4. On the MQSeries screen, select Work with MQSeries Queues.

5. On the Work with MQSeries Queues screen, select Local Queues.

© Copyright IBM Corp. 2002 Appendix D. FISim (Financial Institution Simulator) 147

6.

7.

On the Local Queues screen, select Add a local queue.

On the Queue Manager Name screen, click the cursor to select the queue manager to which you want to
add a local queue: responder_gm.

On the Add a local queue screen, in the Queue Name entry field, type the queue name userid.xmit. This
is the queue that receives messages from the remote machine.

In the Description entry field, type request transmission queue.
Toggle In the Usage field to transmission queue.
Click on OK.

SMIT displays the COMMAND STATUS screen. At first, the screen will read Command: running. Then
it will read Command: OK or Command: failed with information about the success or failure of the
command. You will see information like the following:

1 : define +

: QLOCAL (‘userid.xmit’) +

: DESCR (‘request transmission queue’) +
: USAGE (XMITQ)

AMQ8006: MQSeries queue created

1 MQSC commands read.

0 commands have a syntax error.

0 commands cannot be processed.

Once you have added the necessary local queues, add the remote queues

Adding the Remote Queue: Add the definition of the remote queue, which is used for the
transmission of responses to the remote queue manager.

1.

2.

148

Type smit. Press ENTER.

On the System Management screen, select Communications Applications and Services.
On the Communications Applications and Services screen, select MQSeries.

On the MQSeries screen, select Work with MQSeries Queues.

On the Work with MQSeries Queues screen, select Remote Queues.

On the Remote Queues screen, select Add a remote queue.

On the Queue Manager Name screen, click the cursor on the desired queue manager name
responder_gm.

On the Add a remote queue screen, in the Queue Name entry field, type the name of the queue
manager for the other machine, requestor_gm.

In the Name of remote queue manager entry field, type the name of the queue manager for the other
machine, requestor_qgm

In the Transmission queue entry field, type userid.reply
Click on OK.

SMIT displays the COMMAND STATUS screen. First, the screen reads Command: RUNNING. Then it
reads either Command: OK or Command: failed with information about the success or the failure of the
command. Toward the bottom of the screen, you should see something like:

1 : define +

: QREMOTE (‘requestor_gm’)
AMQ8006: MQSeries queue created
1 MQSC commands read.

IFS Customizable Web Server (CWS) Guide Fourth Edition

0 commands have a syntax error.
0 commands cannot be processed.

Add the definition of the remote queue, which is used for receiving requests from the remote queue
manager.

1.

2.

Type smit. Press ENTER.

On the System Management screen, select Communications Applications and Services.

On the Communications Applications and Services screen, select MQSeries.

On the MQSeries screen, select Work with MQSeries Queues.

On the Work with MQSeries Queues screen, select Remote Queues.

On the Remote Queues screen, select Add a remote queue.

On the Queue Manager Name screen, click on the desired queue manager name responder_gm.

On the Add a remote queue screen, in the Queue Name entry field, type the name of the queue
manager for the other machine, fictitious_qm.

In the Name of remote queue manager entry field, type the name of the queue manager for the other
machine, fictitious_gm.

In the Transmission queue entry field, type userid.xmit.
Click on OK.

SMIT displays the COMMAND STATUS screen. First, the screen reads Command: RUNNING. Then it
reads either Command: OK or Command: failed with information about the success or the failure of the
command. Toward the bottom of the screen, you should see something like:

1 : define +

: QREMOTE (“fictitious_qm’)
AMQ8006: MQSeries queue created
1 MQSC commands read.

0 commands have a syntax error.
0 commands cannot be processed.

Adding Channel Definitions

1.

2.

Type smit. Press ENTER.

On the System Management screen, select Communications Applications and Services.

On the Communications Applications and Services screen, select MQSeries.

On the MQSeries screen, select Work with MQSeries Channels.

On the Work with MQSeries Channels screen, select Add/Change/Show/Delete channel definitions.
On the Add/Change/Show/Delete channel definitions screen, select Sender channel definitions.

On the Sender channel definitions screen, select Add a Sender channel.

On the Queue Manager Name screen click on the name of the queue manager, responder_gm.
SMIT displays the Add a sender channel screen.

In the Channel Name field, type a name composed of the local queue manager, responder_qm, a slash,
and the remote queue manager, requestor_gm.

© Copyright IBM Corp. 2002 Appendix D. FISim (Financial Institution Simulator) 149

10.

11.

12.

13.

In the Connection Name field, type the IP address and MQSeries port number for the remote (other)
machine in the format nnn.nnn.nnn.nnn(pppp). The default port number for MQSeries is 1414.

In the Name of transmission queue field, type userid.reply.
Click on OK.

SMIT displays the COMMAND STATUS screen. First, the screen reads Command: RUNNING. Then it
reads either Command: OK or Command: failed with information about the success or the failure of the
command. Toward the bottom of the screen, you should see something like:

1 : define +
: CHANNEL (‘responder_qm/requestor_qm’) +
: CHLTYPE (SDR) +
: CONNAME (“nnn.nnn.nnn.nnn(pppp)’) +
: TRPTYPE (TCP) +
: XMITQ (‘userid.reply’)
AM08014 MQSeries channel created
1 MQSC commands read.
0 commands have a syntax error.
0 commands cannot be processed.

Back on the Add/Change/Show/Delete channel definitions screen, select Receiver channel definitions.
On the Receiver channel definitions screen, select Add a Receiver channel.
On the Queue Manager Name screen click on the name of the queue manager, responder_gm.

SMIT displays the Add a receiver channel screen. In the Channel Name field, type a name composed of
the remote queue manager, requestor_gm, a slash, and the local queue manager, responder_gm.

Click on OK.

SMIT displays the COMMAND STATUS screen. First, the screen reads Command: RUNNING. Then it
reads either Command: OK or Command: failed with information about the success or the failure of the
command. Toward the bottom of the screen, you should see something like:

1 : define +

: CHANNEL (‘requestor_qgm/responder_qm ‘) +
: CHLTYPE (RCVR) +

: TRPTYPE (TCP)

AMQ8014: MQSeries channel created

1 MQSC commands read.

0 commands have a syntax error.

0 commands cannot be processed.

Adding Process Definitions

1.

2.

150

On the MQSeries screen, select Work with MQSeries Process Definitions.

On the Work with MQSeries Process Definitions screen, select Add a process definition.

On the Queue Manager Name screen, click the cursor on the queue manager name, responder_gm.
On the Add a process definition screen, in the Process Name field, type userid_CHL_PROCESS.

In the Application Type field, type UNIX.

In the User Data field, type the sender channel name defined above.

Click on OK.

SMIT displays the COMMAND STATUS screen. First, the screen reads Command: RUNNING. Then it

reads either Command: OK or Command: failed with information about the success or the failure of the
command. Toward the bottom of the screen, you should see something like:

1 : define +

IFS Customizable Web Server (CWS) Guide Fourth Edition

: PROCESS (‘userid_CHL_PROCESS’) +

: APPLTYPE (UNIX) +

: USERDATA (‘responder_qgm/requestor_qm’)
AMQ8010: MQSeries process created

1 MQSC commands read.

0 commands have a syntax error.

0 commands cannot be processed.

Starting a Channel Initiator

1. On the MQSeries screen, select Work with MQSeries Channels.

2. On the Work with MQSeries Channels screen, select Start/Stop channel initiators.

3. On the Start/Stop channel initiators screen, select Start channel initiator.

4. On the Queue Manager Name screen, click on the queue manager name, responder_gm

5. On the Channel Name screen, click on the channel you want to start, SYSTEM.CHANNEL.INITQ.
Click on OK.

SMIT displays the COMMAND STATUS screen. First, the screen reads Command: RUNNING. Then it
reads either Command: OK or Command: failed with information about the success or the failure of the
command. Toward the bottom of the screen, you should see something like:

1 : start chinit +

: INITQ (°SYSTEM.CHANNEL.INITQ’) +

AMQ8024: MQSeries channel initiator started
1 MQSC commands read.

0 commands have a syntax error.

0 commands cannot be processed.

To use inetd to start channels, configure two files.

- Add a line in the /etc/services file:
MQSeries 1414/TCP
- Add aline in the /etc/inetd.conf file:

MQSeries stream tcp nowait mgm /usr/Ipp/mqm/bin/amgcrsta amgcrsta
-m responder_qm

Displaying Channel Status

1. On the MQSeries screen, select Work with MQSeries Channels.

2. On the Work with MQSeries Channels screen, select Display channel status.

3. On the Queue Manager Name screen, click on the queue manager name, responder_qm.

4. On the Queue Name screen, click on the queue name for which you want to display status.
Click on OK.

If the status of the channels looks incorrect, the sender or receiver machine is set up incorrectly, the process
definitions are incorrect, or the channels are not started.

Remote MQ Series Configuration for CWS Web Server

The MQ Series configuration for the CWS web server sending requests to FISim on a remote machine
requires:

e A queue manager
e A transmission queue for sending messages to the remote machine
o A reply queue for receiving messages from the remote machine

© Copyright IBM Corp. 2002 Appendix D. FISim (Financial Institution Simulator) 151

e A remote queue for the queue manager on the other machine
e A sender channel
e Areceiver channel

A trigger process for sending messages The following steps use the symbolic names which follow:

requestor_qgm - queue manager on the requestor machine running the CWS web server or the Core
Controller

responder_gm - queue manager on the responder machine running FISim
fictitious_qm - nonexistent queue manager
userid - user ID running the CWS web server (or the Core Controller)

It may be convenient to name the queue managers the same as the TCP/IP hostname when you need only
one queue manager on a machine.

The Queue Manager: Creating the queue manager, starting the queue manager, and adding default
objects are the same as for the All Local Configuration described above. On the FISim machine, use
requestor_qm for the queue manager name instead of gmgrname used in the above section.

Queue Definitions: See ,Queue Definitions- for a brief description of different queue types.

Adding Local Queues: For FISim to exchange messages with the CWS web server or Core Controller,
add two local queues as follows:

e A queue for transmitting request messages to the FISim machine
e A queue for receiving response messages from the FISim machine

1. Type smit. Press ENTER.

2. On the System Management screen, select Communications Applications and Services.
3. Onthe Communications Applications and Services screen, select MQSeries.

4. On the MQSeries screen, select Work with MQSeries Queues.

5. On the Work with MQSeries Queues screen, select Local Queues.

6. On the Local Queues screen, select Add a local queue.

7. On the Queue Manager Name screen, click on the queue manager to which you want to add a local
queue: requestor_qm.

8. Onthe Add a local queue screen, in the Queue Name entry field, type the transmission queue name
userid.xmit. This is the queue that will be used to send response messages to the remote machine.

In the Description entry field, type request transmission queue.

Toggle In the Usage field to transmission queue.

Toggle the MQGET operations and the MQPUT operations fields to ENABLED.
Toggle the Trigger Enabled field to yes.

In the Initiation Queue field, type SYSTEM.CHANNEL.INITQ.

In the Trigger Process field, type userid CHL PROCESS.

Click on OK.

152 IFS Customizable Web Server (CWS) Guide Fourth Edition

SMIT displays the COMMAND STATUS screen. At first, the screen will read Command: running. Then
it will read Command: OK or Command: failed with information about the success or failure of the
command. You will see information like the following:

1 : define +

: QLOCAL (* userid.xmit’) +

: DESCR (° request transmission queue’) +
: USAGE (XMITQ)

AMQ8006: MQSeries queue created

1 MQSC commands read.

0 commands have a syntax error.

0 commands cannot be processed.

Use the same SMIT screens to add the queue for receiving messages from the requestor machine.

1.

2.

Type smit. Press ENTER.

On the System Management screen, select Communications Applications and Services.
On the Communications Applications and Services screen, select MQSeries.

On the MQSeries screen, select Work with MQSeries Queues.

On the Work with MQSeries Queues screen, select Local Queues.

On the Local Queues screen, select Add a local queue.

On the Queue Manager Name screen, click the cursor to select the queue manager to which you want to
add a local queue: requestor_gm.

On the Add a local queue screen, in the Queue Name entry field, type the queue name userid.reply. This
is the queue that receives messages from the remote machine.

In the Description entry field, type requestor reply queue.
Click on OK.

SMIT displays the COMMAND STATUS screen. At first, the screen will read Command: running. Then
it will read Command: OK or Command: failed with information about the success or failure of the
command. You will see information like the following:

1 : define +

: QLOCAL (‘userid.reply’) +

: DESCR (‘requestor reply queue’)
AMQ8006: MQSeries queue created

1 MQSC commands read.

0 commands have a syntax error.

0 commands cannot be processed.

Once you have added the necessary local queues, add the remote queues.

Adding the Remote Queue: Add the definition of the remote queue, which is used for the
transmission of responses to the remote queue manager.

1.

2.

Type smit. Press ENTER.

On the System Management screen, select Communications Applications and Services.
On the Communications Applications and Services screen, select MQSeries.

On the MQSeries screen, select Work with MQSeries Queues.

On the Work with MQSeries Queues screen select Remote Queues.

On the Remote Queues screen, select Add a remote queue.

© Copyright IBM Corp. 2002 Appendix D. FISim (Financial Institution Simulator) 153

On the Queue Manager Name screen, click the cursor on the desired queue manager name
responder_qm.

On the Add a remote queue screen, in the Queue Name entry field, type the name of the queue
manager for the other machine, fictitious_qm.

In the Name of remote queue manager entry field, type the name of the queue manager for the other
machine, fictitious_gm.

In the Transmission queue entry field, type userid.xmit
Click on OK.

SMIT displays the COMMAND STATUS screen. First, the screen reads Command: RUNNING. Then it
reads either Command: OK or Command: failed with information about the success or the failure of the
command. Toward the bottom of the screen, you should see something like:

1 : define +

: QREMOTE (*° fictitious_gm’)
AMQ8006: MQSeries queue created
1 MQSC commands read.

0 commands have a syntax error.
0 commands cannot be processed.

Adding Channel Definitions

1.

2.

154

Type smit. Press ENTER.

On the System Management screen, select Communications Applications and Services.

On the Communications Applications and Services screen, select MQSeries.

On the MQSeries screen, select Work with MQSeries Channels.

On the Work with MQSeries Channels screen, select Add/Change/Show/Delete channel definitions.
On the Add/Change/Show/Delete channel definitions screen, select Sender channel definitions.

On the Sender channel definitions screen, select Add a Sender channel.

On the Queue Manager Name screen click the cursor on the name of the queue manager,
requestor_gm.

SMIT displays the Add a sender channel screen. In the Channel Name field, type a name composed of
the local queue manager, requestor_gm, a slash, and the remote queue manager, responder_gm.

In the Connection Name field, type the IP address and MQSeries port number for the remote (other)
machine in the format nnn.nnn.nnn.nnn(pppp). The default port number for MQSeries is 1414.

In the Name of transmission queue field, type userid.xmit
Click on OK.

SMIT displays the COMMAND STATUS screen. First, the screen reads ,Command: RUNNING-. Then it
reads either ,Command: OK- or ,Command: failed- with information about the success or the failure
of the command. Toward the bottom of the screen, you should see something like:

1 : define +

: CHANNEL (‘requestor_qm/responder_qm’) +
: CHLTYPE (SDR) +

: CONNAME (“nnn.nnn.nnn.nnn(pppp)’) +

: TRPTYPE (TCP) +

: XMITQ (‘userid.xmit’)

AMQ8014: MQSeries channel created

1 MQSC commands read.

IFS Customizable Web Server (CWS) Guide Fourth Edition

10.

11.

12.

13.

0 commands have a syntax error.
0 commands cannot be processed.

Back on the Add/Change/Show/Delete channel definitions screen, select Receiver channel definitions.
On the Receiver channel definitions screen, select Add a Receiver channel.

On the Queue Manager Name screen click the cursor on the name of the queue manager,
requestor_gm.

SMIT displays the Add a receiver channel screen. In the Channel Name field, type a name composed of
the remote queue manager, responder_gm, a slash, and the local queue manager, requestor_gm.

Click on OK.

SMIT displays the COMMAND STATUS screen. First, the screen reads ,Command: RUNNING-. Then it
reads either ,Command: OK- or ,Command: failed- with information about the success or the failure
of the command. Toward the bottom of the screen, you should see something like:

1 : define +

: CHANNEL (‘responder_qm/requestor_qm ‘) +
: CHLTYPE (RCVR) +

: TRPTYPE (TCP)

AMQ8014: MQSeries channel created

1 MQSC commands read.

0 commands have a syntax error.

0 commands cannot be processed.

Adding Process Definitions

1.

2.

On the MQSeries screen, select Work with MQSeries Process Definitions.

On the Work with MQSeries Process Definitions screen, select Add a process definition.

On the Queue Manager Name screen, click on the queue manager name, requestor_gm.

On the Add a process definition screen, in the Process Name field, type userid CHL PROCESS.
In the Application Type field, type UNIX.

In the User Data field, type the sender channel name defined above.

Click on OK.

SMIT displays the COMMAND STATUS screen. First, the screen reads ,Command: RUNNING-. Then it
reads either ,Command: OK-or ,Command: failed- with information about the success or the failure
of the command. Toward the bottom of the screen, you should see something like:

1 : define +

: PROCESS (‘userid_CHL_PROCESS’) +

: APPLTYPE (UNIX) +

: USERDATA (‘requestor_qgm/responder_qm’)
AMQ8010: MQSeries process created

1 MQSC commands read.

0 commands have a syntax error.

0 commands cannot be processed.

Starting a Channel Initiator

1.

2.

3.

4.

On the MQSeries screen, select Work with MQSeries Channels.
On the Work with MQSeries Channels screen, select Start/Stop channel initiators.
On the Start/Stop channel initiators screen, select Start channel initiator.

On the Queue Manager Name screen, click on the queue manager name, requestor_gm.

© Copyright IBM Corp. 2002 Appendix D. FISim (Financial Institution Simulator) 155

5. On the Channel Name screen, click the cursor on the channel you want to start,
SYSTEM.CHANNEL.INITQ.

Click on OK.

SMIT displays the COMMAND STATUS screen. First, the screen reads ,Command: RUNNING-. Then it
reads either ,Command: OK-or ,Command: failed- with information about the success or the failure
of the command. Toward the bottom of the screen, you should see something like:

1 : start chinit +

: INITQ (“SYSTEM.CHANNEL.INITQ’) +

AMQ8024: MQSeries channel initiator started
1 MQSC commands read.

0 commands have a syntax error.

0 commands cannot be processed.

To use inetd to start channels, configure two files.

e Add a line in the /etc/services file:
MQSeries 1414/TCP
e Add aline in the /etc/inetd.conf file:

MQSeries stream tcp nowait mgm /usr/Ipp/mqm/bin/amgcrsta amgcrsta
-m responder_qm

Displaying Channel Status

1. On the MQSeries screen, select Work with MQSeries Channels.

2. On the Work with MQSeries Channels screen, select Display channel status.

3. On the Queue Manager Name screen, click on the queue manager name, requestor_gm.

4. On the Queue Name screen, click the cursor on the queue name for which you want to display status.
Click on OK.

If the status of the channels looks incorrect - the sender or receiver machine is set up incorrectly, the
process definitions are incorrect, or the channels are not started.

Using FISim

FISim requires DB2 UDB version 7.1 installation and setup.

DB2 Configuration

This appendix assumes the user has already installed DB2 UDB 7.1.

1. Add this line to your .profile to setup the default DB2 environment:
/home/db2instl/sqllib/db2profile

Due to enhancements to support NLS, some tables storage requirements for a single row exceed four
kilobytes, which is a default limitation of DB2. In order to setup the FISim database, the following
administrative steps (Steps 2 - 9) will need to be followed when creating or preparing a database for use
with V1R6 FISim. Once Steps 2 through 9 have been completed, it will not be necessary to repeat
these steps unless the database is dropped. These new configuration steps will not prevent you from
using the database for previous versions of FISim, such as V1R5.

2. To create a database, type the following command at the AIX prompt:

156 IFS Customizable Web Server (CWS) Guide Fourth Edition

10.

abz [invokes db2 interactive command mode]
db2 => dbZstart [only necessary if dbZ2 manager has not been started]
db? => create database dbname

To connect to the database, type the following command at the DB2 prompt:
abz2 => connect to dbname

To create a DB2 bufferpool for use within your database, type the following command at the DB2
prompt:

abz2 => create bufferpool buffpoolname size 1000 pagesize 16k
where buffpoolname is a unique name for your bufferpool. 16k is the minimum pagesize required for the
V1R6 FISim database.

Creating a new bufferpool is not necessary if a 16k pagesize bufferpool already exists for the current
database. To view a list of bufferpools, type the following at the DB2 prompt:

abz => select * from syscat.bufferpools

To use the new bufferpool, the DB2 manager must be stopped and restarted. This step requires that ALL
connections to the database manger be terminated. To view a list of connected applications, type the
following command at the DB2 prompt:

ab2 => 1list applications
To stop and restart the database manager, type the following command at the DB2 prompt:

ab? => stop database manager
db?2 => start database manager

To reconnect to the database, type the following command at the DB2 prompt:
abz => connect to dbname
To create a tablespace that uses the new bufferpool, type the following command at the DB2 prompt:

ab2 => create tablespace tbspacename pagesize 16k managed
by system using (‘tbspacename’) bufferpool buffpoolname
The buffpoolname specified must match the name of the bufferpool created in Step 4.
The pagesize specified (16k in this example) must match the pagesize of the specified bufferpool.
e The tbspacename must be unique. To view a list of defined tablespaces, type the following
command at the DB2 prompt:
abz => select * from syscat.tablespaces

Test the usability of the new tablespace. Create a wide table by typing the following command at the
DB2 prompt:

db? => create table widetest (x varchar (16000))

If the table is successfully created, the database dbname is ready for use with V1R6 FISim. Drop the test
table by typing the following command at the DB2 prompt:

db2 => drop table widetest
To exit DB2 interactive command mode, type the following at the DB2 prompt:
abz => quit

A few environment variables should be set to avoid the need for the command line parameters when
setting up and running FISim. Type the following command at the AIX prompt:

export FISDBZINST=dbname
export FISQMGR=gmgrname
export FISXMIT=userid.xmit

where dbname is the name of the database, gmgrname is the name of the local queue manager, and
userid.xmit is the name of the queue that FISim reads from.

You may want to set these environment variables in your .profile.

© Copyright IBM Corp. 2002 Appendix D. FISim (Financial Institution Simulator) 157

11. To setup the database and load the initial change to the .../fis/data directory and type the following
command at the AIX prompt:

setupfis -d dbname -u userid -p password

where dbname is the name of the database, and userid and password correspond to a user that can
access the database. The command line parameters may be omitted if the environment variables were
set as described in Step 3 above and the user executing the command has permissions to write to the
database dbname.

A large number of messages from the database manager will be displayed. Some of these messages
will indicate a failure to delete a table the first time you run setupfis. These ,delete- commands will be
needed when you rerun setupfis to restore the initial data.

12. When using FISim with an actual Core Controller, the FISim DB2 database must be modified to indicate
this configuration. The REAL_CC column of the IFS_SYSTEM DB2 table is used to indicate whether or
not FISim is being used in conjunction with a Core Controller. The default value of this column when the
database is initially set up is NULL, which indicates that a Core Controller is not being used. Update this
column to any non-NULL non-zero value to indicate that a Core Controller is being used. If this
modification is not made, FISim will populate fields of certain Gold transactions that the Core Controller
should be populating, which causes an error in the Core Controller.

Type the following command at the AIX prompt:

abz

ab2 => connect to dbname

abZ2 => update ifs_system set real_cc = <null for no core controller,
non-zero for core controller>

abz => quit

Each time you reboot the machine, you will need to start the database manager again. This can be
automated if root would add this line to /etc/inittab

redb2:2:wait:/etc/rc.dbZ >/dev/console 2>&1 # Start dbZ

and create a file in the /etc directory containing the following:

#1/bin/ksh

Start db2 database manager

#

Note: We do this by becoming the dbZinstl user,
and running the script:
/home/db2instl/sqllib/adm/dbZstart

su - db2instl ‘-c \
. /home/dbZinstl/sqllib/dbZprofile; \
/home/db2instl/sqllib/adm/dbZstart *

Running FISim

To run FISim after running setupfis, go to the ,.../fis/bin- directory under the directory where FISim was
installed and type

runfis -d dbname -u userid -p password -q qmgrname -x userid.xmit &

where dbname is the name of the database, userid and password correspond to a user that can access the
database, gmgrname is the name of the local queue manager, and userid.xmit is the name of the queue that
FISim reads from. The command line parameters may be omitted if the environment variables were set as
described in Step 3 above and the user executing the command has permissions to write to the database
dbname.

You should see a number of messages displayed on the terminal. Look for these messages in particular:

Binding was ended with “0” errors and “0” warnings.

158 IFS Customizable Web Server (CWS) Guide Fourth Edition

FiSimulator initializing
FiSimulator initialization complete

You should now be able to start the CWS web server and optionally the Core Controller and receive
responses from FISim.

Now, you will need a user ID, password, and pin that match the DB2 database. For start, use ,ARF1001,
1001, and 1001-. These values are case sensitive.

You can stop FISim with either the killfis command or by getting its process id (pid) with a ,ps x- command
and using the Unix command , kill -9 pid-.

Basic Data Management

The simplest way to view the contents of the DB2 database is to issue direct queries. Type the following at
the AIX prompt:

ab2

db?2 => dbZstart (if needed)

db2 => connect to dbname

db?2 => select user_id from ifs_user

db2 => select * from ifs_user where user_id=’ARF1001’
db2 => 1ist tables

ab2 => quit

Note that DB2 is not case sensitive except inside of the quotes which must be single quotes. As you can
see, ,ifs_user- is a table name and ,user_id- is a column name. Using the ,select- statement, you can view
all of the data in the tables provided with the enhanced simulation.

Using the ,update- and ,insert- statements, you could modify and augment the data in the tables provided
although these updates will have to satisfy the rules of the database. See the DB2 Command Reference for
syntax of these commands.

A recommended approach for modifying data is to create a db2 script containing only the required changes.
This script can then be rerun to restore the values to a known state after installing a new release and after
experimenting with temporary changes. Please note, however, that future updates of FISim will have to
add/alter columns as Gold message definitions change. Also, design changes in FISim could significantly
alter table layouts. This means that your data updates may have to be reworked to accommodate table
definition changes.

Data Management using Approach or Excel

A Lotus Approach or Microsoft Excel spread sheet on a Windows system can be used to view and update
data in the DB2 tables on the AIX system with some additional setup.

On the Windows system, do the following:

1. Install Lotus Approach or Microsoft Excel

2. Install IBM Universal Database Version 7.1 - DB2 Connect Personal Edition

3. Using the DB2 Client Configuration Assistant, add the database on the AIX system using manual
configuration, TCP/IP, LAN based, your host name and port 50000, your database name, and register
for ODBC.

4. Using the spreadsheet program, Open with file type of ODBC and find your database name.

5. When viewing a table, overtype an entry and press enter to change the value in the database on the AIX
system. Use control-r to refresh the view from AIX.

© Copyright IBM Corp. 2002 Appendix D. FISim (Financial Institution Simulator) 159

Please note that future updates of FISim will have to add/alter columns as Gold messages are added or
modified. Also, design changes in FISim could significantly alter table layouts. This means that your data
updates through the spreadsheet will be lost when you move to a new version of FISim because you will
have to reload new tables from the new version.

Altering Response Codes

FISim can simulate error conditions by responding to transactions with response codes that you specify. By
issuing a configuration command to FISim, you can indicate the type of transaction to modify, the values to
be sent in the response message, and optionally, when the new response should take effect.

Commands are issued to FISim through CSTEMAIL text messages. These can be sent either through GMIT
or, if CWS is being used, through the bank messages web page. The message body should contain the
keyword $fisim, followed by the desired FISim command. For example, the message text:

$fisim clrrc txn *
will clear all previous configuration commands from FISim.

The message subject is ignored.

After processing a command, FISim sends back an email message containing its completion status. If you
are issuing commands through CWS, you can return to the message list page and view the last message in
the list to see FISim s response, including any error messages.

Command Descriptions
The available commands are:

setrc - enter an instruction to force the compcode, respcode, sense data and/or BRC on a subsequent
transaction.

clrre - clear the instructions made through setrc.

From the web pages, the arguments to the SETRC and CLRRC commands must be followed with a BLANK
character in order to be accepted by FISim. This restriction is because the email page appends data to the
end of the input message.

Commands can be entered in any case, but they are converted to uppercase before processing. Commands
may be terminated with a semicolon, but this is not required.

In the command syntax diagrams, the following conventions are used:
UPPERCASE TEXT indicates keywords to be entered as shown,
<description> indicates a parameter argument,

[something] indicates an optional parameter, and

xxx | yyy indicates alternatives.

SETRC: The setrc command makes an entry in a table (IFS_SETRC). All subsequent transactions
received by FISim are compared against the table. When a match is found, FISim generates an error
response, instead of performing its normal processing. After the entry is used, it is deleted from the table.
The command syntax is:

SETRC TXN <transaction_name> [SKIP <skip count>]
[CC <compcode value>]
[RC <respcode value>]
[SD <sensedata value>]

160 IFS Customizable Web Server (CWS) Guide Fourth Edition

[BRC <business response code value>]
[WARNING <T | F>]

Table 15. SETRC parameters

Parameter Keyword Argument Description

TXN The short name (<= 8 chars) of the transaction as it appears in the goldtrace log.

SKIP The number of transactions of this type to skip before applying this response. If this
parameter is not specified, it defaults to 0.

For example, if this parameter is set to 1 for the avartfr transaction, process one avartfr
normally and then apply this rule to the next avartfr transaction.

CcC A decimal value indicating the completion code value for the header.
RC A decimal value indicating the response code value for the header.
SD A string value (up to 256 characters) indicating the sense data string for the header. Since

parameter values are delimited by blanks, the sensedata string cannot contain any
embedded blanks.

BRC The business response code as a 3-character string of decimal digits. If this parameter is
specified, FISim will generate an IFS_RESP_CODE or IFS_RESP_DTL structure in the
response message Wwith this value in the resp_code field.

WARNING When setto T, FISim will execute the transaction, and will generate the specified error
response if the transaction completes successfully.

When setto F, FISim will not run the transaction, and will always return the specified error
response. This is the default behavior.

CLRRC: - The clrrc command deletes entries from the IFS_SETRC table.

CLRRC TXN <transaction_name> | *
Table 16. CLRRC parameters

Parameter Keyword Argument Description

transaction_name All entries for this transaction are deleted.
* All entries in the table are deleted.
Examples

$fisim setrc txn accthist brc 078 skip 2
Generate a response to the third ACCTHIST transaction, producing an IFS_RESP_CODE value of ,078-.
$fisim setrc txn ifsping cc 2
Generate a response to the next IFSPING transaction, with a completion code of 2.
$fisim clrrc txn accthist
Clear all ACCTHIST entries from the setrc table.
$fisim clrrc txn *
Clear all entries from the setrc table.
$fisim setrc txn avartfr cc 4 rc 2012 sd 1:12345:12345

Respond to the next avartfr with a completion code of 4, a reason code of 2012 and sense data of
1:12345:12345.

Entering Commands Directly Through DB2

Alternatively, instead of issuing a setrc instruction, you can use DB2 to insert a row into the IFS_SETRC

table, bypassing the cstemail transaction completely. Each option corresponds to a column in the table. For
example, to enter the equivalent of the last sample transaction, enter the following text at a shell prompt:

© Copyright IBM Corp. 2002 Appendix D. FISim (Financial Institution Simulator) 161

db2 “:insert into ifs_setrc
(txn_name, skip_count,comp_code, reason_code, sense_data,brc,warning)
values (‘AVARTFR’,0,4,2012,°12345:12345°,null,0)”

The column names correspond to the command arguments as follows:

Table 17. DB2 Column Names for IFS_SETRC Table

Column name Description
txn_name The short name of the transaction used in the message header.
skip_count The number of transactions to be skipped before applying this rule.
comp_code The completion code to be returned
reason_code The reason code to be returned
sense_data The sense data string to be returned
brc The BRC to be returned (or NULL if no BRC should be returned)
warning 0 = False
1 =True
Troubleshooting

FISim Trace Files and Logs

FISim creates trace files that track the details of execution of FISim. The default location of these files is the
/tmp directory. Three different files are written to during the execution of FISim:

1. <AlXUserID>.ifsdlog - provides a runtime log of general trace and debug information regarding the
startup of FISim and any Gold Transactions that are not associated with a particular IFS user (e.g.,
SRVSTART or CODERFSH).

2. <AlXUserlD>.fisgold - provides a trace of the contents of all Gold Message Requests that are received
by FISim and all Gold Message Responses that are generated by FISim.

3. <AlXUserlD>.<IFSUserID> - provides a runtime log of trace and debug information corresponding to a
particular IFS User executing Gold Transactions.

The AIXUserID corresponds to the AlIX user ID that started the FISim executable.

The IFSUserlD corresponds to the IFS user ID indicated in the SessionKey.userID in the header of a Gold
Message.

A location other than the default (/fmp) may be specified prior to starting FISim by setting the
FISIM_LOG_PATH environment variable. FISIM_LOG_PATH should be set to an existing subdirectory, for
example:

export FISIM_LOG_PATH=/tmp/mytraces

where /tmp/mytraces is a subdirectory that has already been created and can be written to by the AIX user
that starts FISim. If FISIM_LOG_PATH has been set when FISim is started, the logs and traces will be
written to the directory specified without the AIXUserID as part of the name, so the names of the files will be
ifsdlog, fisgold and IFSUserlID.

FISim Returns a BRC of 247 Due to SQLCODE of -954

BRC 247 indicates a ,technical- problem, and for FISim, this is often due to a DB2 error. The FISim log file
for the particular user should be examined to determine what exactly failed. The following is an example of a
DB2 error as it would appear in an FISim log file:

2000-04-17 14:26:31 FISIM:
2000-04-17 14:26:31 FISIM: ** DBZ Error Condition Encountered

162 IFS Customizable Web Server (CWS) Guide Fourth Edition

2000-04-17 14:26:31 FISIM: *% oo
2000-04-17 14:26:31 FISIM: ** Message - Select failed
2000-04-17 14:26:31 FISIM: ** sqlcode - -954

2000-04-17 14:26:31 FISIM: ** sqlerrm -

2000-04-17 14:26:31 FISIM: ** sqlwarn -

2000-04-17 14:26:31 FISIM: ** sqlstate - 57011

2000-04-17 14:26:31 FISIM:

2000-04-17 14:26:31 FISIM:

2000-04-17 14:26:31 FISIM: DBZ specific failure/problem. . .

SQLCODE -954 indicates that not enough storage space is available in the application heap to process the
statement, because all available memory for the application has been used.

When this error is encountered, the heap space should be expanded to increase the memory available to the
application.

Type the following DB2 command at the AIX prompt to check the heap size of your DB2 configuration:
db2 ,get db cfg for dbname-

Type the following DB2 commands at the AIX prompt to change the heap size to 256:

db2 “update db cfg for dbname using APPLHEAPSZ 256"
db2 “update db cfg for dbname using APP_CTL_HEAP_SZ 256”

FISim must be stopped and restarted to take advantage of the new heap size.

If this error continues to occur after increasing the heap size to 256, we recommend increasing the size to
600.

Predefined Responses
Transaction responses are generated in one of the following ways:

1. Ifthere is a predefined response file indicated for the particular transaction in the user configuration file,
then FISim attempts to deliver the contents of the predefined file as the Gold Response. The response
file can be either a binary file containing Gold bitstream data, or a text file containing a description of a
Gold Response in the required format.

2. If no predefined response file was indicated, FISim s internal business logic is used to generate a Gold
response based on the contents of the database.

3. [If FISim has not implemented any logic for a particular transaction, FISim will pass to the MQWeb library
and return a ,canned- Gold response.

This section deals with responses of the first type, and shows how to configure predefined responses for
FISim.

In order to use predefined responses, the user submitting the request must have an associated user
configuration file that maps response files to transaction types. These files are described in more detail
below.

Important Points to Consider

¢ Response files can contain either Gold bitstream data or goldmine input. If the response file is a text
file, FISim will attempt to convert the file to Gold bitstream format by passing it to an internal
goldmine converter. This can delay the delivery of the response message. (The default timeout value
in the goldbank configuration file can be increased accordingly to avoid timeout errors.)

e The response file contains the whole response, including the message header. Any fields left
unspecified are not returned in the response.

e If any errors are encountered during the processing or delivery of a response file, FISim returns an
IFS_RESP_CODE structure containing a BRC 247 (Technical Difficulties) instead.

© Copyright IBM Corp. 2002 Appendix D. FISim (Financial Institution Simulator) 163

Environment Variables

The FISIM_PATH environment variable can be set using a directory name or a colon-separated list of
directory names to indicate the directories to be searched when the system looks for user configuration files.
The directory or directories specified in FISIM_PATH will be searched first, followed by the current directory.

Path names should be fully qualified to avoid ambiguity.

For example, if FISIM_PATH=/home/fisim/test./home/fisim/old/test, then /home/fisim/test will be searched
first, followed by /home/fisim/old/test, followed by the current directory.

User Configuration Files

There must be one user configuration file for the user submitting the transaction. This is a text file that maps
the user s response files to their respective transactions, and names the directory containing all of the
response files.

FISim will attempt to use a response file as the transaction response if both of the following conditions are
met:

1. FISim locates a configuration file for the user in one of the directories specified in FISIM_PATH, as
described above.

2. The configuration file contains a transaction line for the specified transaction (described below).

If either of these conditions is not met, then the transaction response must be constructed from FISim
business logic.

Configuration files are named fis. USERID.config, where USERID must match the user ID specified in the
SessionKey.userlD in the header of the incoming Gold Request Message. The file name fis.config is
reserved for use with transactions (e.g., SRVSTART or CODERFSH) where the user ID is not specified.

User configuration files may be edited while FISim is running. FISim will automatically reload data from
modified configuration file. (Note, however, that FISim relies on file timestamps to detect modified files. Files
accessed over network-mounted file systems may have unreliable timestamps.)

The contents of a user configuration file follow the following rules:
Blank lines and lines starting with a & character (used for comments) are ignored by FISim.

The first non-blank, non-comment line in the file must be the name of a directory. This indicates the location
of all of the user s response files. This line must begin with a whitespace character, and the directory name
should be fully qualified.

e Aline that does not begin with a whitespace character is a transaction line. It consists of the short
name of a transaction in all capital letters. This line is followed by one or more file specification lines,
which indicate response files for this type of transaction.

e Aline that begins with a whitespace character is a file specification line. It contains the name of a file
(which must be present in the previously-defined directory).

e There may be multiple file specification lines for a single transaction type. When FISim needs to
send out a response for a transaction of this type, it will rotate through the different responses in the
order that they appear in the file.

A sample user configuration file appears below:
Sample UserConfig file for FISIM (fis. ARF1001.config)
Comment line

Search Directory for response files

/home/fisim/test1001
First Transaction (LOGON) - Alternate responses
LOGON

164 IFS Customizable Web Server (CWS) Guide Fourth Edition

ARF1001.LOGON.resp.dat

ARFI1001.LOGON_FAIL.resp.dat

(LOGOFF) - Always respond with same response

LOGOFF

ARFI1001.LOGOFF.resp.dat

(BALINQ) Cycle responses through CHECKING/SAVINGS/IRA
BALINQ

ARF1001.BALINQ_CHECKING.resp.dat
ARF1001.BALINQ_SAVINGS.resp.dat
ARF1001.BALINQ_IRA.resp.dat

Response Data Files

All response files for a particular user are stored in a single directory. As seen above, the user configuration
file indicates the location of the response files and maps the response files to their respective transactions.

The fis/testdata directory contains response file templates for every transaction supported by the current MTI
level. The names of all of the files in this directory end with the suffix, ,.resp.dat- The simplest approach to
creating new response data files is to copy a response file of the appropriate type from this directory, edit its
contents as necessary, and place the file in the user s response directory, taking care to ensure that the file
name matches the entry in the user configuration file.

These response data files contain two sections; a Header and a Message Body. The fields in the Header are
the Gold header fields defined by IFS. <Header> indicates the beginning of the Header section, and
</Header> indicates the end of the Header section. The following are examples of fields that may be edited
in the Header section:

Table 18. <Header> Record Functions

<Header> Section Function

RequestType Defines the request/response type for the Gold Message being built. For example:
RequestType LOGON

SessionKey.fi Defines the Fl bank name used for testing. For example:
SessionKey.fi IBANKA

SessionKey.userlD Defines the name of a consumer s userid. For example:
SessionKey.userID ARFI1001

The Message Body contains the structures and fields as defined in the Gold Message Responses.
<Message Body> indicates the beginning of the Message Body section, and </Message Body>
indicates the end of the Message Body section. The structures in the Message Body are composed

of tag-value pairs representing the various fields in the format:
<Tag Name> <Tag Data> # <Tag Description> (<Data Type> <Length>)

Comments are always preceded with #. Do not place comments within structure level tags unless they follow
a tag-value pair.

Repeat Items

Structures that can have multiple occurrences are defined in the data files with the comment value
,..-(Repeat Item)-. Each occurrence is referred to as a single structure instance. By default the data files are
generated with only a single occurrence of Repeat ltem structures. Data files that contain Repeat ltems
structures can be modified to include multiple structure instances of a Repeat ltem structure. To include
multiple structure instances of a Repeat Item structure the structure instance(s) must be enclosed by a
<Repeat_Structure> and </Repeat_Structure> statements with the number of structure instances specified
on the <Repeat_Structure> line.

Using the ADDBSINV (Add Business Invoice Transaction) data file as an example the structure tag
InvLineDtITg is defined as a Repeat Item, as shown;

<Structure> InvLineDtITg #...(Repeat Item)
InvlLineNbrIdTg 1 # Invoice Line Number (char [12])
<Structure> InvLineAmtTg #. ..
<Structure> AmtTg # Amount
DcmiDatalValTg 6835 # Decimal Data (char [15])
DcmlPrecValTg 2 # Decimal Precision (long)

© Copyright IBM Corp. 2002 Appendix D. FISim (Financial Institution Simulator) 165

DrCrindTg 1 # Debit/Credit Indicator (long)

</Structure>
IsoCurrCodeTg USD # IS0 Currency Code (char[3])
</Structure>
InvLineMemoNmTg memo txt # Line Memo Text (char[80])
</Structure>

To create multiple structure instances of the Repeat Item structure edit the data file as shown;

<Repeat_Structure> 2 # repeat count of 1 or greater must be specified
<Structure> InvLineDt1Tg #...(Repeat Item) Structure Instance 1
InvlLineNbrIdTg 1 # Invoice Line Number (char [12])
<Structure> InvLineAmtTg #...
<Structure> AmtTg # Amount
DcmiDatalValTg 6835 # Decimal Data (char [15])
DcmlPrecValTg 2 # Decimal Precision (long)
DrCrindTg 1 # Debit/Credit Indicator (long)
</Structure>
IsoCurrCodeClTg USD # IS0 Currency Code (char[3])
</Structure>
InvLineMemoNmTg memo txt # Line Memo Text (char[80])
</Structure>

<Structure> InvLineDt1Tg #...(Repeat Item) Structure Instance 2
InvLineNbridTg 2 # Invoice Line Number (char [12])
<Structure> InvLineAmtTg #...

<Structure> AmtTg # Amount
DcmlDataValTg 2503 # Decimal Data (char [15])
DcmlPrecValTg 2 # Decimal Precision (long)
DrCrindTg 1 # Debit/Credit Indicator (long)
</Structure>
IsoCurrCodeClTg USD # IS0 Currency Code (char[3])
</Structure>
InvLineMemoNmTg memo txt # Line Memo Text (char[80])
</Structure>

</Repeat_Structure>

The Repeat Count specified on the <Repeat_Structure> line must equal the number of Structure Instances
you add; otherwise an error will occur informing you that there are to many or to few structure instances
defined. The structure instances must be defined inside the <Repeat_Structure> and </Repeat_Structure>
statements.

Goldmine
A response file can be converted into Gold binary format by running it through goldmine first, and using the
resulting .gold file as the response file. In any case, it is a good idea to use goldmine to verify your source

file syntax prior to running any tests. For more information on goldmine, see Appendix C, ,Gold Message
Interface Tool (GMIT)-.

166 IFS Customizable Web Server (CWS) Guide Fourth Edition

Appendix E. IFS PvC Starter Kit

Introduction

The Interactive Financial Services (IFS) platform is designed to facilitate on-line connections between
consumer access devices and Financial Institutions. IFS enables banks to offer their customers a variety of
electronic banking services, including balance inquiries, transfers of funds, bill presentment and bill payment.

Currently, PC s using web browsers or Personal Financial Management (PFM) applications can access the
IFS platform. This appendix covers the IFS ,PvC Starter Kit-, that enables Pervasive Computing (PvC)
handheld devices, such as a Personal Digital Assistant (PDA) to also access the IFS platform. The PvC
Starter Kit supports account inquiries and fund transfers, but does not support bill presentment and bill
payment.

Solution Architecture

The functionality of the IFS Customizable Web Server (CWS) is extended by providing PvC Java Servlets to
support PalmOS and WinCE handheld devices. The PvC Servlets enable the CWS to interface to leading
industry mobile network servers. AvantGo Enterprise Interactive, Version 3.1 (or higher release) is the IFS
recommended prerequisite software for the mobile network server.

Mobile Network software packages like AvantGo Enterprise Interactive typically include three components:
Client

Server

Connect

The Client component has a web-based user interface and integrates data security. For example, the
AvantGo client uses Certicom s Elliptic Curve Cryptography (ECC) for data security. The Server component
also integrates data security and provides management of the remote devices. The Connect component
provides the mobile connection between the client and server components. This appendix describes the
CWS extensions required to satisfy the interface to the Mobile Network Server and to provide the PvC
Starter Kit level of functionality for the handheld clients.

The following figure provides an architectural view of the IFS PvC Solution. The CWS architecture depicts
the Java Virtual Machine executing the IFS PvC Servlets to provide the functionality for handheld devices.
The handheld devices communicate via a modem (not shown in the figure) to a Mobile Network Server (for
example, AvantGo) that in turn interfaces with the CWS. From an interface standpoint, the Mobile Network
Server looks like a web browser to CWS.

© Copyright IBM Corp. 2002 Appendix E. IFS PvC StarterKit 167

CWsS

Palm / Windows CE SPVC
. . erver
de'V|ce.W|th modem (e.g. AvantGo/IMNC)
with client browser
(e.g. AvantGo/IMNC)

Figure 15. IFS Architecture for PvC Support

Functions Supported

HTTP WebSphere
Server

Java Virtual Machine
> IFS PVC Serviet |

:

| IFS Java Classes |

;

Gold Manager
A

\ 4

TDM

This section describes the functions that are implemented with the IFS PvC Servlets. It should be noted that
NLS/DBCS and SME functions are not supported in the PvC Starter Kit.

User Authorization Functions

e Logon to IFS system
e Logoff IFS system

Core Banking Functions

The following defines the specific core banking functions and account types supported by the PvC Servlets.

1. Account Inquiries

- Account Summary: display a summary of all accounts.

- Account Details: display detailed information on the selected account.

- Transaction Search: display selected account transaction history.

- Transaction History: display complete account transaction history.

- Balance Inquiry: display various balances associated with a specific account.

- Interest Rates: display interest rates.
2. Account Types Supported

- Checking

- Saving

- Money Market

- Certificate of Deposit

- Individual Retirement Account
- Credit Card

- Equity Line of Credit

- Consumer Loan

- Commercial Loan

- Mortgage

3. Fund Transfers

- Add fixed amount recurring transfer.
168 IFS Customizable Web Server (CWS) Guide Fourth Edition

- Add variable amount single transfer.

- Change scheduled transfer, including recurring and single transfer.
- Delete scheduled transfer, including recurring and single transfer.
- Transfer inquiry: display the customer s fund transfer history.

4. Customer Services

- Check Copy Order: request a copy of a check used in a particular transaction.
- Check Book Reorder: allows the consumer to re-order checks from the Fl.
- Stop Cheque Payment: allows a consumer to place a stop payment on a check.

Customization Approach: In this release, if the Fl wants to customize the user interface, they have to
modify some of the PvC servlets.

System Requirements

The following sections define the hardware and software prerequisites for the IFS PvC support.

Hardware Requirements:

IFS Customizable Web Server

- IBM e-server pSeries or RS/6000 system per IFS System Requirements

Mobile Network Server (for AvantGo)

- Pentium class machine

- 128 MB RAM

Handheld device with modem (operating with PaimOS or WIinCE as per software requirement)
- Device examples are:

IBM WorkPad Companion or IBM WorkPad ¢3 Companion
3Com Palm Pilot (Palm 11, Palm V or VIl in wired modem mode)

HP Jornada 420 or 430SE Palm-sized PC or HP Jornada 820 or 690 Handheld PCs

Software Requirements:

IFS Customizable Web Server

- AIX Version 4.3.3 or higher release

- WebSphere Application Server 4.0, Advanced Edition for AIX

- Java Development Kit for Java/2 Extended Edition (JDK) 1.3

- MQSeries for AIX - Version 5.0.0.6 or higher release

- IFS V1IR6M1 Java Classes Package

- IFS PvC Servlets

Mobile Network Server

- Windows NT 4.0 with Service Pack 4

- AvantGo Enterprise Interactive, Version 3.1 or higher release

Handheld Devices

- Palm OS 2.04 or higher release with 320KB of free memory for the application plus additional
space for data.

- Microsoft Windows CE 2.0 or higher release with 460KB of free memory for the application and
data.

- AvantGo Enterprise Interactive, Version 3.1 or higher release

IFS PvC Support Installation

Configuration on CWS for IFS PvC Support

It is assumed that there is an existing IFS CWS already setup, configured and working. And SSL on the web
server has been enabled.

© Copyright IBM Corp. 2002 Appendix E. IFS PvC StarterKit 169

Steps for IFS PvC Support configuration on CWS:

1. Copy all the IFS PvC Support servlets files from cws/docs/servlets/pvc directory to the machine where
Websphere is installed. Add the path of the servlets to the Application Server Classpath of Websphere.

2. Copy all the IFS PvC Support image files to the cws/docs/ifsgif directory of the web server.

3. The IfsSystem class must be modified and recompiled. The changes are listed in Table 19. IfsSystem
settings for PvC Servlets.

4. Restart the web server.

5. Attempt a logon. The logon screen URL will vary by installation, but should look similar to
http://machine:port/Java/lfsWpLogon.

Table 19. IfsSystem settings for PvC Servlets

Setting Value
IfsSystem.LogonPage IfsWpLogon
IfsSystem.LogoffPage IfsWpLogoff
IfsSystem.RedoPage IfsWpRedoPage
IfsSystem.ErrorPage IfsWpErrorPage
IfsSystem.GOLD_DATE_FORMAT ISO
IfsSystem.DATE_HINT yyyy-MM-dd

Solution Design

The focus on the implementation of IFS PvC Servlets will be for WebSphere. All these servlets will interface

with IFS Java Classes and create output in HTML format for the handheld device. The AvantGo client/server
components are included in the following solution description, since the mobile network software used in the
development and testing of the PvC Starter Kit was based on AvantGo. Mobile network packages from other
vendors may also work but have not been tested.

User Interface Design

The AvantGo client can run on both Palm OS and Windows CE devices. These devices come in a variety of
shapes and sizes. Usually, the screen size of Palm OS device is 160 x 160, but screens on a windows CE
device can range from 800 x 600 on the largest HPC Pro units down to 240 x 320 on the smallest palm-size
PCs.

In order to accommodate the different screen sizes and shapes, the HTML pages were designed with special
attention paid to the following issues:

e Limit page size to avoid too much vertical scrolling. Provide multi-page drill-down navigation instead.

o Keep the width of data within one screen length to avoid sometimes cumbersome horizontal
scrolling.

e Limit the use of large images as they consume precious screen space.

e Provide a consistent and accessible navigation scheme throughout different pages.

Refer to the section ,IFS User Interface on Handheld Device- which shows the handheld device user
interface designs provided with the PvC Starter Kit.

IFS PvC Serviets Design

IFS PvC Servlets are a set of servlets that run on IFS Customizable Web Server. They are divided into
several groups according to the functions they provided, including accounts inquiry, funds transfer and
customer services. Usually, one function is supported by one or more servlets, and basically all servlets have
the same flow chart as illustrated in Figure 18.

170 IFS Customizable Web Server (CWS) Guide Fourth Edition

Display HTML
input form

Display
error(s)
Call IFS Java
Classes
Check i)
transaction > falure Display
error(s)
status

success

Display
transaction
result

Figure 16. Flow chart of IFS PvC servlet

Components of IFS PvC Servlets

IFS Java Classes package provides a base class of IfsHitpServlet. It defines a set of common service
methods to handle common functions for servlets, such as:

creating Gt* and Gs* objects,
caching objects,

setting request parameters,
page navigation,

error handling,

sort, etc.

The IFS PvC Starter Kit includes 27 servlets. They are all subclasses of IfsWpApplication which in turn is a
subclass of IfsHttpServlet. Figure 19 shows the inheritance hierarchy of IFS PvC servlets.

‘ HTTPServlet ‘
‘ IfsHttpServlet ‘ ‘ IfsSystem
‘IfstApplication‘
‘ IfsWpLogon ‘ ‘IfstAccounts ‘ ‘IfstTransfer ‘ ‘IfstServices‘
‘ IfsWpLogoff ‘ ‘IfstTanearch‘ ‘ .o ‘

© Copyright IBM Corp. 2002 Appendix E. IFS PvC StarterKit 171

Figure 17. The Inheritance Hierarchy of IFS PvC Servlets

,Class Definition- gives more detailed description for each of these classes.

Caching Objects: During page navigation, objects need to be passed from one page to another. This is
achieved by caching the objects and passing their identifiers used in the cache over HTTP requests. Base
object Id (oid) is a string used as the key to store or retrieve an object to/from the session cache. All the
cached objects are destroyed when the current user session ends.

Session Management and Cookies: HTTP session cookies are the glue for these servlets to run
smoothly. The AvantGo application uses cookies for session management and preference settings just like
any web application. The only difference in the handling of cookies is that all cookies in an AvantGo
deployment are stored at the AdvantGo server. No cookies are stored on the AvantGo client.

Error Handling: IFS PvC Servlets will report error information to the user when there is an error
executing a transaction. Following are the scenarios for error handling:

e Transaction execution resulted in some error in Fl, Core Controller, or Gold Manager. This exception
will be caught by PvC Servlets and reported to the user with an error message.

e Transaction execution was successful but resulted in non-zero business response code. Business
response codes (BRC) are generally Fl-specific and are defined in the message table that maps
every possible BRC to descriptive message. This table is part of the CWS configuration files. There
is a ,default- message table provided by IFS. Any IFS can customize it to define additional BRCs.
When a BRC is not equal to 0, PvC Servlets will get the related descriptive message from the
IfsBrcErrorTextBundle property file and report it to the user.

Data Security Consideration

Data security is very important for the IFS solution that provides electronic banking services. The data
exchanged between devices and IFS Web Server needs to be encrypted. Security between the AvantGo
Server and the IFS web server is established via HTTP/SSL. AvantGo uses Certicom s secure technology
for handheld devices based on its implementation of an advanced security technology called Elliptic Curve
Cryptography (ECC).

NLS Enabling

The HTML created by IFS PvC servlets contains static parts and dynamic parts, so the NLS enabling will be
considered as follows.

Static HTML Parts: The static HTML parts created by servlets are not NLS enabled. Therefore, the IFS
PvC servlets need to be customized to support different languages. This will result in multiple sets of
servlets.

Dynamic HTML Parts: The IFS CWS Toolkit is NLS enabled for creating dynamic HTML visual
components. At runtime, each dynamic visual component is rendered based on the current locale:

e The format of number, date, currency will be gotten from the customized IfsSystem class.
o IfsHttpServlet class provides utility functions using localized algorithms for search, compare, and
concatenation.

Class Definition

Common Services

IfsWpApplication class

public class IfsWpApplication extends IfsHttpServlet
This is the super class for the IFS pervasive computing (PvC) application. It contains common methods for
the application.

172 IFS Customizable Web Server (CWS) Guide Fourth Edition

Public Methods:

public void callPage_ErrorPage(HttpServietResponse response, Exception e, String message) throws
IOException
Passes the message to the error page. Servlet page flow continues with the error page.

public void callPage_NoSession(HttpServietResponse response) throws IOException
Passes the no session message to the redo page. Servlet page flow continues with the redo page.

public void callPage_RedoPage(HttpServietResponse response, String nextPage, String redoMsg) throws
IOException
Passes the message to the redo page. Servlet page flow continues with the redo page.

public void displayAccounts(GtUserProfile up, GsAccount account, PrintWriter out)
Displays the list of available accounts within the user profile in a pull-down select list.

public void displayAccountNum(GtUserProfile up, GsAccount account, PrintWriter out)
Displays the list of available accounts within the user profile in a pull-down select list.

public void displayCheckBookStyleList(String checkBookStyle, PrintWriter out)
Displays the list of check book style options in a pull-down select list.

public void displayFrequencySelectList(String frequencyType, PrintWriter out)
Displays the list of frequency types in a pull-down select list.

public void displayPostalSelectList(String postalCode, PrintWriter out)
Displays the list of postal delivery options in a pull-down select list.

public void displayStopPaymentList(String stopCode, PrintWriter out)
Displays the list of stop check payment options in a pull-down select list.

public void displayTransactionPeriodList(String transactionPeriod, PrintWriter out)
Displays the list of transaction periods in a pull-down select list.

public void displayTransactionSourceList(String transactionSource, PrintWriter out)
Displays the list of transaction sources in a pull-down select list.

public void displayTransactionTypeList(String transactionType, PrintWriter out)
Displays the list of transaction types in a pull-down select list.

public void endHtmIOutput(PrintWriter out)
Puts page links to print writer and closes it.

public String getAmountString(GsCurrency amt)
Returns the currency amount in string format.

public double getAndCheckAmount(GsCurrency amount)
If the currency amount exists, it is checked for validity. A zero is returned when the input is null or an
exception occurs.

public String getDateString(GsDate date)
Returns the date in string format.

public String getTextString(int key, String resourceFile, IfsSession ifsSession, PrintWriter out) throws
IfsException
Returns the text corresponding to the integer ,key- in the properities ,resourceFile- file.

public String getTextString(String key, String resourceFile, IfsSession ifsSession, PrintWriter out) throws

IfsException
Returns the text corresponding to the string ,key- in the properities ,resourceFile- file.

© Copyright IBM Corp. 2002 Appendix E. IFS PvC StarterKit 173

public boolean isValidAmount(GsCurrency amount)
Verifies that the currency amount exists and is valid.

public boolean isValidDate(GsDate gsDate)
Checks if the date is valid.

public boolean isValidNumber(int intNumber)
Checks if the integer number is greater than zero.

public boolean isValidNumber(String strNumber)
Checks if the string number is valid.

public void show2DivBlocks(PrintWriter out, String strTitle, GsAccount acct)
Display item title and it s account number.

public void show2DivBlocks(PrintWriter out, String strTitle, GsCurrency amtValue)
Display item title and it s currency value.

public void show2DivBlocks(PrintWriter out, String strTitle, GsDate dateValue)
Display item title and it s date value.

public void show2DivBlocks(PrintWriter out, String strTitle, GsDecimal decValue)
Display item title and it s decimal value.

public PrintWriter startHtmIOutput(HttpServietResponse response, String title) throws IOException
Setup for outputting HTML information.

IfsWpErrorPage class

public class IfsWpErrorPage extends IfsWpApplication
This class provides a general error display. Whenever an error occurs, the page flow is redirected to this
servlet.

Public Methods:

public void doGet (HttpServletRequest req, HttpServietResponse res) throws ServletException,
IOException
Displays the information associated with the error. The following Hitp Request Parameters are posted to this

page:

txn - Value posted from any page when there is an error
executing the transaction.

Exception - Value posted from any page when an exception
occurred.

public void doPost (HttpServietRequest req, HttpServietResponse res) throws ServletException, IOException
Displays the information associated with the error.

The same Http Request Parameters are posted to this page as for
doGet method.

IfsWpRedoPage class

public class IfsWpRedoPage extends IfsWpApplication
This class provides a general error display for REDO and INFO errors. Whenever a REDO or INFO error
occurs, the page flow is redirected to this servlet.

Public Methods:

public void doGet (HttpServietRequest req, HttpServlietResponse res) throws ServletException,
IOException

174 IFS Customizable Web Server (CWS) Guide Fourth Edition

Displays the information associated with the error. The following Http Request Parameters may be posted to
this page:
txn - Value posted from any page when there is an error
executing the transaction.
Exception - Value posted from any page when an exception
occurred.
redomsg - The REDO message which is to be displayed.
nextpage - Controls page flow. It specifies the next page to be
displayed.
op - Search transfer operation (change or delete).
transfer - Change transfer object identifier (oid) for
GtTransferHistoryInquiry object.
i - Change transfer index GtTransferHistoryInquiry object.

public void doPost (HttpServietRequest req, HttpServletResponse res) throws ServietException,
IOException

Displays the information associated with the error. The same Http Request Parameters are posted to this
page as for doGet method.

User Authorization

IfsWpLogon class

public class IfsWpLogon extends IfsWpApplication

This class displays the logon form for users to logon to the IFS system.
Public Methods:

public void doGet(HttpServietRequest req, HttpServietResponse res) throws ServletException,
IOException

Displays the logon form for user to logon to the IFS system. No Http Request Parameters are expected to be
posted to this page.

IfsWpLogoff class

public class IfsWpLogoff extends IfsWpApplication
This class logoffs the user from the IFS system.
Public Methods:

public void doGet(HttpServietRequest req, HttpServietResponse res) throws ServletException,
IOException

Displays the logoff confirmation page for the consumer. No Http Request Parameters are expected to be
posted to this page.

public void doPost(HttpServietRequest req, HttpServietResponse res) throws ServietException, IOException
Logs the user off of the IFS system. No Http Request Parameters are expected to be posted to this page.

IfsWpMain class

public class IfsWpMain extends IfsWpApplication
This class is used to logon to IFS system and display the main functions screen.

Public Methods:

public void doPost(HttpServietRequest request, httpServletResponse response) throws
ServletException, IOException

© Copyright IBM Corp. 2002 Appendix E. IFS PvC StarterKit 175

Executes the logon transaction and displays the main function screen. The following Http Request
Parameters are posted to this page by IfsWpLogon servlet:

userlD - The ID of the user being logged on.
pin - The user s pin value.

password - The user s password.

IfsWpMainDisplay class

public class IfsWpMainDisplay extends IfsWpApplication
This class displays the main functions screen.

Public Methods:

public void doGet(HttpServietRequest request, HitpServietResponse result) throws ServletException,
IOException
Displays the main functions screen. No Hitp Request Parameters are expected to be posted to this page.

Account Inquiries

IfsWpAccounts class

public class IfsWpAccounts extends IfsWpApplication
This class displays the menu items for the account functions.

Public Methods:

public void doGet(HttpServietRequest request, HttpServletResponse result) throws
ServletException, IOException

Displays the menu items for the account transactions. No Http Request Parameters are expected to be
posted to this page.

IfsWpActSummary class

public class IfsWpActSummary extends IfsWpApplication
This class displays a summary of all accounts including deposit accounts, credit accounts and loan
accounts.

Public Methods:

public void doGet(HttpServietRequest request, HttpServletResponse result) throws
ServletException, IOException

Displays a summary of all the accounts for the user including deposit accounts, credit accounts and loan
accounts. No Http Request Parameters are expected to be posted to this page.

IfsWpActDetails class

public class IfsWpActDetails extends IfsWpApplication
This class displays the details of a specific account.

Public Methods:
public void doGet(HttpServietRequest request, HttpServletResponse result) throws
ServletException, IOException

Displays details of a specific account or a list of all of the user s accounts. The following Http Request
Parameters are posted to this page:

176 IFS Customizable Web Server (CWS) Guide Fourth Edition

ReqTag - Specifies whether a list of all accounts or the details

for a specific account is to be displayed. It can have wvalues
of “AllAccounts” or “Detailgs”.
AccountIndex - When ReqTag equals “Details”, it specifies the

index of the account to be displayed.

IfsWpTxnHistory class

public class IfsWpTxnHistory extends IfsWpApplication
This class displays the posted transactions for a specific account by transaction date range selection.

Public Methods:

public void doGet(HttpServlietRequest request, HttpServietResponse result) throws ServietException,
IOException
Displays the input form for generating a History transaction. No Hitp Request Parameters are expected.

public void doPost(HttpServletRequest request, HttpServletResponse result) throws
ServletException, IOException
Either displays the confirmation page for a History transaction or executes it. The following Http
Request Parameters are posted to this page:
ReqTag - Indicates whether to display confirmation or execute.
It can have the values of “DispFirst” or “DispMore”.
transfer - Specifies the object identifier (oid) of a
GtAccountHistory object.
reg???? - The input values from the History Transaction form.

IfsWpTxnSearch class

public class IfsWpTxnSearch extends IfsWpApplication
This class displays the posted transactions for a specific account based on selection criteria inputted by the
consumer, such as the transaction amount.

Public Methods:

public void doGet(HttpServietRequest request, HttpServietResponse result) throws ServietException,
IOException
Displays the input form for generating a Search transaction. No Http Request Parameters are expected.

public void doPost(HttpServietRequest request, HttpServietResponse result) throws
ServletException, IOException

Either displays the confirmation page for a Search transaction or executes it. The following Hitp Request
Parameters are posted to this page:

ReqTag - Indicates whether to display confirmation or execute.
It can have the values of “DispFirst” or “DispMore”.

transfer - Specifies the object identifier (oid) of a
GtAccountHistory object.

reqg???? - The input values from the Search Transaction form.

IfsWpBalancelnquiry class
public class IfsWpBalancelnquiry extends IfsWpApplication

This class is used for the consumer to request various balances associated with a specific consumer
account.

Public Methods:

© Copyright IBM Corp. 2002 Appendix E. IFS PvC StarterKit 177

public void doGet(HttpServietRequest request, HttpServletResponse result) throws ServietException,
IOException

Displays balance of a specific account or a list of all of the user s accounts. The following Http Request
Parameters are posted to this page:

ReqTag - Specifies whether a list of all accounts or the balance

for a specific account is to be displayed. It can have wvalues
of “AllAccounts” or “Details”.
AccountIndex - When ReqTag equals “Details”, it specifies the

index of the account to be displayed.

IfsWplinterestRates class

public class IfsWplInterestRates extends IfsWpApplication
This class displays a list of the current interest rates.

Public Methods:

public void doGet(HttpServietRequest request, HitpServietResponse result) throws ServletException,
IOException
Gets and displays the interest rates. No Http Request Parameters are expected.

Fund Transfers

IfsWpTransfer class

public class IfsWpTransfer extends IfsWpApplication
This class displays the menu items for fund transfers.

Public Methods:

public void doGet(HttpServietRequest request, HttpServietResponse result) throws ServietException,
IOException
Displays the menu items for the fund transfer s transactions. No Http Request Parameters are expected.

IfsWpAddFixedTransfer class

public class IfsWpAddFixedTransfer extends IfsWpApplication
This class is used to handle the Add Fixed Transfer transaction.

Public Methods:

public void doGet(HttpServietRequest request, HttpServletResponse result) throws
ServletException, IOException

Displays the input form for generating a Add Fixed Transfer transaction. No Http Request Parameters are
expected.

public void doPost(HttpServletRequest request, HttpServletResponse result) throws
ServletException, IOException
Either displays the confirmation page for a Add Fixed Transfer transaction or executes it. The
following Http Request Parameters are posted to this page:
whereFlag - Indicates whether to display confirmation or
execute. It can have the values of “fromForm” or “fromConfirm”.
transfer - Specifies the object identifier (oid) of a
GtAddFixTransfer object.
reg???? - The input values from the Add Fix Transfer form.

178 IFS Customizable Web Server (CWS) Guide Fourth Edition

IfsWpAddVariableTransfer class

public class IfsWpAddVariableTransfer extends IfsWpApplication
This class is used to handle the Add Variable Transfer transaction.

Public Methods:
public void doGet (HttpServletRequest request,
HttpServletResponse result) throws ServletException, IOException
Displays the input form for generating a Add Variable Transfer
transaction. No Http Request Parameters are expected.

public void doPost(HttpServietRequest request, HttpServietResponse result) throws
ServletException, IOException

Either displays the confirmation page for a Add Variable Transfer transaction or executes it. The following
Http Request Parameters are posted to this page:

whereFlag - Indicates whether to display confirmation or
execute. It can have the values of “fromForm” or “fromConfirm”.
transfer - Specifies the object identifier (oid) of a
GtAddvVariableTransfer object.

reg???? - The input values from the Add Variable Transfer form.

IfsWpSearchTransfer class

public class IfsWpSearchTransfer extends IfsWpApplication
This class handles the Search Transfer transaction and prepares the data for Change or Delete Transfer
transactions.

Public Methods:

public void doGet(HttpServietRequest request, HttpServletResponse result) throws
ServletException, IOException

Displays the input form page for a Search Transfer transaction. The following Http Request Parameter is
posted to this page:

op - Indicates the transfer change type. It can have the wvalues
of “search” or “delete”.

public void doPost(HttpServietRequest request, HttpServietResponse result) throws
ServletException, IOException
Displays the results of a Search Transfer transaction. The following Http Request Parameters are posted to
this page:
ReqTag - Indicates which group of results is to be displayed.
It can have the values of “DispFirst” or “DispMore”.
transfer - Specifies the object identifier (oid) of a
GtTransferHistoryInquiry object.
reg???? - The input values from the Search Transfer Transaction
form.
SourceAccount - The index of the selected account to be
searched. It is posted when ReqgTag=DigspFirst.
NUM - The starting index of the next transfer to display. It is
posted when RegTag=DispMore.
LEFTNUM - The number of transfers left to display. It is posted
when ReqTag=DispMore.

IfsWpChangeFixedTransfer class

public class IfsWpChangeFixedTransfer extends IfsWpApplication
This class is used to handle the Change Fixed Transfer transaction.

© Copyright IBM Corp. 2002 Appendix E. IFS PvC StarterKit 179

Public Methods:

public void doGet(HttpServietRequest request, HttpServletResponse result) throws
ServletException, IOException

Displays the input form for generating a Change Fix Transfer transaction. The following Http Request
Parameters are posted to this page:

transfer - Specifies the object identifier (oid) of a
GtTransferHistorylnquiry object in the session cache.
i - The transfer history detail index.

public void doPost(HttpServietRequest request, HttpServietResponse result) throws
ServletException, IOException

Either displays the confirmation page for a Change Fix Transfer transaction or executes it. The following
Http Request Parameters are posted to this page:

whereFlag - Indicates whether to display confirmation or
execute. It can have the values of “fromForm” or “fromConfirm”.
transfer - Specifies the object identifier (oid) of a
GtChangeFixTransfer object.

reg???? - The input values from the Change Fix Transfer form.

IfsWpChangeVariableTransfer class

public class IfsWpChangeVariableTransfer extends IfsWpApplication
This class is used to handle the Change Variable Transfer transaction.

Public Methods:

public void doGet(HttpServietRequest request, HttpServletResponse result) throws
ServletException, IOException

Displays the input form for generating a Change Variable Transfer transaction. The following Hitp Request
Parameters are posted to this page:

transfer - Specifies the object identifier (oid) of a
GtTransferHistoryIngquiry object in the session cache.
i - The transfer history detail index.

public void doPost(HttpServietRequest request, HttpServietResponse result) throws
ServletException, IOException

Either displays the confirmation page for a Change Variable Transfer transaction or executes it. The
following Http Request Parameters are posted to this page:

whereFlag - Indicates whether to display confirmation or
execute. It can have the values of “fromForm” or “fromConfirm”.
transfer - Specifies the object identifier (oid) of a
GtChangeVariableTransfer object.

reg???? - The input values from the Change Variable Transfer
form.

IfsWpDeleteFixedTransfer class

public class IfsWpDeleteFixedTransfer extends IfsWpApplication
This class handles the transaction for Delete Fixed Transfer.

Public Methods:

public void doGet(HttpServietRequest request, HttpServletResponse result) throws
ServletException, IOException

180 IFS Customizable Web Server (CWS) Guide Fourth Edition

Displays the input form for generating a Delete Fix Transfer transaction. The following Http Request
Parameters are posted to this page:

transfer - Specifies the object identifier (oid) of a
GtTransferHistoryIngquiry object in the session cache.
i - The transfer history detail index.
public void doPost(HttpServletRequest request, HttpServletResponse result) throws
ServletException, IOException
Either displays the confirmation page for a Delete Fix Transfer transaction or executes it. The
following Http Request Parameters are posted to this page:

transfer - Specifies the object identifier (oid) of a
GtDeleteFixTransfer object.

req???? - The input values from the Delete Fix Transfer form.

IfsWpDeleteVariableTransfer class

public class IfsWpDeleteVariableTransfer extends IfsWpApplication
This class handles the transaction for Delete Variable Transfer.

Public Methods:

public void doGet(HttpServietRequest request, HttpServletResponse result) throws
ServletException, IOException

Displays the input form for generating a Delete Variable Transfer transaction. The following Http Request
Parameters are posted to this page:

transfer - Specifies the object identifier (oid) of a

GtTransferHistorylnquiry object in the session cache.

i - The transfer history detail index.
public void doPost(HttpServietRequest request, HttpServietResponse result) throws
ServletException, IOException
Either displays the confirmation page for a Delete Variable Transfer transaction or executes it. The following
Http Request Parameters are posted to this page:

transfer - Specifies the object identifier (oid) of a

GtDeleteVariableTransfer object.

req???? - The input values from the Delete Variable Transfer form.

IfsWpTransferinquiry class

public class IfsWpTransferinquiry extends IfsWpApplication
This class handles the transaction for Transfer Inquiry which allows user to request information about
Transfers.

Public Methods:

public void doGet(HttpServietRequest request, HttpServletResponse result) throws
ServletException, IOException

Displays the input form page for a Transfer Inquiry transaction. No Http Request Parameters are expected
to be posted to this page.

© Copyright IBM Corp. 2002 Appendix E. IFS PvC StarterKit 181

public void doPost(HttpServletRequest request, HttpServletResponse result) throws
ServletException, IOException
Displays the results of a Transfer Inquiry transaction. The following Http Request Parameters are
posted to this page:
RegTag - Indicates which group of results is to be displayed.
It can have the values of “DispFirst” or “DispMore”.
transfer - Specifies the object identifier (oid) of a
GtTransferHistoryIngquiry object.

reqg???? - The input values from the Transfer Ingquiry Transaction
form.
SourcelAccount - The selected account to be searched. It is

posted when RegTag=DispFirst.

NUM - The starting index of the next transfer to display. It is
posted when RegTag=DispMore.

LEFTNUM - The number of transfers left to display. It is posted
when ReqgTag=DispMore.

Customer Services

IfsWpServices class

public class IfsWpServices extends IfsWpApplication
This class displays the menu items for customer services.

Public Methods:

public void doGet(HttpServietRequest request, HttpServletResponse result) throws
ServletException, IOException

Displays the menu items for the customer service s transactions. No Hitp Request Parameters are expected
to be posted to this page.

IfsWpCheckCopy class

public class IfsWpCheckCopy extends IfsWpApplication
This class is used to handle the Check Copy Order transaction.

Public Methods:

public void doGet(HttpServietRequest request, HttpServletResponse result) throws
ServletException, IOException

Displays the input form for user to generate a Check Copy transaction. No Http Request Parameters are
expected to be posted to this page.

public void doPost(HttpServietRequest request, HttpServietResponse result) throws
ServletException, IOException

Either displays the confirmation page for a Check Copy transaction or executes it. The following Hitp
Request Parameters are posted to this page:

ReqTag - Indicates whether to display confirmation or execute.
It can have the values of “Confirm” or “Result”.

transfer - Specifies the object identifier (oid) of a
GtCheckCopy object.

reqg???? - The input values from the Check Copy form.

182 IFS Customizable Web Server (CWS) Guide Fourth Edition

IfsWpCheckBook class

public class IfsWpCheckBook extends IfsWpApplication
This class is used to handle the Check Book Reorder transaction.

Public Methods:

public void doGet(HttpServietRequest request, HttpServletResponse result) throws
ServletException, IOException

Displays the input form for user to generate a Order Check Book transaction. No Hitp Request Parameters
are expected to be posted to this page.

public void doPost(HttpServletRequest request, HttpServletResponse result) throws
ServletException, IOException
Either displays the confirmation page for a Order Check Book transaction or executes it. The
following Http Request Parameters are posted to this page:
ReqTag - Indicates whether to display confirmation or execute.
It can have the values of “Confirm” or “Result”.
transfer - Specifies the object identifier (oid) of a
GtOrderCheckBook object.
reqg???? - The input values from the Order Check Book form.

IfsWpStopPayment class

public class IfsWpStopPayment extends IfsWpApplication
This class is used to handle the Stop Check Payment transaction.

Public Methods:

public void doGet(HttpServietRequest request, HttpServletResponse result) throws
ServletException, IOException

Displays the input form for generating a Stop Check Payment transaction. No Http Request Parameters are
expected to be posted to this page.

public void doPost(HttpServietRequest request, HttpServietResponse result) throws
ServletException, IOException

Either displays the confirmation page for a Stop Check Payment transaction or executes it. The following
Http Request Parameters are posted to this page:

ReqTag - Indicates whether to display confirmation or execute.
It can have the values of “Confirm” or “Result”.

transfer - Specifies the object identifier (oid) of a
GtStopCheckPayment object.

reqg???? - The input values from the Stop Check Payment form.

IFS PvC Serviets Normal Page Flow

The servlets page flow starts with the logon page. All subsequent page navigation depends on what
transactions are selected to be executed (servlet_name - method_name).

For example, the page flow to logon, order a check copy, and logoff would be:

IfsWpLogon doGet

o > |fsWpMain doPost
-> |[fsWpServices doGet
->IfsWpCheckCopy doGet
-> [fsWpCheckCopy doPost

© Copyright IBM Corp. 2002 Appendix E. IFS PvC StarterKit 183

->lfsWpLogoff doGet
-> IfsWpLogoff doPost

Following is the normal flow for the transactions starting at the logon page:

IfsWpLogon
IfsWpLogon doGet
-> IfsWpMain doPost
-> IfsWpAccounts doGet
-> IfsWpTransfer doGet
-> IfsWpServices doGet

IfsWpAccounts
IfsWpAccounts doGet
-> IfsWpActSummary doGet
-> [fsWpActDetails doGet ?ReqTag=AllAccounts
-> |[fsWpBalancelnquiry doGet ?ReqgTag=AllAccounts
-> IfsWplnterestRates doGet
-> IfsWpTxnSearch doGet
-> IfsWpTxnHistory doGet

IfsWpTransfer

IfsWpTransfer doGet
-> IfsWpAddFixedTransfer doGet
-> IfsWpAddVariableTransfer doGet
-> IfsWpChangeTransfer doGet ?op=change
-> IfsWpChangeTransfer doGet ?op=delete
-> [fsWpTransferinquiry doGet

IfsWpServices

IfsWpServices doGet
-> [fsWpCheckCopy doGet
-> IfsWpCheckBook doGet
-> IfsWpStopPayment doGet

IfsActSummary
IfsWpActSummary doGet
-> IfsWpActDetails doGet ?Accountindex=xx&ReqTag=Details

IfsWpActDetails
IfsWpActDetails doGet ?ReqTag=AllAccounts
-> [fsWpActDetails doGet ?Accountindex=xx&ReqgTag=Details

IfsWpBalancelnquiry
IfsWpBalancelnquiry doGet ?ReqTag=AllAccounts
-> [fsWpActDetails doGet ?Accountindex=xx&ReqTag=Details

IfsWplinterestRates
IfsWplnterestRates doGet

IfsWpTxnSearch
IfsWpTxnSearch doGet
-> IfsWpTxnSearch doPost (1 or more pages of transactions)

IfsWpTxnHistory
IfsWpTxnHistory doGet
-> [fsWpTxnHistory doPost (1 or more pages of transactions)

IfsWpAddFixedTransfer

IfsWpAddFixedTransfer doGet
-> [fsWpAddFixedTransfer doPost

184 IFS Customizable Web Server (CWS) Guide Fourth Edition

IfsWpAddVariableTransfer
IfsWpAddVariableTransfer doGet
-> [f'sWpAddVariableTransfer doPost

IfsWpChangeTransfer
IfsWpChangeTransfer doGet ?op=change
-> IfsWpSearchTransfer doGet (one or more pages of transfers)
-> [fsWpChangeVariableTransfer doGet
-> IfsWpChangeFixedTransfer doGet

IfsWpChangeTransfer—doGet ?op=delete
-> IfsWpSearchTransfer doGet (one or more pages of transfers)
-> IfsWpDeleteVariableTransfer doGet
-> IfsWpDeleteFixedTransfer doGet

IfsWpTransferlnquiry
IfsWpTransferinquiry doGet
-> [fsWpTransferlnquiry doPost (one or more pages of transfers)

IfsWpChangeVariableTransfer
IfsWpChangeVariableTransfer doGet
-> [fsWpChangeVariableTransfer doPost

IfsWpChangeFixedTransfer
IfsWpChangeFixedTransfer doGet
-> [fsWpChangeFixedTransfer doPost

IfsWpDeleteVariableTransfer
IfsWpDeleteVariableTransfer doGet
-> [fsWpDeleteVariableTransfer doPost

IfsWpCheckCopy
IfsWpCheckCopy doGet
-> [fsWpCheckCopy doPost

IfsWpCheckBook
IfsWpCheckBook doGet
-> IfsWpCheckBook doPost

IfsWpStopPayment
IfsWpStopPayment doGet
-> IfsWpStopPayment doPost

IFS User Interface on Handheld Device

Logon Screen

To enter the IFS system, users must input their customer ID, PIN and password. Click the Logon button, the
system will carry out the Logon transaction. Only the valid user can enter the system. See Figure 20.

© Copyright IBM Corp. 2002

Appendix E. IFS PvC Starter Kit

185

Weicome to IFS

CustorneriD:ARF 1001

Figure 18. Logon Screen

Main Function Screen

The PvC Starter Kit provides three functions for the PDA: Accounts, Transfers and Services. See Figure 21.
Click any of the function icons to access the corresponding screen.

= EO® G
Accounts
Tranzfer SerAces
Logoff

Figure 19. Main Function Screen

Accounts Function Screen

Provides six functions: Account Summary, Account Details, Transaction Search, Transaction History,
Balance Inquiry and Interest Rates. See Figure 22. Click any of the function items, to access the
corresponding screen.

[Accounts | Eoe o

» Account sununary
¥ Account details

» Transaction search
» Transaction history
» Balance Mguiry

¥ interesirates

Loanff b

Figure 20. Accounts Function Screen
Account Summary Screen

Provides the customer s account summary information. Click this function item to display the account type,
account number, account name, balance and date information of all accounts. See Figure 23.

186 IFS Customizable Web Server (CWS) Guide Fourth Edition

[ccount sun.. IECT IR

Y

DEPOSIT ACCOUNTS

Aecount Murnber:

Aecount Torpe:
Cartificate of Deposit
Account
Ledger Balance:
£30,000_00
[rate:

1997-05-20 »

Figure 21. Account Summary Screen

Account Details Screen

Provides account details of one specific consumer account. Click this function item to display all accounts
belonging to the consumer. Click any of the accounts to display account details for that account. See Figure
24,

AccouNT DETAL.. [ISK-E Tl Account peTAL.. TSI TG

Flease select an account: n ARF1001 COMMERCIAL LOAM 7§
1

ARF1001CCA] -- ARF1001 CREDIT [Fatus:

CARD 1 Account Open

ARF1001CCAT -- ARF1001 CERT OF nformation as of:

DEPOSIT 1 2000-01-19

ARF1001CDAZ -- ARF1001 CERT OF

DEPOSIT 2 Payment and Balance

ARFI001CLAT == ARF 1001 Information

COMMERCIAL LOAM 1

ARF100100AT -- ARF1001 CHECKIMG 1

ARFI001ELC T -- ARF1001 ECLUIT LIME Fawoff Arnount:

F CREDIT, ¥ $100.00 +

Figure 22. Account Details Screen

Transaction Search Screen

Click transaction search item to display the user input screen. When the user completes the data input and
clicks the ,Enter- button, it submits the request and shows the search result. See Figure 25.

TRANSACTION... Transaction... IIEE IR
Please select an account: T]
w A -- ARF1001CCAT Fosting Date:
Transaction type: 2000-06-01
w fAll types Foriginal Date:
[:here transaction occurred: 1997-10-02
 Hll Feference Murnber:
hen transaction occurred: 19971005
[Tranzaction Type:
w Sazlect a Time Frame or Date Rang Debit Transaction
R I-heck Murnber:
ate or Range o 0
wyyy-NIN-dd): ka1 Crascription:
[£ B CREDIT CARD TRANSACTIONS +

Figure 23. Transaction Search Screen

Transaction History Screen

Click transaction history item to display the user input screen. When the user completes the data input and
clicks the ,Enter- button, it submits the request and shows the transaction history. See Figure 26.

© Copyright IBM Corp. 2002 Appendix E. IFS PvC StarterKit 187

TRANSACTION... Transaction... IIEE IR
Please select an account:]
- CCA - ARF1001CCAT Fosting Date:
rom Date: {optional} 2000-06-01
.. (o y-WIN-dd) (original Date:
To Date: (optional} 1997-10-02
.. Gy -hM-dd) Fieference Mumnber:
19971005
[Tranzaction Type:
Debit Transaction
IFZ Accounts [Transfer |Services | [-heck Humber: 0
Lagaff. Crescription:
CREDIT CARD TRANSACTIONS &

Figure 24. Transaction History Screen

Balance Inquiry Screen

Click balance inquiry item to display all accounts belonging to the consumer. Click any of the accounts to
display balances of the account. See Figure 27.

BALANCE INGUI... ‘account peTal.. [EEEA
Please select an account: T ARF1001 CREDIT CARD 1

ARF1001CCAT -- ARF1001 CRECIT

CARD: 1 nforrnation az of:
ARF1001C0AT -- ARF1001 CERT ©F 1997-05-20
DEFCSIT 1 | =dger Balance:

$394.68

Awailable Balance:
$123 98500

lncleared Balance:

ARF100100AT -= ARF1001 CHECKIMG 1 £0.00
ARF1001ELC] -- ARF 1001 BT LIME Tertal Holding Balance:
OF CRECAIT. - $100.00 +

Figure 25. Balance Inquiry Screen

Interest Rates Screen

Click interest rates item to display a list of current interest rates. See Figure 28.

inTErEST RATES IEE2L G

E '‘ear Terrn Deposit Account
165 %%

Figure 26. Interest Rates Screen

Fund Transfer Function Screen
The Transfer item provides five functions: Add Fixed Transfer, Add Variable Transfer, Change Transfers,

Delete Transfers and Transfer History Inquiry. See Figure 29. Click any of the function items to access the
corresponding screen.

188 IFS Customizable Web Server (CWS) Guide Fourth Edition

 Fund Transfer = 5
» Aad fixed trans fer
» Aad variahie transfar
» Change Transfers
» Defate Transfors
W Transfer fus tory oy

Figure 27. Fund Transfer Screen

Add Fixed Transfer Function Screen

Click Add Fixed Transfer item to display the user input screen. When the user completes the data input and
clicks the ,Enter- button, it displays the confirmation screen. Click ,OK- button to submit the request and
show the result. See Figure 30.

Confirmn Add Fix._.. 'Add Fixed Trans.. JER2L R 'Add Fixed Trans._..
Please click OK button toe 1 Add Fixed Transfer ransfer From Account:
onfirm your transfer. Eransaction was successful_ w (A -- ARF1001CCAT
ransfer To Account:
ransfer Fram Account: Konfirmation Murnber: w DDA -- ARF1001DCA1
ARF1001CCAT YGEYNT ransfer Frequency:
ransfer To Account: Rdjusted Transter Dote: w» Monthly
ARF10O1DDA1 2000-01-19 Amount: § 200
ransfer Frequency: . b Adjuzted Final Transfer Date: ffectiu-e Date-
" o :
mount: i 2000-01-19 2000-12:25 Cywyy-W-d}
$£200.00 IES Accounts [Tronsfer [Services | inal Transfer Date
ffective Dote: & | 77 L.:.q.:.ff L E..I..E."?yw}"'mm'dd}
2000-12-255 | T IR .l

Figure 28. Add Fixed Transfer Screen

Add Variable Transfer Function Screen

Click Add Variable Transfer item to display the user input screen. When the user completes the data input
and clicks the ,Enter- button, it will display the confirmation screen. Click ,OK- button to submit the request
and show the result. See Figure 31.

| Add Variable Tr... | Confirm Add Va.._ 'Add Variable Tr... =04
ransfer From Account: T Please click OK button to N Add Variable Transfer

w (A --ARF1001CCAT onfirm your Transfer kransaction was successful.
ransfer To Account:

w ELC -- ARFI001ELCT Transfer From Account: Konfirmation Munnber:
ranster Inmediately: w ‘e: u far To R tHRFIl]ﬂI((HI 1

H ida- ranster o Hocount Adjusted Transfer Date:
Duplicate Quwerride: « Ye: ARF1001ELECT 1999-12-31

Transfer Imrmediately:

- Yes IFS [Accounts [Transfer |Services |
L — Ly -MM-dd) Duplicate Transfers Override 2| [77 Logof
ransTer Nickname: {Optional} ves: | | 0
Aol Y NN —
[LI J $300.00 +

Figure 29. Add Variable Transfer Screen

Change Transfer Function Screen

Click Change Transfer item to display Search Transfer input screen. When the user completes the data input
and clicks the ,Search- button, it displays the Search results screen. See Figure 32.

Click on the Transfer Number to display Change Fixed Transfer input screen or Change Variable Transfer
input screen. When the user completes the data input and clicks the ,Change- button, it displays the

© Copyright IBM Corp. 2002 Appendix E. IFS PvC StarterKit 189

confirmation screen. Click ,OK- button to submit the request and show the result. See Figure 33 and Figure
34.

.Seurch Transfer

Please select an account:
Al Funding Accounts

Date Range: {Cptional}

'Search Transfer - R

Twpe:
Single Transfers
[Foure:
ARF1001CCAT
[Target:
ARF100D15DA1
Furnbet:
034000
Twpe:
Single Transfers
[rource: -]

Figure 30. Search Transfer Screen

.(hunge Fized Tr... [ERzE R

Transfer From Account: 11
w CCA-- ARF1001CCAT
Transfer To Account:
w DA -- ARF1001C0A1
Transfer Frequency:
 Waakly
Arnount: &

$C.00

Effective Date:
ZO0G-05-05 {ryyy-MM-dd)
Last Transfer Date:

L |

2005-05-02 {yvvv-MM-dd}L b

Confirm Change... fiEk>L [Jii

Flease click OK button to 11
confirm your transfer change

[Transfer Frorm Account:
ARF1001CCAT
[Transfer To Account:
ARF100D1CDA1
Arnount:
$5.00
[Tranzfer Murnber:
1
[Tranzfer Frequency:

Weekly +

.(hunge Fized Tr... [ERzE R

iChange Fized Transfer
[Eransaction was successful_

ILonfirration Reference Murnber:
000000000307

Figure 31. Change Fixed Transfer Screen

change Variobl... [[IEE-E K&
Transfer From Account: T
w CCH-- ARF1001CCA1
Transfer To Account:
w SDA -- ARF100150A1
Armount:

46,00
Effective Daote:
13981231 Gy =Pibl-dd
Transfer Mickname:

Change |

wal

Confirm change... IEE-E TR

Flease click OK button to N
confiron your transfer change

[Transfer From Account;
ARF100D1CCAT
[Transfer To Account:
ARF100D15DA1
Arnount:
$6_00
[Transfer Murber:
034000

Ok Cancel b

.(hunge variabl_.. 2R

Change Variable Transfer
Eransaction was successful_

anfirration Reference Murmber:
000000000308

Figure 32. Change Variable Transfer Screen

Delete Transfer Function Screen

Click Delete Transfer item to display Search Transfer input screen. When the user completes the data input
and clicks the ,Search- button, it displays the Search results screen. Click the Transfer Number to display
Delete Fixed Transfer screen or Delete Variable Transfer screen. When the user clicks the ,OK- button, it
submits the request and shows the results. See Figure 35.

‘Confirm Delete.. TEEL RG] ‘Delete Fixed Tr... EE-L RG]
Do you really want to delete Delete fixed transfer was
the following Transfer? lEuccessful
[Transfer From Account; anfirration Reference Murmber:

ARF100D1CCAT 000000000308
[Transfer To Account: Ferwvice Provider Reference:

ARF1DD1ELC1 000000000 30s
Arnount:

$5.00 IFS [Rccounts | TransTer |Sarvices |
Eifective Date: Logoff,
1999-12-31
‘fes Mo]

190 IFS Customizable Web Server (CWS) Guide Fourth Edition

Figure 33. Delete Fixed Transfer Screen

Confirm Delete_ . [IEEZL IR,

Do you really want to delete
the following Transfer?

[Transfer From Account;
ARF100D1CCAT

[Transfer To Account:
ARF100D1CDA1

‘Delete Variable... [EE2L IR

Delete variable transfer was
lEuccessful

anfirration Reference Murmber:
000000000309

Ferwvice Provider Reference:
00000000309

[Tranzfer Frequency:
Weekly 5| | IFZ[Accoonts [Tronsfer J5e
Frnaount: Logaff,
$5.00

Effective Date:

Z005-05-05 +

Figure 34. Delete Variable Transfer Screen

Transfer Inquiry Function Screen

Click Transfer Inquiry item to display the user input screen. When the user completes the data input and
clicks the ,Search- button, it submits the request and shows the results. See Figure 36.

.Trunsferlnquiry =oa i

Transfer Inquiry ISE-E IR~

Flease select an account:

 All Funding Accounts Twpe:

Date Range: {Optional} Single Transfers
Frorm: [Fource:

T ARF1001CCAT

WY d [Target:

JArmount Range: {Optional} ARF10015DA1
From: 4 Arnount:

Te: 4 $6.00
Transfer Type and Status: Effective Date:

w Scheduled - Al 1999-12-31

[¥ [Tpe: -

Figure 35. Transfer Inquiry Screen

Services Function Screen

The Services item provides three functions: Check Copy Order, Check Book Reorder and Stop Cheque
Payment. See Figure 37. Click any of the function items to access the corresponding screen.

[services | Eo« G

» Check copy order
» Check hook reorder
» Stop chague payment

Figure 36. Service Function Screen

Check Copy Order

Click check copy order item to display the user input screen. When the user completes the data input and
clicks the ,Enter- button, it displays the confirmation screen. Click ,OK- button to submit the request and
show the result. See Figure 38.

© Copyright IBM Corp. 2002 Appendix E. IFS PvC StarterKit 191

 Confirm Request IERzL RO Check Copy Req... IEEZL R

Select an Account: our check copy request will be 1 our check copy has been requested
w (CA--ARF1001CCAT subrnitted. To confirm, click on OK, uccessfullyl
otherwize, click on Cancel.
Fl Refarence Murnber:
ote: Your check copy will be 000000000311
ailed to the address on the Fervice Provider Reference Id:
account selected within 10 000000000311
orking days. There willbe a
%300 fee charged to your IS Accounis I Transter |Services |
account for each check copy. Loqaff,
k] coount:
» ARF1001CCAT <

Figure 37. Check Copy Order Screen

Check Book Reorder

Click check book reorder item to display the user input screen. When the user completes the data input and
clicks the ,Enter- button, it displays the confirmation screen. Click ,OK- button to submit the request and
show the result. See Figure 39.

Check Book Reo... Confirm Request [Eh-k IR Check Book Req... [ERZ2L G
Select an Account: T our check book reorder will be Tl our check book has been requested
w ILA -- ARF1001ILA1 subrnitted. To confirrn, click on QK. Buccesstully!
Select Check Book Style: otherwize, click on Cancel.

w Style B Fl Reference Murmber:

urber of Checks: 100 ote: Your check book will be 000000000313

heck Book Delivery M : ailed to the uddre-_ss on the [Fervice Provider Reference 1d:

w Postal Delivery account selected within 10 000000000313

onsumner Micknanme: orking days. There will be a

%500 fee charged to your IFS [Accounts [Transfer |Services |

A TR account. Lagaff,

onsurner Account Name:

E Account:
b ARF10D1ILAT +

Figure 38. Check Book Reorder Screen

Stop Cheque Payment

Click stop cheque payment item to display the user input screen. When user completes the data input and
clicks the ,Enter- button, it displays the confirmation screen. Click ,OK- button to submit the request and
show the result. See Figure 40.

 Stop Check Pay_. IGEE R Confirm Request [ER-E RG] stop Payment... [IEE A

%Select an Account: T out check stop pavrnent will be T aur stop check pavrent has been

~ MLA -- ARF1001MLAA subrnitted. To confirmn, click on OK, Fequested successtully!

Select Stop Payment Type: otherwize, click on Cancel.

w by Check Murnmber and Arnount Fl Refarence Murnber:
{Check Number or Range: MNote: There will be a $5.00 fee 000000000314
Frorm: 100 harged to your account for [Fervice Provider Reference 1d:

ach stop payment. 000000000314
Frarm: § 15000 Account: IFS [Accounts [Transfer |Services |
T § . Ty RF100TMLAT Logaff.
: . top Payment Type:

l;-g:ni::lng Date or Range: k1 by Check Murnber and Amount

PO i , chiack Murnber: H

Figure 39. Stop Cheque Payment Screen

Logoff Screen

Logoff from the IFS system. The first screen displays a confirmation screen. Tap the Logoff button to submit
the request and logoff the system.

192 IFS Customizable Web Server (CWS) Guide Fourth Edition

-Luguff confirm... IEE-X T .Lngnff sucesstu__. [oR2E R

f wou really want to logoff IFS, click Faoodbye, Thanks for banking with
the LogofF button below. ! Click Emter button below to

Fe-enter [FS
(Togort)

Figure 40. Logoff Screen

© Copyright IBM Corp. 2002 Appendix E. IFS PvC StarterKit 193

Appendix F. Basic WebSphere 4 Administration

WebSphere 4.0.2 Overview

This appendix describes some of the basic WebSphere administrative tasks that have been mentioned in
this guide. The descriptions and instructions provided are not intended to be exhaustive, but should instead
be used as quick references to help novice users get started with WebSphere administration and to find out
where they can obtain more information. The following topics will be discussed:

Starting WebSphere

Launching a GUI administration client

Stopping WebSphere using the GUI client

Starting an application server using the GUI client
Stopping an application server using the GUI client
The wscp.sh command line utility

More information on these, and many more, topics can be found in the WebSphere 4.0.2 InfoCenter
documentation that comes bundled with the product or on-line at http://www-
3.ibm.com/software/webservers/appserv/infocenter.html. Four other good sources of information include the
WebSphere 4.0.2 release notes found at http://www-
3.ibm.com/software/webservers/appserv/doc/v40/aelinfocenter/was/relnotesindx.html, the IBM RedBook-
RedPiece SG24-6176-00 WebSphere Version 4.0 Advanced Edition Handbook, the IBM RedBook-RedPiece
SG24-6520-00 WebSphere Advanced Edition: Security and IBM RedBook SG24-6134-00 WebSphere
Version 4 Application Development Handbook.

Starting WebSphere Administration Server

Before an application server can be started or the graphical or command line administration clients used, the
administration server must be started. To start the WebSphere 4.0.2 administration server follow the
instructions below:

1. Log on to the system as user root.

2. Change into the /usr/WebSphere/AppServer/bin directory
cd /usr/WebSphere/AppServer/bin

3. Execute the startupserver.sh script in the background
/startupserver.sh &

4. Observe progress by tailing the generated tracefile
tail -f /usr/WebSphere/AppServer/logs/tracefile

5. The server has been successfully started when you see the message
Server __adminServer open for e-business

Launching the Graphical Administrative Client

All WebSphere administrative tasks that one might like to perform can be accomplished through the use of
the graphical client or the wscp.sh command line interface. The graphical client tends to be more intuitive
and user friendly, while the command line tool is great for automating tasks through scripting.

Both administrative clients use Remote Method Invocation technology to communicate with the
administration server. This allows the administrative client to run on a separate machine than the
administrative server providing a great deal of flexibility. The graphical client is a Java Swing application and
can be processor and memory intensive. To increase the responsiveness of the client it is recommended
that you install and run it on a separate machine running AlX or Windows.

194 IFS Customizable Web Server (CWS) Guide Fourth Edition

Launching the administrative client is the same whether you re administering a local or remote WebSphere
node and can be accomplished using the following instructions:

AlX/Linux Instructions
1. Log onto the system as user root.
2. Change into the bin directory off of the WebSphere installation root.
cd /usr/WebSphere/AppServer/bin
3. Run the adminclient command specifying the administrative server hostname and port.

./adminclient.sh test.ibm.com 900

Windows Instructions

1. Log onto the system.

2. Change into the bin directory off of the WebSphere installation root.
C:\> cd WebSphere\AppServer\bin

3. Run the adminclient command passing the administrative server hostname and port.
C:\WebSphere\AppServer\bin> adminclient test.ibm.com 900

The specified hosthame must be the fully qualified hostname of the system running the administrative
server. Port 900 is the default administrative server port.

Stopping WebSphere

Stopping WebSphere entails stopping all application servers as well as the administration server as
instructed below:

1. Launch a graphical administration client using the instructions above.

2. Inthe left pane there will be an icon labled WebSphere Administrative Domain left click on the plus sign
to the left of it.

3. Inthe left pane left click on the plus sign to the left of the Nodes icon.

4. Inthe left pane, immediately below the Nodes icon, there should be an item with the same name as the
hostname of the system running the administration server, left click on the name to highlight it.

5. Left click on the Stop button (circle with an x in the center) in the toolbar.
6. A dialog box will open to confirm your choice, click the Yes button.

Please note that as a result of clicking the Yes button in step 6 your graphical administrative client will exit.

Starting an Application Server

In WebSphere 4.0.2 all EJBs (Enterprise Java Beans), Java Servlets, JSPs and other web resources are
contained inside of an enterprise application which runs inside of an application server. The application
server is actually a JVM (Java virtual machine) that provides an environment for, as well as, interprets and
runs Java components. You will not be able to run CWS without first starting the application server it was

© Copyright IBM Corp. 2002 Appendix F. Basic WebSphere 4 Administration 195

deployed into. CWS comes with tools to start and stop the application server (i fs.war/tools/startweb
and stopweb scripts discussed in Chapter 3. Installing CWS Components) but follow the instructions below
if you wish to start the server manually:

1.

2.

Launch a graphical administration client using the instructions above.

In the left pane there will be an icon labled WebSphere Administrative Domain” left click on the plus sign
to the left of it.

In the left pane, left click on the plus sign next to the Nodes icon.

In the left pane, immediately below the Nodes icon, there should be an icon labled with the hostname of
the system containing the applicaction server you wish to start, left click on the plus sign next to it.

In the left pane there will be an icon labled Application Servers, left click the plus sign next to it.
Immediately underneath the Application Servers icon there will be a list of the application servers that
have been created. To the left of each name there will be a red icon if the server is stopped or a green
icon if the server is started. Left click on the name of the server you wish to start; it should become
highlighted.

Left click on the Start button (circle with an arrow in the center) in the toolbar.

A dialog box will open to notify you when the server has been started or of any errors that were
encountered. Click the OK button.

Stopping an Application Server

Follow the instructions below to stop an application server using the administration GUI client.

1.

2.

Launch a graphical administration client using the instructions above.

In the left pane there will be an icon labled WebSphere Administrative Domain left click on the plus sign
next to it.

In the left pane, left click on the plus sign next to the Nodes icon.

In the left pane, immediately below the Nodes icon, there should be an icon labled with the hostname of
the system containing the applicaction server you wish to start, left click on the plus sign next to it.

In the left pane there will be an icon labled Application Servers, left click the plus sign next to it.
Immediately underneath the Application Servers icon there will be a list of the application servers that
have been created. To the left of each name there will be a red icon if the server is stopped or a green
icon if the server is started. Left click on the name of the server you wish to stop; it should become
highlighted.

Left click on the Stop button (circle with an x in the center) in the toolbar.

A dialog box will open to notify you when the server has been stopped or of any errors that were
encountered. Click the OK button.

The wscp.sh Command Line Utility

The wscp.sh (WebSphere Control Program) is a command-line administrative tool for WebSphere 4.0.2
Advanced Edition. All administrative tasks that can be performed with the graphical administration client can
also be performed with the wscp.sh command line utility.

196

IFS Customizable Web Server (CWS) Guide Fourth Edition

The wscp.sh command is based on the scripting language Tcl. The wscp.sh launches a Tcl interpreter which
parses the command line arguments and executes the specified Tcl statements.. Below is an example of
how to use the wscp.sh command to start an application server named testServer on the host test1.ibm.com.

AIX

cd /usr/WebSphere/AppServer/bin

./bin/wscp.sh -c

“ApplicationServer start
/Node:testl/ApplicationServer:testServer/”

The ifs.war/tools/startweb and stopweb scripts distributed with CWS use the wscp . sh command
to obtain status information about and to start and stop the CWS application server. For more information on

the wscp . sh command and Tcl syntax please see chapter 23 of the IBM RedBook-RedPiece SG24-6176-00
IBM WebSphere V4.0 Advanced Edition Handbook.

© Copyright IBM Corp. 2002 Appendix F. Basic WebSphere 4 Administration 197

Appendix G. Migrating from Java 1.1.8 to Java 1.3.0

Java APl Changes

Much change has occurred in the Java APls supported by WebSphere from version 2.0.3 to version 4.0.2.
Examples of such changes include the removal of support for some classes, changes in the behavior of
methods, deprecation of methods, creation of new methods and the creation of entire new APIs. In addition
to the Java API changes some of the classes and methods in the JCWSAPI have also been altered to
function properly in the WebSphere 4.0.2 environment. The following sections discuss the APIs that are
supported in WebSphere 4.0.2, where you can obtain additional information on said APls, the changes made
to the JCWSAPI and potential problems and resolution you may experience when migrating your Java code
from WebSphere 2.0.3 to WebSphere 4.0.2.

WebSphere 4.0.2 Supported APIs
J2EE Components

API Supported Level More Information
Servlet 2.2 http://java.sun.com/products/servlet/
JSP 1.1 http://java.sun.com/products/jsp/
EJB 1.1 http://java.sun.com/products/ejb/

J2EE Services

API Supported Level More Information

JDBC 2.0 hitp://java.sun.com/products/jdbc/

JTANJTS 11 http://java.sun.com/products/jta/
http://java.sun.com/products/jts/

JNDI 1.2.1 http://java.sun.com/products/jndi/

JAF 1.0 http://java.sun.com/products/javabeans/glasgow/jaf.html

XML4J 3.1.1 http://www.alphaworks.ibm.com/tech/xml4j

XSL 2.0 http://www.w3.org/Style/XSL/

J2EE Communication

API Supported Level More Information
RMI-1IOP 1.0 http://java.sun.com/products/rmi-iiop/
JMS 1.0.1 http://java.sun.com/products/jms
Java Malil 1.1 http://java.sun.com/products/javamail/

Changes in the JCWSAPI

Changes in the behavior and levels of the Java APIs supported by WebSphere 4.0.2 have made some
changes to the JCWSAPI a necessity. What follows is a discussion of the changes that were made, the
rationale for making the changes and examples of how to update your code to make use of the changes.

JDBC Changes

There have been many changes in the way WebSphere handles database connection pooling from versions
2.0.3 t0 4.0.2. In version 2.0.3 classes like com.ibm.Servlet.conmgr.IBMConnMgr and
com.ibm.Servlet.IBMJdbcConnSpec were used inside of the com.ibm.ifs.gold.lfsUDBC class to create and
manage connection pools. Furthermore, to create the connections in the pool we were required to specify
connection information such as username, password, JDBC driver and JDBC URL. This system has been
completely changed in WebSphere 4.0.2, now, connection pooling is handled by WebSphere itself.

To use connection pooling in WebSphere 4.0.2 you must first create a JDBC provider and data source using
198 IFS Customizable Web Server (CWS) Guide Fourth Edition

either the WebSphere administrative GUI client or the wscp.sh command line interface. A JDBC provider is
equivalent to the JDBC driver from the version 2.0.3 implementation and a data source contains all of the
required connection information. The data source has a JNDI (Java Naming and Directory Interface) name
and is stored by a naming service within WebSphere. Client code can retrieve a connection from the pool by
performing a lookup of said data source using it s unique JNDI name. Of course, this functionality is
encapsulated in the com.ibm.ifs.goldIfsdDBC class which is the only JCWSAPI class that had any changes
made to it as a result of the new connection pooling implementation.

The com.ibm.ifs.gold.JDBC class had several obsolete methods removed and new methods added to
accommodate for the new connection pooling style. As a result, code that used the old I1fsJDBC class will
now fail to compile and run. What follows is a list of the differences in the public API of the IfsJDBC class and
how you must change your existing code so it will compile and run with the new implementation.

com.ibm.ifs.gold.lfsJDBC - Methods That Have Been Removed

1) public void setUserID(String id)

2) public String getUserlD()

3) public void setPassword(String password)
4) public String getPassword()

5) public void setPoolName(String name)
6) public String getPoolName()

7) public void setDriverName(String driver)
8) public String getDriverName()

9) public Enumeration getDrivers()

10) public void setUrl(String url)

11) public String getUrl()

com.ibm.ifs.gold.lfsJDBC - Methods That Have Been Added

1) public void setDataSourceName(String newName) throws IfsException
2) public String getDataSourceName()

Updating Code That Uses IfsUDBC

A necessary first step that must be performed prior to updating any code is to create the JDBC provider and
data sources that will manage our database connections. Instructions on how to create these objects can be
found in the WebSphere InfoCenter documentation that comes bundled with the product or can be found on-
line at http://www-3.ibm.com/software/webservers/appserv/doc/v40/aelinfocenter/

The change that most classes will have to make is to replace the calls to the setDriverName(), setUrl(),
setPassword() and setUserID() methods with a call to the setDataSourceName() method. For example, code
that looks like this:

try {
IfsWebTransactionActivity webTxn =

(IfsWebTransactionActivity)createInstance (ifsSession,
“com.ibm.ifs.gold.IfsWebTransactionActivity”, “webTxn”)
setFields (ifsSession, “webTxn”, webTxn) ;
webTxn.setDriverName (“*COM. .ibm.db2.jdbc.app.DB2Driver”) ;
webTxn.setUrl (“jdbc:db2:DB71") ;

webTxn.setUserID (“webuserl”) ;

webTxt . setPassword (“password”) ;

© Copyright IBM Corp. 2002 Appendix G. Migrating from Java 1.1.8to Java1.3.0 199

Would be replaced with the following code:

try {

IfsWebTransactionActivity webTxn =
(IfsWebTransactionActivity)createInstance (ifsSession,
“com.ibm.ifs.gold.IfsWebTransactionActivity”, “webTxn”)
setFields(ifsSession, “webTxn”, webTxn) ;
webTxn.setDataSourceName (“dataSourcel”) ;

Assuming that the data source named dataSource1 had been previously created using the values above.

A second necessary change is to remove calls to the methods that have been deleted from the JCWSAPI.
The method calls that have to be removed are listed in the section above entitled com.ibm.ifs.gold.IfsJDBC -
Methods That Have Been Removed and the exact line numbers in the source file where the method calls
appear can be obtained from the Java compiler by compiling it against the new IfsJDBC class. Instructions
on how to compile Java code in the WebSphere 4 environment can be found in chapter 1.

IfsHttpServiet.addCopyright(HttpServietResponse)

The addCopyright() method attempts to write to a java.io.PrintWriter Object obtained from the passed in
javax.servlet. http. Http ServetResponse parameter. This situation can lead to problems which are further
explained in problem 2 of the Common Migration Problems and Resolutions section further below.

To correct the situation the old IfsHttpServiet.addCopyright() method has been deprecated and replaced by
two methods with the following signatures:

1) public static String getCopyright()

2) public void addCopyright(HttpServietRequest)

The first variation returns the copyright information as a String Object and is the recommended solution. The
second variation will place the copyright information inside of the javax.servlet. http. HttpServietRequest
parameter with the name COPYRIGHT and can later be retrieved with a call to the

javax.servlet. http. Http ServietRequest.getAttribute(String name) method.

It is recommended that the generation of the HTML be inside of a JSP or a static HTML file. A servlet should
only be used to generate binary data, for exception handling and for data gathering. This is called the MVC
or Model View Controller paradigm and is used in the following two examples.

Example 1: IfsHttpServlet.getCopyright() method

The IfsHttpServlet.getCopyright() method returns the copyright information in the form of a String and can be
directory inserted into JSP code as follows:

<%@ page import="com.ibm.ifs.servlets.IfsHttpServlet” %>
<%= IfsHttpServlet.getCopyright () %>
<HTML>

<HEAD>

<TITLE>

Example use of IfsHttpServlet.getCopyright ()
</TITLE>

</HEAD>

<BODY>

200 IFS Customizable Web Server (CWS) Guide Fourth Edition

<P>

This is a test of the IfsHttpServlet.getCopyright () method. Please view
the HTML source to see i1f the copyright information was included.

</BODY>

</HTML>

Example 2: IfsHttpServlet.addCopyright(HttpServietRequest) method

The proper use IfsHttpServiet.addCopyright(HttpServietRequest) method can only be illustrated with both a
Java Servlet and JSP. The following example is also a good illustration of how data can be obtained by a
Servlet and passed to a JSP for HTML generation (MVC paradigm).

Test java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;
import com.ibm.ifs.IfsHttpServlet;

public class TestServlet extends IfsHttpServlet
public void doGet (HttpServletRequest reqg, HttpServletResponse res)
throws IOException, ServletException
addCopyright (req) ;
reqg.getRequestDispathcer (“/Test.jsp”) .forward (req, res);
}
}

Test.jsp

<%@ page import="com.ibm.ifs.gold.IfsSystem” %>

<%= request.getAttribute (IfsSystem.COPYRIGHT PROP NAME) %>

<HTML>

<HEAD>

<TITLE>

Example use of IfsHttpServlet.getCopyright ()

</TITLE>

</HEAD>

<BODY >

<P>

This is a test of the IfsHttpServlet.getCopyright () method. Please view
the HTML source to see i1f the copyright information was included.
</BODY>

</HTML>

As a further enhancement the copyright text is now obtained from the IfsSystem.properties file as the value
of the ifs.system.copyright.info property. This allows for the actual copyright string to be changed without
having to recompile any Java code.

In general, it should be noted that all information written to the output stream should come from the same
file, be it a Servlet or JSP. That is, if you try to write to the output stream then forward to a secondary
resource you will encounter problems in the WebSphere 4.0.2 environment.

IfsHttpServiet.handleErrors(lfsTxn, String, String, String)

The com.ibm.ifs.IfsHttpServiet.handleErrors() method will make a call to the
javax.servlet.http.HttpServietResponse.sendRedirect() method if a problem was encountered during the
processing of the specified transaction. This will lead to problems and/or unexpected behavior if the calling
Servlet also makes a call to javax.servlet.http.HttpServietResponse.sendRedirect(). This problem is further
explained in problem 3 of the Common Migration Problems and Resolutions section found below. To correct
the problem, the handleErrors() method has been updated to return a boolean; true if there were no errors
(no call to sendRedirect() was made) or false if there were errors (a call to sendRedirect() was made). Code
that uses the handleErrors() method inside of a Servlet s doGet() or doPost() that used to look like the
following:

© Copyright IBM Corp. 2002 Appendix G. Migrating from Java 1.1.8to Java1.3.0 201

handleErrors (webTxn, “errorPage”, “infoPage”, “redoPage”) ;

response.sendRedirect (“successPage”) ;

Must be changed to:

// 1if there were no errors redirect to the successPage else, handleErrors

// will have already requested a redirect to an error page

if (handleErrors (webTxn, "errorPage”,”infoPage” ,”redoPage”)) {
response.sendRedirect (“successPage”) ;

}

IfsHttpServiet.handleReauthentication(HttpServietRequest, HttpServietResponse)

Problems similar to the com.ibm.ifs.servlets.IfsHttpServiet.handleErrors() method are also encountered when
using the com.ibm.ifs.servlets.IfsHttpServlet.nandleReauthentication() method. The method has been
updated to return a boolean; true if no errors were encountered (no redirect was made) and false if there
were errors (a redirect was made). That is, if this method returns false then the calling Servlet should not
make any calls to javax.servlet.http.HttpServietResponse.sendRedirect() or
javax.servlet.http.HttpServietRequest.getRequestDispatcher().forward(). For example, code that may have
looked like this:

handleReauthentication (request, response) ;

response.sendRedirect (“successPage”) ;
Must be converted to the following:

if (handleReauthentication(request, response)) {
response.sendRedirect (“successPage”) ;

}

Other Class Changes

GsDecimalFormatSymbols

This class has been removed, use the DecimalFormatSymbols from java.text package instead.

GsDecimalFormat

202 IFS Customizable Web Server (CWS) Guide Fourth Edition

The constructor:

public GsDecimalFormat (String pattern, GsDecimalFormatSymbols symbols)

has changed to:

public GsDecimalFormat (String pattern, DecimalFormatSymbols symbols) .

The getFormatSymbols () method has been removed. Use getDecimalFormatSymbols () instead.

The setFormatSymbols (GsDecimalFormatSymbols symbols) method has been removed. Use
setDecimalFormatSymbols () instead.

GsCurrencyFormat

If both applyPattern and setDecimalFormatSymbols are both being called, be sure to call
setDecimalFormatSymbols before applyPattern

The constructor:
public GsCurrencyFormat (String pattern, GsDecimalFormatSymbols symbols)
has changed to:

public GsCurrencyFormat (String pattern, DecimalFormatSymbols symbols).

Common Migration Problems and Resolutions

The Invoker Servlet

The invoker Servlet is an internal mechanism used by WebSphere to enable the serving of user created
Servlets by their classname. The structure of a URL used by WebSphere 4.0.2 to load a Servlet has the
following form:

http://<host>[:<port>]<context-root><serviet-mapping>
An example of this might be

http://test.ibm.com:8080/testapp/testServiet

Where test.ibm.com is the host listening on port 8080, testapp is the context root for a defined web
application and testServlet is a Uniform Resource Identifier (URI) that is mapped to an instance of
the javax.Servlet.HttpServlet class. In this example, the actual name of the class file executed is
hidden. WebSphere keeps an internal mapping of URIs to class names and when a request is
received it uses this mapping to resolve to the URI to a Java class file. For instance, testServlet may
map to an instance of com.ibm.test. TestHttpServlet and that is the code that will be executed when
the above URL is entered into a web browser.

If instead, you want to be able execute a Servlet by it s class name you must use the special invoker Serviet
provided by WebSphere. In WebSphere 2.0.3, the URI of the invoker Servlet was configurable by editing the
<WAS2 ROOT>/properties/server/Servlet/adminservice/rules.properties file. By default, a
URI of /serviet is used, but can be changed to anything, for example, previous versions of the CWS User s
Guide instructed the user to change the URI to /java. In WebSphere 4.0.2 the invoker URI is no longer
configurable and is set to /servlet. Therefore, if the invoker Servlet was used to locate and execute Servlets
in your WebSphere 2.0.3 environment and /servlet was not used as the invoker URI then some changes will
be required before old code will work properly. Returning to the example above, if you wanted to use the
invoker Servlet to execute the com.ibm.test. TestHttpServlet code in WebSphere 4.0.2, the correct URL
would be:

© Copyright IBM Corp. 2002 Appendix G. Migrating from Java 1.1.8to Java1.3.0 203

http://test.ibm.com:8080/testapp/serviet/com.ibm.test.TestHttpSe
rviet

Solutions:

Below are two possible solutions that can be used independently of each other, or in combination, to get
older code working in the WebSphere 4.0.2 environment.

Solution 1

The first solution is to replace all references to the old invoker URI with the new URI. For example, if you
used absolute URLs in your static HTML or JSP files then you could make the following substitution:

Link
with
Link

This may be accomplished in an automated fashion with a search and replace tool. The downside to this
solution is that you will have to update all files that make such references and then test the files to ensure
that they work properly.

Solution 2

The second solution is to create Servlet mappings for all code that is loaded by the invoker Servlet. You can
add Servlet mappings using the Application Assembly Tool (AAT) or by manually editing the web.xml file
located in the WEB-INF subdirectory of the ifs.war file (see the WebSphere InfoCenter documentation for
more information about creating Servlet mappings). Here s an excerpt from a web.xml file that maps the URI
/java/com.ibm.test. TestHttpServiet to the Servlet com.ibm.test. TestHttpServiet.

<Servlet id="Servlet 1”>
<servlet-name>Test Servlet</servlet-name>
<display-name>Simple Test Servlet</servlet-namex>
<description>Ouputs Environment Variables</description>
<servlet-class>com.ibm.test.TestHttpServlet</servlet-class>
</Servlets>
// Other Servlet Definitions
<servlet-mapping id="ServletMapping 1”>
<servlet-name>Test Servlet</servlet-names
<url-pattern>/java/com.ibm.test.TestHttpServlet</url-pattern>
</servlet-mapping>
// Other Servlet Mappings

Cannot Forward After Obtaining Stream

When writing a Java Servlet, WebSphere 2.0.3 allowed for data to be written to the java.io.PrintWriter
Object, obtained from the javax.servlet.http.HttpServietResponse Object, and then forward control to another
resource via the javax.servlet.http.HttpServlietResponse.sendRedirect() or
javax.servlet.http.HttpServietRequest.getRequestDispatcher.forward() methods. For example, the
deprecated addCopyright(HttpServietResponse) method in the com.ibm.ifs.Servlets.IfsHttpServlet class
obtains the java.io.PrintWriter Object from the passed in javax.servlet.http.HitpServletResponse parameter
and writes a copyright information String to writer. Then control is passed back to the calling Servlet which
can then forward control to another Servlet or JSP for HTML generation. This situation worked fine in
WebSphere 2.0.3 but in the WebSphere 4.0.2 environment will produce a runtime Exception Error 500:
Cannot forward. Writer or Stream already obtained.

A second example is illustrated by the following Java Servlet code:

import java.io.*;

import javax.Servlet.*;

import javax.Servlet.http.*;

import com.ibm.ifs.Servlets.IfsHttpServlet;

204 IFS Customizable Web Server (CWS) Guide Fourth Edition

public class TestHttpServet extends IfsHttpServlet (
public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

PrintWriter out = response.getWriter();
out.println(“<!--");
out.println (“Copyright notice”) ;
out.println(“-->");
req.getRequestDispatcher (“/test.jsp”).forward(request, response);

The problem is that the Servlet wrote to the output stream before it forwarded control to the JSP. A slight
variation of this would be to call a method, passing the HittpServietResponse Object as a parameter, that
obtained the PrintWriter Object and wrote to the stream. This is not allowed in WebSphere 4.0.2 and will
result in the Error 500: Cannot forward. Writer or Stream already obtained message being returned.

Solution:

The solution is to avoid obtaining and writing to the Servlet s PrintWriter if said Servlet forwards to another
resource. The code that obtains and writes to the PrintWriter will have to be moved from the Servlet and into
the resource that the Servlet forwards to. This can be accomplished by placing the data inside of the
HttpServietRequest Object through the use of the setAttribute(String, Object) method and retrieving it with
the HttpServietRequest.getAttribute(String) method.

Example: WebSphere 2.0.3 Implementation

Test java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;
import com.ibm.ifs.servlets.*;

public class Test extends IfsHttpServlet {
public void doGet (HttpServletRequest req, HttpServletResponse res)
throws IOException, ServletException

PrintWriter out = res.getWriter();

out.println(“Some header information”) ;

((com.sun.server.http.HttpServiceResponse) res) .callPage (“Test.jsp”,
req) ;

}
}

Test.jsp
<HTML>
<HEAD>
<TITLE>
Test JSP
</TITLE>
</HEAD>
<BODY >

<P>

This is a simple JSP to test if information can be written to the
PrintStream.
</BODY>
</HTML>

© Copyright IBM Corp. 2002 Appendix G. Migrating from Java 1.1.8to Java1.3.0 205

Example: WebSphere 4.0.2 Implementation

Test java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;
import com.ibm.ifs.servlets.*;

public class Test extends IfsHttpServlet {
public void doGet (HttpServletRequest req, HttpServletResponse res)
throws IOException, ServletException

req.setAttribute ("HEADER INFO”, “Some header information”);
reqg.getRequestDispatcher (“/Test.jsp”) .forward (req, res);

Test.jsp

<%= request.getAttribute (*HEADER INFO”) %>
<HTML>

<HEAD>

<TITLE>

Test JSP

</TITLE>

</HEAD>

<BODY>

<P>

This is a simple JSP to test if information can be written to the
PrintStream.

</BODY>

</HTML>

Effective Call To sendRedirect() Method

The effective call to the javax.serviet. http.HttpServietResponse.sendRedirect() method for WebSphere 4.0.2
are in reverse of that for WebSphere 2.0.3. If two or more calls to the sendRedirect() method are made in a
Java Servlet or JSP in WebSphere 2.0.3 than the first call was the effective call, but in WebSphere 4.0.2 it is
the last call. That is, in WebSphere 2.0.3 control would redirect to the resource specified in the first call to
sendRedirect(), but in WebSphere 4.0.2 control would pass to the resource specified in the second call to
sendRedirect(). This scenario can be better explained through examples.

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;
import com.ibm.ifs.servlets.*;

public class Test extends IfsHttpServlet {
public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

res.sendRedirect (“/testl.jsp”) ;
res.sendRedirect (“/test2.jsp”) ;

}
}

If the above code was executed in the WebSphere 2.0.3 environment, then control would eventually be
directed to test1.jsp, however, in WebSphere 4.0.2 control would pass to test2.jsp.

A second example uses the com.ibm.ifs.Servlets.IbmHttpServiet.handleErrors(IfsTxn, String, String, String)
method.

import java.io.*;

import javax.servlet.*;

206 IFS Customizable Web Server (CWS) Guide Fourth Edition

import javax.servlet.http.*;
import com.ibm.ifs.servlets.*;

public class Test extends IfsHttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

// Create and execute IfsTxn Object
handleErrors (IfsTxn, “errorPage”, “infoPage”, “redoPage”) ;

res.sendRedirect (“successPage”) ;

The handleErrors() method will examine the IfsTxn Object to determine if there were any problems
processing the transaction. If there were problems, a call is made to the sendRedirect() method redirecting to
either the errorPage, infoPage or redoPage, depending on the type of problem detected. Control is then
passed back to the above code which in turn makes a call to the sendRedirect() method. Let us assume that
there was a problem with the transaction and that handleErrors() made a call to the sendRedirect() method
redirecting to the redoPage, control then passes back to the doGet() method above and a second call is
made to sendRedirect() redirecting to the successPage. In the WebSphere 2.0.3 environment the first call is
effective and everything would work fine, that is, control would be passed to the redoPage as it should since
an error was detected. However, in WebSphere 4.0.2 the last call to sendRedirect() is effective so control
would erroneously be passed to the successPage.

In summary, only one call to either sendRedirect() or forward() should be made in a Servlet s doGet() or
doPost() method and it should be the last line of code to be executed. Furthermore, if a method is called that
could possibly make a call to sendRedirect() or forward() there must be a mechanism in place to make the
calling code aware so that the calling code does not make a second call that would effectively cancel out the
first.

JSP .91 Syntax not supported

Problem:

The JSP specification has gone through a number of revisions since the release of WebSphere 2.0.3.
WebSphere 2.0.3 supports the JSP .91 specification, WebSphere 3.x supports the .91, 1.0 and 1.1
specification but the support for .91 and 1.0 has been dropped in WebSphere 4.0.2. JSPs must be updated
to remove elements that have no longer exist in the 1.1 specification and fortunately, the necessary updates
are rather straight forward.

Solutions:

The solution is to remove the use of the JSP .91 tags (specifically the <SERVLET>, <BEAN>, <REPEAT>
and <INSERT> tags) with their 1.1 equivalent. The following tables are slightly modified versions from the
WebSphere InfoCenter and include tips for migrating from the JSP .91 specification to 1.1. For more
information about WebSphere 4.0.2 support for JSPs please see the InfoCenter documentation.

Replacing <SERVLET> with <jsp: include> directive

Use the JSP 1.1 equivalent of <SERVLET> to include data in a JSP page form another file.

JSP .91 <SERVLET
CODE= WebSphereSamples.Counter.CounterServiet>
</SERVLET>

JSP 1.1 <jsp: include
page= /Servlet/WebSphereSamples.Counter.CounterS
ervlet />

Discussion In both cases the output of the

© Copyright IBM Corp. 2002 Appendix G. Migrating from Java 1.1.8 to Java 1.3.0 207

WebSphereSamples.Counter.CounterServlet class will
be inserted into the current Servlet.

Replacing <BEAN> with <jsp:useBean>

Use the JSP 1.1 equivalent of <BEAN> to make an existing or newly created bean available from within
the JSP file. Four variations are possible.

Variation 1: JSP is to create the bean

JSP .91 <BEAN NAME-= getQuestionDBBean

TYPE= WebSphereSamples.Poll. GetQuestionDBBean
CREATE= YES

SCOPE= request >

</BEAN>

JSP 1.1 <jsp:useBean

id= getQuestionDBBean

type= WebSphereSamples.Poll. GetQuestionDBBean
class= WebSphereSamples.Poll. GetQuestionDBBEan
scope= request />

Discussion Both examples make available a bean named
getQuestionDBBean to the JSP.

Variation 2: JSP is to use existing bean

JSP .91 <BEAN

NAME= pollQueryDBBean

TYPE= WebSphereSamples.Poll.PollQueryDBBean
CREATE= NO

INTROSPECT= NO

SCOPE= request >

</BEAN

JSP 1.1 <jsp:useBean

id= pollQueryDBBean
type= WebSphereSamples.Poll.PollQueryDBBean
scope= request />

Discussion Both versions allow you to use an existing bean named
pollQueryDBBean

Variation 3: Properties are to be set for a bean
JSP .91 <BEAN
NAME= getQuestionDBBean

TYPE= WebSphereSamples.YourCo.Poll.GetQuestion
DBBean

CREATE= YES

INTROSPECT= NO

SCOPE= request

<PARAM NAME-= userlD VALUE= wsdemo >
</BEAN>

208 IFS Customizable Web Server (CWS) Guide Fourth Edition

JSP 1.1

<jsp:useBean
id= getQuestionDBBean

type= WebSphereSamples.YourCo.Poll.GetQuestionD
BBean

class= WebSphereSamples.YourCo.Poll.GetQuestionD
BBean

scope= request />

<jsp: setProperty

name= getQuestionDBBean
property= userlD

value= wsdemo />

Discussion

Both versions set the userlID property of the
getQuestionDBBean Object to wsdemo.

Variation 4: Invoke methods on a bean

JSP .91 <%
try{
java.lang.String _p0_1 =
feedbackQuery.getWSDEMO_FEEDBACK _
NAME(0);
%>

JSP 1.1 No change from JSP .91 to 1.1

Discussion The NAME attribute in the <BEAN> tag and the id
attribute in the <jsp:useBean> tag are equivalent. Both
identify a bean named feedbackQuery. For either JSP
specification, invoking a method on a bean is identical.

Replacing <REPEAT> with <tsx:repeat>

<tsx:repeat> provides for repeating information and is useful in the creation of HTML tables. <REPEAT>
from JSP .91 is usually used with the <INSERT> tag to actually insert data from a specified bean.
<REPEAT> from JSP .91 does not have an equivalent in the JSP 1.1 specification, however, IBM
extension <tsx:repeat> provides much of the same functionality. The following example shows how to
replace both the <REPEAT> and <INSERT> tags.

JSP .91

<REPEAT INDEX=)i)>
<%timeoutBean.getBalance(i);%>

<TD><INSERT BEAN=)timeoutBean)
PROPERTY=)balance)></INSERT></TD>

</REPEAT>

JSP 1.1

<tsx:repeat index= i >
<TD> <%= timeoutBean.getBalance(i) %> </TD>
<ftsx:repeat>

Discussion

Note that there is an actual call, using Java syntax, of
the getBalance method of the timeoutBean within the
loop of <tsx:repeat>. This was done rather than using
the IBM extension <tsx:getProperty> because the
getBalance method requires an explicit argument.

© Copyright IBM Corp. 2002

Appendix G. Migrating from Java 1.1.8 to Java 1.3.0

209

Unsupported API Calls

Problem:

Since the release of WebSphere 2.0.3 there has been numerous changes to the Servlet specification and
Java library classes. The WebSphere 2.0.3 environment uses the Servlet 2.0 and JDK1.1.8 APIs which
have been upgraded to Servlet 2.2 and JDK 1.3 APIs in WebSphere 4.0.2. This change results in the fact
that some classes and methods that were available in the WebSphere 2.0.3 environment are no longer
present in WebSphere 4.0.2. Runtime exceptions could be encountered if old class files are executed or
compilation failure if Java files are recompiled in the WebSphere 4.0.2 environment.

Solution:

The solution is to replace the WebSphere 2.0.3 code with the WebSphere 4.0.2 equivalent. What follows is a
list of the problems that may be encountered when transitioning code from WebSphere 2.0.3 to 4.0.2.

Problem 1

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;
import com.ibm.ifs.servlets.*;

public class Test extends IfsHttpServlet {
public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException
((com.sun.server.http.HttpServiceRequest)
req) .setAttribute (“*attrName”, object) ;

The com.sun.server.http.HttpServiceRequest class is no longer available in the WebSphere 4.0.2
environment. The recommended fix is to replace the method call

((com.sun.server.http.HttpServiceRequest) req) .setAttribute (“attrName”,
object) ;

with the following:
req.setAttribute (“attrName”, object) ;

Problem 2
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.ibm.ifs.servlets.*;

public class Test extends IfsHttpServlet {
public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException
((com.sun.server.http.HttpServiceResponse) res).callPage(“Test.jsp”, req);

The com.sun.server.http.HttpServiceResponse class is no longer available in the WebSphere 4.0.2
environment. The recommended fix is to replace the method call

((com.sun.server.http.HttpServiceResponse) res).callPage(“Test.jsp”, req);

with the following:

210 IFS Customizable Web Server (CWS) Guide Fourth Edition

reqg.getRequestDispatcher (“*Test.jsp”) .forward (req, res)

Recompilation and Deprecated Methods

Problem:

Although Java byte code generated by JDK1.1.8 compilers for use in a WebSphere 2.0.3 environment, is
loadable by the 1.3 JVM used by WebSphere 4.0.2, differences in the APIs that the code uses exist. If a
Java class file that was generated in a WebSphere 2.0.3 environment was loaded and executed in the
WebSphere 4.0.2 environment there is a chance that runtime errors and exception will be encountered if the
code used classes and/or methods that are no longer available or supported.

Solution:

The solution is to recompile all existing Java files using a JDK1.3 compliant compiler and the most recent
version of the JCWSAPI and WebSphere 4.0.2 library files. To be specific, you must compile Java code with
the j2ee.jar file included with WebSphere 4.0.2 as opposed to the servlet.jar file that came with WebSphere
2.0.3 in your classpath. For more information on building Java code for V1IR6M1 - WebSphere 4.0.2, please
see Appendix H: Building And Deploying Java Code In WebSphere 4.0.2.

Replacement of deprecated methods and classes is hot mandatory but is highly recommended. If a class or
method is deprecated it is currently supported but support will be removed in future Java releases. A list of
the deprecated classes and methods used by a Java class can be obtained by using the -deprecation flag
with the Java compiler. The following is a list of deprecated classes and methods, and their equivalent
replacements, that may be encountered when recompiling WebSphere 2.0.3 Java code in the WebSphere
4.0.2 environment:

Deprecated Classes

Class Replacement
java.security.Certificate java.security.cert.Certificate

Deprecated Methods

Method Replacement

javax.Servlet.http.HttpSession.putValue(String,Object) javax.Servlet.http.HttpSession.setAttribute(String,Objec
t)

javax.Servlet.http.HttpSession.getValue(String) javax.Servlet.http.HttpSession.getAttribute(String)

com.ibm.ifs.gold.GtLogon.setLanguageCode(String) Comment out or remove

coim.ibm.ifs.gold.GtLogon.setCountryCode(String) Comment out or remove

Miscellaneous Problems

Compiling code that uses the com.ibm.ifs.gold.IfsTxn.execute() method may result in the following problem
being reported:

unreported exception com.ibm.ifs.gold.[fsException; must be caught or declared to be thrown

If this happens you must place the call inside of a try/catch block. For example the following code:

public void doGet (HttpServeletRequest req, HttpServletResponse res)
throws ServletException, IOException

© Copyright IBM Corp. 2002 Appendix G. Migrating from Java 1.1.8to Java1.3.0 211

txn.execute () ;

}
Would be changed to:

public void doGet (HttpServeletRequest redq,

HttpServletResponse res)
throws ServletException, IOException

try {
txn.execute () ;
}

catch (IfsException e) {
// Exception handling
}

212 IFS Customizable Web Server (CWS) Guide Fourth Edition

Appendix H. Building And Deploying CWS Web Applications In
WebSphere 4

Building for and deploying applications on WebSphere 4.0.2 is considerably different than on WebSphere
2.0.3. The output of a build process is a Web Archive (WAR) file that contains all of the resources for a web
application to function properly in the WebSphere 4.0.2 environment (more information about WAR files can
be found below). WAR files are deployed (installed) into WebSphere 4.0.2, configured and then executed
inside of a web container. A web container is a Java Virtual Machine and a set of APIs (Application Program
Interfaces) that together provide an environment for the web application s Java code to run in. Web
containers are part of the J2EE (Java 2 Enterprise Edition) specification that WebSphere 4.0.2 fully supports.

Below is a brief introduction to the J2EE environment and terminology, followed by a discussion of the base
ifs.war file that is distributed with CWS, how the base ifs.war can be updated to include custom CWS
applications, deployment and redeployment of the ifs.war file and information on how to compile Java code
in the WebSphere 4.0.2 environment.

J2EE Overview

WebSphere 4.0.2 is a fully compliant J2EE 1.2 environment, as a result, it differs from WebSphere 2.0.3 in
many fundamental ways. One of the major distinctions is how applications are packaged and deployed.
What follows is a brief description of the new J2EE packaging and deployment concepts and terms, how
these new facilities are used to distribute the CWS portion of IFS and instructions on how the provided
ifs.war file can be extended to include your custom web applications.

J2EE Packaging and Deployment Concepts and Terms

Deployment of web and enterprise applications in the WebSphere 4.0.2 environment is more robust and
flexible than in WebSphere 2.0.3, but also more complicated. No longer can you install stand alone servlets
or Java Server Pages (JSPs), everything must belong to an enterprise application. Enterprise applications
are distributed in Enterprise Archive (EAR) files and contain Web Archive (WAR) files, Enterprise Java
Beans (EJBs), configuration information and all of the resources that the application needs to run properly.
Enterprise applications are installed into an application server and configured to listen on a specified virtual
host. New resources can be added to an application after deployment but it is important to note that the
resource has to be added to an application, it cannot exist independently. EAR files and WAR files are the
only two types of resources that can be deployed on WebSphere 4.0.2.

More details about the terms discussed in the previous paragraph are provided below.
http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html.

Web Archive (WAR) Files

When a web client, such as a browser, communicates with a J2EE application, it does so through server-
side web components. There are two types of web components Java Servlets and JSPs. Servlets are Java
programming language classes that dynamically process requests and construct responses. JSP pages are
text-based documents that are compiled into, and execute as, Servlets but allow for a more natural approach
to creating static content. While Servlets and JSP pages can be used interchangeably, each has its
strengths. Servlets are best suited to managing the control function of an application, such as creating and
executing transactions, retrieving information from a database, performing data manipulation, error checking
and handling, dispatching, and generation of binary content. JSPs are more appropriate for generating text-
based markup such as HTML or XML. The two components work very nicely together to separate data and
the view of said data. Servlets should be used to obtain or manipulate data which is then dispatched to JSPs
for view generation (usually HTML based).

Web clients are packaged in WAR files. In addition to web components, a WAR file usually contains other
resources including:

Server-side utility classes (database beans, shopping carts, and so on). Often, these classes conform to the
JavaBeans component architecture.

© Copyright IBM Corp. 2002 Appendix H. Building And Deploying CWS Web Applications In WebSphere 4 213

Static web content (HTML, images, sound files, etc.)

Dynamic content (Flash modules, client-side javascript source files, etc.)

Client-side classes (applets and utility classes).

Java property files

Any other files that the web application needs to run such as Java Native Interface (JNI) libraries,
tools, utilities, etc.

A WAR file has a specific directory structure. The top-level directory of a WAR file is considered to be the
document root of the application. The document root is where JSPs, client-side classes and archives, and
static web resources are stored.

The document root contains a subdirectory called WEB-INF, which contains the following files and
directories.

o web.xml - the deployment descriptor for the web application. This file contains configuration
information used by WebSphere including descriptions and Uniform Resource Identifiers (URI) for
web components amongst other things.

e ibm-web-bnd.xmi - a WebSphere proprietary file that describes JNDI (Java Naming and Directory
Interface) binding information. (Note: this is currently not used by CWS).

e ibm-web-ext.xmi - a WebSphere proprietary file that contains application server configuration
information including Servlet reloading, Servlet reload interval and serving Servlets by classname.

e Tag library descriptor files for JSP tag libraries.

e classes - adirectory that contains server side classes including Servlets, utility classes, properties
files etc. The files that are in this directory are automatically added to the web application s Java
classpath and should not be packaged in a JAR (Java Archive) file. It is important to note that if the
Java classes are packaged, the correct directory structure must be maintained.

e 1ib - adirectory that contains JAR files, usually JSP tag libraries and Java APls, such as the
JCWSAPI. JAR files, and all resources they contain, in this directory are automatically added to the
web application s Java classpath.

You can create WAR files manually or by using the AAT (Application Assembly Tool) that is bundled with
WebSphere 4.0.2. To manually create a WAR file you must arrange your files using the directory structure
discussed above, create the web.xml, ibm-web-bnd.xmi and ibm-web.ext.xmi files and use the jar tool
that is distributed with WebSphere to consolidate and compress the files. The resulting file must have a .war
extension. An alternative way to create a WAR file is to use the AAT. The AAT is a graphical tool that greatly
simplifies the process of creating WAR and EAR files. It provides wizards for rapid creation and automatically
generates the necessary configuration files. More information about the AAT can be found in the WebSphere
InfoCenter documentation that comes bundled with WebSphere or on-line at http:/www-
3.ibm.com/software/webservers/appserv/doc/v40/aelinfocenter/index.html and in the IBM RedBook-
RedPiece SG24-6176-00 WebSphere Version 4.0 Advanced Edition Handbook.

Enterprise Archive (EAR) Files

An EAR file is a compressed collection of J2EE components. An EAR must contain at least one Web Module
and optionally contain other J2EE components including EJB Modules and Client Modules. The CWS web
application does not have any EJB or Client Modules and can be considered a standalone Web module.
WebSphere 4.0.2 allows for Web modules to be installed on their own (internally they are converted to EAR
files) which allows for CWS to be distributed as a WAR file instead of an EAR file.

Application Server

WebSphere 4.0.2 Advanced Edition allows multiple application server instances to be created and managed
by the same administrative server. To simplify the discussion an application server can be thought of as a
JVM (Java Virtual Machine) and a set of APIs. Web applications can be configured to run inside of different
application servers (JVMs) which allows for said applications to execute in different environments.

For example, one application server may host a self-registration CWS instance and a second a CSR
instance. Both instances use different copies of the same codebase (JCWSAPI, libwsp.so, etc.) but use
different webpages and have different traffic patterns. Furthermore, let s assume that the CWS instance
contains many more JSPs and receives many more requests per minute than the CSR server. If this were
the case we could increase the CWS JVM heap size to 256MB to better performance while leaving the CSR
heap size to the default. Since the different CWS instances run in different application servers we can

214 IFS Customizable Web Server (CWS) Guide Fourth Edition

customize each instances environment to best suit it s needs. Please note that application servers have
many other features, the discussion of which is outside the scope of this document please refer to the IBM
RedBook-RedPiece SG24-6176-00 WebSphere Version 4.0 Advanced Edition Handbook for more
information.

Virtual Hosts

Virtual hosts specify which hosthnames and ports that WebSphere will listen for HTTP requests. For example,
it s possible to configure a web application to only respond to requests made to hosts named test.ibm.com
and www.test.ibm.com on ports 80 and 16000. It is important to note that a virtual host specification is
mapped to one or more web applications, not application servers. That is, an application configured with the
virtual host specification defined above can be installed on any application server contained in a given
WebSphere instance. Please refer to the IBM RedBook-RedPiece SG24-6176-00 WebSphere Version 4.0
Advanced Edition Handbook for more information about virtual hosts.

Structure Of The ifs.war File

The structure of the ifs.war file packaged with CWS adheres to the J2EE specification outlined in the above
section entitled WAR Files. The ifs.war file contains the minimum set of files needed for CWS to run in the
WebSphere 4.0.2 environment. That is, the ifs.war file does not contain anything usable by a client browser
such as test or example Servlets, JSPs or static HTML. In this form the ifs.war file is considered to be
deployable but not usable. Before the ifs.war file is deployed into WebSphere 4.0.2 is must be updated with
client CWS codeffiles. For the remainder of this document the unchanged ifs.war file will be referred to as the
base ifs.war file.

What follows is a listing of the directories and files contained in the distributed base ifs.war. The directory
structure of the base ifs.war file can be observed by extracting the contents of the file using the jar command
included with WebSphere.

<doc_root>

The <doc_root> directory is the base directory of the ifs.war file and contains the following:

Directories:

<doc_root>/META-INF
<doc_root>/WEB-INF
<doc_root>/bin
<doc_root>/docs
<doc_root>/ebiller logos
<doc_rootx>/etc
<doc_root>/nls
<doc_root>/tools

Files:

None

<doc_root>/META-INF

Contains meta information about the files contained inside of the ifs.war file. This directory and it s contents
are automatically created by the jar command when the ifs.war file is created.

Directories:
None

Files:

MANIFEST .MF
© Copyright IBM Corp. 2002 Appendix H. Building And Deploying CWS Web Applications In WebSphere 4 215

<doc_root>/WEB-INF

The WEB-INF directory contains application server configuration files and the special classes and lib
directories as specified by the J2EE. See the WAR Files section above for more details about the directories
and files contained in WEB-INF.

Directories:

<doc_root>/WEB-INF/classes
<doc_root>/WEB-INF/classes/com/ibm/ifs/resource
<doc_root>/WEB-INF/lib

Files:

web . xml
ibm-web.bnd.xmi
ibm-web.ext .xmi

<doc_root>/WEB-INF/classes

This directory contain Servlets, utility classes, as well as property files and any other resource, not contained
in a JAR file, that needs to be in the web application s classpath.

Directories:
None

Files:

IfsSystem.properties
<doc_root>/WEB-INF/classes/com/ibm/ifs/resource
This is the default directory for the code to text property resource bundle files and the default property files.

If you change the default directory, create the target directory or ensure that the containing directory has
write permission for the userid running the web application.

See the wsp_ctt_prb_path keyword in the IFS configuration file.
Directories:
None

Files:

Ifs3tkErrorTextBundle.properties
IfsCwsErrorTextBundle.properties
IfsPendingTransactionStatus.properties
IfsSystemErrorResourceBundle.properties
readme. txt

<doc_root>/WEB-INF/lib

The contents of all of the JAR files in this directory are added to the web application s classpath. This
directory should only contain JAR files.

Directories:
None
Files:

jcwsapi.jar

216 IFS Customizable Web Server (CWS) Guide Fourth Edition

<doc_root>/bin

Contains CWS native library files and the back-end websrvr executable.
Directories:
None

Files:

libmtiso.a
libsmdso.a
libtteso.a
libwsp.so
websrvr

<doc_root>/docs

Contains data used by native code.
Directories:
<doc_root>/docs/jcwsapi/data

Files:

195 .str files in <doc_roots>/docs/jcwsapi/data directory
<doc_root>/ebiller_logos
This is the default directory for downloading the EBiller logos.

If you change the default directory, create the target directory or ensure that the containing directory has
write permission for the userid running the web application.

See the wsp_ebiller_logos_path keyword in the IFS configuration file.
Directories:
None

Files:

readme. txt

<doc_root>/etc

Contains configuration files, sample configuration files and other resources used by CWS.

Directories:
None
Files:
build.info

config.sample
config.sample.csr
config.toolkit
httpd.conf.sample
privkey.cbsf
pubkey.cbsf

© Copyright IBM Corp. 2002 Appendix H. Building And Deploying CWS Web Applications In WebSphere 4 217

<doc_root>/nls

Contains NLS data for MTI

Directories:
<doc_root>/nls/1lib
Files:

29 .nls files in <doc_root/nls/lib

<doc_root>/tools

Contains CWS tools and utilities. startweb and stopweb start and stop an instance of the IFS Common
Web Server (CWS). 1sweb

Directories:
None

Files:

cfgcomp
cmdsrv
comptree
cwsctl
generror
generror.out
golduser
igweb
mgweb
msgclient
parefile
gcodes
setmapiqg
startweb
stopweb
tracefmt
updateWAR

Extending The Base ifs.war File

As previously stated, the ifs.war file distributed with CWS is deployable but not usable. Transforming the
base ifs.war file into a useable state consists of adding a custom CWS application. A custom CWS
application can consist of Servlets, JSPs, HTML files, images and other static and dynamic content.
Updating the base ifs.war file can be accomplished in two different ways: using the updateWar script, the
AAT or by manual insertion of files.

Using updateWAR

The recommended method of updating the base ifs.war file is through the use of the updateWAR script that
is distributed with CWS. The updateWAR script can be integrated into an existing build environment as a
means of fully automating the update process.

updateWAR is an AIX korn shell script that extracts files from an existing, specified WAR file, copies in new
content and creates a new WAR file containing both the original and updated files. When you run
updateWAR, be sure the jar command from Java 1.3.0 is in your PATH.

Below is the output of updateWAR when the help flag is specified:
updateWAR - Updates an existing WAR file by adding new content.
218 IFS Customizable Web Server (CWS) Guide Fourth Edition

The following steps/instructions illustrate the recommended approach for using the updateWAR script to

updateWAR adds new content to an existing WAR file by exploding
the said WAR file and copying in new content from a specified
<NEW_CONTENT> directory. The <NEW_CONTENT> directory must follow
the structure for WAR files as defined in the JZEE specification
and should only include files that are intended to be deployed.

For example, source code, test scripts, scratch directories,

etc. should be removed from the <NEW_CONTENT> directory before
running updateWAR. After the new content has been copied into the
existing WAR file a new WAR file is created, this new WAR file
contains all of the files that were in the existing WAR file

and all of the files recursively contained in the <<NEW_CONTENT>

directory. Note that files from the <NEW_CONTENT> directory will
overwrite files with the same name in the existing WAR file.

Please refer to the CWS User’s Guide for more information about
the structure of the <NEW_CONTENT> directory.

It should be noted that this is an example of how new content
can be added to an existing WAR file. No updates are made to any
of the configuration files such as web.xml or any of the IBM
proprietary extension files (ibm-web-bnd.xmi or ibm-web-ext.xmi).

It is highly recommended that the Application Assembly Tool
(AAT), that comes bundled with WebSphere 4, be used to make any
changes to the configuration files and then to archive the
updated files along with the rest of your code base. The updated
configuration files should be placed in the <NEW_CONTENT>
directory so that they will overwrite the default configuration
files.

Usage: updateWAR [-h] [-v] -w <WAR_FILE> -c <NEW_CONTENT> [-n NEW_WAR]

Where:

-h displays help information.

-v causes jar to run in verbose mode.

<WAR_FILE> is the path to the base ifs.war file.

<NEW_CONTENT> is the path to the directory containing the content to add

<NEW_WAR> is the name to give the updated WAR file.
Note: jar version 1.3.0 (or higher) must be available.

update the base ifs.war.

1. On the build system, create a directory structure that mirrors the one described in the Structure Of The
ifs.war File section above. That is, create a root directory that will contain a WEB-INF subdirectory and
adhere to the J2EE specified structure described above. All of the files that will be copied into the
updated ifs.war file will be placed here. This directory will be referenced as <build_root>

2. After compilation of the web application code (Java, etc.), copy all files that will be used by the web
application into the appropriate location off of the <build_root> directory. Avoid placing extraneous files
into the <build_root> directory, such as source code, test scripts, etc., because all files in the
<build_root> directory will be deployed into the WebSphere 4.0.2 environment and may potentially be
accessible to end users.

3. Use the AAT to make any changes to the web.xml, ibm-ext-web.xmi and ibm-ext-bnd.xmi configuration
files and place them in the <build_root>/WEB-INF directory. If you plan on using the configuration files
included in the base ifs.war file, or if there haven t been any changes to the files from the previous build ,
this step can be skipped.

4 . Runthe command:
updateWAR -w <path to base ifs.war> -c <build root> -n <new war name>

Where:

© Copyright IBM Corp. 2002

Appendix H. Building And Deploying CWS Web Applications In WebSphere 4

219

<path to base ifs.war> is the absolute path to the base ifs.war file
<build root> is the absolute path to the base directory from step 1
<new_war name> is the path and name to give the updated WAR file

Example:

updateWar -w /ibm/ifs/cws/current/bin/ifs.war -c /usr/local/cws_base -n
/usr/local/cws/current/newifs.war

The result is the WAR file /us/local/cws/current/newifs.war that contains all of the base ifs.war
files as well as the files from the /usr/local/cws_base directory.

Using The AAT (Application Assembly Tool)

The AAT is a graphical WAR and EAR file generation and manipulation tool that has the ability to
automatically generate the web.xml, ibm-ext.web.xmi and ibm-ext.bnd.xmi configuration files. The AAT is
a great tool to use to create and update WAR files as well as to generate configuration files. The AAT is an
user interactive program and not suitable for automation.

Please refer to the WebSphere InfoCenter documentation for more information about using the AAT to
update existing WAR files.

Deploying Applications In WebSphere 4.0.2

Deploying a CWS web application on WebSphere 4.0.2 consists of installing the updated ifs.war file as well
as a number of post-install related activities. Deploying a web application can be looked at from two different
perspectives: deploying an application for the first time or redeploying an existing application. Chapter 3
provides step-by-step instructions that illustrate how to deploy a CWS web application for the first time,
therefore, the following discussion will focus on redeploying existing web applications. Note: Chapter 19 of
the IBM RedBook-RedPiece SG24-6176-00 WebSphere Version 4.0 Advanced Edition Handbook contains
extensive information related to the deployment of applications on WebSphere 4.0.2. It is highly
recommended that this material be read before continuing.

Often times new functionality is added to, or problems are fixed in code that is already deployed in a
production or test environment. There are two different approaches to updating a deployed web application:
the Uninstall/Reinstall approach and the Copy/Replace approach.

Uninstall/Reinstall Approach

The Uninstall/Reinstall approach is the preferred approach for a production environment. It can be used in a
test environment as well. The process consists of the following steps that must be performed everytime code
is added or updated to the web application.

1. Uninstall the CWS web application.
2. Reinstall the CWS web application.
3. Perform post-install activities.

What s nice about this approach is that it can be completely automated through scripting and run on all
production systems. That is, if the CWS web application is deployed on multiple physical systems, the same
script can be run on each system to update the CWS web application resulting in consistent and
reproducible results.

The following is a sample korn shell script that performs all three steps listed above on the fictional server
test.ibm.com, and userid testUser. Please note that this is just one way in which the uninstall/reinstall
approach can be implemented. For example, instead of using a korn shell script and wscp.sh in command
line mode, you could write an equivalent Tcl script, using the exec command to execute operating system
commands, and wscp.sh in interactive mode.

220 IFS Customizable Web Server (CWS) Guide Fourth Edition

#!/bin/ksh

Stop the application server
/usr/WebSphere/AppServer/bin/wscp.sh -c¢ “ApplicationServer stop
/Node:test/ApplicationServer:testUser/”

Backup CWS configuration file
cp /usr/WebSphere/AppServer/installedApps/testUser.ear/ifs.war/etc/config
/tmp/config.testUser

Remove the web application
/usr/WebSphere/AppServer/bin/wscp.sh —-c¢ “EnterpriseApp remove
/EnterpriseApp:testUser/”

Install the updated WAR file

/usr/WebSphere/AppServer/bin/wscp.sh —-c¢ “Module install /Node:test/
/updates/ifs.war -contextroot / -appname testUser -modvirtualhosts { {ifs.war
testUser} } -moduleappservers { {ifs.war /Node:test/ApplicationServer:testUser/}

Copy in config file and update permissions

mv /tmp/config.testUser
/usr/WebSphere/AppServer/installedApps/testUser.ear/ifs.war/etc

chmod -R 755 /usr/WebSphere/AppServer/installedApps/testUser.ear/ifs.war/tools
chmod -R 755 /usr/WebSphere/AppServer/installedApps/testUser.ear/ifs.war/bin
chmod 777 /usr/WebSphere/AppServer/installedApps/testUser.ear/ifs.war/WEB-
INF/classes/com/ibm/ifs/resource

chmod 777
/usr/WebSphere/AppServer/installedApps/testUser.ear/ifs.war/ebiller logos

Start the application server
/usr/WebSphere/AppServer/bin/wscp.sh -c¢ “ApplicationServer start
/Node:test/ApplicationServer:testUser/”

Copy/Replace Approach

The copy/replace approach is faster than uninstall/reinstall but not as clean or safe and should only be used
in a test or development environment. The copy/replace approach process consists of replacing old files with
updated versions or copying new files into the web application. To accomplish this you have to stop the
application, copy over the new files, then restart the application:

1. Stop the application server (see Appendix F.)

2. Copy over the updated class file:

cp /updates/com/test/Sample.class
/usr/WebSphere/AppServer/installedApps/<userid>.ear/ifs.war/WEB-
INF/classes/com/test

If the com.test. Sample class was in a JAR file inside of the WEB-INF/lib directory, you will have to
replace the entire jar file with the updated version for the changes to take effect.

3. Start the application server (see Appendix F.)

© Copyright IBM Corp. 2002 Appendix H. Building And Deploying CWS Web Applications In WebSphere 4 221

Glossary of Terms and Abbreviations

This glossary includes terms and definitions from:

e The Dictionary of Computing, SC20-1699.

e The Dictionary of Finance and Investment
Terms, by John Downes and Jordan Elliot
Goodman, Barron s Financial Guide,
1991.

e The American National Standard
Dictionary for Information Systems, ANSI
X3.172-1990, copyright 1990 by the
American National Standards Institute
(ANSI). Copies can be purchased from
the American National Standards
Institute, 1430 Broadway, New York, New
York 10018. Definitions are identified by
the symbol (A) after the definition.

The ANSI/EIA Standard - 440A: Fiber Optic
Terminology, copyright 1989 by the Electronics
Industries Association (EIA). Copies can be
purchased from the Electronic Industries
Association, 2001 Pennsylvania Avenue N.W.,
Washington, D.C. 20006. Definitions are identified
by the symbol (E) after the definition.

e The Information Technology Vocabulary,
developed by Subcommittee 1, Joint
Technical Committee 1, of the
International Organization for
Standardization and the International
Electrotechnical Commission (ISO/IEC
JTC1/SC1). Definitions of published parts
of this vocabulary are identified by the
symbol (l) after the definition; definitions
taken from draft international standards,
committee drafts, and working papers
being developed by ISO/IEC JTC1/SCH
are identified by the symbol (T) after the
definition, indicating that final agreement
has not yet been reached among the
participating National Bodies of SC1.

The following cross-references are used in this
glossary:

Contrast with. This refers to a term that has
an opposed or substantively different
meaning.

See. This refers the reader to multiple-word
terms in which this term appears.

See also. This refers the reader to terms that
have a related, but not synonymous,
meaning.

Synonym for. This indicates that the term
has the same meaning as a preferred term,
which is defined in the glossary.

A

ACH. Automated clearing house.

222 IFS Customizable Web Server (CWS) Guide Fourth Edition

Advanced Interactive Executive. The IBM
operating system for the Web server.

AIF. Application Integration Feature of FlowMark
for MVS.

AIX. Advanced Interactive Executive.

agent. In Interactive Financial Services, the agent
connects the transaction delivery manager to the
financial institution. The agent converts the
protocols used by the transaction delivery
manager to those used by the financial institution.
An agent can be one program or a collection of
programs necessary to complete the conversion
task. See also back-end agent.

API. Application program interface.

Application Integration Feature. Supports
workflow capabilities for MVS/ESA.

application program interface (API). Software
and standards used to support data integration
between applications.

architecture. A definition of a system in terms of
its components, how these components interact,
and the interfaces used to assure that the
components work together properly.

ATM. Automatic teller machine.

audit trail. Record that allows detailed tracking of
transaction processes within the IFS system.
Also, a way of tracking and verifying basic
information about the status of trouble tickets.

authentication. The process for an financial
institution to verify the identify of a customer
attempting to log onto IFS or another financial
institution system. Used for certifying individual or
company identity.

authorization. Approved access levels once
identity is verified.

automated clearing house (ACH). (1) A value-
dated electronic funds transfer system governed
by ACH rules and used in the U.S. for recurring
payments. Transfers can be credit or debit, and
settlement is for one or two business days after
they are processed. Bank funds are provisional
until the morning of the business day following the
settlement day. The Reserve Bank may revoke
the payments if the sending bank does not have
sufficient funds in its account to fund them on the
settlement date. (2) The actual organizations and
computer facilities, operated by the Federal
Reserve or others, that process the electronic
transfers.

automatic teller machine (ATM). A self-service
unit that allows the user, with suitable
identification and account relation, to carry on
financial transactions, such as a cash withdrawal.

automation. User-written operations programs
that control repetitive and routine events on the
IFS hardware and software components, for
example monitoring conditions and workload.

B

back-end agent (BEA). (1) A component of the
Strip File Application that accepts incoming
standard messages, forwards them to the online
standard message processor (which gets a reply
from the VSAM data sets created from strip files),
and returns the reply to the requestor. (2) A
deprecated term for (and see) IFS interface
module.

backup. The process of saving copies of IFS data
in case of a system failure. Operators back up
data on a regular schedule, usually daily.

bank holding company. A company owning one
or more financial institutions.

BEA. Back-end agent.

bill originator (biller). Entity that originates a bill;
for example, a utility company, mortgage
company, credit card company, or retail store.

bill payment. A transfer service that allows a
customer to present a payment for a certain type
of bill (such as an electricity bill or municipal rate)
to the financial institution, which then processes
the payment and reconciles it with the
organization to which it is addressed.

biller. See bill originator.

biller database. A database of bill originators with
relevant data about each bill originator for
facilitating the bill payment process.

browser. A network client program that
communicates with Web servers, used for
retrieving and displaying documents from the
World Wide Web.

C

CGIl. Common gateway interface.
check. See paper check.
CICS. Customer Information Control System.

client. An individual person using a Web browser
or telephone to initiate a transaction, also called a
customer or consumer. See also end user.

client/server. A concept that divides the
processing for a unit of work between the end-
user s work station (the client) and one or more
other computing devices (servers) that provide
service to multiple users through a network
connection.

Common Gateway Interface (CGI). An interface
that governs the interaction (communication)
between the HTTP server and server gateway

© Copyright IBM Corp. 2002

programs, which act upon local resources such as
databases. A specification to allow a Web server
to communicate with other programs and
systems. This feature of Web servers allows
browsers to communicate over the Web with
scripts installed on the server. CGl scripts can be
written in any programming language that will run
on the Web server.

consumer. An individual person using a Web
browser or telephone to initiate a transaction, also
called a client or customer. See also end user.

core controller. An IFS component responsible
for routing and scheduling IFS transactions and
ensuring transaction integrity. Also called IFS core
controller. When working with other parts of a
system, then referred to as transaction delivery
manager.

CRC. Cyclic redundancy check.
CSR. Customer support representative.

CSR/TSR workstation. A tool used by Level 1
and Level 2 support representatives to view the
IFS logs and standard messages. Also referred to
as CTW.

customer. An individual person using a Web
browser or telephone to initiate a transaction; also
called a client or consumer. See also end user.

CTW. See CSR/TSR workstation.

Customer Information Control System (CICS).
An IBM system used as a transaction monitor.

customer profile. A file that contains attributes
associated with a user of the system, such as
name, address, account numbers, and similar
information.

customer support representative (CSR). A
person who assists end users when they have a
question or a problem; also called Level 1
support.

D

DATABASE 2 (DB2). An IBM relational database
management system.

DB2. DATABASE 2

device-independent. Using an open architecture
and translating device messages into standard
interface. Device-independence helps ensure the
ability to add new devices without disrupting the
existing system.

dialog. A graphical interface that permits a user
to enter information and send it to the processor
for a response.

diary. The mechanism used to track future
financial transactions; for example, standing
orders to pay mortgage on the first of each month;
frequently used by bill pay and funds transfer
applications.

223

E

EAR (enterprise archive). A file used for
deploying web applications under an application
server such as IBM WebSphere. The file is
derived from the ZIP archive format but it contains
a directory format and files contents as defined by
Java/2 Enterprise Edition conventions. The EAR
file contains all the contents of a WAR file plus a
META-INF directory that desribes how and where
to deploy the WAR file.

electronic commerce. The end-to-end digital
exchange of all information needed to conduct
business, such as EDI transactions, electronic
mail, audit trails, or graphics.

element. The structural building block of HTML
documents.

E-mail. Electronic mail.

encryption. Using a secret key to encipher data
so that it is unintelligible to anyone except another
holder of the secret key. Processing that includes
link-level encryption (secures all
communications), network-level encryption (for
example, IP tunneling between firewalls, IP
encryption between two nodes), session-level or
transport-level encryption (secures all TCP
communications), and application-level encryption
(such as HTTP, FTP, NNTP, Telnet).

end user. The user of IFS, also known as a
customer of a financial institution. The end user
uses FI services such as requesting account
information, conducting financial transactions, or
paying bills.

enterprise archive (EAR). A file used for
deploying web applications under an application
server such as IBM WebSphere. The file is
derived from the ZIP archive format but it contains
a directory format and files contents as defined by
Java/2 Enterprise Edition conventions. The EAR
file contains all the contents of a WAR file plus a
META-INF directory that desribes how and where
to deploy the WAR file.

F

field. An atomic data type, such as a character
string or number, that is the basic unit of data
representation within the message body. A given
field may have zero or more field instances (or
occurrences) associated with it. The instance
concept allows the implementation of vector data
types based on the atomic data types supported
by the MTI.

file transfer protocol (FTP). An Internet
client/server protocol for transferring files between
computers.

224 IFS Customizable Web Server (CWS) Guide Fourth Edition

financial institution (FI). An institution capable of
providing all the banking services supported by
Interactive Financial Services.

financial institution profile. A file that contains
attributes of the financial institution including rules
for transaction processing, logging, and formatting
for the financial institution; and their customers,
products and transactions. It establishes which
IFS features will be used and the default
processing options for customers. General
information about the financial institution is also
included. The financial institution profile allows the
financial institution and IBM to identify user IDs
with responsibility for customer profile
maintenance, inquiry, and so on.

firewall. Software and possibly hardware that
protects the system application data (for example,
IFS) from hackers and other problems on the
Internet and from other systems and entry points.

FlowMark. IBM family of products that supports
workflow capabilities.

form. (1) A group of elements in an HTML
document that generate graphical controls such
as text boxes, radio buttons, and check boxes
when the document is displayed by a browser.
The user can enter data in a form and use the
browser to submit it to a program on a server. (2)
An interface that allows you to enter information
into a database. A form also controls how that
information is displayed in the database and
printed. To create a document, you fill in a form in
a database. A database can contain one or more
forms.

formats. In the financial industry, a format is a
specific arrangement of data used for
acknowledgments, purchase orders, and invoice
data. Some examples of formats are ACH formats
(CTX; CTP; CCD+) and FEDI formats (820, 822,
823, 828, 835); and EDI formats.

free-form messages. IFS electronic mail
messages that allow users to define the content
and format to communicate with customer support
representatives.

FTP. File transfer protocol.

G

gateway. A connection between two networks
that converts messages from one to be
communicated to the other.

Gold Standard Message. A well-structured
framework for defining messages used within the
IFS application. The standard message is
independent of operating systems, programming
languages, and communications or messaging
software.

H

helper. A program launched or used by a browser
to process files that the browser cannot handle on
its own. Similar to a plug-in with the difference
that it need not be integrated into the browser, but
may be used by the browser for specific tasks
such as image viewing. See also plug-in.

home page. The first page of a World Wide Web
site that introduces the site and likely includes
hypertext links to local resources.

HotJava. A World Wide Web browser produced
by Sun MicroSystems that uses a new
programming language called Java. HotJava
provides the ability to import code fragments,
called applets, across the Internet and execute
them.

HTML. HyperText Markup Language.
HTTP. HyperText Transfer Protocol.

HyperText Markup Language (HTML). A
structured language for documents that are
published on the Web.

HyperText Transfer Protocol (HTTP). An
Internet, client/server protocol designed expressly
for rapid distribution of hypertext documents.

IBM Global Services. The world-wide IBM
solution provider that provides network solutions
and a global information infrastructure.

IBM Messaging Queuing Series (MQSeries).
Products that manage transactions and enable
programs to talk to each other across a network of
unlike component (processors, operating

systems, subsystems, and communication
protocols) using a simple and consistent
application programming interface.

IFS. Interactive Financial Services.

IFS Alliance. A user group of financial institutions
that use the IFS platform to provide home banking
online financial services in the Asia-Pacific region.

IFS core controller. See core controller.

IFS data gateway (IGATE). MQSeries
communications between IFS on the IBM host
processor and the CSR/TSR workstation. It
validates the CSR and TSR logon requests.

IFS infrastructure. Part of the end-to-end IT
solution (from the IFS user to the financial service
application) that is owned or operated on-behalf-
of the financial institution by IBM.

IFS interface module. A module, provided by the
financial institution, that interfaces with the IFS
transaction delivery manager. For each request
sent to the financial institution, the IFS interface
module converts the standard message to the
financial institution s protocol and reconverts the

© Copyright IBM Corp. 2002

reply back to the standard message format for
IFS.

IGATE. IFS data gateway.

implementation manager. An IBM staff member
who is responsible for delivering IBM s
commitments and tasks related to a financial
institution s implementation plan for IFS.

integrity. Processing to guarantee that a
transmission arrives in exactly the same form in
which it was sent.

Interactive Financial Services (IFS). A
consortium of IBM and banking partners that
provide a network-centered, end-to-end, online
banking solution between consumer financial
institutions and their customers.

International Organization for Standardization
(ISO). The world body that establishes global
technology standards.

intranet. A private network within the World Wide
Web network.

ISO. International Organization for
Standardization.

J

JAR (Java archive). A file used for running Java
programs using a Java Virtual Machine. The file is
derived from the ZIP archive format but it contains
a directory format and files contents as defined by
Java conventions. The jar file contains all of the
classes, native libraries, properties, and resources
to run a Java application.

J2EE (Java/2 Enterprise Edition). A platform for
running Java web applications. The platform
contains all of the programs and packages of the
Java/2 Standard Edition, plus packages for writing
and deploying servlets, JSPs and web
applications.

JSPs (Java Server Pages). A programming
language with markup tags for writing web pages.
JSPs are best used to display dynamic web
content, as the JSPs are translated to servlets
and web pages by the web server when a user
with a browser requests a web page.

Java. An object-oriented programming language
developed at Sun Microsystems. Used
extensively within HotJava, the WWW browser. In
big-picture terms, Java is like C++ without
pointers and with a few add-ons (to ensure
greater security). Java includes executable code
that can be downloaded from the server to the
client to be executed.

Java Database Connection (JDBC). An API
developed by Sun and implemented by many
database vendors. The API provides a standard
set of interfaces for Java programs to talk to
databases such as IBM DB/2..

225

L

LAN. Local area network.

Level 1. A customer support representative
(CSR) who is the first point of contact for a
customer.

Level 2. A technical support representative (TSR)
who provides technical assistance for Level 1
CSRs when they need specific help with an IFS
problem.

LIG. Local interface gateway.

link. In hypertext documents, the connection from
one document to another.

Local area network (LAN). A computer network
located within a limited geographical area.

local interface gateway (LIG). A machine that
provides access to the IBM Global Network.

log. For IFS, a collection of standard messages
placed in a database to record IFS events or for
accounting or data collection purposes.

LU 6.2. A type of logical unit that supports general
communications between programs in a
distributed processing environment. LU 6.2 is
characterized by (a) a peer relationship between
session partners, (b) efficient use of a session for
multiple transactions, (c) comprehensive end-to-
end processing, and (d) a generic application
program interface (API) consisting of structured
verbs that are mapped into a product
implementation.

MAPI. Message API.

mapping. A process of utilizing user-defined data
maps to translate business documentation from
in-house data format to an EDI standard, or from
EDI to an in-house format.

Message API (MAPI). A command language that
converts messages into AlF format, so they can
be processed by a script.

message translation interface (MTI). An
interface used for constructing, populating,
converting, and unpacking a message.

messaging. Communication between programs
by sending data in messages rather than by
calling each other directly.

messaging and queuing (MQ). IBM s MQSeries
products that enable programs to talk to each
other across a network of unlike components
(processors, operating systems, subsystems, and
communication protocols) using a simple and
consistent application programming interface.

226 IFS Customizable Web Server (CWS) Guide Fourth Edition

messaging and queuing interface (MQl).
Queuing interface for message transport.

META-INF. A directory within a JAR, WAR, or
EAR file. This directory is reserved for the
manifest.mf file which describes the archive
directory structure and structure version.

MIME. Multipurpose Internet mail extensions.

modem. A device that enables computer data to
be exchanged over telephone lines.

MQSeries. IBM Messaging Queuing Series.
MTI. Message translation interface.

multipurpose Internet mail extensions (MIME).
E-mail allowing for sound, video, image, and text.

MVS/ESA. IBM s Multiple Virtual
Storage/Enterprise Systems Architecture.

N

Netscape Communicator. An Internet browser
program that end users can use to access IFS.

network. An arrangement of nodes and
connecting branches used for communications.

network services. See IFS network services.

Notify. The portion of the IBM Global Network
services that Level 1 and Level 2 support
personnel use to communicate and track
customer problems with trouble tickets.

O

on-behalf-of (OBO). Tasks a financial institution
customer support representative (CSR) does at
the request of customers. An example of an on-
behalf-of customer task would be to add a payee
for a customer using a voice response system for
bill payment.

P

packet. Small amount of data that is packaged for
transmission over a link. See TCP/IP.

paper check. Non-same-day, paper form of debit
transfer wherein bill originators collect from
payers. Funds made available by banks to
depositors of checks are provisional and may be
reversed if the payer s account does not have
sufficient funds to pay the check when it is
received by the payer s bank.

password. A combination of characters the user
types when logging on, designed to be secret to
prevent unauthorized access of the user s data.

payment request. Process in which, after
submitting a list of accounts to be eligible for
payment and a list of payees to make payments
to, the customer uses an access device to request
the bank to pay a biller a specified amount.

payee. A person, company, or organization that
receives payments. The bill payment application
recognizes three types of payees: biller, free-form,
and interbank.

pay/no pay decision. Determination made by the
consumer s financial institution whether to release
a payment instruction into the IFS system for
delivery to a biller. Once a pay decision has been
made, the consumer financial institution cannot
recall the transaction, even if the consumer is
unable to fund the payment instruction.

PIN. Personal identification number. See
password.

ping. An Internet protocol for requesting an
echo/response from another element in the
network; a way of ascertaining whether another
network element is up and functional.

plug-in. A dynamic code module, native to a
specific platform on which the Netscape client
runs, the primary goal of which is to provide
seamless new datatype support for Netscape
users.

point-to-point protocol (PPP). A protocol that
provides router-to-router and host-to-network
connections over both synchronous and
asynchronous circuits. PPP supports Internet
Protocol (IP) and other protocols.

port. A communication channel.
PPP. Point-to-point protocol.

prenote. (1) A zero dollar transaction sent
through ACH or other proprietary services
(MasterCard, etc.). (2) A hardcopy letter sent to
the biller. The prenote is used to validate that the
biller or biller financial institution will be able to
accept and process payment instructions supplied
by the consumer in advance of the first actual
payment.

privacy. Condition in which a message is
understood only by appropriate parties.

private key. A personalized value in the use of
an encrypting algorithm similar to the use of a
combination number for a vault, for secure
electronic payments.

profile. IFS data that describes characteristics of
an end user, an financial institution, or a service.

properties file. A file of option settings that are
read by a Java program at runtime. The file
contains comments and key/value pairs that
determine which code paths a Java program
executes.

protocol. An agreed convention for computer-to-
computer communications. For example, TCP/IP
defines how messages are passed on the
Internet. FTP protocol, which is built on top of
TCP/IP, defines how FTP messages are sent and
received.

© Copyright IBM Corp. 2002

proxy. A substitute for a person (can be
software).

public key. A value in the use of an encrypting
algorithm similar to the use of a combination
number for a vault. This key is used for secure
electronic payments.

Q

queuing. A function that stores messages in
queues so that programs can run independently
of each other, at different speeds and times, in
different locations, and without having a logical
connection between them.

R

RACF. Resource Access Control Facility.

Resource Access Control Facility (RACF). An
MVS/ESA security program that protects system
resources.

RISC. Reduced instruction set computer.

RISC System/6000. An IBM processor based on
the RISC technology; also known as an RS/6000.

RSA encryption. The Rivest-Shamir-Adleman
algorithm, used by Fls to encrypt passwords in
the strip files they send to the Core Banking with
Strip Files Application.

S

script. Programming code that defines a list of FI
business rules and processes.

secure HTTP. An extension to HTTP that secures
the form used in communications and performing
transactions.

secure sockets layer (SSL). Secures the pipe.

self-defining (field or structure). A field or
structure that is specified by the financial
institution using appropriate MTI APIs and is sent
as part of the message. The receiving program
does not require external definition information in
order to decode the message element.

Self-registration. Allows a customer to self-
register for IFS services electronically. The
customer must have the appropriate software
installed on the PC to do this.

serial line Internet protocol (SLIP). A protocol
that runs Internet Protocol (IP) over serial lines,
such as telephone circuits or RS-232 cables
connecting two systems.

server. A program running on a networked
computer that responds to requests from clients
(programs) communicating through a client/server
protocol.

service. An IFS capability, such as core banking,
bill pay, diary, transfers.

227

service request. Individual transaction type that
supports a service, such as logon, logoff, balance
inquiry, add payee.

servlet. A Java program that is run by a web
application server when a user with a browser
requests a web page. Servlets are the basis of
dynamic, customizable web pages.

SLIP. Serial line Internet protocol.

S/MIME. Secured/Multimedia Interactive Mail
Extension. An E-mail technology.

SNA. Systems Network Architecture.
standard message. See Gold Standard Message

structure. Used to represent complex data types
consisting of any combination of fields or other
structures. A given structure may have zero or
more instances (or occurrences) associated with
it.

Systems Network Architecture (SNA). An
architecture that provides communications
functions for all applications. It simplifies
application programming by putting the terminal
definition and support functions in a common,
IBM-supplied program.

T

tag. Marks the beginning (start-tag) or end (end-
tag) of an element in an HTML file.

TCPI/IP. Transmission Control Protocol/Internet
Protocol.

TDM. Transaction delivery manager.

technical support representative (TSR). An
Level 2 technical person who assists the Level 1
CSR.

Transaction. See service request.

transaction delivery manager (TDM). When the
core controller works with other parts of the
system as an intelligent router. It consists of an
IBM MVS/ESA system with workflow software that
handles the transactions required for a financial
transaction.

Transmission Control Protocol/Internet
Protocol (TCP/IP). The basic (lowest-level)
communication protocol of the Internet; it breaks
messages up into small packets, and sends them
independently to their destination, where they are
assembled without error in transmission.

Trumpet Winsock. A Windows Sockets 1.1
compatible TCP/IP stack that provides a standard
networking layer for many Windows networking
applications to use. It allows users to open
multiple sessions at once, including Netscape,
FTP, Telnet, and others.

TSR. Technical support representative.

228 IFS Customizable Web Server (CWS) Guide Fourth Edition

U

uniform resource locator (URL). A pointer used
in hypertext to address Internet resources on the
World Wide Web.

URL. Uniform resource locator.
user. See customer or end user.

utility. Reference to financial applications, for
example, bill payment.

\'

Vendor. An individual, company, or entity that has
billed a bank customer and is expecting a
payment. See bill originator.

voice response system (VRU). An automated
device used to route, record, and act upon
incoming calls from customers.

VRU. Voice response unit.

VTAM (Virtual Telecommunications Access
Method). A program that provides communication
facilities for IFS.

W

WAR (web archive). A file used for deploying
web applications under an application server such
as IBM WebSphere. The file is derived from the
ZIP archive format but it contains a directory
format and files contents as defined by Java/2
Enterprise Edition conventions. The war file
contains all of the contents of a servlet JAR file,
plus information to how and where to load, run
and describe a Java servlet.

Web browser. See browser.

WEB-INF. A directory within a JAR, WAR, or EAR
file that typically contains deployment information.
The deployment information describes the
program and gives details such as how to name
or where to run the program and often is written in
XML format.

Web pages. The financial institution s HTML
panels that end users use for IFS inquiries and
transactions.

Web server. See server.

Window. A portion of the screen set aside for a
particular task or function.

Windows. The operating system on an end user
home computer that controls the computer and its
software (which includes the IFS browser).

Workflow. Ability to flow work in an orderly
process, ensuring that the right person receives
the right information to perform the required task
or make the required decision.

Workflow management. A standard set of World Wide Web (WWW). A generic term for the
business and automation processes that an Fl collection of Web servers and browsers.
uses to respond to customer s service
requests in a consistent and controlled
manner.

© Copyright IBM Corp. 2002 229

Bibliography

Interactive Financial Services Library

The following documents are part of the IFS library:

IFS Overview and Release Changes Guide

IFS Planning Guide

IFS Transaction Delivery Manager Guide

IFS Customizable Web Server Guide

IFS Messaging Implementation and Installation Guide
IFS Service Provider Adapter Guide

IFS Open Financial Exchange Translator Guide

IFS National Language Support Guide

IFS Message Modification Process Guide

IFS Customer Service Guide

MTI Programming Guide and Reference for C

MTI Programming Guide and Reference for COBOL
MTI Programming Guide and Reference for JAVA
MTI Programming Guide and Reference for RPG

IFS Gold Standard Message Transaction Specification

IFS Gold Standard Message Data Dictionary

Other Documents
The following documents may be of interest:

HSBC JAVA CWS Performance White Paper 12/20/00

CTW HELP

The CTW s Help is online computer documentation designed to support your ongoing work. It consists of
Help topics, or chunks of Help information, that are in many ways similar to sections of a print manual. Many
of the topics are procedure topics, containing numbered steps preceded by some kind of conceptual
information.

Other Publications
You might want to refer to the following IBM publications for related information:
MQSeries Application Programming Guide, order number SC33-0807

FlowMark for MVS/ESA Application Integration Feature: Writing Scripts and Agents, order number GC28-
1245

If you need to see publications for an outside service provider (such as Checkfree or Intuit), contact that
company s representative. You can also access the service provider s Web site for more information.

230 IFS Customizable Web Server (CWS) Guide Fourth Edition

Reader’s Comments — We’d Like to Hear from You

Interactive Financial Services
Customizable Web Server (CWS) Guide

You may use this form to communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you. Your comments will be sent to the author s
department for whatever review and action, if any, are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Today s date:

What is your occupation?

How did you use this publication?

[] As an introduction [1As a text (student)
[]

[1 As a reference manual As a text (instructor)
[1 For another purpose (explain)

Is there anything you especially like or dislike about the organization, presentation, or writing in this manual?
Helpful comments include general usefulness of the book; possible additions, deletions, and clarifications;
specific errors and omissions.

Page Number: Comment:

Name Address
Company or Organization
Phone No.

Please mail completed form to:
IFS Publication Coordinator
IBM Manassas

10511 Battleview Parkway

Manassas, VA 20109
USA

[T ||
K]

[
T
..lll
I
@

Ql‘ Printed in the United States of America
'.’ on recycled paper containing 10%
recovered post-consumer fiber.

