

I
B
M

IBM VisualAge for COBOL for OS/2

Getting Started

GC26-8421-01

IBM
IBM VisualAge for COBOL for OS/2

Getting Started

GC26-8421-01

 Note!

Before using this information and the product it supports, be sure to read the general infor-

mation under “Notices” on page vii.

| Second Edition (January 1996)

| This edition applies to Corrective Service Disk 1, Version 1 Release 1 of IBM VisualAge for COBOL for OS/2 (part

| number 28H2177) and to all subsequent releases and modifications until otherwise indicated in new editions. Make

sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not

stocked at the address given below.

A form for reader's comments appears at the back of this publication. If the form has been removed, address your

comments to:

IBM Corporation, Department J58

P.O. Box 49023

San Jose, California, 95161-9023

 U.S.A.

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way

it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1995, 1996. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is

subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . vii

Trademarks . vii

About This Book . ix

How This Book Will Help You . ix

| Summary of Changes . xi

Installing VisualAge COBOL . 1

Before You Begin . 3

Hardware and Software Requirements . 3

Installing on LAN-Connected Workstations . 5

Installing IBM VisualAge for COBOL for OS/2 7

Changing Your CONFIG.SYS . 13

Installing Using Response Files . 16

Using a Software Distribution Manager . 18

Adding or Deleting Components . 19

Deleting Components . 20

Installing Additional Components . 22

Adding or Deleting Components Using a Response File 23

If Something Goes Wrong . 25

If You Get an Error Message . 25

If the Component Requires Another Component 25

If You Press Stop . 25

If the Install Program Fails . 25

If the Second Phase of Installation Fails . 26

| If the Second Phase of the Installation Does Not Run 27

If You Can't Delete an Object Because It's in Use 27

If VisualAge COBOL Doesn't Appear in the Installation Utility 27

If You Can't Install Additional Components . 27

If You've Tried Everything and It Still Doesn't Work 27

Response Files, Options, and Return Codes 29

Response File Format and Parameters . 29

Command-Line Options . 31

Return Codes . 32

Getting Started with VisualAge COBOL . 35

Introducing IBM VisualAge for COBOL for OS/2 37

 Copyright IBM Corp. 1995, 1996 iii

What You Can Do Using VisualAge COBOL . 37

Create OS/2 COBOL Applications . 37

Create Client/server Applications . 37

Create Object-Oriented Applications . 38

Your VisualAge COBOL Development Environment 38

Edit, Compile, and Debug . 38

Create a GUI for Your Application . 39

Create CICS ECI Calls and SQL Statements 39

Access Local and Remote Data . 39

Analyze Program Performance . 39

Concepts for Developing an Application Using VisualAge COBOL 40

Build Your First VisualAge COBOL Application 43

Creating the Project . 43

Creating the Application . 45

Building the Application . 47

Running the Application . 48

Build Your First VisualAge COBOL GUI Application 49

Creating the GUI Project . 49

Creating the Graphical User Interface . 50

Adding the GUI Parts . 52

Customizing the GUI . 53

Moving and Sizing GUI Parts . 55

Saving the GUI Project . 55

Creating the Application Logic . 57

Event-Driven Programming . 57

Creating the Event Logic . 59

Building the Application . 65

Running the Application . 67

Tools in VisualAge COBOL . 69

WorkFrame . 69

COBOL Editor . 69

COBOL GUI Designer . 70

COBOL for OS/2 . 70

Interactive Debugger . 71

Performance Analyzer . 72

Tasks and Information for VisualAge COBOL 75

Using the Information with VisualAge COBOL 79

Your Next Step for Learning VisualAge COBOL 79

Using the Online Reference Information . 80

Using the Online Help . 80

Locating Online Help Topics . 80

Printing Online Help Topics . 81

Getting VisualAge COBOL Publications . 81

iv Getting Started

Printing Publications . 81

Ordering Publications . 81

Getting Support for Using VisualAge COBOL 83

| Getting Started Period . 83

| Getting Product Support . 83

Getting Consulting Services . 84

Getting Education and Training . 84

VisualAge COBOL Tutorials . 87

Creating a Tax Computation Application with a GUI 89

Creating the Subroutine Project . 90

Creating the Subroutine Logic . 91

Creating the GUI Application Project . 93

Creating the Graphical User Interface (GUI) . 94

Adding the GUI Parts . 94

Customizing the GUI . 94

Saving the GUI Project . 95

Creating the Application Logic . 97

Calling the Subroutine Logic . 100

Nesting the Projects . 103

Setting Compiler Options . 103

Building the Application . 108

Using the Interactive Debugger . 110

Preparing Your Application for Debugging 110

Debugging Your Application . 110

Ending the Debugging Session . 112

Running the Application . 112

Packaging the Application for Distribution . 113

Installing the Application on an End User Machine 115

Creating SQL Statements with Data Assistant 117

Examining Tables in the Database Schema View 117

| Copying Tables to the Data Structure Mapping view 118

Mapping Data Structures . 120

Creating an SQL Statement . 122

Using the CICS Transaction Assistant . 127

Appendix A. Using OS/2 . 131

Appendix B. VisualAge COBOL Supplied Sample Applications 139

Employee Lookup Application Samples . 139

Employee Lookup Application Description 139

Sample Project 1 . 140

Sample Project 2 . 141

Sample Project 3 . 141

 Contents v

Sample Project 4 . 143

Sample Project 5 . 144

Sample Project 6 . 146

SMARTdata Utilities Samples . 147

VSAM for the Workstation Samples . 147

Data Conversion Utility Samples . 148

SMARTsort Samples . 148

Appendix C. Configuring APPC Communications 149

Approaching the Task of Configuring Communications 150

Configuring for APPC Communications at CM/2 150

Prerequisites . 150

Terminology . 150

Communications Manager/2 Configuration Variables 151

Performing CM/2 APPC Configuration . 154

Configuring for APPC Communications at MVS 170

Prerequisites . 170

Terminology . 171

APPC/MVS Configuration Variables . 171

APPC/MVS Configuration Overview . 174

APPC/MVS Definitions . 174

Configuring to Run as a Server . 177

| Configuring for Remote Debug Tool to Run as a Client 180

Defining the 3745 Attached LAN to VTAM 180

Defining the 3745 Attached LAN to NCP . 182

APPC/MVS System Commands . 182

| Configuring CICS for APPC Communications 183

| Prerequisites . 184

| Terminology . 184

| CICS Configuration Variables . 185

| Overview of CICS APPC Configuration . 186

| Configuring CICS to Run as a Client . 186

| Defining a Link to the LAN . 192

| CEMT to Display/Modify Sessions . 192

Appendix D. REXX Procedures: Compile and Link 193

REXX Procedures for COBOL Programs . 193

REXX Procedures for DB2 Programs . 193

Other REXX Procedures . 193

VisualAge COBOL Glossary . 195

Comparison of Workstation and Mainframe Concepts 199

Index . 201

vi Getting Started

 Notices

References in this publication to IBM products, programs, or services do not imply that

IBM intends to make these available in all countries in which IBM operates. Any refer-

ence to an IBM product, program, or service is not intended to state or imply that only

that IBM product, program, or service may be used. Any functionally equivalent

product, program, or service that does not infringe any of the intellectual property rights

of IBM may be used instead of the IBM product, program, or service. The evaluation

and verification of operation in conjunction with other products, except those expressly

designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this

document. The furnishing of this document does not give you any license to these

patents. You can send license inquiries, in writing, to the IBM Director of Licensing,

IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594, U.S.A.

Licensees of this program who wish to have information about it for the purpose of

enabling: (1) the exchange of information between independently created programs and

other programs (including this one) and (2) the mutual use of the information which has

been exchanged, should contact IBM Corporation, Department J01, 555 Bailey Avenue,

San Jose, CA 95161-9023. Such information may be available, subject to appropriate

terms and conditions, including in some cases, payment of a fee.

 Trademarks

The following terms are trademarks of the IBM Corporation in the United States or other

countries or both:

Other company, product, and service names, which may be denoted by a double

asterisk (**), may be trademarks or service marks of others.

ACF/VTAM

ADSTAR

AIX

APPN

AS/400

CICS

CICS/ESA

CICS OS/2

Common User Access

CUA

DB2

DB2/2

DFSMS

DFSMS/MVS

FFST/2

First Failure Support Technology/2

IBM

MVS/ESA

OS/2

OS/400

Presentation Manager

RS/6000

SAA

VisualAge

VSE

VTAM

 Copyright IBM Corp. 1995, 1996 vii

viii Getting Started

About This Book

Welcome to IBM VisualAge for COBOL for OS/2, IBM's new COBOL development envi-

ronment for OS/2! IBM VisualAge for COBOL for OS/2 gives you a comprehensive

development environment designed specifically for mission-critical, client/server applica-

tions.

IBM VisualAge for COBOL for OS/2 supports local and remote access to DB2, CICS,

and VSAM, giving you access to data and transactions nearly anywhere in your enter-

prise. And all the IBM COBOL family of solutions support the high subset of ANSI 85

COBOL functions, so your applications can be ported across supported platforms,

whether they are running on a mainframe, an RS/6000, or a personal computer with

OS/2.

IBM VisualAge for COBOL for OS/2 supports object-oriented extensions, allowing you

to develop software objects using COBOL and to share SOM-enabled objects created

by other languages, like C++.

IBM VisualAge for COBOL for OS/2 provides a complete development environment.

The environment includes an editor, debugger, GUI designer, and performance ana-

lyzer, all integrated with WorkFrame. WorkFrame integrates your tools and files, so

selecting a file also selects tools appropriate for that file.

How This Book Will Help You

The Getting Started guide will help you install and learn to use VisualAge COBOL. The

book is divided into three sections. Each section provides important information for

using VisualAge COBOL.

� The Installing section describes the installation process for VisualAge COBOL.

� The Getting Started section (“Getting Started with VisualAge COBOL” on page 35)

provides an introduction to VisualAge COBOL. It includes product overview infor-

mation, instructions for building two simple sample applications, and a quick-

reference table for performing tasks using IBM VisualAge for COBOL for OS/2.

� The Tutorial section (“VisualAge COBOL Tutorials” on page 87) provides three,

more complex tutorials to help you learn to use more features of VisualAge

COBOL. In these tutorials, you will create a VisualAge COBOL application con-

sisting of a main program and a subroutine, use the Data Assistant tool to map

COBOL data structures to a DB2 database and generate SQL statements into your

source file, and use the Transaction Assistant tool to generate a CICS ECI call and

parameter list for invoking CICS transactions.

This book assumes familiarity with OS/2. For information on OS/2, see Appendix A,

“Using OS/2” on page 131 or your operating system documentation.

 Copyright IBM Corp. 1995, 1996 ix

x Getting Started

| Summary of Changes

| January 1996—GC26-8421-01

| Installation

| This section contains updates to CONFIG.SYS entries and other changes.

| Support Information

| “Getting Support for Using VisualAge COBOL” on page 83 contains updated services

| and support information.

| GUI COMPILE

| Steps for the compile options for the Tax Computation Application have been updated

| in “Setting Compiler Options” on page 103.

| Packaging Tool

| The screens for the packaging tool have been updated in “Packaging the Application for

| Distribution” on page 113.

| Data Assistant

| Steps and screens in “Creating SQL Statements with Data Assistant” on page 117

| have been updated.

| Transaction Assistant

| Minor changes have been made to the screens in “Using the CICS Transaction

| Assistant” on page 127.

| VisualAge COBOL Sample Applications

| Instructions on how to build and run the sample application have been added in

| Appendix B, “VisualAge COBOL Supplied Sample Applications” on page 139.

| APPC Communications and IBM Debug Tool

| Appendix C, “Configuring APPC Communications” on page 149 now contains informa-

| tion on how to configure the environment needed to debug host applications from the

| workstation using the IBM Debug Tool.

| The online version of the Debug Tool User's Guide and Reference book is available

| from the Information Notebook in the main VisualAge COBOL - Icon View window.

| Maintenance and editorial changes have been included throughout the book.

 Copyright IBM Corp. 1995, 1996 xi

xii Getting Started

Installing VisualAge COBOL

The Installing section describes the installation process for IBM VisualAge for COBOL

for OS/2, Version 1.

The topics in this section are:

Before You Begin . 3

Installing IBM VisualAge for COBOL for OS/2 7

Adding or Deleting Components . 19

If Something Goes Wrong . 25

Response Files, Options, and Return Codes 29

 Copyright IBM Corp. 1995, 1996 1

2 Getting Started

Hardware and Software Requirements

Before You Begin

Before you begin to install IBM VisualAge for COBOL for OS/2, make sure that your

workstation meets the hardware and software requirements described in “Hardware and

Software Requirements.”

Hardware and Software Requirements

Processor

Compiler only: an Intel** 80386- or 80486-based IBM workstation or equivalent.

Full product including visual COBOL development: an Intel 80486-based 66

MHz IBM workstation or equivalent.

Operating System

OS/2 V2.11 or OS/2 Version 3.0 (Warp).

OS/2 Version 3.0 (Warp) is not required to use the Warp Toolkit.

Note: Applications developed using VisualAge COBOL run on OS/2 V2.11 or

later.

Other Software

| To build applications requiring DB2 preprocessing and to use Data Assistant, you

| need IBM DB2 for OS/2 Version 2.1, including the Software Developer's Kit

| (SDK) as provided with the Single User Version.

To use Transaction Assistant, you need IBM CICS OS/2 Version 3.0 and CICS

Client for OS/2 feature of CICS for OS/2 Version 2 or CICS Client for OS/2

Version 1.

To use the SMARTdata UTILITIES (SdU):

� To access MVS VSAM/SAM files, you need DFSMS Version 1.2.0 or later

installed on your MVS host.

� To access MVS CICS-managed VSAM data, you need CICS DDM Release

1 installed on your MVS host.

To use host connectivity, you need Communications Manager/2 Version 1.11.

To use SdU and the remote edit and compile components, you need to configure

your system as described in Appendix C, “Configuring APPC Communications”

on page 149.

RAM

16 MB when using the Compiler only.

24 MB minimum for visual COBOL development.

28 MB recommended for visual COBOL development.

 Copyright IBM Corp. 1995, 1996 3

Hardware and Software Requirements

Disk Space

15 MB for the Compiler and Runtime component.

115 MB for the Compiler and Runtime component and COBOL tools.

155 MB for the Compiler and Runtime component, COBOL tools, OS/2 Toolkit,

and Remote Edit/Compile component.

30 MB (minimum) for the swapper.

The program package contains COBOL beta code and optional components that

are not needed to run COBOL. If you want to install them, you need additional

disk space. You also need additional disk space for the swapper.

The tools and information are broken down into separate components. You can

choose which components are to be installed. The Installation Utility displays the

amount of disk space required for the components you selected. Table 1 shows

| the approximate disk space required for each component. If you are installing a

| corrective service disk (CSD), you may need additional disk space. See the

| README.CSD file located in the same directory as the CSD's install program.

Table 1 (Page 1 of 2). VisualAge COBOL Workstation Components Disk-Space Requirements

VisualAge COBOL Workstation Component Disk Space Required (MB)

Compiler and Nonvisual Tools

Compiler and Runtime 12

Information 8

Editor 7

Interactive Debugger 8

SMARTdata UTILITIES 4

Visual Tools

COBOL GUI Designer 19

Data Assistant 6

Transaction Assistant 0.1

WorkFrame 12

Performance Analyzer 4

Data Description and Conversion 14

Warp Toolkit

Development Tools 6

Information (not required for COBOL) 19

Headers and Libraries (not required for COBOL) 12

Sample Programs (not required for COBOL) 22

Multimedia Bitmaps (not required for COBOL) 0.1

Remote Edit/Compile

4 Getting Started

Installing on LAN-Connected Workstations

Note that you can install the components on different drives and directories.

Table 1 (Page 2 of 2). VisualAge COBOL Workstation Components Disk-Space Requirements

VisualAge COBOL Workstation Component Disk Space Required (MB)

Remote Edit/Compile 7

Note: If you install to a FAT partition, the space required for each component may be larger than

the amount shown. This is due to inefficiencies in the FAT file system. Also, if you install to the

same disk that contains the swap file, allow additional space to compensate for swap file growth.

Installing on LAN-Connected Workstations

If your workstations are connected to a LAN, you can set up the VisualAge COBOL

installation files on a LAN server and then install from the server to the individual client

workstations. Installing from the server is faster than installing from CD-ROM, and

several client workstations can install at the same time.

Important: When you install VisualAge COBOL across multiple workstations, make

sure you observe the license agreement as described in the License Information

booklet.

If you are a LAN user:

You can run the install program either attended or using a response file. For more

information, see “Installing IBM VisualAge for COBOL for OS/2” on page 7.

Note: You cannot install VisualAge COBOL to a remote drive on the LAN.

If you are a LAN administrator:

Follow the steps below to put the appropriate installation files on the server.

This procedure does not require changes to the server's CONFIG.SYS file.

1. Create a directory on the server that LAN users can access (for example,

COBOLCD).

2. Change to the LAN directory that you have just created.

3. Use XCOPY to copy all the files from the CD-ROM to the server. The syntax for

XCOPY is:

 xcopy d:\\ /s

where d is the CD-ROM drive.

4. Notify LAN users of where the installation files are located.

 Before You Begin 5

Installing on LAN-Connected Workstations

6 Getting Started

Installing IBM VisualAge for COBOL for OS/2

Installing IBM VisualAge for COBOL for OS/2

This section gives you step-by-step instructions for each of the VisualAge COBOL

installation procedures. Make sure you have read “Before You Begin” on page 3.

If you get error messages during the installation procedure, select the Help push button

in the message window for help on what to do. If you have problems installing, see “If

Something Goes Wrong” on page 25.

You can install from a CD-ROM or from a LAN server. Check with your LAN adminis-

trator to find out if you can install from the server, and where the install image is

located.

1. Insert the VisualAge COBOL CD-ROM, or access the LAN where the VisualAge

COBOL image resides.

2. From the OS/2 command line, change to the directory where the install program is

located. (For the CD-ROM, it is the root directory.)

3. Using the OS/2 system editor, read the README file located in the same directory

as the install program.

This file contains the latest information about VisualAge COBOL changes or

restrictions, including any that affect installation. If the README file differs from

this install section, the README file is correct.

| Before you install corrective service disks (CSD)

| Be sure to read the README.CSD file located in the same directory as the

| CSD's install program.

4. At the command line type: install.

The main VisualAge COBOL Installation window and the Instructions window

appear.

 Copyright IBM Corp. 1995, 1996 7

Installing IBM VisualAge for COBOL for OS/2

Figure 1. VisualAge COBOL Installation and Instructions windows

Scroll through the Instructions window to read all the text. You may need to

move the Instructions window to see the main Installation window.

5. Select Continue in the Instructions window.

The Install window appears, displaying the product name and product and version

numbers.

It also provides two checkboxes:

Update CONFIG.SYS

This box directs the install program to automatically update your

CONFIG.SYS file. It also backs up CONFIG.SYS before making any

changes. The backup name is CONFIG.001, or CONFIG.002 if that file

exists, and so on. This box is checked by default. If you do not want the

install program to update your CONFIG.SYS, remove the checkmark by

deselecting the box.

Note: We recommend you leave this box checked to update CONFIG.SYS

automatically. If you choose not to have the install program update your

CONFIG.SYS, you must make the changes yourself before you run

VisualAge COBOL and before you can complete the installation program for

the WorkFrame component. For the changes, see the CONFIG.ADD file in

the same drive and path as CONFIG.SYS. See “Changing Your

CONFIG.SYS” on page 13 for information on what you need to change.

Overwrite files

Put a check in this box if you want to skip the prompt for confirmation when

the install program overwrites files in your target directory with the same

name as the files being installed.

6. When you have chosen the options you want, select OK to continue.

8 Getting Started

Installing IBM VisualAge for COBOL for OS/2

If you chose not to have the install program update CONFIG.SYS, a message box

reminds you to update the file yourself when the installation is complete. Select

Yes to continue.

The Install - directories window appears. From this window, you select the com-

ponents to install and specify where to install them.

Figure 2. VisualAge COBOL Install-directories window

7. Choose the components you want to install from the list.

Components that are generally needed by a typical user are selected by default.

Click on a component to deselect the ones you do not want, or use the Deselect

all button to deselect all the components. You can then select the components

you do want. To find out more about a component, select it (or multiple compo-

nents), and then select Descriptions.

You do not have to install all the components at once; you can run the install

program again at a later time (described in “Adding or Deleting Components” on

page 19). You must select at least one component to continue with the install

program.

Note: Some components require that you also install other components for them

to work correctly. If you select a component that has such a prerequisite, a

message will prompt you to also select the required component.

The following lists components that require other components:

� COBOL GUI Designer requires WorkFrame, Editor, Compiler and Runtime

library, and Warp Toolkit Development Tools.

 Installing IBM VisualAge for COBOL for OS/2 9

Installing IBM VisualAge for COBOL for OS/2

| � WorkFrame requires the Warp Toolkit Development Tools.

� Data Assistant requires the Editor.

� Transaction Assistant requires the Editor.

� Remote Edit/Compile requires the Editor and WorkFrame.

� Data Description and Conversion requires SMARTdata UTILITIES.

As you choose the components, the Bytes Needed field shows you how much disk

space is required to install them.

8. Specify the directory or directories where you want to install the components.

Default values are provided for you; they install everything to a single directory

(IBMCOBOL) on the C: drive. You can install the components into different drives

and directories. Make sure you specify the drive as well as the directory name.

If you name a directory that does not exist, the install program creates it for you.

To see how much disk space is available on your hard drive, select Disk Space.

(You must have at least one component selected before you can select this

button.) The Disk space window appears and shows you the space available on

all drives, along with the bytes needed for the components you have chosen.

The install program does not prevent you from installing to a drive that does not

have enough space. If you will be overwriting files, you may have enough space

on a drive even though the installation program shows you do not. However, if

there is not enough space, the installation for VisualAge COBOL will fail. See “If

Something Goes Wrong” on page 25 for what to do if the program fails.

To set your installation directories to another drive, select the drive, check the

Change directories to selected drive field, and select OK. The install program

updates all of the directory fields to that drive, but does not change the directory

names. To return to the main install window without making any changes, select

Cancel.

9. When you have chosen the components to install and specified the target directo-

ries, select Install to start installing VisualAge COBOL.

The install program begins copying files to your hard drive. The Install progress

window shows you the status of the installation.

If for any reason you want to stop the install program, click on Stop in the Install

progress window. Once you have selected this button, you cannot resume the

program. You must end it completely and start from the beginning. A window

appears asking you whether you want to stop the installation. Select Yes, stop to

close the window and end the install program. The install program also asks if you

want to undo everything that it has done so far. We recommend you select Yes to

undo everything. If you select No, the install program leaves all the files it has

already installed on your hard drive. You will then need to erase these files before

you restart the install program, or select Overwrite files in the Install window.

10. If you selected the Remote Edit/Compile component, the license agreement for the

Remote Edit/Compile component window appears asking you if you agree with the

terms and conditions. Click Yes or No.

10 Getting Started

Installing IBM VisualAge for COBOL for OS/2

11. When the installation is nearly complete (and you chose to install the SMARTdata

UTILITIES component), the SMARTsort Installation prompt appears. You will be

setting some options to control the default behavior of SMARTsort. Select OK.

The SMARTsort Defaults window appears. The Default Memory setting deter-

mines how much memory SMARTsort will attempt to allocate during the sorting

process. The default working directory shown in the Default Directories field

stores the temporary work files created. For more information, select Help, or see

the SdU Library icon in the Books folder from the main VisualAge COBOL - Icon

View window.

When you are done, click OK.

12. If you selected the Compiler and Runtime library component, a message dialog

appears asking you whether or not you want to change the compiler default

options. If you click OK, the COBOL Compiler Default Options Tool dialog

screen appears as shown in Figure 3. This dialog allows you to accept or change

the compiler default options. For more information about the compiler options, click

on the Help push button, or see IBM VisualAge for COBOL for OS/2 Programming

Guide.

Figure 3. COBOL Compiler Default Options Tool

Note: Use the tool to set the default value of the compiler options when they are

specified in the compiler invocation or on CBL or PROCESS statements in the

COBOL source file. Do not use the tool to set or change compiler options for a

specific compilation.

You may:

� Accept the defaults provided by clicking on OK.

� Accept the changes you have made by clicking on OK.

 Installing IBM VisualAge for COBOL for OS/2 11

Installing IBM VisualAge for COBOL for OS/2

� If you made changes, but decide to change back to the defaults provided, and

stay within the tool, click on Default. This resets to the existing default

options.

� If you made changes, but decide to change back to the defaults provided, and

want to exit out of the tool, click on Cancel.

After the installation is complete:

� When you invoke the tool, it reads the current default options, which may not

be the default options provided by IBM.

� To use the tool, you must have write access to the directory where the

COBOL compiler is installed.

� You can invoke the tool at any time. Change to the DLL subdirectory where

you installed the COBOL compiler. For example, type:

cd IBMCOBOL\DLL
DIAMOND

� You can invoke the tool by double-clicking on the Compiler Default Options

Tool icon in the VisualAge COBOL Works folder.

13. A message window tells you when the installation is complete. Select OK to

remove the message window and return to the main VisualAge COBOL install

window.

14. In the main install window, select the Exit button, or Exit from the File menu to

end the install program.

Note: If you chose not to have the installation program update your

CONFIG.SYS, make the changes to it now before you reboot (see “Changing Your

CONFIG.SYS” on page 13).

15. Shut down and restart your system to make the changes to your CONFIG.SYS file

take effect.

16. If you chose to install the WorkFrame component, the installation program requires

a second phase, which is invoked from your Startup folder when you restart.

During the second phase, the installation program completes the WorkFrame

installation process.

An OS/2 window with the title WorkFrame V3 Phase 2 Install appears after you

have restarted. Messages appear in the window to inform you of the install pro-

gram's actions. When the installation is complete, the window disappears.

If you want to verify that the installation completed successfully, look for

IWZINST.LOG in your VisualAge COBOL directory (Visual Tools). The second

phase of the install program creates this file and timestamps the entries in it.

You have now successfully installed VisualAge COBOL, and are ready to go! See

“Getting Started with VisualAge COBOL” on page 35 for what to do next.

12 Getting Started

Changing Your CONFIG.SYS

Changing Your CONFIG.SYS

We recommend that you let the Installation Utility update your CONFIG.SYS file auto-

matically. However, if you chose not to have the install program update your

CONFIG.SYS file, you must make changes to the statements it contains before you can

use VisualAge COBOL. If you are installing WorkFrame, you must make these

changes before the second phase of the installation can begin.

The Installation Utility creates a file called CONFIG.ADD, which is a copy of your

CONFIG.SYS file with the VisualAge COBOL changes.

When you have finished changing CONFIG.SYS, restart your system to make the

changes take effect.

The following lists the component and its environment variables for CONFIG.SYS.

� Directories are indicated as follows. Table 1 on page 4 lists the specific compo-

nents for each directory (Compiler and Nonvisual Tools, Visual Tools, Remote

Edit/Compile, and Warp Toolkit).

<nonvis>

indicates the Compiler and Nonvisual Tools directory.

<vis>

indicates the Visual Tools directory.

<remote>

indicates the Remote Edit/Compile directory.

<toolkit>

indicates the Warp Toolkit directory.

� Ellipses (...) indicate that your other values will remain the same.

� All variable values are placed at the beginning of the statements, rather than at the

end.

COBOL Compiler & Runtime Library
LIBPATH=<nonvis>\dll...
SET PATH=<nonvis>\bin...
SET DPATH=<nonvis>\messages;<nonvis>\help...
SET TMP=<vis>\tmp
SET COBPATH=<nonvis>\dll
SET LIB=<nonvis>\lib...
SET NLSPATH=<nonvis>\messages\enus437\%N...
SET LOCPATH= <nonvis>\locale...
SET LANG= enus437
SET ICOBDIR=<vis>
SET ICOBFDIR=<nonvis>

| SET HELP=<vis>\help...

 Installing IBM VisualAge for COBOL for OS/2 13

Changing Your CONFIG.SYS

COBOL GUI Designer
LIBPATH=.;<vis>\dll;<vis>\ctrl...
SET PATH=.;<vis>\bin...
SET DPATH=<vis>\messages;<vis>\macros...
SET COBPATH=<nonvis>\dll
SET LIB=<vis>\lib...
SET HELP=<vis>\help...
SET BOOKSHELF=<vis>\help...
SET IWF.SOLUTION_LANG_SUPPORT=iwzvlogo;eng

VisualAge COBOL Information
LIBPATH=<nonvis>\dll...
SET PATH=<nonvis>\bin...
SET HELP=<nonvis>\help...
SET BOOKSHELF=<nonvis>\help...

 Data Assistant
LIBPATH=<vis>\dll...
SET PATH=<vis>\bin...
SET DPATH=<vis>\icon;<vis>\macros...
SET HELP=<vis>\help...

| SET ICOBDIR=<vis>

 Editor
LIBPATH=<nonvis>\dll...
SET PATH=<nonvis>\bin...
SET DPATH=<nonvis>\macros;<nonvis>\help...
SET HELP=<nonvis>\help...
SET BOOKSHELF=<nonvis>\help...
SET LPATH=<nonvis>\macros...

 Interactive Debugger
LIBPATH=<nonvis>\dll...
SET PATH=<nonvis>\bin...
SET DPATH=<nonvis>\messages...
SET HELP=<nonvis>\help...

 Performance Analyzer
LIBPATH=<vis>\dll...
SET PATH=<vis>\bin...
SET DPATH=<vis>\help...
SET LIB=<vis>\lib...
SET HELP=<vis>\help...
SET BOOKSHELF=<vis>\help...
DEVICE=<vis>\sys\cppopa3.sys

 Remote Edit/Compile

14 Getting Started

Changing Your CONFIG.SYS

LIBPATH=<remote>\dll...
SET PATH=<remote>\bin...
SET DPATH=<remote>\macros...
SET BOOKSHELF=<remote>\help...
SET HELP=<remote>\help...
SET CODESHRDIR=<remote>\code
SET CODETMPDIR=<vis>\tmp
SET CODELPATH=<remote>\macros;<remote>\macros\code
SET CODEHOSTCP=037
SET CODEINIDIR=<remote>\code
SET IWFPAM=iwfbpam iwfpmvs

 SMARTdata UTILITIES
LIBPATH=<nonvis>\dll...
SET PATH=<nonvis>\bin...
SET DPATH=<nonvis>\bin\mri2924...
SET INCLUDE=<nonvis>\include...
SET LIB=<nonvis>\lib;<vis>\lib...
SET EHNL=2924
SET EHNDIR=<nonvis>\bin
IFS=<vis>\dll\dfmsfl0.dll
SET NLSPATH=<vis>\messages\enus437\%N...
SET LOCPATH=<nonvis>\locale...
SET LANG=enus437

Data Description and Conversion
LIBPATH=<nonvis>\dll...
SET PATH=<nonvis>\bin...
SET INCLUDE=<nonvis>\include...
SET LIB=<nonvis>\lib;<vis>\lib...
SET FMTDIR=<nonvis>
SET FMTCDRA=<nonvis>\bin\convtabl

 Transaction Assistant
LIBPATH=<vis>\dll...
SET LIB=<vis>\lib...
SET HELP=<vis>\help...

 WorkFrame
LIBPATH=<vis>\dll...
SET PATH=<vis>\bin...
SET DPATH=<vis>\help...
SET HELP=<vis>\help...
SET BOOKSHELF=<vis>\help...
SET IWFPAM=iwfbpam
SET IWF.SOLUTION_LANG_SUPPORT=iwzvlogo;eng

 Installing IBM VisualAge for COBOL for OS/2 15

Installing Using Response Files

Warp Toolkit Development Tools
LIBPATH=<toolkit>\dll...
SET PATH=<toolkit>\bin...
SET LIB=<toolkit>\lib...
SET HELP=<toolkit>\help...
SET BOOKSHELF=<toolkit>\help...
SET DPATH=<toolkit>\help...
SET IPFC=<toolkit>\ipfc
SET SOMIR=<toolkit>\etc\som.ir...

| SET SOMRUNTIME=<nonvis>\som

Warp Toolkit Information
SET HELP=<toolkit>\help...
SET BOOKSHELF=<toolkit>\help...
SET CPREF=cp1.inf+cp2.inf+cp3.inf
SET GPIREF=gpi1.inf+gpi2.inf+gpi3.inf
SET PMREF=pm1.inf+pm2.inf+pm3.inf+pm4.inf+pm5.inf
SET WPSREF=wps1.inf+wps2.inf+wps3.inf
SET MMREF=mmref1.inf+mmref2.inf+mmref3.inf

Warp Toolkit Headers & Libraries
LIBPATH=<toolkit>\dll;<vis>\dll...

| SET INCLUDE=<toolkit>\include;<toolkit>\include\os2;<toolkit>\inc...
| SET SOMRUNTIME=<nonvis>\som
| SET SMINCLUDE=<toolkit>\include;<toolkit>\include\os2...

SET SMADDSTAR=1
SET SMEMIT=h;ih;c
SET SOMBASE=c:\ibmcobol
SET SMTMP=<vis>\tmp
SET SMCLASSES=wptypes.idl

Warp Toolkit Sample Programs
LIBPATH=<toolkit>\dll;<vis>\dll;<toolkit>\samples\toolkit\dll...
SET HELP=<toolkit>\samples\toolkit\help...

Warp Toolkit Multimedia Bitmaps
No environment variables are required.

When you have finished changing CONFIG.SYS, restart your system to make the

changes take effect.

Installing Using Response Files

If you are installing from a CD-ROM or LAN server, you can run the install program

unattended, using a response file to specify what to install and where.

To install using a response file:

1. Create a response file, or tailor the sample response file, UNATTEND.RSP, pro-

vided in the IBMCOBOL\EXTRAS directory of the CD-ROM. You can copy

16 Getting Started

Installing Using Response Files

UNATTEND.RSP to your hard drive and change the appropriate responses. Make

sure that:

� FILE specifies the directory where you want to install the Compiler and Non-

visual Tools.

� WORK specifies the directory where you want to install the Visual Tools.

� AUX1 specifies the directory where you want to install the Warp Toolkit.

� AUX2 specifies the directory where you want to install the Remote

Edit/Compile component.

� COMP keywords specify the components you want to install.

For a list of all the parameters you can change, see “Response Files, Options, and

Return Codes” on page 29.

2. From an OS/2 command line, change to the CD-ROM or LAN directory where the

install program resides.

3. Invoke the install program with the command:

install /A:I /X /R:d:UNATTEND.RSP /C:IBMCOBOL.ICF /P:"IBM VisualAge for COBOL for OS/2" /O:DRIVE

where d:UNATTEND.RSP is your response file.

Note: If you want to log any error messages that are generated, specify the

/L1:errorlog option, where errorlog is the path and file name to use for the error

log. This is usually a good idea because messages are not displayed during an

unattended install; if you don't log them, you will have no record of what errors

occurred.

For a description of these and other command-line options, see “Response Files,

Options, and Return Codes” on page 29.

4. You can then leave the install program unattended. When it is complete, the OS/2

command prompt appears in the OS/2 session where you ran the install
command.

5. If you chose not to have the installation program update your CONFIG.SYS, make

the changes to it now before you reboot. (See “Changing Your CONFIG.SYS” on

page 13 for details on the changes to make).

6. Shut down and restart your system to make the changes to your CONFIG.SYS file

take effect.

7. If you chose to install the WorkFrame component, the installation program requires

a second phase, which is invoked from your Startup folder when you restart.

During the second phase, the install program completes the WorkFrame installation

process.

An OS/2 window with the title WorkFrame V3 Phase 2 Install appears after you

have restarted. Messages appear in the window to inform you of the install pro-

gram's actions. When the installation is complete, the window disappears.

If you want to verify that the installation completed successfully, look for

IWZINST.LOG in your VisualAge COBOL directory (Visual Tools). The second

phase of the install program creates this file and timestamps the entries in it.

 Installing IBM VisualAge for COBOL for OS/2 17

Using a Software Distribution Manager

You have now successfully installed VisualAge COBOL, and are ready to go! See

“Getting Started with VisualAge COBOL” on page 35 for what to do next.

Using a Software Distribution Manager
You can also install VisualAge COBOL unattended over a LAN using a software distrib-

ution manager (SDM). Tailor the response file according to your needs and use it with

your SDM. Make sure you specify the correct options, as described above.

Your SDM must also check the value returned by the install program and perform the

appropriate action. Return codes and the actions required for each are described in

“Response Files, Options, and Return Codes” on page 29, along with all response file

parameters and command-line options.

18 Getting Started

Adding or Deleting Components

Adding or Deleting Components

Once VisualAge COBOL has been installed, you can go back to the install program to

install additional components or to delete components. If you need to reinstall a com-

ponent, you can delete it and then add it again.

You can use one of three ways to add or delete components:

1. Run the original install program interactively.

2. Use the Installation Utility icon from the VisualAge COBOL Works folder.

3. Run the original install program with a response file.

The steps for methods 1 and 2 are very similar, other than the initial interface. The

steps for using a response file are described in “Adding or Deleting Components Using

a Response File” on page 23.

If you are adding components, make sure you have access to the CD-ROM or LAN

directory where the VisualAge COBOL installation files reside.

To add or delete components with the original install program:

1. Insert the VisualAge COBOL CD-ROM, or access the LAN where the VisualAge

COBOL image resides.

2. From the command line, change to the directory where the install program is

located. (For the CD-ROM, it is the root directory; for the LAN directory name, ask

your LAN administrator.)

3. On the command line, type install.

The main VisualAge COBOL installation window and the Instructions window

appear.

4. Select Continue in the Instructions window.

The Installation options window appears showing three options.

Figure 4. Installation options window

 Copyright IBM Corp. 1995, 1996 19

Deleting Components

The options are:

� Update the currently installed components

Do not use this option. It is provided to support corrective service (CSDs) for

VisualAge COBOL fixes. To reinstall a component, delete it first, then reinstall.

� Delete the installed components and re-install

Choose this option to delete the installed components, including their Desktop

objects and entries in any .INI files. You can then reinstall them if you want.

The steps for deleting components continue in “Deleting Components.”

� Install additional components

Choose this option to install components that are not already installed. The

steps for adding components continue in “Installing Additional Components” on

page 22.

To add or delete components using the Installation Utility:

1. Open the Works folder inside the VisualAge COBOL - Icon View folder, or from

the command line, go to the VisualAge COBOL directory (Compiler and Nonvisual

Tools).

2. Double-click on the Installation Utility icon, or enter epfinsts from the command

line.

The Installation Utility window appears.

3. If you are adding components, you must select Open Catalog from the File pull-

down. Select Drive. The Open drive catalog window appears. In the Drive

entry field, select the drive where the install image resides (CD-ROM or a LAN

drive). In the Filename entry field, ensure that /IBMCOBOL.ICF is displayed. Click

on Open.

4. From the Action pull-down, select:

� Delete to delete installed components, including their Desktop objects and any

entries in .INI files. You can then reinstall them if you want. The steps for

deleting components continue in “Deleting Components.”

� Install to install additional components. The steps for adding components

continue in “Installing Additional Components” on page 22.

Note: Do not choose Update. This option is provided for corrective service

diskettes (CSDs) that contain product fixes. The Restore option restores a backup

version of a component, which you can choose to create when you update the

component with a CSD.

 Deleting Components

When you choose Delete the installed components and re-install from the Installa-

tion options window, or Delete from the Action pull-down of the Installation Utility:

1. The Delete window displays a list of the components you have installed.

20 Getting Started

Deleting Components

Figure 5. Delete window

2. Select the components you want to delete.

You can use the Select all button to choose all the components, or Deselect all to

deselect them and start again.

If you previously applied fixes to components and created backup versions, you

can delete just the backup versions by selecting the components and checking the

Delete backup versions only box.

3. When you have chosen the components to delete, select Delete.

The Delete - progress window shows the status of the deletion process. A

message window tells you when all of the component files and related information

have been deleted.

4. Select OK to remove the message window.

Notes:

a. You may get a message indicating that some files could not be deleted

because they were in use. Select OK to continue. When you shut down and

restart your system, these files will be deleted.

b. If you get this message, it is important to shut down and restart your system

before installing any components.

If you used the Installation Utility to delete the files, it reappears. If you used the

install program (install), the Installation options window reappears, as shown on

page 19.

5. To reinstall components, select Install additional components from the Installa-

tion options window, or select Install from the Installation Utility's Action pull-down.

 Adding or Deleting Components 21

Installing Additional Components

To end the install program, select the Exit button in the main install window, or

Exit from the File menu. To end the Installation Utility program, select Exit from

the File menu.

Installing Additional Components

When you choose Install additional components from the Installation options window,

or Install from the Action pull-down of the Installation Utility:

1. The Install window appears, as it did in the initial installation procedure, with two

checkboxes:

Update CONFIG.SYS

This box directs the install program to automatically update your

CONFIG.SYS file. (It also backs up CONFIG.SYS before making any

changes.) This box is checked by default; if you do not want the install

program to update your CONFIG.SYS, remove the checkmark by deselecting

the box.

Note: If you choose not to have the install program update your

CONFIG.SYS, you must make the changes yourself before you reboot. A

CONFIG.ADD file is created on the C: drive to help you. See “Changing

Your CONFIG.SYS” on page 13 for information on what you need to

change.

Overwrite files

Put a check in this box if you want to skip the prompt for confirmation when

the install program overwrites files in your target directory with the same

name as the files being installed.

Note: The installation program does not delete any obsolete files from

earlier versions.

2. When you have chosen the options you want, select OK to continue.

If you chose not to have the install program update CONFIG.SYS, a message box

reminds you to update the file yourself. Select Yes to continue with the installation.

The Install - directories window appears, looking slightly different than it did in the

initial installation.

Only components that you have not yet installed are displayed.

3. Select the components you want to install from the list.

As you choose the components, the Bytes Needed field shows you how much disk

space is required to install them. To get the description of a component, select the

component and select Descriptions. To see how much disk space is available on

your hard drive, select Disk Space. (You must have at least one component

selected before you can select this button.)

Any components that you choose are installed to the directories that were created

during the initial installation. If you want to install to different directories, you must

delete the original components and reinstall them to a different directory.

22 Getting Started

Adding or Deleting Components Using a Response File

4. When you have chosen the components to install, select Install to start installing

VisualAge COBOL.

The Install progress window shows you the status of the installation.

5. A message window tells you when the installation is complete. Select OK to

remove the message window and return to the Installation Utility window or the

main VisualAge COBOL install window where you started from.

6. To end the Installation Utility program, select Exit from the File menu. To end the

install program, select the Exit button, or Exit from the File menu.

Note: If you chose not to have the installation program update your

CONFIG.SYS, make the changes to it now before you reboot (see “Changing Your

CONFIG.SYS” on page 13).

7. Shut down and restart your system to make the changes to your CONFIG.SYS file

take effect.

8. If you chose to install the WorkFrame component, the install program requires a

second phase, which is invoked from your Startup folder when you restart. During

the second phase, the install program registers WorkFrame classes, updates any

sample projects you installed, and sets up COBOL Project Smarts.

An OS/2 window with the title WorkFrame V3 Phase 2 Install appears after you

have restarted. Messages appear in the window to inform you of the install pro-

gram's actions. When the installation is complete, the window disappears.

If you want to verify that the installation completed successfully, look for

IWZINST.LOG in your VisualAge COBOL directory (Visual Tools). The second

phase of the install program creates this file and timestamps the entries in it.

Adding or Deleting Components Using a Response File

To add or delete components using a response file:

1. Modify the appropriate parameters in your response file.

If you are deleting components, make sure that:

� COMP keywords specify the components to delete.

� DELETEBACKUP specifies whether you want to delete backup files,

If you are adding components, make sure that:

� FILE specifies the directory where you want to install the Compiler and Non-

visual Tools.

� WORK specifies the directory where you want to install the Visual Tools.

� AUX1 specifies the directory where you want to install the Warp Toolkit.

� AUX2 specifies the directory where you want to install the Remote

Edit/Compile component.

� COMP keywords specify the components you want to install.

2. Change to the CD-ROM or LAN directory where the VisualAge COBOL install

program resides.

 Adding or Deleting Components 23

Adding or Deleting Components Using a Response File

3. To delete components, enter:

install /A:D /X /R:d:UNATTEND.RSP /C:IBMCOBOL.ICF /P:"IBM VisualAge for COBOL for OS/2" /O:DRIVE

where d:UNATTEND.RSP is your response file.

To install additional components, enter:

install /A:I /X /R:d:UNATTEND.RSP /C:IBMCOBOL.ICF /P:"IBM VisualAge for COBOL for OS/2" /O:DRIVE

4. You can then leave the install program unattended while the components are

deleted or installed.

5. When the install program has finished, the OS/2 command prompt appears in the

OS/2 session where you ran the install command.

6. If you added components and chose not to have the installation program update

your CONFIG.SYS, make the changes to it now before you reboot. (See

“Changing Your CONFIG.SYS” on page 13 for details on the changes to make).

7. Shut down and restart your machine.

8. If you added the WorkFrame component, the install program requires a second

phase, which is invoked from your Startup folder when you restart. During the

second phase, the install program registers WorkFrame classes, updates any

sample projects you installed, and sets up COBOL Project Smarts.

An OS/2 window with the title WorkFrame V3 Phase 2 Install appears after you

have restarted. Messages appear in the window to inform you of the install pro-

gram's actions. When the installation is complete, the window disappears.

If you want to verify that the installation completed successfully, look for

IWZINST.LOG in your VisualAge COBOL directory (Visual Tools). The second

phase of the install program creates this file and timestamps the entries in it.

24 Getting Started

If Something Goes Wrong

If Something Goes Wrong

This section describes what to do if you encounter a problem or an error when you run

the install program. Online help is also available for error messages, both from the

Help button on the message window, or from the index or contents of the online install

help.

If You Get an Error Message

Select the Help button for the error for information on how to correct it. Also note the

message number and the file name where the error occurred, if one is indicated. If you

cannot successfully complete the installation and have to call VisualAge COBOL

Service and Support, this information may help identify your problem (see “Getting

Support for Using VisualAge COBOL” on page 83).

If the Component Requires Another Component

Many of the VisualAge COBOL components require that other components be installed

for them to work correctly. If you select a component to install without selecting its

prerequisite, a message prompts you to select the prerequisite also.

Select the prerequisite component, as indicated by the message. Note that the prereq-

uisite component may itself have prerequisites.

If You Press Stop

If you press the Stop button on the Install progress window, the install program imme-

diately stops and displays a window that asks if you want to back out of the installation

so far. You cannot resume the install program from this point; you must end it and start

again.

In the confirmation window:

� Select Yes to undo everything that the install program has done up to that point.

We recommend you choose this option. Any desktop objects are deleted.

� Select No to leave the files that have already been installed.

Once the program has ended, you can restart it from the beginning.

If the Install Program Fails

If the install program fails, it displays a window that asks if you want to back out of the

installation:

� Select Yes to undo everything that the install program has done up to that point.

We recommend you choose this option.

� Select No to leave the files that have already been installed.

 Copyright IBM Corp. 1995, 1996 25

If Something Goes Wrong

The most likely reason for the failure is that not enough disk space is available. To

solve this problem:

� Make more room on your target drive.

� Choose a different target drive.

� Select fewer components to install.

If disk space is not a problem, run CHKDSK on the:

� Drive where OS/2 is installed

� Target drive to ensure there are no file system problems.

If you are using a response file, make sure you specified responses for AUX1, AUX2,

CFGUPDATE, DELETEBACKUP, FILE, OVERWRITE, SAVEBACKUP, and WORK,

and at least one component name for COMP. If you do not give responses for these

keywords, the install program may fail. Make sure that you specified the component

names correctly. Also make sure that you specified the required command-line options

as described in “Installing Using Response Files” on page 16.

If you try the install program again with the response file, specify the command-line

options /L1:errorlog and /L2:historylog to create an error log and history log,

respectively. Specify the path and file name for both. If the problem still occurs, these

logs may help you determine the cause.

If you have tried all of these suggestions and the install program still fails, contact

VisualAge COBOL Service and Support (see “Getting Support for Using VisualAge

COBOL” on page 83).

If the Second Phase of Installation Fails

If the second phase of the install program fails, try running it again:

1. From an OS/2 command line, change to the Visual Tools directory where you

installed VisualAge COBOL.

 2. Type: iwzvfaz2

This command displays the correct parameters you need to provide to the Phase 2

install program.

You also need to remove the WorkFrame Phase 2 install icon from your Startup folder.

(This icon is removed automatically if the initial phase 2 install works correctly.) If you

do not remove it, the Phase 2 install will run every time you restart your system.

If you want to verify that the installation completed successfully, look for IWZINST.LOG

in your VisualAge COBOL directory (Visual Tools). The second phase of the install

program creates this file and timestamps the entries in it. Look for any entries con-

taining the word failed.

26 Getting Started

If Something Goes Wrong

| If the Second Phase of the Installation Does Not Run

| The install program causes the Phase 2 install to run by placing a program object in

| your Startup folder. You may have added SET RESTARTOBJECTS=NO in your

| CONFIG.SYS file. This prevents programs in your Startup folder from running automat-

| ically. You can manually run the Phase 2 install by double-clicking its program object in

| your Startup folder.

If You Can't Delete an Object Because It's in Use

When you delete a component, if any objects or files are in use, they are not deleted.

A message informs you when this happens. The rest of the component and its desktop

objects are deleted.

After you shut down and restart your system, these objects should be deleted automat-

ically.

If they are not, run the delete action again by changing to the Compiler and Nonvisual

Tools directory, where you installed VisualAge COBOL. From an OS/2 command line,

go to where the Compiler and Nonvisual Tools directory is located and type epfinsts.

If VisualAge COBOL Doesn't Appear in the Installation Utility

If you start the Installation Utility and VisualAge COBOL is not listed in the window,

select Current Catalog from the View menu to display it.

If You Can't Install Additional Components

If you attempt to use the Installation Utility to install additional components and get an

error of EPFIE114, you must select the drive where the install image resides. See step

3 on page 20.

If You've Tried Everything and It Still Doesn't Work

If the install program continues to fail after you've tried everything suggested by the

error message help and this section, contact VisualAge COBOL Service and Support

(see “Getting Support for Using VisualAge COBOL” on page 83).

Be sure to inform them what error messages you see, and what file names, if any, are

given in those messages. If you are using response files, tell them the contents of your

error and history logs.

 If Something Goes Wrong 27

If Something Goes Wrong

28 Getting Started

Response Files, Options, and Return Codes

Response Files, Options, and Return Codes

This section describes all the response file parameters that you can tailor for an unat-

tended install, the different command-line options you can use, and the values the

install program returns.

Response File Format and Parameters

The response file is a flat ASCII file that consists of a number of response lines and

optional comment lines. Lines can be up to 255 bytes in length, and are separated by

a new-line sequence.

A comment line begins with an asterisk (*) or semi-colon (;). Response lines tell the

install program how to install. Each response line has the format:

keyword = response

Keywords are not case sensitive.

For the VisualAge COBOL install program, the keywords and the responses to specify

for each are:

Keyword Response

AUX1 The directory where you want to install the Warp Toolkit.

AUX2 The directory where you want to install the Remote Edit/Compile compo-

nent.

CFGUPDATE

AUTO to automatically update CONFIG.SYS; MANUAL to not update

CONFIG.SYS. If you choose not to update CONFIG.SYS automatically,

you must update it yourself before you reboot (see “Changing Your

CONFIG.SYS” on page 13). You will also be prompted by the install

program to confirm that this is what you want.

COMP The name of a component to install. You must specify each component

with its own COMP keyword. Note that many components require that

other components be installed to work correctly. All the components are

listed in UNATTEND.RSP; you can delete any you do not want.

COPY The source and target files for a copy process outside of the install

program. This parameter is useful if you are using an SDM to install

VisualAge COBOL over a LAN, and you want to copy other files that are

not part of VisualAge COBOL to the workstations. The format for COPY

is:

COPY = sourcefile targetfile

If targetfile already exists, it is overwritten. If either file specification is

incorrect, the copy is not done.

 Copyright IBM Corp. 1995, 1996 29

Response Files, Options, and Return Codes

DELETEBACKUP

YES to delete a backup version along with the product when Delete is

chosen; NO to keep the backup version. This setting is only used when

you delete the product. See “Adding or Deleting Components” on

page 19 for details on deleting the product.

Note: If you do not specify this keyword for an unattended delete, the

deletion fails.

FILE The directory where you want to install the Compiler and Nonvisual

Tools.

INCLUDE The name of another response file to include. You can have up to five

levels of nested response files. If you don't specify the fully-qualified file

name, the install program looks for the response file using the following

search order:

1. The current directory.

2. The path specified by the /G command-line option.

3. Directories specified by the PATH environment variable.

4. Directories specified by the DPATH environment variable.

If the file name specified contains a wildcard character (* or ?), the first

matching file is used.

OVERWRITE YES to overwrite files on the target install drive; NO if you do not want to

overwrite files. Note that if you specify NO and files exist on that drive

with the same name as VisualAge COBOL files, the installation will not

continue.

SAVEBACKUP

YES to save a backup copy; NO to not save a backup. This setting is

only used when you install corrective service (CSDs) for VisualAge

COBOL.

USEREXIT The name of a program that you want the install program to call. This is

useful if you are installing VisualAge COBOL using an SDM, and want to

perform additional tasks. If you do not specify the fully-qualified file

name, the install program looks for the program file using the following

search order:

1. The current directory.

2. Directories specified by the PATH environment variable.

3. Directories specified by the DPATH environment variable.

If the file name specified contains a wildcard character (* or ?), the first

matching file is used.

WORK The directory where you want to install the Visual Tools.

You must specify responses for the AUX1, AUX2, CFGUPDATE, DELETEBACKUP,

FILE, OVERWRITE, SAVEBACKUP, and WORK keywords, and specify at least one

component for the COMP keyword, for the install program to work correctly.

30 Getting Started

Command-Line Options

 Command-Line Options

You can specify a number of command-line options for the install command:

 /A
 /C
 /O
 /P
 /R
 /X

All other options are optional.

The command-line options are:

/A:action
Specifies the action to perform. action can be any of:

D Delete.

I Install.

R Restore.

U Update. (Note that you should only use this action when you are installing

corrective service (CSDs) to VisualAge COBOL.)

/C:d:\dir\/C:IBMCOBOL.ICF
Specifies the catalog file that contains the information about the VisualAge

COBOL files. You must specify the drive and directory, which are the same as

the install program.

/G:includepath
Specifies the path the install program should use to locate response files.

/L1:d:\dir\errorlog
Specifies the error log file. The install program logs any errors to this file and

prefixes them with a timestamp. If you do not specify the path and file name,

IWZINSTS.OUT is created in the temporary install directory (usually on the drive

with the most available space). If you do not specify this option, messages are

not logged.

/L2:d:\dir\historylog
Specifies the history log file. The install program logs the install events in this file

and prefixes them with a timestamp. If you do not specify a path and file name,

the history log is created in the temporary install directory (usually on the drive

with the most available space). If you do not specify this option, the history is not

logged.

/O:DRIVE
Specifies that the program files are being copied from a local or remote disk

drive, not a mainframe host.

/P:"IBM VisualAge for COBOL for OS/2"
Specifies the name of the product to install.

 Response Files, Options, and Return Codes 31

Return Codes

/R:d:\dir\UNATTEND.RSP
Specifies the response file to use. If you do not specify the fully-qualified file

name, the install program looks for the response file using the following search

order:

1. The current directory.

2. The path specified by /G, if any.

3. Directories specified by the PATH environment variable.

4. Directories specified by the DPATH environment variable.

/S:d:\sourcedir
Specifies the directory where the source files reside.

/T:d:\targetdir
Specifies the directory where the files should be installed. If you use this option,

it overrides what is specified for FILE in the response file.

/TU:d:\dir\CONFIG.SYS
Specifies the CONFIG.SYS file to be updated.

/X Specifies that the install program runs unattended, using a response file.

 Return Codes

The install program returns a 2-byte hexadecimal value to the SDM, indicating success

or failure, what steps should be taken next, and what type of messages, if any, were

logged:

� Successful installation. No other action required.

00 00 No messages were logged.

� Successful installation. Restart the workstation operating system. Do not call the

install program again.

FE 00 No messages were logged.

FE 04 Warning messages were logged.

FE 08 Error messages were logged.

FE 12 Severe error messages were logged.

� Successful installation. Restart the workstation operating system and call the

install program again.

FF xx xx can be any value from 00 to FF.

� Installation did not complete successfully; an expected condition was encountered.

16 00 The install program was invoked incorrectly.

16 04 Messages were logged.

32 Getting Started

Return Codes

If you created user exits for the install program to call (as specified by the USEREXIT

keyword in the response file), your user exit must return a 2-byte hexadecimal value to

the install program as follows:

00 00 Your program completed successfully.

FE 00 Your program completed successfully, and requires the workstation operating

system to be restarted without calling the install program again. When you

return this value, the install program displays a message to restart the oper-

ating system.

FF xx Your program completed successfully, and requires the workstation operating

system to be restarted and the install program to be called again. When you

return this value, the install program displays a message to restart the oper-

ating system and to try the action again.

If your program is in REXX, you can use the REXX EXIT command and return the

value in decimal instead of hexadecimal.

If your program returns a different value to the install program, the install program dis-

plays a message that a product-specific error occurred, indicating the name of your

program and the return code.

 Response Files, Options, and Return Codes 33

Return Codes

34 Getting Started

Getting Started with VisualAge COBOL

The Getting Started section provides an introduction to the VisualAge COBOL environ-

ment.

“Getting Started with VisualAge COBOL” assumes that you have installed the product

on your workstation, and that you are ready to get going. If you haven't installed the

product yet, follow the instructions in “Installing VisualAge COBOL” on page 1 of this

book.

You also need to know how to use a mouse to manipulate windows, icons, and other

objects on the OS/2 desktop. Appendix A, “Using OS/2” on page 131 presents a brief

overview of using OS/2. For more practice using OS/2, you can take the OS/2 Tutorial.

The OS/2 Tutorial provides a hands-on overview of basic tasks. It is normally located

in the Information folder on your desktop.

The topics in this section are:

Introducing IBM VisualAge for COBOL for OS/2 37

Build Your First VisualAge COBOL Application 43

Build Your First VisualAge COBOL GUI Application 49

Tools in VisualAge COBOL . 69

Tasks and Information for VisualAge COBOL 75

Using the Information with VisualAge COBOL 79

Getting Support for Using VisualAge COBOL 83

 Copyright IBM Corp. 1995, 1996 35

36 Getting Started

Introducing VisualAge COBOL

Introducing IBM VisualAge for COBOL for OS/2

IBM VisualAge for COBOL for OS/2 is a COBOL development environment for creating

applications on OS/2.

It offers the best of both traditional and cutting-edge COBOL programming. It provides

a set of workstation tools for developing COBOL applications. VisualAge COBOL also

features object-oriented extensions to COBOL, which enable you to create object-

oriented programs in a language familiar to you.

What You Can Do Using VisualAge COBOL

VisualAge COBOL enables you to create stand-alone OS/2 COBOL applications—with

or without graphical user interfaces (GUIs)—and to integrate your COBOL applications

across a client/server environment.

Create OS/2 COBOL Applications
If you are creating a COBOL application with a GUI, VisualAge COBOL provides a GUI

Designer from which you can create your interface, add the COBOL logic, and build the

completed application.

You can also create traditional non-GUI COBOL applications. VisualAge COBOL pro-

vides the same set of visual, workstation application development tools to edit, compile,

debug, and analyze your code.

Create Client/server Applications
VisualAge COBOL provides client/server support across a wide variety of platforms.

VisualAge COBOL enables you to create applications with OS/2 as your client and

either OS/2, AIX, or MVS as the server. To do this, you need the appropriate compiler

for the server platform.

 Copyright IBM Corp. 1995, 1996 37

Introducing VisualAge COBOL

Figure 6. Client/server Computing Using IBM VisualAge for COBOL for OS/2. VisualAge COBOL

provides client/server support across many platforms.

For data support, VisualAge COBOL gives you local and remote access to DB2 and

VSAM. You can also access data managed by Btrieve**.

Create Object-Oriented Applications
VisualAge COBOL's object-oriented extensions offer greater opportunities for extending

and reusing software. They enable you to develop new applications by defining data

and the functions that operate on that data together in software modules called

classes. This gives you the flexibility to change the structure of the data later without

having any impact on the applications that access that data. These classes can then

serve as the building blocks for reuse.

Your VisualAge COBOL Development Environment

VisualAge COBOL provides a complete development environment for creating many

possible types of applications. WorkFrame integrates your development environment

by organizing your workplace into projects—a logical grouping of files and their associ-

ated tools.

Edit, Compile, and Debug
VisualAge COBOL provides a set of visual tools to edit, compile, and debug your pro-

grams. When you set up your application project, these tools are available from the

pop-up menus of your application files.

38 Getting Started

Introducing VisualAge COBOL

Create a GUI for Your Application
The visual GUI Designer enables you to build complex graphical user interfaces quickly

and easily. You do not need in-depth GUI programming knowledge to create your

application. With the GUI Designer, you select user interface controls and drop them

onto your application window. These user interface controls enable you to build GUIs

that conform to the IBM Common User Access (CUA) architecture guidelines. You then

add the COBOL logic for your application using the GUI Designer and the language-

sensitive COBOL Editor.

Create CICS ECI Calls and SQL Statements
The Transaction Assistant helps you generate a parameter list and the appropriate

code for invoking CICS transactions. For example, your application can use a CICS

transaction to invoke a server running under CICS on another system.

The Data Assistant enables you to visually map relational database information and

| generate syntactically-correct SQL statements in your COBOL applications.

Access Local and Remote Data
VisualAge COBOL provides you with access to your data in the following ways:

� VSAM data stored locally using the VSAM/2 record file system, and VSAM data

stored remotely using VSAM APIs.

� Data managed by Btrieve using the file processing capabilities of COBOL.

� Local and remote DB2 data using DB2 for OS/2.

� Local and remote CICS data using CICS for OS/2.

Analyze Program Performance
You can tune and understand your programs by monitoring your program execution and

generating a function-by-function trace of the run. This trace can be examined by utility

programs that graphically display the execution trace.

 Introducing IBM VisualAge for COBOL for OS/2 39

Introducing VisualAge COBOL

Concepts for Developing an Application Using VisualAge COBOL

The VisualAge COBOL development paradigm centers around the concept of a project.

A project is a container of your application files, such as COBOL source files, copy

files, listings, object code, and executable files. These application files are known as

project parts.

Figure 7. VisualAge COBOL Project. Projects contain your application files.

The project is set up to enable you to perform actions on those parts. The actions vary

depending on the type of part. For example, an action appropriate for a COBOL source

part would be edit. However, the edit action would not be appropriate for an executable

file.

40 Getting Started

Introducing VisualAge COBOL

Figure 8. VisualAge COBOL Default Actions. VisualAge COBOL provides default, file-specific

actions.

VisualAge COBOL supplies default projects that contain actions for the various types of

parts you might have. You can modify existing actions and add new actions. For

example, you may have a tool that searches through your COBOL source for COPY

statements. You can add an action that would enable this tool to be invoked for all

COBOL source files.

Figure 9. Customized VisualAge COBOL Actions. You can customize a COBOL project with your

own tools.

 Introducing IBM VisualAge for COBOL for OS/2 41

Introducing VisualAge COBOL

42 Getting Started

Creating the Project

Build Your First VisualAge COBOL Application

This chapter will guide you through building your first VisualAge COBOL application.

The steps you follow here teach you the basic principles that you will use for further

applications that you build. When you finish, you will have an application that displays

a customized greeting.

Figure 10 shows you what the application's interface will look like when you have fin-

ished.

Figure 10. Hello Application. A COBOL application you can build using VisualAge COBOL.

Notice that this is an application that does not have a graphical user interface (GUI);

you will build a GUI application in “Build Your First VisualAge COBOL GUI Application”

on page 49.

The main steps you will follow are:

� Creating the project

� Coding the application

� Building the application

� Running the application

This chapter assumes that you are familiar with using the OS/2 interface. If you are not

familiar with OS/2, either take the OS/2 Tutorial (normally located in the Information

folder on the OS/2 desktop) or review Appendix A, “Using OS/2” on page 131.

Creating the Project

Your first step in developing an application with VisualAge COBOL is to set up a

project. A project contains all of the components you need to build a target, for

example, the files you need to create an application. The Hello Application project you

 Copyright IBM Corp. 1995, 1996 43

Creating the Project

create in this chapter contains a COBOL source file (a component or project part) from

which you build the running COBOL program (a target).

To set up a new project:

1. Double-click on the VisualAge COBOL icon. The VisualAge COBOL - Icon View

window opens.

2. Double-click on the Create New Project icon. The IBM VisualAge COBOL -

Create New Project window opens, as shown in Figure 11.

Figure 11. Create New Project window. The starting point for creating COBOL projects.

3. In the Choose Project Type group, ensure that the Create a default COBOL

project radio button is selected.

4. In the Default Project Specifications group, specify your project's name and the

location where the project's files are stored. In the entry field titled Enter a name

for your project, enter the name Hello Application.

| 5. In the entry field titled Enter a directory for your project's files, enter the direc-

| tory where you are planning to put your source files. If you click in the entry field,

| the name is automatically updated to \HelloApp. The name is also updated to

| HelloApp.exe in the Enter the target for your project entry field.

| 6. Click on the OK push button to create the project. Since the directory for the Hello

| Application (\HelloApp) has not yet been created, a message window appears.

Click on the OK push button. The directory is created and the Hello Application -

Icon view window opens.

44 Getting Started

Creating the Application

Now that you have created your project, you can create the files you need for the appli-

cation.

Creating the Application

Once you have created a new project, you have a set of tools available for the files you

create for your program.

To create the COBOL source file for the Hello Application project:

1. From the Hello Application - Icon view window, select the Project menu-bar

choice, then select the arrow button next to the Create choice.

2. A cascaded menu appears. From the cascaded menu, select Create New Text

File with the COBOL Editor. The New window appears, in which you specify

options for your new file.

3. In the New window, click on the drop-down arrow to the right of the Language

Profile drop-down combination box. Locate the item CBL; you might have to scroll

to find it. Click on CBL to select it. This sets the COBOL language-sensitive

editing features on.

4. Click on the New pushbutton. The COBOL Editor displays the window titled Editor

- Untitled Document 1 and recognizes the file as a COBOL file.

You can tell that the language-sensitive editing features are on by checking to see

that the format line, the line just below the menu bar, displays *, A, and B, as

shown in Figure 12. If you cannot see the format line, you can display it by

selecting View, then selecting Format line.

Figure 12. Editor window. The COBOL Editor shown with language-sensitive editing enabled.

5. Enter the source code shown in Figure 13 on page 46.

 Build Your First VisualAge COBOL Application 45

Creating the Application

\\\
 IDENTIFICATION DIVISION.
\\\

| PROGRAM-ID. HELLOAPP.
 AUTHOR. Tester.

\\\
 ENVIRONMENT DIVISION.
\\\
 CONFIGURATION SECTION.
\SOURCE-COMPUTER.
\OBJECT-COMPUTER.

\\\
 DATA DIVISION.
\\\
 WORKING-STORAGE SECTION.

 01 PROGRAM-WORK-FIELDS.
 05 INPUT-NAME PIC X(30).
 05 OUTPUT-NAME PIC X(37).

 01 PROGRAM-FLAGS.
 05 LOOP-FLAG PIC 9(01).
 88 LOOP-DONE VALUE 1.
 88 LOOP-NOT-DONE VALUE 0.

\\\
 PROCEDURE DIVISION.
\\\

 0000-MAINLINE.

 INITIALIZE PROGRAM-WORK-FIELDS
 PROGRAM-FLAGS.

PERFORM UNTIL LOOP-DONE
DISPLAY " "
DISPLAY "Enter a name or Q to quit:"

 ACCEPT INPUT-NAME
IF FUNCTION UPPER-CASE (INPUT-NAME) = "Q"

SET LOOP-DONE TO TRUE
 ELSE

MOVE SPACES TO OUTPUT-NAME
MOVE "Hello, " TO OUTPUT-NAME (1:7)
MOVE INPUT-NAME TO OUTPUT-NAME (8:30)

 DISPLAY OUTPUT-NAME
 END-IF
 END-PERFORM.

 0000-EXIT.
 GOBACK.

Figure 13. COBOL Source Code for the Hello Application

6. When you have finished entering the source code, save the file. To save the file,

select the File menu-bar choice, then select Save as. Ensure that the Directory

| list box shows HELLOAPP as the selected directory. Enter helloapp.cbl in the

| Save as filename field and click on the Save As push button. Then close the

COBOL Editor by double-clicking on the system-menu symbol in the upper-left

corner of the window.

46 Getting Started

Building the Application

7. If the file doesn't appear in the Hello Application - Icon view window, make the

window active by clicking on its title bar, then press F5 (refresh).

You are now ready to build the application.

Building the Application

When you build your application, the target file that you specify is created. For the

Hello Application, you just have a single COBOL source object, which you build into a

running COBOL program.

1. Select the Project menu-bar choice, then select Build. From the cascaded menu,

select Build normal.

| 2. The target, an executable file titled helloapp.exe, is created from the COBOL

source file. As the build runs, you can see its progress in the Monitor. The

Monitor appears at the bottom of the Hello Application - Icon view window.

3. When the build is complete, the Monitor displays the return code and new files

appear in the Hello Application - Icon view window, as shown in Figure 14.

| Figure 14. Hello Application - Icon view window with Monitor. Monitor shows progress of the

| build and the final return code.

A return code of 0 means that the target was built without errors.

If you do not get a return code of 0, the Monitor window displays error messages.

Scroll back up to the error message lines that have the drive, path names, and

| source file name (helloapp.cbl) as well as the error message text. Some linker

 Build Your First VisualAge COBOL Application 47

Running the Application

| error messages also contain drive, path, and file names. These are the compiler

error messages. Double-click on a compiler error message line.

Note: You can only double-click on the compiler error messages to fix errors in

the source program.

| The COBOL Editor appears, showing the line in the helloapp.cbl source file

| where the error occurred. Correct the error and save the file. To build it again,

select the Project menu-bar choice, then select Build. You will see the results of

the second build in the Monitor window.

You are now ready to run the Hello Application.

Running the Application

You can run your application from the Hello Application - Icon view window. To run the

Hello Application, select the Project menu-bar choice, then select Run. An OS/2

window appears and runs your program.

| Figure 15. Hello Application. The Hello Application in action....

48 Getting Started

Creating the GUI Project

Build Your First VisualAge COBOL GUI Application

This chapter will guide you through building your first VisualAge COBOL application that

has a graphical user interface (GUI).

When you finish, you will have an application similar to the one you developed in “Build

Your First VisualAge COBOL Application” on page 43, but the application will have a

GUI. Although there are some differences when you create an application that has a

GUI, many of the tools are as those you used to build the character-based Hello appli-

cation. Figure 16 shows you what the application's GUI will look like when you have

finished.

Figure 16. Hello GUI Application. A COBOL application you can build using VisualAge COBOL.

The main steps you will follow are:

� Creating the GUI project

� Creating the graphical user interface

� Creating the application logic

� Building the application

� Running the application

This chapter assumes that you are familiar with using the OS/2 interface. If you are not

familiar with OS/2, either take the OS/2 Tutorial (normally located in the Information

folder on the OS/2 desktop) or review Appendix A, “Using OS/2” on page 131.

Creating the GUI Project

Your first step in developing a GUI application with VisualAge COBOL is to set up a

GUI project. Like other projects, the GUI project contains the components you need to

create a specific target; for example, the files you need to create an application.

 Copyright IBM Corp. 1995, 1996 49

To set up a new GUI project:

1. Double-click on the VisualAge COBOL icon. The VisualAge COBOL - Icon View

window opens.

2. Double-click on the Create New Project icon. The IBM VisualAge COBOL -

Create New Project window opens.

3. In the Choose Project Type group, select the Select from predefined project

types radio button and click on the OK push button.

4. The COBOL Project Smarts - Catalog View window opens, as shown in Figure 17.

| Figure 17. COBOL Project Smarts - Catalog View. Create COBOL projects from the COBOL

| Project Smarts.

From the Available Projects list box, select COBOL GUI Designer Project and

click on the Create push button.

| 5. The COBOL GUI Designer opens. This may take a few moments.

Creating the Graphical User Interface

Now that your project is set up, you can create the GUI for the application. You will

use the COBOL GUI Designer to create the GUI for the Hello GUI Application.

The COBOL GUI Designer enables you to build GUIs by dragging and dropping the

GUI parts, such as a check box, onto a window part. It also enables you to create the

logic that runs the GUI application.

50 Getting Started

Since you chose to create a GUI Project during the project set-up, the COBOL GUI

Designer - Untitled, Parts Palette, and Window with canvas windows should appear on

your desktop.

Figure 18. COBOL GUI Designer. GUI Designer window with Parts Palette and Window with

canvas.

The COBOL GUI Designer - Untitled window is the main window. When you initially

open this window, it assumes you want to create a new GUI. The COBOL GUI

Designer creates a new window part for you, titled Window with canvas.

The Parts Palette contains the parts you use to construct your GUI. You use your

mouse pointer to move parts onto the Window with canvas.

Notice that when you move the mouse pointer over an object in the Parts Palette, the

name of the object appears in the information area at the bottom of the Parts Palette

window. Make sure that the entire Parts Palette window is visible so you can see the

information area at the bottom of the window. This will help you identify the parts.

If you are not familiar with GUI parts, the Parts Catalog might be helpful to you as you

learn to use the COBOL GUI Designer. The Parts Catalog is a notebook with the GUI

parts labeled and grouped into categories, as shown in Figure 19 on page 52.

 Build Your First VisualAge COBOL GUI Application 51

Adding the GUI Parts

Figure 19. COBOL GUI Designer - Parts Catalog notebook. A helpful way to access GUI parts.

To change the Parts Palette window to display the Parts Catalog, click on the small

icon that resembles a notebook in the upper right corner of the Parts Palette window.

This icon acts as a toggle: the window changes to display the Parts Catalog notebook

and the icon changes to a palette. When you click on the icon in the upper right corner

again, the notebook changes back to the Parts Palette window.

Note: Although you can easily switch from the Parts Palette to the Parts Catalog and

back again, these windows are not identical. Parts may be added to the Parts Catalog

that are not automatically reflected in the Parts Palette.

Adding the GUI Parts
Using the Parts Palette or the Parts Catalog, drag and drop1 the following parts onto

the Window with canvas, as shown in Figure 20 on page 53.

As you place the parts on the Window with canvas, make sure that you align your parts

with the bottom margin of the window. This ensures that if you change the size of the

window, your parts will stay in view.

52 Getting Started

Customizing the GUI

Figure 20. COBOL GUI Designer with GUI Parts. Window with canvas shown with the GUI parts

for the Hello GUI.

1. Drag and drop one Static Text field onto the window.

2. Drag and drop two Entry fields onto the window. The first should be between the

static text field and the right border of the window. The second should be beneath

the first entry field.

3. Drag and drop one Push button between the second entry field and the bottom of

the window.

Customizing the GUI
When you have parts on the window, you can change the parts to customize them for

your application.

For the Hello GUI Application, you need to change some of the part attributes. You

can change these attributes by using the settings notebook.

The settings notebook is used to set the initial run-time attributes for parts on your inter-

face, such as color and font. You can also use the settings notebook for a part to

change the part's name, which your program uses to query and change the part's

appearance while the program runs.

First, change the attributes for the first Entry field part:

1. Double click on the first Entry field part to open the Entry Field Part Settings

notebook.

2. Move the cursor to the Part name entry field and change the contents to NAME.

The part name is the internal name by which your part will be known. This name

will also appear in your COBOL program and in the VisualAge COBOL tools that

1 To drag and drop an object, move the mouse pointer over the object you want to move or copy and press mouse button 2. Move

the object over the place you want it, then release the mouse button.

 Build Your First VisualAge COBOL GUI Application 53

Customizing the GUI

assist you in creating the COBOL code. You don't have to change the part name.

By giving it a meaningful name, as you would with a variable in a program, the part

will be easier to identify when you are creating the Hello GUI Application logic.

When you create your own GUI programs, ensure that you have the part names

you want corresponding to the correct GUI part.

3. Select the Data tab and set the length of the entry field to 30.

When you've completed the steps above, the settings notebook should resemble

Figure 21.

Figure 21. Settings Notebook for the Entry Field Part. Entry Field Part Settings with new part

name.

4. Double-click on the system-menu symbol at the upper left corner of the settings

notebook window. Your changes are saved.

Next, change the attributes for the rest of your parts:

� For the second Entry field part, change the part name to GREETING. Select the

Style tab and click on the Read-only check box.

� For the push button, change the part name to GREETME and the label to Greet me.

� For the static text part, change the text to What is your name?.

� For the Window with canvas part, double-click on the title bar of the Window with

canvas. Change the part name to HELLOGUI and the title to Hello.

54 Getting Started

Saving the GUI Project

Moving and Sizing GUI Parts
You may need to move or change the size of the parts to fully view the labels or see

the contents of entry fields.

To move a part:

1. Select the part by clicking on it with mouse button 1.

2. Move the mouse pointer over the part.

3. Click and hold mouse button 2.

4. Move the mouse to the place you want the part.

5. Release the mouse button.

To size a part:

1. Select the part by clicking on it with mouse button 1. Small boxes, or “handles,”

appear around the part.

2. Move the mouse pointer over a handle, so that the mouse pointer changes to a

double-headed arrow.

3. Press and hold mouse button 2.

4. Move the mouse until the part is the size you want.

5. Release the mouse button.

When you have finished, the GUI window should resemble the window in Figure 22.

Figure 22. The completed Hello GUI window design

Saving the GUI Project
To save the GUI project, select Project, then select Save, as shown in Figure 23 on

page 56.

 Build Your First VisualAge COBOL GUI Application 55

Saving the GUI Project

Figure 23. Saving the COBOL GUI Project

The COBOL GUI Designer - Save as Application window appears. When you save a

new application, COBOL GUI Designer - Save as Application window enables you to

select the name and location of your project.

Figure 24. COBOL GUI Designer - Save as Application window

For the Hello GUI Application, perform the following steps:

1. Type Hello GUI Application in the Application Name field.

56 Getting Started

Event-Driven Programming

2. Ensure that the New application radio button is selected (it is the default).

3. For Folders and projects on desktop, select the desktop item (Desktop by

default).

4. In the Source file field, the file name is HelloGUI. This defaults to the first 8 char-

acters of the Application name—in this example, Hello GUI Application. You can

change the default as desired.

5. In the Source directory field, the default directory displayed is a modification of

the current directory. For example, if you are in the directory C:\IBMCOBOL and

your source file name is HelloGUI, the default source directory is

C:\IBMCOBOL\HelloGUI. You can change the default as desired.

6. Click on OK.

The Hello GUI Application project is created. The COBOL GUI Designer window title

changes from Untitled to your new application name. For the Hello GUI Application, it

changes to Hello GUI Application. The project files are saved in the path you speci-

fied in the Source directory field. The next time you save your work, select the

Project menu-bar choice, then select Save.

Note: When you create your own GUI projects, you can save the GUI project at any

point before you build the GUI project.

Creating the Application Logic

Your next step for developing the Hello GUI Application involves coding the logic

behind the parts in your GUI. The COBOL program behind your GUI follows the event-

driven programming paradigm.

 Event-Driven Programming
If you have developed COBOL applications on a mainframe system, you are familiar

with procedural programming techniques. If you plan to develop GUI applications with

the COBOL GUI Designer, you need an understanding of event-driven programming

techniques.

There is one main difference between these two programming techniques: an applica-

tion developed using procedural programming has one entry and one exit point, but an

application developed using event-driven programming has many entry and exit points.

These entry and exit points correspond to the different events that cause the program

to take action; for example, the user interacting with the user interface.

When you write a COBOL program using procedural programming, the program has

one point of entry and exit. The program follows each step in the program logic

sequentially until it reaches the end of the logic.

 Build Your First VisualAge COBOL GUI Application 57

Event-Driven Programming

COBOL Source

..
..

..
..

DISPLAY USER INTERFACE

RETRIEVE USER INTERFACE

Custnum
Name
Address
City
Code

F3 - EXIT

User Interface

Figure 25. Procedural Programming

An event-driven program is a program that runs segments of logic in response to

events. It has entry and exit points that correspond to the many events that can

happen with respect to the program. When you run an event-driven program, all logic

in your application waits for certain events to happen, such as when the user clicks the

Greet me push button. Once a selected event occurs, only the logic for that event is

performed, then the application waits for the next event.

When you write a COBOL program using the COBOL GUI Designer, you use event-

driven programming techniques. The logic flow is determined by the events that you

have chosen for the parts in your graphical user interface. With the help of the COBOL

GUI Designer, you can code COBOL logic to respond to these events. Event logic is

identified in your COBOL program by an ENTRY statement. The statements between

each set of ENTRY and GOBACK statements (including the ENTRY and GOBACK) are

executed when the corresponding event for the logic has been signalled. Each graph-

ical user interface part responds to a number of events.

58 Getting Started

Creating the Event Logic

Event-Driven Model

COBOL Program Source Graphical User Interface

..
..

....

..
..

....

..
..

....

1

2

Greet Me

Figure 26. Event-Driven Programming

For example, in Figure 26:

1. A window is displayed.

2. When the end-user triggers an event in the window, the appropriate logic is per-

formed. In this case, the user chooses the Greet me push button and the corre-

sponding logic is performed. The program then waits for the next event to occur.

Creating the Event Logic
The COBOL GUI Designer helps you code the event logic. Each part you place on the

user interface has a pop-up menu choice titled Events, from which you select the event

to which your logic will respond.

Once you've selected the event, the COBOL GUI Editor window appears with the

COBOL program for your GUI application and the cursor is positioned below the

ENTRY statement for the selected event. This COBOL program initially contains the

basic COBOL program constructs, such as DATA DIVISION. Several COPY state-

ments are included as required for a GUI application. Other than the PROCEDURE

DIVISION/GOBACK statement pair, between which you can code initialization logic to

be executed before your GUI is displayed, only one event is already coded. That event

is the window destroy event and is executed when your GUI application's window is

closed.

You now add the code you want to run for the event. When you need to access the

screen data and attributes in your code, you can use the Edit menu-bar choice and

select Insert code→GUI to get assistance with creating the logic. Figure 27 on

page 60 summarizes the steps you take to create event logic.

 Build Your First VisualAge COBOL GUI Application 59

Creating the Event Logic

Events

•••

•••

Greet Me

•••

•••

1. Select the
Event for
the part

2. Code skeleton for
event appears in
Editor window

3. Use GUI Code
Assistant to
generate logic

4. Logic for event
complete! You
may need to modify
for your application

Press

•
•
•

ENTRY ...Greet Me_Press

GOBACK

COBOL GUI Editor-HelloGui.cbl

Generate

get Contents

..........

..........

......

......

......

......

......

......

Window Parts Routines

GUI Code Assistant

COBOL GUI Editor-HelloGui.cbl

•
•
•

ENTRY

get Contents...

...Greet Me_Press

GOBACK

Figure 27. Steps for Coding the Event Logic. The COBOL GUI Designer helps you code your

event logic.

The following steps show you how to create logic for the Hello GUI Application. When

a user types a name—for example, IBM Customer—in the What is your name? entry

field and presses the Greet me push button, the message “Hello, IBM Customer”

appears in the second entry field.

You will create the logic to do this. First, you will indicate what the event is that your

logic will respond to—for the Hello GUI Application, the logic responds to the Greet me

push button being pressed.

Note: Before you begin, make sure that the part names correspond to the correct

parts of your GUI; for example, that the Window with canvas has a part name of

HELLOGUI. If you change the part name of a window or control after you have started to

create the event code, you must change the part names in the affected program logic.

These changes are not made automatically when you change the part name.

1. Move the mouse pointer to the Greet me push button on the Hello window and

press mouse button 2. A pop-up menu appears.

2. Select Events, then select PRESS from the cascaded menu. You will be speci-

fying the logic that is to be run when the user clicks on (or presses) the Greet me

push button.

60 Getting Started

Creating the Event Logic

Figure 28. Selecting the PRESS Event for the Greet me Pushbutton

3. The COBOL GUI Editor window opens at the COBOL ENTRY statement for the

Greet me push button press event.

Notice the format of the ENTRY statement, ENTRY "HELLOGUI_GREETME_PRESS"
USING VDE-HELLOGUI. The entry point name includes the window name, the part

name, and the event selected; these names are separated by underscores.

Figure 29. Editor window with COBOL ENTRY statement for the PRESS Event

At this point, you need to specify what happens when the Greet me push button is

pressed. The application logic must first retrieve the contents of the NAME entry field,

add the greeting text, and move the greeting to the second entry field where it will be

displayed for the user. VisualAge COBOL provides assistance to help you generate the

COBOL code to work with the GUI part.

1. Click on the title bar of the COBOL GUI Editor window. The cursor in the window

should appear on the line below the ENTRY statement (after USING VDE-HELLOGUI).

If the cursor isn't positioned there, move it there now.

Select the Edit menu-bar choice on the editor window, then select Insert code.

From the cascaded menu, select GUI. The GUI Code Assistant window opens, as

shown in Figure 30 on page 62.

 Build Your First VisualAge COBOL GUI Application 61

Creating the Event Logic

Figure 30. GUI Code Assistant

2. Click on HELLOGUI in the Window list box to select the window that contains the

NAME entry field, the part from which you want to receive the contents.

3. Click on NAME in the Parts list box.

4. Click on getContents in the Routines list box to get the value of the NAME entry

field. You may need to scroll the Routines list box to find getContents.

5. Notice the CALL statement in the multiple-line entry field just above the push

buttons at the bottom of the window. This is the statement that will be generated.

Click on the Generate push button to complete.

A CALL statement is generated that gets the value of the NAME entry field, as

shown in Figure 31 on page 63. This CALL statement issues a call to the routine

getContents, using parameters generated by the GUI Code Assistant. These

parameters are based on the windows, parts, and routines you select.

Note: When you generate code using the GUI Code Assistant window, the GUI

Code Assistant uses default variables. These variables are defined in a copy file

(VACCESS.CPY) that is automatically included in this program. Many of the vari-

ables in this copy file are variable-length tables.

62 Getting Started

Creating the Event Logic

Figure 31. COBOL Logic Generated Using the GUI Code Assistant

6. To close the GUI Code Assistant window, click on the Close push button.

The next action of this event is to create the greeting string using the value the user

enters. You need to add code to the event logic.

1. Move the cursor in the COBOL GUI Editor window to the line after the logic

created to get the contents of the NAME entry field (CALL "getContents" USING
NAME-HANDLE, Contents, VDE-RC).

2. Enter the following code. The variables in the code below are defined in the

VACCESS.CPY file. To add extra blank lines, press the Enter key.

| ADD 7 Contents-Length GIVING NewText-Length
MOVE "Hello, " TO NewText-String(1:7)
MOVE Contents-String(1:Contents-Length)
 TO NewText-String(8:Contents-Length)

You now have the logic for adding the string “Hello, ” to the name the user enters into

the first entry field.

The final action of this event is to move the text to the entry field in which the greeting

is to be displayed. You can use the GUI Code Assistant window again to generate the

code.

1. In the editor window, place the cursor on a blank line between the code you just

entered and the GOBACK statement.

2. Select Edit from the COBOL GUI Editor menu bar. Select Insert code, then select

GUI.

3. When the GUI Code Assistant window appears, select the GREETING part and the

setContents routine in the GUI Code Assistant window.

4. In the Identifier 1 entry field, change the default, Contents, to the variable to which

you have moved the text to be displayed, NewText.

5. Select the Include MOVE Statement(s) check box to uncheck it.

6. Select Generate in the GUI Code Assistant window. The code you generated

appears in the editor window.

 Build Your First VisualAge COBOL GUI Application 63

Creating the Event Logic

7. To close the GUI Code Assistant window, click on the Close push button.

8. To save your changes, select the File menu-bar choice then select Save. Close

the editor window by double-clicking on the system-menu symbol in the upper left

corner of the window.

You just created the logic for the Greet me push button.

The logic to close the GUI application has already been coded for you. To view this

event logic:

1. Click mouse button 2 on the Hello title bar.

 2. Select Events.

Notice the check mark on the DESTROY menu choice on the Events cascaded

menu. This means that the event logic is already created. Clicking on the menu

choice takes you to the existing event logic.

 3. Select DESTROY.

The COBOL GUI Editor window appears. The cursor is placed in the source code

at the DESTROY event. The event code contains the statement MOVE
VDE-TERMINATE-APPLICATION TO VDE-RC. This logic causes the application to end

when the user closes the GUI window.

Figure 32 on page 65 shows the COBOL GUI Editor window with the event code

you've added for the Hello GUI application.

64 Getting Started

Building the Application

Figure 32. Event Logic for the Hello GUI Application

Close the COBOL GUI Editor window. You are now ready to build the Hello GUI Appli-

cation.

Building the Application

When you build a VisualAge COBOL GUI application, the source files are compiled and

linked to create a running application. To build your application:

1. From the COBOL GUI Designer - Hello GUI Application window, select the Project

menu-bar choice.

 2. Select Build.

If you did not save the project before the build, the COBOL GUI Designer - Save

Project window appears. Select Save to save your project.

3. When the build starts, the Project window appears.

Within the Project window is the Monitor, which displays the output of the build.

The files that you created for the application are compiled and linked to create the

specified target file.

 Build Your First VisualAge COBOL GUI Application 65

Building the Application

4. When the build completes, the return code is displayed, as shown in Figure 33 on

page 66. A return code of zero indicates that your application was built without

errors and is ready to run.

Figure 33. Building the Hello GUI Application. The Hello GUI Project window with the Monitor

Area at bottom.

If you do not get a return code of 0, the Monitor window displays error messages.

Scroll back up to the error message lines that have the drive, path names, and

| source file name (hellogui.cbl) Some linker error messages also contain drive, path,

| and file names. as well as the error message text. These are the compiler error

messages. Double-click on a compiler error message line.

Note: You can only double-click on the compiler error messages to fix errors in

the source program.

The COBOL GUI Editor appears, showing the line in the source file where the error

occurred. Correct the error, save the file, and close the editor. To build it again,

select Project in the project window, then select Build. You will see the results of

the second build in the Monitor window.

66 Getting Started

Running the Application

Running the Application

To run the Hello GUI Application, select the Project menu-bar choice, then select Run.

The Hello window appears, and you can try out your GUI application.

Figure 34. Running the Hello GUI Application

To close the Hello GUI Application, double-click in the upper left corner of the window.

 Build Your First VisualAge COBOL GUI Application 67

Running the Application

68 Getting Started

VisualAge COBOL Tools

Tools in VisualAge COBOL

VisualAge COBOL consists of several application development tools, integrated with

WorkFrame. This section provides an overview of these tools.

 WorkFrame

WorkFrame for OS/2 integrates your tools and files for the VisualAge COBOL applica-

tion development environment.

It enables you to work with your files directly rather than accessing them through a

particular tool. For example, when you want to edit your source code, you select the

icon representing the file and invoke the edit action from the file icon's pop-up menu.

You can concentrate on the file itself since you can rely on WorkFrame to provide

context-sensitive actions for your files.

WorkFrame enables you to organize your code by grouping related files into projects.

A project is the complete set of data and actions you need to build a single target, such

as a dynamic link library (DLL) or executable (EXE). It consists of project parts, the

data objects that make up the projects, and a Tools setup, the actions, environment

variables, and types that are available to a project.

Your WorkFrame project is fully customizable. You can include objects of many dif-

ferent types in a project. You can choose the tools available for actions on these

objects, such as editors, compilers, and debuggers. You can customize your project

not only with your own OS/2 tools, but DOS and Windows tools as well.

VisualAge COBOL provides pre-configured projects as a part of the product. When you

create your own projects, you can inherit the complete set of actions, types, and envi-

ronment variable settings from these default projects. This means that you get an envi-

ronment with the tools and actions already set up for you. The Create New Project

icon in the VisualAge COBOL folder enables you to easily start a project that inherits

from a default COBOL project.

 COBOL Editor

The COBOL Editor provides language-sensitive editing for your files. For example, dif-

ferent COBOL constructs, such as comments, are shown in different colors.

Aside from standard editing functions, you can issue coding assistance commands.

You can create GUI code, generate an SQL statement, or generate a call to invoke a

CICS program.

GUI Code Assistant Generates code to access the data and attributes of

your graphical user interface parts.

 Copyright IBM Corp. 1995, 1996 69

VisualAge COBOL Tools

| Data Assistant Generates SQL statements in your COBOL source.

Note: Before you can use the Data Assistant to create

SQL statements, you need to map the appropriate data

structure to a relational data base. You can do this visu-

ally; see the Data Assistant online help for more informa-

tion.

Transaction Assistant Generates a COBOL CALL to ECICALL and a param-

eter list, based on your input, for invoking CICS trans-

actions. ECICALL uses the parameter list to make the

actual ECI call.

Note that the COBOL Editor displays certain toolbar icons and menu choices for the

coding assistants only when you need them. Otherwise, the toolbar icons and menu

choices are not visible on the menu. The toolbar icons and menu choices for the Data

and Transaction Assistants come up only if you are editing a COBOL file (.CBL), a copy

file (.CPY), a DB2 file (.SQB), or a CICS file (.CCP). The COBOL GUI Editor, a spe-

cialized version of the COBOL Editor that contains the GUI Code Assistant, is not

shown unless you start it from the COBOL GUI Designer.

COBOL GUI Designer

The COBOL GUI Designer is a tool that enables you to create COBOL GUI applica-

tions. The COBOL GUI Designer not only helps you quickly create a GUI application

without having to write Presentation Manager code; it helps you create your whole

COBOL program.

The GUI Designer is based on a “construction from parts” paradigm. It consists of a

“parts palette” with the different GUI controls (such as windows, list boxes, entry fields).

You create the GUI by dragging and dropping these parts into the GUI Designer

window. You then create program logic for the events associated with the user inter-

face components; the GUI Code Assistant helps you create your program logic.

COBOL for OS/2

VisualAge COBOL supports development of new COBOL applications that are targeted

for the workstation environment.

Compiler and Run-time Environment

The VisualAge COBOL compiler and run-time environment supports the high subset of

ANSI 85 COBOL functions, just like the other IBM COBOL products. Your applications

can be compiled and run on supported platforms, whether they are created on a

mainframe, an AIX workstation, or a personal computer with OS/2.

70 Getting Started

VisualAge COBOL Tools

Although the IBM COBOL language is practically the same across platforms, there are

some minor differences between IBM COBOL for MVS & VM and VisualAge COBOL.

These differences are documented in the Summary of Differences: Host COBOL and

Workstation COBOL topics in the IBM VisualAge for COBOL for OS/2 Programming

Guide and the IBM COBOL Language Reference. Porting considerations are described

in “Porting Applications between Platforms” in the IBM VisualAge for COBOL for OS/2

Programming Guide.

Object-oriented Extensions

VisualAge COBOL's object-oriented (OO) language extensions are based on the

emerging ANSI OO COBOL standard and are a syntax extension to COBOL. These

are the same OO extensions you get with IBM COBOL for MVS. These extensions

implement a complete OO paradigm that allows you to define object classes and sub-

class objects, to instantiate objects, and to have objects inherit characteristics from

other objects.

VisualAge COBOL creates language-neutral objects that interoperate with objects

created in other OO languages enabled for IBM's System Object Model (SOM). This is

provided through VisualAge COBOL's Direct-to-SOM capability.

Distributed Data Access

VisualAge COBOL also provides a set of functions that enable your applications to

handle data across distributed environments. The services include:

Local VSAM record file system

Access to remote VSAM record files using local VSAM APIs

Copy, sort, and merge functions for both record and byte files

General data conversion APIs and services for both character and numeric data.

These services complement their counterpart services on the mainframe, enabling you

to create client/server and cooperative processing applications using the IBM COBOL

language. Your applications can also call the utilities directly using the application pro-

gramming interfaces (APIs) that come with the utilities.

 Interactive Debugger

The Interactive Debugger for OS/2 helps detect and diagnose errors in code developed

with VisualAge COBOL.

Using the Interactive Debugger, you can:

Step Through or Run a Program

You can step through your program one line at a time, or you can run the program

until a breakpoint is encountered, the program is halted, or the program ends.

You can also select the way the Interactive Debugger steps through a program. If it

is a call, the program's run can be halted when the call is complete, at the first state-

ment in the called program, or until the return statement of the current program. The

 Tools in VisualAge COBOL 71

VisualAge COBOL Tools

Interactive Debugger can also step over any program for which debugging is not

available, for example, library and system routines.

Set Breakpoints

You can control how your program executes by setting breakpoints. A breakpoint

stops the execution of your program at a specific location or when a specific event

occurs.

View the Program Source Code

You can view the source code of the program you are debugging. You can view it

as a listing, disassembly (assembler instructions), or mixed (a combination of listing

and disassembled code).

Monitor Variables

You can display and change the variables during debugging.

Monitor the Registers

You can view all the processor and coprocessor registers for a particular thread.

Monitor the Call Stack

You can display all of the active programs, the remaining stack size, the stack frame

size, and the return address. When the state of the program changes, such as when

you execute the program or you update displayed data, the Debugger changes the

information displayed to reflect the current state.

Monitor Storage

You can monitor variables in a storage window. For example, if you are monitoring a

pointer, as the pointer changes, the storage window changes to show the new

location referenced by the pointer.

 Performance Analyzer

The Performance Analyzer helps you understand your program's flow and tune your

program's performance.

It enables you to monitor your program as it runs and generate a function-by-function

trace of the run. The trace file contains trace analysis data that can be graphically

displayed in diagrams. Using these diagrams, you can improve the performance of an

application, examine occurrences that produce faults, and in general, understand what

happens when your application runs.

The Performance Analyzer does not replace static analyzers or debuggers, but it can

complement them by helping you understand aspects of the application that would oth-

erwise be difficult or impossible to see.

For instance, you can:

Time and tune applications

The Performance Analyzer time stamps each trace event using a high resolution

clock (about 838 nanoseconds per clock tick). As a result, the trace file con-

tains a detailed record of when each traced function was called and when it

returned.

72 Getting Started

VisualAge COBOL Tools

The trace data also shows how long each function runs. This helps you find hot

spots, the areas within an application where a disproportionate amount of time

was spent.

Locate program hangs and deadlocks

The Performance Analyzer provides a complete history of events leading up to

the point where a program stops. You can view the function call stack from

anywhere in the application.

Trace multithreaded interactions

When multithreaded applications are traced, you can look at the sequencing of

functions across threads in some of the diagrams. This highlights problems

within critical areas of the application.

Trace the complete application

Not only does the analyzer trace procedures in the EXE file, but it traces the

entry points to system calls and application DLLs.

 Tools in VisualAge COBOL 73

VisualAge COBOL Tools

74 Getting Started

Tasks and Information for VisualAge COBOL

Tasks and Information for VisualAge COBOL

The following table maps tasks you can perform with VisualAge COBOL to the steps for

beginning the task and the information you need to continue the task. Any menu

choices referenced are those of a default COBOL project.

To do this Here's how to start For more

information, see

Install the pro-

ducts

Insert the VisualAge COBOL CD-ROM in your CD-ROM

drive, then follow the installation instructions.

“Installing VisualAge COBOL”

on page 1

Learn about

VisualAge

COBOL

Double-click on the Information Notebook icon in the

VisualAge COBOL folder. Double-click on a topic's icon to

view information on the topic.

“Your Next Step for Learning

VisualAge COBOL” on

page 79

Create a

COBOL project

without a GUI

Open the VisualAge COBOL folder and double-click on the

Create New Project icon. Select the Create a default

COBOL project radio button and complete the information in

the window. Click on OK to create the project.

Task Helper

Create New Project online

help

Create a

COBOL project

with a GUI

Open the VisualAge COBOL folder and double-click on the

Create New Project icon. Select the Select from prede-

fined project types radio button and click on the OK push

button. From the COBOL Project Smarts catalog, select

COBOL GUI Designer Project and click on the Create push

button.

Task Helper

Create New Project online

help

Work with an

existing COBOL

project

Double-click on the project folder. Use the project view

menu-bar choices or the pop-up menu on the project parts to

work with the project.

How Do I...? help in the

project view window

Online help in the project view

window

Work with an

existing COBOL

GUI project

Double-click on the project folder. From the project view,

select Project→Edit→GUI Project Edit. When the COBOL

GUI Designer window opens, click on the icon you want to

edit in the tree view (for example, the window part) and select

Selected→Open.

How Do I...? help in the

project view window

COBOL GUI Designer online

help

Create a new

COBOL source

file

From a COBOL project window, select

Project→Create→Create New Text File with the COBOL

Editor. When the New window appears, click on the drop-

down arrow next to the Language Profile drop-down combo

box. Scroll to locate CBL, then click on CBL to select the

COBOL language-sensitive editing. Click on the New push

button. An untitled file is created.

Task Helper

IBM VisualAge for COBOL for

OS/2 Programming Guide

IBM COBOL Language Refer-

ence Manual

 Copyright IBM Corp. 1995, 1996 75

Tasks and Information for VisualAge COBOL

To do this Here's how to start For more

information, see

Setting up a

project with MVS

files

This task requires having the BETA level Remote

Edit/Compile component installed and a working connection

to the host with correctly configured APPC. Read the topics

“Setting Up Communications” and “Setting Up Your Project”

in the Task Helper before performing this task.

Double-click on the Create New Project icon. In the Create

New Project window, select the Select from predefined

projects radio button and click on OK. Select COBOL MVS

Project from the predefined projects list. Complete the

dialogs, ensuring that you specify the PDS members when

prompted.

See the Task Helper for further information on proper PDS

naming, connecting to the server, and adding additional PDS

members.

Task Helper

Appendix C, “Configuring

APPC Communications” on

page 149

Create a

COBOL program

with a GUI

Create a COBOL project with a GUI. When the COBOL GUI

Designer appears, use it to create your GUI and the sup-

porting logic.

Task Helper

COBOL GUI Designer online

help

Set compiler

options

From a COBOL Project window, select Options→Compile.

Complete the choices in the notebook.

IBM VisualAge for COBOL for

OS/2 Programming Guide

Task Helper

Online help in the project view

window

Build a COBOL

project (without

a GUI)

Create a COBOL source file, and save it with the extension

cbl (for example, mypgm.cbl). Build the program by selecting

Project→Build→Build normal.

Task Helper

How Do I...? help in the

project view window

Online help in the project view

window

Build a COBOL

project (with a

GUI)

Create a GUI COBOL program. Build the program from the

COBOL GUI Designer window by selecting Project→Build.

Task Helper

How Do I...? help in the

project view window

COBOL GUI Designer online

help

Debug and test

your programs

Set the compiler options for debugging. On the compiler

| options notebook Debug page, click on the Compiler gener-

| ates debugging information and Linker includes debug-

| ging information check boxes. Compile and link your

program. From the COBOL project menu, select Debug.

“Using the Interactive

Debugger” on page 110

Task Helper

Debugger online help

| Online version of the Debug

| Tool User's Guide and Refer-

| ence in the Information Note-

| book

76 Getting Started

Tasks and Information for VisualAge COBOL

To do this Here's how to start For more

information, see

Analyze program

performance

| Set the compiler options for program analysis. On the com-

| piler options Other page, click on the Produce profiling

information check box. Compile and link your program.

From the COBOL project icon view, click on the exe file with

your right mouse button. Select Analyze from the pop-up

menu.

Task Helper

Performance Analyzer online

help

Add an action Select View→Tools setup. When the Tools setup window

appears, ensure that you are viewing the Action view. The

title “Actions” appears below the toolbar, and a tree view of

the project's actions appears in the window. Select

Actions→Add.

“Create an action” topic in the

project view How Do I...? help

Online help in the project view

window

| Create SQL

| statements

| First, create a data structure mapping for your program (refer

| to the next task below). When you are coding your program

in the COBOL Editor window, select Edit→Insert code→SQL

to access the SQL Construction view.

“Creating SQL Statements

with Data Assistant” on

page 117

Task Helper

| How Do I...? help for Data

| Assistant

Data Assistant online help

| Create a data

| structure

| mapping

| Creating a data structure involves dragging tables from the

Database Schema view and dropping them into the Data

Structure Mapping view.

| Start DB2 for OS/2, the Schema view, then the Mapping

| view from your project:

| � Select Project→Data Tools→DB2 Start. When

| prompted, enter your user ID and password.

| � Select Project→Data Tools→Data Assistant Schema

| view. When prompted, enter the database name.

| � Select Project→Data Tools→Data Assistant Mapping

| view. When prompted, enter a mapping file name.

Follow the instructions in the online help to perform the

needed data structure mapping.

“Creating SQL Statements

with Data Assistant” on

page 117

Task Helper

How do I...? help for Data

Assistant

Data Assistant online help

Create CICS

ECI calls

When coding your program in the COBOL Editor window,

select Edit→Insert code→CICS ECI. Specify your parame-

ters in the Transaction Assistant window. The generated

code issues a COBOL CALL to ECICALL, which performs the

ECI call with the parameters you specify.

“Using the CICS Transaction

Assistant” on page 127

Task Helper

Transaction Assistant online

help

Access VSAM

files

(remote file

access)

This is an advanced topic. Double-click on the Task Helper

| icon in the VisualAge COBOL folder for information on how

to perform this task. The VSAM information is included in the

different Task Helper paths, as appropriate to the task.

Task Helper

VSAM in a Distributed Envi-

ronment

 Tasks and Information for VisualAge COBOL 77

Tasks and Information for VisualAge COBOL

To do this Here's how to start For more

information, see

Write

client/server

applications

This is an advanced topic. Double-click on the Task Helper

| icon in the VisualAge COBOL folder for information on how

to perform this task. You might need to view the introductory

information for all paths presented. For example, you could

use a COBOL non-GUI program as the server and a GUI

program as the client.

Task Helper

Write object-

oriented applica-

tions.

This is an advanced topic. Double-click on the Task Helper

| icon in the VisualAge COBOL folder for information on how

to perform this task. Any separate considerations for object-

oriented programming are noted in the different Task Helper

paths.

Task Helper

IBM VisualAge for COBOL for

OS/2 Programming Guide

IBM COBOL Language Refer-

ence

Print VisualAge

COBOL publica-

tions

The VisualAge COBOL publications are included as

PostScript files with the product. The files are located in the

\PRINTABL directory on the VisualAge COBOL CD-ROM.

Use your site's procedures for printing these files.

“Printing Publications” on

page 81

Understand war-

ranty information

See the enclosures in the IBM VisualAge for COBOL for

OS/2 product box.

IBM VisualAge for COBOL for

OS/2 License Information

Program License Agreement

78 Getting Started

Using VisualAge COBOL Information

Using the Information with VisualAge COBOL

You can get information from many sources while using VisualAge COBOL. Besides

this guide, there is:

� IBM VisualAge for COBOL for OS/2 Programming Guide, which helps you create,

compile, link, and run VisualAge COBOL application programs

� IBM COBOL Language Reference, which provides you with the IBM COBOL lan-

guage syntax

| � Task Helper (located in the VisualAge COBOL folder), an online document that

guides you in performing VisualAge COBOL application development tasks

| � Information Notebook (located in the VisualAge COBOL folder), an online note-

book from which you can view VisualAge COBOL information

� Online help, which gives you help from within the VisualAge COBOL tools

� How Do I...? help, which provides you with instructions on how to perform project-

related tasks. It is located in the Information Notebook and from the VisualAge

COBOL tools' Help menu-bar choices.

Your Next Step for Learning VisualAge COBOL

If you have completed “Build Your First VisualAge COBOL Application” on page 43 or

“Build Your First VisualAge COBOL GUI Application” on page 49, you already have a

taste for using VisualAge COBOL.

After reading this part of this book, “Getting Started with VisualAge COBOL,” continue

to the next part, “VisualAge COBOL Tutorials.” The tutorial in that section will provide a

more in-depth sample application for you to develop.

After you feel comfortable with the material in the tutorial, you can use the online Task

Helper to give you information on creating different types of applications, depending on

the type of application you want to develop. VisualAge COBOL provides sample appli-

cations for various types of applications that you can develop. These samples are

| located in the VisualAge COBOL Samples folder. Descriptions of the samples and

| instructions on how to build and run the Employee Lookup applications are included in

| Samples Information in the VisualAge COBOL Samples folder as well as in

| Appendix B, “VisualAge COBOL Supplied Sample Applications” on page 139.

Once you've started using VisualAge COBOL to develop your own applications, online

help and online reference information can help you find specific information. Each of

the tools has its own online help, which enables you to find specific information about

using the tools. You can access the online guides and references for VisualAge

COBOL from the Information Notebook.

 Copyright IBM Corp. 1995, 1996 79

Using VisualAge COBOL Information

Using the Online Reference Information

The easiest way to access the online reference information that comes with VisualAge

COBOL is to use the Information Notebook. From the Information Notebook, you

can click on an icon in the notebook to view an online document. Once you are

viewing the online document, you can use the viewing program to search for informa-

tion or to print information.

Using the Online Help

Information on how to use VisualAge COBOL tools is available through online help.

You can access different kinds of help in one of the following ways:

� Select an item from a Help pop-up or menu bar choice in any VisualAge COBOL

window. The Help menu-bar choice in a window gives you access to the forms of

help available for the tool you are using. You can also select the Help index

menu choice to view an list of the topics.

� Highlight a graphical user interface control (for example, a menu item) and press

F1 to get help on the control.

� To get general help on a window, select the Help menu-bar choice, then select

General Help

� Click on the Help push button, where available.

Locating Online Help Topics
When using online help, sometimes you may not find the help you need right away.

There are several ways to find the information you want.

 Using Hypertext
Within some help windows, certain words or phrases are highlighted. To obtain addi-

tional information about a highlighted word or phrase, double-click on the word or

phrase. You can also press the Tab key until the cursor is on the word or phrase

(reverse video by default), and then press Enter.

Using the Help Index and Contents
The Help Index and the Contents display the list of available help windows.

To Use the Help Index: From an VisualAge COBOL tool window, select the Help

menu-bar choice, then select Help index. You can also see the help index by pressing

F11 or clicking on the Index push button while any help window is open.

If you want to view an index topic, double-click on the topic. After you select a topic,

the help information for that topic appears in a window.

To Use the Contents: From a help window, select the Options menu, then select

Contents. The Contents window appears. A plus sign (“+”) next to a topic indicates

that help is available for sub-topics related to that topic. Click on the plus sign to see

the complete list.

80 Getting Started

Using VisualAge COBOL Information

If you want to view a topic, double-click on the topic. After you select a topic, the help

information for that topic appears in a window.

 Using Search
To search for a topic in an VisualAge COBOL tool's online help:

1. Select Search from the Services menu.

2. In the Search for field, type the word or phrase you want to search for.

3. Select one radio button to indicate where you want to look for the word or phrase.

4. Select Search. If the word or phrase is not found, a message window is displayed.

5. If your word or phrase is found, a search window appears with a list of topics in

which the word or phrase is found. Choose a topic you would like to view, then

double-click on the topic.

Printing Online Help Topics
To print online help topics, either click on the Print push button, where available, or

select Services→Print.

When the Print window appears, select what you would like to print and click on the

Print push button. For example, to print the section you are viewing, select the This

section radio button and click on Print.

Getting VisualAge COBOL Publications

All of the VisualAge COBOL publications are included as viewable softcopy files in the

Information Notebook and as printable files.

 Printing Publications
The VisualAge COBOL publications are included with the product as printable, for-

matted PostScript** (.PS) files. They are located in the \PRINTABL directory on the

VisualAge COBOL product CD-ROM.

To print these files, follow the procedure for your installation for printing PostScript files.

A typical example for OS/2 with TCP/IP would be to enter the command lpr filename,

where filename is the name of the file you want to print. You could also drag the file

from the PRINTABL folder on the VisualAge COBOL CD-ROM and drop it on the

PostScript printer icon, if your system is set up for this procedure.

 Ordering Publications
You can order printed copies of these publications using one of the following methods:

� If you are a customer in the United States, call IBM Software Manufacturing Sol-

utions at 1-800-879-2755. You can also fax a request to the National Publication

Order Center at 1-800-445-9269.

� If you are an international customer, contact your IBM Authorized Dealer or your

IBM Marketing Representative.

 Using the Information with VisualAge COBOL 81

Using VisualAge COBOL Information

You can also order books by the set. These are included in a bill-of-forms (BOF).

IBM VisualAge for COBOL for OS/2 (SBOF-7333) - Includes:

Language Reference (SC26-4769)

Programming Guide (SC26-8419)

SMARTdata UTILITIES for OS/2 (SBOF-6131) - Includes:

VSAM in a Distributed Environment (SC26-7063)

Data Description and Conversion (SC26-7091)

Data Description and Conversion: A Data Language Reference (SC26-7092)

SMARTsort for OS/2 and AIX (SC26-7099)

Table 2. Publications for the COBOL Family of Products

COBOL Product Book Title Order

Number

IBM VisualAge for COBOL

for OS/2

Licensing

Getting Started

IBM COBOL Language Reference

Programming Guide

VSAM in a Distributed Environment

Data Description and Conversion

Data Description and Conversion:

A Data Language Reference

SMARTsort for OS/2 and AIX

n/a

GC26-8421

SC26-4769

SC26-8419

SC26-7063

SC26-7091

SC26-7092

SC26-7099

IBM COBOL Set for AIX Licensing

Getting Started

IBM COBOL Language Reference

Programming Guide

Program Builder User's Guide

LPEX User's Guide and Reference

VSAM in a Distributed Environment

Data Description and Conversion

Data Description and Conversion:

A Data Language Reference

SMARTsort for OS/2 and AIX

n/a

GC26-8425

SC26-4769

SC26-8423

SC09-2201

SC09-2202

SC26-7064

SC26-7066

SC26-7092

SC26-7099

IBM COBOL for MVS & VM Compiler and Run-Time Migration Guide

Installation and Customization under MVS

Licensed Program Specifications

Programming Guide

Diagnosis Guide

IBM COBOL Language Reference

GC26-4764

SC26-4766

GC26-4761

SC26-4767

SC26-3138

SC26-4769

82 Getting Started

VisualAge COBOL Support

Getting Support for Using VisualAge COBOL

You or your company may need more assistance in using VisualAge COBOL. IBM

provides support, consulting services, and education for using VisualAge COBOL and

the IBM COBOL family of products.

| Getting Started Period

| After purchasing the VisualAge COBOL product, you, or the designated contacts in your

| establishment, can receive free support or unlimited voice support calls to IBM that is

| related to usage, setup, or installation. This support starts with the first phone call to

| IBM and lasts 60 days. Call 1-800-237-5511 or 1-800-992-4777, Monday through

| Friday, 8:00 a.m. to 5:00 p.m., your time zone. For support in other countries, contact

| your local IBM-authorized sales representative.

| At the conclusion of the Getting Started period, continued voice support is available for

| a fee. Multiple voice support options are also available for a fee.

| Getting Product Support

| There are several ways for you to get product support for VisualAge COBOL: voice

| support, CompuServe, mail, fixes, World Wide Web, and FAX.

| � Voice support: To report a problem, call 1-800-237-5511 or 1-800-992-4777.

| These phone numbers are available Monday through Friday, 8:00 a.m. to 5:00

| p.m., your time zone.

| � CompuServe: If you have access to CompuServe, you can enter your comments

| about COBOL. At the ! command prompt enter, GO IBMLANG. Place your mes-

| sages or comments regarding COBOL in “Section 11, COBOL Language.” Note

| that if you want a guaranteed response to a problem, call 1-800-237-5511.

| If you want to email a Defect Report Form through CompuServe, you can find the

| form in the Library area. To submit, send it to the Personal Systems Support

| Family at 76711.611@CompuServe.com.

| For CompuServe membership information, call 1-800-848-8199 and request Repre-

| sentative 239.

| � Fixes: You can access fixes from the following sources.

| – Download the fixes from the FTP site at:

| ftp://ftp.software.ibm.com/ps/products

| – Access fixes from your respective bulletin board services (BBS).

| – Access the World Wide Web and go to the IBM COBOL Family page:

| 1. Enter the Uniform Resource Locator (URL):

| http://www.software.ibm.com/ad/cobol/cobol.htm.

| 2. Scroll to the Support section.

| 3. Click on ...technical support.

 Copyright IBM Corp. 1995, 1996 83

VisualAge COBOL Support

| 4. From the IBM COBOL Support Services page, scroll down to and click

| on fixes for VisualAge COBOL.

| – Call 1-800-237-5511 to request packaged fixes in the form of a CD-ROM.

| There is a fee associated with the CD-ROM.

| � Mail: Mail your comments to:

| IBM Corporation

| Personal Systems Support Family

| Internal Zip 2901

| 11400 Burnett Road

| Austin, Texas 78758

| � World Wide Web: If you have access to the World Wide Web, you can access

| the IBM COBOL Family page as follows:

| 1. Enter the Uniform Resource Locator (URL):

| http://www.software.ibm.com/ad/cobol/cobol.htm.

| 2. Scroll to the Support section for information about technical support available.

| � FAX: You can also fax the Defect Report Form to IBM at 1-800-426-8602. To

| receive a copy of this form, call 1-800-992-4777, Monday through Friday, 8:00 a.m.

| to 5:00 p.m., your time zone.

| For support in other countries, contact your local IBM-authorized sales representative.

Getting Consulting Services

IBM provides service offerings for VisualAge COBOL as well as the rest of the IBM

COBOL family of products. For more information about consulting services in the

| United States, call 1-800-IBM-3333, ext. STAR703. To arrange for an IBM represen-

| tative to discuss your specific COBOL services requirements, call 1-800-IBM-4YOU.

| For consulting services in other countries, contact your local IBM-authorized sales rep-

| resentative.

| If you have access to the World Wide Web, you can access the IBM COBOL Family

| page as follows:

| 1. Enter the Uniform Resource Locator (URL):

| http://www.software.ibm.com/ad/cobol/cobol.htm.

| 2. Scroll to the Services and Education section for information about IBM's con-

| sulting services.

Getting Education and Training

IBM provides education and training for VisualAge COBOL as well as the rest of the

IBM COBOL family of products. You can request information or enroll in courses in

one of the following ways:

� For more information about the course offerings in the United States and Canada,

call 1-800-IBM-8322. For education and training in other countries, call

84 Getting Started

VisualAge COBOL Support

001-520-574-4500. These phone numbers are available Monday through Friday,

| 8:00 a.m. to 8:00 p.m., Eastern Standard Time (EST).

| � If you have access to the World Wide Web, you can access the IBM COBOL

| Family page as follows:

| 1. Enter the Uniform Resource Locator (URL):

| http://www.sofware.ibm.com/ad/cobol/cobol.htm.

| 2. Scroll to the Services and Education section for information about the various

| education offerings by IBM.

 Getting Support for Using VisualAge COBOL 85

VisualAge COBOL Support

86 Getting Started

VisualAge COBOL Tutorials

This section contains more complicated hands-on tutorials.

In “Creating a Tax Computation Application with a GUI,” you will build an application,

including the subroutine that the application calls, using the VisualAge COBOL tools.

When you are finished creating both the subroutine and application projects, you will

nest the subroutine project inside the application project.

In “Creating SQL Statements with Data Assistant,” you will graphically view your rela-

tional database. Data Assistant allows you to map COBOL data structures to the data-

base and generates SQL statements into your source file.

In “Using the CICS Transaction Assistant,” you will generate a CICS ECI call and

parameter list for invoking CICS transactions. Transaction Assistant simplifies the task

of constructing CICS transaction calls in COBOL programs.

“VisualAge COBOL Tutorials” assumes that you have gone through the instructions in

“Getting Started with VisualAge COBOL” on page 35.

The topics in this section are:

Creating a Tax Computation Application with a GUI 89

Creating SQL Statements with Data Assistant 117

Using the CICS Transaction Assistant . 127

 Copyright IBM Corp. 1995, 1996 87

88 Getting Started

Creating an Application with a GUI

Creating a Tax Computation Application with a GUI

This chapter guides you through building an application, including the subroutine that

the application calls. The application name is Tax Computation and it contains a graph-

ical user interface (GUI). The user enters a sales amount and presses a push button.

The application calculates the tax for the sales amount and displays the total.

The tax is calculated by the subroutine, Tax Calculation. This subroutine's parameter

list is defined as follows:

01 TAXCALCU-PARM-LIST.
 05 SALES-AMOUNT-CHAR PIC X(5).
 05 TOTAL-AMOUNT-CHAR PIC X(8).

SALES-AMOUNT-CHAR is the amount the user enters. TOTAL-AMOUNT-CHAR is the

total amount, including the tax, the application will display.

When you finish, you will have an application that displays the total amount with sales

tax included. Figure 35 shows you what the application's interface will look like when

you have finished.

Figure 35. Tax Computation Application. A COBOL application you will be building using

VisualAge COBOL.

The main steps you will follow are:

� Creating the subroutine project

� Creating the subroutine logic

� Creating the GUI application project

� Creating the application logic

� Nesting the projects

� Setting compiler options

� Building the application

� Debugging the application

� Running the application

� Packaging the application for distribution

 Copyright IBM Corp. 1995, 1996 89

Creating the Subroutine Project

Creating the Subroutine Project

Your first step in developing an application with VisualAge COBOL is to set up a

project. A project encapsulates all of the components you need to build a single target.

For example, the Tax Calculation subroutine project you create in this chapter contains

a COBOL source file (a component or project part) from which you build the subroutine

object file (a target).

To set up a new project:

1. Double-click on the VisualAge COBOL icon. The VisualAge COBOL - Icon View

window opens.

2. Double-click on the Create New Project icon. The IBM VisualAge COBOL -

Create New Project window opens.

Figure 36. Create New Project window. The starting point for creating COBOL projects.

3. In the Choose Project Type group, ensure that the Create a default COBOL

project radio button is selected.

4. In the Default Project Specifications group, specify your project's name and the

location where the project's files are to be stored. In the entry field titled Enter a

name for your project, enter the name Tax Calculation.

Note: For file and directory names, you can use up to 8 alphanumeric characters

and a dash (–).

5. Click with mouse button 1 in the entry field titled Enter a directory for your

project's files. Notice that this entry field and the entry field below it are updated

automatically to reflect the project name you entered.

90 Getting Started

Creating the Subroutine Logic

6. In the Enter the target for your project entry field, specify your project's target.

For the Tax Calculation subroutine, change taxcalcu.exe to taxcalcu.obj. The

subroutine's object file (taxcalcu.obj) will be created when you build (or compile)

this project. This object file, in turn, will be statically linked to the main application.

7. Click on the OK push button to create the project. Since the directory for the Tax

Calculation (\TAXCALCU) has not yet been created, a message window appears.

Click on the OK push button. The directory is created and the new project opens.

Now that you have created your project, you are ready to create the files you need for

the application.

Creating the Subroutine Logic

Once you have created a new project, you have a set of tools available for the files you

create for your program.

To create the COBOL source file for the Tax Calculation subroutine project:

1. From the Tax Calculation - Icon view window, select the Project menu bar

choice, then select the arrow button next to the Create choice.

2. A cascaded menu appears. From the cascaded menu, select Create New Text

File with the COBOL Editor.

The New window appears. In this window, you can specify which language sensi-

tive editing features you want. Ensure that the Language profile check box is

checked. The entry field for the Language profile list box is initially blank. Scroll

through it and select CBL. This sets the editor to be COBOL language sensitive.

Figure 37. New window

Click on New.

3. The COBOL Editor displays the window titled Editor - Untitled Document 1.

4. In the editor window, starting at column 8 (under A), type the source code shown in

Figure 38 on page 92.

 Creating a Tax Computation Application with a GUI 91

Creating the Subroutine Logic

 IDENTIFICATION DIVISION.
 PROGRAM-ID. TAXCALCU.
 AUTHOR. Programmer.

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.

 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 PROGRAM-CONSTANT-FIELDS.
 05 SALES-TAX PIC V9(2) VALUE .08.

 LINKAGE SECTION.

 01 TAXCALCU-PARM-LIST.
 05 SALES-AMOUNT-CHAR PIC X(5).
 05 SALES-AMOUNT REDEFINES SALES-AMOUNT-CHAR
 PIC 9(5).
 05 TOTAL-AMOUNT-CHAR PIC X(8).
 05 TOTAL-AMOUNT REDEFINES TOTAL-AMOUNT-CHAR
 PIC 9(6)V9(2).

PROCEDURE DIVISION USING TAXCALCU-PARM-LIST.

COMPUTE TOTAL-AMOUNT = SALES-AMOUNT +
(SALES-AMOUNT \ SALES-TAX).

 GOBACK.

Figure 38. COBOL Source Code for the Tax Calculation Subroutine

5. When you have finished entering the source code, save the file. To save the file,

select the File menu bar choice, then select Save. The Save as window appears.

Ensure that the Directory list box shows the directory you specified in step 5 on

page 90 (for example, IBMCOBOL\TAXCALCU). In the Save as filename field,

type taxcalcu.cbl and click on the Save As push button.

6. The COBOL Editor is in view. Close it by double-clicking on its system menu

symbol.

92 Getting Started

Creating the GUI Application Project

Figure 39. Save as window

7. If the file does not appear in the Tax Calculation - Icon view window, make the

window active by clicking on its title bar, then press F5 to refresh the view.

8. Close the Tax Calculation - Icon view window by double-clicking on the system

menu symbol in the upper left corner of the window.

Creating the GUI Application Project

Your first step in developing a GUI application with VisualAge COBOL is to set up a

GUI project. Like other projects, the GUI project contains the parts you need to create

a specific target; for example, the files you need to create an application that has a

GUI.

The Project menu bar choice in the COBOL GUI Designer window provides access to

project-level menu actions that will help you edit, compile, and debug the software you

develop.

To set up a new GUI project:

1. Double-click on the Create New Project icon. The IBM VisualAge COBOL -

Create New Project window opens in the VisualAge COBOL - Icon View window.

2. In the Choose Project Type group, select the Select from predefined project

types radio button and click on the OK push button.

3. The COBOL Project Smarts - Catalog View window opens. From the Available

Projects list box, select COBOL GUI Designer Project and click on the Create

push button.

4. After a few moments, the COBOL GUI Designer, Parts Palette, and Window with

canvas windows open.

 Creating a Tax Computation Application with a GUI 93

Customizing the GUI

Creating the Graphical User Interface (GUI)

You are ready to create the GUI for the application. You will use the COBOL GUI

Designer to create the GUI for the Tax Computation application.

Since you chose to create a GUI Project during the project set-up, the COBOL GUI

Designer - Untitled, Parts Palette, and Window with canvas windows should appear on

your desktop.

Adding the GUI Parts
Using the Parts Palette or the Parts Catalog, drag and drop the following parts onto the

Window with canvas. When you point your mouse on a part, the name of the part is

displayed at the bottom of the Parts Palette window.

As you place the parts on the Window with canvas, make sure that you align your parts

with the bottom margin of the window. This ensures that if you change the size of the

window, your parts will stay in view.

1. Drag and drop two Static Text fields onto the window.

2. Drag and drop two Entry fields onto the window. The first should be between the

first static text field and the right border of the window. The second should be

beneath the first entry field.

3. Drag and drop one Push button below the second static text field at the bottom of

the window.

Figure 40. Tax Computation Application

Customizing the GUI
When you have parts on the window, you can change the parts to customize them for

your application.

For the Tax Computation application, you need to change some of the part attributes.

You can change these attributes by using the settings notebook.

94 Getting Started

Saving the GUI Project

The settings notebook is used to set the initial run-time attributes for parts on your

interface, such as color and font. You can also use the settings notebook for a part to

change the part's name, which your program uses to query and change the part's

appearance while the program runs.

First, change the attributes for the first entry field part:

1. Double-click on the first Entry field part to open the settings notebook.

2. Move the cursor to the Part Name entry field and change the contents to

ENT-SALESAMOUNT.

The part name is the internal name by which your part will be known. This name

will also appear in your COBOL program and in the VisualAge COBOL tools that

assist you in creating the COBOL code. You don't have to change the part name.

By giving it a meaningful name, as you would with a variable in a program, the part

will be easier to identify when you are creating the Tax Computation Application

logic. to the correct GUI part.

3. Select the Data tab and set the Length of the entry field to 5.

4. Change the Type to Numeric.

5. Ensure the Decimals field is set to 0.

6. Double-click on the system menu symbol at the upper left corner of the settings

notebook window. Your changes are saved.

Next, change the attributes for the rest of your parts:

� For the second entry field part:

– Change the part name to ENT-TOTAL.

– Select the Style tab and click on the Read-only check box to select it.

– Select the Data tab and change the Length to 8, the Type to Numeric, and

the Decimals to 2.

� For the push button, change the part name to PSB-COMPUTETAX and the label to

Compute tax.

� For the first static text part, change the text to Enter sales amount:.

� For the second static text, change the text to Total with sales tax included:.

� For the Window with canvas part, double-click on the title bar of the Window with

canvas. Change the part name to FRA-TAXCOMPUTATION and the title to Sales Tax
Computation.

To move and size the GUI parts, see “Moving and Sizing GUI Parts” on page 55.

Saving the GUI Project
To save the GUI project, select Project, then select Save from the COBOL GUI

Designer - Untitled window.

 Creating a Tax Computation Application with a GUI 95

Saving the GUI Project

The COBOL GUI Designer - Save as Application window appears. When you save a

new application, the COBOL GUI Designer - Save as Application window enables you

to select the name and location of your project.

Figure 41. COBOL GUI Designer - Save as Application window

For the Tax Computation Application, perform the following steps:

1. Type Tax Computation Application in the Application Name field.

2. Ensure that the New application radio button is selected. It is the default.

3. For Folders and projects on desktop, select the Desktop item.

4. Click in the Source file field. TAXCOMPU is automatically displayed in the Source

file and Source directory entry fields. This name is generated based on the appli-

cation name you specify. In this example, it is based on the name Tax Computa-

tion Application. You can change this name.

5. In the Source directory field, the default directory displayed is a modification of

the current directory. For example, if you are in the directory D:\IBMCOBOL and

your source file name is TaxCompu, the default source directory is

D:\IBMCOBOL\TaxCompu. You can change the default as desired.

Note: For file and directory names, you can use up to 8 alphanumeric characters

and a dash (–).

6. Click on OK.

The Tax Computation Application project is saved. The COBOL GUI Designer window

title changes from Untitled to your new application name. For the Tax Computation

application, it changes to Tax Computation Application. The GUI source files are

saved in the path you specified in the Source directory field.

96 Getting Started

Creating the Application Logic

Creating the Application Logic

Your next step for developing the Tax Computation Application involves coding the logic

behind the parts in your GUI. The COBOL program behind your GUI follows the event-

driven programming paradigm. For more information about this paradigm, see “Event-

Driven Programming” on page 57.

The following steps show you how to create logic for the Tax Computation Application.

When a user types an amount—for example, 100— in the Enter sales amount entry

field and presses the Compute tax push button, the total amount of $108.00 appears

in the Total with sales tax included entry field.

You will create the logic to do this. First, you will indicate what the event is that your

logic will respond to—for the Tax Computation application, the logic responds to the

Compute tax push button being pressed.

1. Move the mouse pointer to the Compute tax push button on the Sales Tax Com-

putation window and press mouse button 2. A pop-up menu appears.

2. Select Events, then select PRESS from the cascaded menu. You will be speci-

fying the logic that is to be run when the user clicks on (or presses) the Compute

tax push button.

Figure 42. Selecting the PRESS event for the Compute tax push button

3. The COBOL Editor window opens at the ENTRY statement for the Compute tax

push button press event.

Notice the format of the name on the ENTRY statement,

FRA-TAXCOMPUTATION_PSB-COMPUTETAX_PRESS. The ENTRY name consists of the

window name, the part name, and the name of the selected event, separated by

underscores.

 Creating a Tax Computation Application with a GUI 97

Creating the Application Logic

Figure 43. Editor window with ENTRY statement for the PRESS event

At this point, you need to specify what happens when the Compute tax push button is

pressed. The application logic retrieves the contents of the Enter sales amount entry

field, adds the sales tax, and moves the amount to the second entry field where it will

be displayed for the user. IBM VisualAge for COBOL for OS/2 provides assistance to

help you generate the COBOL code to work with the GUI parts.

1. Click on the title bar of the COBOL Editor window. The cursor in the window

should appear on the line below the ENTRY statement (after USING VDE-TAXCOMPU).

If the cursor is not positioned there, move it there now.

Select the Edit menu bar choice on the editor window, then select Insert code.

From the cascaded menu, select GUI. The GUI Code Assistant window opens.

Figure 44. GUI Code Assistant window

98 Getting Started

Creating the Application Logic

2. Click on FRA-TAXCOMPUTATION in the Windows list box to select the window

that contains the ENT-SALESAMOUNT field, the part from which you want to

retrieve the contents.

3. Click on ENT-SALESAMOUNT in the Parts list box.

4. Click on getContents in the Routines list box to select the routine to get the value

of the Enter sales amount entry field. You may need to scroll the Routines list

box to find getContents.

5. Notice the CALL statement in the multiple-line entry field just above the push

buttons at the bottom of the window. This is the statement that will be generated.

Click on the Generate push button to complete.

A CALL statement is generated that gets the value of the Enter sales amount

entry field. This CALL statement issues a call to the routine getContents, using

parameters generated by the GUI Code Assistant. These parameters are based

on the windows, parts, and routines you select.

Note: When you create code using the GUI Code Assistant window, you are

using default variables. These variables are defined in a copy file,

VACCESS.CPY, that is automatically included in this program. Many of the vari-

ables in this copy file are variable-length tables.

6. To close the GUI Code Assistant window, click on the Close push button.

The next action of this event is to move the value retrieved by the getContents routine

from the Contents variable to the SALES-AMOUNT-CHAR variable.

1. Move the cursor in the COBOL Editor window to the line after the logic created to

get the contents of the SALESAMOUNT field (CALL "getContents" USING
ENT-SALESAMOUNT-HANDLE, Contents, VDE-RC).

2. Type the following code. To add extra lines, press the Enter key.

MOVE Contents-String(1:Contents-Length)
 TO SALES-AMOUNT-CHAR.

3. Because SALES-AMOUNT-CHAR is a new variable, you need to define it in the

DATA DIVISION.

You can get to the DATA DIVISION either by scrolling up in your source code or

by selecting Data Division from the View pull-down. The latter option opens

another editor session with the cursor positioned at the DATA DIVISION. In the

WORKING-STORAGE SECTION, add the following:

01 TAXCALCU-PARM-LIST.
 05 SALES-AMOUNT-CHAR PIC X(5).

4. Next, define the variable for the amount with sales tax computed by the subroutine.

Also add the following line below the SALES-AMOUNT-CHAR variable:

 05 TOTAL-AMOUNT-CHAR PIC X(8).

5. Return to your position in the PSB-COMPUTETAX_PRESS event by either scrolling back

down, or if you used the Data Division option, by closing the editor session that is

 Creating a Tax Computation Application with a GUI 99

Calling the Subroutine Logic

displaying the DATA DIVISION and returning to the original editor session. The

two editor sessions are dynamic in that your changes show up in both sessions.

Calling the Subroutine Logic
1. Now, you need to write the code to call the subroutine. Below the MOVE state-

ment, type:

CALL "TAXCALCU" USING TAXCALCU-PARM-LIST.

After the subroutine calculates the total with tax, it returns the value in the

TOTAL-AMOUNT-CHAR variable, which you defined in your DATA DIVISION.

The final action is to display the value in the Total with sales tax included entry field.

You can use the GUI Code Assistant window again to generate the code.

1. In the editor window, place the cursor on a blank line below the CALL

"TAXCALCU" statement.

2. Select Edit from the COBOL Editor menu bar. Select Insert code, then select

GUI.

3. When the GUI Code Assistant window appears, select FRA-TAXCOMPUTATION

from the Windows list box and ENT-TOTAL from the Parts list box. Select the

setContents from the Routines list box.

4. Ensure that the Include MOVE Statement(s) check box is checked.

5. Select the Edit MOVE push button. A separate window appears.

Figure 45. MOVE window

6. In the first MOVE statement, replace 1 with 8.

7. In the second MOVE statement, replace SPACES with TOTAL-AMOUNT-CHAR. Change

Contents-String to Contents-String(1:8).

8. Click the OK push button.

9. The code in the multiple-line entry field should look like:

MOVE 8 TO Contents-Length
MOVE TOTAL-AMOUNT-CHAR TO Contents-String(1:8)
CALL "setContents" USING ENT-TOTAL-HANDLE,
 Contents,
 VDE-RC

100 Getting Started

Calling the Subroutine Logic

10. Click on Generate. Click on Close to close the GUI Code Assistant window.

11. You have now finished writing the code for the Compute tax event. The entire

source code should look like the example in Figure 46.

| PROCESS QUOTE LIB PGMNAME(MIXED) THREAD TRUNC(OPT)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. "TAXCOMPU" RECURSIVE.
 AUTHOR.
 INSTALLATION.
 DATE-WRITTEN.
 DATE-COMPILED.
 SECURITY.

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 \ SOURCE-COMPUTER.
 \ OBJECT-COMPUTER.
 SPECIAL-NAMES.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 I-O-CONTROL.

 DATA DIVISION.
 FILE SECTION.
 WORKING-STORAGE SECTION.
 01 VDE-RC PIC S9(9) USAGE COMP-5.
 COPY RETURNCD.
 COPY VACCESS.
 \ LOCAL-STORAGE SECTION.
 01 TAXCALCU-PARM-LIST.
 05 SALES-AMOUNT-CHAR PIC X(5).
 05 TOTAL-AMOUNT-CHAR PIC X(8).

 LINKAGE SECTION.
 COPY TAXCOMPU.
 COPY VEVENTS.

Figure 46 (Part 1 of 2). COBOL Source Code for the Tax Computation Application

 Creating a Tax Computation Application with a GUI 101

Calling the Subroutine Logic

PROCEDURE DIVISION USING CommandLine-Data.
 GOBACK.

| ENTRY
| "FRA-TAXCOMPUTATION_FRA-TAXCOMPUTATION_DESTROY"

 USING VDE-TAXCOMPU.
MOVE VDE-TERMINATE-APPLICATION TO ACTION-RC.

 GOBACK.

| ENTRY
| "FRA-TAXCOMPUTATION_PSB-COMPUTETAX_PRESS"

 USING VDE-TAXCOMPU.

CALL "getContents" USING ENT-SALESAMOUNT-HANDLE,
 Contents,
 VDE-RC

 MOVE Contents-String(1:Contents-Length)
 TO SALES-AMOUNT-CHAR.

CALL "TAXCALCU" USING TAXCALCU-PARM-LIST.

MOVE 8 TO Contents-Length
MOVE TOTAL-AMOUNT-CHAR TO Contents-String(1:8)
CALL "setContents" USING ENT-TOTAL-HANDLE,

 Contents,
 VDE-RC
 GOBACK.
END PROGRAM "TAXCOMPU".

Figure 46 (Part 2 of 2). COBOL Source Code for the Tax Computation Application

12. Save the source by selecting Save from the File pull-down. Close the Editor by

double-clicking in the upper left corner of the window.

You just created the logic for the Compute tax push button.

The logic to close the GUI application has already been coded for you. To view this

event logic:

1. Click mouse button 2 on the Sales Tax Computation title bar.

 2. Select Events.

Notice the check mark on the DESTROY menu choice on the Events cascaded

menu. This means that the event logic is already created. Clicking on the menu

choice takes you to the existing event logic.

 3. Select DESTROY.

The COBOL Editor window appears. The cursor is placed in the source code at

the DESTROY event. This logic causes the application to end when the user

closes the application's window.

Figure 47 on page 103 shows the COBOL Editor window with the event code you

have added for the Tax Computation application.

102 Getting Started

Setting Compiler Options

Figure 47. Event Logic for the Tax Computation Application

4. Close the COBOL Editor window.

5. Close the COBOL GUI Designer window.

6. The COBOL GUI Designer - Save Project window appears. Select Save.

7. Close the COBOL Project Smarts - Catalog View window.

8. Close the VisualAge COBOL - Icon View window.

Nesting the Projects

You can nest projects to reflect the calling structure. In this application, the Tax Com-

putation Application calls the Tax Calculation subroutine. To reflect this calling struc-

ture, the Tax Calculation subroutine is nested in the Tax Computation Application GUI

project.

The Tax Calculation subroutine you just created is a non-GUI project. You can nest

this project in the Tax Computation Application.

1. Open the Tax Computation Application project by double-clicking on its icon.

2. Drag the Tax Calculation subroutine project icon from the desktop onto to an open

area in the Tax Computation Application project window. This moves (nests) the

subroutine project inside of the application project.

You will see the Tax Calculation subroutine project listed in the Tax Computation

Application - Icon view window. This may take a few moments. You may need

to press F5 to refresh the view.

Setting Compiler Options

Now you will set the compile options for the Tax Calculation subroutine.

1. Open the Tax Calculation subroutine project by double-clicking on it in the Tax

Computation Application - Icon view window.

 Creating a Tax Computation Application with a GUI 103

Setting Compiler Options

2. Select Compile from the Options pull-down of the Tax Calculation - Icon view

window. The COBOL Compiler Options notebook appears.

Figure 48. IBM COBOL Compiler Options notebook

3. Select the Debug tab to go to that page. Under the Debugging information

group box, click on the Compiler generates debugging information and Linker

includes debugging information check boxes.

104 Getting Started

Setting Compiler Options

Figure 49. Setting compile options for the Tax Calculation subroutine

This step is done at this time so that you can debug the application at the source

level later in this tutorial. It enables the compiler and linker to generate debugging

information.

4. Click on the Other tab. Click on the Compile programs but do not link check

box.

 Creating a Tax Computation Application with a GUI 105

Setting Compiler Options

Figure 50. Setting compile options for the Tax Calculation subroutine

5. Click on OK to close the Compiler Options notebook.

6. Close the Tax Calculation - Icon view window.

Now you will set the compile options for the Tax Computation Application.

1. Select COMPILE from the Options pull-down of the Tax Computation Applica-

tion - Icon view window. The COBOL Compiler Options notebook appears.

2. Select the Debug tab. Under the Debugging information group box, click on the

| Compiler generates debugging information and Linker includes debugging

| information check boxes. You may need to scroll down the notebook to see

| these check boxes.

This step is done at this time so that you can debug the application at the source

level later in this tutorial. It enables the compiler and linker to generate debugging

information.

106 Getting Started

Setting Compiler Options

| Figure 51. Setting compile options for the Tax Computation application

3. Select the Link tab.

 Creating a Tax Computation Application with a GUI 107

Building the Application

Figure 52. Setting compile options for the Tax Computation application

4. In the Enter library/object file name(s) entry field, type:

D:\IBMCOBOL\TAXCALCU\TAXCALCU.OBJ

This causes the Tax Calculation subroutine's object file to be statically linked to the

application.

Note: If you specified a different directory when setting up the Tax Calculation

subroutine project, specify that directory here.

5. Click on OK to close the Compiler Options notebook.

Now you will build the application.

Building the Application

When you build a IBM VisualAge for COBOL for OS/2 GUI application, the source files

are compiled and linked to create a running application. If you have nested projects,

the inner projects are built first when you build the top project (in this case, the GUI

project).

108 Getting Started

Building the Application

To build your application:

1. From the Tax Computation Application window, select the Project menu bar

choice.

 2. Select BUILD.

3. When the build starts, the Monitor window appears at the bottom of the Tax Com-

putation Application - Icon view window. The Monitor window displays the

output of the build. The files that you created for the application are compiled and

linked to create the specified target file.

4. When the build completes, the return code is displayed. A return code of zero

indicates that your application was built without errors and is ready to run.

Figure 53. Building the Tax Computation Application

If you do not get a return code of 0, the Monitor window displays error messages.

Scroll back up to the error message lines. If you have compile errors, the error

message lines will have the drive, path names, and source file name as well as the

error message text. Double-click on a compile error message line. The COBOL

Editor appears, showing the line in the source file where the error occurred.

Correct the error and save the file. To build it again, select Project, then select

BUILD. You will see the results of the second build in the Monitor window.

 Creating a Tax Computation Application with a GUI 109

Debugging Your Application

Using the Interactive Debugger

Use the VisualAge COBOL Interactive Debugger (IDBUG) to debug your program.

Using the debugger, you can run your program, set breakpoints, monitor variables,

monitor the registers, monitor storage and the call stack.

Preparing Your Application for Debugging
This section discusses how to prepare your application for debug. Before you invoke

the interactive debugger, ensure that you followed the instructions in step 3 on

page 104 and in step 2 on page 106.

Note: You need to turn off the OS/2 automatic lockup program by opening the

Desktop settings (select Open, then Settings). Select the Lockup tab. Ensure that

the No automatic lockup radio button is selected.

The lockup screen allows keystrokes to pass through the debugger. In the process of

unlocking the screen, you may inadvertently give commands to the debugger. This

may lead to unpredictable results that require you to reboot your machine.

Debugging Your Application
1. From the Tax Computation Application - Icon view window, select DEBUG from

the Project pull-down.

The Debugger busy. Please wait. message appears.

2. The Debug Session Control and the Listing windows open, as shown in

Figure 54.

Figure 54. IDBUG - Listing and Debug Session Control Windows

The Debug Session Control window is the control window of the debugger and

displays during the entire debugging session. One pane of the window shows the

110 Getting Started

Debugging Your Application

threads for the program you are debugging, the other shows the components of the

program.

The Listing window shows the source code.

3. On the Listing window, select Options, select Debugger settings, and then

select Debugger properties. The Debugger Properties window appears.

In the Settings group box, click on Set breakpoints at entry points. This causes

the Debugger to stop at all entry points in your application. Click on OK.

4. In the Listing window, scroll to display the line containing the getContents CALL

statement. Double-click on the prefix (line number) of this line to set a breakpoint

on the CALL statement.

The prefix area is highlighted. You can only set breakpoints on executable state-

ments. The default colors are blue for executable statements and black for non-

executable statements.

Note: The debugger is running in synchronous mode. When the debugger is

active, the rest of your desktop is suspended.

5. Select Run from the Run pull-down. Your Sales Tax Computation window

appears. Type a new value in the Enter sales amount entry field. Click on the

Compute tax push button.

The Listing window appears in the foreground. The GUI application stops at the

ENTRY statement for the Compute tax push button press event. This is a result

of turning on the Set breakpoints at entry points check box in step 3 on

page 111.

6. Select Run from the Run pull-down. The GUI application stops at the breakpoint

set during step 4.

7. To display a variable and change its value:

a. On the Listing window, double-click on the variable you want to display.

b. A Program Monitor window displays the variable and the value currently

assigned to it.

c. To change the value, double-click on the value of the variable in the right-hand

column in the Program Monitor window, then type over the old value with a

new value. Press Enter.

8. You can continue to step through and analyze your application by selecting the

appropriate options from the Run pull-down. Some of those options include the

following:

Step over Executes the current line in the program. If the current line is a

call, execution stops when the call completes.

Step into Executes the current line in the program. If the current line is a

call, execution stops at the first statement in the called program.

 Creating a Tax Computation Application with a GUI 111

Running the Application

Step debug Executes the current line in the program. The debugger steps

over any program for which debugging information is not available

(for example, library and system routines), and steps into any

program for which debugging information is available.

Step return Automatically executes the lines of code up to, and including, the

return statement of the current program.

Run Starts and stops the program. When the push button is green in

the toolbar, you can start the program. When the push button is

red, you can stop the program.

For more information about debugging tasks, select How do I from the Help pull-down

in any of the debugger windows.

Ending the Debugging Session
To end the debugging session, select Close debugger from the File pull-down in any

of the debugger windows. A confirmation message appears. Select Yes.

You can also end the debugging session by:

� Pressing F3 in any of the debugger windows.

� Closing your GUI application. The debugger Startup Information window

| appears. Click Cancel to exit or click OK to start another debug session.

You are ready to run the Tax Computation application.

Running the Application

From the Tax Computation Application - Icon view window, select RUN from the

Project pull-down. The Sales Tax Computation window appears.

Figure 55. Running the Tax Computation Application

To close the Tax Computation application, double-click on the system menu in the

upper left corner of the window.

112 Getting Started

Packaging the Application for Distribution

Packaging the Application for Distribution

After you have successfully built and run your application, you can package it along

with the necessary runtime environment for distribution on diskettes, CD-ROM, or on a

local or remote hard disk.

For more information about distributing an application, see the Task Helper located in

the main VisualAge COBOL - Icon View window.

For the Tax Computation application and the runtime environment, you need approxi-

| mately three or four empty, formatted 2MB diskettes. To package the Tax Computation

application:

1. From the Tax Computation Application - Icon view window, select PACKAGE

from the Project pull-down. The Package VisualAge COBOL Application

appears.

| Figure 56. Package VisualAge COBOL Application window

| 2. Ensure that the COBOL Non-GUI Runtime and COBOL GUI Runtime compo-

| nents are selected in the Runtime Components list box.

| 3. Ensure that the Tax Computation Application is selected in the Application

| Components list box.

 Creating a Tax Computation Application with a GUI 113

Packaging the Application for Distribution

Note: Depending on the file system, the name of your project may be all upper

case or in mixed case.

4. Click on Continue.

5. The VisualAge COBOL Application Packaging Data window appears.

| Figure 57. VisualAge COBOL Application Packaging Data window

6. Accept the defaults in the entry fields. Subsequent steps assume that your Target

Location is A:. Your Tax Computation application will be packaged onto diskettes

in drive A:.

7. Insert an empty, formatted diskette (label it Disk 1) into drive A: and click OK.

8. A message informs you that the first phase of the packaging process is about to

start. Click OK on the message dialog.

9. The Application Packaging Status window appears and starts the first phase of

packaging. This may take a few minutes.

10. After the first phase of packaging is complete, a message appears informs you that

the first phase is complete. Click OK in the message dialog.

11. The Diskette Generator window appears.

114 Getting Started

Installing on an End User Machine

A message in the Diskette Generator window informs you that you should insert

the first distribution diskette into drive A:. Ensure that the first diskette is still in

drive A:. Press Enter.

12. The Diskette Generator window prompts you for more diskettes when necessary.

13. After the Diskette Generator has completed, a message is displayed that prompts

you to reinsert the first diskette. Reinsert the first diskette and click OK.

14. When the packaging process is complete, a message informs you that the pack-

aging process has completed successfully. Click on OK.

Installing the Application on an End User Machine
After you have packaged your application, you can distribute the diskettes to your

users. Install your application from the diskettes as follows:

1. Insert the first diskette into drive A: of a user machine.

2. Open an OS/2 window and type: a:\install. Press Enter.

3. The Installation window appears.

4. Read the instructions in the Instructions window and click Continue.

5. The Install window appears.

6. Accept the defaults and click OK.

7. The Install - directories window appears.

8. Click Select all to select all components to install. Accept the default installation

| directories as shown or modify them. Click Install.

9. The Install - progress window appears.

10. The Installation program prompts you to insert diskettes when necessary.

11. When the installation process is complete, a message informs you that all compo-

nents are successfully installed.

12. Remove any diskettes from drive A:. Shut down and reboot the user machine to

activate the changes in the CONFIG.SYS file.

13. After rebooting, open the Tax Computation Application folder on the desktop.

14. To run the Tax Computation Application, double-click on the TAXCOMPU icon. If

the Sales Tax Computation window is not in full view, press Alt+F7 and use your

mouse to move and display the entire window.

 Creating a Tax Computation Application with a GUI 115

Installing on an End User Machine

116 Getting Started

Examining Tables in the Database Schema View

Creating SQL Statements with Data Assistant

Data Assistant simplifies the process of constructing syntactically correct, embedded

SQL statements. It gives you a graphical view of your relational database, allows you

to map COBOL data structures to the database, and generates SQL statements into

your source file.

Data Assistant is made up of three views. In this brief tutorial, you will use the fol-

lowing steps to open these views and create an embedded SQL statement that lists all

the managers in the Employee table of the SAMPLE database:

1. Examine tables of a relational data base (SAMPLE) in the Database Schema

view.

2. Copy a selected table to the Data Structure Mapping view.

| 3. Map a data structure to selected columns of the table in the Data Structure

Mapping view.

4. Use this data structure mapping in the SQL Construction view to build an SQL

statement and insert it into your COBOL code.

While you are going through this tutorial, you may want more information about Data

Assistant. You can access online information by pressing the F1 key.

| Note: Data Assistant requires DB2 for OS/2 Version 2.1. This tutorial assumes you

| have installed the SAMPLE database. It also assumes that you have already created a

| project, either by using the instructions in “Build Your First VisualAge COBOL

Application” on page 43 or by creating a project of your own.

Examining Tables in the Database Schema View

| First, you will examine the tables of the SAMPLE database in the Database Schema

| view. You will select one of these tables in the data structure mapping in the next step.

To open the Database Schema view and examine the tables in the SAMPLE database:

| 1. Open a project. If you have not created one, see the instructions in “Build Your

| First VisualAge COBOL Application” on page 43.

| 2. Start DB2 for OS/2 before you proceed to open the Database Schema view.

| a. Select the Project menu-bar choice, then select the arrow button next to the

| Data Tools choice.

| b. A cascaded menu appears. From the cascaded menu, select DB2 Start.

| c. When prompted, type the appropriate user ID and password. Click on OK.

| 3. Click on Project, then the arrow to the right of Data Tools, and then Data

| Assistant Schema view. A prompt appears for you to enter the name of the data-

base. Type SAMPLE and click on OK. The Database Schema view opens, dis-

| playing the tables of the SAMPLE database. The Schema view displays views

 Copyright IBM Corp. 1995, 1996 117

Copying Tables

| using a slightly different icon. However, the SAMPLE database contains only

| tables.

Note: There are eight tables in the SAMPLE database. You may need to scroll or

| enlarge the window to see them all. This is a read-only view of the database.

| Data Assistant does not modify the actual database.

Figure 58. Database Schema View

4. Double-click on any table with mouse button 1 to expand it and see the columns

| that make up the table. Minimize the table by double-clicking on the title bar of the

| table.

Note: Do not close the Database Schema view.

In the next steps, you will open the Data Structure Mapping view and copy a table over

from this Database Schema view.

| Copying Tables to the Data Structure Mapping view

To open the Data Structure Mapping view:

| 1. From your project, select the Project menu-bar choice, then select the arrow

| button next to the Data Tools choice.

| 2. A cascaded menu appears. From the cascaded menu, select Data Assistant

| Mapping view from the Data Tools menu choice. A prompt appears for you to

| enter the mapping file name.

| 3. Type DA-TUT and click on OK. The Data Structure Mapping view opens.

118 Getting Started

Copying Tables

Figure 59. Data Structure Mapping View

| The Mapping view is made up of two panes. The left pane will contain tables and

| views you copy over from the Database Schema view. The right pane is where you

| specify data items, which typically map to columns of the tables and views in the

| mapping view.

To create the data structure mappings that are used to create SQL statements, you

| need to copy the tables and views that your application needs from the Database

Schema view over to the Data Structure Mapping view. In this tutorial, you will use the

Staff table.

To copy the Staff table over to the Mapping view:

1. Locate the Staff table in the Database Schema view.

2. Press and hold mouse button 2 on the Staff table icon while dragging the object

from the Database Schema view window over to the Mapping view window, then

release mouse button 2.

| The table icon will be copied into the Mapping view window.

 Creating SQL Statements with Data Assistant 119

Mapping Data Structures

Figure 60. Data Structure Mapping View with Staff Object

| 3. Close the Database Schema view (not the Mapping view) by double-clicking on the

upper left corner of the title bar.

Now you are ready to create a data structure that maps the data items to the database.

Mapping Data Structures

In the following steps, you will map a data structure to the SAMPLE database. Later,

you will use the data structure in the SQL Construction view to create your SQL state-

ment.

1. Expand the Staff table by double-clicking on it. Now you can see the columns that

make up the Staff table.

| 2. Click on the Name column of the Staff table. The data item name, source

expression value, and SQL data type are entered into the data structure mapping.

3. Select the Dept, Job, and Salary columns in the same manner.

If you want to delete a data item from the mapping, click on the selection indicator

(the arrows that run down the left side of the mapping table) next to the item you

want to delete and select Delete Data Item from the Selected menu.

120 Getting Started

Mapping Data Structures

| Figure 61. Completed Data Structure Map

4. To save your data structure, select Save from the Data Structure menu. A

message box appears telling you that three files have been saved:

� DA-TUT.INI (an internal INI file)

� DA-TUT.SM (an internal mapping file)

� DA-TUT.CPY (a copybook file)

| Click on OK.

Note: These files are saved in a subdirectory off of the directory specified by the

ICOBDIR environment variable in your CONFIG.SYS file. This subdirectory is

named \DA. For example, if you type SET ICOBDIR on your OS/2 command line

and the response is C:\COBOL, the data structure mapping files are saved in the

directory C:\COBOL\DA.

5. Select Report from the Data Structure menu bar to generate a report about the

contents of the data structure mapping. A message appears to tell you that the

| report has been saved as the text file DA-TUT.RPT in the \DA subdirectory of the

directory specified by the ICOBDIR environment variable. You can view this report

using any text editor.

6. Click on OK to close the message window.

7. Close the Data Structure Mapping view by double-clicking in the upper left corner

| of the title bar. A message appears asking if you want to save the mappings.

| Click on Exit.

Note: To see other ways of adding or updating data items in the data structure

mapping, select How Do I... from the Help menu bar, then select the appropriate

topic from the list.

With this simple data structure mapping, you are now ready to create your SQL

statement.

Once you have built a catalog of reusable data structure mappings, you will be able to

create most of the SQL statements you need without going back to the Database

 Creating SQL Statements with Data Assistant 121

Creating an SQL Statement

Schema or Data Structure Mapping views. You can then easily access the data struc-

tures from the SQL Construction view. In many cases, a database administrator or

team leader is likely to create the necessary mappings. Then the application developer

begins programming as described in the next step.

Creating an SQL Statement

In these steps, you will open the SQL Construction view and use the DA-TUT.SM data

structure you just mapped to build an SQL statement.

To open the SQL Construction view:

1. From your project, select the Project menu-bar choice, then select the arrow

button next to the Create choice.

| 2. A cascaded menu appears. From the cascaded menu, select Create New Text

| File with the COBOL Editor. The New window appears, in which you specify

| options for your new file.

| 3. In the New window, click on the drop-down arrow to the right of the Language

| Profile drop-down combination box. Locate the item CBL; you might have to scroll

| to find it. Click on CBL to select it. This sets the COBOL language-sensitive

| editing features on.

| 4. Click on the New pushbutton. The COBOL Editor displays the window titled Editor

| - Untitled Document 1 and recognizes the file as a COBOL file.

| You can tell that the language-sensitive editing features are on by checking to see

| that the format line, the line just below the menu bar, displays *, A, and B. If you

| cannot see the format line, you can display it by selecting View, then selecting

| Format line.

Note: For the Data Assistant toolbar icon and menu choices to appear, you must

be editing a COBOL file with the extension .CBL, a copyfile with the extension

.CPY, a COBOL DB2 file with the extension .SQB, or a CICS file with the extension

.CCP.

5. Select Insert Code from the Edit menu, then select SQL from the Insert Code

menu choice. This brings up the Data Assistant SQL Construction view.

The following steps will create a simple SQL SELECT statement that lists the depart-

ments, positions, names, and salaries of all managers listed in the Staff table.

1. Click on the drop-down list button to the right of the SQL statement type list box

| to see the list of SQL statements supported. Select SELECT from the displayed

list.

2. Click on DA-TUT.SM in the Available data structure(s) window to select the data

structure you mapped earlier. The Available data item(s) list box displays the

columns you selected in the Data Structure Mapping view.

| 3. Click on DEPT, JOB, NAME, and SALARY from the Available data item(s)

window. Notice that an SQL statement is created in the SQL statement appear-

122 Getting Started

Creating an SQL Statement

ance window as you select the data items. You will need to scroll up to see the

entire statement.

| Figure 62. Data Assistant SQL Construction View

In this next step, you will add a condition to the SQL statement so that it selects only

those staff members listed as managers.

1. Select Condition from the SQL statement menu bar. This opens the Condition

action window.

2. Click on JOB from the Operands & operators window. STAFF.JOB appears in

the Condition (in SQL Syntax) window.

3. Click on Comparison operators from the Operand & operator types window.

4. Click on Equal in the Operands & operators window.

5. Click in the Condition window and type a space, then 'Mgr' after the equal (=)

sign.

 Creating SQL Statements with Data Assistant 123

Creating an SQL Statement

Figure 63. Condition Action Window

6. Click on the OK push button. The Condition action window disappears and the

condition is entered in the SQL Statement Appearance window. Scroll up to view

the condition.

| 7. In the SQL statement appearance area, scroll up to see the entire SELECT state-

ment.

8. Click on the Generate push button to insert the code into the COBOL Editor

session at the current cursor position.

9. Click in the COBOL Editor to see the tokens colorized.

124 Getting Started

Creating an SQL Statement

| Figure 64. SQL Statement Inserted Into COBOL Editor

You have now successfully created an embedded SQL statement. As noted in the

generated comments, remember to include the generated copy file in the Data Divi-

sion of your program.

10. Double-click on the upper left corner of the SQL Construction view to close the

view.

11. Double-click on the upper left corner of the COBOL Editor session to close the

| session. A window appears asking if you want to save the file. It is not necessary

| to save this file because it is not a complete COBOL program. Click on the No

push button. The file closes.

As noted previously, the ability to save and reuse data structure mappings makes Data

Assistant more efficient each time you use it. Though you went through the entire

process of mapping a data structure to a database and then generating an SQL state-

ment, you will be able in later sessions to go straight to the SQL Construction view and

reuse the same mapping to create new statements.

 Creating SQL Statements with Data Assistant 125

Creating an SQL Statement

126 Getting Started

Using the CICS Transaction Assistant

Using the CICS Transaction Assistant

Transaction Assistant simplifies the task of constructing CICS transaction calls in

COBOL programs. The Assistant takes the information you enter into a dialog window

and uses it to generate a CICS ECI call and parameter list for invoking CICS trans-

actions.

In this tutorial, you will fill in the required information and generate a CICS call. To use

the Transaction Assistant, you must be editing in the COBOL Editor.

If you do not have a COBOL Editor session open, do the following:

| 1. From your project, select the Project menu-bar choice, then select the arrow

| button next to the Create choice.

| 2. A cascaded menu appears. From the cascaded menu, select Create New Text

| File with the COBOL Editor. The New window appears, in which you specify

| options for your new file.

| 3. In the New window, click on the drop-down arrow to the right of the Language

| Profile drop-down combination box. Locate the item CBL; you might have to scroll

| to find it. Click on CBL to select it. This sets the COBOL language-sensitive

| editing features on.

| 4. Click on the New pushbutton. The COBOL Editor displays the window titled Editor

| - Untitled Document 1 and recognizes the file as a COBOL file.

| You can tell that the language-sensitive editing features are on by checking to see

| that the format line, the line just below the menu bar, displays *, A, and B. If you

| cannot see the format line, you can display it by selecting View, then selecting

| Format line.

Or, if the COBOL Editor is already open, start a new file named tatest.cbl.

Note: Transaction Assistant is only available in the COBOL Editor when you are

editing the following files:

 � COBOL (.cbl)

 � Copy (.cpy)

 � DB2 (.sqb)

 � CICS (.ccp)

To open the Transaction Assistant:

1. Select Insert Code from the Edit menu.

2. Select CICS ECI from the Insert Code menu choice.

The CICS transaction assistant window opens. Figure 65 on page 128 shows

this window completed with sample information.

 Copyright IBM Corp. 1995, 1996 127

Using the CICS Transaction Assistant

| Figure 65. CICS Transaction Assistant Window

3. To see how the Transaction Assistant generates a CICS transaction call and

inserts it into your COBOL code, fill in the entry fields as shown in the example,

then click on the Generate push button to insert the code at the current cursor

location in your COBOL file.

Or, if you want to generate a working CICS transaction call, use the COBOL file of

your choice and the descriptions of each field below to fill in the following entry

fields based on information at your site.

Note that while CICS may place limitations on the size of the value a program vari-

able represents, Transaction Assistant does not limit the size of the program vari-

able names.

Also note that Transaction Assistant does not examine or validate the program var-

iables you use in your program.

For more information about programming considerations or the information required

for these fields, click on the Help push button, or place the cursor in any field and

press F1.

User ID Enter the name of a program variable containing the CICS

USERID that will be used to make the call. CICS limits

the length of the actual User ID to eight characters.

Define the USERID in the Data Division as PIC X(8).

128 Getting Started

Using the CICS Transaction Assistant

Password Enter the name of the variable defined for the password

associated with the USER ID. CICS limits the length of

the password to eight characters.

Define the password in the Data Division as PIC X(8).

CommArea The commarea is a buffer used to pass information

between CICS and the COBOL program.

If a commarea is not needed for this call, leave the

CommArea field blank.

If a commarea is needed, enter the name of the

commarea in the CommArea entry field, and enter the

length of the commarea, in bytes, into the CommArea

Length entry field. CICS limits the length to 16K bytes.

The Data Division definition of this field is determined by

the application programmer.

CommArea Length The commarea length is the length of the commarea

buffer in bytes.

If a commarea is not needed for this call, leave the

CommArea Length entry field blank.

If a commarea is needed, enter the name of the

commarea in the CommArea entry field, and enter the

length of the commarea, in bytes, into the CommArea

Length entry field. CICS limits the length to 16K bytes.

Define The commarea length in the Data Division as PIC
S9(9) COMP-5.

Time Out Enter the name of a program variable containing the

length of time, in seconds, the application will wait for the

CICS program to complete. You can also enter a literal

value into this field.

Define the timeout in the Data Division as PIC S9(9)
COMP-5.

Transaction Enter the program variable defined in your COBOL

program for the CICS transaction code under which the

program will run. This field is optional and can be left

blank.

If the transaction code is not specified, the program will

run with default properties. If it is provided for you, define

it in the Data Division as PIC X(4).

Program Name Enter the name of a program variable defined in your

COBOL code for the name of the CICS server program

being called. CICS limits the length of the name of the

program to 8 characters.

 Using the CICS Transaction Assistant 129

Using the CICS Transaction Assistant

Define the program variable in the Data Division as PIC
X(8).

Return Code The return code is the name of the COBOL program vari-

able that will be set by CICS when the application is run.

The name of the variable must be 32 characters or less.

A negative return code indicates that the ECI errors are

defined by CICS OS/2.

A zero or positive return code indicates that the ECI errors

are from the called CICS program.

Define the return code in the Data Division as PIC S9(9)
COMP-5.

Abend Code The abend code is the name of the COBOL program vari-

able that will be set to the value returned by CICS if the

transaction abnormally terminates.

Define the abend code in the Data Division as PIC X(4).

4. When you have completed the fields in this window, click on the Generate push

button.

5. The code for making the call is placed in the editor window at the current cursor

position. Figure 66 shows the code generated for the parameters entered in

Figure 65 on page 128.

6. Click on the Close push button to close the Transaction Assistant.

| Figure 66. Editor Window with Code Generated by CICS Transaction Assistant

130 Getting Started

Using OS/2

 Appendix A. Using OS/2

This appendix describes how to perform basic tasks in OS/2: using your mouse, using

windows, and using controls in windows.

Using the Mouse
Pointing devices, such as a mouse, are the key to any graphical user interface. The

mouse allows you to interact with the objects on your desktop, the VisualAge COBOL

product, and the OS/2 operating system.

The mouse at your workstation typically has two buttons on it. Each button performs

different operations on the OS/2 desktop. The configuration of button operations can

be tailored to your liking.

The following list describes the default operations for each mouse button.

Button Function

1 Button 1 (usually the left button) is used for selecting objects,

opening files, and starting applications.

2 Button 2 (usually the right button) is used for moving or manip-

ulating objects.

The following list provides definitions of mouse manipulations.

Manipulation Function

Click To press and release a mouse button.

Double-Click To press and release a mouse button twice in rapid succession.

Drag To press and hold a mouse button while moving the mouse. Drag-

ging ends when the mouse button is released. For example, drag-

ging causes an icon to be moved to another location on the screen.

Drag-and-Drop To directly manipulate an object by dragging it onto another object.

This transfers information from a source object to a target object.

For example, dragging a document object to a printer object causes

the file associated with the document to be sent to the printer associ-

ated with the printer object. Button 2 is usually used during a drag-

and-drop.

Use your mouse on a flat, smooth surface such as your desk, or a mouse pad. Move

your mouse across this surface. If you run out of desk space while moving your

mouse, simply pick up the mouse and place it in a more comfortable location before

moving it again.

The movement of the mouse across a surface rolls a ball inside of the mouse which, in

turn, sends information to the computer. This information allows the mouse pointer on

the desktop to follow the mouse movement.

 Copyright IBM Corp. 1995, 1996 131

Using OS/2

The mouse pointer usually looks like an arrow, but it can take on a different appear-

ance, depending on the software you are using, the actions that you are performing,

and the availability of computer resources. For instance, it may look like a clock. This

is the wait pointer, which indicates that the current application is busy and that no addi-

tional action can be performed on it.

Working with Windows
A window is an area of the screen with visible boundaries in which you can view infor-

mation or interact with an application.

The parts of a window enable you to work with the window. Window parts you will be

using are labelled in the diagram below.

Figure 67. Parts of a Window

The parts of the window are as follows:

1. Border

Indicates the boundaries of a window.

2. System-menu symbol

Gives the user access to choices that affect the window.

3. Title bar

Contains the system-menu symbol, the window title (the object and view name),

and the window sizing buttons.

4. Minimize button

Reduces the window to its smallest possible size.

5. Maximize button

Enlarges the window to its largest possible size.

6. Scroll bars

Indicate that there is more information in the window and contain controls to access

the information.

Invoking a Window: In OS/2, icons on the desktop are used to start a process, such

as the VisualAge COBOL product, or to open an OS/2 window.

Double-clicking on an icon is one way to open a window or start a process in OS/2.

132 Getting Started

Using OS/2

You can also click on an icon with mouse button 2 to display a pop-up menu for the

icon. One of the choices is usually Open.

Sizing a Window: You can reduce the size of a window to create more space on the

OS/2 desktop or enlarge it to see more information in the window.

To change the length or width of a window:

1. Move the mouse pointer to any point in the border of the window until the mouse

pointer changes to a double-headed arrow.

2. When you see the double-headed arrow, press and hold the right mouse button

while dragging the mouse up or down from the window, then release the mouse

button.

The window becomes longer as you drag the border down or shorter as you drag

the border up. You can use any of the four borders to resize a window.

3. You can also change the length and width of the window at the same time.

Move the mouse pointer to the corner of the border on the window until the mouse

pointer changes to a diagonal double-headed arrow.

4. When you see the diagonal double-headed arrow, press and hold the right mouse

button while dragging the mouse toward the inside or outside of the window, then

release the mouse button.

The length and width of the window becomes smaller or larger as you drag the

corner of the border inward or outward.

Moving a Window: Many times you will need to access windows or icons that are

located behind a window.

One way to access those objects is to move the window to reveal the objects behind it.

Moving windows is also a way to arrange the windows on your desktop to suit your

needs.

To move a window, position the mouse pointer on the title bar at the top of the window.

Press and hold mouse button 2 while dragging the mouse, then release the mouse

button.

The window moves in the direction you move the mouse. When you release the

mouse button, the window is relocated on the desktop.

Minimizing a Window: When you have many windows open on your desktop, you

may want to remove one or more of them from view.

Minimizing a window reduces it to an icon and removes the window from view. When

you minimize a window, you can quickly bring it back to view as it was before you

minimized it. You can locate the window using the OS/2 window list, as described in

“Locating Windows” on page 134.

 Appendix A. Using OS/2 133

Using OS/2

To minimize a window, click on the minimize button, the button next to the rightmost

button in the upper right-hand corner of the window.

The window reduces to an icon. The icon may be hidden from view. It is located either

on the OS/2 desktop or in the Minimized Window Viewer.

Locating Windows: When you have minimized a window and need to locate it again,

you can use the OS/2 Window List to make it visible again.

To access the OS/2 Window List press the Ctrl+Esc key combination. To do this,

press and hold the Ctrl key, then press and release the Esc key.

The OS/2 Window List appears. It displays a list of the open windows, including open

windows that are minimized.

Note: The OS/2 Window List closes automatically if you click the mouse button

outside of the list. If this happens, press Ctrl+Esc again.

To bring a window back into view, locate its title in the OS/2 Window List. You may

need to scroll to find it. When you have found its title, double-click on it. The window

reappears on the desktop as it looked before it was minimized.

Maximizing a Window: Maximizing a window enlarges it to its largest possible size.

Restoring a window returns it to the size it was before you maximized it.

When you maximize a window, it enlarges to the largest size possible for the particular

view or to the size of the workplace. The maximized window often covers the entire

desktop. To maximize a window, click on the maximize button, the rightmost button in

the upper right-hand corner of the title bar in the window.

After you maximize the window, the rightmost button in the upper right-hand corner of

the title bar is replaced with the restore button. Click on the restore button to change

the window back to the size it was before you maximized it.

Activating a Window: The active window is the window with which you are currently

interacting. This is the window that has a highlighted border and title bar. When

working with multiple windows, it is important to be aware of which window is active.

There are several ways to make a window active.

� If a window is visible, you can make it active by clicking on it.

� When you open a window, it becomes the active window.

� You can use the OS/2 Window List to make a window active.

Any keyboard input is applied to the active window. When using your keyboard to

interact with windows, you must be aware of which window is active. For example, if

you try to type in an editor window when it is not active, your text will not appear there.

OS/2 will try to apply what you type to whatever window is active at the time. Unin-

tended results may happen if you have not made the appropriate window active before

performing an action.

134 Getting Started

Using OS/2

Closing Windows: When you are finished using a window, you can close the window.

There are several ways to close a window.

� You can click once on the system-menu symbol in the upper left-hand corner of the

window. The system menu appears, and Close is one of the choices. Click once

on Close to close the window.

Note: The system menu closes automatically if you click the mouse button

outside of the menu. If this happens, click once on the system-menu symbol

again.

� You can double-click on the system-menu symbol of the window. In general, this

action closes the window, as close is the default menu choice.

Unlike minimized windows, you cannot access closed windows from the OS/2 Window

List. You must invoke the window again to use it.

Using Controls on a Window
This topic describes how to use some of the controls that can be found on a work-

station window. You will encounter these controls when using VisualAge COBOL.

Using Scroll Bars in Windows: Most windows have more information in them than

can be displayed in the window at one time. The long, vertical grey area at the right

edge of a window or at the bottom of a window is the scroll bar.

These vertical and horizontal scroll bars allow you to move unseen information into

view. Using a mouse, there are three ways to scroll through a window:

� When there is off-screen information, there will be a light-colored part (the scroll

box) on the scroll bar.

– Click on the scroll box in the side scroll bar and, while holding the button, drag

it along in either direction. This moves the information up or down in the

window.

– Click on the scroll box in the bottom scroll bar and, while holding the button,

drag it along in either direction. This moves the information right or left in the

window.

� There are arrows at each end of the scroll bar. When there is off-screen informa-

tion, the arrow will not be grayed out.

– Click on a non-grayed arrow on the side scroll bar to move the information up

or down in the window.

– Click on a non-grayed arrow on the bottom scroll bar to move the information

right or left in the window.

� When there is a light-colored part (the scroll box) on the scroll bar, click on the

dark area above or below the scroll box. Information scrolls by an entire window-

full.

 Appendix A. Using OS/2 135

Using OS/2

Using Menus in Windows: One way of performing actions in a window is to use its

menus.

There are different types of menus you might find available in OS/2 windows:

� Menus available from the menu bar at the top of the window.

To access these menus, click on the menu-bar choice. This is located below the

title bar on a window. Select a choice by clicking on it.

� Pop-up menus that you can access within a window using the right mouse button.

To access these menus, move your mouse pointer to a blank part of the window or

to an object in the window (such as an icon) and click with the right mouse button.

Select a choice by clicking on it.

Using Push Buttons: Push buttons are used in windows for actions that occur imme-

diately. However, if you see a push button with an ellipsis (...) after the text within it,

clicking on the push button will display another window.

To perform an action with a push button, move the mouse pointer over the button and

click with mouse button 1.

Using Radio Buttons and Check Boxes: Radio buttons and check boxes are con-

trols you may find on windows. They enable you to make a choice from a set of

options.

Radio buttons are used to select only one item from a number of choices. When you

click on one radio button in a group of radio buttons, that button is filled in with a dot.

This means that only this choice is selected. You can change your selection by clicking

on another radio button in the group, but only one radio button in a group can be

selected at a time.

Check boxes are used to select one or more items from a number of choices. When

you click on a check box, that box is filled in with a check mark. This means that the

choice is selected. You can make more selections by clicking on other check boxes in

the group, and all of your selected choices will apply. You can deselect a check box by

clicking on the check box again.

Using Entry and Output Fields: Entry fields are areas in a window in which you

enter text. Output fields are areas in a window in which text is displayed only.

To enter text in an entry field, move the mouse pointer over the entry field. You will

know when your mouse pointer is over an entry field, because it will change to an

I-beam pointer. Click once in the entry field. The text cursor, a blinking vertical bar,

appears in the entry field. This means that the text you type will appear in the entry

field.

136 Getting Started

Using OS/2

Using List Boxes: A list box contains a scrollable list of choices that you select.

There are several variations of list boxes that you may encounter:

 � List box

To use a list box, scroll through the list and click on a choice to select it. It is the

selected choice until you click on another choice.

� Drop-down list box

A drop-down list box is a list box that shows one item and a drop-down list button

that, when clicked on, displays the full list of choices. Click on a choice to select it.

 � Combination box

A combination box has an entry field and a list box with selectable choices. You

can either click on a choice in the list box or type a choice in the entry field.

� Drop-down combination box

A drop-down combination has an entry field and a list box with selectable choices.

The list box is hidden until you display it. You can either click on a choice in the

list box or type a choice in the entry field.

 Appendix A. Using OS/2 137

Using OS/2

138 Getting Started

VisualAge COBOL Sample Applications

Appendix B. VisualAge COBOL Supplied Sample Applications

VisualAge COBOL provides two sets of sample applications: “Employee Lookup Appli-

cation Samples” and the “SMARTdata Utilities Samples.”

The sample applications are installed when their corresponding components of

VisualAge COBOL are installed. The Employee Lookup Application samples are

installed when you install the GUI Designer component. The SMARTdata UTILITIES

samples are installed when you install the SMARTdata UTILITIES component.

Employee Lookup Application Samples

The Employee Lookup Application samples illustrate different types of applications you

can create using VisualAge COBOL, including the use of databases. The samples are

variations of a single application. All have the same external behavior consisting of the

same GUI.

Each application is supplied as a set of projects with all the required source code. The

projects are located in the Samples folder, which is located in the VisualAge COBOL

folder.

Note: The executable files themselves are not supplied.

The following applications are supplied:

� Employee Lookup intended to run on a single OS/2 workstation, using inline data

(see “Sample Project 1” on page 140).

� Employee Lookup intended to run on a single OS/2 workstation, using inline data,

and using object-oriented (OO) COBOL methodology (see “Sample Project 2” on

page 141).

� Employee Lookup intended to run on a single OS/2 workstation, using DB2 for

OS/2 relational data, and using OO COBOL methodology (see “Sample Project 3”

on page 141).

� Employee Lookup with a client intended to run on an OS/2 system and a server

intended to run on an MVS CICS/ESA system. The application uses inline data

(see “Sample Project 4” on page 143).

� Employee Lookup with a client intended to run on one OS/2 system and a server

intended to run on another OS/2 system. The application uses inline data (see

“Sample Project 5” on page 144).

| � Employee Lookup with a client intended to run on an OS/2 workstation using

| VSAM data (see “Sample Project 6” on page 146).

Employee Lookup Application Description
The sample Employee Lookup application permits users to display employee informa-

tion by way of a GUI running on a workstation. Which employees are displayed is

based on search criteria shown below.

 Copyright IBM Corp. 1995, 1996 139

VisualAge COBOL Sample Applications

The following information is displayed for each employee:

 � Last name

 � First name

 � Middle initial

 � Department

� Phone number (in the format aaa-nnn-nnnn where aaa is the area code)

� Date of hire (in the format mm/dd/yy)

� Number of full years of service with the company

Note: All of the employee names and phone numbers that appear in the application are

fictitious.

The search criteria are one of the following:

� Display all employees

� Display those employees that exactly match one of the following search informa-

tion:

 – Last name

 – Department

– Last name and department

� Display those employees that partially match (whose leading characters match)

one of the following search information:

 – Last name

 – Department

– Last name and department

The application provides online help information on using the application, as well as

context sensitive help for the GUI parts such as entry fields, output fields, radio buttons,

and push buttons.

An error message window is displayed for invalid request, match not found, data base

error, and communications error. Online help information for the messages is provided.

Sample Project 1
This is the Employee Lookup application with a GUI, intended to run on a single work-

station. The application uses inline data.

This application consists of a GUI project named Sample Project 1. The GUI project

contains all the source parts associated with the GUI, including the COBOL source file.

Nested within the GUI project are two COBOL projects named Search Logic Subrou-

tine and Service Calculation Subroutine. These projects contain the parts for the two

subroutines that are called by the GUI program.

140 Getting Started

VisualAge COBOL Sample Applications

| Building and Running the Project
| To build Sample Project 1:

| 1. Double-click on the VisualAge COBOL icon.

| 2. Double-click on the Samples folder.

| 3. Double-click on the Sample Project 1 project.

| 4. In the Sample Project 1 - Icon View, select the Project menu bar choice and then

| select BUILD.

| The output from the BUILD is displayed in the project monitor area.

| To run Sample Project 1:

| 1. In the Sample Project 1 - Icon View, select the Project menu bar choice and then

| select RUN.

Sample Project 2
This is the Employee Lookup application with a GUI, intended to run on a single work-

station. The application uses inline data and object-oriented COBOL methodology.

This application consists of a GUI project named Sample Project 2. The GUI project

contains all the source parts associated with the GUI, including the COBOL source file.

Nested within the GUI project is a COBOL project named Data Base Class Program.

This project contains the parts for the object-oriented data base class program. This

class program contains the methods that are invoked by the GUI program.

| Building and Running the Project
| To build Sample Project 2:

| 1. Double-click on the VisualAge COBOL icon.

| 2. Double-click on the Samples folder.

| 3. Double-click on the Sample Project 2 project.

| 4. In the Sample Project 2 - Icon View, select the Project menu bar choice and then

| select BUILD.

| The output from the BUILD is displayed in the project monitor area.

| To run Sample Project 2:

| 1. In the Sample Project 2 - Icon View, select the Project menu bar choice and then

| select RUN.

Sample Project 3
This is the Employee Lookup application with a GUI, intended to run on a single work-

station. The application uses DB2 for OS/2 relational data and object-oriented COBOL

methodology.

 Appendix B. VisualAge COBOL Supplied Sample Applications 141

VisualAge COBOL Sample Applications

This application consists of a GUI project named Sample Project 3. The GUI project

contains all the source parts associated with the GUI, including the COBOL source file.

Nested within the GUI project is a COBOL project named Data Base Class Program.

This project contains the parts for the object-oriented data base class program. This

class program contains the methods that are invoked by the GUI program.

| Building and Running the Project
| To build and run Sample Project 3, you need to have the following installed:

| � IBM DB2 for OS/2 Version 2.1 Single-User

| To build Sample Project 3:

| 1. Create the database and table.

| Before building Sample Project 3, you need to create the DB2 database, table, and

| data that this application requires. A procedure, IWZZ3CR.CMD, is provided to do

| this. You only need run this procedure one time. If you run the procedure again,

| you will need to rebuild the project again.

| To create the DB2 database, table, and data, from an OS/2 window enter:

| %ICOBDIR%\SAMPLES\IWZZ3\IWZZ3CR.CMD

| 2. Start the IBM DB2 for OS/2 product, if it has not already been started. To start

| DB2 for OS/2, from an OS/2 window enter:

| DB2START

| You can also start DB2 for OS/2 by double-clicking on the IBM DATABASE 2

| folder and then double-clicking on the Start DB2 icon.

| 3. Double-click on the VisualAge COBOL icon.

| 4. Double-click on the Samples folder.

| 5. Double-click on the Sample Project 3 project.

| 6. In the Sample Project 3 - Icon View, select the Project menu bar choice and then

| select BUILD.

| The output from the BUILD is displayed in the project monitor area.

| To run Sample Project 3:

| 1. Start the IBM DB2 for OS/2 product, if it has not already been started. To start

| DB2 for OS/2, from an OS/2 window enter:

| DB2START

| You can also start DB2 for OS/2 by double-clicking on the IBM DATABASE 2

| folder and then double-clicking on the Start DB2 icon.

| 2. In the Sample Project 3 - Icon View, select the Project menu bar choice and then

| select RUN.

142 Getting Started

VisualAge COBOL Sample Applications

Sample Project 4
This is the Employee Lookup application with a GUI that has a client intended to run on

an OS/2 system and a server intended to run on an MVS CICS/ESA system. The

application uses inline data.

This application is contained in an OS/2 folder named Sample Project 4. This folder is

used for organizational purposes.

This folder contains a GUI project named Client GUI and a COBOL project named

Server. The GUI project contains all the source parts associated with the client GUI,

including the COBOL source file.

Nested within the GUI project is a COBOL project named Service Calculation Subrou-

tine. This project contain the parts for the subroutine that is called by the GUI

program.

The COBOL project named Server contains the parts for the server that is called by the

GUI program by way of the CICS OS/2 ECI facility.

The Server project inherits from the COBOL MVS Master Project. This inheritance will

only show if you have installed the Remote Edit/Compile (beta) component. The parts

in this project are intended to be placed on the MVS host.

| Building and Running the Project
| To build and run Sample Project 4, you need to have the following installed:

| � The Transaction Assistant component of the VisualAge COBOL product.

| � CICS Client for OS/2 Version 1 or

| CICS for OS/2 Version 2 distributed feature Client for OS/2

| This product must be installed on the machine that is intended to be the client for

| the client/server application.

| � A host (MVS) CICS system configured to be a server.

| The CICS/ESA system programmer must define to the CICS/ESA DFHCVT (con-

| version table) an entry for the IWZZ4SV server program. This entry should indi-

| cate that the entire CICS COMMAREA needs to be translated from ASCII to

| EBCDIC. The COMMAREA is 584 bytes long.

| Before building Sample Project 4, the following files need to be uploaded to the host

| (MVS) system that is to be the server machine.

| � d:\ibmcobol\SAMPLES\IWZZ4\IWZZ4SI.CPY

| where d:\ibmcobol represents the drive and directory where the VisualAge COBOL

| Visual Tools were installed.

| The file should be placed in a PDS used for COBOL copybooks. The PDS

| member name should be IWZZ4SI.

| � d:\ibmcobol\SAMPLES\IWZZ4\IWZZ4SV\IWZZ4SV.CBL

 Appendix B. VisualAge COBOL Supplied Sample Applications 143

VisualAge COBOL Sample Applications

| where d:\ibmcobol represents the drive and directory where the VisualAge COBOL

| Visual Tools were installed.

| The file should be placed in a PDS used for COBOL source. The PDS member

| name should be IWZZ4SV.

| To build Sample Project 4:

| 1. At the MVS host compile and link the IWZZ4SV server program. The PDS con-

| taining the copybook file IWZZ4SI needs to be one of the SYSLIB data sets. Since

| the IWZZ4SV program is run under CICS, it needs to be linked into the appropriate

| CICS link library.

| To compile and link the IWZZ4SV server, you can either use your existing proce-

| dures for compile and link of CICS programs or use the VisualAge COBOL Remote

| Edit/Compile component. To use the Remote Edit/Compile component, see the

| Task Helper topic Working with Host (MVS) Applications for details.

| 2. Double-click on the VisualAge COBOL icon.

| 3. Double-click on the Samples folder.

| 4. Double-click on the Sample Project 4 folder.

| 5. Double-click on the Client GUI project.

| 6. In the Client GUI - Icon View, select the Project menu bar choice and then select

| BUILD.

| The output from the BUILD action is displayed in the project monitor area.

| To run Sample Project 4:

| 1. Start either the IBM CICS Client for OS/2 or the CICS for OS/2 Version 2 distrib-

| uted feature Client for OS/2.

| To start the IBM CICS Client for OS/2, double-click on the IBM CICS Client for

| OS/2 folder and then double-click on the Start Client icon.

| 2. In the Client GUI - Icon View, select the Project menu bar choice and then select

| RUN.

Sample Project 5
This is the Employee Lookup application with a GUI that has a client intended to run on

one OS/2 system and a server intended to run on another OS/2 system. The applica-

tion uses inline data.

This application is contained in an OS/2 folder Sample Project 5. This folder is used

for organizational purposes.

This folder contains a GUI project named Client GUI and a COBOL project named

Server. The GUI project contains all the source parts associated with the client GUI,

including the COBOL source file.

144 Getting Started

VisualAge COBOL Sample Applications

Nested within the GUI project is a COBOL project named Service Calculation Subrou-

tine. This project contain the parts for the subroutine that is called by the GUI

program.

The COBOL project named Server contains the parts for the server that is called by the

GUI program by way of the CICS OS/2 ECI facility.

| Building and Running the Project
| To build and run Sample Project 5, you need to have the following installed:

| � The Transaction Assistant component of the VisualAge COBOL product.

| � CICS Client for OS/2 Version 1 or

| CICS for OS/2 Version 2 distributed feature Client for OS/2

| This product must be installed on the machine that is intended to be the client for

| the client/server application.

| � CICS for OS/2 Version 3.0

| The CICS for OS/2 Version 3.0 product is available in limited Beta until its United

| States general availability. The Beta code is shipped on the IBM VisualAge for

| COBOL for OS/2 CD-ROM.

| This product must be installed on the machine that is intended to be the server for

| the client/server application. You may choose to have the server machine be the

| same as the client machine. The CICS System Initialization Table (SIT) needs to

| be updated to define the CICS system as a server. In addition, if the server is on

| a different machine as the client, LAN setup may be required. Refer to the online

| CICS Intercommunication documentation for details.

| To build Sample Project 5:

| 1. Double-click on the VisualAge COBOL icon.

| 2. Double-click on the Samples folder.

| 3. Double-click on the Sample Project 5 folder.

| 4. Double-click on the Server project.

| 5. In the Server - Icon View, select the Project menu bar choice and then select

| Build.

| The output from the Build action is displayed in the project monitor area.

| 6. Close the Server project.

| 7. Do one of the following based on whether the server machine is the same as the

| client machine:

| � If the server machine is the same as the client machine, copy the

| IWZZ5SV.DLL file to the CICS run-time directory. From an OS/2 command

| window, enter all on one line :

| COPY %ICOBDIR%\SAMPLES\IWZZ5\IWZZ5SV\IWZZ5SV.DLL

| d:\cics300\RUNTIME

 Appendix B. VisualAge COBOL Supplied Sample Applications 145

VisualAge COBOL Sample Applications

| where d:\cics300 represents the drive and directory where CICS for OS/2

| Version 3.0 was installed.

| � If the server machine is not the same as the client machine then you need to

| package the server and the VisualAge COBOL run-time and install them on

| the server machine. Refer to the section Distributing the OS/2 Application in

| the Task Helper topic Building an OS/2 Application for details on packaging

| and installing the server.

| 8. Double-click on the Client GUI project.

| 9. In the Client GUI - Icon View, select the Project menu bar choice and then select

| BUILD.

| The output from the BUILD action is displayed in the project monitor area.

| To run Sample Project 5:

| 1. Start the CICS for OS/2 Version 3.0 product on the server machine.

| 2. Start either the IBM CICS Client for OS/2 or the CICS for OS/2 Version 2 distrib-

| uted feature Client for OS/2.

| To start the IBM CICS Client for OS/2 double-click on the IBM CICS Client for

| OS/2 folder and then double-click on the Start Client icon.

| 3. In the Client GUI - Icon View, select the Project menu bar choice and then select

| RUN.

Sample Project 6
| This is the Employee Lookup application intended to run on a single OS/2 workstation

| using VSAM data. When invoked as supplied, the application accesses local VSAM

| data on the same workstation. Through environmental setup, including APPC commu-

| nications setup, the application can access MVS VSAM data. This does not require

| changing the application or rebuilding the application.

This application consists of a GUI project named Sample Project 6. The GUI project

contains all the source parts associated with the client GUI, including the COBOL

source file.

Nested within the GUI project are two COBOL projects named Search Logic Subrou-

tine and Service Calculation Subroutine. These projects contain the parts for the two

subroutines called by the GUI program.

| Building and Running the Project
| To build Sample Project 6:

| 1. Double-click on the VisualAge COBOL icon.

| 2. Double-click on the Samples folder.

| 3. Double-click on the Sample Project 6 project.

| 4. In the Sample Project 6 - Icon View, select the Project menu bar choice and then

| select BUILD.

146 Getting Started

VisualAge COBOL Sample Applications

| The output from the BUILD is displayed in the project monitor area.

| To run Sample Project 6:

| 1. In the Sample Project 6 - Icon View, select the Project menu bar choice and then

| select RUN.

SMARTdata Utilities Samples

The SMARTdata Utilities provide

� A local record level access method provided by VSAM for the workstation. This

allows you to have sequential, direct, and keyed files on your local system.

� Remote access to files residing on MVS, OS/400, and CICS systems using the

same VSAM interface used to access local files. On MVS, this includes access to

sequential access method (SAM) files and partitioned data set extended (PDSE)

members. Remote access is integrated with a data conversion engine that allows

you to view even complicated record structures from remote systems in data

formats supported by your local machine.

� A general purpose data conversion engine for more complex conversion tasks.

� An industrial strength sort, merge, copy, and extract package, called SMARTsort.

The SMARTdata Utilities samples illustrate the following tasks:

� Using VSAM for the workstation for local and remote data access, including cus-

tomizing data description and conversion for transparent remote data access

� Calling the data conversion utility directly from within an application.

� Using SMARTsort to sort and filter data in a file

VSAM for the Workstation Samples
These samples illustrate configuration and use of VSAM for the workstation for remote

and local data access. The following samples are located in the SDU folder within the

SAMPLES folder:

� DUBSAMP.C (and associated files) is a sample program written in C that demon-

strates some basic record I/O using the VSAM APIs directly. The sample program

is provided for users who wish to employ the VSAM interface from a language that

is not already integrated with VSAM. The sample program will access both local

and remote files, since the same interface is used in both cases. The header files

used by DUBSAMP.C are located in the INCLUDE folder.

A COBOL sample illustrating local data access to VSAM can be found in Sample

Project 6, as part of the Employee Lookup Application Samples.

� OS2.SNA, OS400.SNA, OS4680.SNA, and CICS.SNA are samples describing

network definitions used when configuring the remote file access portion of VSAM

(called Distributed FileManager.)

� STARTDFM.CMD is a sample command file to start the Distributed FileManager.

STARTUP.CMD provides sample statements that can be included in an OS/2

 Appendix B. VisualAge COBOL Supplied Sample Applications 147

VisualAge COBOL Sample Applications

STARTUP.CMD file, to start the Distributed FileManager automatically at OS/2 start

up time.

� SAMPASCI.ADL, SAMPBASE.ADL, SAMPEBCD.ADL, and SAMPVIEW.ADL are

sample data conversion descriptions. A data conversion description is used by the

Distributed FileManager to determine what conversions (if any) must be done to

data in a remote file in order to present it properly to the requesting program.

� EHNXNMP.C (and associated files) is a sample name mapping exit routine written

in C.

Data Conversion Utility Samples
Data Description and Conversion APIs provide the ability to customize, extend, and

manage data conversion capabilities from within an application. The following samples

are located in the SDU folder within the SAMPLES folder:

� IWZZSS1.CBL is a sample COBOL program that demonstrates the use of the Data

Description and Conversion Parse and Generate functions and Conversion Plan

Builder. IWZZSS1.ADL is input to this program.

SAMPLE1.C (and associated files) provides the same sample written in C.

� IWZZSS2.CBL is a sample COBOL program that demonstrates the use of the Con-

version Plan Executor component of Data Description and Conversion. As input, it

uses the conversion plans created by program IWZZSS1.

SAMPLE2.C (and associated files) provides the same sample written in C.

 SMARTsort Samples
Two COBOL samples are provided in the SMRTSORT folder, located within the

SAMPLES folder:

� SAMPLE7.CBL demonstrates how SMARTsort can be used to filter data from a

file.

� SAMPLE8.CBL demonstrates how SMARTsort can be used to create a sorted file

consisting of records that have been restructured from the original file.

Several samples written in C are also available in this folder.

The data files used by these samples can be found in the DATA folder located within

the SMRTSORT folder.

148 Getting Started

Appendix C. Configuring APPC Communications

| Using the SMARTdata UTILITIES (SdU) component or the Remote Edit/Compile com-

| ponent (which includes the Remote PWS Debug Tool) to access host data requires

| communications to be configured at the workstation and at the host. You can use IBM

| Debug Tool to debug applications residing on the host directly from your programmable

| workstation (PWS). This chapter describes configuring communications for cooperative

| sessions between the workstation and the host using advanced program-to-program

| communication (APPC) protocol. The term Remote PWS Debug Tool is used when

| discussing debugging host applications from a PWS.

| Note: The Remote Edit/Compile component is provided only at beta level.

| You must use APPC if you plan to use either the SdU component or the Remote

| Edit/Compile component. In addition to support using APPC (LU6.2) communications,

| the Remote PWS Debug Tool is supported using LU2.0 communications as well. Using

| LU2.0 with the Remote PWS Debug Tool requires no setup beyond having a CM/2

| 3270 emulator session. However, there is significant function available with APPC that

| is not provided with LU2 and, if you are interested in cooperative debugging, APPC is

| recommended.

Configuring APPC cooperative sessions requires coordination between workstation and

host administrators. Configuring Communications Manager/2 (CM/2) at the workstation

requires:

| � Defining the workstation to the network.

� Defining a link from the workstation to the host, or an intermediate APPN node (our

examples will show the link being defined to the host). The terms link and con-

nection are used interchangeably in this chapter.

� Defining the workstation as a client for APPC sessions

| � Defining the workstation as a server for Remote PWS Debug Tool APPC sessions

The figures in this chapter illustrate workstation configuration windows from Communi-

cations Manager/2 Version 1.11. If you need additional information for any Communi-

cations Manager window discussed in this section, press PF1 to obtain help, refer to

the following publications, or contact your IBM representative:

� CM/2 Information and Planning Guide, SC31-7007

� CM/2 Installation and Configuration Guide, SC31-7169

Configuring the host for APPC requires:

� Defining APPC/MVS Server facilities for cooperative sessions

� Defining VTAM and NCP definitions, (if communications are through an NCP)

| � Optionally defining client facilities within CICS for Remote PWS Debug Tool ses-

| sions

The assumed network in this chapter is a token-ring LAN connected to a host system

via a 3745 communications controller equipped with a token-ring adapter. NCP and

 Copyright IBM Corp. 1995, 1996 149

APPC at CM/2

VTAM definitions are only examples and will vary with network characteristics. If you

need additional assistance to configure your network, see the appropriate following pub-

lications, or contact your IBM representative:

� MVS/ESA Planning: APPC Management, GC28-1110

� VTAM Resource Definition Reference, SC31-6438

� VTAM Network Implementation Guide, SC31-6434

� NCP Resource Definition Reference, SC30-3448

| � CICS/ESA: Resource Definition Guide, SC33-1166

| � CICS/ESA: System Definition Guide, SC33-0664

Approaching the Task of Configuring Communications

While APPC does not require 3270 emulator sessions at the workstation, it is assumed

that you want to run 3270 emulators in parallel with APPC sessions. See Communi-

cation Manager Configuration Guide if you do not already have CM/2 emulator sessions

defined at the workstation.

| APPC configuration requires APPC/MVS, CM/2 - OS/2, and possibly CICS to be config-

| ured. This chapter describes configuration requirements for all three platforms.

Configuring APPC across computing platforms requires sharing information between

platform administrators. After VisualAge COBOL has been installed, APPC configura-

tion should begin with each administrator completing definitions required for his or her

respective platform. For a specific platform, some configuration parameters will origi-

nate from that platform, while other parameters will derive from a partner platform.

To simplify the configuration process and facilitate information sharing, each platform

has a table of configuration variables that should be defined prior to configuration.

These definitions can be used to generate worksheets allowing you to perform config-

uration on the respective platforms.

Configuring for APPC Communications at CM/2

This section describes how to configure APPC for a CM/2 workstation that is connected

to a token-ring Local Area Network (LAN) and the required workstation software.

 Prerequisites
� OS/2 Version 2.11 or later

� Communications Manager/2 Version 1.11 or later

 Terminology
Below is a table of standard APPC terms and the equivalent CM/2 terms.

150 Getting Started

CM/2 Configuration Variables

Standard Term CM/2 Term

Network Name Network Name

LU Name Local Node Name

Partner LU Name Partner Node Name

Local LAN Address Local MAC Address

Adjacent LAN Address LAN Destination Address

Communications Manager/2 Configuration Variables
Use the following table to create a worksheet that defines the listed symbols. These

symbols and their corresponding values are used to configure CM/2 for communication

| with an APPC/MVS and/or CICS host. The worksheet consists of two parts:

| 1. Symbols that must be matched with a partner platform (for example, MVS/APPC or

| CICS) are under the heading NETWORK VALUES.

2. Symbols that are local to the workstation are under the heading LOCAL VALUES.

Note: The values defined in Table 3 are compatible with an appropriately configured

| APPC/MVS or CICS host. A workstation configured with these values will support

| Edit/Compile sessions with APPC/MVS and/or Remote PWS Debug Tool sessions with

| APPC/MVS and/or CICS. In this configuration, it is assumed that CICS and

| APPC/MVS both reside on the same MVS host. If this is not the case and you require

| assistance, contact your IBM representative.

Table 3 (Page 1 of 4). Values Required to Configure CM/2 for APPC

Symbols How to determine the value for this symbol Example value Fill in your

value here

NETWORK VALUES

LUNAME This symbol refers to the LU name of the work-

station that you are defining to the network. The

value of this symbol should be supplied by the

appropriate network administrator. Based on the

level of VTAM and the use of APPN, the VTAM or

LAN administrator will know the value of this

symbol.

ELNQF0EA

CPNAME This symbol defines the control point name of the

workstation. For workstations that define a single

APPC LU, this symbol will default to the LUNAME

value. The VTAM administrator can use this value

to identify this workstation during session initializa-

tion (see the PU definition in the section titled

“Defining the 3745 Attached LAN to VTAM” on

page 180 for more information).

ELNQF0EA

 Appendix C. Configuring APPC Communications 151

CM/2 Configuration Variables

Table 3 (Page 2 of 4). Values Required to Configure CM/2 for APPC

Symbols How to determine the value for this symbol Example value Fill in your

value here

NODEID This is the value as defined in VTAM for IDBLK

(05D) and IDNUM. This value will be provided by

the host VTAM administrator if VTAM uses IDBLK

and IDNUM to identify this workstation during

session initialization (as opposed to CPNAME).

See the values of IDBLK and IDNUM in Table 4 on

page 171.

05D00F0E

NETWORK This symbol identifies the network that the work-

station is being defined within. If the workstation

belongs to the same network as the host system,

this symbol should be supplied by your VTAM

administrator. See the value of NETNAME in

Table 4 on page 171.

CAIBMOML

PARTNERCP This symbol defines the partner control point (CP)

name. Assuming the partner CP is the host, this

value should be provided by the VTAM adminis-

trator. See the value of LOCALCP in Table 4 on

page 171.

PARTNERCP is used to define the host connection

to CM/2.

OMA

PARTNERLU This symbol identifies the APPC/MVS LU to the

workstation. This value should be supplied by the

APPC/MVS or VTAM administrator of the host

system to which you are connecting. The host

administrator should supply the name of the

APPC/MVS LU that is designated for use with

VisualAge COBOL. See the value of LUNAME in

Table 4 on page 171.

This symbol is used in defining Common Program-

ming Interface-Communications (CPI-C) side infor-

mation in defining a host connection.

| SA07APPC

PARTNERNET This symbol is the name of the network in which

your MVS host resides. This symbol should be sup-

plied by the VTAM administrator of the host to which

you are connecting. See the value of NETNAME in

Table 4 on page 171.

CAIBMOML

LOCALPU If host focal support is defined for an associated

connection, this value defaults to CPNAME. If host

focal support is not defined for a connection, this

value can be any name you choose as long as it

uniquely defines the PU for a connection within

CM/2.

ELNQF0EA

152 Getting Started

CM/2 Configuration Variables

Table 3 (Page 3 of 4). Values Required to Configure CM/2 for APPC

Symbols How to determine the value for this symbol Example value Fill in your

value here

LINKNAME This symbol is used to reference a connection or

link that is defined to either the host system or an

intermediary node. When defining a new link, this

symbol can be assigned a value of your choice (for

example, HOST0002).

HOST0002

LANADDRESS This symbol is for the LAN Address of the partner

computer (or the LAN Address of a network node, if

the link is being made to a network node).

In the sample network described in this chapter,

LANADDRESS is the token-ring address in the

3745 to which the LAN is attached. This address

should be supplied by the LAN or NCP administrator

See the value of NCPLANADDR in Table 4 on

page 171.

400011528909

REMOTETP This symbol is for the transaction program residing

at APPC/MVS. It is transmitted across the network

to APPC/MVS to initiate a session with the server.

This symbol is used to define workstation CPI-C

side information entries for sessions. Use the value

COBOLVS_MVSLU62_EC_SERVER as the value

for REMOTETP.

See symbol

value in adja-

cent column

| LOCALTP| This is the symbol for the transaction program that

| resides on the workstation. It is transmitted across

| the network from APPC/MVS or CICS in order to ini-

| tiate a session with the Remote PWS Debug Tool

| server. For the Remote PWS Debug Tool, specify

| COBVSDT as the value for LOCALTP.

| COBVSDT|

| TPPATH| This is the path and filename for the executable

| program that is defined by LOCALTP. For the

| Remote PWS Debug Tool, use the following value if

| you did not install VisualAge COBOL into a different

| hig-level directory:

| drive:\IBMCOBOL\BIN\EQACEL62.EXE

| See path in

| adjacent column

|

MODE This symbol is for the mode name. #INTER is

recommended.

This value should correspond to MODE at the host.

For more information about MODE at the host, see

Table 4 on page 171.

This symbol is used to define CPI-C side informa-

tion entries at the workstation for sessions.

#INTER

LOCAL VALUES

 Appendix C. Configuring APPC Communications 153

Performing CM/2 APPC Configuration

Table 3 (Page 4 of 4). Values Required to Configure CM/2 for APPC

Symbols How to determine the value for this symbol Example value Fill in your

value here

NODETYPE This symbol is for the APPN node type. This should

be EN configured as an end node, or NN configured

as a network node.

Use the value EN unless you are using APPN and

this workstation is a network node.

EN

LUALIAS This symbol is for the Local LU Alias. It designates

a nickname for the Local LU. Alias names are

case-sensitive. Simply using the value of LUNAME

is adequate.

ELNQF0EA

PLUALIAS This symbol is for the Partner LU Alias. It desig-

nates a nickname for the Partner LU. Alias names

are case-sensitive.

TLBA07ME

SYMDEST This symbol is for the CPI-C side information sym-

bolic destination name. It is used locally on the

OS/2 machine to refer to a CPI-C side information

entry that identifies the host server. The entry

contains:

� TP name (defined by REMOTETP)

� LU name (defined by PARTNERLU)

� MODE (defined by MODE)

Note: This value can be specified in the Servers

window.

COBOLVS

Performing CM/2 APPC Configuration
This example assumes that CM/2 configuration files already exist. In other words, it is

assumed that you have already installed CM/2 and only require APPC configuration. If

this is not the case, install CM/2 as described in CM/2 Installation and Configuration

Guide and resume at this point. Prior to APPC configuration, it is recommended that

you copy your default CFG and NDF files (usually located in the C:\CMLIB directory) to

another set of files that you can name to CVSCFG. For example, assuming that your

default configuration is named BASIC, move to the C:\CMLIB directory and then type

on an OS/2 command line:

COPY BASIC.\ CVSCFG.\

This will create a copy of the various files that comprise your default configuration. This

file will be modified in the following steps to contain APPC definitions while leaving

other existing definitions intact. If you are modifying an existing configuration, as is the

case in the example that follows, some definitions from your worksheet might already

exist and need not be supplied by you.

Perform the following steps to modify the configuration CVSCFG:

154 Getting Started

Selecting a Configuration

Selecting the CVSCFG Configuration File

1. Double-click on the CM/2 icon.

2. Double-click on the CM/2 Setup icon. The Communications Manager Setup

window appears, as shown in Figure 68.

Note: The CM/2 windows shown in the examples are taken from CM/2 Version

1.11. If you are using a newer version of CM/2, the windows might have a slightly

different layout.

Figure 68. Communications Manager Setup Window

3. Select the Setup push button. The Open Configuration window appears, as

shown in Figure 69 on page 156.

 Appendix C. Configuring APPC Communications 155

Selecting a Configuration

Figure 69. Open Configuration Window

4. Select CVSCFG from the Configurations list.

5. Select the OK push button.

6. When prompted, select the Yes push button to confirm that CVSCFG will be used

for this workstation.

7. The Communications Manager Configuration Definition - CVSCFG window

appears, as shown in Figure 70 on page 157. Make sure that you have selected

the Additional definitions radio button; otherwise, the window might appear dif-

ferent from the window in the figure.

156 Getting Started

Defining to the Network

Figure 70. Communications Manager Configuration Definition - CVSCFG Window

Defining your Workstation to the Network
Before the workstation can communicate within a network, it must be recognized by

that network. This means that the workstation must be properly defined in the Commu-

nications Manager Local Node Characteristics window. If the workstation has

already been defined to the network, verify that the definitions are complete and con-

sistent with the worksheet values. Otherwise, perform the following steps to define

these values:

1. Select the option Token-ring or other LAN types.

2. Select APPC APIs from the Feature or Application list.

| 3. After selecting APPC APIs, the Communications Manager Configuration Defi-

| nition - CVSCFG window, shown in Figure 71 on page 158, changes as a result

| of your choice.

 Appendix C. Configuring APPC Communications 157

Defining to the Network

| Figure 71. Communications Manager Configuration Definition - CVSCFG Window

| 4. Select the Configure push button.

| 5. The APPC APIs through Token-ring window appears, as shown in Figure 72.

Figure 72. APPC APIs through Token-ring

6. In the Network ID field, type the NETWORK value.

7. In the Local node name field, type the LUNAME value.

8. For the Local node type, select End node – no network node server. This

allows you to configure directly to the token-ring at the communications controller.

158 Getting Started

Defining to the Network

If you want to connect your host through an APPN network node, select End node

– to a network node server. Our example does not address this form of con-

nection.

9. Select the Advanced push button.

10. The Communications Manager Profile List window appears, as shown in

Figure 73.

Figure 73. Communications Manager Profile List Window

11. Select SNA local node characteristics from the Profile Name list.

12. Select the Configure push button.

13. The Local Node Characteristics window, shown in Figure 74, appears.

Figure 74. Local Node Characteristics Window

 Appendix C. Configuring APPC Communications 159

Defining a Connection

14. Confirm that the values you entered in the APPC APIs through Token-ring

window are what you need for Network ID, Local node name, and Local node

type.

15. Type the value of NODEID in the Local node ID field to identify the workstation

with NODEID as opposed to CPNAME.

16. Select the Options push button.

17. The Local Node Options window appears, as shown in Figure 75.

Figure 75. Local Node Options Window

18. In the Local node alias name field, type the LUALIAS value. This can be the

same as the local node name (LUNAME).

19. Select Activate Attach Manager at start up.

20. Select the OK push button.

21. The Local Node Characteristics window appears, as shown in Figure 74 on

page 159.

22. Select the OK push button.

23. The Communications Manager Profile List window appears, as shown in

Figure 73 on page 159.

Defining a Connection
Before the workstation can communicate with the host, a corresponding connection

must be defined. If the connection is already defined, verify that the definitions are

complete and consistent with the worksheet values by stepping through the following

windows. If you are defining a new connection, enter the field values as you move

from one window to the next.

1. Select SNA connections from the Profile Name list.

2. Select the Configure push button.

3. The Connections List window appears, as shown in Figure 76 on page 161.

160 Getting Started

Defining a Connection

Figure 76. Connections List Window

4. Select To host as the partner to which you are connecting. Alternatively, you can

connect to a network node, but in this example we are connecting to the host.

5. If a connection to your host already exists, select the connection corresponding to

the value of LINKNAME. In our example, LINKNAME is HOST0002.

6. Assuming the connection to your host is already defined for emulators, select the

Change push button. If no such connection exists, select the Create push button.

7. The Adapter List window, shown in Figure 77 on page 162, appears.

 Appendix C. Configuring APPC Communications 161

Defining a Connection

Figure 77. Adapter List Window

8. Since this example assumes a token-ring LAN, select Token-ring or other LAN

types.

9. Select the Continue push button.

10. Since you selected To host in Figure 76 on page 161, the Connection to a Host

window appears, as shown in Figure 78.

Figure 78. Connection to a Host Window

162 Getting Started

Defining the Partner LU

1. In the Link Name field, type the LINKNAME value.

2. Check the Activate at startup box to initialize this link when CM/2 is started.

3. For the Local PU name field, If this is the only host connection defined and Use

this host connection as your focal point support (see step 8) is selected, this

field defaults to CPNAME. Otherwise, enter the value of LOCALPU.

4. Assuming that VTAM recognizes this station by NODEID as opposed to CPNAME,

specify its hexadecimal value here.

5. In the LAN destination address field, type the LANADDRESS value. For this

type of connection, LANADDRESS refers to the token ring at the communication

controller.

6. In the Partner network ID field, type the PARTNERNET value.

7. In the Partner node name field, type the PARTNERCP value.

8. If this is the only host connection defined from this workstation, check the Use this

host connection as your focal point support box. If other host connections

exist, only one can be so designated. To explore the alternative of not using host

focal point services for a connection, see the bibliography for this section.

Defining the Partner LU
You can define the partner LU and an alias for the MVS/APPC LU. For example, you

can specify that “HOSTLU” is an alias for PARTNERNET.PARTNERLU.

Skip this step if you selected End node to network server in the Local Node Charac-

teristics window, shown in Figure 74 on page 159.

1. From the Connection to a Host window, shown in Figure 78 on page 162, select

the Define Partner LUs push button.

2. The Partner LUs window appears, as shown in Figure 79 on page 164.

 Appendix C. Configuring APPC Communications 163

Defining the Partner LU

Figure 79. Partner LUs Window

3. In the Network ID field, type the value for PARTNERNET.

4. In the LU name field, type the value for PARTNERLU.

5. In the Alias field, type the value for PLUALIAS.

Note: An alias is case sensitive. “HOSTLU” is a different alias than “hostlu.”

6. Select the Add push button.

7. Select the OK push button.

Returning to the Communication Manager Profile List

1. From the Connection to a Host window, shown in Figure 78 on page 162, select

the OK push button.

2. The Connections List window appears, as shown in Figure 76 on page 161.

 3. Select Close.

4. The Communications Manager Profile List window appears, as shown in

Figure 73 on page 159.

Proceeding to the SNA Features List

1. From the Communications Manager Profile List, select SNA features.

2. Select the Configure push button.

164 Getting Started

Configuring to Run as a Client

3. The SNA Features List window appears.

Configuring to Run as a Client
To create a symbolic destination name as the target of a conversation, define a CPI-C

side information entry as follows:

1. Select CPI Communications Side Information from the Features list in the SNA

Features List window, as shown in Figure 80.

Figure 80. SNA Features List Window

2. Select the Create push button.

3. The CPI Communications Side Information window appears, as shown in

Figure 81 on page 166.

 Appendix C. Configuring APPC Communications 165

Configuring to Run as a Client

Figure 81. CPI Communications Side Information Window

4. In the Symbolic destination name field, type the SYMDEST value.

5. In the Alias field, type the PLUALIAS value.

6. In the TP name field, type the REMOTETP value.

7. Select Program as the Security type. This allows you to enter your TSO userid

and the password on the MVS host where the server exists.

8. Select #INTER in the Mode name field.

9. Select the Continue push button. The CPI Communications Program Security

window appears, as shown in Figure 82.

Figure 82. CPI Communications Program Security Window

166 Getting Started

Configuring Remote PWS Debug Tool to Run as a Server

10. Type your host TSO id and password in the indicated fields. This is the id where

your cooperative edit and compile sessions will be conducted.

Note:

As part of the communications setup, an encrypted version of your TSO

password is stored on your workstation and is used to establish communi-

cations with MVS. Changing your TSO password also necessitates

| updating encrypted version stored at your workstation. If you attempt to

| establish a host session without updating this encrypted password, the fol-

| lowing messages will appear in the CODE PAM0031I - INFORMATION

| message box:

No server object shown.

You may not have started a CODE conversation to the host.

This message can be the result of other communications errors, not just a

password failure.

If you click on the message box OK push button, the attempt to establish

host communications will be retried. If the failure was due to an incorrect

| password, multiple retries can result in your TSO access to your TSO

| userID being revoked, requiring an MVS security administrator's assistance

| for reinstatement.

| Only after a certain number of retry attempts is the message box displayed.

| Therefore, it is possible that, by the time the message box displays, access

| to your TSO userID has already been revoked. The only way to prevent

additional retries is to reboot your OS/2 system as soon as the message

box is displayed. If using the Ctrl+Alt+Delete keys does not cause a

| reboot, power off and power on to reinitialize your workstation.

11. Select the OK push button.

12. The SNA Features List window appears, as shown in Figure 80 on page 165.

| Configuring the Remote PWS Debug Tool to Run as a Server
| To configure a server for the Remote PWS Debug Tool:

| 1. Select Transaction Program Definition from the Features list.

| 2. Select the Create push button. The Transaction Program Definitions window

| appears, as shown in Figure 83 on page 168.

 Appendix C. Configuring APPC Communications 167

Configuring Remote PWS Debug Tool to Run as a Server

| Figure 83. Transaction Program Definition Window

| 3. Type the Transaction program (TP) name using the value of LOCALTP

| (COBVSDT)

| 4. Using the value of TPPATH, type the OS/2 Program path and file name as:

| drive:\IBMCOBOL\BIN\EQACEL62.EXE

| 5. Select the Continue push button. The Additional TP Parameters window

| appears, as shown in Figure 84.

| Figure 84. Additional TP Parameters Window

| 6. For the Presentation type, select Presentation Manager.

| 7. For the Operation type, select Non-queued, Attach Manager started.

168 Getting Started

Verifying Your Configuration

| 8. Select the OK push button.

| 9. Select the Close push button on the SNA Features List window.

| 10. The Communications Manager Profile List window appears, as shown in

| Figure 73 on page 159

Verifying Your Configuration

 1. Select Close.

2. The Communications Manager Profile List window appears, as shown in

Figure 73 on page 159.

3. Select the Close push button and the Communications Manager Configuration

Definition - CVSCFG window appears, as shown in Figure 85.

Figure 85. Communications Manager Configuration Definition - CVSCFG

4. Select the Close push button, and the Communication Manager - Checking

Values window appears, as shown in Figure 86 on page 170. A progress indi-

cator will appear on top of this window to indicate that CM/2 is verifying your APPC

configuration.

 Appendix C. Configuring APPC Communications 169

Configuring for APPC Communications at MVS

Figure 86. Communications Manager - Checking Values Window

If there are any errors in the APPC profile. you can identify them by examining the

First Failure Support Technology/2 log within the FFST/2 folder on your OS/2

desktop. Make whatever corrections are necessary and repeat the steps above to

verify your configuration. Your configuration can also be verified by issuing the

following on an OS/2 command line within the CMLIB directory:

CMVERIFY CVSCFG

5. After your configuration has been verified, stop and restart CM/2 with the newly

modified configuration file to activate your APPC configuration.

Configuring for APPC Communications at MVS

This section describes configuration for APPC at MVS. This configuration falls into two

broad categories:

1. Configuring the APPC/MVS subsystem requirements (see MVS/ESA Planning:

APPC Management)

2. Configuring VTAM, and possibly NCP, for APPC communications based on how

workstations are connected (see VTAM Resource Definition Reference and NCP

Resource Definition Reference)

Configuring the APPC/MVS subsystem is essentially independent of the type of network

within which the workstations reside, and this section defines such configuring as it

relates to VisualAge COBOL. However, VTAM and NCP definitions vary depending on

network characteristics and the manner in which the workstations are connected.

Rather than attempt to address VTAM and/or NCP definitions for the many connections

that are supported, we are restricting our description to APPC related definitions for a

3745 attached token-ring LAN.

 Prerequisites
Software and hardware prerequisites for APPC/MVS include:

� MVS/ESA V4.2 or later

� VTAM V3.4 or later

� NCP V5.2 or later

170 Getting Started

APPC/MVS Configuration Variables

 Terminology
Below is a table of standard APPC terms and the equivalent APPC/MVS terms. Some

terms have no APPC/MVS equivalent, but instead are set in VTAM or NCP.

Standard Term APPC/MVS Term

Network Name NETID

LU Name name supplied for APPL definition in APPL

major node

Partner LU Name name supplied for LU definition in major

nodes defining each workstation

Local LAN Address LOCADD (in NCP gen)

Adjacent LAN Address DIALNO (on PATH definition in switched

major node)

APPC/MVS Configuration Variables
Use the following table to create a worksheet that defines the listed symbols. These

symbols and their corresponding values are used to configure APPC/MVS for communi-

cation with CM/2 at the workstation. Note that the worksheet consists of two parts:

1. Symbols that must be matched with the workstation (the partner platform) are

under the heading NETWORK VALUES.

2. Symbols local to MVS are under the heading LOCAL VALUES.

Table 4 (Page 1 of 4). Values Required to Configure APPC/MVS

Symbol How to determine the value for this symbol Fill in your

value here

NETWORK VALUES

LUNAME This symbol is for the APPC/MVS LU of the MVS system you are

configuring. See "Define the APPC/MVS LU in VTAM" on page 175

and the bibliography for additional information on creating this LU.

For MVS/ESA 4.2, use the base APPC/LU. See MVS/ESA

Planning: APPC Management.

This value should be consistent with PARTNERLU as defined at all

participating workstations. See Table 3 on page 151 for more infor-

mation about PARTNERLU at the workstation.

NETNAME This symbol is for the network name.

For systems with VTAM already configured, this value is found in

the VTAMLST start options (ATCSTRxx) member. The option name

is NETID.

This value should be consistent with PARTNERNET, as defined at

all participating workstations within this network. See Table 3 on

page 151 for more information about PARTNERNET at the work-

station.

 Appendix C. Configuring APPC Communications 171

APPC/MVS Configuration Variables

Table 4 (Page 2 of 4). Values Required to Configure APPC/MVS

Symbol How to determine the value for this symbol Fill in your

value here

PARTNERLU This symbol is for an associated workstation LU name. There

should be a unique LU name for each participating workstation.

This value should be consistent with the definition of LUNAME at

the associated workstation. See Table 3 on page 151 for more

information about LUNAME at the workstation.

IDBLK This symbol defines the first three hexadecimal digits of the

NODEID for each participating workstation. Its value is normally

05D for a workstation. This value is defined in VTAM and its value

must match the value defined in NODEID at the workstation. See

Table 3 on page 151 for more information about NODEID at the

workstation.

IDNUM This symbol defines the last five hexadecimal digits of the NODEID

for each participating workstation. A unique IDNUM is defined in

VTAM for each workstation. The last five hexadecimal digits of

NODEID defined at the corresponding workstation must match

IDNUM. See Table 3 on page 151 for more information about

NODEID at the workstation.

| REMOTETP| This is the symbol for the transaction program that resides on the

| workstation. It is transmitted across the network from APPC/MVS,

| and initiates a session with the Remote PWS Debug Tool server at

| the workstation. This value should be consistent with LOCALTP, as

| defined at all participating workstations. See Table 3 on page 151

| for more information about LOCALTP at the workstation.

| This symbol will be used in defining APPC/MVS CPI-C side informa-

| tion entries for Remote PWS Debug Tool sessions.

| This symbol should have a value of COBVSDT.

| COBVSDT

LOCALTP This symbol is for the transaction program that resides on MVS. It

is transmitted across the network from the workstation, and initiates

a session with the APPC/MVS server.

This value should be consistent with REMOTETP, as defined at all

participating workstations. See Table 3 on page 151 for more infor-

mation about REMOTETP at the workstation.

| Use the value COBOLVS_MVSLU62_EC_SERVER as the value of

| LOCALTP.

|

LOCALCP This symbol is for VTAM's System Services Control Point (SSCP)

name. It is the value of SSCPNAME in the VTAM start options.

This value should be consistent with PARTNERCP, as defined at all

participating workstations.

LOCAL VALUES

172 Getting Started

APPC/MVS Configuration Variables

Table 4 (Page 3 of 4). Values Required to Configure APPC/MVS

Symbol How to determine the value for this symbol Fill in your

value here

NCPLANADDR This symbol is for the local LAN address coded in NCP on a LINE

macro using the LOCADD parameter.

For our example, the workstation is configured through the 3745, but

not through a different APPN network node. Therefore, this value

should be consistent with LANADDRESS, as defined at all partic-

ipating workstations on this token-ring. See Table 3 on page 151

for more information about LANADDRESS at the workstation.

MODETAB Name of a logon mode table in VTAM that contains the APPC mode

entries.

MODE Name of the logon mode table entry within the table that is defined

by MODETAB and used by VisualAge COBOL. Its recommended

value should be #INTER.

This value must match the value of MODE at the workstation. See

Table 3 on page 151 for more information about MODE at the

workstation.

#INTER

SIFILE This symbol is for the VSAM data set where the CPI-C side informa-

tion profile will be permanently located. This value is normally

SYS1.APPCSI.

SYS1.APPCSI

| SYMDEST| This is the symbol for the value representing a CPI-C side informa-

| tion symbolic destination name. Each participating workstation will

| have a unique SYMDEST value which points to an entry in a VSAM

| dataset. This entry identifies the corresponding workstation and is

| used by APPC/MVS during initialization of a Remote PWS Debug

| Tool session. The value of SYMDEST points to the following infor-

| mation for a workstation:

| � The value of REMOTETP (COBVSDT)

| � The value of PARTNERLU (the workstation LU name)

| � The value of MODE (#INTER)

|

TPFILE This symbol is for the VSAM data set where the TP profiles will be

permanently located. This value is normally SYS1.APPCTP.

SYS1.APPCTP

VOL This is the name of a volume on which VSAM datasets for

APPC/MVS are created.

JES The actual JES subsystem type (JES2 or JES3) should be substi-

tuted for this.

CLIST.DATASET The CLIST dataset in which you put the EVFSTR62 REXX exec.

This is the data set for SEQACLIS DD of the Full Function feature of

COBOL for MVS & VM Release 2 product (called SAA AD/CYCLE

COBOL/370 for Release 1).

If you are not using the Remote Edit/Compile component, you do

not need a value for this symbol.

 Appendix C. Configuring APPC Communications 173

APPC/MVS Definitions

Table 4 (Page 4 of 4). Values Required to Configure APPC/MVS

Symbol How to determine the value for this symbol Fill in your

value here

APPC.LOADLIB The load library dataset in which you put the EVFM62IN program.

This module is normally in the data set for SEQAMOD DD of the

COBOL for MVS & VM product.

If you are not using the Remote Edit/Compile component, you do

not need a value for this symbol.

APPC/MVS Configuration Overview
Configuring APPC/MVS requires the following:

� Add two members to SYS1.PARMLIB to define parameters for the APPC and

ASCH subsystems, respectively.

� Define a TP profile and store it in the appropriate VSAM dataset

� Define a CPI-C side information entry for each participating workstation and store it

in the appropriate VSAM dataset.

� Define to VTAM an application major node for the APPC/MVS LU

� Add APPC modes to the VTAM logmode table.

APPC configuration for the 3745 attached LAN in VTAM requires the following:

� Define a switched major node for the LAN

� Identify PU definitions for each workstation

� Identify a Type 2.1 (APPC) LU definition for each PU (or workstation)

APPC configuration for the 3745 attached LAN in NCP requires the following:

� Define the token-ring adapter in NCP

� Define APPC session limits in NCP

 APPC/MVS Definitions
Refer to your worksheet and replace the highlighted symbols in APPC/MVS definitions

with the corresponding values defined in the worksheet.

1. Create Parmlib members

Place two members (ASCHPMxx and APPCPMxx) in SYS1.PARMLIB. These two

members have startup parameters for the two system components that make up

APPC/MVS:

� APPC - this component communicates with VTAM on behalf of APPC applica-

tions (see Figure 87 on page 175)

� ASCH - this scheduling component handles incoming requests for local trans-

action programs (see Figure 88 on page 175)

174 Getting Started

APPC/MVS Definitions

/\ APPCPM00 \/
LUADD ACBNAME(LUNAME) /\ Add LU LUNAME to the \/

/\ APPC/MVS configuration \/
SCHED(ASCH) /\ Specify that the APPC/MVS \/

/\ transaction scheduler is associated \/
/\ with this LU name \/

BASE /\ Designate this LU as the base LU \/
TPDATA(TPFILE) /\ Specify that VSAM data set \/

/\ TPFILE is the permanent \/
/\ repository for the TP profiles \/
/\ for this LU \/

 TPLEVEL(USER) /\ Specify the search order for TP \/
/\ profiles as : \/
/\ 1. TP profiles associated with \/
/\ a specific user \/
/\ 2. TP profiles associated with \/
/\ a group of users \/
/\ 3. TP profiles associated with \/
/\ all users of the LU name \/

SIDEINFO DATASET(SIFILE) /\ Specify that VSAM data set \/
/\ SIFILE is the permanent \/
/\ repository for the side \/

 /\ information \/

Figure 87. SYS1.PARMLIB(APPCPM00) - APPCPM00.LIB

CLASSADD CLASSNAME(DEFAULT) /\ Specify the name of the class to be \/
 /\ added \/
 MAX(16) /\ Specify that the maximum number \/

/\ of transaction initiators allowed \/
/\ for this class is 10 \/

MIN(2) /\ Specify that the minimum number \/
/\ of transaction initiators to be \/
/\ brought up for this class is 2 \/

RESPGOAL(.02) /\ Specify that the response time \/
/\ goal for transaction programs \/
/\ executing within this class is 0.02 \/

 /\ seconds \/
MSGLIMIT(500) /\ Specify that the maximum size of \/

/\ the job logs for TPs is 500 \/
 /\ messages \/

OPTIONS DEFAULT(DEFAULT) /\ Specify the default class \/
SUBSYS(JES) /\ Specify the name of a subsystem \/

TPDEFAULT REGION(4M) /\ Change the region size to 4M \/
OUTCLASS(A) /\ Change the output class to A \/

Figure 88. SYS1.PARMLIB(ASCHPM00) - ASCHPM00.LIB

2. Define the APPC/MVS LU in VTAM

 Appendix C. Configuring APPC Communications 175

APPC/MVS Definitions

Refer to your worksheet and replace highlighted symbols in the VTAM APPL with

corresponding values defined in the worksheet.

Place the following in a VTAMLST library (usually SYS1.VTAMLST):

COBOLVS VBUILD TYPE=APPL
LUNAME APPL ACBNAME=LUNAME,APPC=YES,AUTOSES=10,DMINWNL=16, \
 DMINWNR=16,DDRAINL=NALLOW,DRESPL=NALLOW,DSESLIM=64,EAS=64, \
 MODETAB=MODETAB,SECACPT=CONV,VPACING=2,VERIFY=NONE, \
 SRBEXIT=YES,DLOGMOD=MODE

Figure 89. VTAM Definition of APPC LU

Note: The above definitions are recommended values. If the LU described by this

APPL is shared with other APPC/MVS applications, the parameters might need to

be altered. If you are running MVS/ESA 4.2, VisualAge COBOL requires the base

LU and the resources defined by this APPL. If you are running MVS/ESA 4.3 or

later, you can create an APPL to define an LU specifically for VisualAge COBOL.

See MVS/ESA Planning: APPC Management for a description of base LUs.

3. Add APPC Modes to the Logmode Table

Below are the recommended APPC modes. Add them to your logmode table,

compile, and link-edit the member into a VTAM library. Also include them in the

default logmode table (ISTINCLM), if they are not already present, so that dynam-

ically created LUs can use them.

For performance reasons, knowledgeable users can choose to use their own mode

entry (as opposed to #INTER) that is based on their network characteristics. If a

different mode is used, it must have a corresponding definition at each configured

workstation.

176 Getting Started

Configuring to Run as a Server

\\
\ LOGMODE TABLE ENTRY FOR RESOURCES CAPABLE OF ACTING \
\ AS LU 6.2 DEVICES \
\\
SNASVCMG MODEENT LOGMODE=SNASVCMG,FMPROF=X'13',TSPROF=X'07',
 PRIPROT=X'B0',SECPROT=X'B0',COMPROT=X'D0B1', \
 RUSIZES=X'8686',ENCR=B'0000',SSNDPAC=7, \
 PSERVIC=X'060200000000000000000300', \
 SRCVPAC=7,PSNDPAC=7,TYPE=0
 TITLE '#INTER'
\\
\ LOGMODE TABLE FOR INTERACTIVE SESSIONS ON RESOURCES \
\ CAPABLE OF ACTING AS LU 6.2 DEVICES \
\\
#INTER MODEENT LOGMODE=#INTER, \
 ENCR=B'0000',SSNDPAC=7, \
 SRCVPAC=7,PSNDPAC=7,RUSIZES=X'F7F7'
 TITLE 'CPSVCMG'
\\
\ LOGMODE TABLE FOR CP-CP SESSIONS ON RESOURCES CAPABLE \
\ OF ACTING AS LU 6.2 DEVICES \
\\
CPSVCMG MODEENT LOGMODE=CPSCVMG,
 RUSIZES=X'8686',ENCR=B'0000',
 SSNDPAC=7,SRCVPAC=7,PSNDPAC=7
 TITLE 'QPCSUPP'
\\
\ LOGMODE TABLE ENTRY FOR RESOURCES CAPABLE OF ACTING \
\ AS LU 6.2 DEVICES \
\ REQUIRED FOR LU MANAGEMENT \
\\
QPCSUPP MODEENT LOGMODE=QPCSUPP,FMPROF=X'13',TSPROF=X'07',
 PRIPROT=X'B0',SECPROT=X'B0',COMPROT=X'D0B1',
 RUSIZES=X'8585',ENCR=B'0000',
 PSERVIC=X'060200000000000000000300'

Figure 90. APPC Logon Mode Entries - APPCMODE.ASM

Configuring to Run as a Server
Defining Transaction Programs:

1. APPC/MVS uses a TP profile to schedule an inbound request for a Transaction

Program. VisualAge COBOL requires such a TP profile for the server. If this

dataset does not already exist, run the following job to create a VSAM dataset in

which the TP profile can be stored.

 Appendix C. Configuring APPC Communications 177

Configuring to Run as a Server

//APPC001 JOB CLASS=A,MSGCLASS=A,MSGLEVEL=(1,1)
/\JOBPARM LINES=9999,TIME=1440
//TPSAMPLE EXEC PGM=IDCAMS
//VOL1 DD DISP=OLD,UNIT=3380,VOL=SER=VOL
//SYSPRINT DD SYSOUT=\
//SYSABEND DD SYSOUT=\
//AMSDUMP DD SYSOUT=\
//SYSIN DD \

DEFINE CLUSTER (NAME(TPFILE) -
 VOLUMES(VOL1) -

INDEXED REUSE -
SHAREOPTIONS(3 3) -
RECORDSIZE(3824 7024) -
KEYS(112 0) -
RECORDS(300 150)) -

 DATA -
 (NAME(TPFILE.DATA)) -
 INDEX -
 (NAME(TPFILE.INDEX))
/\

Figure 91. Sample JCL for Creating TP Profile VSAM Dataset

2. If you are not using the Remote Edit/Compile component, skip this step and go to

step 3 on page 179

Note: All of the Clist data sets described in this section with the prefix IGY are

shipped with the full function feature of IBM COBOL for MVS & VM Release 2.

The following job runs the APPC/MVS administrative utility to add a TP profile for

COBOLVS_MVSLU62_EC_SERVER. It starts the TSO Terminal Monitor Program

| IKJEFT01, which in turn calls the EVFSTR62 REXX exec that is in the Debug Tool

| installation dataset EQAW.V1R2M0.SEQACLIS (assuming default names were

| used at installation). The IGY.V1R2M0.VB.SIGYCLST data set is a copy of the

IBM-supplied IGY.V1R2M0.SIGYCLST data set with a record format of VB (vari-

able blocked). This enables it to be concatenated with the data set on the next line

known as CLIST.DATASET. The block size (BLKSIZE) for

IGY.V1R2M0.VB.SIGYCLST must be at least as large as the block size for

CLIST.DATASET. The logical record length (LRECL) should be the same for both

data sets.

The IBM COBOL for MVS & VM sample SYSADATA exit, IGYADXIT, must be

compiled and link-edited. This exit is written in COBOL and is located in the

IBM-supplied IGY.V1R2M0.SIGYSAMP data set. We recommend that you link-edit

IGYADXIT into the IBM-supplied IGY.V1R2M0.SIGYCOMP data set, which is the

same data set that contains the compiler load module IGYCRCTL. More informa-

tion on the sample exit IGYADXIT can be found in IBM COBOL for MVS & VM

Compiler and Run-Time Migration Guide.

IGYADXIT requires IBM Language Environment for MVS & VM Release 5. If the

Release 5 run-time data set CEE.V1R5M0.SCEERUN is not already in the MVS

link list, it must be concatenated to the STEPLIB DD statement for the TP profile.

178 Getting Started

Configuring to Run as a Server

//TPADD0 JOB CLASS=A,MSGCLASS=A,MSGLEVEL=(1,1)
//STEP EXEC PGM=ATBSDFMU
//SYSPRINT DD SYSOUT=\
//SYSSDLIB DD DSN=USER.APPCTP,DISP=SHR
//SYSSDOUT DD SYSOUT=\
//SYSIN DD DATA,DLM=XX
 TPADD
 TPNAME(COBOLVS_MVSLU62_EC_SERVER)
 ACTIVE(YES)
 TPSCHED_DELIMITER(##)
 TAILOR_SYSOUT(NO)
 TAILOR_ACCOUNT(NO)
 CLASS(DEFAULT)
 TPSCHED_TYPE(STANDARD)
 JCL_DELIMITER(END_OF_JCL)
//COBOLVS JOB (NNNN,IIII),MSGLEVEL=(1,1),MSGCLASS=A
//IKJACCNT EXEC PGM=IKJEFT01,
// PARM='EXEC ''CLIST.DATASET(EVFSTR62)'''
//STEPLIB DD DISP=SHR,DSN=APPC.LOADLIB
//\ CLIST/EXECs data set for IBM Language products
//SYSPROC DD DISP=SHR,DSN=IGY.V1R2M0.VB.SIGYCLST IBM COBOL for MVS & VM
// DD DISP=SHR,DSN=CLIST.DATASET
//SYSTSPRT DD DSN=&&TSOUT,SPACE=(TRK,(1,1)),DCB=(RECFM=V,LRECL=252,BLKSIZE=256,BUFNO=1)
//SYSTSIN DD DUMMY
//SYSPRINT DD SYSOUT=\,FREE=CLOSE
END_OF_JCL
 KEEP_MESSAGE_LOG(ERROR)

| MESSAGE_DATA_SET(&SYSUID.CODEPROD.LOG)
 DATASET_STATUS(MOD)
##
XX
/\

Figure 92. Sample JCL to Add the TP Profile to the VSAM Dataset

3. The following job runs the APPC/MVS administrative utility to add a TP profile for

DFM/MVS.

Note: This might already have been done when the Data Facility Storage Man-

agement Subsystem/MVS (DFSMS/MVS) Version 1 Release 2 product was

installed.

//STEP EXEC PGM=ATBSDFMU
//SYSPRINT DD SYSOUT=\
//SYSSDOUT DD SYSOUT=\
//SYSSDLIB DD DSN=SYS1.APPCTP,DISP=SHR
//SYSIN DD DATA,DLM=XX
 TPADD
 TPNAME(¬X'07'001)
 ACTIVE(YES)
 TPSCHED_DELIMITER(##)
 CLASS(DEFAULT)
 JCL_DELIMITER(ENDJCL)
//GDEDFM JOB MSGCLASS=H,MSGLEVER=(1,1),CLASS=A
//GDEDFM EXEC PGM=GDEISASB
ENDJCL
##
XX
/\

Figure 93. Sample JCL to Add the DFM/MVS TP Profile to the VSAM Dataset

 Appendix C. Configuring APPC Communications 179

Defining the 3745 Attached LAN to VTAM

| Configuring for Remote Debug Tool to Run as a Client
| Defining CPI-C side information:

| 1. Create VSAM Dataset for CPI-C Side Information.

| The following example job creates the VSAM dataset for CPI-C Side Information.

| It is necessary for subsequently defining side information entries allowing

| APPC/MVS to allocate sessions to an associated workstation. This dataset is

| defined to APPC/MVS in the SYS1.PARMLIB member APPCPMxx. In the subse-

| quent example, side information entries will be defined in the dataset.

| //APPC002 JOB CLASS=A,MSGCLASS=A,MSGLEVEL=(1,1)
| /\JOBPARM LINES=9999,TIME=1440
| //SISAMPLE EXEC PGM=IDCAMS
| //TSSC01 DD DISP=OLD,UNIT=3380,VOL=SER=VOL
| //SYSPRINT DD SYSOUT=\
| //SYSABEND DD SYSOUT=\
| //AMSDUMP DD SYSOUT=\
| //SYSIN DD \
| DEFINE CLUSTER (NAME(SIFILE) - /\ side info data set name = SYS1.APPCSI \/
| VOLUME(VOL) - /\ the volume where the VSAM datasets are defined \/
| INDEXED REUSE -
| SHAREOPTIONS(3 3) -
| RECORDSIZE(248 248) -
| KEYS(112 0) -
| RECORDS(50 25)) -
| DATA -
| (NAME(SIFILE.DATA)) - /\ side info data set name = SYS1.APPCSI \/
| INDEX -
| (NAME(SIFILE.INDEX))

| Figure 94. Sample JCL for Side Information VSAM Dataset

| 2. Side information entries are defined in the above dataset by the sample JCL file

| ATBSIVSM.JCL.

| //SIADD0 JOB CLASS=A,MSGCLASS=A,MSGLEVEL=(1,1)
| //\\\
| //STEP EXEC PGM=ATBSDFMU
| //SYSPRINT DD SYSOUT=\
| //SYSSDLIB DD DSN=SIFILE,DISP=SHR
| //SYSSDOUT DD SYSOUT=\
| //SYSIN DD \
| SIADD
| DESTNAME(SYMDEST)
| TPNAME(TPNAME)
| MODENAME(MODE)
| PARTNER_LU(PARTNERLU)
| /\

| Figure 95. Sample JCL for Adding Side Information

Defining the 3745 Attached LAN to VTAM
To define the LAN and its workstations to VTAM:

Step 1. Define a switched major node describing the LAN.

180 Getting Started

Defining the 3745 Attached LAN to VTAM

Step 2. Define a PU major node for a workstation.

Step 3. Define the workstation APPC/LU.

Repeat steps 2 and 3 for each workstation on the LAN. Vary PARTNERLU, IDBLK,

and IDNUM on each workstation.

The example below illustrates key VTAM definitions relating to APPC configuration for

your LAN and an associated workstation. These definitions are possibly incomplete

and their actual values are for illustration purposes only. Your VTAM administrator and

the bibliography should be consulted to create complete definitions.

WSN VBUILD TYPE=SWNET,MAXGRP=2,MAXNO=2
PARTPU PU ADDR=04, X
 IDBLK=IDBLK, X
 IDNUM=IDNUM, X
 PUTYPE=2, X
 MAXPATH=1, X
PARTNER LU LOCADDR=0,MODETAB=MODETAB,DLOGMOD=MODE

Figure 96. Sample SYS1.VTAMLST(WSN)

PU Definition: Note that IDBLK and IDNUM are used to identify the workstation

during VTAM's bind process. This value must be the same as the Node ID that is

specified during CM/2 configuration. See Table 3 on page 151 for more information

about NODEID.

As an alternative to IDBLK and IDNUM, CPNAME=PARTNERLU can be specified on

the PU to identify the workstation during the bind process. In this case, NODEID does

not have to be specified during CM/2 configuration.

PUTYPE=2 indicates that the workstation is capable of supporting independent LUs,

which is a prerequisite for VisualAge COBOL.

For MODETAB and DLOGMOD, use the values defined on your worksheet. See VTAM

Resource Definition Reference for additional values that you can use to define the

workstation.

LU Definition: PARTNERLU is the LU name that defines the workstation to VTAM.

This value must be the same as the LU name that is specified during CM/2 configura-

tion. See Table 3 on page 151 for more information about LUNAME at the work-

station.

LOCADDR=0 identifies this as an independent APPC LU for the workstation that is

being defined by the PU statement.

While no LUs are illustrated for 3270 emulator sessions, it is likely that emulators will

| be used with VisualAge COBOL remote debugging and they will be present in each PU

and LU group that defines a workstation. See VTAM Resource Definition Reference for

additional information on how to define APPC and emulator LUs.

 Appendix C. Configuring APPC Communications 181

APPC/MVS System Commands

Defining the 3745 Attached LAN to NCP
The examples below illustrate sample NCP definitions relating to token ring and LAN

APPC support. These definitions are possibly incomplete and their explicit values will

vary for a given network. Therefore, these samples are for illustration purposes only.

An NCP administrator should be consulted or see the references listed in the bibli-

ography in order to create the appropriate definitions.

1. Define the Token-ring adapter in NCP

The following is a sample token-ring connection from NCP:

TO30T2PG GROUP ECLTYPE=(PHYSICAL,ANY)
TO30T2PL LINE ADDRESS=(1089,FULL),LOCADD=NCPLANADDR,PORTADD=2, X
 RCVBUFC=4095,MAXTSL=2044,ADAPTER=TIC2,TRSPEED=4
\
TO30TRLO GROUP ECLTYPE=LOGICAL,AUTOGEN=10,PHYPORT=2,CALL=INOUT

Figure 97. LAN definitions on NCP

| 2. Provide for the use of host (APPC/MVS and/or CICS) LUs on the token-ring con-

nection

Once the token-ring is defined in the NCP, the only additional required parameter

is NUMILU on the LUDRPOOL macro. An example is:

 POOL1 LUDRPOOL NUMILU=100,NUMTYP1=20,NUMTYP2=20

| In this example, the NCP can support up to 100 host (APPC/MVS or CICS) LUs

that are connected via token-ring connections.

APPC/MVS System Commands
Commands to Start APPC/MVS:

START APPC,SUB=MSTR,APPC=xx
START ASCH,SUB=MSTR,ASCH=xx

The xx is the identifier of the parmlib member. The default is 00.

Before you can start DFM/MVS, you must update the SYS1.PARMLIB member DFM00

and verify that the PROCLIB member DFM exists. Figure 98 shows the DFM00

parameters member, and Figure 99 on page 183 shows the DFM procedure.

DFM LOCK_WAIT_INTV(20)
 MAX_CONV_LOCK(5)
 LOCK_RETRY(3)
 CCSID(0)
 CLOSE_CHECK_INTV(0)
 DEFER_CLOSE_TIME(0)
 MAX_AGENT_TSKS(5)
 STREAM_LRECL(8196)
 SEND_BUFFER_THRESHOLD(100)

Figure 98. DFM/MVS: Parameters Member in SYS1.PARMLIB

182 Getting Started

Configuring CICS for APPC Communications

//DFM PROC PARMS=NORMAL
//\\
//\ ADSTAR DISTRIBUTED FILE MANAGER ADDRESS SPACE \
//\\
// EXEC PGM=GDEISBOT,PARM='&PARMS',REGION=32M,TIME=1440
//IEFPARM DD DSN=SYS1.PARMLIB,DISP=SHR
//SYSPRINT DD SYSOUT=H

Figure 99. DFM/MVS: Startup Procedure

Before you start DFM/MVS, make sure that the APPC/MVS and PWS LUs are activated

in ACF/VTAM and that APPC/MVS is started.

The following command starts DFM/MVS:

 START DFM,SUB=MSTR

Two address spaces are created: DFM and DFMCAS.

Monitoring APPC: Once APPC/MVS is activated, there are several commands that

can be used to monitor APPC/MVS operation. A subset of these commands is shown

below:

DISPLAY APPC,TP,ALL
DISPLAY APPC,LU,ALL
DISPLAY ASCH,ALL

These commands provide information on APPC/MVS TPs, LUs, and scheduler oper-

ations, respectively.

Commands to Terminate APPC/MVS:

C APPC
C ASCH

For more information on APPC/MVS system commands, see MVS/ESA Planning:

APPC Management.

| Configuring CICS for APPC Communications

| This section describes configuring CICS for Remote PWS Debug Tool APPC sessions.

| Assuming that administrators will configure Remote PWS Debug Tool APPC sessions

| at both APPC/MVS and CICS, some important differences should be noted. CICS

| interfaces directly with VTAM (that is, it runs as a VTAM application.) For that reason,

| the APPC/MVS subsystem is not used for CICS APPC sessions. Instead,

| APPC/MVS-like functions are performed by the CICS region. When configuring for

| Remote PWS Debug Tool, this is evident while defining CPI-C side information, which

| is done using CICS system transactions as opposed to using the APPC/MVS facilities

| that were defined previously. Also, since CICS is a VTAM application, it is assumed

| that you already have an APPL major node which serves as the LU for APPC sessions.

| That is, CICS uses its own APPL and not the one defined for APPC/MVS.

 Appendix C. Configuring APPC Communications 183

Terminology

| Configuring CICS for Remote PWS Debug Tool sessions generally falls into two broad

| categories:

| 1. Configuring CICS for Remote PWS Debug Tool APPC session support

| 2. Configuring VTAM, and possibly NCP, on how the workstations are connected.

| See the VTAM Resource Definition and the NCP Resource Definition manuals for

| more information.

| The CICS configuration that is described is essentially independent of the type of

| network within which the workstations reside. However, network definitions in VTAM

| and NCP will vary depending on how partner workstations are connected. As was the

| case for MVS, our description is limited to a token ring LAN attached to the host via a

| 3745 communications controller (see “Defining the 3745 Attached LAN to VTAM” on

| page 180 and “Defining the 3745 Attached LAN to NCP” on page 182.) For further

| assistance in defining your network, contact your IBM representative or refer to the fol-

| lowing publications:

| These publications provide detailed information on the configuration process for CICS

| (V3.3 and V4.1) and VTAM (V3.4.1).

| � CICS/ESA: Resource Definition Guide (SC33-1166)

| � CICS/ESA: System Definition Guide (SC33-0664)

| � VTAM: Resource Definition Reference (SC33-0666)

| � VTAM: Network Implementation Guide (SC31-6434)

| � NCP: Resource Definition Reference (SC30-3448)

| Prerequisites
| The following software levels are required for the definitions in this chapter:

| � CICS/ESA 3.3 or later

| � MVS/ESA 4.2 or later

| � VTAM 3.4 or later

| � NCP 5.2 or later

| Terminology
| Below is a table of standard APPC and equivalent CICS terms. Using standard terms

| makes configuring unlike platforms such as CICS and CM/2 for communications easier

| so standard terms are used whenever possible. Some terms have no CICS equivalent

| but instead are set in VTAM or NCP.

| Standard Term| CICS Term

| Link Name| PU name (VTAM)

| Network Name| Network, NETID (see note)

| LU Name| APPLID, ACBNAME

| Partner LU Name| Netname

| LAN Address| LOCADD (NCP)

| Adjacent LAN Address| DIALNO (VTAM)

184 Getting Started

CICS Configuration Variables

| Note: CICS uses a network name only when defining CPI-C side information in a

| PARTNER definition.

| CICS Configuration Variables
| Use the following table to create a worksheet that defines the listed symbols. These

| symbols and their corresponding values will be used to configure CICS for communi-

| cation with CM/2 at the workstation. Note that the worksheet consists of two parts:

| 1. Symbols that must be matched with a partner platform (the workstation.) The

| symbols are under the heading NETWORK VALUES.

| 2. Symbols that are local to CICS. These symbols are under the heading LOCAL

| VALUES.

| Symbol| How to determine the value for this symbol| Fill in your

| value here

| NETWORK VALUES

| PARTNERLU| This is the symbol for an associated workstation name. There should be

| a unique LU name for each participating workstation. This value should

| be consistent with LUNAME at the workstation. See Table 3 on

| page 151 for more information about LUNAME at the workstation.

| When CPI-C side information is created, a value for PARTNERLU must

| be supplied within a side information entry for each participating work-

| station.

| PARTNERNET| This is the symbol for the workstation's network name. We are assuming

| that CICS and the workstations are in the same network. In this case,

| the value can be obtained from the VTAM start option (NETID).

| This value should match NETWORK as defined to CM/2 at each partic-

| ipating workstation. See page 152 for more information about

| NETWORK at the workstation.

| TPNAME| This is the symbol for the Remote PWS Debug Tool transaction program

| residing at the workstation. It is transmitted across the network from

| CICS and it initiates a session with the Debug Tool server at the work-

| station. This value should be consistent with LOCALTP, as defined at

| all participating workstations. See Table 3 on page 151 for more infor-

| mation about LOCALTP at the workstation.

| For Remote PWS Debug Tool, specify the value COBVSDT.

| COBVSDT

| MODETABLE| The binary table containing mode names that VTAM searches, usually a

| member of SYS1.VTAMLIB. Verify that the table defined in VTAM for

| the CICS LU has the required mode names (#INTER and SNASVCMG)

| for Remote PWS Debug Tool.

| MODE| Name of the logon mode table entry that VTAM uses for Remote PWS

| Debug Tool VTAM sessions. #INTER is recommended. See Figure 90

| on page 177 for a list and description of mode entries that may be used

| by both MVS/APPC and CICS.

| #INTER

| LOCAL VALUES

| GROUP| A name for the collection of CICS definitions. CICS reserves DFH for its

| own use, so choose a name like COBOLVS.

 Appendix C. Configuring APPC Communications 185

| Symbol| How to determine the value for this symbol| Fill in your

| value here

| CON| A connection name used as a nickname for the workstation

| PARTNERLU. Such a definition is required for each PARTNERLU.

| Several other parameters are tied to the connection name. See Table 3

| on page 151 for more information about PARTNERLU at the work-

| station.

| SESSION| A name that uniquely identifies a session for each participating work-

| station and defines the MODE for that session. See “Defining

| SESSIONS” on page 188.

| SYMDEST| This is the symbol for a value that represents a CPI-C side information

| symbolic destination name. Each participating workstation will have a

| unique SYMDEST value which identifies the workstation, mode, and

| transaction profile name at session initialization. In CICS, a side infor-

| mation entry is defined by a PARTNER definition.

| PROFILE| A name defining partner characteristics for this group in CPI-C side infor-

| mation. See “Defining Side Information” on page 189.

| Overview of CICS APPC Configuration
| Configuring CICS for Remote PWS Debug Tool APPC sessions requires:

| 1. Configuring CICS to run as a client

| a. Defining CPI-C side information

| b. Performing other client-related configuration activities

| 2. Defining a Link to the LAN

| Note: The SIT parameter ISC=YES must be specified.

| Configuring CICS to Run as a Client
| The following provides instructions for using CICS Resource Definition Online (RDO) to

| create and modify CICS definitions. To start Resource Definition Online, you must be

| logged on to CICS and your user-ID must be authorized to run the CEDA transaction.

| You must define the following:

| � a CONNECTION object (with the partner LU name)

| � a SESSIONS object (with the mode name for the session)

| � a PARTNER

| � a PROFILE

| In CICS, objects have properties such as authorization lists (which user-ids can use the

| object), resources required (memory, buffers), etc. CICS manages all these to provide

| low response time.

186 Getting Started

Defining CONNECTIONS

| Note: To distinguish CICS objects, such as a CONNECTION, from more generic

| usages, the CICS object names will be in upper case.

| To create and modify definitions in CICS start the CEDA transaction. All definitions in

| CICS are kept in groups. Most object identifiers must be globally unique, that is,

| cannot be used in any other group. SESSIONS objects are an exception to this rule.

| In the following sections all the definitions are in the same group.

| Defining CONNECTIONS
| A connection must be defined for each workstation participating in Remote PWS Debug

| Tool APPC sessions with CICS.

| To define a connection in CICS, type the following at a clear screen:

| ceda define connection(CON) group(GROUP)

| CICS folds all characters to upper-case, so you don't have to worry about typing lower-

| case characters. If the group does not exist, CICS will create it for you automatically.

| Figure 100 on page 188 shows the 3270 screen that results from this command. CICS

| fills in the group name and the CONNECTION identifier from the values you typed. On

| this screen and all other CICS screens, if a value must be selected from a list, then the

| part of the list value that is upper-case serves as a short-name. For example, the

| ACcessmethod parameter has options of Vtam, IRc, INdirect, and Xm. To select Vtam,

| typing “V” is the same as typing “VTAM.”

 Appendix C. Configuring APPC Communications 187

Defining SESSIONS

| à| @ ð
| OVERTYPE TO MODIFY CICS RELEASE = 0330
| CEDA DEFine
| Connection : CON # note 1
| Group : GROUP

| DEscription ==> PARTNER LU
| CONNECTION IDENTIFIERS
| Netname ==> PARTNERLU # note 2
| INDsys ==>
| REMOTE ATTRIBUTES
| REMOTESystem ==>
| REMOTEName ==>
| CONNECTION PROPERTIES
| ACcessmethod ==> Vtam Vtam | IRc | INdirect | Xm
| Protocol ==> Appc Appc | Lu61 # note 3
| SInglesess ==> No No | Yes # note 4
| DAtastream ==> User User | 3270 | SCs | STrfield | Lms
| RECordformat ==> U U | Vb
| OPERATIONAL PROPERTIES
| + AUtoconnect ==> Yes No | Yes | All # note 5
| INService ==> Yes Yes | No
| SECURITY
| SEcurityname ==>
| ATtachsec ==> Local Local | Identify | Verify | Persistent
| | Mixidpe
| BINDPassword ==> PASSWORD NOT SPECIFIED
| BINDSecurity ==> No No | Yes

| APPLID=LOCALLU

| á| ñ

| Figure 100. CEDA DEFINE CONNECTION(CON) GROUP(GROUP)

| Required parameters:

| 1. Connection is a 1-4 character nickname for this partner LU.

| 2. Netname is the PARTNERLU name. This must match the LUNAME defined for

| the corresponding workstation.

| 3. Protocol must be entered and must be APPC.

| 4. SInglesess must be set to NO. The example definitions in this guide all require

| parallel sessions.

| 5. The “+” sign indicates the bottom of the first screen displayed by CEDA. The func-

| tion key settings are displayed at the bottom of the screen (but not shown here).

| Here the default, “Local,” means that any transaction that can be run by the default

| user-ID, CICSUSER, can be run by this partner LU.

| Defining SESSIONS
| Define the mode name and session characteristics for each PARTNERLU (or work-

| station) with a sessions definition that can be initiated by the following command:

| ceda define sessions(SESSION) group(GROUP)

| Figure 101 on page 189 shows the 3270 screen that you should get as a result.

188 Getting Started

Defining Side Information

| à| @ ð
| OVERTYPE TO MODIFY CICS RELEASE = 0330
| CEDA DEFine
| Sessions : SESSION # note 1
| Group : GROUP

| DEscription ==> MODE SESSIONS FOR PARTNER LU
| SESSION IDENTIFIERS
| Connection ==> CON # note 2
| SESSName ==>
| NETnameq ==>
| MOdename ==> MODE # note 3
| SESSION PROPERTIES
| Protocol ==> Appc Appc | Lu61
| MAximum ==> 008 , 004 0-999 # note 4
| RECEIVEPfx ==>
| RECEIVECount ==> 1-999
| SENDPfx ==>
| SENDCount ==> 1-999
| SENDSize ==> 04096 1-30720
| + RECEIVESize ==> 04096 1-30720

| APPLID=TOCICS3

| á| ñ

| Figure 101. CEDA DEFINE SESSIONS(SESSION) GROUP(GROUP)

| Required parameters:

| 1. SESSIONS is the CICS name for this session set. The name must be unique

| within this group.

| 2. Connection identifies the CICS connection in this group (in other words, the partner

| LU) associated with this mode name.

| 3. Modename specifies the mode for this group of sessions.

| 4. Maximum specifies the number of sessions and contention winners for this node

| name.

| Defining Side Information
| Side information must be defined for each workstation participating in Remote PWS

| Debug Tool APPC sessions with CICS.

| To define CPI-C side information in CICS, you must create a PARTNER definition and

| a PROFILE definition.

| To create a PARTNER definition, type the following command in CICS:

| ceda define partner(SYMDEST) group(GROUP)

| The 3270 screen shown in Figure 102 on page 190 should appear. Type in the values

| for Partner, Netname, Network, and TP name from the worksheet in “CICS Configura-

| tion Variables” on page 185.

 Appendix C. Configuring APPC Communications 189

Defining Side Information

| à| @ ð
| OVERTYPE TO MODIFY CICS RELEASE = 0330
| CEDA DEFine
| PARTNer : SYMDEST # note 1
| Group : GROUP

| Description ==> CPI-C SIDE INFO
| REMOTE LU NAME
| NETName ==> PARTNERLU # note 2
| NETWork ==> PARTNERNET # note 2
| SESSION PROPERTIES
| Profile ==> PROFILE # note 3
| REMOTE TP NAME
| Tpname ==> TPNAME # note 4
| ==>
| Xtpname ==>
| ==>
| ==>

| APPLID=TOCICS3

| á| ñ

| Figure 102. CEDA DEFINE PARTNER

| Required parameters:

| 1. Partner is the name for this resource in CICS.

| 2. Netname is the partner's LU name. Network is the partner's network name.

| 3. Profile is the set of characteristics this partner has. The most important of these is

| the modename.

| 4. Tpname is the initial setting for the remote TP name. The TP name must match a

| corresponding TP definition at the workstation.

| To define a PROFILE to explicitly set the mode name for the side information, type the

| following command:

| ceda define profile(PROFILE) group(GROUP)

| The screen shown in Figure 103 on page 191 should appear. Type in the values for

| PROFILE and MODE from the worksheet in “CICS Configuration Variables” on

| page 185.

190 Getting Started

Installing the Definitions

| à| @ ð
| OVERTYPE TO MODIFY CICS RELEASE = 0330
| CEDA DEFine
| PROFile : PROFILE # note 1
| Group : GROUP

| DEscription ==> PROFILE TO CHANGE MODE NAME
| Scrnsize ==> Default Default | Alternate
| Uctran ==> No No | Yes
| MOdename ==> MODE # note 2
| PRIntercomp ==> No No | Yes
| JOURNALLING
| Journal ==> No No | 1-99
| MSGJrnl ==> No No | INPut | Output | INOut
| PROTECTION
| MSGInteg ==> No No | Yes
| Onewte ==> No No | Yes
| PROtect ==> No No | Yes
| Chaincontrol ==> No No | Yes
| PROTOCOLS
| + DVsuprt ==> All All | Nonvtam | Vtam

| APPLID=TOCICS3

| á| ñ

| Figure 103. CEDA DEFINE PROFILE(PROFILE) GROUP(GROUP)

| Required parameters:

| 1. Profile is the name for this resource. This name must match the Profile parameter

| in the PARTNER definition.

| 2. Mode name identifies the mode for this side info entry. There must be a SES-

| SIONS definition with the same modename. (Remember, this profile entry is

| optional if the application uses a default mode name, as APING does.) We recom-

| mend for Remote PWS Debug Tool that MODE be #INTER.

| Installing the Definitions
| Before any definitions can be used they must be added to the running CICS System

| Definition (CSD) using the INSTALL command. This is accomplished by typing:

| ceda install group(GROUP)

| This command will install all the objects in the group - CONNECTIONs, SESSIONS,

| etc. Some objects can be installed individually, too. If a resource is in use, or In

| Service in CICS terms, the installation will fail. If you get the INSTALLATION FAILED

| message, you can display the messages by pressing the PF9 key. However, this

| should not happen the first time.

| If you need to acquire a CONNECTION, use the CEMT transaction.

| Note: The above install command must be repeated after each cold start of the CICS

| region. If this results in a problem, use the following command instead:

| ceda add group(GROUP) list(LIST)

 Appendix C. Configuring APPC Communications 191

| Defining a Link to the LAN
| These are identical when configuring for APPC/MVS. Check to see that such config-

| uring has not already been done before proceeding further. If these definitions have

| not been performed, see “Defining the 3745 Attached LAN to VTAM” on page 180 or

| “Defining the 3745 Attached LAN to NCP” on page 182 for more information.

| CEMT to Display/Modify Sessions
| In CICS, the CEMT transaction allows you to display and modify the status of con-

| nections, netnames, and modenames (that is, all sessions with a particular mode

| name):

| cemt inq netname(PARTNERLU)
| cemt inq modename(CON)

| You may need to manually start a session between CICS and the partner LU. To start

| a session with the partner session, at a CICS screen type this command:

| cemt inq con(CON)

| You will get the screen shown in Figure 104.

| à| @ ð
| INQ CON(CON)
| STATUS: RESULTS - OVERTYPE TO MODIFY
| Con(CON) Net(PARTNERLU) Ins Rel NORMAL

| á| ñ

| Figure 104. CICS Status for Connection CON

| By the connection and netname for the partner LU you should see “Ins Acq.” This is

| CICS short-hand for “In-service, acquired.” If the status is “Ins Rel,” overtype the “Rel”

| with “Acq” and press the enter key. The resulting screen should now have “Ins Acq” as

| the status. If not, contact your VTAM systems programmer and make sure that the

| partner LU is active. You can also use the VTAM command to display activate the

| partner LU or switched major node.

| When the connection is in service and acquired, you can start to use it for Remote

| PWS Debug Tool communications.

192 Getting Started

REXX Procedures

Appendix D. REXX Procedures: Compile and Link

This appendix describes the sample REXX procedures supplied with IBM COBOL for

MVS & VM Release 1.2. to compile and link COBOL programs. All of these examples

have been supplied within the data set, SIGYCLST on the IBM COBOL for MVS & VM

product tape. These sample REXX procedures are used by the Remote Edit/Compile

component which is provided only at beta level.

Note: All of the supplied REXX sample procedures need to be customized for your

site or replaced by your own REXX procedures.

REXX Procedures for COBOL Programs

IGYFCIC Translates and compiles a CICS COBOL program in the foreground

IGYFCL Compiles and links a COBOL program in the foreground

IGYFC Compiles a COBOL program in the foreground

IGYBDB2 Translates, compiles, and links a DB2 COBOL program in batch (DB2

precompile, compile)

REXX Procedures for DB2 Programs

IGYFBIND Binds DB2 programs in the foreground

Other REXX Procedures

IGYFINIT Allocates private datasets used by sample REXX procedures

| IGYFCIL Link-edits CICS object(s) in the foreground for production

| IGYFCILD Link-edits CICS object(s) in the foreground for debug

IGYFL Link-edits COBOL object(s) in the foreground

IGYFVALS Sets installation environment variables used by the other REXX proce-

dures

 Copyright IBM Corp. 1995, 1996 193

REXX Procedures

194 Getting Started

Glossary

VisualAge COBOL Glossary

This glossary contains terms commonly used in

VisualAge COBOL.

Action. In WorkFrame, a description of a tool or func-

tion that can be used to manipulate a project's parts, or

build a project's target.

application. (1) The use to which an information proc-

essing system is put; for example, a payroll application,

an airline reservation application, a network application.

(2) A collection of software components used to perform

specific types of user-oriented work on a computer. (3)

In the COBOL GUI Designer, a GUI project whose target

is built as an EXE instead of a DLL.

| APPC. Advanced program-to-program communication.

| Communications protocol between the workstation and

| the MVS host. SdU for remote edit and compile,

| including the debugger, uses the APPC communications

| protocol.

build. An action that invokes the WorkFrame Build tool

to create the project's target. The Build tool manages

the project's makefile, as well as build dependencies

between projects in a project hierarchy.

build actions. A series of actions that are invoked to

build a project's target. These actions are set in the

Build options window, or in MakeMake, WorkFrame's

makefile creation utility.

child project. A project contained by another project.

See also nested project.

| class. The entity that defines common behavior and

| implementation for zero, one, or more objects. The

| objects that share the same implementation are consid-

| ered to be objects of the same class.

compile. To translate a source program into an execut-

able program (an object program).

component. (1) A functional grouping of related files.

(2) In the COBOL GUI Designer, a GUI project whose

target is built as a DLL instead of an EXE.

copy file. A file with the extension CPY that acts as a

copybook.

COBOL GUI Designer Master Project. A master

project that provides all the default Tools setups and

build mechanisms to create a COBOL GUI project. A

COBOL GUI project does not allow you to create

non-GUI projects, although you can nest a non-GUI

project within a COBOL GUI project.

COBOL Master Project. A master project that provides

all the default Tools setups and build mechanisms to

create a COBOL project. A COBOL project that inherits

from the COBOL Master Project enables you to create

GUI projects.

Common User Access architecture. Guidelines

intended to help product designers and developers

create an interface that users will find easy to learn and

use.

CUA architecture. See Common User Access archi-

tecture.

desktop. A metaphor for a computer's working

environment— the screen layout, the menu bar, and the

program icons associated with the machine's operating

environment.

DLL. See dynamic link library.

dynamic link library. A file containing executable code

and data bound to a program at load time or run time,

rather than during linking. The code and data in a

dynamic link library can be shared by several applica-

tions simultaneously.

environment variable. Any number of variables that

describe the way an operating system is going to run

and the devices it is going to recognize. For example, in

a WorkFrame project, an environment variable is an

operating system variable, like PATH and DPATH, and

any other environment variables that are defined using

the OS/2 SET command, such as SYSLIB.

Event. A representation of a change that occurs to a

part. For example, a push button generates an event,

as in signalling that it has been pressed.

EXE. See executable file.

executable file. A file that contains a program's exe-

cutable code.

file-scoped action. Distinguished from a project-

scoped action in that it is invoked on files. Only file-

scoped actions can participate in a project build.

 Copyright IBM Corp. 1995, 1996 195

Glossary

filter. In WorkFrame, the value of a type. The filter of a

type can be expressed as a file mask, regular

expression, a logical-OR, a logical-AND, or logical-NOT

of a list of types, or a filter determined by a PAM.

Get file.... Menu choice that enables you to import a

file into the COBOL Editor.

GUI. Acronym for graphical user interface.

information area. A part of a window in which informa-

tion about the object or choice that the cursor is on is

displayed. The information area can also contain a

message about the normal completion of a process.

The information area is usually located at the bottom of

the window.

information line. In Workframe and Data Assistant, the

information area.

inheritance. In WorkFrame, refers to the mechanism in

which the tools setup of a project is shared by another

project.

link. To interconnect items of data or portions of one or

more computer programs, for example, linking object

programs by a linkage editor to produce an executable

file.

make. An action in which a project's target is built from

a makefile by a make utility.

MakeMake. WorkFrame's makefile generation utility.

makefile. A text file containing a list of your applica-

tion's parts. The make utility uses makefiles to maintain

application parts and dependencies.

make utility. A tool that automates the process of

updating project parts. The make utility compares the

modification dates for one set of parts (the target parts)

with those of another set of files (the dependent parts,

such as source files). If any dependent parts have

changed more recently than the target parts, the make

utility runs a series of commands to bring the targets

up-to-date.

master project. A project from which another project

inherits its tools setup. Distinguished from parent

project.

message line. A type of status area for the COBOL

Editor.

migrate. To move to a changed operating environment,

usually a new release or version of a system.

Monitor. A window that displays output from monitored

actions. The Monitor window is attached to the project

view.

nested project. A project that appears inside another

project. Nesting expresses a dependency of the parent

project on the child project's target. This dependency is

managed by WorkFrame's Build utility.

object. A visual component of a user interface that a

user can work with to perform a task. that you work with

to perform a task. Text, graphics, and icons on the

desktop are examples of objects.

object code. Output from a compiler or assembler that

is itself executable machine code or is suitable for proc-

essing to produce executable machine code.

object program. A set or group of executable machine

language instructions or other material designed to

interact with data to provide problem solutions. In this

context, an object program is generally the machine lan-

guage result of the operation of a COBOL compiler on a

source program.

PAM. See Project Access Method.

parent project. A project that contains other projects.

part. (1) In WorkFrame, same as a project part. (2) In

the COBOL GUI Designer, the graphic representations

of GUI controls that you use to create a GUI, for

example, a push button part.

Parts Catalog. In the COBOL GUI Designer, a note-

book that contains all of the parts you can use to build a

GUI.

Parts Palette. In the COBOL GUI Designer, a window

that contains a commonly used set of parts you can use

to build a GUI. You can customize the Parts Palette by

including parts available in the Parts Catalog.

program. A syntactic unit that conforms to the rules of

a particular programming language composed of decla-

rations and statements or instructions needed to solve a

certain function, task or problem. Synonymous with

computer program.

project. The central WorkFrame model of the complete

set of data and actions required to build a target, such

as a dynamic link library (DLL) or other executable

(EXE). A project consists of a set of project parts and a

Tools setup.

196 Getting Started

Glossary

Project Access Method (PAM). A dynamic link library

that contains a set of methods through which a simple

abstraction of a file system or repository is provided to

WorkFrame. PAMs enable a WorkFrame project to

contain any kind of object that a PAM can support, for

example a version of a file in a source control library, or

another file system like MVS or AIX.

project hierarchy. A project tree that represents

dependencies between projects. The WorkFrame

project paradigm requires that one project should be

created for every target. Dependencies between

projects and their targets should be expressed in a

project hierarchy. That is, if a project's build depends on

the target of another project, the dependent project

should contain the project it depends on. The

dependent project is then said to nest the other project.

This enables the Build tool to perform Builds in a depth-

first search manner from anywhere in the project hier-

archy.

project parts. The data objects that make up a

WorkFrame project. As well as a source file, a project

part may also be a transient object, such as a target or

an intermediate object created during the life of the

project. A project part may also be another project.

project-scoped action. An action that applies to a

project as a whole, or to a project's specially designated

parts. Specially designated project parts are the

project's makefile and target. An example of a project-

scoped action is Debug, which is invoked on the

project's target.

Project Smarts. A catalog that contains predefined

projects.

SOM. See System Object Model.

source directory. A directory where a project's parts

are physically stored. A project may have many source

directories.

source type. A source type appears in an action's list

of source types. An action's list of source types speci-

fies the kind of parts or files to which the action applies.

subprogram. In COBOL, synonym for called program.

A called program is a program that is the object of a

CALL statement combined at object time with the calling

program to produce a run unit.

status area. A part of a window that displays informa-

tion indicating the state of the current view of an object.

The status area is usually located just below the title bar

and menu bar.

System Object Model (SOM). IBM's object-oriented

programming technology for building, packaging, and

manipulating class libraries. SOM conforms to the

Object Management Group's (OMG) Common Object

Request Broker Architecture (CORBA) standards.

target. In WorkFrame, a project's target is the file that

is produced as a result of a project build. For example,

an EXE or a DLL.

target directory. Directory in which a target will be

built. Usually defaults to the source directory. This is

the first source directory listed on the Locations page of

the project's settings notebook.

target type. A target type appears in an action's list of

target types. Target types only apply to actions that par-

ticipate in a project build, such as Compile and Link.

The Build tool and MakeMake utility use the source and

target types of build actions to determine the order in

which the actions should be run to produce the project's

target.

template. An object that you can use as a model to

create other objects. When you drag a template, you

create a copy of the original object. The new object has

the same settings and contents as the original template

object.

Tools setup. A view of a project where you can see

and manipulate the actions, types, and environment vari-

ables available to the project. From this view, you can

add, delete, and change actions, types, and variables.

You can also set the options for any action in this view.

type. In WorkFrame, describes a group of project files

of parts in terms of an expression, such as file masks,

regular expressions, or a list of other types, logical-OR'd.

type class. In WorkFrame, represents the method by

which an object is determined to be a member of a type.

“File mask” is an example of a type class. Membership

to a “File mask” type is determined by matching the file

mask filter to the object's name. Other examples of type

classes are “Regular expression,” and “PAM Name,”

where the named Project Access Method determines

membership to a type.

thread. In the OS/2 operating system, the smallest unit

of operation to be performed within a process.

 VisualAge COBOL Glossary 197

Glossary

token highlighting. In the COBOL Editor, a feature

that enables you to view the token types of the program-

ming language in different colors and fonts. It makes

the structure of the program more visible.

view. In the OS/2 operating system, the appearance of

the contents of an open object.

window. An area of the screen with visible boundaries

within which information is displayed. A window can be

smaller than or the same size as the screen. Windows

can appear to overlap on the screen.

working directory. The directory where files that are

copied or dragged into the project are stored. Actions

are also executed in this directory, so this directory is

where many output files are placed. Compare with

source directory.

198 Getting Started

Comparison of Workstation and Mainframe Concepts

Comparison of Workstation and Mainframe Concepts

If workstation concepts are new to you, but you are familiar with the mainframe environment, this topic might help you.

The following table provides a comparison of workstation and mainframe concepts. In most cases, a term-to-term

comparison is not possible.

Table 5. Comparison of workstation and mainframe concepts

Workstation Concept Mainframe Concept

File : A unit of stored information for text, data, programs, etc. Data set, member, or file: In MVS, a data set is the major unit

of data storage and retrieval. A member is a partition of a parti-

tioned data set.

Command file (.CMD): a file containing OS/2 commands organ-

ized for sequential processing. In workstation programs,

command files are much like JCL.

JCL: Stands for job control language, which is used to identify a

job to an operating system and to describe the job's require-

ments.

A command file can also function similarly to a CLIST or an

EXEC.

CLIST in MVS, EXEC in VM: A CLIST is a list of commands and

statements designed to perform a specific function for the user,

and an EXEC is a user-written command file that contains CMS

commands and execution of control statements, such as

branches.

Environment variables: These are any number of variables that

describe the way an operating system is going to run and the

devices it is going to recognize. For example, in a WorkFrame

project, an environment variable is an operating system variable

like PATH and DPATH, and other environment variables that are

defined using the OS/2 SET command such as TMP.

No equivalent term or concept on the mainframe.

Dynamic link library (.DLL) file: This file contains executable

code and data which is bound to a program at load or run time,

rather than during linking. The code and data in a DLL can be

shared by several applications at the same time.

DLL files are much like pre-loaded subprograms in the link

pack area on MVS or in a shared segment on VM.

Executable (.EXE) file: This is a file that contains a program's

executable code.

Load module, statically-linked program, statically-linked load

module: All or part of a computer program in a form suitable for

loading into main storage for execution. A load module is

usually the output of a linkage editor.

Module definition (.DEF) file: Directives to the linkage editor on

how to build the executable file.

Linkage editor input statements: Directives to the linkage

editor, such as INCLUDE and NAME, on how to build the load

module.

Make: An action that invokes the make utility, a tool that auto-

mates the process of updating project files. This includes com-

piling and linking programs.

Any automated way of controlling compiling and link-editing.

OS/2 desktop: A graphical way of accessing your tools and files.

It fills the entire screen and holds the objects with which you can

interact to perform operations on the OS/2 operating system.

No exact equivalent. The closest equivalent on the mainframe

are menu-driven tools such as ISPF or Office Vision.

 Copyright IBM Corp. 1995, 1996 199

Comparison of Workstation and Mainframe Concepts

200 Getting Started

 Index

A
adding

components 19, 22

GUI parts 94

administrator tasks

preparing the server 5

APPC configuration

CICS 183

CM/2 150

MVS 170

APPC/MVS configuration

definitions 174

overview 174

prerequisites 170

running as a client (Remote PWS Debug Tool) 180

running as a server (E/C) 177

variables 171

APPC/MVS, system commands to start 182

application

creating, logic 97

example, GUI 89

packaging for distribution 113

attributes

changing 95

B
build

application 108

error messages 109

C
choosing what to install 9

determining

required space 10

CICS

configuration 183

configuration variables 185

defining a connection 187

defining a session 188

defining side information 189

installing the definitions 191

overview 186

prerequisites 184

CICS (continued)

to run as a client 186

CID support

return codes 32

CM/2

configuring for APPC 150

CM/2 APPC configuration

defining

connection 160

partner LU (E/C) 163

workstation to network 157

examples 154

Remote Debug Tool 167

required variables 151

selecting configuration file 155

to run as a client 165

verification 169

COBOL Editor window 97

COBOL GUI Designer

coding event logic 59

description 49

disk space 4

environment variables 14

saving a project 55

using 52

COBOL program, REXX procedures for 193

Code Assistant

description 69

using 98

command-line options 31

commands

DIAMOND 12

starting APPC/MVS 182

communications

configuring 149

synchronous 150

Communications Manager profile list, returning to 164

compile and link

using REXX 193

Compiler and Nonvisual tools

Compiler and Runtime 4

Editor 4

environment variables 13

Information 4

Interactive Debugger 4

SMARTdata UTILITIES 4

 Copyright IBM Corp. 1995, 1996 201

Compiler and Runtime

disk space 4

environment variables 13

Compiler Default Options Tool

DIAMOND command 12

invoking 12

window 11

compiler options

Debug page 105, 106

link page 106, 107

notebook 104

Other page 105

setting 103

components

adding 19

adding after initial installation 22

deleting 19, 20

disk space 4

reinstalling 19

requiring other components 9

selecting to install 9

CompuServe 83

CONFIG.ADD file 13

CONFIG.SYS file

updating automatically 8, 22

updating yourself 13

configuration

APPC/MVS 170

CICS 183

CM/2 APPC 150

variables

APPC/MVS 171

CM/2 151

configuration variables

CICS 185

configuring APPC communications 149—192

consulting services

information 84

World Wide Web 84

corrective service disk (CSD) 7

Create New Project window 90, 93

creating

application with a GUI 89

GUI project 93

new project 43, 90

subroutine logic 91

subroutine project 90

CSD 7

customizing

GUI parts 94

D
Data Assistant

description 70

disk space 4

environment variables 14

tutorial 117

Data Description and Conversion

disk space 4

environment variables 15

DB2 program, REXX procedures for 193

debugging

remote Debug Tool 167

setting option 106

setting options 105

using the debugger 110

deleting components 19, 20

determining

available disk space 10

required space 10

development tools, Warp

disk space 4

DIAMOND command 12

disk space

COBOL GUI Designer 4

Compiler and Runtime 4

Data Assistant 4

Data Description and Conversion 4

determining

development tools, Warp 4

Editor 4

FAT partition 5

headers and libraries, Warp 4

Interactive Debugger 4

multimedia bitmaps, Warp 4

Performance Analyzer 4

Remote Edit/Compile 4

requirements 3

sample programs, Warp 4

SMARTdata UTILITIES 4

swapper 4

Transaction Assistant 4

WorkFrame 4

distributing application to users 115

documentation

ordering 81

printing 81

viewing 80

202 Getting Started

E
editing

language sensitive 91

Editor

creating a new file 45

description 69

disk space 4

environment variables 14

language sensitive editing 91

window 97

education

information 84

World Wide Web 85

entry field 94

environment variables

COBOL GUI Designer 14

Compiler and Runtime 13

Data Assistant 14

Data Description and Conversion 15

Editor 14

Interactive Debugger 14

Performance Analyzer 14

Remote Edit/Compile 15

SMARTdata UTILITIES 15

Transaction Assistant 15

VisualAge COBOL information 14

Warp Toolkit 16

WorkFrame 15

EPFIE114 27

epfinsts 27

error log, creating 31

error message help 25

error messages, build 109

event-driven programming 57

exiting the install program 12

F
FAT file system 5

first failure support technology (FFST/2) 170

fixes, access 83

G
getting help for installation 7

glossary 195

GUI

adding parts 94

building 65

GUI (continued)

create application with 89

creating 49

creating application project 93

creating logic 57

customizing 53

customizing parts 94

part names 95

running application 112

saving 55

saving project 95

GUI Code Assistant

copy file 62

description 69

using 61

GUI Designer, COBOL

coding event logic 59

description 49

saving a project 55

using 52

H
hardware requirements 3

headers and libraries, Warp

disk space 4

help

installation 7

installation problems 25

history log, creating 31

I
IDBUG tool 110

Information

disk space

Compiler and Runtime 4

environment variables 14

Information Notebook 80

inheritance 69

installing

a second time 19

additional components 22

application on end user machine 115

components 9

exiting the program 12

problems and error messages 25

second phase 12, 17

specifying target drive and directory 10

stopping the procedure 10

 Index 203

installing (continued)

to workstation 7

unattended install 16

using a LAN

description 5

preparing the server 5

with a software distribution manager 18

Interactive Debugger

description 71

disk space 4

environment variables 14

using 110

IWZINST.LOG file 17

IWZVFAZ2 command 26

K
keywords for response files 29

L
LAN installation

administrator tasks 5

description 5

preparing the server 5

LAN to NCP definition 182

LAN to VTAM definition 180

language sensitive editing, specifying 91

license agreement 5

lockup 110

logic

calling subroutine 100

creating application 97

creating subroutine 91

LU definition 181

M
mainframe concepts, compared with workstation 199

memory requirements 3

message boxes, CM/2 - checking values 169

monitor window 108

monitoring APPC 183

multimedia bitmaps, Warp

disk space 4

MVS, configuring communications 150

N
NCP

defining 3745 Attached LAN 182

defining token-ring adapter 182

nesting projects 103

new project, creating 90

O
object file for subroutine 91

online help, using 80

operating system requirements 3

options, command-line 31

ordering documentation 81

OS/2

using 131

overview

CICS configuration 186

overwriting files 8, 22

P
packaging application 113

part names, GUI 95

Performance Analyzer

description 72

disk space 4

environment variables 14

phase 2 install 12, 17, 26

PostScript files 81

preinstallation tasks 3

prerequisites

APPC/MVS 170

CICS 184

CM/2 150

printing documentation 81

problems during installation 25

profiles in Communications Manager 150

programmable workstation

host communications, configuring 149

project

building a GUI target 65

building a target 47

correcting syntax errors 47

creating 43

creating GUI 93

creating new 90

definition 40

nesting 103

204 Getting Started

project (continued)

running a target 48

saving, GUI 95

subroutine 90

WorkFrame 69

PU definition 181

push button field 94

Q
quick reference 75

quitting the install program 12

R
RAM, minimum 3

README file 7

reinstalling components 19

remote Debug Tool 167

Remote Edit/Compile

configuring 149

disk space 4

environment variables 15

REXX procedures 193

requirements

hardware 3

NLS 3

software 3

response file

adding and deleting components 23

CID support 18

creating 17

nesting 30

required keywords 30

specifying on command line 32

syntax 29

return codes 32

returning to Communications Manager profile list 164

REXX procedures

compile and link 193

running

application, GUI 112

install a second time 19

S
sample application

building 43

Data Conversion Utility samples 148

Employee Lookup Application samples 139

sample application (continued)

running 48

SMARTdata Utilities 147

SMARTsort samples 148

source code 45

workstation VSAM samples 147

sample GUI application

building 49

running 67

sample programs, Warp

disk space 4

saving

GUI project 95

second-phase install 12, 17, 26

selecting components to install 9

server-requester communications, configuring 149

server, setting up as installation base 5

service

CompuServe 83

FAX number 84

fixes 83

information 83

mail address 84

voice support 83

World Wide Web 84

setting

compiler options 103

target directory 10

settings notebook

changing attributes 95

SMARTdata UTILITIES

description 71

disk space 4

environment variables 15

prompt 11

sample applications 147

SMARTsort Defaults window 11

SNA features list 164

SNA LU 6.2 150

software distribution manager (SDM) install

return codes 32

software requirements 3

source code

example of application 101

example of subroutine 92

saving 92

starting new project 90

static text field 94

stopping the installation 10

 Index 205

subroutine

calling 100

creating 90

object file 91

swap file growth 5

swapper, disk space 4

synchronous communications 150

syntax errors, correcting 47

T
target

project 91

target drive and directory

determining

available space 10

setting 10

task reference 75

terminology

APPC and APPC/MVS 171

APPC and Communications Manager 150

CICS 184

training, VisualAge COBOL 84

Transaction Assistant

description 70

disk space 4

environment variables 15

tutorial 127

Transaction Programs (TP), defining 177

tutorial

Data Assistant 117

Tax Calculation subroutine 90

Tax Computation Application 89

Transaction Assistant 127

U
unattended install

procedure 16

UNATTEND.RSP file 17

with a software distribution manager 18

uninstalling components 20

updating CONFIG.SYS 8

V
VACCESS.CPY copy file 62

Visual tools

COBOL GUI Designer 4

Data Assistant 4

Visual tools (continued)

Data Description and Conversion 4

Transaction Assistant 4

WorkFrame 4

VisualAge COBOL

building a GUI application 49

building an application 43

COBOL GUI Designer 70

compiler 70

concepts 40

consulting services 84

creating a GUI 49

creating a new project 43

Data Assistant 70

description 37

documentation 79

Editor 69

education 84

GUI Code Assistant 69

Information Notebook 80

Interactive Debugger 71

learning path 79

online help 80

ordering documentation 81

Performance Analyzer 72

printing documentation 81

quick reference 75

run-time 70

service 83

Transaction Assistant 70

tutorials 87

WorkFrame 69

VM, configuring communications 150

VSAM data 139, 146

VTAM

defining 3745 Attached LAN 180

defining APPC/MVS LU 175

W
Warp Toolkit

Development tools, disk space 4

environment variables 16

headers and libraries 4

multimedia bitmaps 4

sample programs 4

WorkFrame 69

disk space 4

environment variables 15

206 Getting Started

workstation concepts, compared with mainframe 199

World Wide Web

consulting services 84

education 85

fixes 83

service 84

X
XCOPY command 5

 Index 207

We'd Like to Hear from You

IBM VisualAge for COBOL for OS/2

Getting Started

Publication No. GC26-8421-01

Please use one of the following ways to send us your comments about this book:

� Mail—Use the Readers' Comments form on the next page. If you are sending the form from a
country other than the United States, give it to your local IBM branch office or IBM represen-
tative for mailing.

� Fax—Use the Readers' Comments form on the next page and fax it to this U.S. number:
800-426-7773.

� Electronic mail—Use one of the following network IDs:

– IBMMail: USIB2VVG at IBMMAIL
– IBMLink: COBPUBS at STLVM27

 – Internet: COMMENTS@VNET.IBM.COM

Be sure to include the following with your comments:

– Title and publication number of this book
– Your name, address, and telephone number if you would like a reply

Your comments should pertain only to the information in this book and the way the information is
presented. To request additional publications, or to comment on other IBM information or the
function of IBM products, please give your comments to your IBM representative or to your IBM
authorized remarketer.

IBM may use or distribute your comments without obligation.

 Readers' Comments

IBM VisualAge for COBOL for OS/2

Getting Started

Publication No. GC26-8421-01

How satisfied are you with the information in this book?

Please tell us how we can improve this book:

May we contact you to discuss your comments? Ø Yes Ø No

Name Address

Company or Organization

Phone No.

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Technically accurate Ø Ø Ø Ø Ø

Complete Ø Ø Ø Ø Ø

Easy to find Ø Ø Ø Ø Ø

Easy to understand Ø Ø Ø Ø Ø

Well organized Ø Ø Ø Ø Ø

Applicable to your tasks Ø Ø Ø Ø Ø

Grammatically correct and con-
sistent Ø Ø Ø Ø Ø

Graphically well designed Ø Ø Ø Ø Ø

Overall satisfaction Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
GC26-8421-01

IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

Department J58
International Business Machines Corporation
PO BOX 49023
SAN JOSE CA 95161-9945

Fold and Tape Please do not staple Fold and Tape

GC26-8421-01

IBM

Part Number: 33H3035

Printed in U.S.A.

33
H3
03
5

GC26-8421-01

