
Comparing and Merging Files

diff, diff3, sdiff, cmp, and patch

Edition 1.8, for diffutils 2.7.1 and patch 2.1

1994-11-14

by David MacKenzie, Paul Eggert, and Richard Stallman

Copyright

c

 1992, 1993, 1994 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright

notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modi�ed versions of this manual under the conditions

for verbatim copying, provided that the entire resulting derived work is distributed under the terms

of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,

under the above conditions for modi�ed versions, except that this permission notice may be stated

in a translation approved by the Foundation.

Overview 1

Overview

Computer users often �nd occasion to ask how two �les di�er. Perhaps one �le is a newer

version of the other �le. Or maybe the two �les started out as identical copies but were changed

by di�erent people.

You can use the diff command to show di�erences between two �les, or each corresponding

�le in two directories. diff outputs di�erences between �les line by line in any of several formats,

selectable by command line options. This set of di�erences is often called a di� or patch. For �les

that are identical, diff normally produces no output; for binary (non-text) �les, diff normally

reports only that they are di�erent.

You can use the cmp command to show the o�sets and line numbers where two �les di�er. cmp

can also show all the characters that di�er between the two �les, side by side. Another way to

compare two �les character by character is the Emacs command M-x compare-windows. See section

\Other Window" in The GNU Emacs Manual, for more information on that command.

You can use the diff3 command to show di�erences among three �les. When two people have

made independent changes to a common original, diff3 can report the di�erences between the

original and the two changed versions, and can produce a merged �le that contains both persons'

changes together with warnings about conicts.

You can use the sdiff command to merge two �les interactively.

You can use the set of di�erences produced by diff to distribute updates to text �les (such

as program source code) to other people. This method is especially useful when the di�erences

are small compared to the complete �les. Given diff output, you can use the patch program to

update, or patch, a copy of the �le. If you think of diff as subtracting one �le from another to

produce their di�erence, you can think of patch as adding the di�erence to one �le to reproduce

the other.

This manual �rst concentrates on making di�s, and later shows how to use di�s to update �les.

GNU diff was written by Mike Haertel, David Hayes, Richard Stallman, Len Tower, and

Paul Eggert. Wayne Davison designed and implemented the uni�ed output format. The basic

algorithm is described in \An O(ND) Di�erence Algorithm and its Variations", Eugene W. Myers,

Algorithmica Vol. 1 No. 2, 1986, pp. 251{266; and in \A File Comparison Program", Webb Miller

and Eugene W. Myers, Software|Practice and Experience Vol. 15 No. 11, 1985, pp. 1025{1040.

2 Comparing and Merging Files

The algorithm was independently discovered as described in \Algorithms for Approximate String

Matching", E. Ukkonen, Information and Control Vol. 64, 1985, pp. 100{118.

GNU diff3 was written by Randy Smith. GNU sdiff was written by Thomas Lord. GNU cmp

was written by Torbjorn Granlund and David MacKenzie.

patch was written mainly by Larry Wall; the GNU enhancements were written mainly by Wayne

Davison and David MacKenzie. Parts of this manual are adapted from a manual page written by

Larry Wall, with his permission.

Chapter 1: What Comparison Means 3

1 What ComparisonMeans

There are several ways to think about the di�erences between two �les. One way to think of

the di�erences is as a series of lines that were deleted from, inserted in, or changed in one �le to

produce the other �le. diff compares two �les line by line, �nds groups of lines that di�er, and

reports each group of di�ering lines. It can report the di�ering lines in several formats, which have

di�erent purposes.

GNU diff can show whether �les are di�erent without detailing the di�erences. It also provides

ways to suppress certain kinds of di�erences that are not important to you. Most commonly, such

di�erences are changes in the amount of white space between words or lines. diff also provides

ways to suppress di�erences in alphabetic case or in lines that match a regular expression that you

provide. These options can accumulate; for example, you can ignore changes in both white space

and alphabetic case.

Another way to think of the di�erences between two �les is as a sequence of pairs of characters

that can be either identical or di�erent. cmp reports the di�erences between two �les character by

character, instead of line by line. As a result, it is more useful than diff for comparing binary �les.

For text �les, cmp is useful mainly when you want to know only whether two �les are identical.

To illustrate the e�ect that considering changes character by character can have compared with

considering them line by line, think of what happens if a single newline character is added to the

beginning of a �le. If that �le is then compared with an otherwise identical �le that lacks the

newline at the beginning, diff will report that a blank line has been added to the �le, while cmp

will report that almost every character of the two �les di�ers.

diff3 normally compares three input �les line by line, �nds groups of lines that di�er, and

reports each group of di�ering lines. Its output is designed to make it easy to inspect two di�erent

sets of changes to the same �le.

1.1 Hunks

When comparing two �les, diff �nds sequences of lines common to both �les, interspersed with

groups of di�ering lines called hunks. Comparing two identical �les yields one sequence of common

lines and no hunks, because no lines di�er. Comparing two entirely di�erent �les yields no common

lines and one large hunk that contains all lines of both �les. In general, there are many ways to

4 Comparing and Merging Files

match up lines between two given �les. diff tries to minimize the total hunk size by �nding large

sequences of common lines interspersed with small hunks of di�ering lines.

For example, suppose the �le `F' contains the three lines `a', `b', `c', and the �le `G' contains

the same three lines in reverse order `c', `b', `a'. If diff �nds the line `c' as common, then the

command `diff F G' produces this output:

1,2d0

< a

< b

3a2,3

> b

> a

But if diff notices the common line `b' instead, it produces this output:

1c1

< a

> c

3c3

< c

> a

It is also possible to �nd `a' as the common line. diff does not always �nd an optimal matching

between the �les; it takes shortcuts to run faster. But its output is usually close to the shortest

possible. You can adjust this tradeo� with the `--minimal' option (see Chapter 5 [di� Performance],

page 35).

1.2 Suppressing Di�erences in Blank and Tab Spacing

The `-b' and `--ignore-space-change' options ignore white space at line end, and considers

all other sequences of one or more white space characters to be equivalent. With these options,

diff considers the following two lines to be equivalent, where `$' denotes the line end:

Here lyeth muche rychnesse in lytell space. -- John Heywood$

Here lyeth muche rychnesse in lytell space. -- John Heywood $

Chapter 1: What Comparison Means 5

The `-w' and `--ignore-all-space' options are stronger than `-b'. They ignore di�erence even

if one �le has white space where the other �le has none. White space characters include tab,

newline, vertical tab, form feed, carriage return, and space; some locales may de�ne additional

characters to be white space. With these options, diff considers the following two lines to be

equivalent, where `$' denotes the line end and `^M' denotes a carriage return:

Here lyeth muche rychnesse in lytell space.-- John Heywood$

He relyeth much erychnes seinly tells pace. --John Heywood ^M$

1.3 Suppressing Di�erences in Blank Lines

The `-B' and `--ignore-blank-lines' options ignore insertions or deletions of blank lines.

These options a�ect only lines that are completely empty; they do not a�ect lines that look empty

but contain space or tab characters. With these options, for example, a �le containing

1. A point is that which has no part.

2. A line is breadthless length.

-- Euclid, The Elements, I

is considered identical to a �le containing

1. A point is that which has no part.

2. A line is breadthless length.

-- Euclid, The Elements, I

1.4 Suppressing Case Di�erences

GNU diff can treat lowercase letters as equivalent to their uppercase counterparts, so that,

for example, it considers `Funky Stuff', `funky STUFF', and `fUNKy stuFf' to all be the same. To

request this, use the `-i' or `--ignore-case' option.

6 Comparing and Merging Files

1.5 Suppressing Lines Matching a Regular Expression

To ignore insertions and deletions of lines that match a regular expression, use the `-I regexp'

or `--ignore-matching-lines=regexp' option. You should escape regular expressions that contain

shell metacharacters to prevent the shell from expanding them. For example, `diff -I '^[0-9]''

ignores all changes to lines beginning with a digit.

However, `-I' only ignores the insertion or deletion of lines that contain the regular expression if

every changed line in the hunk|every insertion and every deletion|matches the regular expression.

In other words, for each nonignorable change, diff prints the complete set of changes in its vicinity,

including the ignorable ones.

You can specify more than one regular expression for lines to ignore by using more than one

`-I' option. diff tries to match each line against each regular expression, starting with the last

one given.

1.6 Summarizing Which Files Di�er

When you only want to �nd out whether �les are di�erent, and you don't care what the dif-

ferences are, you can use the summary output format. In this format, instead of showing the

di�erences between the �les, diff simply reports whether �les di�er. The `-q' and `--brief'

options select this output format.

This format is especially useful when comparing the contents of two directories. It is also much

faster than doing the normal line by line comparisons, because diff can stop analyzing the �les as

soon as it knows that there are any di�erences.

You can also get a brief indication of whether two �les di�er by using cmp. For �les that are

identical, cmp produces no output. When the �les di�er, by default, cmp outputs the byte o�set

and line number where the �rst di�erence occurs. You can use the `-s' option to suppress that

information, so that cmp produces no output and reports whether the �les di�er using only its exit

status (see Chapter 11 [Invoking cmp], page 57).

Unlike diff, cmp cannot compare directories; it can only compare two �les.

Chapter 1: What Comparison Means 7

1.7 Binary Files and Forcing Text Comparisons

If diff thinks that either of the two �les it is comparing is binary (a non-text �le), it normally

treats that pair of �les much as if the summary output format had been selected (see Section 1.6

[Brief], page 6), and reports only that the binary �les are di�erent. This is because line by line

comparisons are usually not meaningful for binary �les.

diff determines whether a �le is text or binary by checking the �rst few bytes in the �le; the

exact number of bytes is system dependent, but it is typically several thousand. If every character

in that part of the �le is non-null, diff considers the �le to be text; otherwise it considers the �le

to be binary.

Sometimes you might want to force diff to consider �les to be text. For example, you might

be comparing text �les that contain null characters; diff would erroneously decide that those

are non-text �les. Or you might be comparing documents that are in a format used by a word

processing system that uses null characters to indicate special formatting. You can force diff to

consider all �les to be text �les, and compare them line by line, by using the `-a' or `--text' option.

If the �les you compare using this option do not in fact contain text, they will probably contain

few newline characters, and the diff output will consist of hunks showing di�erences between long

lines of whatever characters the �les contain.

You can also force diff to consider all �les to be binary �les, and report only whether they

di�er (but not how). Use the `--brief' option for this.

In operating systems that distinguish between text and binary �les, diff normally reads and

writes all data as text. Use the `--binary' option to force diff to read and write binary data

instead. This option has no e�ect on a Posix-compliant system like GNU or traditional Unix.

However, many personal computer operating systems represent the end of a line with a carriage

return followed by a newline. On such systems, diff normally ignores these carriage returns on

input and generates them at the end of each output line, but with the `--binary' option diff

treats each carriage return as just another input character, and does not generate a carriage return

at the end of each output line. This can be useful when dealing with non-text �les that are meant

to be interchanged with Posix-compliant systems.

If you want to compare two �les byte by byte, you can use the cmp program with the `-l' option

to show the values of each di�ering byte in the two �les. With GNU cmp, you can also use the `-c'

option to show the ASCII representation of those bytes. See Chapter 11 [Invoking cmp], page 57,

for more information.

8 Comparing and Merging Files

If diff3 thinks that any of the �les it is comparing is binary (a non-text �le), it normally reports

an error, because such comparisons are usually not useful. diff3 uses the same test as diff to

decide whether a �le is binary. As with diff, if the input �les contain a few non-text characters

but otherwise are like text �les, you can force diff3 to consider all �les to be text �les and compare

them line by line by using the `-a' or `--text' options.

Chapter 2: diff Output Formats 9

2 diffOutput Formats

diff has several mutually exclusive options for output format. The following sections describe

each format, illustrating how diff reports the di�erences between two sample input �les.

2.1 Two Sample Input Files

Here are two sample �les that we will use in numerous examples to illustrate the output of diff

and how various options can change it.

This is the �le `lao':

The Way that can be told of is not the eternal Way;

The name that can be named is not the eternal name.

The Nameless is the origin of Heaven and Earth;

The Named is the mother of all things.

Therefore let there always be non-being,

so we may see their subtlety,

And let there always be being,

so we may see their outcome.

The two are the same,

But after they are produced,

they have different names.

This is the �le `tzu':

The Nameless is the origin of Heaven and Earth;

The named is the mother of all things.

Therefore let there always be non-being,

so we may see their subtlety,

And let there always be being,

so we may see their outcome.

The two are the same,

But after they are produced,

they have different names.

They both may be called deep and profound.

Deeper and more profound,

The door of all subtleties!

10 Comparing and Merging Files

In this example, the �rst hunk contains just the �rst two lines of `lao', the second hunk contains

the fourth line of `lao' opposing the second and third lines of `tzu', and the last hunk contains just

the last three lines of `tzu'.

2.2 Showing Di�erences Without Context

The \normal" diff output format shows each hunk of di�erences without any surrounding

context. Sometimes such output is the clearest way to see how lines have changed, without the

clutter of nearby unchanged lines (although you can get similar results with the context or uni�ed

formats by using 0 lines of context). However, this format is no longer widely used for sending out

patches; for that purpose, the context format (see Section 2.3.1 [Context Format], page 12) and

the uni�ed format (see Section 2.3.2 [Uni�ed Format], page 14) are superior. Normal format is the

default for compatibility with older versions of diff and the Posix standard.

2.2.1 Detailed Description of Normal Format

The normal output format consists of one or more hunks of di�erences; each hunk shows one

area where the �les di�er. Normal format hunks look like this:

change-command

< from-�le-line

< from-�le-line: : :

> to-�le-line

> to-�le-line: : :

There are three types of change commands. Each consists of a line number or comma-separated

range of lines in the �rst �le, a single character indicating the kind of change to make, and a line

number or comma-separated range of lines in the second �le. All line numbers are the original line

numbers in each �le. The types of change commands are:

`lar' Add the lines in range r of the second �le after line l of the �rst �le. For example,

`8a12,15' means append lines 12{15 of �le 2 after line 8 of �le 1; or, if changing �le 2

into �le 1, delete lines 12{15 of �le 2.

`f ct' Replace the lines in range f of the �rst �le with lines in range t of the second �le. This

is like a combined add and delete, but more compact. For example, `5,7c8,10' means

change lines 5{7 of �le 1 to read as lines 8{10 of �le 2; or, if changing �le 2 into �le 1,

change lines 8{10 of �le 2 to read as lines 5{7 of �le 1.

Chapter 2: diff Output Formats 11

`rdl' Delete the lines in range r from the �rst �le; line l is where they would have appeared

in the second �le had they not been deleted. For example, `5,7d3' means delete lines

5{7 of �le 1; or, if changing �le 2 into �le 1, append lines 5{7 of �le 1 after line 3 of �le

2.

2.2.2 An Example of Normal Format

Here is the output of the command `diff lao tzu' (see Section 2.1 [Sample di� Input], page 9,

for the complete contents of the two �les). Notice that it shows only the lines that are di�erent

between the two �les.

1,2d0

< The Way that can be told of is not the eternal Way;

< The name that can be named is not the eternal name.

4c2,3

< The Named is the mother of all things.

> The named is the mother of all things.

>

11a11,13

> They both may be called deep and profound.

> Deeper and more profound,

> The door of all subtleties!

2.3 Showing Di�erences in Their Context

Usually, when you are looking at the di�erences between �les, you will also want to see the

parts of the �les near the lines that di�er, to help you understand exactly what has changed. These

nearby parts of the �les are called the context.

GNU diff provides two output formats that show context around the di�ering lines: context

format and uni�ed format. It can optionally show in which function or section of the �le the

di�ering lines are found.

If you are distributing new versions of �les to other people in the form of diff output, you

should use one of the output formats that show context so that they can apply the di�s even if

they have made small changes of their own to the �les. patch can apply the di�s in this case by

searching in the �les for the lines of context around the di�ering lines; if those lines are actually

a few lines away from where the di� says they are, patch can adjust the line numbers accordingly

12 Comparing and Merging Files

and still apply the di� correctly. See Section 9.2 [Imperfect], page 50, for more information on

using patch to apply imperfect di�s.

2.3.1 Context Format

The context output format shows several lines of context around the lines that di�er. It is the

standard format for distributing updates to source code.

To select this output format, use the `-C lines', `--context[=lines]', or `-c' option. The argument

lines that some of these options take is the number of lines of context to show. If you do not specify

lines, it defaults to three. For proper operation, patch typically needs at least two lines of context.

2.3.1.1 Detailed Description of Context Format

The context output format starts with a two-line header, which looks like this:

*** from-�le from-�le-modi�cation-time

--- to-�le to-�le-modi�cation time

You can change the header's content with the `-L label' or `--label=label' option; see Section 2.3.4

[Alternate Names], page 17.

Next come one or more hunks of di�erences; each hunk shows one area where the �les di�er.

Context format hunks look like this:

*** from-�le-line-range ****

from-�le-line

from-�le-line: : :

--- to-�le-line-range ----

to-�le-line

to-�le-line: : :

The lines of context around the lines that di�er start with two space characters. The lines that

di�er between the two �les start with one of the following indicator characters, followed by a space

character:

Chapter 2: diff Output Formats 13

`!' A line that is part of a group of one or more lines that changed between the two �les.

There is a corresponding group of lines marked with `!' in the part of this hunk for the

other �le.

`+' An \inserted" line in the second �le that corresponds to nothing in the �rst �le.

`-' A \deleted" line in the �rst �le that corresponds to nothing in the second �le.

If all of the changes in a hunk are insertions, the lines of from-�le are omitted. If all of the

changes are deletions, the lines of to-�le are omitted.

2.3.1.2 An Example of Context Format

Here is the output of `diff -c lao tzu' (see Section 2.1 [Sample di� Input], page 9, for the

complete contents of the two �les). Notice that up to three lines that are not di�erent are shown

around each line that is di�erent; they are the context lines. Also notice that the �rst two hunks

have run together, because their contents overlap.

*** lao Sat Jan 26 23:30:39 1991

--- tzu Sat Jan 26 23:30:50 1991

*** 1,7 ****

- The Way that can be told of is not the eternal Way;

- The name that can be named is not the eternal name.

The Nameless is the origin of Heaven and Earth;

! The Named is the mother of all things.

Therefore let there always be non-being,

so we may see their subtlety,

And let there always be being,

--- 1,6 ----

The Nameless is the origin of Heaven and Earth;

! The named is the mother of all things.

!

Therefore let there always be non-being,

so we may see their subtlety,

And let there always be being,

*** 9,11 ****

--- 8,13 ----

The two are the same,

But after they are produced,

they have different names.

+ They both may be called deep and profound.

+ Deeper and more profound,

+ The door of all subtleties!

14 Comparing and Merging Files

2.3.1.3 An Example of Context Format with Less Context

Here is the output of `diff --context=1 lao tzu' (see Section 2.1 [Sample di� Input], page 9,

for the complete contents of the two �les). Notice that at most one context line is reported here.

*** lao Sat Jan 26 23:30:39 1991

--- tzu Sat Jan 26 23:30:50 1991

*** 1,5 ****

- The Way that can be told of is not the eternal Way;

- The name that can be named is not the eternal name.

The Nameless is the origin of Heaven and Earth;

! The Named is the mother of all things.

Therefore let there always be non-being,

--- 1,4 ----

The Nameless is the origin of Heaven and Earth;

! The named is the mother of all things.

!

Therefore let there always be non-being,

*** 11 ****

--- 10,13 ----

they have different names.

+ They both may be called deep and profound.

+ Deeper and more profound,

+ The door of all subtleties!

2.3.2 Uni�ed Format

The uni�ed output format is a variation on the context format that is more compact because it

omits redundant context lines. To select this output format, use the `-U lines', `--unified[=lines]',

or `-u' option. The argument lines is the number of lines of context to show. When it is not given,

it defaults to three.

At present, only GNU diff can produce this format and only GNU patch can automatically

apply di�s in this format. For proper operation, patch typically needs at least two lines of context.

2.3.2.1 Detailed Description of Uni�ed Format

The uni�ed output format starts with a two-line header, which looks like this:

Chapter 2: diff Output Formats 15

--- from-�le from-�le-modi�cation-time

+++ to-�le to-�le-modi�cation-time

You can change the header's content with the `-L label' or `--label=label' option; see See Secti-

on 2.3.4 [Alternate Names], page 17.

Next come one or more hunks of di�erences; each hunk shows one area where the �les di�er.

Uni�ed format hunks look like this:

@@ from-�le-range to-�le-range @@

line-from-either-�le

line-from-either-�le: : :

The lines common to both �les begin with a space character. The lines that actually di�er

between the two �les have one of the following indicator characters in the left column:

`+' A line was added here to the �rst �le.

`-' A line was removed here from the �rst �le.

2.3.2.2 An Example of Uni�ed Format

Here is the output of the command `diff -u lao tzu' (see Section 2.1 [Sample di� Input],

page 9, for the complete contents of the two �les):

--- lao Sat Jan 26 23:30:39 1991

+++ tzu Sat Jan 26 23:30:50 1991

@@ -1,7 +1,6 @@

-The Way that can be told of is not the eternal Way;

-The name that can be named is not the eternal name.

The Nameless is the origin of Heaven and Earth;

-The Named is the mother of all things.

+The named is the mother of all things.

+

Therefore let there always be non-being,

so we may see their subtlety,

And let there always be being,

@@ -9,3 +8,6 @@

The two are the same,

But after they are produced,

they have different names.

+They both may be called deep and profound.

16 Comparing and Merging Files

+Deeper and more profound,

+The door of all subtleties!

2.3.3 Showing Which Sections Di�erences Are in

Sometimes you might want to know which part of the �les each change falls in. If the �les are

source code, this could mean which function was changed. If the �les are documents, it could mean

which chapter or appendix was changed. GNU diff can show this by displaying the nearest section

heading line that precedes the di�ering lines. Which lines are \section headings" is determined by

a regular expression.

2.3.3.1 Showing Lines That Match Regular Expressions

To show in which sections di�erences occur for �les that are not source code for C or similar

languages, use the `-F regexp' or `--show-function-line=regexp' option. diff considers lines

that match the argument regexp to be the beginning of a section of the �le. Here are suggested

regular expressions for some common languages:

`^[A-Za-z_]'

C, C++, Prolog

`^(' Lisp

`^@\(chapter\|appendix\|unnumbered\|chapheading\)'

Texinfo

This option does not automatically select an output format; in order to use it, you must select

the context format (see Section 2.3.1 [Context Format], page 12) or uni�ed format (see Section 2.3.2

[Uni�ed Format], page 14). In other output formats it has no e�ect.

The `-F' and `--show-function-line' options �nd the nearest unchanged line that precedes

each hunk of di�erences and matches the given regular expression. Then they add that line to

the end of the line of asterisks in the context format, or to the `@@' line in uni�ed format. If no

matching line exists, they leave the output for that hunk unchanged. If that line is more than 40

characters long, they output only the �rst 40 characters. You can specify more than one regular

expression for such lines; diff tries to match each line against each regular expression, starting

with the last one given. This means that you can use `-p' and `-F' together, if you wish.

Chapter 2: diff Output Formats 17

2.3.3.2 Showing C Function Headings

To show in which functions di�erences occur for C and similar languages, you can use the `-p'

or `--show-c-function' option. This option automatically defaults to the context output format

(see Section 2.3.1 [Context Format], page 12), with the default number of lines of context. You can

override that number with `-C lines' elsewhere in the command line. You can override both the

format and the number with `-U lines' elsewhere in the command line.

The `-p' and `--show-c-function' options are equivalent to `-F'^[_a-zA-Z$]'' if the uni-

�ed format is speci�ed, otherwise `-c -F'^[_a-zA-Z$]'' (see Section 2.3.3.1 [Speci�ed Headings],

page 16). GNU diff provides them for the sake of convenience.

2.3.4 Showing Alternate File Names

If you are comparing two �les that have meaningless or uninformative names, you might want

diff to show alternate names in the header of the context and uni�ed output formats. To do

this, use the `-L label' or `--label=label' option. The �rst time you give this option, its argument

replaces the name and date of the �rst �le in the header; the second time, its argument replaces

the name and date of the second �le. If you give this option more than twice, diff reports an

error. The `-L' option does not a�ect the �le names in the pr header when the `-l' or `--paginate'

option is used (see Section 4.2 [Pagination], page 33).

Here are the �rst two lines of the output from `diff -C2 -Loriginal -Lmodified lao tzu':

*** original

--- modified

2.4 Showing Di�erences Side by Side

diff can produce a side by side di�erence listing of two �les. The �les are listed in two columns

with a gutter between them. The gutter contains one of the following markers:

white space

The corresponding lines are in common. That is, either the lines are identical, or the

di�erence is ignored because of one of the `--ignore' options (see Section 1.2 [White

Space], page 4).

18 Comparing and Merging Files

`|' The corresponding lines di�er, and they are either both complete or both incomplete.

`<' The �les di�er and only the �rst �le contains the line.

`>' The �les di�er and only the second �le contains the line.

`(' Only the �rst �le contains the line, but the di�erence is ignored.

`)' Only the second �le contains the line, but the di�erence is ignored.

`\' The corresponding lines di�er, and only the �rst line is incomplete.

`/' The corresponding lines di�er, and only the second line is incomplete.

Normally, an output line is incomplete if and only if the lines that it contains are incomplete;

See Chapter 16 [Incomplete Lines], page 81. However, when an output line represents two di�ering

lines, one might be incomplete while the other is not. In this case, the output line is complete, but

its the gutter is marked `\' if the �rst line is incomplete, `/' if the second line is.

Side by side format is sometimes easiest to read, but it has limitations. It generates much

wider output than usual, and truncates lines that are too long to �t. Also, it relies on lining up

output more heavily than usual, so its output looks particularly bad if you use varying width fonts,

nonstandard tab stops, or nonprinting characters.

You can use the sdiff command to interactively merge side by side di�erences. See Chapter 8

[Interactive Merging], page 47, for more information on merging �les.

2.5 Controlling Side by Side Format

The `-y' or `--side-by-side' option selects side by side format. Because side by side output

lines contain two input lines, they are wider than usual. They are normally 130 columns, which

can �t onto a traditional printer line. You can set the length of output lines with the `-W columns'

or `--width=columns' option. The output line is split into two halves of equal length, separated

by a small gutter to mark di�erences; the right half is aligned to a tab stop so that tabs line up.

Input lines that are too long to �t in half of an output line are truncated for output.

The `--left-column' option prints only the left column of two common lines. The `--suppress-common-lines'

option suppresses common lines entirely.

Chapter 2: diff Output Formats 19

2.5.1 An Example of Side by Side Format

Here is the output of the command `diff -y -W 72 lao tzu' (see Section 2.1 [Sample di� Input],

page 9, for the complete contents of the two �les).

The Way that can be told of is n <

The name that can be named is no <

The Nameless is the origin of He The Nameless is the origin of He

The Named is the mother of all t | The named is the mother of all t

>

Therefore let there always be no Therefore let there always be no

so we may see their subtlety, so we may see their subtlety,

And let there always be being, And let there always be being,

so we may see their outcome. so we may see their outcome.

The two are the same, The two are the same,

But after they are produced, But after they are produced,

they have different names. they have different names.

> They both may be called deep and

> Deeper and more profound,

> The door of all subtleties!

2.6 Making Edit Scripts

Several output modes produce command scripts for editing from-�le to produce to-�le.

2.6.1 ed Scripts

diff can produce commands that direct the ed text editor to change the �rst �le into the second

�le. Long ago, this was the only output mode that was suitable for editing one �le into another

automatically; today, with patch, it is almost obsolete. Use the `-e' or `--ed' option to select this

output format.

Like the normal format (see Section 2.2 [Normal], page 10), this output format does not show

any context; unlike the normal format, it does not include the information necessary to apply the

di� in reverse (to produce the �rst �le if all you have is the second �le and the di�).

If the �le `d' contains the output of `diff -e old new', then the command `(cat d && echo w)

| ed - old' edits `old' to make it a copy of `new'. More generally, if `d1', `d2', : : :, `dN' contain the

20 Comparing and Merging Files

outputs of `diff -e old new1', `diff -e new1 new2', : : :, `diff -e newN-1 newN', respectively, then

the command `(cat d1 d2 : : : dN && echo w) | ed - old' edits `old' to make it a copy of `newN'.

2.6.1.1 Detailed Description of ed Format

The ed output format consists of one or more hunks of di�erences. The changes closest to the

ends of the �les come �rst so that commands that change the number of lines do not a�ect how ed

interprets line numbers in succeeding commands. ed format hunks look like this:

change-command

to-�le-line

to-�le-line: : :

.

Because ed uses a single period on a line to indicate the end of input, GNU diff protects lines

of changes that contain a single period on a line by writing two periods instead, then writing a

subsequent ed command to change the two periods into one. The ed format cannot represent an

incomplete line, so if the second �le ends in a changed incomplete line, diff reports an error and

then pretends that a newline was appended.

There are three types of change commands. Each consists of a line number or comma-separated

range of lines in the �rst �le and a single character indicating the kind of change to make. All line

numbers are the original line numbers in the �le. The types of change commands are:

`la' Add text from the second �le after line l in the �rst �le. For example, `8a' means to

add the following lines after line 8 of �le 1.

`rc' Replace the lines in range r in the �rst �le with the following lines. Like a combined

add and delete, but more compact. For example, `5,7c' means change lines 5{7 of �le

1 to read as the text �le 2.

`rd' Delete the lines in range r from the �rst �le. For example, `5,7d' means delete lines

5{7 of �le 1.

2.6.1.2 Example ed Script

Here is the output of `diff -e lao tzu' (see Section 2.1 [Sample di� Input], page 9, for the

complete contents of the two �les):

Chapter 2: diff Output Formats 21

11a

They both may be called deep and profound.

Deeper and more profound,

The door of all subtleties!

.

4c

The named is the mother of all things.

.

1,2d

2.6.2 Forward ed Scripts

diff can produce output that is like an ed script, but with hunks in forward (front to back)

order. The format of the commands is also changed slightly: command characters precede the lines

they modify, spaces separate line numbers in ranges, and no attempt is made to disambiguate hunk

lines consisting of a single period. Like ed format, forward ed format cannot represent incomplete

lines.

Forward ed format is not very useful, because neither ed nor patch can apply di�s in this format.

It exists mainly for compatibility with older versions of diff. Use the `-f' or `--forward-ed' option

to select it.

2.6.3 RCS Scripts

The RCS output format is designed speci�cally for use by the Revision Control System, which

is a set of free programs used for organizing di�erent versions and systems of �les. Use the `-n'

or `--rcs' option to select this output format. It is like the forward ed format (see Section 2.6.2

[Forward ed], page 21), but it can represent arbitrary changes to the contents of a �le because it

avoids the forward ed format's problems with lines consisting of a single period and with incomplete

lines. Instead of ending text sections with a line consisting of a single period, each command speci�es

the number of lines it a�ects; a combination of the `a' and `d' commands are used instead of `c'.

Also, if the second �le ends in a changed incomplete line, then the output also ends in an incomplete

line.

Here is the output of `diff -n lao tzu' (see Section 2.1 [Sample di� Input], page 9, for the

complete contents of the two �les):

d1 2

22 Comparing and Merging Files

d4 1

a4 2

The named is the mother of all things.

a11 3

They both may be called deep and profound.

Deeper and more profound,

The door of all subtleties!

2.7 Merging Files with If-then-else

You can use diff to merge two �les of C source code. The output of diff in this format contains

all the lines of both �les. Lines common to both �les are output just once; the di�ering parts are

separated by the C preprocessor directives #ifdef name or #ifndef name, #else, and #endif.

When compiling the output, you select which version to use by either de�ning or leaving unde�ned

the macro name.

To merge two �les, use diff with the `-D name' or `--ifdef=name' option. The argument name

is the C preprocessor identi�er to use in the #ifdef and #ifndef directives.

For example, if you change an instance of wait (&s) to waitpid (-1, &s, 0) and then merge

the old and new �les with the `--ifdef=HAVE_WAITPID' option, then the a�ected part of your code

might look like this:

do {

#ifndef HAVE_WAITPID

if ((w = wait (&s)) < 0 && errno != EINTR)

#else /* HAVE_WAITPID */

if ((w = waitpid (-1, &s, 0)) < 0 && errno != EINTR)

#endif /* HAVE_WAITPID */

return w;

} while (w != child);

You can specify formats for languages other than C by using line group formats and line formats,

as described in the next sections.

Chapter 2: diff Output Formats 23

2.7.1 Line Group Formats

Line group formats let you specify formats suitable for many applications that allow if-then-

else input, including programming languages and text formatting languages. A line group format

speci�es the output format for a contiguous group of similar lines.

For example, the following command compares the TeX �les `old' and `new', and outputs a

merged �le in which old regions are surrounded by `\begin{em}'-`\end{em}' lines, and new regions

are surrounded by `\begin{bf}'-`\end{bf}' lines.

diff \

--old-group-format='\begin{em}

%<\end{em}

' \

--new-group-format='\begin{bf}

%>\end{bf}

' \

old new

The following command is equivalent to the above example, but it is a little more verbose,

because it spells out the default line group formats.

diff \

--old-group-format='\begin{em}

%<\end{em}

' \

--new-group-format='\begin{bf}

%>\end{bf}

' \

--unchanged-group-format='%=' \

--changed-group-format='\begin{em}

%<\end{em}

\begin{bf}

%>\end{bf}

' \

old new

Here is a more advanced example, which outputs a di� listing with headers containing line

numbers in a \plain English" style.

diff \

--unchanged-group-format='' \

--old-group-format='-------- %dn line%(n=1?:s) deleted at %df:

24 Comparing and Merging Files

%<' \

--new-group-format='-------- %dN line%(N=1?:s) added after %de:

%>' \

--changed-group-format='-------- %dn line%(n=1?:s) changed at %df:

%<-------- to:

%>' \

old new

To specify a line group format, use diff with one of the options listed below. You can specify

up to four line group formats, one for each kind of line group. You should quote format, because

it typically contains shell metacharacters.

`--old-group-format=format'

These line groups are hunks containing only lines from the �rst �le. The default old

group format is the same as the changed group format if it is speci�ed; otherwise it is

a format that outputs the line group as-is.

`--new-group-format=format'

These line groups are hunks containing only lines from the second �le. The default new

group format is same as the the changed group format if it is speci�ed; otherwise it is

a format that outputs the line group as-is.

`--changed-group-format=format'

These line groups are hunks containing lines from both �les. The default changed group

format is the concatenation of the old and new group formats.

`--unchanged-group-format=format'

These line groups contain lines common to both �les. The default unchanged group

format is a format that outputs the line group as-is.

In a line group format, ordinary characters represent themselves; conversion speci�cations start

with `%' and have one of the following forms.

`%<' stands for the lines from the �rst �le, including the trailing newline. Each line is

formatted according to the old line format (see Section 2.7.2 [Line Formats], page 25).

`%>' stands for the lines from the second �le, including the trailing newline. Each line is

formatted according to the new line format.

`%=' stands for the lines common to both �les, including the trailing newline. Each line is

formatted according to the unchanged line format.

`%%' stands for `%'.

Chapter 2: diff Output Formats 25

`%c'C'' where C is a single character, stands for C. C may not be a backslash or an apostrophe.

For example, `%c':'' stands for a colon, even inside the then-part of an if-then-else

format, which a colon would normally terminate.

`%c'\O'' where O is a string of 1, 2, or 3 octal digits, stands for the character with octal code

O. For example, `%c'\0'' stands for a null character.

`Fn' where F is a printf conversion speci�cation and n is one of the following letters, stands

for n's value formatted with F.

`e' The line number of the line just before the group in the old �le.

`f' The line number of the �rst line in the group in the old �le; equals e + 1.

`l' The line number of the last line in the group in the old �le.

`m' The line number of the line just after the group in the old �le; equals l + 1.

`n' The number of lines in the group in the old �le; equals l - f + 1.

`E, F, L, M, N'

Likewise, for lines in the new �le.

The printf conversion speci�cation can be `%d', `%o', `%x', or `%X', specifying decimal,

octal, lower case hexadecimal, or upper case hexadecimal output respectively. After the

`%' the following options can appear in sequence: a `-' specifying left-justi�cation; an

integer specifying the minimum �eld width; and a period followed by an optional integer

specifying the minimum number of digits. For example, `%5dN' prints the number of

new lines in the group in a �eld of width 5 characters, using the printf format "%5d".

`(A=B?T:E)'

If A equals B then T else E. A and B are each either a decimal constant or a single

letter interpreted as above. This format spec is equivalent to T if A's value equals B's;

otherwise it is equivalent to E.

For example, `%(N=0?no:%dN) line%(N=1?:s)' is equivalent to `no lines' if N (the

number of lines in the group in the the new �le) is 0, to `1 line' if N is 1, and to `%dN

lines' otherwise.

2.7.2 Line Formats

Line formats control how each line taken from an input �le is output as part of a line group in

if-then-else format.

For example, the following command outputs text with a one-column change indicator to the

left of the text. The �rst column of output is `-' for deleted lines, `|' for added lines, and a space

for unchanged lines. The formats contain newline characters where newlines are desired on output.

26 Comparing and Merging Files

diff \

--old-line-format='-%l

' \

--new-line-format='|%l

' \

--unchanged-line-format=' %l

' \

old new

To specify a line format, use one of the following options. You should quote format, since it

often contains shell metacharacters.

`--old-line-format=format'

formats lines just from the �rst �le.

`--new-line-format=format'

formats lines just from the second �le.

`--unchanged-line-format=format'

formats lines common to both �les.

`--line-format=format'

formats all lines; in e�ect, it sets all three above options simultaneously.

In a line format, ordinary characters represent themselves; conversion speci�cations start with

`%' and have one of the following forms.

`%l' stands for the the contents of the line, not counting its trailing newline (if any). This

format ignores whether the line is incomplete; See Chapter 16 [Incomplete Lines],

page 81.

`%L' stands for the the contents of the line, including its trailing newline (if any). If a line

is incomplete, this format preserves its incompleteness.

`%%' stands for `%'.

`%c'C'' where C is a single character, stands for C. C may not be a backslash or an apostrophe.

For example, `%c':'' stands for a colon.

`%c'\O'' where O is a string of 1, 2, or 3 octal digits, stands for the character with octal code

O. For example, `%c'\0'' stands for a null character.

`Fn' where F is a printf conversion speci�cation, stands for the line number formatted

with F. For example, `%.5dn' prints the line number using the printf format "%.5d".

See Section 2.7.1 [Line Group Formats], page 23, for more about printf conversion

speci�cations.

Chapter 2: diff Output Formats 27

The default line format is `%l' followed by a newline character.

If the input contains tab characters and it is important that they line up on output, you should

ensure that `%l' or `%L' in a line format is just after a tab stop (e.g. by preceding `%l' or `%L' with

a tab character), or you should use the `-t' or `--expand-tabs' option.

Taken together, the line and line group formats let you specify many di�erent formats. For

example, the following command uses a format similar to diff's normal format. You can tailor

this command to get �ne control over diff's output.

diff \

--old-line-format='< %l

' \

--new-line-format='> %l

' \

--old-group-format='%df%(f=l?:,%dl)d%dE

%<' \

--new-group-format='%dea%dF%(F=L?:,%dL)

%>' \

--changed-group-format='%df%(f=l?:,%dl)c%dF%(F=L?:,%dL)

%<---

%>' \

--unchanged-group-format='' \

old new

2.7.3 Detailed Description of If-then-else Format

For lines common to both �les, diff uses the unchanged line group format. For each hunk of

di�erences in the merged output format, if the hunk contains only lines from the �rst �le, diff

uses the old line group format; if the hunk contains only lines from the second �le, diff uses the

new group format; otherwise, diff uses the changed group format.

The old, new, and unchanged line formats specify the output format of lines from the �rst �le,

lines from the second �le, and lines common to both �les, respectively.

The option `--ifdef=name' is equivalent to the following sequence of options using shell syntax:

--old-group-format='#ifndef name

%<#endif /* ! name */

' \

--new-group-format='#ifdef name

28 Comparing and Merging Files

%>#endif /* name */

' \

--unchanged-group-format='%=' \

--changed-group-format='#ifndef name

%<#else /* name */

%>#endif /* name */

'

You should carefully check the diff output for proper nesting. For example, when using the

the `-D name' or `--ifdef=name' option, you should check that if the di�ering lines contain any

of the C preprocessor directives `#ifdef', `#ifndef', `#else', `#elif', or `#endif', they are nested

properly and match. If they don't, you must make corrections manually. It is a good idea to

carefully check the resulting code anyway to make sure that it really does what you want it to;

depending on how the input �les were produced, the output might contain duplicate or otherwise

incorrect code.

The patch `-D name' option behaves just like the diff `-D name' option, except it operates on

a �le and a di� to produce a merged �le; See Section 14.4 [patch Options], page 74.

2.7.4 An Example of If-then-else Format

Here is the output of `diff -DTWO lao tzu' (see Section 2.1 [Sample di� Input], page 9, for the

complete contents of the two �les):

#ifndef TWO

The Way that can be told of is not the eternal Way;

The name that can be named is not the eternal name.

#endif /* ! TWO */

The Nameless is the origin of Heaven and Earth;

#ifndef TWO

The Named is the mother of all things.

#else /* TWO */

The named is the mother of all things.

#endif /* TWO */

Therefore let there always be non-being,

so we may see their subtlety,

And let there always be being,

so we may see their outcome.

The two are the same,

But after they are produced,

they have different names.

#ifdef TWO

Chapter 2: diff Output Formats 29

They both may be called deep and profound.

Deeper and more profound,

The door of all subtleties!

#endif /* TWO */

30 Comparing and Merging Files

Chapter 3: Comparing Directories 31

3 ComparingDirectories

You can use diff to compare some or all of the �les in two directory trees. When both �le

name arguments to diff are directories, it compares each �le that is contained in both directories,

examining �le names in alphabetical order. Normally diff is silent about pairs of �les that contain

no di�erences, but if you use the `-s' or `--report-identical-files' option, it reports pairs of

identical �les. Normally diff reports subdirectories common to both directories without comparing

subdirectories' �les, but if you use the `-r' or `--recursive' option, it compares every corresponding

pair of �les in the directory trees, as many levels deep as they go.

For �le names that are in only one of the directories, diff normally does not show the contents

of the �le that exists; it reports only that the �le exists in that directory and not in the other.

You can make diff act as though the �le existed but was empty in the other directory, so that it

outputs the entire contents of the �le that actually exists. (It is output as either an insertion or a

deletion, depending on whether it is in the �rst or the second directory given.) To do this, use the

`-N' or `--new-file' option.

If the older directory contains one or more large �les that are not in the newer directory, you

can make the patch smaller by using the `-P' or `--unidirectional-new-file' option instead of

`-N'. This option is like `-N' except that it only inserts the contents of �les that appear in the

second directory but not the �rst (that is, �les that were added). At the top of the patch, write

instructions for the user applying the patch to remove the �les that were deleted before applying

the patch. See Chapter 10 [Making Patches], page 55, for more discussion of making patches for

distribution.

To ignore some �les while comparing directories, use the `-x pattern' or `--exclude=pattern'

option. This option ignores any �les or subdirectories whose base names match the shell pattern

pattern. Unlike in the shell, a period at the start of the base of a �le name matches a wildcard at

the start of a pattern. You should enclose pattern in quotes so that the shell does not expand it.

For example, the option `-x '*.[ao]'' ignores any �le whose name ends with `.a' or `.o'.

This option accumulates if you specify it more than once. For example, using the options `-x

'RCS' -x '*,v'' ignores any �le or subdirectory whose base name is `RCS' or ends with `,v'.

If you need to give this option many times, you can instead put the patterns in a �le, one pattern

per line, and use the `-X �le' or `--exclude-from=�le' option.

If you have been comparing two directories and stopped partway through, later you might want

to continue where you left o�. You can do this by using the `-S �le' or `--starting-file=�le'

32 Comparing and Merging Files

option. This compares only the �le �le and all alphabetically later �les in the topmost directory

level.

Chapter 4: Making diff Output Prettier 33

4 Making diffOutput Prettier

diff provides several ways to adjust the appearance of its output. These adjustments can be

applied to any output format.

4.1 Preserving Tabstop Alignment

The lines of text in some of the diff output formats are preceded by one or two characters that

indicate whether the text is inserted, deleted, or changed. The addition of those characters can

cause tabs to move to the next tabstop, throwing o� the alignment of columns in the line. GNU

diff provides two ways to make tab-aligned columns line up correctly.

The �rst way is to have diff convert all tabs into the correct number of spaces before outputting

them; select this method with the `-t' or `--expand-tabs' option. diff assumes that tabstops

are set every 8 columns. To use this form of output with patch, you must give patch the `-l'

or `--ignore-white-space' option (see Section 9.2.1 [Changed White Space], page 50, for more

information).

The other method for making tabs line up correctly is to add a tab character instead of a

space after the indicator character at the beginning of the line. This ensures that all following tab

characters are in the same position relative to tabstops that they were in the original �les, so that

the output is aligned correctly. Its disadvantage is that it can make long lines too long to �t on

one line of the screen or the paper. It also does not work with the uni�ed output format, which

does not have a space character after the change type indicator character. Select this method with

the `-T' or `--initial-tab' option.

4.2 Paginating diffOutput

It can be convenient to have long output page-numbered and time-stamped. The `-l' and

`--paginate' options do this by sending the diff output through the pr program. Here is what

the page header might look like for `diff -lc lao tzu':

Mar 11 13:37 1991 diff -lc lao tzu Page 1

34 Comparing and Merging Files

Chapter 5: diff Performance Tradeo�s 35

5 diffPerformance Tradeo�s

GNU diff runs quite e�ciently; however, in some circumstances you can cause it to run faster

or produce a more compact set of changes. There are two ways that you can a�ect the performance

of GNU diff by changing the way it compares �les.

Performance has more than one dimension. These options improve one aspect of performance

at the cost of another, or they improve performance in some cases while hurting it in others.

The way that GNU diff determines which lines have changed always comes up with a near-

minimal set of di�erences. Usually it is good enough for practical purposes. If the diff output is

large, you might want diff to use a modi�ed algorithm that sometimes produces a smaller set of

di�erences. The `-d' or `--minimal' option does this; however, it can also cause diff to run more

slowly than usual, so it is not the default behavior.

When the �les you are comparing are large and have small groups of changes scattered throug-

hout them, you can use the `-H' or `--speed-large-files' option to make a di�erent modi�cation

to the algorithm that diff uses. If the input �les have a constant small density of changes, this

option speeds up the comparisons without changing the output. If not, diff might produce a larger

set of di�erences; however, the output will still be correct.

Normally diff discards the pre�x and su�x that is common to both �les before it attempts

to �nd a minimal set of di�erences. This makes diff run faster, but occasionally it may produce

non-minimal output. The `--horizon-lines=lines' option prevents diff from discarding the last

lines lines of the pre�x and the �rst lines lines of the su�x. This gives diff further opportunities

to �nd a minimal output.

36 Comparing and Merging Files

Chapter 6: Comparing Three Files 37

6 Comparing Three Files

Use the program diff3 to compare three �les and show any di�erences among them. (diff3

can also merge �les; see Chapter 7 [di�3 Merging], page 41).

The \normal" diff3 output format shows each hunk of di�erences without surrounding context.

Hunks are labeled depending on whether they are two-way or three-way, and lines are annotated

by their location in the input �les.

See Chapter 13 [Invoking di�3], page 67, for more information on how to run diff3.

6.1 A Third Sample Input File

Here is a third sample �le that will be used in examples to illustrate the output of diff3 and

how various options can change it. The �rst two �les are the same that we used for diff (see

Section 2.1 [Sample di� Input], page 9). This is the third sample �le, called `tao':

The Way that can be told of is not the eternal Way;

The name that can be named is not the eternal name.

The Nameless is the origin of Heaven and Earth;

The named is the mother of all things.

Therefore let there always be non-being,

so we may see their subtlety,

And let there always be being,

so we may see their result.

The two are the same,

But after they are produced,

they have different names.

-- The Way of Lao-Tzu, tr. Wing-tsit Chan

6.2 Detailed Description of diff3Normal Format

Each hunk begins with a line marked `===='. Three-way hunks have plain `====' lines, and

two-way hunks have `1', `2', or `3' appended to specify which of the three input �les di�er in that

hunk. The hunks contain copies of two or three sets of input lines each preceded by one or two

commands identifying where the lines came from.

38 Comparing and Merging Files

Normally, two spaces precede each copy of an input line to distinguish it from the commands.

But with the `-T' or `--initial-tab' option, diff3 uses a tab instead of two spaces; this lines up

tabs correctly. See Section 4.1 [Tabs], page 33, for more information.

Commands take the following forms:

`�le:la' This hunk appears after line l of �le �le, and contains no lines in that �le. To edit this

�le to yield the other �les, one must append hunk lines taken from the other �les. For

example, `1:11a' means that the hunk follows line 11 in the �rst �le and contains no

lines from that �le.

`�le:rc' This hunk contains the lines in the range r of �le �le. The range r is a comma-separated

pair of line numbers, or just one number if the range is a singleton. To edit this �le to

yield the other �les, one must change the speci�ed lines to be the lines taken from the

other �les. For example, `2:11,13c' means that the hunk contains lines 11 through 13

from the second �le.

If the last line in a set of input lines is incomplete (see Chapter 16 [Incomplete Lines], page 81),

it is distinguished on output from a full line by a following line that starts with `\'.

6.3 diff3Hunks

Groups of lines that di�er in two or three of the input �les are called di�3 hunks, by analogy

with diff hunks (see Section 1.1 [Hunks], page 3). If all three input �les di�er in a diff3 hunk,

the hunk is called a three-way hunk; if just two input �les di�er, it is a two-way hunk.

As with diff, several solutions are possible. When comparing the �les `A', `B', and `C', diff3

normally �nds diff3 hunks by merging the two-way hunks output by the two commands `diff A

B' and `diff A C'. This does not necessarily minimize the size of the output, but exceptions should

be rare.

For example, suppose `F' contains the three lines `a', `b', `f', `G' contains the lines `g', `b', `g',

and `H' contains the lines `a', `b', `h'. `diff3 F G H' might output the following:

====2

1:1c

3:1c

a

2:1c

Chapter 6: Comparing Three Files 39

g

====

1:3c

f

2:3c

g

3:3c

h

because it found a two-way hunk containing `a' in the �rst and third �les and `g' in the second �le,

then the single line `b' common to all three �les, then a three-way hunk containing the last line of

each �le.

6.4 An Example of diff3Normal Format

Here is the output of the command `diff3 lao tzu tao' (see Section 6.1 [Sample di�3 Input],

page 37, for the complete contents of the �les). Notice that it shows only the lines that are di�erent

among the three �les.

====2

1:1,2c

3:1,2c

The Way that can be told of is not the eternal Way;

The name that can be named is not the eternal name.

2:0a

====1

1:4c

The Named is the mother of all things.

2:2,3c

3:4,5c

The named is the mother of all things.

====3

1:8c

2:7c

so we may see their outcome.

3:9c

so we may see their result.

====

1:11a

2:11,13c

They both may be called deep and profound.

Deeper and more profound,

The door of all subtleties!

40 Comparing and Merging Files

3:13,14c

-- The Way of Lao-Tzu, tr. Wing-tsit Chan

Chapter 7: Merging From a Common Ancestor 41

7 Merging From aCommonAncestor

When two people have made changes to copies of the same �le, diff3 can produce a merged

output that contains both sets of changes together with warnings about conicts.

One might imagine programs with names like diff4 and diff5 to compare more than three

�les simultaneously, but in practice the need rarely arises. You can use diff3 to merge three or

more sets of changes to a �le by merging two change sets at a time.

diff3 can incorporate changes from two modi�ed versions into a common preceding version.

This lets you merge the sets of changes represented by the two newer �les. Specify the common

ancestor version as the second argument and the two newer versions as the �rst and third arguments,

like this:

diff3 mine older yours

You can remember the order of the arguments by noting that they are in alphabetical order.

You can think of this as subtracting older from yours and adding the result to mine, or as

merging into mine the changes that would turn older into yours. This merging is well-de�ned as

long as mine and older match in the neighborhood of each such change. This fails to be true when

all three input �les di�er or when only older di�ers; we call this a conict. When all three input

�les di�er, we call the conict an overlap.

diff3 gives you several ways to handle overlaps and conicts. You can omit overlaps or conicts,

or select only overlaps, or mark conicts with special `<<<<<<<' and `>>>>>>>' lines.

diff3 can output the merge results as an ed script that that can be applied to the �rst �le to

yield the merged output. However, it is usually better to have diff3 generate the merged output

directly; this bypasses some problems with ed.

7.1 Selecting Which Changes to Incorporate

You can select all unmerged changes from older to yours for merging into mine with the

`-e' or `--ed' option. You can select only the nonoverlapping unmerged changes with `-3' or

`--easy-only', and you can select only the overlapping changes with `-x' or `--overlap-only'.

42 Comparing and Merging Files

The `-e', `-3' and `-x' options select only unmerged changes, i.e. changes where mine and yours

di�er; they ignore changes from older to yours where mine and yours are identical, because they

assume that such changes have already been merged. If this assumption is not a safe one, you can

use the `-A' or `--show-all' option (see Section 7.2 [Marking Conicts], page 42).

Here is the output of the command diff3 with each of these three options (see Section 6.1

[Sample di�3 Input], page 37, for the complete contents of the �les). Notice that `-e' outputs the

union of the disjoint sets of changes output by `-3' and `-x'.

Output of `diff3 -e lao tzu tao':

11a

-- The Way of Lao-Tzu, tr. Wing-tsit Chan

.

8c

so we may see their result.

.

Output of `diff3 -3 lao tzu tao':

8c

so we may see their result.

.

Output of `diff3 -x lao tzu tao':

11a

-- The Way of Lao-Tzu, tr. Wing-tsit Chan

.

7.2 Marking Conicts

diff3 can mark conicts in the merged output by bracketing them with special marker lines.

A conict that comes from two �les A and B is marked as follows:

<<<<<<< A

lines from A

=======

Chapter 7: Merging From a Common Ancestor 43

lines from B

>>>>>>> B

A conict that comes from three �les A, B and C is marked as follows:

<<<<<<< A

lines from A

||||||| B

lines from B

=======

lines from C

>>>>>>> C

The `-A' or `--show-all' option acts like the `-e' option, except that it brackets conicts, and

it outputs all changes from older to yours, not just the unmerged changes. Thus, given the sample

input �les (see Section 6.1 [Sample di�3 Input], page 37), `diff3 -A lao tzu tao' puts brackets

around the conict where only `tzu' di�ers:

<<<<<<< tzu

=======

The Way that can be told of is not the eternal Way;

The name that can be named is not the eternal name.

>>>>>>> tao

And it outputs the three-way conict as follows:

<<<<<<< lao

||||||| tzu

They both may be called deep and profound.

Deeper and more profound,

The door of all subtleties!

=======

-- The Way of Lao-Tzu, tr. Wing-tsit Chan

>>>>>>> tao

The `-E' or `--show-overlap' option outputs less information than the `-A' or `--show-all'

option, because it outputs only unmerged changes, and it never outputs the contents of the second

�le. Thus the `-E' option acts like the `-e' option, except that it brackets the �rst and third

�les from three-way overlapping changes. Similarly, `-X' acts like `-x', except it brackets all its

(necessarily overlapping) changes. For example, for the three-way overlapping change above, the

`-E' and `-X' options output the following:

44 Comparing and Merging Files

<<<<<<< lao

=======

-- The Way of Lao-Tzu, tr. Wing-tsit Chan

>>>>>>> tao

If you are comparing �les that have meaningless or uninformative names, you can use the `-L

label' or `--label=label' option to show alternate names in the `<<<<<<<', `|||||||' and `>>>>>>>'

brackets. This option can be given up to three times, once for each input �le. Thus `diff3 -A -L

X -L Y -L Z A B C' acts like `diff3 -A A B C', except that the output looks like it came from �les

named `X', `Y' and `Z' rather than from �les named `A', `B' and `C'.

7.3 Generating the Merged Output Directly

With the `-m' or `--merge' option, diff3 outputs the merged �le directly. This is more e�cient

than using ed to generate it, and works even with non-text �les that ed would reject. If you specify

`-m' without an ed script option, `-A' (`--show-all') is assumed.

For example, the command `diff3 -m lao tzu tao' (see Section 6.1 [Sample di�3 Input], page 37

for a copy of the input �les) would output the following:

<<<<<<< tzu

=======

The Way that can be told of is not the eternal Way;

The name that can be named is not the eternal name.

>>>>>>> tao

The Nameless is the origin of Heaven and Earth;

The Named is the mother of all things.

Therefore let there always be non-being,

so we may see their subtlety,

And let there always be being,

so we may see their result.

The two are the same,

But after they are produced,

they have different names.

<<<<<<< lao

||||||| tzu

They both may be called deep and profound.

Deeper and more profound,

The door of all subtleties!

=======

-- The Way of Lao-Tzu, tr. Wing-tsit Chan

Chapter 7: Merging From a Common Ancestor 45

>>>>>>> tao

7.4 How diff3Merges Incomplete Lines

With `-m', incomplete lines (see Chapter 16 [Incomplete Lines], page 81) are simply copied to the

output as they are found; if the merged output ends in an conict and one of the input �les ends in

an incomplete line, succeeding `|||||||', `=======' or `>>>>>>>' brackets appear somewhere other

than the start of a line because they are appended to the incomplete line.

Without `-m', if an ed script option is speci�ed and an incomplete line is found, diff3 generates

a warning and acts as if a newline had been present.

7.5 Saving the Changed File

Traditional Unix diff3 generates an ed script without the trailing `w' and and `q' commands

that save the changes. System V diff3 generates these extra commands. GNU diff3 normally

behaves like traditional Unix diff3, but with the `-i' option it behaves like System V diff3 and

appends the `w' and `q' commands.

The `-i' option requires one of the ed script options `-AeExX3', and is incompatible with the

merged output option `-m'.

46 Comparing and Merging Files

Chapter 8: Interactive Merging with sdiff 47

8 InteractiveMerging with sdiff

With sdiff, you can merge two �les interactively based on a side-by-side `-y' format comparison

(see Section 2.4 [Side by Side], page 17). Use `-o �le' or `--output=�le' to specify where to put the

merged text. See Chapter 15 [Invoking sdi�], page 77, for more details on the options to sdiff.

Another way to merge �les interactively is to use the Emacs Lisp package emerge. See section

\emerge" in The GNU Emacs Manual, for more information.

8.1 Specifying diffOptions to sdiff

The following sdiff options have the same meaning as for diff. See Section 12.1 [di� Options],

page 59, for the use of these options.

-a -b -d -i -t -v

-B -H -I regexp

--ignore-blank-lines --ignore-case

--ignore-matching-lines=regexp --ignore-space-change

--left-column --minimal --speed-large-files

--suppress-common-lines --expand-tabs

--text --version --width=columns

For historical reasons, sdiff has alternate names for some options. The `-l' option is equivalent

to the `--left-column' option, and similarly `-s' is equivalent to `--suppress-common-lines'.

The meaning of the sdiff `-w' and `-W' options is interchanged from that of diff: with sdiff,

`-w columns' is equivalent to `--width=columns', and `-W' is equivalent to `--ignore-all-space'.

sdiff without the `-o' option is equivalent to diff with the `-y' or `--side-by-side' option (see

Section 2.4 [Side by Side], page 17).

8.2 Merge Commands

Groups of common lines, with a blank gutter, are copied from the �rst �le to the output. After

each group of di�ering lines, sdiff prompts with `%' and pauses, waiting for one of the following

commands. Follow each command with RET.

48 Comparing and Merging Files

`e' Discard both versions. Invoke a text editor on an empty temporary �le, then copy the

resulting �le to the output.

`eb' Concatenate the two versions, edit the result in a temporary �le, then copy the edited

result to the output.

`el' Edit a copy of the left version, then copy the result to the output.

`er' Edit a copy of the right version, then copy the result to the output.

`l' Copy the left version to the output.

`q' Quit.

`r' Copy the right version to the output.

`s' Silently copy common lines.

`v' Verbosely copy common lines. This is the default.

The text editor invoked is speci�ed by the EDITOR environment variable if it is set. The default

is system-dependent.

Chapter 9: Merging with patch 49

9 Merging with patch

patch takes comparison output produced by diff and applies the di�erences to a copy of the

original �le, producing a patched version. With patch, you can distribute just the changes to a set

of �les instead of distributing the entire �le set; your correspondents can apply patch to update

their copy of the �les with your changes. patch automatically determines the di� format, skips any

leading or trailing headers, and uses the headers to determine which �le to patch. This lets your

correspondents feed an article or message containing a di�erence listing directly to patch.

patch detects and warns about common problems like forward patches. It saves the original

version of the �les it patches, and saves any patches that it could not apply. It can also maintain

a patchlevel.h �le to ensures that your correspondents apply di�s in the proper order.

patch accepts a series of di�s in its standard input, usually separated by headers that specify

which �le to patch. It applies diff hunks (see Section 1.1 [Hunks], page 3) one by one. If a hunk

does not exactly match the original �le, patch uses heuristics to try to patch the �le as well as it

can. If no approximate match can be found, patch rejects the hunk and skips to the next hunk.

patch normally replaces each �le f with its new version, saving the original �le in `f.orig', and

putting reject hunks (if any) into `f.rej'.

See Chapter 14 [Invoking patch], page 71, for detailed information on the options to patch.

See Section 14.2 [Backups], page 72, for more information on how patch names backup �les. See

Section 14.3 [Rejects], page 73, for more information on where patch puts reject hunks.

9.1 Selecting the patch Input Format

patch normally determines which diff format the patch �le uses by examining its contents.

For patch �les that contain particularly confusing leading text, you might need to use one of the

following options to force patch to interpret the patch �le as a certain format of di�. The output

formats listed here are the only ones that patch can understand.

`-c'

`--context'

context di�.

`-e'

`--ed' ed script.

50 Comparing and Merging Files

`-n'

`--normal'

normal di�.

`-u'

`--unified'

uni�ed di�.

9.2 Applying Imperfect Patches

patch tries to skip any leading text in the patch �le, apply the di�, and then skip any trailing

text. Thus you can feed a news article or mail message directly to patch, and it should work. If

the entire di� is indented by a constant amount of white space, patch automatically ignores the

indentation.

However, certain other types of imperfect input require user intervention.

9.2.1 Applying Patches with Changed White Space

Sometimes mailers, editors, or other programs change spaces into tabs, or vice versa. If this

happens to a patch �le or an input �le, the �les might look the same, but patch will not be able

to match them properly. If this problem occurs, use the `-l' or `--ignore-white-space' option,

which makes patch compare white space loosely so that any sequence of white space in the patch

�le matches any sequence of white space in the input �les. Non-white-space characters must still

match exactly. Each line of the context must still match a line in the input �le.

9.2.2 Applying Reversed Patches

Sometimes people run diff with the new �le �rst instead of second. This creates a di� that is

\reversed". To apply such patches, give patch the `-R' or `--reverse' option. patch then attempts

to swap each hunk around before applying it. Rejects come out in the swapped format. The `-R'

option does not work with ed scripts because there is too little information in them to reconstruct

the reverse operation.

Often patch can guess that the patch is reversed. If the �rst hunk of a patch fails, patch reverses

the hunk to see if it can apply it that way. If it can, patch asks you if you want to have the `-R'

Chapter 9: Merging with patch 51

option set; if it can't, patch continues to apply the patch normally. This method cannot detect a

reversed patch if it is a normal di� and the �rst command is an append (which should have been a

delete) since appends always succeed, because a null context matches anywhere. But most patches

add or change lines rather than delete them, so most reversed normal di�s begin with a delete,

which fails, and patch notices.

If you apply a patch that you have already applied, patch thinks it is a reversed patch and o�ers

to un-apply the patch. This could be construed as a feature. If you did this inadvertently and

you don't want to un-apply the patch, just answer `n' to this o�er and to the subsequent \apply

anyway" question|or type C-c to kill the patch process.

9.2.3 Helping patch Find Inexact Matches

For context di�s, and to a lesser extent normal di�s, patch can detect when the line numbers

mentioned in the patch are incorrect, and it attempts to �nd the correct place to apply each hunk

of the patch. As a �rst guess, it takes the line number mentioned in the hunk, plus or minus any

o�set used in applying the previous hunk. If that is not the correct place, patch scans both forward

and backward for a set of lines matching the context given in the hunk.

First patch looks for a place where all lines of the context match. If it cannot �nd such a

place, and it is reading a context or uni�ed di�, and the maximum fuzz factor is set to 1 or more,

then patch makes another scan, ignoring the �rst and last line of context. If that fails, and the

maximum fuzz factor is set to 2 or more, it makes another scan, ignoring the �rst two and last two

lines of context are ignored. It continues similarly if the maximum fuzz factor is larger.

The `-F lines' or `--fuzz=lines' option sets the maximum fuzz factor to lines. This option only

applies to context and uni�ed di�s; it ignores up to lines lines while looking for the place to install

a hunk. Note that a larger fuzz factor increases the odds of making a faulty patch. The default

fuzz factor is 2; it may not be set to more than the number of lines of context in the di�, ordinarily

3.

If patch cannot �nd a place to install a hunk of the patch, it writes the hunk out to a reject

�le (see Section 14.3 [Rejects], page 73, for information on how reject �les are named). It writes

out rejected hunks in context format no matter what form the input patch is in. If the input is

a normal or ed di�, many of the contexts are simply null. The line numbers on the hunks in the

reject �le may be di�erent from those in the patch �le: they show the approximate location where

patch thinks the failed hunks belong in the new �le rather than in the old one.

52 Comparing and Merging Files

As it completes each hunk, patch tells you whether the hunk succeeded or failed, and if it failed,

on which line (in the new �le) patch thinks the hunk should go. If this is di�erent from the line

number speci�ed in the di�, it tells you the o�set. A single large o�set may indicate that patch

installed a hunk in the wrong place. patch also tells you if it used a fuzz factor to make the match,

in which case you should also be slightly suspicious.

patch cannot tell if the line numbers are o� in an ed script, and can only detect wrong line

numbers in a normal di� when it �nds a change or delete command. It may have the same problem

with a context di� using a fuzz factor equal to or greater than the number of lines of context shown

in the di� (typically 3). In these cases, you should probably look at a context di� between your

original and patched input �les to see if the changes make sense. Compiling without errors is a

pretty good indication that the patch worked, but not a guarantee.

patch usually produces the correct results, even when it must make many guesses. However,

the results are guaranteed only when the patch is applied to an exact copy of the �le that the patch

was generated from.

9.3 Removing Empty Files

Sometimes when comparing two directories, the �rst directory contains a �le that the second

directory does not. If you give diff the `-N' or `--new-file' option, it outputs a di� that deletes

the contents of this �le. By default, patch leaves an empty �le after applying such a di�. The `-E'

or `--remove-empty-files' option to patch deletes output �les that are empty after applying the

di�.

9.4 Multiple Patches in a File

If the patch �le contains more than one patch, patch tries to apply each of them as if they

came from separate patch �les. This means that it determines the name of the �le to patch for

each patch, and that it examines the leading text before each patch for �le names and prerequisite

revision level (see Chapter 10 [Making Patches], page 55, for more on that topic).

For the second and subsequent patches in the patch �le, you can give options and another

original �le name by separating their argument lists with a `+'. However, the argument list for a

second or subsequent patch may not specify a new patch �le, since that does not make sense.

Chapter 9: Merging with patch 53

For example, to tell patch to strip the �rst three slashes from the name of the �rst patch in the

patch �le and none from subsequent patches, and to use `code.c' as the �rst input �le, you can

use:

patch -p3 code.c + -p0 < patchfile

The `-S' or `--skip' option ignores the current patch from the patch �le, but continue looking

for the next patch in the �le. Thus, to ignore the �rst and third patches in the patch �le, you can

use:

patch -S + + -S + < patch file

9.5 Messages and Questions from patch

patch can produce a variety of messages, especially if it has trouble decoding its input. In a few

situations where it's not sure how to proceed, patch normally prompts you for more information

from the keyboard. There are options to suppress printing non-fatal messages and stopping for

keyboard input.

The message `Hmm...' indicates that patch is reading text in the patch �le, attempting to

determine whether there is a patch in that text, and if so, what kind of patch it is.

You can inhibit all terminal output from patch, unless an error occurs, by using the `-s',

`--quiet', or `--silent' option.

There are two ways you can prevent patch from asking you any questions. The `-f' or `--force'

option assumes that you know what you are doing. It assumes the following:

� skip patches that do not contain �le names in their headers;

� patch �les even though they have the wrong version for the `Prereq:' line in the patch;

� assume that patches are not reversed even if they look like they are.

The `-t' or `--batch' option is similar to `-f', in that it suppresses questions, but it makes

somewhat di�erent assumptions:

� skip patches that do not contain �le names in their headers (the same as `-f');

� skip patches for which the �le has the wrong version for the `Prereq:' line in the patch;

54 Comparing and Merging Files

� assume that patches are reversed if they look like they are.

patch exits with a non-zero status if it creates any reject �les. When applying a set of patches

in a loop, you should check the exit status, so you don't apply a later patch to a partially patched

�le.

Chapter 10: Tips for Making Patch Distributions 55

10 Tips forMaking PatchDistributions

Here are some things you should keep in mind if you are going to distribute patches for updating

a software package.

Make sure you have speci�ed the �le names correctly, either in a context di� header or with an

`Index:' line. If you are patching �les in a subdirectory, be sure to tell the patch user to specify a

`-p' or `--strip' option as needed. Take care to not send out reversed patches, since these make

people wonder whether they have already applied the patch.

To save people from partially applying a patch before other patches that should have gone before

it, you can make the �rst patch in the patch �le update a �le with a name like `patchlevel.h' or

`version.c', which contains a patch level or version number. If the input �le contains the wrong

version number, patch will complain immediately.

An even clearer way to prevent this problem is to put a `Prereq:' line before the patch. If the

leading text in the patch �le contains a line that starts with `Prereq:', patch takes the next word

from that line (normally a version number) and checks whether the next input �le contains that

word, preceded and followed by either white space or a newline. If not, patch prompts you for

con�rmation before proceeding. This makes it di�cult to accidentally apply patches in the wrong

order.

Since patch does not handle incomplete lines properly, make sure that all the source �les in

your program end with a newline whenever you release a version.

To create a patch that changes an older version of a package into a newer version, �rst make a

copy of the older version in a scratch directory. Typically you do that by unpacking a tar or shar

archive of the older version.

You might be able to reduce the size of the patch by renaming or removing some �les before

making the patch. If the older version of the package contains any �les that the newer version

does not, or if any �les have been renamed between the two versions, make a list of rm and mv

commands for the user to execute in the old version directory before applying the patch. Then run

those commands yourself in the scratch directory.

If there are any �les that you don't need to include in the patch because they can easily be

rebuilt from other �les (for example, `TAGS' and output from yacc and makeinfo), replace the

versions in the scratch directory with the newer versions, using rm and ln or cp.

56 Comparing and Merging Files

Now you can create the patch. The de-facto standard diff format for patch distributions is

context format with two lines of context, produced by giving diff the `-C 2' option. Do not use

less than two lines of context, because patch typically needs at least two lines for proper operation.

Give diff the `-P' option in case the newer version of the package contains any �les that the older

one does not. Make sure to specify the scratch directory �rst and the newer directory second.

Add to the top of the patch a note telling the user any rm and mv commands to run before

applying the patch. Then you can remove the scratch directory.

Chapter 11: Invoking cmp 57

11 Invoking cmp

The cmp command compares two �les, and if they di�er, tells the �rst byte and line number

where they di�er. Its arguments are as follows:

cmp options: : : from-�le [to-�le]

The �le name `-' is always the standard input. cmp also uses the standard input if one �le name

is omitted.

An exit status of 0 means no di�erences were found, 1 means some di�erences were found, and

2 means trouble.

11.1 Options to cmp

Below is a summary of all of the options that GNU cmp accepts. Most options have two equivalent

names, one of which is a single letter preceded by `-', and the other of which is a long name preceded

by `--'. Multiple single letter options (unless they take an argument) can be combined into a single

command line word: `-cl' is equivalent to `-c -l'.

`-c' Print the di�ering characters. Display control characters as a `^' followed by a letter of

the alphabet and precede characters that have the high bit set with `M-' (which stands

for \meta").

`--ignore-initial=bytes'

Ignore any di�erences in the the �rst bytes bytes of the input �les. Treat �les with

fewer than bytes bytes as if they are empty.

`-l' Print the (decimal) o�sets and (octal) values of all di�ering bytes.

`--print-chars'

Print the di�ering characters. Display control characters as a `^' followed by a letter of

the alphabet and precede characters that have the high bit set with `M-' (which stands

for \meta").

`--quiet'

`-s'

`--silent'

Do not print anything; only return an exit status indicating whether the �les di�er.

58 Comparing and Merging Files

`--verbose'

Print the (decimal) o�sets and (octal) values of all di�ering bytes.

`-v'

`--version'

Output the version number of cmp.

Chapter 12: Invoking diff 59

12 Invoking diff

The format for running the diff command is:

diff options: : : from-�le to-�le

In the simplest case, diff compares the contents of the two �les from-�le and to-�le. A �le

name of `-' stands for text read from the standard input. As a special case, `diff - -' compares a

copy of standard input to itself.

If from-�le is a directory and to-�le is not, diff compares the �le in from-�le whose �le name

is that of to-�le, and vice versa. The non-directory �le must not be `-'.

If both from-�le and to-�le are directories, diff compares corresponding �les in both directories,

in alphabetical order; this comparison is not recursive unless the `-r' or `--recursive' option is

given. diff never compares the actual contents of a directory as if it were a �le. The �le that is

fully speci�ed may not be standard input, because standard input is nameless and the notion of

\�le with the same name" does not apply.

diff options begin with `-', so normally from-�le and to-�le may not begin with `-'. However,

`--' as an argument by itself treats the remaining arguments as �le names even if they begin with

`-'.

An exit status of 0 means no di�erences were found, 1 means some di�erences were found, and

2 means trouble.

12.1 Options to diff

Below is a summary of all of the options that GNU diff accepts. Most options have two

equivalent names, one of which is a single letter preceded by `-', and the other of which is a

long name preceded by `--'. Multiple single letter options (unless they take an argument) can be

combined into a single command line word: `-ac' is equivalent to `-a -c'. Long named options can

be abbreviated to any unique pre�x of their name. Brackets ([and]) indicate that an option takes

an optional argument.

`-lines' Show lines (an integer) lines of context. This option does not specify an output format

by itself; it has no e�ect unless it is combined with `-c' (see Section 2.3.1 [Context

60 Comparing and Merging Files

Format], page 12) or `-u' (see Section 2.3.2 [Uni�ed Format], page 14). This option is

obsolete. For proper operation, patch typically needs at least two lines of context.

`-a' Treat all �les as text and compare them line-by-line, even if they do not seem to be

text. See Section 1.7 [Binary], page 7.

`-b' Ignore changes in amount of white space. See Section 1.2 [White Space], page 4.

`-B' Ignore changes that just insert or delete blank lines. See Section 1.3 [Blank Lines],

page 5.

`--binary'

Read and write data in binary mode. See Section 1.7 [Binary], page 7.

`--brief' Report only whether the �les di�er, not the details of the di�erences. See Section 1.6

[Brief], page 6.

`-c' Use the context output format. See Section 2.3.1 [Context Format], page 12.

`-C lines'

`--context[=lines]'

Use the context output format, showing lines (an integer) lines of context, or three if

lines is not given. See Section 2.3.1 [Context Format], page 12. For proper operation,

patch typically needs at least two lines of context.

`--changed-group-format=format'

Use format to output a line group containing di�ering lines from both �les in if-then-else

format. See Section 2.7.1 [Line Group Formats], page 23.

`-d' Change the algorithm perhaps �nd a smaller set of changes. This makes diff slower

(sometimes much slower). See Chapter 5 [di� Performance], page 35.

`-D name' Make merged `#ifdef' format output, conditional on the preprocessor macro name.

See Section 2.7 [If-then-else], page 22.

`-e'

`--ed' Make output that is a valid ed script. See Section 2.6.1 [ed Scripts], page 19.

`--exclude=pattern'

When comparing directories, ignore �les and subdirectories whose basenames match

pattern. See Chapter 3 [Comparing Directories], page 31.

`--exclude-from=�le'

When comparing directories, ignore �les and subdirectories whose basenames match

any pattern contained in �le. See Chapter 3 [Comparing Directories], page 31.

`--expand-tabs'

Expand tabs to spaces in the output, to preserve the alignment of tabs in the input

�les. See Section 4.1 [Tabs], page 33.

Chapter 12: Invoking diff 61

`-f' Make output that looks vaguely like an ed script but has changes in the order they

appear in the �le. See Section 2.6.2 [Forward ed], page 21.

`-F regexp'

In context and uni�ed format, for each hunk of di�erences, show some of the last

preceding line that matches regexp. See Section 2.3.3.1 [Speci�ed Headings], page 16.

`--forward-ed'

Make output that looks vaguely like an ed script but has changes in the order they

appear in the �le. See Section 2.6.2 [Forward ed], page 21.

`-h' This option currently has no e�ect; it is present for Unix compatibility.

`-H' Use heuristics to speed handling of large �les that have numerous scattered small

changes. See Chapter 5 [di� Performance], page 35.

`--horizon-lines=lines'

Do not discard the last lines lines of the common pre�x and the �rst lines lines of the

common su�x. See Chapter 5 [di� Performance], page 35.

`-i' Ignore changes in case; consider upper- and lower-case letters equivalent. See Secti-

on 1.4 [Case Folding], page 5.

`-I regexp'

Ignore changes that just insert or delete lines that match regexp. See Section 1.5

[Speci�ed Folding], page 6.

`--ifdef=name'

Make merged if-then-else output using name. See Section 2.7 [If-then-else], page 22.

`--ignore-all-space'

Ignore white space when comparing lines. See Section 1.2 [White Space], page 4.

`--ignore-blank-lines'

Ignore changes that just insert or delete blank lines. See Section 1.3 [Blank Lines],

page 5.

`--ignore-case'

Ignore changes in case; consider upper- and lower-case to be the same. See Section 1.4

[Case Folding], page 5.

`--ignore-matching-lines=regexp'

Ignore changes that just insert or delete lines that match regexp. See Section 1.5

[Speci�ed Folding], page 6.

`--ignore-space-change'

Ignore changes in amount of white space. See Section 1.2 [White Space], page 4.

62 Comparing and Merging Files

`--initial-tab'

Output a tab rather than a space before the text of a line in normal or context format.

This causes the alignment of tabs in the line to look normal. See Section 4.1 [Tabs],

page 33.

`-l' Pass the output through pr to paginate it. See Section 4.2 [Pagination], page 33.

`-L label' Use label instead of the �le name in the context format (see Section 2.3.1 [Context

Format], page 12) and uni�ed format (see Section 2.3.2 [Uni�ed Format], page 14)

headers. See Section 2.6.3 [RCS], page 21.

`--label=label'

Use label instead of the �le name in the context format (see Section 2.3.1 [Context

Format], page 12) and uni�ed format (see Section 2.3.2 [Uni�ed Format], page 14)

headers.

`--left-column'

Print only the left column of two common lines in side by side format. See Section 2.5

[Side by Side Format], page 18.

`--line-format=format'

Use format to output all input lines in if-then-else format. See Section 2.7.2 [Line

Formats], page 25.

`--minimal'

Change the algorithm to perhaps �nd a smaller set of changes. This makes diff slower

(sometimes much slower). See Chapter 5 [di� Performance], page 35.

`-n' Output RCS-format di�s; like `-f' except that each command speci�es the number of

lines a�ected. See Section 2.6.3 [RCS], page 21.

`-N'

`--new-file'

In directory comparison, if a �le is found in only one directory, treat it as present but

empty in the other directory. See Chapter 3 [Comparing Directories], page 31.

`--new-group-format=format'

Use format to output a group of lines taken from just the second �le in if-then-else

format. See Section 2.7.1 [Line Group Formats], page 23.

`--new-line-format=format'

Use format to output a line taken from just the second �le in if-then-else format. See

Section 2.7.2 [Line Formats], page 25.

`--old-group-format=format'

Use format to output a group of lines taken from just the �rst �le in if-then-else format.

See Section 2.7.1 [Line Group Formats], page 23.

Chapter 12: Invoking diff 63

`--old-line-format=format'

Use format to output a line taken from just the �rst �le in if-then-else format. See

Section 2.7.2 [Line Formats], page 25.

`-p' Show which C function each change is in. See Section 2.3.3.2 [C Function Headings],

page 17.

`-P' When comparing directories, if a �le appears only in the second directory of the two,

treat it as present but empty in the other. See Chapter 3 [Comparing Directories],

page 31.

`--paginate'

Pass the output through pr to paginate it. See Section 4.2 [Pagination], page 33.

`-q' Report only whether the �les di�er, not the details of the di�erences. See Section 1.6

[Brief], page 6.

`-r' When comparing directories, recursively compare any subdirectories found. See Chap-

ter 3 [Comparing Directories], page 31.

`--rcs' Output RCS-format di�s; like `-f' except that each command speci�es the number of

lines a�ected. See Section 2.6.3 [RCS], page 21.

`--recursive'

When comparing directories, recursively compare any subdirectories found. See Chap-

ter 3 [Comparing Directories], page 31.

`--report-identical-files'

Report when two �les are the same. See Chapter 3 [Comparing Directories], page 31.

`-s' Report when two �les are the same. See Chapter 3 [Comparing Directories], page 31.

`-S �le' When comparing directories, start with the �le �le. This is used for resuming an

aborted comparison. See Chapter 3 [Comparing Directories], page 31.

`--sdiff-merge-assist'

Print extra information to help sdiff. sdiff uses this option when it runs diff. This

option is not intended for users to use directly.

`--show-c-function'

Show which C function each change is in. See Section 2.3.3.2 [C Function Headings],

page 17.

`--show-function-line=regexp'

In context and uni�ed format, for each hunk of di�erences, show some of the last

preceding line that matches regexp. See Section 2.3.3.1 [Speci�ed Headings], page 16.

`--side-by-side'

Use the side by side output format. See Section 2.5 [Side by Side Format], page 18.

64 Comparing and Merging Files

`--speed-large-files'

Use heuristics to speed handling of large �les that have numerous scattered small

changes. See Chapter 5 [di� Performance], page 35.

`--starting-file=�le'

When comparing directories, start with the �le �le. This is used for resuming an

aborted comparison. See Chapter 3 [Comparing Directories], page 31.

`--suppress-common-lines'

Do not print common lines in side by side format. See Section 2.5 [Side by Side Format],

page 18.

`-t' Expand tabs to spaces in the output, to preserve the alignment of tabs in the input

�les. See Section 4.1 [Tabs], page 33.

`-T' Output a tab rather than a space before the text of a line in normal or context format.

This causes the alignment of tabs in the line to look normal. See Section 4.1 [Tabs],

page 33.

`--text' Treat all �les as text and compare them line-by-line, even if they do not appear to be

text. See Section 1.7 [Binary], page 7.

`-u' Use the uni�ed output format. See Section 2.3.2 [Uni�ed Format], page 14.

`--unchanged-group-format=format'

Use format to output a group of common lines taken from both �les in if-then-else

format. See Section 2.7.1 [Line Group Formats], page 23.

`--unchanged-line-format=format'

Use format to output a line common to both �les in if-then-else format. See Secti-

on 2.7.2 [Line Formats], page 25.

`--unidirectional-new-file'

When comparing directories, if a �le appears only in the second directory of the two,

treat it as present but empty in the other. See Chapter 3 [Comparing Directories],

page 31.

`-U lines'

`--unified[=lines]'

Use the uni�ed output format, showing lines (an integer) lines of context, or three if

lines is not given. See Section 2.3.2 [Uni�ed Format], page 14. For proper operation,

patch typically needs at least two lines of context.

`-v'

`--version'

Output the version number of diff.

`-w' Ignore white space when comparing lines. See Section 1.2 [White Space], page 4.

Chapter 12: Invoking diff 65

`-W columns'

`--width=columns'

Use an output width of columns in side by side format. See Section 2.5 [Side by Side

Format], page 18.

`-x pattern'

When comparing directories, ignore �les and subdirectories whose basenames match

pattern. See Chapter 3 [Comparing Directories], page 31.

`-X �le' When comparing directories, ignore �les and subdirectories whose basenames match

any pattern contained in �le. See Chapter 3 [Comparing Directories], page 31.

`-y' Use the side by side output format. See Section 2.5 [Side by Side Format], page 18.

66 Comparing and Merging Files

Chapter 13: Invoking diff3 67

13 Invoking diff3

The diff3 command compares three �les and outputs descriptions of their di�erences. Its

arguments are as follows:

diff3 options: : : mine older yours

The �les to compare are mine, older, and yours. At most one of these three �le names may be

`-', which tells diff3 to read the standard input for that �le.

An exit status of 0 means diff3 was successful, 1 means some conicts were found, and 2 means

trouble.

13.1 Options to diff3

Below is a summary of all of the options that GNU diff3 accepts. Multiple single letter options

(unless they take an argument) can be combined into a single command line argument.

`-a' Treat all �les as text and compare them line-by-line, even if they do not appear to be

text. See Section 1.7 [Binary], page 7.

`-A' Incorporate all changes from older to yours into mine, surrounding all conicts with

bracket lines. See Section 7.2 [Marking Conicts], page 42.

`-e' Generate an ed script that incorporates all the changes from older to yours into mine.

See Section 7.1 [Which Changes], page 41.

`-E' Like `-e', except bracket lines from overlapping changes' �rst and third �les. See

Section 7.2 [Marking Conicts], page 42. With `-e', an overlapping change looks like

this:

<<<<<<< mine

lines from mine

=======

lines from yours

>>>>>>> yours

`--ed' Generate an ed script that incorporates all the changes from older to yours into mine.

See Section 7.1 [Which Changes], page 41.

`--easy-only'

Like `-e', except output only the nonoverlapping changes. See Section 7.1 [Which

Changes], page 41.

68 Comparing and Merging Files

`-i' Generate `w' and `q' commands at the end of the ed script for System V compatibility.

This option must be combined with one of the `-AeExX3' options, and may not be

combined with `-m'. See Section 7.5 [Saving the Changed File], page 45.

`--initial-tab'

Output a tab rather than two spaces before the text of a line in normal format. This

causes the alignment of tabs in the line to look normal. See Section 4.1 [Tabs], page 33.

`-L label'

`--label=label'

Use the label label for the brackets output by the `-A', `-E' and `-X' options. This

option may be given up to three times, one for each input �le. The default labels are

the names of the input �les. Thus `diff3 -L X -L Y -L Z -m A B C' acts like `diff3 -m

A B C', except that the output looks like it came from �les named `X', `Y' and `Z' rather

than from �les named `A', `B' and `C'. See Section 7.2 [Marking Conicts], page 42.

`-m'

`--merge' Apply the edit script to the �rst �le and send the result to standard output. Unlike

piping the output from diff3 to ed, this works even for binary �les and incomplete

lines. `-A' is assumed if no edit script option is speci�ed. See Section 7.3 [Bypassing

ed], page 44.

`--overlap-only'

Like `-e', except output only the overlapping changes. See Section 7.1 [Which Changes],

page 41.

`--show-all'

Incorporate all unmerged changes from older to yours into mine, surrounding all over-

lapping changes with bracket lines. See Section 7.2 [Marking Conicts], page 42.

`--show-overlap'

Like `-e', except bracket lines from overlapping changes' �rst and third �les. See

Section 7.2 [Marking Conicts], page 42.

`-T' Output a tab rather than two spaces before the text of a line in normal format. This

causes the alignment of tabs in the line to look normal. See Section 4.1 [Tabs], page 33.

`--text' Treat all �les as text and compare them line-by-line, even if they do not appear to be

text. See Section 1.7 [Binary], page 7.

`-v'

`--version'

Output the version number of diff3.

`-x' Like `-e', except output only the overlapping changes. See Section 7.1 [Which Changes],

page 41.

Chapter 13: Invoking diff3 69

`-X' Like `-E', except output only the overlapping changes. In other words, like `-x', except

bracket changes as in `-E'. See Section 7.2 [Marking Conicts], page 42.

`-3' Like `-e', except output only the nonoverlapping changes. See Section 7.1 [Which

Changes], page 41.

70 Comparing and Merging Files

Chapter 14: Invoking patch 71

14 Invoking patch

Normally patch is invoked like this:

patch <patch�le

The full format for invoking patch is:

patch options: : : [orig�le [patch�le]] [+ options: : : [orig�le]]: : :

If you do not specify patch�le, or if patch�le is `-', patch reads the patch (that is, the diff

output) from the standard input.

You can specify one or more of the original �les as orig arguments; each one and options for

interpreting it is separated from the others with a `+'. See Section 9.4 [Multiple Patches], page 52,

for more information.

If you do not specify an input �le on the command line, patch tries to �gure out from the

leading text (any text in the patch that comes before the diff output) which �le to edit. In the

header of a context or uni�ed di�, patch looks in lines beginning with `***', `---', or `+++'; among

those, it chooses the shortest name of an existing �le. Otherwise, if there is an `Index:' line in the

leading text, patch tries to use the �le name from that line. If patch cannot �gure out the name

of an existing �le from the leading text, it prompts you for the name of the �le to patch.

If the input �le does not exist or is read-only, and a suitable RCS or SCCS �le exists, patch

attempts to check out or get the �le before proceeding.

By default, patch replaces the original input �le with the patched version, after renaming the

original �le into a backup �le (see Section 14.2 [Backups], page 72, for a description of how patch

names backup �les). You can also specify where to put the output with the `-o output-�le' or

`--output=output-�le' option.

14.1 Applying Patches in Other Directories

The `-d directory ' or `--directory=directory ' option to patch makes directory directory the

current directory for interpreting both �le names in the patch �le, and �le names given as arguments

to other options (such as `-B' and `-o'). For example, while in a news reading program, you can

72 Comparing and Merging Files

patch a �le in the `/usr/src/emacs' directory directly from the article containing the patch like

this:

| patch -d /usr/src/emacs

Sometimes the �le names given in a patch contain leading directories, but you keep your �les in

a directory di�erent from the one given in the patch. In those cases, you can use the `-p[number]'

or `--strip[=number]' option to set the �le name strip count to number. The strip count tells

patch how many slashes, along with the directory names between them, to strip from the front of

�le names. `-p' with no number given is equivalent to `-p0'. By default, patch strips o� all leading

directories, leaving just the base �le names, except that when a �le name given in the patch is a

relative �le name and all of its leading directories already exist, patch does not strip o� the leading

directory. (A relative �le name is one that does not start with a slash.)

patch looks for each �le (after any slashes have been stripped) in the current directory, or if

you used the `-d directory ' option, in that directory.

For example, suppose the �le name in the patch �le is `/gnu/src/emacs/etc/NEWS'. Using `-p'

or `-p0' gives the entire �le name unmodi�ed, `-p1' gives `gnu/src/emacs/etc/NEWS' (no leading

slash), `-p4' gives `etc/NEWS', and not specifying `-p' at all gives `NEWS'.

14.2 Backup File Names

Normally, patch renames an original input �le into a backup �le by appending to its name the

extension `.orig', or `~' on systems that do not support long �le names. The `-b backup-su�x' or

`--suffix=backup-su�x' option uses backup-su�x as the backup extension instead.

Alternately, you can specify the extension for backup �les with the SIMPLE_BACKUP_SUFFIX

environment variable, which the options override.

patch can also create numbered backup �les the way GNU Emacs does. With this method,

instead of having a single backup of each �le, patch makes a new backup �le name each time

it patches a �le. For example, the backups of a �le named `sink' would be called, successively,

`sink.~1~', `sink.~2~', `sink.~3~', etc.

The `-V backup-style' or `--version-control=backup-style' option takes as an argument a

method for creating backup �le names. You can alternately control the type of backups that patch

makes with the VERSION_CONTROL environment variable, which the `-V' option overrides. The

Chapter 14: Invoking patch 73

value of the VERSION_CONTROL environment variable and the argument to the `-V' option are like

the GNU Emacs version-control variable (see Section 14.2 [The GNU Emacs Manual], page 72,

for more information on backup versions in Emacs). They also recognize synonyms that are more

descriptive. The valid values are listed below; unique abbreviations are acceptable.

`t'

`numbered'

Always make numbered backups.

`nil'

`existing'

Make numbered backups of �les that already have them, simple backups of the others.

This is the default.

`never'

`simple' Always make simple backups.

Alternately, you can tell patch to prepend a pre�x, such as a directory name, to produce

backup �le names. The `-B backup-pre�x' or `--prefix=backup-pre�x' option makes backup �les

by prepending backup-pre�x to them. If you use this option, patch ignores any `-b' option that

you give.

If the backup �le already exists, patch creates a new backup �le name by changing the �rst

lowercase letter in the last component of the �le name into uppercase. If there are no more lowercase

letters in the name, it removes the �rst character from the name. It repeats this process until it

comes up with a backup �le name that does not already exist.

If you specify the output �le with the `-o' option, that �le is the one that is backed up, not the

input �le.

14.3 Reject File Names

The names for reject �les (�les containing patches that patch could not �nd a place to apply)

are normally the name of the output �le with `.rej' appended (or `#' on systems that do not

support long �le names).

Alternatively, you can tell patch to place all of the rejected patches in a single �le. The `-r

reject-�le' or `--reject-file=reject-�le' option uses reject-�le as the reject �le name.

74 Comparing and Merging Files

14.4 Options to patch

Here is a summary of all of the options that patch accepts. Older versions of patch do not

accept long-named options or the `-t', `-E', or `-V' options.

Multiple single-letter options that do not take an argument can be combined into a single

command line argument (with only one dash). Brackets ([and]) indicate that an option takes an

optional argument.

`-b backup-su�x'

Use backup-su�x as the backup extension instead of `.orig' or `~'. See Section 14.2

[Backups], page 72.

`-B backup-pre�x'

Use backup-pre�x as a pre�x to the backup �le name. If this option is speci�ed, any

`-b' option is ignored. See Section 14.2 [Backups], page 72.

`--batch' Do not ask any questions. See Section 9.5 [patch Messages], page 53.

`-c'

`--context'

Interpret the patch �le as a context di�. See Section 9.1 [patch Input], page 49.

`-d directory '

`--directory=directory '

Makes directory directory the current directory for interpreting both �le names in the

patch �le, and �le names given as arguments to other options. See Section 14.1 [patch

Directories], page 71.

`-D name' Make merged if-then-else output using format. See Section 2.7 [If-then-else], page 22.

`--debug=number'

Set internal debugging ags. Of interest only to patch patchers.

`-e'

`--ed' Interpret the patch �le as an ed script. See Section 9.1 [patch Input], page 49.

`-E' Remove output �les that are empty after the patches have been applied. See Section 9.3

[Empty Files], page 52.

`-f' Assume that the user knows exactly what he or she is doing, and do not ask any

questions. See Section 9.5 [patch Messages], page 53.

`-F lines' Set the maximum fuzz factor to lines. See Section 9.2.3 [Inexact], page 51.

`--force' Assume that the user knows exactly what he or she is doing, and do not ask any

questions. See Section 9.5 [patch Messages], page 53.

Chapter 14: Invoking patch 75

`--forward'

Ignore patches that patch thinks are reversed or already applied. See also `-R'. See

Section 9.2.2 [Reversed Patches], page 50.

`--fuzz=lines'

Set the maximum fuzz factor to lines. See Section 9.2.3 [Inexact], page 51.

`--help' Print a summary of the options that patch recognizes, then exit.

`--ifdef=name'

Make merged if-then-else output using format. See Section 2.7 [If-then-else], page 22.

`--ignore-white-space'

`-l' Let any sequence of white space in the patch �le match any sequence of white space in

the input �le. See Section 9.2.1 [Changed White Space], page 50.

`-n'

`--normal'

Interpret the patch �le as a normal di�. See Section 9.1 [patch Input], page 49.

`-N' Ignore patches that patch thinks are reversed or already applied. See also `-R'. See

Section 9.2.2 [Reversed Patches], page 50.

`-o output-�le'

`--output=output-�le'

Use output-�le as the output �le name. See Section 14.4 [patch Options], page 74.

`-p[number]'

Set the �le name strip count to number. See Section 14.1 [patch Directories], page 71.

`--prefix=backup-pre�x'

Use backup-pre�x as a pre�x to the backup �le name. If this option is speci�ed, any

`-b' option is ignored. See Section 14.2 [Backups], page 72.

`--quiet' Work silently unless an error occurs. See Section 9.5 [patch Messages], page 53.

`-r reject-�le'

Use reject-�le as the reject �le name. See Section 14.3 [Rejects], page 73.

`-R' Assume that this patch was created with the old and new �les swapped. See Secti-

on 9.2.2 [Reversed Patches], page 50.

`--reject-file=reject-�le'

Use reject-�le as the reject �le name. See Section 14.3 [Rejects], page 73.

`--remove-empty-files'

Remove output �les that are empty after the patches have been applied. See Section 9.3

[Empty Files], page 52.

76 Comparing and Merging Files

`--reverse'

Assume that this patch was created with the old and new �les swapped. See Secti-

on 9.2.2 [Reversed Patches], page 50.

`-s' Work silently unless an error occurs. See Section 9.5 [patch Messages], page 53.

`-S' Ignore this patch from the patch �le, but continue looking for the next patch in the

�le. See Section 9.4 [Multiple Patches], page 52.

`--silent'

Work silently unless an error occurs. See Section 9.5 [patch Messages], page 53.

`--skip' Ignore this patch from the patch �le, but continue looking for the next patch in the

�le. See Section 9.4 [Multiple Patches], page 52.

`--strip[=number]'

Set the �le name strip count to number. See Section 14.1 [patch Directories], page 71.

`--suffix=backup-su�x'

Use backup-su�x as the backup extension instead of `.orig' or `~'. See Section 14.2

[Backups], page 72.

`-t' Do not ask any questions. See Section 9.5 [patch Messages], page 53.

`-u'

`--unified'

Interpret the patch �le as a uni�ed di�. See Section 9.1 [patch Input], page 49.

`-v' Output the revision header and patch level of patch.

`-V backup-style'

Select the kind of backups to make. See Section 14.2 [Backups], page 72.

`--version'

Output the revision header and patch level of patch, then exit.

`--version=control=backup-style'

Select the kind of backups to make. See Section 14.2 [Backups], page 72.

`-x number'

Set internal debugging ags. Of interest only to patch patchers.

Chapter 15: Invoking sdiff 77

15 Invoking sdiff

The sdiff command merges two �les and interactively outputs the results. Its arguments are

as follows:

sdiff -o out�le options: : : from-�le to-�le

This merges from-�le with to-�le, with output to out�le. If from-�le is a directory and to-�le is

not, sdiff compares the �le in from-�le whose �le name is that of to-�le, and vice versa. from-�le

and to-�le may not both be directories.

sdiff options begin with `-', so normally from-�le and to-�le may not begin with `-'. However,

`--' as an argument by itself treats the remaining arguments as �le names even if they begin with

`-'. You may not use `-' as an input �le.

An exit status of 0 means no di�erences were found, 1 means some di�erences were found, and

2 means trouble.

sdiff without `-o' (or `--output') produces a side-by-side di�erence. This usage is obsolete;

use `diff --side-by-side' instead.

15.1 Options to sdiff

Below is a summary of all of the options that GNU sdiff accepts. Each option has two

equivalent names, one of which is a single letter preceded by `-', and the other of which is a

long name preceded by `--'. Multiple single letter options (unless they take an argument) can be

combined into a single command line argument. Long named options can be abbreviated to any

unique pre�x of their name.

`-a' Treat all �les as text and compare them line-by-line, even if they do not appear to be

text. See Section 1.7 [Binary], page 7.

`-b' Ignore changes in amount of white space. See Section 1.2 [White Space], page 4.

`-B' Ignore changes that just insert or delete blank lines. See Section 1.3 [Blank Lines],

page 5.

`-d' Change the algorithm to perhaps �nd a smaller set of changes. This makes sdiff

slower (sometimes much slower). See Chapter 5 [di� Performance], page 35.

78 Comparing and Merging Files

`-H' Use heuristics to speed handling of large �les that have numerous scattered small

changes. See Chapter 5 [di� Performance], page 35.

`--expand-tabs'

Expand tabs to spaces in the output, to preserve the alignment of tabs in the input

�les. See Section 4.1 [Tabs], page 33.

`-i' Ignore changes in case; consider upper- and lower-case to be the same. See Section 1.4

[Case Folding], page 5.

`-I regexp'

Ignore changes that just insert or delete lines that match regexp. See Section 1.5

[Speci�ed Folding], page 6.

`--ignore-all-space'

Ignore white space when comparing lines. See Section 1.2 [White Space], page 4.

`--ignore-blank-lines'

Ignore changes that just insert or delete blank lines. See Section 1.3 [Blank Lines],

page 5.

`--ignore-case'

Ignore changes in case; consider upper- and lower-case to be the same. See Section 1.4

[Case Folding], page 5.

`--ignore-matching-lines=regexp'

Ignore changes that just insert or delete lines that match regexp. See Section 1.5

[Speci�ed Folding], page 6.

`--ignore-space-change'

Ignore changes in amount of white space. See Section 1.2 [White Space], page 4.

`-l'

`--left-column'

Print only the left column of two common lines. See Section 2.5 [Side by Side Format],

page 18.

`--minimal'

Change the algorithm to perhaps �nd a smaller set of changes. This makes sdiff

slower (sometimes much slower). See Chapter 5 [di� Performance], page 35.

`-o �le'

`--output=�le'

Put merged output into �le. This option is required for merging.

`-s'

`--suppress-common-lines'

Do not print common lines. See Section 2.5 [Side by Side Format], page 18.

Chapter 15: Invoking sdiff 79

`--speed-large-files'

Use heuristics to speed handling of large �les that have numerous scattered small

changes. See Chapter 5 [di� Performance], page 35.

`-t' Expand tabs to spaces in the output, to preserve the alignment of tabs in the input

�les. See Section 4.1 [Tabs], page 33.

`--text' Treat all �les as text and compare them line-by-line, even if they do not appear to be

text. See Section 1.7 [Binary], page 7.

`-v'

`--version'

Output the version number of sdiff.

`-w columns'

`--width=columns'

Use an output width of columns. See Section 2.5 [Side by Side Format], page 18. Note

that for historical reasons, this option is `-W' in diff, `-w' in sdiff.

`-W' Ignore horizontal white space when comparing lines. See Section 1.2 [White Space],

page 4. Note that for historical reasons, this option is `-w' in diff, `-W' in sdiff.

80 Comparing and Merging Files

Chapter 16: Incomplete Lines 81

16 Incomplete Lines

When an input �le ends in a non-newline character, its last line is called an incomplete line

because its last character is not a newline. All other lines are called full lines and end in a newline

character. Incomplete lines do not match full lines unless di�erences in white space are ignored

(see Section 1.2 [White Space], page 4).

An incomplete line is normally distinguished on output from a full line by a following line that

starts with `\'. However, the RCS format (see Section 2.6.3 [RCS], page 21) outputs the incomplete

line as-is, without any trailing newline or following line. The side by side format normally represents

incomplete lines as-is, but in some cases uses a `\' or `/' gutter marker; See Section 2.4 [Side by

Side], page 17. The if-then-else line format preserves a line's incompleteness with `%L', and discards

the newline with `%l'; See Section 2.7.2 [Line Formats], page 25. Finally, with the ed and forward

ed output formats (see Chapter 2 [Output Formats], page 9) diff cannot represent an incomplete

line, so it pretends there was a newline and reports an error.

For example, suppose `F' and `G' are one-byte �les that contain just `f' and `g', respectively.

Then `diff F G' outputs

1c1

< f

\ No newline at end of file

> g

\ No newline at end of file

(The exact message may di�er in non-English locales.) `diff -n F G' outputs the following without

a trailing newline:

d1 1

a1 1

g

`diff -e F G' reports two errors and outputs the following:

1c

g

.

82 Comparing and Merging Files

Chapter 17: Future Projects 83

17 Future Projects

Here are some ideas for improving GNU diff and patch. The GNU project has identi�ed some

improvements as potential programming projects for volunteers. You can also help by reporting

any bugs that you �nd.

If you are a programmer and would like to contribute something to the GNU project, please

consider volunteering for one of these projects. If you are seriously contemplating work, please

write to `gnu@prep.ai.mit.edu' to coordinate with other volunteers.

17.1 Suggested Projects for Improving GNU diff and patch

One should be able to use GNU diff to generate a patch from any pair of directory trees,

and given the patch and a copy of one such tree, use patch to generate a faithful copy of the

other. Unfortunately, some changes to directory trees cannot be expressed using current patch

formats; also, patch does not handle some of the existing formats. These shortcomings motivate

the following suggested projects.

17.1.1 Handling Changes to the Directory Structure

diff and patch do not handle some changes to directory structure. For example, suppose one

directory tree contains a directory named `D' with some subsidiary �les, and another contains a �le

with the same name `D'. `diff -r' does not output enough information for patch to transform the

the directory subtree into the �le.

There should be a way to specify that a �le has been deleted without having to include its entire

contents in the patch �le. There should also be a way to tell patch that a �le was renamed, even

if there is no way for diff to generate such information.

These problems can be �xed by extending the diff output format to represent changes in

directory structure, and extending patch to understand these extensions.

84 Comparing and Merging Files

17.1.2 Files that are Neither Directories Nor Regular Files

Some �les are neither directories nor regular �les: they are unusual �les like symbolic links,

device special �les, named pipes, and sockets. Currently, diff treats symbolic links like regular

�les; it treats other special �les like regular �les if they are speci�ed at the top level, but simply

reports their presence when comparing directories. This means that patch cannot represent changes

to such �les. For example, if you change which �le a symbolic link points to, diff outputs the

di�erence between the two �les, instead of the change to the symbolic link.

diff should optionally report changes to special �les specially, and patch should be extended

to understand these extensions.

17.1.3 File Names that Contain Unusual Characters

When a �le name contains an unusual character like a newline or white space, `diff -r' generates

a patch that patch cannot parse. The problem is with format of diff output, not just with patch,

because with odd enough �le names one can cause diff to generate a patch that is syntactically

correct but patches the wrong �les. The format of diff output should be extended to handle all

possible �le names.

17.1.4 Arbitrary Limits

GNU diff can analyze �les with arbitrarily long lines and �les that end in incomplete lines.

However, patch cannot patch such �les. The patch internal limits on line lengths should be

removed, and patch should be extended to parse diff reports of incomplete lines.

17.1.5 Handling Files that Do Not Fit in Memory

diff operates by reading both �les into memory. This method fails if the �les are too large,

and diff should have a fallback.

One way to do this is to scan the �les sequentially to compute hash codes of the lines and put

the lines in equivalence classes based only on hash code. Then compare the �les normally. This

does produce some false matches.

Chapter 17: Future Projects 85

Then scan the two �les sequentially again, checking each match to see whether it is real. When

a match is not real, mark both the \matching" lines as changed. Then build an edit script as usual.

The output routines would have to be changed to scan the �les sequentially looking for the text

to print.

17.1.6 Ignoring Certain Changes

It would be nice to have a feature for specifying two strings, one in from-�le and one in to-�le,

which should be considered to match. Thus, if the two strings are `foo' and `bar', then if two lines

di�er only in that `foo' in �le 1 corresponds to `bar' in �le 2, the lines are treated as identical.

It is not clear how general this feature can or should be, or what syntax should be used for it.

17.2 Reporting Bugs

If you think you have found a bug in GNU cmp, diff, diff3, sdiff, or patch, please report

it by electronic mail to `bug-gnu-utils@prep.ai.mit.edu'. Send as precise a description of the

problem as you can, including sample input �les that produce the bug, if applicable.

Because Larry Wall has not released a new version of patch since mid 1988 and the GNU version

of patch has been changed since then, please send bug reports for patch by electronic mail to both

`bug-gnu-utils@prep.ai.mit.edu' and `lwall@netlabs.com'.

86 Comparing and Merging Files

Concept Index 87

Concept Index

!

`!' output format . 11

+

`+-' output format . 14

<

`<' output format . 10

`<<<<<<<' for marking conicts . 42

A

aligning tabstops . 33

alternate �le names . 17

B

backup �le names . 72

binary �le di�. 7

binary �le patching . 84

blank and tab di�erence suppression 4

blank line di�erence suppression . 5

brief di�erence reports . 6

bug reports . 85

C

C function headings . 17

C if-then-else output format . 22

case di�erence suppression . 5

cmp invocation . 57

cmp options . 57

columnar output . 17

comparing three �les . 37

conict . 41

conict marking . 42

context output format . 11

D

diagnostics from patch . 53

diff invocation . 59

di� merging . 47

diff options . 59

diff sample input . 9

diff3 hunks . 38

diff3 invocation . 67

diff3 options . 67

diff3 sample input . 37

directories and patch . 71

directory structure changes . 83

E

ed script output format . 19

empty �les, removing . 52

F

�le name alternates . 17

�le names with unusual characters 84

format of diff output . 9

format of diff3 output . 37

formats for if-then-else line groups 23

forward ed script output format . 21

full lines . 81

function headings, C . 17

fuzz factor when patching . 51

H

headings . 16

hunks . 3

hunks for diff3 . 38

I

if-then-else output format . 22

ifdef output format . 22

imperfect patch application . 50

incomplete line merging . 45

incomplete lines . 81

inexact patches . 51

interactive merging . 47

introduction . 3

invoking cmp . 57

88 Comparing and Merging Files

invoking diff . 59

invoking diff3. 67

invoking patch. 71

invoking sdiff. 77

L

large �les . 84

line formats . 25

line group formats . 23

M

merge commands . 47

merged diff3 format . 44

merged output format . 22

merging from a common ancestor 41

merging interactively . 47

messages from patch . 53

multiple patches . 52

N

newline treatment by diff . 81

normal output format . 10

O

options for cmp . 57

options for diff . 59

options for diff3 . 67

options for patch . 74

options for sdiff . 77

output formats . 9

overlap . 41

overlapping change, selection of . 41

overview of diff and patch . 1

P

paginating diff output . 33

patch input format . 49

patch invocation . 71

patch making tips . 55

patch messages and questions . 53

patch options . 74

patching directories . 71

performance of diff . 35

projects for directories . 83

R

RCS script output format . 21

regular expression matching headings 16

regular expression suppression . 6

reject �le names . 73

removing empty �les . 52

reporting bugs . 85

reversed patches . 50

S

sample input for diff . 9

sample input for diff3 . 37

script output formats . 19

sdiff invocation . 77

sdiff options . 77

sdiff output format . 47

section headings . 16

side by side . 17

side by side format . 18

special �les . 84

speci�ed headings . 16

summarizing which �les di�er . 6

System V diff3 compatibility. 45

T

tab and blank di�erence suppression 4

tabstop alignment . 33

text versus binary di� . 7

tips for patch making . 55

two-column output. 17

U

uni�ed output format . 14

unmerged change . 41

W

white space in patches . 50

i

Short Contents

Overview . 1

1 What Comparison Means . 3

2 diff Output Formats . 9

3 Comparing Directories . 31

4 Making diff Output Prettier . 33

5 diff Performance Tradeo�s . 35

6 Comparing Three Files . 37

7 Merging From a Common Ancestor. 41

8 Interactive Merging with sdiff . 47

9 Merging with patch . 49

10 Tips for Making Patch Distributions . 55

11 Invoking cmp . 57

12 Invoking diff . 59

13 Invoking diff3 . 67

14 Invoking patch . 71

15 Invoking sdiff . 77

16 Incomplete Lines . 81

17 Future Projects . 83

Concept Index . 87

ii Comparing and Merging Files

iii

Table of Contents

Overview . 1

1 What Comparison Means . 3

1.1 Hunks . 3

1.2 Suppressing Di�erences in Blank and Tab Spacing 4

1.3 Suppressing Di�erences in Blank Lines . 5

1.4 Suppressing Case Di�erences . 5

1.5 Suppressing Lines Matching a Regular Expression 6

1.6 Summarizing Which Files Di�er . 6

1.7 Binary Files and Forcing Text Comparisons . 7

2 diff Output Formats . 9

2.1 Two Sample Input Files . 9

2.2 Showing Di�erences Without Context . 10

2.2.1 Detailed Description of Normal Format 10

2.2.2 An Example of Normal Format . 11

2.3 Showing Di�erences in Their Context . 11

2.3.1 Context Format . 12

2.3.1.1 Detailed Description of Context Format 12

2.3.1.2 An Example of Context Format 13

2.3.1.3 An Example of Context Format with Less Context

. 14

2.3.2 Uni�ed Format . 14

2.3.2.1 Detailed Description of Uni�ed Format 14

2.3.2.2 An Example of Uni�ed Format 15

2.3.3 Showing Which Sections Di�erences Are in 16

2.3.3.1 Showing Lines That Match Regular Expressions

. 16

2.3.3.2 Showing C Function Headings 17

2.3.4 Showing Alternate File Names . 17

2.4 Showing Di�erences Side by Side . 17

2.5 Controlling Side by Side Format . 18

2.5.1 An Example of Side by Side Format . 19

2.6 Making Edit Scripts . 19

2.6.1 ed Scripts . 19

2.6.1.1 Detailed Description of ed Format 20

2.6.1.2 Example ed Script . 20

iv Comparing and Merging Files

2.6.2 Forward ed Scripts . 21

2.6.3 RCS Scripts . 21

2.7 Merging Files with If-then-else . 22

2.7.1 Line Group Formats . 23

2.7.2 Line Formats . 25

2.7.3 Detailed Description of If-then-else Format 27

2.7.4 An Example of If-then-else Format . 28

3 Comparing Directories . 31

4 Making diff Output Prettier . 33

4.1 Preserving Tabstop Alignment . 33

4.2 Paginating diff Output . 33

5 diff Performance Tradeo�s . 35

6 Comparing Three Files . 37

6.1 A Third Sample Input File . 37

6.2 Detailed Description of diff3 Normal Format 37

6.3 diff3 Hunks . 38

6.4 An Example of diff3 Normal Format . 39

7 Merging From a Common Ancestor 41

7.1 Selecting Which Changes to Incorporate . 41

7.2 Marking Conicts . 42

7.3 Generating the Merged Output Directly . 44

7.4 How diff3 Merges Incomplete Lines . 45

7.5 Saving the Changed File . 45

8 Interactive Merging with sdiff 47

8.1 Specifying diff Options to sdiff . 47

8.2 Merge Commands . 47

9 Merging with patch . 49

9.1 Selecting the patch Input Format . 49

9.2 Applying Imperfect Patches . 50

9.2.1 Applying Patches with Changed White Space 50

9.2.2 Applying Reversed Patches . 50

9.2.3 Helping patch Find Inexact Matches 51

9.3 Removing Empty Files . 52

9.4 Multiple Patches in a File . 52

v

9.5 Messages and Questions from patch . 53

10 Tips for Making Patch Distributions 55

11 Invoking cmp . 57

11.1 Options to cmp . 57

12 Invoking diff . 59

12.1 Options to diff . 59

13 Invoking diff3 . 67

13.1 Options to diff3 . 67

14 Invoking patch . 71

14.1 Applying Patches in Other Directories . 71

14.2 Backup File Names . 72

14.3 Reject File Names . 73

14.4 Options to patch . 74

15 Invoking sdiff . 77

15.1 Options to sdiff . 77

16 Incomplete Lines . 81

17 Future Projects . 83

17.1 Suggested Projects for Improving GNU diff and patch 83

17.1.1 Handling Changes to the Directory Structure 83

17.1.2 Files that are Neither Directories Nor Regular Files 84

17.1.3 File Names that Contain Unusual Characters 84

17.1.4 Arbitrary Limits . 84

17.1.5 Handling Files that Do Not Fit in Memory 84

17.1.6 Ignoring Certain Changes . 85

17.2 Reporting Bugs . 85

Concept Index . 87

vi Comparing and Merging Files

