
CO(1) CO(1)

NAME

co − check out RCS revisions

SYNOPSIS

co [options] file . . .

DESCRIPTION

co retrieves a revision from each RCS file and stores it into the corresponding working file.

Pathnames matching an RCS suffix denote RCS files; all others denote working files. Names are paired as

explained in ci(1).

Revisions of an RCS file can be checked out locked or unlocked. Locking a revision prevents overlapping

updates. A revision checked out for reading or processing (e.g., compiling) need not be locked. A revision

checked out for editing and later checkin must normally be locked. Checkout with locking fails if the revi-

sion to be checked out is currently locked by another user. (A lock can be broken with rcs(1).) Checkout

with locking also requires the caller to be on the access list of the RCS file, unless he is the owner of the file

or the superuser, or the access list is empty. Checkout without locking is not subject to accesslist restric-

tions, and is not affected by the presence of locks.

A revision is selected by options for revision or branch number, checkin date/time, author, or state. When

the selection options are applied in combination, co retrieves the latest revision that satisfies all of them. If

none of the selection options is specified, co retrieves the latest revision on the default branch (normally the

trunk, see the −b option of rcs(1)). A revision or branch number can be attached to any of the options −f,

−I, −l, −M, −p, −q, −r, or −u. The options −d (date), −s (state), and −w (author) retrieve from a single

branch, the selected branch, which is either specified by one of −f, . . ., −u, or the default branch.

A co command applied to an RCS file with no revisions creates a zero-length working file. co always per-

forms keyword substitution (see below).

OPTIONS

−r[re v] retrieves the latest revision whose number is less than or equal to re v. If re v indicates a branch

rather than a revision, the latest revision on that branch is retrieved. If re v is omitted, the latest

revision on the default branch (see the −b option of rcs(1)) is retrieved. If re v is $, co determines

the revision number from keyword values in the working file. Otherwise, a revision is composed

of one or more numeric or symbolic fields separated by periods. If re v begins with a period, then

the default branch (normally the trunk) is prepended to it. If re v is a branch number followed by a

period, then the latest revision on that branch is used. The numeric equivalent of a symbolic field

is specified with the −n option of the commands ci(1) and rcs(1).

−l[re v] same as −r, except that it also locks the retrieved revision for the caller.

−u[re v] same as −r, except that it unlocks the retrieved revision if it was locked by the caller. If re v is

omitted, −u retrieves the revision locked by the caller, if there is one; otherwise, it retrieves the lat-

est revision on the default branch.

−f[re v] forces the overwriting of the working file; useful in connection with −q. See also FILE MODES

below.

−kkv Generate keyword strings using the default form, e.g. $Revision: 5.13 $ for the Revision keyword.

A locker’s name is inserted in the value of the Header, Id, and Locker keyword strings only as a

file is being locked, i.e. by ci −l and co −l. This is the default.

−kkvl Like −kkv, except that a locker’s name is always inserted if the given revision is currently locked.

−kk Generate only keyword names in keyword strings; omit their values. See KEYWORD SUBSTITU-

TION below. For example, for the Revision keyword, generate the string $Revision$ instead of

$Revision: 5.13 $. This option is useful to ignore differences due to keyword substitution when

comparing different revisions of a file. Log messages are inserted after Log keywords even if

−kk is specified, since this tends to be more useful when merging changes.

−ko Generate the old keyword string, present in the working file just before it was checked in. For

example, for the Revision keyword, generate the string $Revision: 1.1 $ instead of $Revision:

GNU 1995/06/01 1

CO(1) CO(1)

5.13 $ if that is how the string appeared when the file was checked in. This can be useful for file

formats that cannot tolerate any changes to substrings that happen to take the form of keyword

strings.

−kb Generate a binary image of the old keyword string. This acts like −ko, except it performs all

working file input and output in binary mode. This makes little difference on Posix and Unix

hosts, but on DOS-like hosts one should use rcs −i −kb to initialize an RCS file intended to be

used for binary files. Also, on all hosts, rcsmerge(1) normally refuses to merge files when −kb is

in effect.

−kv Generate only keyword values for keyword strings. For example, for the Revision keyword, gen-

erate the string 5.13 instead of $Revision: 5.13 $. This can help generate files in programming

languages where it is hard to strip keyword delimiters like $Revision: $ from a string. However,

further keyword substitution cannot be performed once the keyword names are removed, so this

option should be used with care. Because of this danger of losing keywords, this option cannot be

combined with −l, and the owner write permission of the working file is turned off; to edit the file

later, check it out again without −kv.

−p[re v] prints the retrieved revision on the standard output rather than storing it in the working file. This

option is useful when co is part of a pipe.

−q[re v] quiet mode; diagnostics are not printed.

−I[re v] interactive mode; the user is prompted and questioned even if the standard input is not a terminal.

−ddate retrieves the latest revision on the selected branch whose checkin date/time is less than or equal to

date. The date and time can be given in free format. The time zone LT stands for local time;

other common time zone names are understood. For example, the following dates are equivalent

if local time is January 11, 1990, 8pm Pacific Standard Time, eight hours west of Coordinated

Universal Time (UTC):

8:00 pm lt

4:00 AM, Jan. 12, 1990 default is UTC

1990-01-12 04:00:00+00 ISO 8601 (UTC)

1990-01-11 20:00:00−08 ISO 8601 (local time)

1990/01/12 04:00:00 traditional RCS format

Thu Jan 11 20:00:00 1990 LT output of ctime(3) + LT

Thu Jan 11 20:00:00 PST 1990 output of date(1)

Fri Jan 12 04:00:00 GMT 1990

Thu, 11 Jan 1990 20:00:00 −0800 Internet RFC 822

12-January-1990, 04:00 WET

Most fields in the date and time can be defaulted. The default time zone is normally UTC, but this

can be overridden by the −z option. The other defaults are determined in the order year, month,

day, hour, minute, and second (most to least significant). At least one of these fields must be pro-

vided. For omitted fields that are of higher significance than the highest provided field, the time

zone’s current values are assumed. For all other omitted fields, the lowest possible values are

assumed. For example, without −z, the date 20, 10:30 defaults to 10:30:00 UTC of the 20th of the

UTC time zone’s current month and year. The date/time must be quoted if it contains spaces.

−M[re v]

Set the modification time on the new working file to be the date of the retrieved revision. Use this

option with care; it can confuse make(1).

−sstate retrieves the latest revision on the selected branch whose state is set to state.

−T Preserve the modification time on the RCS file even if the RCS file changes because a lock is added

or removed. This option can suppress extensive recompilation caused by a make(1) dependency

of some other copy of the working file on the RCS file. Use this option with care; it can suppress

recompilation even when it is needed, i.e. when the change of lock would mean a change to

keyword strings in the other working file.

GNU 1995/06/01 2

CO(1) CO(1)

−w[login]

retrieves the latest revision on the selected branch which was checked in by the user with login

name login. If the argument login is omitted, the caller’s login is assumed.

−j joinlist

generates a new revision which is the join of the revisions on joinlist. This option is largely obso-

leted by rcsmerge(1) but is retained for backwards compatibility.

The joinlist is a comma-separated list of pairs of the form re v2:re v3, where re v2 and re v3 are

(symbolic or numeric) revision numbers. For the initial such pair, re v1 denotes the revision

selected by the above options −f, . . ., −w. For all other pairs, re v1 denotes the revision generated

by the previous pair. (Thus, the output of one join becomes the input to the next.)

For each pair, co joins revisions re v1 and re v3 with respect to re v2. This means that all changes

that transform re v2 into re v1 are applied to a copy of re v3. This is particularly useful if re v1 and

re v3 are the ends of two branches that have re v2 as a common ancestor. If re v1<re v2<re v3 on the

same branch, joining generates a new revision which is like re v3, but with all changes that lead

from re v1 to re v2 undone. If changes from re v2 to re v1 overlap with changes from re v2 to re v3, co

reports overlaps as described in merge(1).

For the initial pair, re v2 can be omitted. The default is the common ancestor. If any of the argu-

ments indicate branches, the latest revisions on those branches are assumed. The options −l and

−u lock or unlock re v1.

−V Print RCS’s version number.

−Vn Emulate RCS version n, where n can be 3, 4, or 5. This can be useful when interchanging RCS

files with others who are running older versions of RCS. To see which version of RCS your corre-

spondents are running, have them invoke rcs −V; this works with newer versions of RCS. If it

doesn’t work, have them invoke rlog on an RCS file; if none of the first few lines of output contain

the string branch: it is version 3; if the dates’ years have just two digits, it is version 4; otherwise,

it is version 5. An RCS file generated while emulating version 3 loses its default branch. An RCS

revision generated while emulating version 4 or earlier has a time stamp that is off by up to 13

hours. A revision extracted while emulating version 4 or earlier contains abbreviated dates of the

form yy/mm/dd and can also contain different white space and line prefixes in the substitution for

Log.

−xsuffixes

Use suffixes to characterize RCS files. See ci(1) for details.

−zzone specifies the date output format in keyword substitution, and specifies the default time zone for

date in the −ddate option. The zone should be empty, a numeric UTC offset, or the special string

LT for local time. The default is an empty zone, which uses the traditional RCS format of UTC

without any time zone indication and with slashes separating the parts of the date; otherwise, times

are output in ISO 8601 format with time zone indication. For example, if local time is January 11,

1990, 8pm Pacific Standard Time, eight hours west of UTC, then the time is output as follows:

option time output

−z 1990/01/12 04:00:00 (default)

−zLT 1990-01-11 20:00:00−08

−z+05:30 1990-01-12 09:30:00+05:30

The −z option does not affect dates stored in RCS files, which are always UTC.

KEYWORD SUBSTITUTION

Strings of the form $keyword$ and $keyword:. . .$ embedded in the text are replaced with strings of the

form $keyword:value$ where keyword and value are pairs listed below. Keywords can be embedded in lit-

eral strings or comments to identify a revision.

Initially, the user enters strings of the form $keyword$. On checkout, co replaces these strings with strings

of the form $keyword:value$. If a revision containing strings of the latter form is checked back in, the

value fields will be replaced during the next checkout. Thus, the keyword values are automatically updated

GNU 1995/06/01 3

CO(1) CO(1)

on checkout. This automatic substitution can be modified by the −k options.

Ke ywords and their corresponding values:

$Author$

The login name of the user who checked in the revision.

$Date$ The date and time the revision was checked in. With −zzone a numeric time zone offset is

appended; otherwise, the date is UTC.

$Header$

A standard header containing the full pathname of the RCS file, the revision number, the date and

time, the author, the state, and the locker (if locked). With −zzone a numeric time zone offset is

appended to the date; otherwise, the date is UTC.

Id Same as $Header$, except that the RCS filename is without a path.

$Locker$

The login name of the user who locked the revision (empty if not locked).

Log The log message supplied during checkin, preceded by a header containing the RCS filename, the

revision number, the author, and the date and time. With −zzone a numeric time zone offset is

appended; otherwise, the date is UTC. Existing log messages are not replaced. Instead, the new

log message is inserted after $Log:. . .$. This is useful for accumulating a complete change log in

a source file.

Each inserted line is prefixed by the string that prefixes the Log line. For example, if the Log

line is “// $Log: tan.cc $”, RCS prefixes each line of the log with “// ”. This is useful for lan-

guages with comments that go to the end of the line. The convention for other languages is to use

a “ ∗ ” prefix inside a multiline comment. For example, the initial log comment of a C program

conventionally is of the following form:

/∗
∗ Log

∗ /

For backwards compatibility with older versions of RCS, if the log prefix is /∗ or (∗ surrounded by

optional white space, inserted log lines contain a space instead of / or (; howev er, this usage is

obsolescent and should not be relied on.

$Name$

The symbolic name used to check out the revision, if any. For example, co −rJoe generates

$Name: Joe $. Plain co generates just $Name: $.

$RCSfile$

The name of the RCS file without a path.

$Revision$

The revision number assigned to the revision.

$Source$

The full pathname of the RCS file.

$State$

The state assigned to the revision with the −s option of rcs(1) or ci(1).

The following characters in keyword values are represented by escape sequences to keep keyword strings

well-formed.

GNU 1995/06/01 4

CO(1) CO(1)

char escape sequence

tab \t

newline \n

space \040

$ \044

\ \\

FILE MODES

The working file inherits the read and execute permissions from the RCS file. In addition, the owner write

permission is turned on, unless −kv is set or the file is checked out unlocked and locking is set to strict (see

rcs(1)).

If a file with the name of the working file exists already and has write permission, co aborts the checkout,

asking beforehand if possible. If the existing working file is not writable or −f is given, the working file is

deleted without asking.

FILES

co accesses files much as ci(1) does, except that it does not need to read the working file unless a revision

number of $ is specified.

ENVIRONMENT

RCSINIT

options prepended to the argument list, separated by spaces. See ci(1) for details.

DIAGNOSTICS

The RCS pathname, the working pathname, and the revision number retrieved are written to the diagnostic

output. The exit status is zero if and only if all operations were successful.

IDENTIFICATION

Author: Walter F. Tichy.

Manual Page Revision: 5.13; Release Date: 1995/06/01.

Copyright © 1982, 1988, 1989 Walter F. Tichy.

Copyright © 1990, 1991, 1992, 1993, 1994, 1995 Paul Eggert.

SEE ALSO

rcsintro(1), ci(1), ctime(3), date(1), ident(1), make(1), rcs(1), rcsclean(1), rcsdiff(1), rcsmerge(1), rlog(1),

rcsfile(5)

Walter F. Tichy, RCS—A System for Version Control, Software—Practice & Experience 15, 7 (July 1985),

637-654.

LIMITS

Links to the RCS and working files are not preserved.

There is no way to selectively suppress the expansion of keywords, except by writing them differently. In

nroff and troff, this is done by embedding the null-character \& into the keyword.

GNU 1995/06/01 5

