
CI(1) CI(1)

NAME

ci − check in RCS revisions

SYNOPSIS

ci [options] file . . .

DESCRIPTION

ci stores new revisions into RCS files. Each pathname matching an RCS suffix is taken to be an RCS file.

All others are assumed to be working files containing new revisions. ci deposits the contents of each work-

ing file into the corresponding RCS file. If only a working file is given, ci tries to find the corresponding

RCS file in an RCS subdirectory and then in the working file’s directory. For more details, see FILE NAM-

ING below.

For ci to work, the caller’s login must be on the access list, except if the access list is empty or the caller is

the superuser or the owner of the file. To append a new revision to an existing branch, the tip revision on

that branch must be locked by the caller. Otherwise, only a new branch can be created. This restriction is

not enforced for the owner of the file if non-strict locking is used (see rcs(1)). A lock held by someone else

can be broken with the rcs command.

Unless the −f option is given, ci checks whether the revision to be deposited differs from the preceding one.

If not, instead of creating a new revision ci reverts to the preceding one. To rev ert, ordinary ci removes the

working file and any lock; ci −l keeps and ci −u removes any lock, and then they both generate a new work-

ing file much as if co −l or co −u had been applied to the preceding revision. When reverting, any −n and

−s options apply to the preceding revision.

For each revision deposited, ci prompts for a log message. The log message should summarize the change

and must be terminated by end-of-file or by a line containing . by itself. If several files are checked in ci

asks whether to reuse the previous log message. If the standard input is not a terminal, ci suppresses the

prompt and uses the same log message for all files. See also −m.

If the RCS file does not exist, ci creates it and deposits the contents of the working file as the initial revision

(default number: 1.1). The access list is initialized to empty. Instead of the log message, ci requests

descriptive text (see −t below).

The number re v of the deposited revision can be given by any of the options −f, −i, −I, −j, −k, −l, −M, −q,

−r, or −u. re v can be symbolic, numeric, or mixed. Symbolic names in re v must already be defined; see

the −n and −N options for assigning names during checkin. If re v is $, ci determines the revision number

from keyword values in the working file.

If re v begins with a period, then the default branch (normally the trunk) is prepended to it. If re v is a branch

number followed by a period, then the latest revision on that branch is used.

If re v is a revision number, it must be higher than the latest one on the branch to which re v belongs, or must

start a new branch.

If re v is a branch rather than a revision number, the new revision is appended to that branch. The level

number is obtained by incrementing the tip revision number of that branch. If re v indicates a non-existing

branch, that branch is created with the initial revision numbered re v.1.

If re v is omitted, ci tries to derive the new revision number from the caller’s last lock. If the caller has

locked the tip revision of a branch, the new revision is appended to that branch. The new revision number

is obtained by incrementing the tip revision number. If the caller locked a non-tip revision, a new branch is

started at that revision by incrementing the highest branch number at that revision. The default initial

branch and level numbers are 1.

If re v is omitted and the caller has no lock, but owns the file and locking is not set to strict, then the revision

is appended to the default branch (normally the trunk; see the −b option of rcs(1)).

Exception: On the trunk, revisions can be appended to the end, but not inserted.

OPTIONS

−rre v Check in revision re v.

GNU 1995/06/16 1

CI(1) CI(1)

−r The bare −r option (without any revision) has an unusual meaning in ci. With other RCS com-

mands, a bare −r option specifies the most recent revision on the default branch, but with ci, a bare

−r option reestablishes the default behavior of releasing a lock and removing the working file, and

is used to override any default −l or −u options established by shell aliases or scripts.

−l[re v] works like −r, except it performs an additional co −l for the deposited revision. Thus, the

deposited revision is immediately checked out again and locked. This is useful for saving a revi-

sion although one wants to continue editing it after the checkin.

−u[re v] works like −l, except that the deposited revision is not locked. This lets one read the working file

immediately after checkin.

The −l, bare −r, and −u options are mutually exclusive and silently override each other. For exam-

ple, ci −u −r is equivalent to ci −r because bare −r overrides −u.

−f[re v] forces a deposit; the new revision is deposited even it is not different from the preceding one.

−k[re v] searches the working file for keyword values to determine its revision number, creation date, state,

and author (see co(1)), and assigns these values to the deposited revision, rather than computing

them locally. It also generates a default login message noting the login of the caller and the actual

checkin date. This option is useful for software distribution. A revision that is sent to several sites

should be checked in with the −k option at these sites to preserve the original number, date, author,

and state. The extracted keyword values and the default log message can be overridden with the

options −d, −m, −s, −w, and any option that carries a revision number.

−q[re v] quiet mode; diagnostic output is not printed. A revision that is not different from the preceding

one is not deposited, unless −f is given.

−i[re v] initial checkin; report an error if the RCS file already exists. This avoids race conditions in certain

applications.

−j[re v] just checkin and do not initialize; report an error if the RCS file does not already exist.

−I[re v] interactive mode; the user is prompted and questioned even if the standard input is not a terminal.

−d[date]

uses date for the checkin date and time. The date is specified in free format as explained in co(1).

This is useful for lying about the checkin date, and for −k if no date is available. If date is empty,

the working file’s time of last modification is used.

−M[re v]

Set the modification time on any new working file to be the date of the retrieved revision. For

example, ci −d −M −u f does not alter f ’s modification time, even if f ’s contents change due to

keyword substitution. Use this option with care; it can confuse make(1).

−mmsg uses the string msg as the log message for all revisions checked in. By convention, log messages

that start with # are comments and are ignored by programs like GNU Emacs’s vc package. Also,

log messages that start with {clumpname} (followed by white space) are meant to be clumped

together if possible, even if they are associated with different files; the {clumpname} label is used

only for clumping, and is not considered to be part of the log message itself.

−nname

assigns the symbolic name name to the number of the checked-in revision. ci prints an error mes-

sage if name is already assigned to another number.

−Nname

same as −n, except that it overrides a previous assignment of name.

−sstate sets the state of the checked-in revision to the identifier state. The default state is Exp.

−t file writes descriptive text from the contents of the named file into the RCS file, deleting the existing

text. The file cannot begin with −.

GNU 1995/06/16 2

CI(1) CI(1)

−t−string

Write descriptive text from the string into the RCS file, deleting the existing text.

The −t option, in both its forms, has effect only during an initial checkin; it is silently ignored oth-

erwise.

During the initial checkin, if −t is not given, ci obtains the text from standard input, terminated by

end-of-file or by a line containing . by itself. The user is prompted for the text if interaction is pos-

sible; see −I.

For backward compatibility with older versions of RCS, a bare −t option is ignored.

−T Set the RCS file’s modification time to the new revision’s time if the former precedes the latter and

there is a new revision; preserve the RCS file’s modification time otherwise. If you have locked a

revision, ci usually updates the RCS file’s modification time to the current time, because the lock is

stored in the RCS file and removing the lock requires changing the RCS file. This can create an

RCS file newer than the working file in one of two ways: first, ci −M can create a working file with

a date before the current time; second, when reverting to the previous revision the RCS file can

change while the working file remains unchanged. These two cases can cause excessive recompi-

lation caused by a make(1) dependency of the working file on the RCS file. The −T option

inhibits this recompilation by lying about the RCS file’s date. Use this option with care; it can sup-

press recompilation even when a checkin of one working file should affect another working file

associated with the same RCS file. For example, suppose the RCS file’s time is 01:00, the

(changed) working file’s time is 02:00, some other copy of the working file has a time of 03:00,

and the current time is 04:00. Then ci −d −T sets the RCS file’s time to 02:00 instead of the usual

04:00; this causes make(1) to think (incorrectly) that the other copy is newer than the RCS file.

−wlogin

uses login for the author field of the deposited revision. Useful for lying about the author, and for

−k if no author is available.

−V Print RCS’s version number.

−Vn Emulate RCS version n. See co(1) for details.

−xsuffixes

specifies the suffixes for RCS files. A nonempty suffix matches any pathname ending in the suffix.

An empty suffix matches any pathname of the form RCS/ path or path1/RCS/ path2. The −x

option can specify a list of suffixes separated by /. For example, −x,v/ specifies two suffixes: ,v

and the empty suffix. If two or more suffixes are specified, they are tried in order when looking for

an RCS file; the first one that works is used for that file. If no RCS file is found but an RCS file can

be created, the suffixes are tried in order to determine the new RCS file’s name. The default for

suffixes is installation-dependent; normally it is ,v/ for hosts like Unix that permit commas in file-

names, and is empty (i.e. just the empty suffix) for other hosts.

−zzone specifies the date output format in keyword substitution, and specifies the default time zone for

date in the −ddate option. The zone should be empty, a numeric UTC offset, or the special string

LT for local time. The default is an empty zone, which uses the traditional RCS format of UTC

without any time zone indication and with slashes separating the parts of the date; otherwise, times

are output in ISO 8601 format with time zone indication. For example, if local time is January 11,

1990, 8pm Pacific Standard Time, eight hours west of UTC, then the time is output as follows:

option time output

−z 1990/01/12 04:00:00 (default)

−zLT 1990-01-11 20:00:00−08

−z+05:30 1990-01-12 09:30:00+05:30

The −z option does not affect dates stored in RCS files, which are always UTC.

FILE NAMING

Pairs of RCS files and working files can be specified in three ways (see also the example section).

GNU 1995/06/16 3

CI(1) CI(1)

1) Both the RCS file and the working file are given. The RCS pathname is of the form path1/workfileX and

the working pathname is of the form path2/workfile where path1/ and path2/ are (possibly different or

empty) paths, workfile is a filename, and X is an RCS suffix. If X is empty, path1/ must start with RCS/ or

must contain /RCS/.

2) Only the RCS file is given. Then the working file is created in the current directory and its name is

derived from the name of the RCS file by removing path1/ and the suffix X .

3) Only the working file is given. Then ci considers each RCS suffix X in turn, looking for an RCS file of

the form path2/RCS/workfileX or (if the former is not found and X is nonempty) path2/workfileX.

If the RCS file is specified without a path in 1) and 2), ci looks for the RCS file first in the directory ./RCS

and then in the current directory.

ci reports an error if an attempt to open an RCS file fails for an unusual reason, even if the RCS file’s path-

name is just one of several possibilities. For example, to suppress use of RCS commands in a directory d ,

create a regular file named d/RCS so that casual attempts to use RCS commands in d fail because d/RCS is

not a directory.

EXAMPLES

Suppose ,v is an RCS suffix and the current directory contains a subdirectory RCS with an RCS file io.c,v.

Then each of the following commands check in a copy of io.c into RCS/io.c,v as the latest revision, remov-

ing io.c.

ci io.c; ci RCS/io.c,v; ci io.c,v;

ci io.c RCS/io.c,v; ci io.c io.c,v;

ci RCS/io.c,v io.c; ci io.c,v io.c;

Suppose instead that the empty suffix is an RCS suffix and the current directory contains a subdirectory

RCS with an RCS file io.c. The each of the following commands checks in a new revision.

ci io.c; ci RCS/io.c;

ci io.c RCS/io.c;

ci RCS/io.c io.c;

FILE MODES

An RCS file created by ci inherits the read and execute permissions from the working file. If the RCS file

exists already, ci preserves its read and execute permissions. ci always turns off all write permissions of

RCS files.

FILES

Temporary files are created in the directory containing the working file, and also in the temporary directory

(see TMPDIR under ENVIRONMENT). A semaphore file or files are created in the directory containing the

RCS file. With a nonempty suffix, the semaphore names begin with the first character of the suffix; there-

fore, do not specify an suffix whose first character could be that of a working filename. With an empty suf-

fix, the semaphore names end with _ so working filenames should not end in _.

ci never changes an RCS or working file. Normally, ci unlinks the file and creates a new one; but instead of

breaking a chain of one or more symbolic links to an RCS file, it unlinks the destination file instead. There-

fore, ci breaks any hard or symbolic links to any working file it changes; and hard links to RCS files are

ineffective, but symbolic links to RCS files are preserved.

The effective user must be able to search and write the directory containing the RCS file. Normally, the real

user must be able to read the RCS and working files and to search and write the directory containing the

working file; however, some older hosts cannot easily switch between real and effective users, so on these

hosts the effective user is used for all accesses. The effective user is the same as the real user unless your

copies of ci and co have setuid privileges. As described in the next section, these privileges yield extra

security if the effective user owns all RCS files and directories, and if only the effective user can write RCS

directories.

Users can control access to RCS files by setting the permissions of the directory containing the files; only

users with write access to the directory can use RCS commands to change its RCS files. For example, in

GNU 1995/06/16 4

CI(1) CI(1)

hosts that allow a user to belong to several groups, one can make a group’s RCS directories writable to that

group only. This approach suffices for informal projects, but it means that any group member can arbitrar-

ily change the group’s RCS files, and can even remove them entirely. Hence more formal projects some-

times distinguish between an RCS administrator, who can change the RCS files at will, and other project

members, who can check in new revisions but cannot otherwise change the RCS files.

SETUID USE

To prevent anybody but their RCS administrator from deleting revisions, a set of users can employ setuid

privileges as follows.

• Check that the host supports RCS setuid use. Consult a trustworthy expert if there are any doubts. It is

best if the seteuid system call works as described in Posix 1003.1a Draft 5, because RCS can switch back

and forth easily between real and effective users, even if the real user is root. If not, the second best is if

the setuid system call supports saved setuid (the {_POSIX_SAVED_IDS} behavior of Posix 1003.1-1990);

this fails only if the real or effective user is root. If RCS detects any failure in setuid, it quits immedi-

ately.

• Choose a user A to serve as RCS administrator for the set of users. Only A can invoke the rcs command

on the users’ RCS files. A should not be root or any other user with special powers. Mutually suspicious

sets of users should use different administrators.

• Choose a pathname B to be a directory of files to be executed by the users.

• Hav e A set up B to contain copies of ci and co that are setuid to A by copying the commands from their

standard installation directory D as follows:

mkdir B

cp D/c[io] B

chmod go−w,u+s B/c[io]

• Hav e each user prepend B to their path as follows:

PATH=B:$PATH; export PATH # ordinary shell

set path=(B $path) # C shell

• Hav e A create each RCS directory R with write access only to A as follows:

mkdir R

chmod go−w R

• If you want to let only certain users read the RCS files, put the users into a group G, and have A further

protect the RCS directory as follows:

chgrp G R

chmod g−w,o−rwx R

• Hav e A copy old RCS files (if any) into R, to ensure that A owns them.

• An RCS file’s access list limits who can check in and lock revisions. The default access list is empty,

which grants checkin access to anyone who can read the RCS file. If you want limit checkin access, have

A invoke rcs −a on the file; see rcs(1). In particular, rcs −e −aA limits access to just A.

• Hav e A initialize any new RCS files with rcs −i before initial checkin, adding the −a option if you want to

limit checkin access.

• Giv e setuid privileges only to ci, co, and rcsclean; do not give them to rcs or to any other command.

• Do not use other setuid commands to invoke RCS commands; setuid is trickier than you think!

ENVIRONMENT

RCSINIT

options prepended to the argument list, separated by spaces. A backslash escapes spaces within an

option. The RCSINIT options are prepended to the argument lists of most RCS commands. Useful

RCSINIT options include −q, −V, −x, and −z.

GNU 1995/06/16 5

CI(1) CI(1)

TMPDIR

Name of the temporary directory. If not set, the environment variables TMP and TEMP are

inspected instead and the first value found is taken; if none of them are set, a host-dependent

default is used, typically /tmp.

DIAGNOSTICS

For each revision, ci prints the RCS file, the working file, and the number of both the deposited and the pre-

ceding revision. The exit status is zero if and only if all operations were successful.

IDENTIFICATION

Author: Walter F. Tichy.

Manual Page Revision: 5.17; Release Date: 1995/06/16.

Copyright © 1982, 1988, 1989 Walter F. Tichy.

Copyright © 1990, 1991, 1992, 1993, 1994, 1995 Paul Eggert.

SEE ALSO

co(1), emacs(1), ident(1), make(1), rcs(1), rcsclean(1), rcsdiff(1), rcsintro(1), rcsmerge(1), rlog(1),

setuid(2), rcsfile(5)

Walter F. Tichy, RCS—A System for Version Control, Software—Practice & Experience 15, 7 (July 1985),

637-654.

GNU 1995/06/16 6

