
Effective AWK Programming
A User’s Guide for GNU Awk

Edition 1.0.3
February 1997

Arnold D. Robbins

“To boldly go where no man has gone before” is a Registered Trademark of
Paramount Pictures Corporation.

Copyright c© 1989, 1991, 92, 93, 96, 97 Free Software Foundation, Inc.

This is Edition 1.0.3 of Effective AWK Programming,
for the 3.0.3 (or later) version of the GNU implementation of AWK.

Published jointly by:

Specialized Systems Consultants, Inc. (SSC) Free Software Foundation
PO Box 55549 59 Temple Place — Suite 330
Seattle, WA 98155 USA Boston, MA 02111-1307 USA
Phone: +1-206-782-7733 Phone: +1-617-542-5942
Fax: +1-206-782-7191 Fax: +1-617-542-2652
E-mail: sales@ssc.com E-mail:

gnu@prep.ai.mit.edu

URL: http://www.ssc.com/ URL: http://www.fsf.org/

ISBN 1-57831-000-8

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical
to this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions, except
that this permission notice may be stated in a translation approved by the
Foundation.

Cover art by Amy Wells Wood.

To Miriam, for making me complete.

To Chana, for the joy you bring us.

To Rivka, for the exponential increase.

To Nachum, for the added dimension.

Preface 1

Preface

This book teaches you about the awk language and how you can use it
effectively. You should already be familiar with basic system commands,
such as cat and ls,1 and basic shell facilities, such as Input/Output (I/O)
redirection and pipes.

Implementations of the awk language are available for many different
computing environments. This book, while describing the awk language in
general, also describes a particular implementation of awk called gawk (which
stands for “GNU Awk”). gawk runs on a broad range of Unix systems,
ranging from 80386 PC-based computers, up through large scale systems,
such as Crays. gawk has also been ported to MS-DOS and OS/2 PC’s, Atari
and Amiga micro-computers, and VMS.

History of awk and gawk

The name awk comes from the initials of its designers: Alfred V. Aho, Peter
J. Weinberger, and Brian W. Kernighan. The original version of awk was
written in 1977 at AT&T Bell Laboratories. In 1985 a new version made the
programming language more powerful, introducing user-defined functions,
multiple input streams, and computed regular expressions. This new version
became generally available with Unix System V Release 3.1. The version
in System V Release 4 added some new features and also cleaned up the
behavior in some of the “dark corners” of the language. The specification
for awk in the POSIX Command Language and Utilities standard further
clarified the language based on feedback from both the gawk designers, and
the original Bell Labs awk designers.

The GNU implementation, gawk, was written in 1986 by Paul Rubin and
Jay Fenlason, with advice from Richard Stallman. John Woods contributed
parts of the code as well. In 1988 and 1989, David Trueman, with help from
Arnold Robbins, thoroughly reworked gawk for compatibility with the newer
awk. Current development focuses on bug fixes, performance improvements,
standards compliance, and occasionally, new features.

The GNU Project and This Book
The Free Software Foundation (FSF) is a non-profit organization dedicated
to the production and distribution of freely distributable software. It was
founded by Richard M. Stallman, the author of the original Emacs editor.
GNU Emacs is the most widely used version of Emacs today.

The GNU project is an on-going effort on the part of the Free Software
Foundation to create a complete, freely distributable, POSIX compliant com-

1 These commands are available on POSIX compliant systems, as well as on traditional
Unix based systems. If you are using some other operating system, you still need to
be familiar with the ideas of I/O redirection and pipes.

2 Effective AWK Programming

puting environment. (GNU stands for “GNU’s not Unix”.) The FSF uses
the “GNU General Public License” (or GPL) to ensure that source code
for their software is always available to the end user. A copy of the GPL
is included for your reference (see [GNU GENERAL PUBLIC LICENSE],
page 293). The GPL applies to the C language source code for gawk.

A shell, an editor (Emacs), highly portable optimizing C, C++, and
Objective-C compilers, a symbolic debugger, and dozens of large and small
utilities (such as gawk), have all been completed and are freely available. As
of this writing (early 1997), the GNU operating system kernel (the HURD),
has been released, but is still in an early stage of development.

Until the GNU operating system is more fully developed, you should
consider using Linux, a freely distributable, Unix-like operating system for
80386, DEC Alpha, Sun SPARC and other systems. There are many books
on Linux. One freely available one is Linux Installation and Getting Started,
by Matt Welsh. Many Linux distributions are available, often in computer
stores or bundled on CD-ROM with books about Linux. (There are three
other freely available, Unix-like operating systems for 80386 and other sys-
tems, NetBSD, FreeBSD,and OpenBSD. All are based on the 4.4-Lite Berke-
ley Software Distribution, and they use recent versions of gawk for their
versions of awk.)

This book you are reading now is actually free. The information in it is
freely available to anyone, the machine readable source code for the book
comes with gawk, and anyone may take this book to a copying machine and
make as many copies of it as they like. (Take a moment to check the copying
permissions on the Copyright page.)

If you paid money for this book, what you actually paid for was the book’s
nice printing and binding, and the publisher’s associated costs to produce it.
We have made an effort to keep these costs reasonable; most people would
prefer a bound book to over 330 pages of photo-copied text that would then
have to be held in a loose-leaf binder (not to mention the time and labor
involved in doing the copying). The same is true of producing this book
from the machine readable source; the retail price is only slightly more than
the cost per page of printing it on a laser printer.

This book itself has gone through several previous, preliminary editions.
I started working on a preliminary draft of The GAWK Manual, by Diane
Close, Paul Rubin, and Richard Stallman in the fall of 1988. It was around
90 pages long, and barely described the original, “old” version of awk. Af-
ter substantial revision, the first version of the The GAWK Manual to be
released was Edition 0.11 Beta in October of 1989. The manual then un-
derwent more substantial revision for Edition 0.13 of December 1991. David
Trueman, Pat Rankin, and Michal Jaegermann contributed sections of the
manual for Edition 0.13. That edition was published by the FSF as a bound
book early in 1992. Since then there have been several minor revisions,
notably Edition 0.14 of November 1992 that was published by the FSF in
January of 1993, and Edition 0.16 of August 1993.

Preface 3

Edition 1.0 of Effective AWK Programming represents a significant re-
working of The GAWK Manual, with much additional material. The FSF
and I agree that I am now the primary author. I also felt that it needed a
more descriptive title.

Effective AWK Programming will undoubtedly continue to evolve. An
electronic version comes with the gawk distribution from the FSF. If you
find an error in this book, please report it! See Section B.7 [Reporting Prob-
lems and Bugs], page 275, for information on submitting problem reports
electronically, or write to me in care of the FSF.

Acknowledgements
I would like to acknowledge Richard M. Stallman, for his vision of a better
world, and for his courage in founding the FSF and starting the GNU project.

The initial draft of The GAWK Manual had the following acknowledge-
ments:

Many people need to be thanked for their assistance in produc-
ing this manual. Jay Fenlason contributed many ideas and sam-
ple programs. Richard Mlynarik and Robert Chassell gave helpful
comments on drafts of this manual. The paper A Supplemental
Document for awk by John W. Pierce of the Chemistry Depart-
ment at UC San Diego, pinpointed several issues relevant both to
awk implementation and to this manual, that would otherwise have
escaped us.

The following people provided many helpful comments on Edition 0.13 of
The GAWK Manual: Rick Adams, Michael Brennan, Rich Burridge, Diane
Close, Christopher (“Topher”) Eliot, Michael Lijewski, Pat Rankin, Miriam
Robbins, and Michal Jaegermann.

The following people provided many helpful comments for Edition 1.0 of
Effective AWK Programming : Karl Berry, Michael Brennan, Darrel Han-
kerson, Michal Jaegermann, Michael Lijewski, and Miriam Robbins. Pat
Rankin, Michal Jaegermann, Darrel Hankerson and Scott Deifik updated
their respective sections for Edition 1.0.

Robert J. Chassell provided much valuable advice on the use of Texinfo.
He also deserves special thanks for convincing me not to title this book How
To Gawk Politely. Karl Berry helped significantly with the TEX part of
Texinfo.

David Trueman deserves special credit; he has done a yeoman job of
evolving gawk so that it performs well, and without bugs. Although he is no
longer involved with gawk, working with him on this project was a significant
pleasure.

Scott Deifik, Darrel Hankerson, Kai Uwe Rommel, Pat Rankin, and
Michal Jaegermann (in no particular order) are long time members of the
gawk “crack portability team.” Without their hard work and help, gawk

4 Effective AWK Programming

would not be nearly the fine program it is today. It has been and continues
to be a pleasure working with this team of fine people.

Jeffrey Friedl provided invaluable help in tracking down a number of last
minute problems with regular expressions in gawk 3.0.

David and I would like to thank Brian Kernighan of Bell Labs for in-
valuable assistance during the testing and debugging of gawk, and for help
in clarifying numerous points about the language. We could not have done
nearly as good a job on either gawk or its documentation without his help.

I would like to thank Marshall and Elaine Hartholz of Seattle, and Dr.
Bert and Rita Schreiber of Detroit for large amounts of quiet vacation time
in their homes, which allowed me to make significant progress on this book
and on gawk itself. Phil Hughes of SSC contributed in a very important way
by loaning me his laptop Linux system, not once, but twice, allowing me to
do a lot of work while away from home.

Finally, I must thank my wonderful wife, Miriam, for her patience through
the many versions of this project, for her proof-reading, and for sharing me
with the computer. I would like to thank my parents for their love, and for
the grace with which they raised and educated me. I also must acknowledge
my gratitude to G-d, for the many opportunities He has sent my way, as
well as for the gifts He has given me with which to take advantage of those
opportunities.

Arnold Robbins
Atlanta, Georgia
February, 1997

Chapter 1: Introduction 5

1 Introduction

If you are like many computer users, you would frequently like to make
changes in various text files wherever certain patterns appear, or extract data
from parts of certain lines while discarding the rest. To write a program to
do this in a language such as C or Pascal is a time-consuming inconvenience
that may take many lines of code. The job may be easier with awk.

The awk utility interprets a special-purpose programming language that
makes it possible to handle simple data-reformatting jobs with just a few
lines of code.

The GNU implementation of awk is called gawk; it is fully upward com-
patible with the System V Release 4 version of awk. gawk is also upward
compatible with the POSIX specification of the awk language. This means
that all properly written awk programs should work with gawk. Thus, we
usually don’t distinguish between gawk and other awk implementations.

Using awk you can:

• manage small, personal databases

• generate reports

• validate data

• produce indexes, and perform other document preparation tasks

• even experiment with algorithms that can be adapted later to other
computer languages

1.1 Using This Book
The term awk refers to a particular program, and to the language you use
to tell this program what to do. When we need to be careful, we call the
program “the awk utility” and the language “the awk language.” The term
gawk refers to a version of awk developed as part the GNU project. The
purpose of this book is to explain both the awk language and how to run the
awk utility.

The main purpose of the book is to explain the features of awk, as defined
in the POSIX standard. It does so in the context of one particular imple-
mentation, gawk. While doing so, it will also attempt to describe important
differences between gawk and other awk implementations. Finally, any gawk
features that are not in the POSIX standard for awk will be noted.

This book has the difficult task of being both tutorial and reference. If
you are a novice, feel free to skip over details that seem too complex. You
should also ignore the many cross references; they are for the expert user,
and for the on-line Info version of the document.

The term awk program refers to a program written by you in the awk
programming language.

See Chapter 2 [Getting Started with awk], page 9, for the bare essentials
you need to know to start using awk.

6 Effective AWK Programming

Some useful “one-liners” are included to give you a feel for the awk lan-
guage (see Chapter 3 [Useful One Line Programs], page 19).

Many sample awk programs have been provided for you (see Chapter 15
[A Library of awk Functions], page 159; also see Chapter 16 [Practical awk
Programs], page 193).

The entire awk language is summarized for quick reference in Appendix A
[gawk Summary], page 243. Look there if you just need to refresh your
memory about a particular feature.

If you find terms that you aren’t familiar with, try looking them up in
the glossary (see Appendix D [Glossary], page 285).

Most of the time complete awk programs are used as examples, but in
some of the more advanced sections, only the part of the awk program that
illustrates the concept being described is shown.

While this book is aimed principally at people who have not been ex-
posed to awk, there is a lot of information here that even the awk expert
should find useful. In particular, the description of POSIX awk, and the
example programs in Chapter 15 [A Library of awk Functions], page 159,
and Chapter 16 [Practical awk Programs], page 193, should be of interest.

Dark Corners

Who opened that window shade?!?
Count Dracula

Until the POSIX standard (and The Gawk Manual), many features of
awk were either poorly documented, or not documented at all. Descriptions
of such features (often called “dark corners”) are noted in this book with
“(d.c.)”. They also appear in the index under the heading “dark corner.”

1.2 Typographical Conventions
This book is written using Texinfo, the GNU documentation formatting
language. A single Texinfo source file is used to produce both the printed
and on-line versions of the documentation. Because of this, the typographical
conventions are slightly different than in other books you may have read.

Examples you would type at the command line are preceded by the com-
mon shell primary and secondary prompts, ‘$’ and ‘>’. Output from the
command is preceded by the glyph “ a ”. This typically represents the com-
mand’s standard output. Error messages, and other output on the com-
mand’s standard error, are preceded by the glyph “ error ”. For example:

$ echo hi on stdout
a hi on stdout
$ echo hello on stderr 1>&2
error hello on stderr

Chapter 1: Introduction 7

In the text, command names appear in this font, while code segments
appear in the same font and quoted, ‘like this’. Some things will be em-
phasized like this, and if a point needs to be made strongly, it will be done
like this. The first occurrence of a new term is usually its definition, and
appears in the same font as the previous occurrence of “definition” in this
sentence. File names are indicated like this: /path/to/ourfile.

Characters that you type at the keyboard look like this. In particular,
there are special characters called “control characters.” These are characters
that you type by holding down both the CONTROL key and another key, at
the same time. For example, a Control-d is typed by first pressing and
holding the CONTROL key, next pressing the d key, and finally releasing both
keys.

1.3 Data Files for the Examples
Many of the examples in this book take their input from two sample data
files. The first, called BBS-list, represents a list of computer bulletin board
systems together with information about those systems. The second data
file, called inventory-shipped, contains information about shipments on a
monthly basis. In both files, each line is considered to be one record.

In the file BBS-list, each record contains the name of a computer bulletin
board, its phone number, the board’s baud rate(s), and a code for the number
of hours it is operational. An ‘A’ in the last column means the board operates
24 hours a day. A ‘B’ in the last column means the board operates evening
and weekend hours, only. A ‘C’ means the board operates only on weekends.

aardvark 555-5553 1200/300 B
alpo-net 555-3412 2400/1200/300 A
barfly 555-7685 1200/300 A
bites 555-1675 2400/1200/300 A
camelot 555-0542 300 C
core 555-2912 1200/300 C
fooey 555-1234 2400/1200/300 B
foot 555-6699 1200/300 B
macfoo 555-6480 1200/300 A
sdace 555-3430 2400/1200/300 A
sabafoo 555-2127 1200/300 C

The second data file, called inventory-shipped, represents informa-
tion about shipments during the year. Each record contains the month
of the year, the number of green crates shipped, the number of red boxes
shipped, the number of orange bags shipped, and the number of blue pack-
ages shipped, respectively. There are 16 entries, covering the 12 months of
one year and four months of the next year.

Jan 13 25 15 115
Feb 15 32 24 226
Mar 15 24 34 228

8 Effective AWK Programming

Apr 31 52 63 420
May 16 34 29 208
Jun 31 42 75 492
Jul 24 34 67 436
Aug 15 34 47 316
Sep 13 55 37 277
Oct 29 54 68 525
Nov 20 87 82 577
Dec 17 35 61 401

Jan 21 36 64 620
Feb 26 58 80 652
Mar 24 75 70 495
Apr 21 70 74 514

Chapter 2: Getting Started with awk 9

2 Getting Started with awk

The basic function of awk is to search files for lines (or other units of text)
that contain certain patterns. When a line matches one of the patterns, awk
performs specified actions on that line. awk keeps processing input lines in
this way until the end of the input files are reached.

Programs in awk are different from programs in most other languages,
because awk programs are data-driven; that is, you describe the data you
wish to work with, and then what to do when you find it. Most other
languages are procedural; you have to describe, in great detail, every step
the program is to take. When working with procedural languages, it is
usually much harder to clearly describe the data your program will process.
For this reason, awk programs are often refreshingly easy to both write and
read.

When you run awk, you specify an awk program that tells awk what to
do. The program consists of a series of rules. (It may also contain function
definitions, an advanced feature which we will ignore for now. See Chapter 13
[User-defined Functions], page 143.) Each rule specifies one pattern to search
for, and one action to perform when that pattern is found.

Syntactically, a rule consists of a pattern followed by an action. The
action is enclosed in curly braces to separate it from the pattern. Rules are
usually separated by newlines. Therefore, an awk program looks like this:

pattern { action }
pattern { action }
...

2.1 A Rose By Any Other Name
The awk language has evolved over the years. Full details are provided in
Chapter 17 [The Evolution of the awk Language], page 237. The language
described in this book is often referred to as “new awk.”

Because of this, many systems have multiple versions of awk. Some sys-
tems have an awk utility that implements the original version of the awk
language, and a nawk utility for the new version. Others have an oawk for
the “old awk” language, and plain awk for the new one. Still others only
have one version, usually the new one.1

All in all, this makes it difficult for you to know which version of awk you
should run when writing your programs. The best advice we can give here
is to check your local documentation. Look for awk, oawk, and nawk, as well
as for gawk. Chances are, you will have some version of new awk on your
system, and that is what you should use when running your programs. (Of
course, if you’re reading this book, chances are good that you have gawk!)

1 Often, these systems use gawk for their awk implementation!

10 Effective AWK Programming

Throughout this book, whenever we refer to a language feature that
should be available in any complete implementation of POSIX awk, we sim-
ply use the term awk. When referring to a feature that is specific to the
GNU implementation, we use the term gawk.

2.2 How to Run awk Programs
There are several ways to run an awk program. If the program is short, it is
easiest to include it in the command that runs awk, like this:

awk ’program’ input-file1 input-file2 ...

where program consists of a series of patterns and actions, as described
earlier. (The reason for the single quotes is described below, in Section 2.2.1
[One-shot Throw-away awk Programs], page 10.)

When the program is long, it is usually more convenient to put it in a
file and run it with a command like this:

awk -f program-file input-file1 input-file2 ...

2.2.1 One-shot Throw-away awk Programs

Once you are familiar with awk, you will often type in simple programs the
moment you want to use them. Then you can write the program as the first
argument of the awk command, like this:

awk ’program’ input-file1 input-file2 ...

where program consists of a series of patterns and actions, as described
earlier.

This command format instructs the shell, or command interpreter, to
start awk and use the program to process records in the input file(s). There
are single quotes around program so that the shell doesn’t interpret any awk
characters as special shell characters. They also cause the shell to treat all
of program as a single argument for awk and allow program to be more than
one line long.

This format is also useful for running short or medium-sized awk programs
from shell scripts, because it avoids the need for a separate file for the awk
program. A self-contained shell script is more reliable since there are no
other files to misplace.

Chapter 3 [Useful One Line Programs], page 19, presents several short,
self-contained programs.

As an interesting side point, the command

awk ’/foo/’ files ...

is essentially the same as

egrep foo files ...

2.2.2 Running awk without Input Files

You can also run awk without any input files. If you type the command line:

Chapter 2: Getting Started with awk 11

awk ’program’

then awk applies the program to the standard input, which usually means
whatever you type on the terminal. This continues until you indicate end-of-
file by typing Control-d. (On other operating systems, the end-of-file char-
acter may be different. For example, on OS/2 and MS-DOS, it is Control-
z.)

For example, the following program prints a friendly piece of advice (from
Douglas Adams’ The Hitchhiker’s Guide to the Galaxy), to keep you from
worrying about the complexities of computer programming (‘BEGIN’ is a
feature we haven’t discussed yet).

$ awk "BEGIN { print \"Don’t Panic!\" }"
a Don’t Panic!

This program does not read any input. The ‘\’ before each of the inner
double quotes is necessary because of the shell’s quoting rules, in particular
because it mixes both single quotes and double quotes.

This next simple awk program emulates the cat utility; it copies what-
ever you type at the keyboard to its standard output. (Why this works is
explained shortly.)

$ awk ’{ print }’
Now is the time for all good men
a Now is the time for all good men
to come to the aid of their country.
a to come to the aid of their country.
Four score and seven years ago, ...
a Four score and seven years ago, ...
What, me worry?
a What, me worry?
Control-d

2.2.3 Running Long Programs

Sometimes your awk programs can be very long. In this case it is more
convenient to put the program into a separate file. To tell awk to use that
file for its program, you type:

awk -f source-file input-file1 input-file2 ...

The ‘-f’ instructs the awk utility to get the awk program from the file
source-file. Any file name can be used for source-file. For example, you could
put the program:

BEGIN { print "Don’t Panic!" }

into the file advice. Then this command:

awk -f advice

does the same thing as this one:

awk "BEGIN { print \"Don’t Panic!\" }"

12 Effective AWK Programming

which was explained earlier (see Section 2.2.2 [Running awk without Input
Files], page 10). Note that you don’t usually need single quotes around
the file name that you specify with ‘-f’, because most file names don’t
contain any of the shell’s special characters. Notice that in advice, the awk
program did not have single quotes around it. The quotes are only needed
for programs that are provided on the awk command line.

If you want to identify your awk program files clearly as such, you can
add the extension .awk to the file name. This doesn’t affect the execution
of the awk program, but it does make “housekeeping” easier.

2.2.4 Executable awk Programs

Once you have learned awk, you may want to write self-contained awk scripts,
using the ‘#!’ script mechanism. You can do this on many Unix systems2

(and someday on the GNU system).

For example, you could update the file advice to look like this:

#! /bin/awk -f

BEGIN { print "Don’t Panic!" }

After making this file executable (with the chmod utility), you can simply
type ‘advice’ at the shell, and the system will arrange to run awk3 as if you
had typed ‘awk -f advice’.

$ advice
a Don’t Panic!

Self-contained awk scripts are useful when you want to write a program which
users can invoke without their having to know that the program is written
in awk.

Some older systems do not support the ‘#!’ mechanism. You can get a
similar effect using a regular shell script. It would look something like this:

: The colon ensures execution by the standard shell.
awk ’program’ "$@"

Using this technique, it is vital to enclose the program in single quotes
to protect it from interpretation by the shell. If you omit the quotes, only a
shell wizard can predict the results.

The "$@" causes the shell to forward all the command line arguments to
the awk program, without interpretation. The first line, which starts with
a colon, is used so that this shell script will work even if invoked by a user

2 The ‘#!’ mechanism works on Linux systems, Unix systems derived from Berkeley
Unix, System V Release 4, and some System V Release 3 systems.

3 The line beginning with ‘#!’ lists the full file name of an interpreter to be run, and
an optional initial command line argument to pass to that interpreter. The operating
system then runs the interpreter with the given argument and the full argument list
of the executed program. The first argument in the list is the full file name of the awk

program. The rest of the argument list will either be options to awk, or data files, or
both.

Chapter 2: Getting Started with awk 13

who uses the C shell. (Not all older systems obey this convention, but many
do.)

2.2.5 Comments in awk Programs

A comment is some text that is included in a program for the sake of human
readers; it is not really part of the program. Comments can explain what the
program does, and how it works. Nearly all programming languages have
provisions for comments, because programs are typically hard to understand
without their extra help.

In the awk language, a comment starts with the sharp sign character, ‘#’,
and continues to the end of the line. The ‘#’ does not have to be the first
character on the line. The awk language ignores the rest of a line following
a sharp sign. For example, we could have put the following into advice:

This program prints a nice friendly message. It helps
keep novice users from being afraid of the computer.
BEGIN { print "Don’t Panic!" }

You can put comment lines into keyboard-composed throw-away awk pro-
grams also, but this usually isn’t very useful; the purpose of a comment is
to help you or another person understand the program at a later time.

2.3 A Very Simple Example
The following command runs a simple awk program that searches the input
file BBS-list for the string of characters: ‘foo’. (A string of characters is
usually called a string. The term string is perhaps based on similar usage
in English, such as “a string of pearls,” or, “a string of cars in a train.”)

awk ’/foo/ { print $0 }’ BBS-list

When lines containing ‘foo’ are found, they are printed, because ‘print $0’
means print the current line. (Just ‘print’ by itself means the same thing,
so we could have written that instead.)

You will notice that slashes, ‘/’, surround the string ‘foo’ in the awk
program. The slashes indicate that ‘foo’ is a pattern to search for. This
type of pattern is called a regular expression, and is covered in more detail
later (see Chapter 4 [Regular Expressions], page 21). The pattern is allowed
to match parts of words. There are single-quotes around the awk program
so that the shell won’t interpret any of it as special shell characters.

Here is what this program prints:

$ awk ’/foo/ { print $0 }’ BBS-list
a fooey 555-1234 2400/1200/300 B
a foot 555-6699 1200/300 B
a macfoo 555-6480 1200/300 A
a sabafoo 555-2127 1200/300 C

In an awk rule, either the pattern or the action can be omitted, but not
both. If the pattern is omitted, then the action is performed for every input

14 Effective AWK Programming

line. If the action is omitted, the default action is to print all lines that
match the pattern.

Thus, we could leave out the action (the print statement and the curly
braces) in the above example, and the result would be the same: all lines
matching the pattern ‘foo’ would be printed. By comparison, omitting the
print statement but retaining the curly braces makes an empty action that
does nothing; then no lines would be printed.

2.4 An Example with Two Rules
The awk utility reads the input files one line at a time. For each line, awk
tries the patterns of each of the rules. If several patterns match then several
actions are run, in the order in which they appear in the awk program. If no
patterns match, then no actions are run.

After processing all the rules (perhaps none) that match the line, awk
reads the next line (however, see Section 9.7 [The next Statement], page 104,
and also see Section 9.8 [The nextfile Statement], page 105). This contin-
ues until the end of the file is reached.

For example, the awk program:

/12/ { print $0 }
/21/ { print $0 }

contains two rules. The first rule has the string ‘12’ as the pattern and
‘print $0’ as the action. The second rule has the string ‘21’ as the pattern
and also has ‘print $0’ as the action. Each rule’s action is enclosed in its
own pair of braces.

This awk program prints every line that contains the string ‘12’ or the
string ‘21’. If a line contains both strings, it is printed twice, once by each
rule.

This is what happens if we run this program on our two sample data files,
BBS-list and inventory-shipped, as shown here:

$ awk ’/12/ { print $0 }
> /21/ { print $0 }’ BBS-list inventory-shipped
a aardvark 555-5553 1200/300 B
a alpo-net 555-3412 2400/1200/300 A
a barfly 555-7685 1200/300 A
a bites 555-1675 2400/1200/300 A
a core 555-2912 1200/300 C
a fooey 555-1234 2400/1200/300 B
a foot 555-6699 1200/300 B
a macfoo 555-6480 1200/300 A
a sdace 555-3430 2400/1200/300 A
a sabafoo 555-2127 1200/300 C
a sabafoo 555-2127 1200/300 C
a Jan 21 36 64 620
a Apr 21 70 74 514

Chapter 2: Getting Started with awk 15

Note how the line in BBS-list beginning with ‘sabafoo’ was printed twice,
once for each rule.

2.5 A More Complex Example
Here is an example to give you an idea of what typical awk programs do. This
example shows how awk can be used to summarize, select, and rearrange the
output of another utility. It uses features that haven’t been covered yet, so
don’t worry if you don’t understand all the details.

ls -lg | awk ’$6 == "Nov" { sum += $5 }
END { print sum }’

This command prints the total number of bytes in all the files in the
current directory that were last modified in November (of any year). (In
the C shell you would need to type a semicolon and then a backslash at the
end of the first line; in a POSIX-compliant shell, such as the Bourne shell or
Bash, the GNU Bourne-Again shell, you can type the example as shown.)

The ‘ls -lg’ part of this example is a system command that gives you a
listing of the files in a directory, including file size and the date the file was
last modified. Its output looks like this:

-rw-r--r-- 1 arnold user 1933 Nov 7 13:05 Makefile
-rw-r--r-- 1 arnold user 10809 Nov 7 13:03 gawk.h
-rw-r--r-- 1 arnold user 983 Apr 13 12:14 gawk.tab.h
-rw-r--r-- 1 arnold user 31869 Jun 15 12:20 gawk.y
-rw-r--r-- 1 arnold user 22414 Nov 7 13:03 gawk1.c
-rw-r--r-- 1 arnold user 37455 Nov 7 13:03 gawk2.c
-rw-r--r-- 1 arnold user 27511 Dec 9 13:07 gawk3.c
-rw-r--r-- 1 arnold user 7989 Nov 7 13:03 gawk4.c

The first field contains read-write permissions, the second field contains the
number of links to the file, and the third field identifies the owner of the
file. The fourth field identifies the group of the file. The fifth field contains
the size of the file in bytes. The sixth, seventh and eighth fields contain the
month, day, and time, respectively, that the file was last modified. Finally,
the ninth field contains the name of the file.

The ‘$6 == "Nov"’ in our awk program is an expression that tests whether
the sixth field of the output from ‘ls -lg’ matches the string ‘Nov’. Each
time a line has the string ‘Nov’ for its sixth field, the action ‘sum += $5’ is
performed. This adds the fifth field (the file size) to the variable sum. As a
result, when awk has finished reading all the input lines, sum is the sum of
the sizes of files whose lines matched the pattern. (This works because awk
variables are automatically initialized to zero.)

After the last line of output from ls has been processed, the END rule is
executed, and the value of sum is printed. In this example, the value of sum
would be 80600.

These more advanced awk techniques are covered in later sections (see
Section 8.2 [Overview of Actions], page 96). Before you can move on to

16 Effective AWK Programming

more advanced awk programming, you have to know how awk interprets
your input and displays your output. By manipulating fields and using
print statements, you can produce some very useful and impressive looking
reports.

2.6 awk Statements Versus Lines
Most often, each line in an awk program is a separate statement or separate
rule, like this:

awk ’/12/ { print $0 }
/21/ { print $0 }’ BBS-list inventory-shipped

However, gawk will ignore newlines after any of the following:

, { ? : || && do else

A newline at any other point is considered the end of the statement. (Split-
ting lines after ‘?’ and ‘:’ is a minor gawk extension. The ‘?’ and ‘:’ referred
to here is the three operand conditional expression described in Section 7.12
[Conditional Expressions], page 86.)

If you would like to split a single statement into two lines at a point where
a newline would terminate it, you can continue it by ending the first line
with a backslash character, ‘\’. The backslash must be the final character
on the line to be recognized as a continuation character. This is allowed
absolutely anywhere in the statement, even in the middle of a string or
regular expression. For example:

awk ’/This regular expression is too long, so continue it\
on the next line/ { print $1 }’

We have generally not used backslash continuation in the sample programs
in this book. Since in gawk there is no limit on the length of a line, it
is never strictly necessary; it just makes programs more readable. For this
same reason, as well as for clarity, we have kept most statements short in the
sample programs presented throughout the book. Backslash continuation is
most useful when your awk program is in a separate source file, instead
of typed in on the command line. You should also note that many awk
implementations are more particular about where you may use backslash
continuation. For example, they may not allow you to split a string constant
using backslash continuation. Thus, for maximal portability of your awk
programs, it is best not to split your lines in the middle of a regular expression
or a string.

Caution: backslash continuation does not work as described above with
the C shell. Continuation with backslash works for awk programs in files,
and also for one-shot programs provided you are using a POSIX-compliant
shell, such as the Bourne shell or Bash, the GNU Bourne-Again shell. But
the C shell (csh) behaves differently! There, you must use two backslashes
in a row, followed by a newline. Note also that when using the C shell,
every newline in your awk program must be escaped with a backslash. To
illustrate:

Chapter 2: Getting Started with awk 17

% awk ’BEGIN { \
? print \\
? "hello, world" \
? }’
a hello, world

Here, the ‘%’ and ‘?’ are the C shell’s primary and secondary prompts, anal-
ogous to the standard shell’s ‘$’ and ‘>’.

awk is a line-oriented language. Each rule’s action has to begin on the
same line as the pattern. To have the pattern and action on separate lines,
you must use backslash continuation—there is no other way.

Note that backslash continuation and comments do not mix. As soon as
awk sees the ‘#’ that starts a comment, it ignores everything on the rest of
the line. For example:

$ gawk ’BEGIN { print "dont panic" # a friendly \
> BEGIN rule
> }’
error gawk: cmd. line:2: BEGIN rule
error gawk: cmd. line:2: ^ parse error

Here, it looks like the backslash would continue the comment onto the next
line. However, the backslash-newline combination is never even noticed,
since it is “hidden” inside the comment. Thus, the ‘BEGIN’ is noted as a
syntax error.

When awk statements within one rule are short, you might want to put
more than one of them on a line. You do this by separating the statements
with a semicolon, ‘;’.

This also applies to the rules themselves. Thus, the previous program
could have been written:

/12/ { print $0 } ; /21/ { print $0 }

Note: the requirement that rules on the same line must be separated with a
semicolon was not in the original awk language; it was added for consistency
with the treatment of statements within an action.

2.7 Other Features of awk
The awk language provides a number of predefined, or built-in variables,
which your programs can use to get information from awk. There are other
variables your program can set to control how awk processes your data.

In addition, awk provides a number of built-in functions for doing common
computational and string related operations.

As we develop our presentation of the awk language, we introduce most
of the variables and many of the functions. They are defined systemati-
cally in Chapter 10 [Built-in Variables], page 107, and Chapter 12 [Built-in
Functions], page 125.

18 Effective AWK Programming

2.8 When to Use awk

You might wonder how awk might be useful for you. Using utility programs,
advanced patterns, field separators, arithmetic statements, and other selec-
tion criteria, you can produce much more complex output. The awk language
is very useful for producing reports from large amounts of raw data, such as
summarizing information from the output of other utility programs like ls.
(See Section 2.5 [A More Complex Example], page 15.)

Programs written with awk are usually much smaller than they would be
in other languages. This makes awk programs easy to compose and use. Of-
ten, awk programs can be quickly composed at your terminal, used once, and
thrown away. Since awk programs are interpreted, you can avoid the (usu-
ally lengthy) compilation part of the typical edit-compile-test-debug cycle of
software development.

Complex programs have been written in awk, including a complete retar-
getable assembler for eight-bit microprocessors (see Appendix D [Glossary],
page 285, for more information) and a microcode assembler for a special
purpose Prolog computer. However, awk’s capabilities are strained by tasks
of such complexity.

If you find yourself writing awk scripts of more than, say, a few hundred
lines, you might consider using a different programming language. Emacs
Lisp is a good choice if you need sophisticated string or pattern matching ca-
pabilities. The shell is also good at string and pattern matching; in addition,
it allows powerful use of the system utilities. More conventional languages,
such as C, C++, and Lisp, offer better facilities for system programming and
for managing the complexity of large programs. Programs in these languages
may require more lines of source code than the equivalent awk programs, but
they are easier to maintain and usually run more efficiently.

Chapter 3: Useful One Line Programs 19

3 Useful One Line Programs

Many useful awk programs are short, just a line or two. Here is a collection
of useful, short programs to get you started. Some of these programs contain
constructs that haven’t been covered yet. The description of the program
will give you a good idea of what is going on, but please read the rest of the
book to become an awk expert!

Most of the examples use a data file named data. This is just a place-
holder; if you were to use these programs yourself, you would substitute your
own file names for data.

awk ’{ if (length($0) > max) max = length($0) }
END { print max }’ data

This program prints the length of the longest input line.

awk ’length($0) > 80’ data
This program prints every line that is longer than 80 characters.
The sole rule has a relational expression as its pattern, and has
no action (so the default action, printing the record, is used).

expand data | awk ’{ if (x < length()) x = length() }
END { print "maximum line length is " x }’

This program prints the length of the longest line in data. The
input is processed by the expand program to change tabs into
spaces, so the widths compared are actually the right-margin
columns.

awk ’NF > 0’ data
This program prints every line that has at least one field. This
is an easy way to delete blank lines from a file (or rather, to
create a new file similar to the old file but from which the blank
lines have been deleted).

awk ’BEGIN { for (i = 1; i <= 7; i++)
print int(101 * rand()) }’

This program prints seven random numbers from zero to 100,
inclusive.

ls -lg files | awk ’{ x += $5 } ; END { print "total bytes: " x }’
This program prints the total number of bytes used by files.

ls -lg files | awk ’{ x += $5 }
END { print "total K-bytes: " (x + 1023)/1024 }’

This program prints the total number of kilobytes used by files.

awk -F: ’{ print $1 }’ /etc/passwd | sort
This program prints a sorted list of the login names of all users.

awk ’END { print NR }’ data
This program counts lines in a file.

20 Effective AWK Programming

awk ’NR % 2 == 0’ data
This program prints the even numbered lines in the data file. If
you were to use the expression ‘NR % 2 == 1’ instead, it would
print the odd numbered lines.

Chapter 4: Regular Expressions 21

4 Regular Expressions

A regular expression, or regexp, is a way of describing a set of strings. Be-
cause regular expressions are such a fundamental part of awk programming,
their format and use deserve a separate chapter.

A regular expression enclosed in slashes (‘/’) is an awk pattern that
matches every input record whose text belongs to that set.

The simplest regular expression is a sequence of letters, numbers, or both.
Such a regexp matches any string that contains that sequence. Thus, the
regexp ‘foo’ matches any string containing ‘foo’. Therefore, the pattern
/foo/ matches any input record containing the three characters ‘foo’, any-
where in the record. Other kinds of regexps let you specify more complicated
classes of strings.

Initially, the examples will be simple. As we explain more about how
regular expressions work, we will present more complicated examples.

4.1 How to Use Regular Expressions
A regular expression can be used as a pattern by enclosing it in slashes.
Then the regular expression is tested against the entire text of each record.
(Normally, it only needs to match some part of the text in order to succeed.)
For example, this prints the second field of each record that contains the
three characters ‘foo’ anywhere in it:

$ awk ’/foo/ { print $2 }’ BBS-list
a 555-1234
a 555-6699
a 555-6480
a 555-2127

Regular expressions can also be used in matching expressions. These
expressions allow you to specify the string to match against; it need not be
the entire current input record. The two operators, ‘~’ and ‘!~’, perform
regular expression comparisons. Expressions using these operators can be
used as patterns or in if, while, for, and do statements.

exp ~ /regexp/
This is true if the expression exp (taken as a string) is matched
by regexp. The following example matches, or selects, all input
records with the upper-case letter ‘J’ somewhere in the first field:

$ awk ’$1 ~ /J/’ inventory-shipped
a Jan 13 25 15 115
a Jun 31 42 75 492
a Jul 24 34 67 436
a Jan 21 36 64 620

So does this:

awk ’{ if ($1 ~ /J/) print }’ inventory-shipped

22 Effective AWK Programming

exp !~ /regexp/
This is true if the expression exp (taken as a character string)
is not matched by regexp. The following example matches, or
selects, all input records whose first field does not contain the
upper-case letter ‘J’:

$ awk ’$1 !~ /J/’ inventory-shipped
a Feb 15 32 24 226
a Mar 15 24 34 228
a Apr 31 52 63 420
a May 16 34 29 208
...

When a regexp is written enclosed in slashes, like /foo/, we call it a
regexp constant, much like 5.27 is a numeric constant, and "foo" is a string
constant.

4.2 Escape Sequences
Some characters cannot be included literally in string constants ("foo")
or regexp constants (/foo/). You represent them instead with escape se-
quences, which are character sequences beginning with a backslash (‘\’).

One use of an escape sequence is to include a double-quote character in a
string constant. Since a plain double-quote would end the string, you must
use ‘\"’ to represent an actual double-quote character as a part of the string.
For example:

$ awk ’BEGIN { print "He said \"hi!\" to her." }’
a He said "hi!" to her.

The backslash character itself is another character that cannot be in-
cluded normally; you write ‘\\’ to put one backslash in the string or regexp.
Thus, the string whose contents are the two characters ‘"’ and ‘\’ must be
written "\"\\".

Another use of backslash is to represent unprintable characters such as
tab or newline. While there is nothing to stop you from entering most
unprintable characters directly in a string constant or regexp constant, they
may look ugly.

Here is a table of all the escape sequences used in awk, and what they
represent. Unless noted otherwise, all of these escape sequences apply to
both string constants and regexp constants.

\\ A literal backslash, ‘\’.

\a The “alert” character, Control-g, ASCII code 7 (BEL).

\b Backspace, Control-h, ASCII code 8 (BS).

\f Formfeed, Control-l, ASCII code 12 (FF).

\n Newline, Control-j, ASCII code 10 (LF).

Chapter 4: Regular Expressions 23

\r Carriage return, Control-m, ASCII code 13 (CR).

\t Horizontal tab, Control-i, ASCII code 9 (HT).

\v Vertical tab, Control-k, ASCII code 11 (VT).

\nnn The octal value nnn, where nnn are one to three digits between
‘0’ and ‘7’. For example, the code for the ASCII ESC (escape)
character is ‘\033’.

\xhh... The hexadecimal value hh, where hh are hexadecimal digits (‘0’
through ‘9’ and either ‘A’ through ‘F’ or ‘a’ through ‘f’). Like
the same construct in ANSI C, the escape sequence continues
until the first non-hexadecimal digit is seen. However, using
more than two hexadecimal digits produces undefined results.
(The ‘\x’ escape sequence is not allowed in POSIX awk.)

\/ A literal slash (necessary for regexp constants only). You use
this when you wish to write a regexp constant that contains
a slash. Since the regexp is delimited by slashes, you need to
escape the slash that is part of the pattern, in order to tell awk
to keep processing the rest of the regexp.

\" A literal double-quote (necessary for string constants only). You
use this when you wish to write a string constant that contains
a double-quote. Since the string is delimited by double-quotes,
you need to escape the quote that is part of the string, in order
to tell awk to keep processing the rest of the string.

In gawk, there are additional two character sequences that begin with
backslash that have special meaning in regexps. See Section 4.4 [Additional
Regexp Operators Only in gawk], page 29.

In a string constant, what happens if you place a backslash before some-
thing that is not one of the characters listed above? POSIX awk purposely
leaves this case undefined. There are two choices.

• Strip the backslash out. This is what Unix awk and gawk both do. For
example, "a\qc" is the same as "aqc".

• Leave the backslash alone. Some other awk implementations do this. In
such implementations, "a\qc" is the same as if you had typed "a\\qc".

In a regexp, a backslash before any character that is not in the above
table, and not listed in Section 4.4 [Additional Regexp Operators Only in
gawk], page 29, means that the next character should be taken literally, even
if it would normally be a regexp operator. E.g., /a\+b/ matches the three
characters ‘a+b’.

For complete portability, do not use a backslash before any character not
listed in the table above.

Another interesting question arises. Suppose you use an octal or hexadec-
imal escape to represent a regexp metacharacter (see Section 4.3 [Regular

24 Effective AWK Programming

Expression Operators], page 24). Does awk treat the character as literal
character, or as a regexp operator?

It turns out that historically, such characters were taken literally (d.c.).
However, the POSIX standard indicates that they should be treated as real
metacharacters, and this is what gawk does. However, in compatibility mode
(see Section 14.1 [Command Line Options], page 151), gawk treats the char-
acters represented by octal and hexadecimal escape sequences literally when
used in regexp constants. Thus, /a\52b/ is equivalent to /a*b/.

To summarize:

1. The escape sequences in the table above are always processed first, for
both string constants and regexp constants. This happens very early,
as soon as awk reads your program.

2. gawk processes both regexp constants and dynamic regexps (see
Section 4.7 [Using Dynamic Regexps], page 32), for the special
operators listed in Section 4.4 [Additional Regexp Operators Only in
gawk], page 29.

3. A backslash before any other character means to treat that character
literally.

4.3 Regular Expression Operators
You can combine regular expressions with the following characters, called
regular expression operators, or metacharacters, to increase the power and
versatility of regular expressions.

The escape sequences described above in Section 4.2 [Escape Sequences],
page 22, are valid inside a regexp. They are introduced by a ‘\’. They are
recognized and converted into the corresponding real characters as the very
first step in processing regexps.

Here is a table of metacharacters. All characters that are not escape
sequences and that are not listed in the table stand for themselves.

\ This is used to suppress the special meaning of a character when
matching. For example:

\$

matches the character ‘$’.

Chapter 4: Regular Expressions 25

^ This matches the beginning of a string. For example:

^@chapter

matches the ‘@chapter’ at the beginning of a string, and can
be used to identify chapter beginnings in Texinfo source files.
The ‘^’ is known as an anchor, since it anchors the pattern to
matching only at the beginning of the string.

It is important to realize that ‘^’ does not match the beginning
of a line embedded in a string. In this example the condition is
not true:

if ("line1\nLINE 2" ~ /^L/) ...

$ This is similar to ‘^’, but it matches only at the end of a string.
For example:

p$

matches a record that ends with a ‘p’. The ‘$’ is also an anchor,
and also does not match the end of a line embedded in a string.
In this example the condition is not true:

if ("line1\nLINE 2" ~ /1$/) ...

. The period, or dot, matches any single character, including the
newline character. For example:

.P

matches any single character followed by a ‘P’ in a string. Using
concatenation we can make a regular expression like ‘U.A’, which
matches any three-character sequence that begins with ‘U’ and
ends with ‘A’.

In strict POSIX mode (see Section 14.1 [Command Line Op-
tions], page 151), ‘.’ does not match the nul character, which
is a character with all bits equal to zero. Otherwise, nul is just
another character. Other versions of awk may not be able to
match the nul character.

[...] This is called a character list. It matches any one of the char-
acters that are enclosed in the square brackets. For example:

[MVX]

matches any one of the characters ‘M’, ‘V’, or ‘X’ in a string.

Ranges of characters are indicated by using a hyphen between
the beginning and ending characters, and enclosing the whole
thing in brackets. For example:

[0-9]

matches any digit. Multiple ranges are allowed. E.g., the list
[A-Za-z0-9] is a common way to express the idea of “all al-
phanumeric characters.”

26 Effective AWK Programming

To include one of the characters ‘\’, ‘]’, ‘-’ or ‘^’ in a character
list, put a ‘\’ in front of it. For example:

[d\]]

matches either ‘d’, or ‘]’.

This treatment of ‘\’ in character lists is compatible with other
awk implementations, and is also mandated by POSIX. The reg-
ular expressions in awk are a superset of the POSIX specifica-
tion for Extended Regular Expressions (EREs). POSIX EREs
are based on the regular expressions accepted by the traditional
egrep utility.

Character classes are a new feature introduced in the POSIX
standard. A character class is a special notation for describing
lists of characters that have a specific attribute, but where the
actual characters themselves can vary from country to country
and/or from character set to character set. For example, the
notion of what is an alphabetic character differs in the USA and
in France.

A character class is only valid in a regexp inside the brackets of
a character list. Character classes consist of ‘[:’, a keyword de-
noting the class, and ‘:]’. Here are the character classes defined
by the POSIX standard.

[:alnum:]
Alphanumeric characters.

[:alpha:]
Alphabetic characters.

[:blank:]
Space and tab characters.

[:cntrl:]
Control characters.

[:digit:]
Numeric characters.

[:graph:]
Characters that are printable and are also visible.
(A space is printable, but not visible, while an ‘a’ is
both.)

[:lower:]
Lower-case alphabetic characters.

[:print:]
Printable characters (characters that are not control
characters.)

Chapter 4: Regular Expressions 27

[:punct:]
Punctuation characters (characters that are not let-
ter, digits, control characters, or space characters).

[:space:]
Space characters (such as space, tab, and formfeed,
to name a few).

[:upper:]
Upper-case alphabetic characters.

[:xdigit:]
Characters that are hexadecimal digits.

For example, before the POSIX standard, to match alphanu-
meric characters, you had to write /[A-Za-z0-9]/. If your char-
acter set had other alphabetic characters in it, this would not
match them. With the POSIX character classes, you can write
/[[:alnum:]]/, and this will match all the alphabetic and nu-
meric characters in your character set.

Two additional special sequences can appear in character lists.
These apply to non-ASCII character sets, which can have single
symbols (called collating elements) that are represented with
more than one character, as well as several characters that are
equivalent for collating, or sorting, purposes. (E.g., in French, a
plain “e” and a grave-accented “è” are equivalent.)

Collating Symbols
A collating symbol is a multi-character collating el-
ement enclosed in ‘[.’ and ‘.]’. For example, if ‘ch’
is a collating element, then [[.ch.]] is a regexp
that matches this collating element, while [ch] is a
regexp that matches either ‘c’ or ‘h’.

Equivalence Classes
An equivalence class is a locale-specific name for a
list of characters that are equivalent. The name is
enclosed in ‘[=’ and ‘=]’. For example, the name ‘e’
might be used to represent all of “e,” “è,” and “é.”
In this case, [[=e]] is a regexp that matches any of
‘e’, ‘é’, or ‘è’.

These features are very valuable in non-English speaking locales.

Caution: The library functions that gawk uses for regular expres-
sion matching currently only recognize POSIX character classes;
they do not recognize collating symbols or equivalence classes.

[^ ...] This is a complemented character list. The first character after
the ‘[’ must be a ‘^’. It matches any characters except those in
the square brackets. For example:

[^0-9]

28 Effective AWK Programming

matches any character that is not a digit.

| This is the alternation operator, and it is used to specify alter-
natives. For example:

^P|[0-9]

matches any string that matches either ‘^P’ or ‘[0-9]’. This
means it matches any string that starts with ‘P’ or contains a
digit.

The alternation applies to the largest possible regexps on either
side. In other words, ‘|’ has the lowest precedence of all the
regular expression operators.

(...) Parentheses are used for grouping in regular expressions as
in arithmetic. They can be used to concatenate regular ex-
pressions containing the alternation operator, ‘|’. For exam-
ple, ‘@(samp|code)\{[^}]+\}’ matches both ‘@code{foo}’ and
‘@samp{bar}’. (These are Texinfo formatting control sequences.)

* This symbol means that the preceding regular expression is to
be repeated as many times as necessary to find a match. For
example:

ph*

applies the ‘*’ symbol to the preceding ‘h’ and looks for matches
of one ‘p’ followed by any number of ‘h’s. This will also match
just ‘p’ if no ‘h’s are present.

The ‘*’ repeats the smallest possible preceding expression. (Use
parentheses if you wish to repeat a larger expression.) It finds
as many repetitions as possible. For example:

awk ’/\(c[ad][ad]*r x\)/ { print }’ sample

prints every record in sample containing a string of the form
‘(car x)’, ‘(cdr x)’, ‘(cadr x)’, and so on. Notice the escaping
of the parentheses by preceding them with backslashes.

+ This symbol is similar to ‘*’, but the preceding expression must
be matched at least once. This means that:

wh+y

would match ‘why’ and ‘whhy’ but not ‘wy’, whereas ‘wh*y’ would
match all three of these strings. This is a simpler way of writing
the last ‘*’ example:

awk ’/\(c[ad]+r x\)/ { print }’ sample

? This symbol is similar to ‘*’, but the preceding expression can
be matched either once or not at all. For example:

fe?d

will match ‘fed’ and ‘fd’, but nothing else.

Chapter 4: Regular Expressions 29

{n}
{n,}
{n,m} One or two numbers inside braces denote an interval expres-

sion. If there is one number in the braces, the preceding regexp
is repeated n times. If there are two numbers separated by a
comma, the preceding regexp is repeated n to m times. If there
is one number followed by a comma, then the preceding regexp
is repeated at least n times.

wh{3}y matches ‘whhhy’ but not ‘why’ or ‘whhhhy’.

wh{3,5}y matches ‘whhhy’ or ‘whhhhy’ or ‘whhhhhy’, only.

wh{2,}y matches ‘whhy’ or ‘whhhy’, and so on.

Interval expressions were not traditionally available in awk. As
part of the POSIX standard they were added, to make awk and
egrep consistent with each other.

However, since old programs may use ‘{’ and ‘}’ in regexp con-
stants, by default gawk does not match interval expressions in
regexps. If either ‘--posix’ or ‘--re-interval’ are specified
(see Section 14.1 [Command Line Options], page 151), then in-
terval expressions are allowed in regexps.

In regular expressions, the ‘*’, ‘+’, and ‘?’ operators, as well as the braces
‘{’ and ‘}’, have the highest precedence, followed by concatenation, and
finally by ‘|’. As in arithmetic, parentheses can change how operators are
grouped.

If gawk is in compatibility mode (see Section 14.1 [Command Line Op-
tions], page 151), character classes and interval expressions are not available
in regular expressions.

The next section discusses the GNU-specific regexp operators, and pro-
vides more detail concerning how command line options affect the way gawk
interprets the characters in regular expressions.

4.4 Additional Regexp Operators Only in gawk

GNU software that deals with regular expressions provides a number of
additional regexp operators. These operators are described in this section,
and are specific to gawk; they are not available in other awk implementations.

Most of the additional operators are for dealing with word matching.
For our purposes, a word is a sequence of one or more letters, digits, or
underscores (‘_’).

\w This operator matches any word-constituent character, i.e. any
letter, digit, or underscore. Think of it as a short-hand for
[[:alnum:]_].

\W This operator matches any character that is not word-
constituent. Think of it as a short-hand for [^[:alnum:]_].

30 Effective AWK Programming

\< This operator matches the empty string at the beginning of
a word. For example, /\<away/ matches ‘away’, but not
‘stowaway’.

\> This operator matches the empty string at the end of a word.
For example, /stow\>/ matches ‘stow’, but not ‘stowaway’.

\y This operator matches the empty string at either the begin-
ning or the end of a word (the word boundary). For exam-
ple, ‘\yballs?\y’ matches either ‘ball’ or ‘balls’ as a separate
word.

\B This operator matches the empty string within a word. In other
words, ‘\B’ matches the empty string that occurs between two
word-constituent characters. For example, /\Brat\B/ matches
‘crate’, but it does not match ‘dirty rat’. ‘\B’ is essentially
the opposite of ‘\y’.

There are two other operators that work on buffers. In Emacs, a buffer is,
naturally, an Emacs buffer. For other programs, the regexp library routines
that gawk uses consider the entire string to be matched as the buffer.

For awk, since ‘^’ and ‘$’ always work in terms of the beginning and end
of strings, these operators don’t add any new capabilities. They are provided
for compatibility with other GNU software.

\‘ This operator matches the empty string at the beginning of the
buffer.

\’ This operator matches the empty string at the end of the buffer.

In other GNU software, the word boundary operator is ‘\b’. However,
that conflicts with the awk language’s definition of ‘\b’ as backspace, so gawk
uses a different letter.

An alternative method would have been to require two backslashes in the
GNU operators, but this was deemed to be too confusing, and the current
method of using ‘\y’ for the GNU ‘\b’ appears to be the lesser of two evils.

The various command line options (see Section 14.1 [Command Line Op-
tions], page 151) control how gawk interprets characters in regexps.

No options
In the default case, gawk provide all the facilities of POSIX reg-
exps and the GNU regexp operators described above. However,
interval expressions are not supported.

--posix Only POSIX regexps are supported, the GNU operators are not
special (e.g., ‘\w’ matches a literal ‘w’). Interval expressions are
allowed.

--traditional
Traditional Unix awk regexps are matched. The GNU operators
are not special, interval expressions are not available, and nei-
ther are the POSIX character classes ([[:alnum:]] and so on).

Chapter 4: Regular Expressions 31

Characters described by octal and hexadecimal escape sequences
are treated literally, even if they represent regexp metacharac-
ters.

--re-interval
Allow interval expressions in regexps, even if ‘--traditional’
has been provided.

4.5 Case-sensitivity in Matching
Case is normally significant in regular expressions, both when matching or-
dinary characters (i.e. not metacharacters), and inside character sets. Thus
a ‘w’ in a regular expression matches only a lower-case ‘w’ and not an upper-
case ‘W’.

The simplest way to do a case-independent match is to use a character
list: ‘[Ww]’. However, this can be cumbersome if you need to use it often;
and it can make the regular expressions harder to read. There are two
alternatives that you might prefer.

One way to do a case-insensitive match at a particular point in the pro-
gram is to convert the data to a single case, using the tolower or toupper
built-in string functions (which we haven’t discussed yet; see Section 12.3
[Built-in Functions for String Manipulation], page 127). For example:

tolower($1) ~ /foo/ { ... }

converts the first field to lower-case before matching against it. This will
work in any POSIX-compliant implementation of awk.

Another method, specific to gawk, is to set the variable IGNORECASE to
a non-zero value (see Chapter 10 [Built-in Variables], page 107). When
IGNORECASE is not zero, all regexp and string operations ignore case. Chang-
ing the value of IGNORECASE dynamically controls the case sensitivity of your
program as it runs. Case is significant by default because IGNORECASE (like
most variables) is initialized to zero.

x = "aB"
if (x ~ /ab/) ... # this test will fail

IGNORECASE = 1
if (x ~ /ab/) ... # now it will succeed

In general, you cannot use IGNORECASE to make certain rules case-
insensitive and other rules case-sensitive, because there is no way to set
IGNORECASE just for the pattern of a particular rule. To do this, you must
use character lists or tolower. However, one thing you can do only with
IGNORECASE is turn case-sensitivity on or off dynamically for all the rules at
once.

IGNORECASE can be set on the command line, or in a BEGIN rule
(see Section 14.2 [Other Command Line Arguments], page 155; also see
Section 8.1.5.1 [Startup and Cleanup Actions], page 94). Setting IGNORECASE

32 Effective AWK Programming

from the command line is a way to make a program case-insensitive without
having to edit it.

Prior to version 3.0 of gawk, the value of IGNORECASE only affected regexp
operations. It did not affect string comparison with ‘==’, ‘!=’, and so on.
Beginning with version 3.0, both regexp and string comparison operations
are affected by IGNORECASE.

Beginning with version 3.0 of gawk, the equivalences between upper-case
and lower-case characters are based on the ISO-8859-1 (ISO Latin-1) char-
acter set. This character set is a superset of the traditional 128 ASCII
characters, that also provides a number of characters suitable for use with
European languages.

The value of IGNORECASE has no effect if gawk is in compatibility mode
(see Section 14.1 [Command Line Options], page 151). Case is always sig-
nificant in compatibility mode.

4.6 How Much Text Matches?
Consider the following example:

echo aaaabcd | awk ’{ sub(/a+/, "<A>"); print }’

This example uses the sub function (which we haven’t discussed yet, see
Section 12.3 [Built-in Functions for String Manipulation], page 127) to make
a change to the input record. Here, the regexp /a+/ indicates “one or more
‘a’ characters,” and the replacement text is ‘<A>’.

The input contains four ‘a’ characters. What will the output be? In other
words, how many is “one or more”—will awk match two, three, or all four
‘a’ characters?

The answer is, awk (and POSIX) regular expressions always match the
leftmost, longest sequence of input characters that can match. Thus, in this
example, all four ‘a’ characters are replaced with ‘<A>’.

$ echo aaaabcd | awk ’{ sub(/a+/, "<A>"); print }’
a <A>bcd

For simple match/no-match tests, this is not so important. But when do-
ing regexp-based field and record splitting, and text matching and substitu-
tions with the match, sub, gsub, and gensub functions, it is very important.
Understanding this principle is also important for regexp-based record and
field splitting (see Section 5.1 [How Input is Split into Records], page 35,
and also see Section 5.5 [Specifying How Fields are Separated], page 42).

4.7 Using Dynamic Regexps
The right hand side of a ‘~’ or ‘!~’ operator need not be a regexp constant
(i.e. a string of characters between slashes). It may be any expression. The
expression is evaluated, and converted if necessary to a string; the contents
of the string are used as the regexp. A regexp that is computed in this way
is called a dynamic regexp. For example:

Chapter 4: Regular Expressions 33

BEGIN { identifier_regexp = "[A-Za-z_][A-Za-z_0-9]+" }
$0 ~ identifier_regexp { print }

sets identifier_regexp to a regexp that describes awk variable names, and
tests if the input record matches this regexp.

Caution: When using the ‘~’ and ‘!~’ operators, there is a difference
between a regexp constant enclosed in slashes, and a string constant enclosed
in double quotes. If you are going to use a string constant, you have to
understand that the string is in essence scanned twice; the first time when
awk reads your program, and the second time when it goes to match the
string on the left-hand side of the operator with the pattern on the right.
This is true of any string valued expression (such as identifier_regexp
above), not just string constants.

What difference does it make if the string is scanned twice? The answer
has to do with escape sequences, and particularly with backslashes. To get
a backslash into a regular expression inside a string, you have to type two
backslashes.

For example, /*/ is a regexp constant for a literal ‘*’. Only one backslash
is needed. To do the same thing with a string, you would have to type
"*". The first backslash escapes the second one, so that the string actually
contains the two characters ‘\’ and ‘*’.

Given that you can use both regexp and string constants to describe reg-
ular expressions, which should you use? The answer is “regexp constants,”
for several reasons.

1. String constants are more complicated to write, and more difficult to
read. Using regexp constants makes your programs less error-prone.
Not understanding the difference between the two kinds of constants is
a common source of errors.

2. It is also more efficient to use regexp constants: awk can note that you
have supplied a regexp and store it internally in a form that makes
pattern matching more efficient. When using a string constant, awk
must first convert the string into this internal form, and then perform
the pattern matching.

3. Using regexp constants is better style; it shows clearly that you intend
a regexp match.

Chapter 5: Reading Input Files 35

5 Reading Input Files

In the typical awk program, all input is read either from the standard input
(by default the keyboard, but often a pipe from another command) or from
files whose names you specify on the awk command line. If you specify input
files, awk reads them in order, reading all the data from one before going on
to the next. The name of the current input file can be found in the built-in
variable FILENAME (see Chapter 10 [Built-in Variables], page 107).

The input is read in units called records, and processed by the rules of
your program one record at a time. By default, each record is one line. Each
record is automatically split into chunks called fields. This makes it more
convenient for programs to work on the parts of a record.

On rare occasions you will need to use the getline command. The
getline command is valuable, both because it can do explicit input from any
number of files, and because the files used with it do not have to be named
on the awk command line (see Section 5.8 [Explicit Input with getline],
page 50).

5.1 How Input is Split into Records
The awk utility divides the input for your awk program into records and
fields. Records are separated by a character called the record separator. By
default, the record separator is the newline character. This is why records
are, by default, single lines. You can use a different character for the record
separator by assigning the character to the built-in variable RS.

You can change the value of RS in the awk program, like any other variable,
with the assignment operator, ‘=’ (see Section 7.7 [Assignment Expressions],
page 77). The new record-separator character should be enclosed in quo-
tation marks, which indicate a string constant. Often the right time to do
this is at the beginning of execution, before any input has been processed,
so that the very first record will be read with the proper separator. To do
this, use the special BEGIN pattern (see Section 8.1.5 [The BEGIN and END
Special Patterns], page 94). For example:

awk ’BEGIN { RS = "/" } ; { print $0 }’ BBS-list

changes the value of RS to "/", before reading any input. This is a string
whose first character is a slash; as a result, records are separated by slashes.
Then the input file is read, and the second rule in the awk program (the
action with no pattern) prints each record. Since each print statement
adds a newline at the end of its output, the effect of this awk program is to
copy the input with each slash changed to a newline. Here are the results of
running the program on BBS-list:

36 Effective AWK Programming

$ awk ’BEGIN { RS = "/" } ; { print $0 }’ BBS-list
a aardvark 555-5553 1200
a 300 B
a alpo-net 555-3412 2400
a 1200
a 300 A
a barfly 555-7685 1200
a 300 A
a bites 555-1675 2400
a 1200
a 300 A
a camelot 555-0542 300 C
a core 555-2912 1200
a 300 C
a fooey 555-1234 2400
a 1200
a 300 B
a foot 555-6699 1200
a 300 B
a macfoo 555-6480 1200
a 300 A
a sdace 555-3430 2400
a 1200
a 300 A
a sabafoo 555-2127 1200
a 300 C
a

Note that the entry for the ‘camelot’ BBS is not split. In the original data
file (see Section 1.3 [Data Files for the Examples], page 7), the line looks like
this:

camelot 555-0542 300 C

It only has one baud rate; there are no slashes in the record.

Another way to change the record separator is on the command line,
using the variable-assignment feature (see Section 14.2 [Other Command
Line Arguments], page 155).

awk ’{ print $0 }’ RS="/" BBS-list

This sets RS to ‘/’ before processing BBS-list.

Using an unusual character such as ‘/’ for the record separator produces
correct behavior in the vast majority of cases. However, the following (ex-
treme) pipeline prints a surprising ‘1’. There is one field, consisting of a
newline. The value of the built-in variable NF is the number of fields in the
current record.

$ echo | awk ’BEGIN { RS = "a" } ; { print NF }’
a 1

Chapter 5: Reading Input Files 37

Reaching the end of an input file terminates the current input record, even
if the last character in the file is not the character in RS (d.c.).

The empty string, "" (a string of no characters), has a special meaning
as the value of RS: it means that records are separated by one or more blank
lines, and nothing else. See Section 5.7 [Multiple-Line Records], page 48, for
more details.

If you change the value of RS in the middle of an awk run, the new value is
used to delimit subsequent records, but the record currently being processed
(and records already processed) are not affected.

After the end of the record has been determined, gawk sets the variable
RT to the text in the input that matched RS.

The value of RS is in fact not limited to a one-character string. It can
be any regular expression (see Chapter 4 [Regular Expressions], page 21).
In general, each record ends at the next string that matches the regular
expression; the next record starts at the end of the matching string. This
general rule is actually at work in the usual case, where RS contains just a
newline: a record ends at the beginning of the next matching string (the
next newline in the input) and the following record starts just after the end
of this string (at the first character of the following line). The newline, since
it matches RS, is not part of either record.

When RS is a single character, RT will contain the same single character.
However, when RS is a regular expression, then RT becomes more useful; it
contains the actual input text that matched the regular expression.

The following example illustrates both of these features. It sets RS equal
to a regular expression that matches either a newline, or a series of one or
more upper-case letters with optional leading and/or trailing white space
(see Chapter 4 [Regular Expressions], page 21).

$ echo record 1 AAAA record 2 BBBB record 3 |
> gawk ’BEGIN { RS = "\n|(*[[:upper:]]+ *)" }
> { print "Record =", $0, "and RT =", RT }’
a Record = record 1 and RT = AAAA
a Record = record 2 and RT = BBBB
a Record = record 3 and RT =
a

The final line of output has an extra blank line. This is because the value of
RT is a newline, and then the print statement supplies its own terminating
newline.

See Section 16.2.8 [A Simple Stream Editor], page 228, for a more useful
example of RS as a regexp and RT.

The use of RS as a regular expression and the RT variable are gawk exten-
sions; they are not available in compatibility mode (see Section 14.1 [Com-
mand Line Options], page 151). In compatibility mode, only the first char-
acter of the value of RS is used to determine the end of the record.

38 Effective AWK Programming

The awk utility keeps track of the number of records that have been read
so far from the current input file. This value is stored in a built-in variable
called FNR. It is reset to zero when a new file is started. Another built-in
variable, NR, is the total number of input records read so far from all data
files. It starts at zero but is never automatically reset to zero.

5.2 Examining Fields
When awk reads an input record, the record is automatically separated or
parsed by the interpreter into chunks called fields. By default, fields are
separated by whitespace, like words in a line. Whitespace in awk means any
string of one or more spaces, tabs or newlines;1 other characters such as
formfeed, and so on, that are considered whitespace by other languages are
not considered whitespace by awk.

The purpose of fields is to make it more convenient for you to refer to
these pieces of the record. You don’t have to use them—you can operate on
the whole record if you wish—but fields are what make simple awk programs
so powerful.

To refer to a field in an awk program, you use a dollar-sign, ‘$’, followed
by the number of the field you want. Thus, $1 refers to the first field, $2 to
the second, and so on. For example, suppose the following is a line of input:

This seems like a pretty nice example.

Here the first field, or $1, is ‘This’; the second field, or $2, is ‘seems’; and
so on. Note that the last field, $7, is ‘example.’. Because there is no space
between the ‘e’ and the ‘.’, the period is considered part of the seventh field.

NF is a built-in variable whose value is the number of fields in the current
record. awk updates the value of NF automatically, each time a record is
read.

No matter how many fields there are, the last field in a record can be
represented by $NF. So, in the example above, $NF would be the same as
$7, which is ‘example.’. Why this works is explained below (see Section 5.3
[Non-constant Field Numbers], page 39). If you try to reference a field
beyond the last one, such as $8 when the record has only seven fields, you
get the empty string.

$0, which looks like a reference to the “zeroth” field, is a special case: it
represents the whole input record. $0 is used when you are not interested in
fields.

Here are some more examples:

$ awk ’$1 ~ /foo/ { print $0 }’ BBS-list
a fooey 555-1234 2400/1200/300 B
a foot 555-6699 1200/300 B
a macfoo 555-6480 1200/300 A
a sabafoo 555-2127 1200/300 C

1 In POSIX awk, newlines are not considered whitespace for separating fields.

Chapter 5: Reading Input Files 39

This example prints each record in the file BBS-list whose first field con-
tains the string ‘foo’. The operator ‘~’ is called a matching operator (see
Section 4.1 [How to Use Regular Expressions], page 21); it tests whether a
string (here, the field $1) matches a given regular expression.

By contrast, the following example looks for ‘foo’ in the entire record
and prints the first field and the last field for each input record containing a
match.

$ awk ’/foo/ { print $1, $NF }’ BBS-list
a fooey B
a foot B
a macfoo A
a sabafoo C

5.3 Non-constant Field Numbers
The number of a field does not need to be a constant. Any expression in
the awk language can be used after a ‘$’ to refer to a field. The value of the
expression specifies the field number. If the value is a string, rather than a
number, it is converted to a number. Consider this example:

awk ’{ print $NR }’

Recall that NR is the number of records read so far: one in the first record,
two in the second, etc. So this example prints the first field of the first
record, the second field of the second record, and so on. For the twentieth
record, field number 20 is printed; most likely, the record has fewer than 20
fields, so this prints a blank line.

Here is another example of using expressions as field numbers:

awk ’{ print $(2*2) }’ BBS-list

awk must evaluate the expression ‘(2*2)’ and use its value as the number
of the field to print. The ‘*’ sign represents multiplication, so the expression
‘2*2’ evaluates to four. The parentheses are used so that the multiplication
is done before the ‘$’ operation; they are necessary whenever there is a
binary operator in the field-number expression. This example, then, prints
the hours of operation (the fourth field) for every line of the file BBS-list.
(All of the awk operators are listed, in order of decreasing precedence, in
Section 7.14 [Operator Precedence (How Operators Nest)], page 87.)

If the field number you compute is zero, you get the entire record. Thus,
$(2-2) has the same value as $0. Negative field numbers are not allowed;
trying to reference one will usually terminate your running awk program.
(The POSIX standard does not define what happens when you reference a
negative field number. gawk will notice this and terminate your program.
Other awk implementations may behave differently.)

As mentioned in Section 5.2 [Examining Fields], page 38, the number
of fields in the current record is stored in the built-in variable NF (also see
Chapter 10 [Built-in Variables], page 107). The expression $NF is not a

40 Effective AWK Programming

special feature: it is the direct consequence of evaluating NF and using its
value as a field number.

5.4 Changing the Contents of a Field
You can change the contents of a field as seen by awk within an awk program;
this changes what awk perceives as the current input record. (The actual
input is untouched; awk never modifies the input file.)

Consider this example and its output:

$ awk ’{ $3 = $2 - 10; print $2, $3 }’ inventory-shipped
a 13 3
a 15 5
a 15 5
...

The ‘-’ sign represents subtraction, so this program reassigns field three, $3,
to be the value of field two minus ten, ‘$2 - 10’. (See Section 7.5 [Arithmetic
Operators], page 76.) Then field two, and the new value for field three, are
printed.

In order for this to work, the text in field $2 must make sense as a
number; the string of characters must be converted to a number in order
for the computer to do arithmetic on it. The number resulting from the
subtraction is converted back to a string of characters which then becomes
field three. See Section 7.4 [Conversion of Strings and Numbers], page 75.

When you change the value of a field (as perceived by awk), the text of
the input record is recalculated to contain the new field where the old one
was. Therefore, $0 changes to reflect the altered field. Thus, this program
prints a copy of the input file, with 10 subtracted from the second field of
each line.

$ awk ’{ $2 = $2 - 10; print $0 }’ inventory-shipped
a Jan 3 25 15 115
a Feb 5 32 24 226
a Mar 5 24 34 228
...

You can also assign contents to fields that are out of range. For example:

$ awk ’{ $6 = ($5 + $4 + $3 + $2)
> print $6 }’ inventory-shipped
a 168
a 297
a 301
...

We’ve just created $6, whose value is the sum of fields $2, $3, $4, and
$5. The ‘+’ sign represents addition. For the file inventory-shipped, $6
represents the total number of parcels shipped for a particular month.

Chapter 5: Reading Input Files 41

Creating a new field changes awk’s internal copy of the current input
record—the value of $0. Thus, if you do ‘print $0’ after adding a field, the
record printed includes the new field, with the appropriate number of field
separators between it and the previously existing fields.

This recomputation affects and is affected by NF (the number of fields;
see Section 5.2 [Examining Fields], page 38), and by a feature that has not
been discussed yet, the output field separator, OFS, which is used to separate
the fields (see Section 6.3 [Output Separators], page 59). For example, the
value of NF is set to the number of the highest field you create.

Note, however, that merely referencing an out-of-range field does not
change the value of either $0 or NF. Referencing an out-of-range field only
produces an empty string. For example:

if ($(NF+1) != "")
print "can’t happen"

else
print "everything is normal"

should print ‘everything is normal’, because NF+1 is certain to be out of
range. (See Section 9.1 [The if-else Statement], page 99, for more infor-
mation about awk’s if-else statements. See Section 7.10 [Variable Typing
and Comparison Expressions], page 81, for more information about the ‘!=’
operator.)

It is important to note that making an assignment to an existing field
will change the value of $0, but will not change the value of NF, even when
you assign the empty string to a field. For example:

$ echo a b c d | awk ’{ OFS = ":"; $2 = ""
> print $0; print NF }’
a a::c:d
a 4

The field is still there; it just has an empty value. You can tell because there
are two colons in a row.

This example shows what happens if you create a new field.

$ echo a b c d | awk ’{ OFS = ":"; $2 = ""; $6 = "new"
> print $0; print NF }’
a a::c:d::new
a 6

The intervening field, $5 is created with an empty value (indicated by the
second pair of adjacent colons), and NF is updated with the value six.

Finally, decrementing NF will lose the values of the fields after the new
value of NF, and $0 will be recomputed. Here is an example:

$ echo a b c d e f | ../gawk ’{ print "NF =", NF;
> NF = 3; print $0 }’
a NF = 6
a a b c

42 Effective AWK Programming

5.5 Specifying How Fields are Separated
This section is rather long; it describes one of the most fundamental opera-
tions in awk.

5.5.1 The Basics of Field Separating

The field separator, which is either a single character or a regular expression,
controls the way awk splits an input record into fields. awk scans the input
record for character sequences that match the separator; the fields themselves
are the text between the matches.

In the examples below, we use the bullet symbol “•” to represent spaces
in the output.

If the field separator is ‘oo’, then the following line:

moo goo gai pan

would be split into three fields: ‘m’, ‘•g’ and ‘•gai•pan’. Note the leading
spaces in the values of the second and third fields.

The field separator is represented by the built-in variable FS. Shell pro-
grammers take note! awk does not use the name IFS which is used by the
POSIX compatible shells (such as the Bourne shell, sh, or the GNU Bourne-
Again Shell, Bash).

You can change the value of FS in the awk program with the assignment
operator, ‘=’ (see Section 7.7 [Assignment Expressions], page 77). Often the
right time to do this is at the beginning of execution, before any input has
been processed, so that the very first record will be read with the proper
separator. To do this, use the special BEGIN pattern (see Section 8.1.5 [The
BEGIN and END Special Patterns], page 94). For example, here we set the
value of FS to the string ",":

awk ’BEGIN { FS = "," } ; { print $2 }’

Given the input line,

John Q. Smith, 29 Oak St., Walamazoo, MI 42139

this awk program extracts and prints the string ‘•29•Oak•St.’.
Sometimes your input data will contain separator characters that don’t

separate fields the way you thought they would. For instance, the person’s
name in the example we just used might have a title or suffix attached, such
as ‘John Q. Smith, LXIX’. From input containing such a name:

John Q. Smith, LXIX, 29 Oak St., Walamazoo, MI 42139

the above program would extract ‘•LXIX’, instead of ‘•29•Oak•St.’. If you
were expecting the program to print the address, you would be surprised.
The moral is: choose your data layout and separator characters carefully to
prevent such problems.

As you know, normally, fields are separated by whitespace sequences
(spaces, tabs and newlines), not by single spaces: two spaces in a row do
not delimit an empty field. The default value of the field separator FS is a
string containing a single space, " ". If this value were interpreted in the

Chapter 5: Reading Input Files 43

usual way, each space character would separate fields, so two spaces in a row
would make an empty field between them. The reason this does not happen
is that a single space as the value of FS is a special case: it is taken to specify
the default manner of delimiting fields.

If FS is any other single character, such as ",", then each occurrence
of that character separates two fields. Two consecutive occurrences delimit
an empty field. If the character occurs at the beginning or the end of the
line, that too delimits an empty field. The space character is the only single
character which does not follow these rules.

5.5.2 Using Regular Expressions to Separate Fields

The previous subsection discussed the use of single characters or simple
strings as the value of FS. More generally, the value of FS may be a string
containing any regular expression. In this case, each match in the record for
the regular expression separates fields. For example, the assignment:

FS = ", \t"

makes every area of an input line that consists of a comma followed by a
space and a tab, into a field separator. (‘\t’ is an escape sequence that stands
for a tab; see Section 4.2 [Escape Sequences], page 22, for the complete list
of similar escape sequences.)

For a less trivial example of a regular expression, suppose you want single
spaces to separate fields the way single commas were used above. You can
set FS to "[]" (left bracket, space, right bracket). This regular expression
matches a single space and nothing else (see Chapter 4 [Regular Expressions],
page 21).

There is an important difference between the two cases of ‘FS = " "’ (a sin-
gle space) and ‘FS = "[\t\n]+"’ (left bracket, space, backslash, “t”, back-
slash, “n”, right bracket, which is a regular expression matching one or more
spaces, tabs, or newlines). For both values of FS, fields are separated by
runs of spaces, tabs and/or newlines. However, when the value of FS is " ",
awk will first strip leading and trailing whitespace from the record, and then
decide where the fields are.

For example, the following pipeline prints ‘b’:

$ echo ’ a b c d ’ | awk ’{ print $2 }’
a b

However, this pipeline prints ‘a’ (note the extra spaces around each letter):

$ echo ’ a b c d ’ | awk ’BEGIN { FS = "[\t]+" }
> { print $2 }’
a a

In this case, the first field is null, or empty.

The stripping of leading and trailing whitespace also comes into play
whenever $0 is recomputed. For instance, study this pipeline:

$ echo ’ a b c d’ | awk ’{ print; $2 = $2; print }’

44 Effective AWK Programming

a a b c d
a a b c d

The first print statement prints the record as it was read, with leading
whitespace intact. The assignment to $2 rebuilds $0 by concatenating $1
through $NF together, separated by the value of OFS. Since the leading
whitespace was ignored when finding $1, it is not part of the new $0. Finally,
the last print statement prints the new $0.

5.5.3 Making Each Character a Separate Field

There are times when you may want to examine each character of a record
separately. In gawk, this is easy to do, you simply assign the null string ("")
to FS. In this case, each individual character in the record will become a
separate field. Here is an example:

$ echo a b | gawk ’BEGIN { FS = "" }
> {
> for (i = 1; i <= NF; i = i + 1)
> print "Field", i, "is", $i
> }’
a Field 1 is a
a Field 2 is
a Field 3 is b

Traditionally, the behavior for FS equal to "" was not defined. In this
case, Unix awk would simply treat the entire record as only having one field
(d.c.). In compatibility mode (see Section 14.1 [Command Line Options],
page 151), if FS is the null string, then gawk will also behave this way.

5.5.4 Setting FS from the Command Line

FS can be set on the command line. You use the ‘-F’ option to do so. For
example:

awk -F, ’program’ input-files

sets FS to be the ‘,’ character. Notice that the option uses a capital ‘F’.
Contrast this with ‘-f’, which specifies a file containing an awk program.
Case is significant in command line options: the ‘-F’ and ‘-f’ options have
nothing to do with each other. You can use both options at the same time
to set the FS variable and get an awk program from a file.

The value used for the argument to ‘-F’ is processed in exactly the same
way as assignments to the built-in variable FS. This means that if the field
separator contains special characters, they must be escaped appropriately.
For example, to use a ‘\’ as the field separator, you would have to type:

same as FS = "\\"
awk -F\\\\ ’...’ files ...

Since ‘\’ is used for quoting in the shell, awk will see ‘-F\\’. Then awk
processes the ‘\\’ for escape characters (see Section 4.2 [Escape Sequences],
page 22), finally yielding a single ‘\’ to be used for the field separator.

Chapter 5: Reading Input Files 45

As a special case, in compatibility mode (see Section 14.1 [Command
Line Options], page 151), if the argument to ‘-F’ is ‘t’, then FS is set to the
tab character. This is because if you type ‘-F\t’ at the shell, without any
quotes, the ‘\’ gets deleted, so awk figures that you really want your fields
to be separated with tabs, and not ‘t’s. Use ‘-v FS="t"’ on the command
line if you really do want to separate your fields with ‘t’s (see Section 14.1
[Command Line Options], page 151).

For example, let’s use an awk program file called baud.awk that contains
the pattern /300/, and the action ‘print $1’. Here is the program:

/300/ { print $1 }

Let’s also set FS to be the ‘-’ character, and run the program on the file
BBS-list. The following command prints a list of the names of the bulletin
boards that operate at 300 baud and the first three digits of their phone
numbers:

$ awk -F- -f baud.awk BBS-list
a aardvark 555
a alpo
a barfly 555
...

Note the second line of output. In the original file (see Section 1.3 [Data
Files for the Examples], page 7), the second line looked like this:

alpo-net 555-3412 2400/1200/300 A

The ‘-’ as part of the system’s name was used as the field separator,
instead of the ‘-’ in the phone number that was originally intended. This
demonstrates why you have to be careful in choosing your field and record
separators.

On many Unix systems, each user has a separate entry in the system
password file, one line per user. The information in these lines is separated
by colons. The first field is the user’s logon name, and the second is the
user’s encrypted password. A password file entry might look like this:

arnold:xyzzy:2076:10:Arnold Robbins:/home/arnold:/bin/sh

The following program searches the system password file, and prints the
entries for users who have no password:

awk -F: ’$2 == ""’ /etc/passwd

5.5.5 Field Splitting Summary

According to the POSIX standard, awk is supposed to behave as if each
record is split into fields at the time that it is read. In particular, this means
that you can change the value of FS after a record is read, and the value of
the fields (i.e. how they were split) should reflect the old value of FS, not the
new one.

However, many implementations of awk do not work this way. Instead,
they defer splitting the fields until a field is actually referenced. The fields

46 Effective AWK Programming

will be split using the current value of FS! (d.c.) This behavior can be
difficult to diagnose. The following example illustrates the difference be-
tween the two methods. (The sed2 command prints just the first line of
/etc/passwd.)

sed 1q /etc/passwd | awk ’{ FS = ":" ; print $1 }’

will usually print

root

on an incorrect implementation of awk, while gawk will print something like

root:nSijPlPhZZwgE:0:0:Root:/:

The following table summarizes how fields are split, based on the value
of FS. (‘==’ means “is equal to.”)

FS == " " Fields are separated by runs of whitespace. Leading and trailing
whitespace are ignored. This is the default.

FS == any other single character
Fields are separated by each occurrence of the character. Mul-
tiple successive occurrences delimit empty fields, as do leading
and trailing occurrences. The character can even be a regexp
metacharacter; it does not need to be escaped.

FS == regexp
Fields are separated by occurrences of characters that match
regexp. Leading and trailing matches of regexp delimit empty
fields.

FS == "" Each individual character in the record becomes a separate
field.

5.6 Reading Fixed-width Data
(This section discusses an advanced, experimental feature. If you are a novice
awk user, you may wish to skip it on the first reading.)

gawk version 2.13 introduced a new facility for dealing with fixed-width
fields with no distinctive field separator. Data of this nature arises, for
example, in the input for old FORTRAN programs where numbers are run
together; or in the output of programs that did not anticipate the use of
their output as input for other programs.

An example of the latter is a table where all the columns are lined up
by the use of a variable number of spaces and empty fields are just spaces.
Clearly, awk’s normal field splitting based on FS will not work well in this
case. Although a portable awk program can use a series of substr calls on
$0 (see Section 12.3 [Built-in Functions for String Manipulation], page 127),
this is awkward and inefficient for a large number of fields.

2 The sed utility is a “stream editor.” Its behavior is also defined by the POSIX standard.

Chapter 5: Reading Input Files 47

The splitting of an input record into fixed-width fields is specified by
assigning a string containing space-separated numbers to the built-in variable
FIELDWIDTHS. Each number specifies the width of the field including columns
between fields. If you want to ignore the columns between fields, you can
specify the width as a separate field that is subsequently ignored.

The following data is the output of the Unix w utility. It is useful to
illustrate the use of FIELDWIDTHS.

10:06pm up 21 days, 14:04, 23 users
User tty login idle JCPU PCPU what
hzuo ttyV0 8:58pm 9 5 vi p24.tex
hzang ttyV3 6:37pm 50 -csh
eklye ttyV5 9:53pm 7 1 em thes.tex
dportein ttyV6 8:17pm 1:47 -csh
gierd ttyD3 10:00pm 1 elm
dave ttyD4 9:47pm 4 4 w
brent ttyp0 26Jun91 4:46 26:46 4:41 bash
dave ttyq4 26Jun9115days 46 46 wnewmail

The following program takes the above input, converts the idle time to
number of seconds and prints out the first two fields and the calculated
idle time. (This program uses a number of awk features that haven’t been
introduced yet.)

BEGIN { FIELDWIDTHS = "9 6 10 6 7 7 35" }
NR > 2 {

idle = $4
sub(/^ */, "", idle) # strip leading spaces
if (idle == "")

idle = 0
if (idle ~ /:/) {

split(idle, t, ":")
idle = t[1] * 60 + t[2]

}
if (idle ~ /days/)

idle *= 24 * 60 * 60

print $1, $2, idle
}

Here is the result of running the program on the data:

hzuo ttyV0 0
hzang ttyV3 50
eklye ttyV5 0
dportein ttyV6 107
gierd ttyD3 1
dave ttyD4 0
brent ttyp0 286
dave ttyq4 1296000

48 Effective AWK Programming

Another (possibly more practical) example of fixed-width input data
would be the input from a deck of balloting cards. In some parts of the
United States, voters mark their choices by punching holes in computer
cards. These cards are then processed to count the votes for any particular
candidate or on any particular issue. Since a voter may choose not to vote
on some issue, any column on the card may be empty. An awk program for
processing such data could use the FIELDWIDTHS feature to simplify reading
the data. (Of course, getting gawk to run on a system with card readers is
another story!)

Assigning a value to FS causes gawk to return to using FS for field splitting.
Use ‘FS = FS’ to make this happen, without having to know the current value
of FS.

This feature is still experimental, and may evolve over time. Note that
in particular, gawk does not attempt to verify the sanity of the values used
in the value of FIELDWIDTHS.

5.7 Multiple-Line Records
In some data bases, a single line cannot conveniently hold all the information
in one entry. In such cases, you can use multi-line records.

The first step in doing this is to choose your data format: when records
are not defined as single lines, how do you want to define them? What
should separate records?

One technique is to use an unusual character or string to separate records.
For example, you could use the formfeed character (written ‘\f’ in awk, as
in C) to separate them, making each record a page of the file. To do this,
just set the variable RS to "\f" (a string containing the formfeed character).
Any other character could equally well be used, as long as it won’t be part
of the data in a record.

Another technique is to have blank lines separate records. By a special
dispensation, an empty string as the value of RS indicates that records are
separated by one or more blank lines. If you set RS to the empty string, a
record always ends at the first blank line encountered. And the next record
doesn’t start until the first non-blank line that follows—no matter how many
blank lines appear in a row, they are considered one record-separator.

You can achieve the same effect as ‘RS = ""’ by assigning the string
"\n\n+" to RS. This regexp matches the newline at the end of the record,
and one or more blank lines after the record. In addition, a regular expres-
sion always matches the longest possible sequence when there is a choice (see
Section 4.6 [How Much Text Matches?], page 32). So the next record doesn’t
start until the first non-blank line that follows—no matter how many blank
lines appear in a row, they are considered one record-separator.

There is an important difference between ‘RS = ""’ and ‘RS = "\n\n+"’.
In the first case, leading newlines in the input data file are ignored, and if a
file ends without extra blank lines after the last record, the final newline is

Chapter 5: Reading Input Files 49

removed from the record. In the second case, this special processing is not
done (d.c.).

Now that the input is separated into records, the second step is to separate
the fields in the record. One way to do this is to divide each of the lines into
fields in the normal manner. This happens by default as the result of a special
feature: when RS is set to the empty string, the newline character always
acts as a field separator. This is in addition to whatever field separations
result from FS.

The original motivation for this special exception was probably to provide
useful behavior in the default case (i.e. FS is equal to " "). This feature can
be a problem if you really don’t want the newline character to separate fields,
since there is no way to prevent it. However, you can work around this by
using the split function to break up the record manually (see Section 12.3
[Built-in Functions for String Manipulation], page 127).

Another way to separate fields is to put each field on a separate line: to
do this, just set the variable FS to the string "\n". (This simple regular
expression matches a single newline.)

A practical example of a data file organized this way might be a mailing
list, where each entry is separated by blank lines. If we have a mailing list
in a file named addresses, that looks like this:

Jane Doe
123 Main Street
Anywhere, SE 12345-6789

John Smith
456 Tree-lined Avenue
Smallville, MW 98765-4321

...

A simple program to process this file would look like this:

addrs.awk --- simple mailing list program

Records are separated by blank lines.
Each line is one field.
BEGIN { RS = "" ; FS = "\n" }

{
print "Name is:", $1
print "Address is:", $2
print "City and State are:", $3
print ""

}

Running the program produces the following output:

50 Effective AWK Programming

$ awk -f addrs.awk addresses
a Name is: Jane Doe
a Address is: 123 Main Street
a City and State are: Anywhere, SE 12345-6789
a
a Name is: John Smith
a Address is: 456 Tree-lined Avenue
a City and State are: Smallville, MW 98765-4321
a
...

See Section 16.2.4 [Printing Mailing Labels], page 220, for a more realistic
program that deals with address lists.

The following table summarizes how records are split, based on the value
of RS. (‘==’ means “is equal to.”)

RS == "\n"
Records are separated by the newline character (‘\n’). In effect,
every line in the data file is a separate record, including blank
lines. This is the default.

RS == any single character
Records are separated by each occurrence of the character. Mul-
tiple successive occurrences delimit empty records.

RS == "" Records are separated by runs of blank lines. The newline char-
acter always serves as a field separator, in addition to whatever
value FS may have. Leading and trailing newlines in a file are
ignored.

RS == regexp
Records are separated by occurrences of characters that match
regexp. Leading and trailing matches of regexp delimit empty
records.

In all cases, gawk sets RT to the input text that matched the value specified
by RS.

5.8 Explicit Input with getline

So far we have been getting our input data from awk’s main input stream—
either the standard input (usually your terminal, sometimes the output from
another program) or from the files specified on the command line. The awk
language has a special built-in command called getline that can be used
to read input under your explicit control.

5.8.1 Introduction to getline

This command is used in several different ways, and should not be used by
beginners. It is covered here because this is the chapter on input. The exam-
ples that follow the explanation of the getline command include material

Chapter 5: Reading Input Files 51

that has not been covered yet. Therefore, come back and study the getline
command after you have reviewed the rest of this book and have a good
knowledge of how awk works.

getline returns one if it finds a record, and zero if the end of the file is
encountered. If there is some error in getting a record, such as a file that
cannot be opened, then getline returns −1. In this case, gawk sets the
variable ERRNO to a string describing the error that occurred.

In the following examples, command stands for a string value that rep-
resents a shell command.

5.8.2 Using getline with No Arguments

The getline command can be used without arguments to read input from
the current input file. All it does in this case is read the next input record
and split it up into fields. This is useful if you’ve finished processing the
current record, but you want to do some special processing right now on the
next record. Here’s an example:

awk ’{
if ((t = index($0, "/*")) != 0) {

value will be "" if t is 1
tmp = substr($0, 1, t - 1)
u = index(substr($0, t + 2), "*/")
while (u == 0) {

if (getline <= 0) {
m = "unexpected EOF or error"
m = (m ": " ERRNO)
print m > "/dev/stderr"
exit

}
t = -1
u = index($0, "*/")

}
substr expression will be "" if */
occurred at end of line
$0 = tmp substr($0, t + u + 3)

}
print $0

}’

This awk program deletes all C-style comments, ‘/* ... */’, from the
input. By replacing the ‘print $0’ with other statements, you could perform
more complicated processing on the decommented input, like searching for
matches of a regular expression. This program has a subtle problem—it does
not work if one comment ends and another begins on the same line.

This form of the getline command sets NF (the number of fields; see
Section 5.2 [Examining Fields], page 38), NR (the number of records read

52 Effective AWK Programming

so far; see Section 5.1 [How Input is Split into Records], page 35), FNR (the
number of records read from this input file), and the value of $0.

Note: the new value of $0 is used in testing the patterns of any subse-
quent rules. The original value of $0 that triggered the rule which executed
getline is lost (d.c.). By contrast, the next statement reads a new record
but immediately begins processing it normally, starting with the first rule in
the program. See Section 9.7 [The next Statement], page 104.

5.8.3 Using getline Into a Variable

You can use ‘getline var’ to read the next record from awk’s input into the
variable var. No other processing is done.

For example, suppose the next line is a comment, or a special string, and
you want to read it, without triggering any rules. This form of getline
allows you to read that line and store it in a variable so that the main
read-a-line-and-check-each-rule loop of awk never sees it.

The following example swaps every two lines of input. For example, given:

wan
tew
free
phore

it outputs:

tew
wan
phore
free

Here’s the program:

awk ’{
if ((getline tmp) > 0) {

print tmp
print $0

} else
print $0

}’

The getline command used in this way sets only the variables NR and
FNR (and of course, var). The record is not split into fields, so the values of
the fields (including $0) and the value of NF do not change.

5.8.4 Using getline from a File

Use ‘getline < file’ to read the next record from the file file. Here file is
a string-valued expression that specifies the file name. ‘< file’ is called a
redirection since it directs input to come from a different place.

For example, the following program reads its input record from the file
secondary.input when it encounters a first field with a value equal to 10
in the current input file.

Chapter 5: Reading Input Files 53

awk ’{
if ($1 == 10) {

getline < "secondary.input"
print

} else
print

}’

Since the main input stream is not used, the values of NR and FNR are not
changed. But the record read is split into fields in the normal manner, so
the values of $0 and other fields are changed. So is the value of NF.

According to POSIX, ‘getline < expression’ is ambiguous if expression
contains unparenthesized operators other than ‘$’; for example, ‘getline
< dir "/" file’ is ambiguous because the concatenation operator is not
parenthesized, and you should write it as ‘getline < (dir "/" file)’ if you
want your program to be portable to other awk implementations.

5.8.5 Using getline Into a Variable from a File

Use ‘getline var < file’ to read input the file file and put it in the variable
var. As above, file is a string-valued expression that specifies the file from
which to read.

In this version of getline, none of the built-in variables are changed, and
the record is not split into fields. The only variable changed is var.

For example, the following program copies all the input files to the output,
except for records that say ‘@include filename’. Such a record is replaced
by the contents of the file filename.

awk ’{
if (NF == 2 && $1 == "@include") {

while ((getline line < $2) > 0)
print line

close($2)
} else

print
}’

Note here how the name of the extra input file is not built into the
program; it is taken directly from the data, from the second field on the
‘@include’ line.

The close function is called to ensure that if two identical ‘@include’
lines appear in the input, the entire specified file is included twice. See
Section 6.8 [Closing Input and Output Files and Pipes], page 69.

One deficiency of this program is that it does not process nested
‘@include’ statements (‘@include’ statements in included files) the way a
true macro preprocessor would. See Section 16.2.9 [An Easy Way to Use Li-
brary Functions], page 229, for a program that does handle nested ‘@include’
statements.

54 Effective AWK Programming

5.8.6 Using getline from a Pipe

You can pipe the output of a command into getline, using ‘command |
getline’. In this case, the string command is run as a shell command and
its output is piped into awk to be used as input. This form of getline reads
one record at a time from the pipe.

For example, the following program copies its input to its output, ex-
cept for lines that begin with ‘@execute’, which are replaced by the output
produced by running the rest of the line as a shell command:

awk ’{
if ($1 == "@execute") {

tmp = substr($0, 10)
while ((tmp | getline) > 0)

print
close(tmp)

} else
print

}’

The close function is called to ensure that if two identical ‘@execute’ lines
appear in the input, the command is run for each one. See Section 6.8
[Closing Input and Output Files and Pipes], page 69.

Chapter 5: Reading Input Files 55

Given the input:

foo
bar
baz
@execute who
bletch

the program might produce:

foo
bar
baz
arnold ttyv0 Jul 13 14:22
miriam ttyp0 Jul 13 14:23 (murphy:0)
bill ttyp1 Jul 13 14:23 (murphy:0)
bletch

Notice that this program ran the command who and printed the result. (If
you try this program yourself, you will of course get different results, showing
you who is logged in on your system.)

This variation of getline splits the record into fields, sets the value of NF
and recomputes the value of $0. The values of NR and FNR are not changed.

According to POSIX, ‘expression | getline’ is ambiguous if expression
contains unparenthesized operators other than ‘$’; for example, ‘"echo "
"date" | getline’ is ambiguous because the concatenation operator is not
parenthesized, and you should write it as ‘("echo " "date") | getline’ if
you want your program to be portable to other awk implementations.

5.8.7 Using getline Into a Variable from a Pipe

When you use ‘command | getline var’, the output of the command com-
mand is sent through a pipe to getline and into the variable var. For
example, the following program reads the current date and time into the
variable current_time, using the date utility, and then prints it.

awk ’BEGIN {
"date" | getline current_time
close("date")
print "Report printed on " current_time

}’

In this version of getline, none of the built-in variables are changed, and
the record is not split into fields.

5.8.8 Summary of getline Variants

With all the forms of getline, even though $0 and NF, may be updated, the
record will not be tested against all the patterns in the awk program, in the
way that would happen if the record were read normally by the main pro-
cessing loop of awk. However the new record is tested against any subsequent
rules.

56 Effective AWK Programming

Many awk implementations limit the number of pipelines an awk program
may have open to just one! In gawk, there is no such limit. You can open
as many pipelines as the underlying operating system will permit.

An interesting side-effect occurs if you use getline (without a redirec-
tion) inside a BEGIN rule. Since an unredirected getline reads from the
command line data files, the first getline command causes awk to set the
value of FILENAME. Normally, FILENAME does not have a value inside BEGIN
rules, since you have not yet started to process the command line data files
(d.c.). (See Section 8.1.5 [The BEGIN and END Special Patterns], page 94, also
see Section 10.2 [Built-in Variables that Convey Information], page 109.)

The following table summarizes the six variants of getline, listing which
built-in variables are set by each one.

getline sets $0, NF, FNR, and NR.

getline var
sets var, FNR, and NR.

getline < file
sets $0, and NF.

getline var < file
sets var.

command | getline
sets $0, and NF.

command | getline var
sets var.

Chapter 6: Printing Output 57

6 Printing Output

One of the most common actions is to print, or output, some or all of the
input. You use the print statement for simple output. You use the printf
statement for fancier formatting. Both are described in this chapter.

6.1 The print Statement
The print statement does output with simple, standardized formatting.
You specify only the strings or numbers to be printed, in a list separated by
commas. They are output, separated by single spaces, followed by a newline.
The statement looks like this:

print item1, item2, ...

The entire list of items may optionally be enclosed in parentheses. The
parentheses are necessary if any of the item expressions uses the ‘>’ relational
operator; otherwise it could be confused with a redirection (see Section 6.6
[Redirecting Output of print and printf], page 65).

The items to be printed can be constant strings or numbers, fields of
the current record (such as $1), variables, or any awk expressions. Numeric
values are converted to strings, and then printed.

The print statement is completely general for computing what values
to print. However, with two exceptions, you cannot specify how to print
them—how many columns, whether to use exponential notation or not, and
so on. (For the exceptions, see Section 6.3 [Output Separators], page 59, and
Section 6.4 [Controlling Numeric Output with print], page 60.) For that,
you need the printf statement (see Section 6.5 [Using printf Statements
for Fancier Printing], page 60).

The simple statement ‘print’ with no items is equivalent to ‘print $0’:
it prints the entire current record. To print a blank line, use ‘print ""’,
where "" is the empty string.

To print a fixed piece of text, use a string constant such as "Don’t Panic"
as one item. If you forget to use the double-quote characters, your text will
be taken as an awk expression, and you will probably get an error. Keep in
mind that a space is printed between any two items.

Each print statement makes at least one line of output. But it isn’t
limited to one line. If an item value is a string that contains a newline, the
newline is output along with the rest of the string. A single print can make
any number of lines this way.

6.2 Examples of print Statements
Here is an example of printing a string that contains embedded newlines
(the ‘\n’ is an escape sequence, used to represent the newline character; see
Section 4.2 [Escape Sequences], page 22):

58 Effective AWK Programming

$ awk ’BEGIN { print "line one\nline two\nline three" }’
a line one
a line two
a line three

Here is an example that prints the first two fields of each input record,
with a space between them:

$ awk ’{ print $1, $2 }’ inventory-shipped
a Jan 13
a Feb 15
a Mar 15
...

A common mistake in using the print statement is to omit the comma
between two items. This often has the effect of making the items run together
in the output, with no space. The reason for this is that juxtaposing two
string expressions in awk means to concatenate them. Here is the same
program, without the comma:

$ awk ’{ print $1 $2 }’ inventory-shipped
a Jan13
a Feb15
a Mar15
...

To someone unfamiliar with the file inventory-shipped, neither exam-
ple’s output makes much sense. A heading line at the beginning would make
it clearer. Let’s add some headings to our table of months ($1) and green
crates shipped ($2). We do this using the BEGIN pattern (see Section 8.1.5
[The BEGIN and END Special Patterns], page 94) to force the headings to be
printed only once:

awk ’BEGIN { print "Month Crates"
print "----- ------" }

{ print $1, $2 }’ inventory-shipped

Did you already guess what happens? When run, the program prints the
following:

Month Crates
----- ------
Jan 13
Feb 15
Mar 15
...

The headings and the table data don’t line up! We can fix this by printing
some spaces between the two fields:

awk ’BEGIN { print "Month Crates"
print "----- ------" }

{ print $1, " ", $2 }’ inventory-shipped

Chapter 6: Printing Output 59

You can imagine that this way of lining up columns can get pretty com-
plicated when you have many columns to fix. Counting spaces for two or
three columns can be simple, but more than this and you can get lost quite
easily. This is why the printf statement was created (see Section 6.5 [Using
printf Statements for Fancier Printing], page 60); one of its specialties is
lining up columns of data.

As a side point, you can continue either a print or printf statement sim-
ply by putting a newline after any comma (see Section 2.6 [awk Statements
Versus Lines], page 16).

6.3 Output Separators
As mentioned previously, a print statement contains a list of items, sepa-
rated by commas. In the output, the items are normally separated by single
spaces. This need not be the case; a single space is only the default. You
can specify any string of characters to use as the output field separator by
setting the built-in variable OFS. The initial value of this variable is the
string " ", that is, a single space.

The output from an entire print statement is called an output record.
Each print statement outputs one output record and then outputs a string
called the output record separator. The built-in variable ORS specifies this
string. The initial value of ORS is the string "\n", i.e. a newline character;
thus, normally each print statement makes a separate line.

You can change how output fields and records are separated by assigning
new values to the variables OFS and/or ORS. The usual place to do this is
in the BEGIN rule (see Section 8.1.5 [The BEGIN and END Special Patterns],
page 94), so that it happens before any input is processed. You may also do
this with assignments on the command line, before the names of your input
files, or using the ‘-v’ command line option (see Section 14.1 [Command
Line Options], page 151).

The following example prints the first and second fields of each input
record separated by a semicolon, with a blank line added after each line:

$ awk ’BEGIN { OFS = ";"; ORS = "\n\n" }
> { print $1, $2 }’ BBS-list
a aardvark;555-5553
a
a alpo-net;555-3412
a
a barfly;555-7685
...

If the value of ORS does not contain a newline, all your output will be run
together on a single line, unless you output newlines some other way.

60 Effective AWK Programming

6.4 Controlling Numeric Output with print

When you use the print statement to print numeric values, awk internally
converts the number to a string of characters, and prints that string. awk
uses the sprintf function to do this conversion (see Section 12.3 [Built-in
Functions for String Manipulation], page 127). For now, it suffices to say
that the sprintf function accepts a format specification that tells it how to
format numbers (or strings), and that there are a number of different ways
in which numbers can be formatted. The different format specifications are
discussed more fully in Section 6.5.2 [Format-Control Letters], page 61.

The built-in variable OFMT contains the default format specification that
print uses with sprintf when it wants to convert a number to a string
for printing. The default value of OFMT is "%.6g". By supplying different
format specifications as the value of OFMT, you can change how print will
print your numbers. As a brief example:

$ awk ’BEGIN {
> OFMT = "%.0f" # print numbers as integers (rounds)
> print 17.23 }’
a 17

According to the POSIX standard, awk’s behavior will be undefined if OFMT
contains anything but a floating point conversion specification (d.c.).

6.5 Using printf Statements for Fancier Printing
If you want more precise control over the output format than print gives
you, use printf. With printf you can specify the width to use for each
item, and you can specify various formatting choices for numbers (such as
what radix to use, whether to print an exponent, whether to print a sign, and
how many digits to print after the decimal point). You do this by supplying
a string, called the format string, which controls how and where to print the
other arguments.

6.5.1 Introduction to the printf Statement

The printf statement looks like this:

printf format, item1, item2, ...

The entire list of arguments may optionally be enclosed in parentheses. The
parentheses are necessary if any of the item expressions use the ‘>’ relational
operator; otherwise it could be confused with a redirection (see Section 6.6
[Redirecting Output of print and printf], page 65).

The difference between printf and print is the format argument. This
is an expression whose value is taken as a string; it specifies how to output
each of the other arguments. It is called the format string.

The format string is very similar to that in the ANSI C library function
printf. Most of format is text to be output verbatim. Scattered among

Chapter 6: Printing Output 61

this text are format specifiers, one per item. Each format specifier says to
output the next item in the argument list at that place in the format.

The printf statement does not automatically append a newline to its
output. It outputs only what the format string specifies. So if you want a
newline, you must include one in the format string. The output separator
variables OFS and ORS have no effect on printf statements. For example:

BEGIN {
ORS = "\nOUCH!\n"; OFS = "!"
msg = "Don’t Panic!"; printf "%s\n", msg

}

This program still prints the familiar ‘Don’t Panic!’ message.

6.5.2 Format-Control Letters

A format specifier starts with the character ‘%’ and ends with a format-
control letter; it tells the printf statement how to output one item. (If you
actually want to output a ‘%’, write ‘%%’.) The format-control letter specifies
what kind of value to print. The rest of the format specifier is made up of
optional modifiers which are parameters to use, such as the field width.

Here is a list of the format-control letters:

c This prints a number as an ASCII character. Thus, ‘printf
"%c", 65’ outputs the letter ‘A’. The output for a string value
is the first character of the string.

d
i These are equivalent. They both print a decimal integer. The

‘%i’ specification is for compatibility with ANSI C.

e
E This prints a number in scientific (exponential) notation. For

example,

printf "%4.3e\n", 1950

prints ‘1.950e+03’, with a total of four significant figures of
which three follow the decimal point. The ‘4.3’ are modifiers,
discussed below. ‘%E’ uses ‘E’ instead of ‘e’ in the output.

f This prints a number in floating point notation. For example,

printf "%4.3f", 1950

prints ‘1950.000’, with a total of four significant figures of which
three follow the decimal point. The ‘4.3’ are modifiers, dis-
cussed below.

g
G This prints a number in either scientific notation or floating

point notation, whichever uses fewer characters. If the result is
printed in scientific notation, ‘%G’ uses ‘E’ instead of ‘e’.

62 Effective AWK Programming

o This prints an unsigned octal integer. (In octal, or base-eight
notation, the digits run from ‘0’ to ‘7’; the decimal number eight
is represented as ‘10’ in octal.)

s This prints a string.

x
X This prints an unsigned hexadecimal integer. (In hexadecimal,

or base-16 notation, the digits are ‘0’ through ‘9’ and ‘a’ through
‘f’. The hexadecimal digit ‘f’ represents the decimal number
15.) ‘%X’ uses the letters ‘A’ through ‘F’ instead of ‘a’ through
‘f’.

% This isn’t really a format-control letter, but it does have a mean-
ing when used after a ‘%’: the sequence ‘%%’ outputs one ‘%’. It
does not consume an argument, and it ignores any modifiers.

When using the integer format-control letters for values that are outside
the range of a C long integer, gawk will switch to the ‘%g’ format specifier.
Other versions of awk may print invalid values, or do something else entirely
(d.c.).

6.5.3 Modifiers for printf Formats

A format specification can also include modifiers that can control how much
of the item’s value is printed and how much space it gets. The modifiers
come between the ‘%’ and the format-control letter. In the examples below,
we use the bullet symbol “•” to represent spaces in the output. Here are the
possible modifiers, in the order in which they may appear:

- The minus sign, used before the width modifier (see below), says
to left-justify the argument within its specified width. Normally
the argument is printed right-justified in the specified width.
Thus,

printf "%-4s", "foo"

prints ‘foo•’.

space For numeric conversions, prefix positive values with a space, and
negative values with a minus sign.

+ The plus sign, used before the width modifier (see below), says
to always supply a sign for numeric conversions, even if the data
to be formatted is positive. The ‘+’ overrides the space modifier.

Use an “alternate form” for certain control letters. For ‘%o’,
supply a leading zero. For ‘%x’, and ‘%X’, supply a leading ‘0x’
or ‘0X’ for a non-zero result. For ‘%e’, ‘%E’, and ‘%f’, the result
will always contain a decimal point. For ‘%g’, and ‘%G’, trailing
zeros are not removed from the result.

Chapter 6: Printing Output 63

0 A leading ‘0’ (zero) acts as a flag, that indicates output should
be padded with zeros instead of spaces. This applies even to
non-numeric output formats (d.c.). This flag only has an effect
when the field width is wider than the value to be printed.

width This is a number specifying the desired minimum width of a
field. Inserting any number between the ‘%’ sign and the format
control character forces the field to be expanded to this width.
The default way to do this is to pad with spaces on the left. For
example,

printf "%4s", "foo"

prints ‘•foo’.
The value of width is a minimum width, not a maximum. If
the item value requires more than width characters, it can be as
wide as necessary. Thus,

printf "%4s", "foobar"

prints ‘foobar’.

Preceding the width with a minus sign causes the output to be
padded with spaces on the right, instead of on the left.

.prec This is a number that specifies the precision to use when print-
ing. For the ‘e’, ‘E’, and ‘f’ formats, this specifies the number
of digits you want printed to the right of the decimal point. For
the ‘g’, and ‘G’ formats, it specifies the maximum number of
significant digits. For the ‘d’, ‘o’, ‘i’, ‘u’, ‘x’, and ‘X’ formats, it
specifies the minimum number of digits to print. For a string,
it specifies the maximum number of characters from the string
that should be printed. Thus,

printf "%.4s", "foobar"

prints ‘foob’.

The C library printf’s dynamic width and prec capability (for example,
"%*.*s") is supported. Instead of supplying explicit width and/or prec
values in the format string, you pass them in the argument list. For example:

w = 5
p = 3
s = "abcdefg"
printf "%*.*s\n", w, p, s

is exactly equivalent to

s = "abcdefg"
printf "%5.3s\n", s

Both programs output ‘••abc’.
Earlier versions of awk did not support this capability. If you must use

such a version, you may simulate this feature by using concatenation to build
up the format string, like so:

64 Effective AWK Programming

w = 5
p = 3
s = "abcdefg"
printf "%" w "." p "s\n", s

This is not particularly easy to read, but it does work.

C programmers may be used to supplying additional ‘l’ and ‘h’ flags in
printf format strings. These are not valid in awk. Most awk implementa-
tions silently ignore these flags. If ‘--lint’ is provided on the command line
(see Section 14.1 [Command Line Options], page 151), gawk will warn about
their use. If ‘--posix’ is supplied, their use is a fatal error.

6.5.4 Examples Using printf

Here is how to use printf to make an aligned table:

awk ’{ printf "%-10s %s\n", $1, $2 }’ BBS-list

prints the names of bulletin boards ($1) of the file BBS-list as a string of
10 characters, left justified. It also prints the phone numbers ($2) afterward
on the line. This produces an aligned two-column table of names and phone
numbers:

$ awk ’{ printf "%-10s %s\n", $1, $2 }’ BBS-list
a aardvark 555-5553
a alpo-net 555-3412
a barfly 555-7685
a bites 555-1675
a camelot 555-0542
a core 555-2912
a fooey 555-1234
a foot 555-6699
a macfoo 555-6480
a sdace 555-3430
a sabafoo 555-2127

Did you notice that we did not specify that the phone numbers be printed
as numbers? They had to be printed as strings because the numbers are
separated by a dash. If we had tried to print the phone numbers as numbers,
all we would have gotten would have been the first three digits, ‘555’. This
would have been pretty confusing.

We did not specify a width for the phone numbers because they are the
last things on their lines. We don’t need to put spaces after them.

We could make our table look even nicer by adding headings to the tops
of the columns. To do this, we use the BEGIN pattern (see Section 8.1.5 [The
BEGIN and END Special Patterns], page 94) to force the header to be printed
only once, at the beginning of the awk program:

awk ’BEGIN { print "Name Number"
print "---- ------" }

{ printf "%-10s %s\n", $1, $2 }’ BBS-list

Chapter 6: Printing Output 65

Did you notice that we mixed print and printf statements in the above
example? We could have used just printf statements to get the same results:

awk ’BEGIN { printf "%-10s %s\n", "Name", "Number"
printf "%-10s %s\n", "----", "------" }

{ printf "%-10s %s\n", $1, $2 }’ BBS-list

By printing each column heading with the same format specification used
for the elements of the column, we have made sure that the headings are
aligned just like the columns.

The fact that the same format specification is used three times can be
emphasized by storing it in a variable, like this:

awk ’BEGIN { format = "%-10s %s\n"
printf format, "Name", "Number"
printf format, "----", "------" }

{ printf format, $1, $2 }’ BBS-list

See if you can use the printf statement to line up the headings and table
data for our inventory-shipped example covered earlier in the section on
the print statement (see Section 6.1 [The print Statement], page 57).

6.6 Redirecting Output of print and printf

So far we have been dealing only with output that prints to the standard
output, usually your terminal. Both print and printf can also send their
output to other places. This is called redirection.

A redirection appears after the print or printf statement. Redirections
in awk are written just like redirections in shell commands, except that they
are written inside the awk program.

There are three forms of output redirection: output to a file, output
appended to a file, and output through a pipe to another command. They
are all shown for the print statement, but they work identically for printf
also.

print items > output-file
This type of redirection prints the items into the output file
output-file. The file name output-file can be any expression. Its
value is changed to a string and then used as a file name (see
Chapter 7 [Expressions], page 71).

When this type of redirection is used, the output-file is erased
before the first output is written to it. Subsequent writes to the
same output-file do not erase output-file, but append to it. If
output-file does not exist, then it is created.

For example, here is how an awk program can write a list of BBS
names to a file name-list and a list of phone numbers to a file
phone-list. Each output file contains one name or number per
line.

66 Effective AWK Programming

$ awk ’{ print $2 > "phone-list"
> print $1 > "name-list" }’ BBS-list
$ cat phone-list
a 555-5553
a 555-3412
...
$ cat name-list
a aardvark
a alpo-net
...

print items >> output-file
This type of redirection prints the items into the pre-existing
output file output-file. The difference between this and the
single-‘>’ redirection is that the old contents (if any) of output-
file are not erased. Instead, the awk output is appended to the
file. If output-file does not exist, then it is created.

print items | command
It is also possible to send output to another program through a
pipe instead of into a file. This type of redirection opens a pipe
to command and writes the values of items through this pipe,
to another process created to execute command.

The redirection argument command is actually an awk expres-
sion. Its value is converted to a string, whose contents give the
shell command to be run.

For example, this produces two files, one unsorted list of BBS
names and one list sorted in reverse alphabetical order:

awk ’{ print $1 > "names.unsorted"
command = "sort -r > names.sorted"
print $1 | command }’ BBS-list

Here the unsorted list is written with an ordinary redirection
while the sorted list is written by piping through the sort utility.

This example uses redirection to mail a message to a mailing list
‘bug-system’. This might be useful when trouble is encountered
in an awk script run periodically for system maintenance.

report = "mail bug-system"
print "Awk script failed:", $0 | report
m = ("at record number " FNR " of " FILENAME)
print m | report
close(report)

The message is built using string concatenation and saved in
the variable m. It is then sent down the pipeline to the mail
program.

We call the close function here because it’s a good idea to close
the pipe as soon as all the intended output has been sent to

Chapter 6: Printing Output 67

it. See Section 6.8 [Closing Input and Output Files and Pipes],
page 69, for more information on this. This example also illus-
trates the use of a variable to represent a file or command: it is
not necessary to always use a string constant. Using a variable is
generally a good idea, since awk requires you to spell the string
value identically every time.

Redirecting output using ‘>’, ‘>>’, or ‘|’ asks the system to open a file or
pipe only if the particular file or command you’ve specified has not already
been written to by your program, or if it has been closed since it was last
written to.

As mentioned earlier (see Section 5.8.8 [Summary of getline Variants],
page 55), many awk implementations limit the number of pipelines an awk
program may have open to just one! In gawk, there is no such limit. You
can open as many pipelines as the underlying operating system will permit.

6.7 Special File Names in gawk

Running programs conventionally have three input and output streams al-
ready available to them for reading and writing. These are known as the
standard input, standard output, and standard error output. These streams
are, by default, connected to your terminal, but they are often redirected
with the shell, via the ‘<’, ‘<<’, ‘>’, ‘>>’, ‘>&’ and ‘|’ operators. Standard
error is typically used for writing error messages; the reason we have two
separate streams, standard output and standard error, is so that they can
be redirected separately.

In other implementations of awk, the only way to write an error message
to standard error in an awk program is as follows:

print "Serious error detected!" | "cat 1>&2"

This works by opening a pipeline to a shell command which can access the
standard error stream which it inherits from the awk process. This is far
from elegant, and is also inefficient, since it requires a separate process. So
people writing awk programs often neglect to do this. Instead, they send the
error messages to the terminal, like this:

print "Serious error detected!" > "/dev/tty"

This usually has the same effect, but not always: although the standard
error stream is usually the terminal, it can be redirected, and when that
happens, writing to the terminal is not correct. In fact, if awk is run from a
background job, it may not have a terminal at all. Then opening /dev/tty
will fail.

gawk provides special file names for accessing the three standard streams.
When you redirect input or output in gawk, if the file name matches one of
these special names, then gawk directly uses the stream it stands for.

/dev/stdin
The standard input (file descriptor 0).

68 Effective AWK Programming

/dev/stdout
The standard output (file descriptor 1).

/dev/stderr
The standard error output (file descriptor 2).

/dev/fd/N
The file associated with file descriptor N. Such a file must have
been opened by the program initiating the awk execution (typi-
cally the shell). Unless you take special pains in the shell from
which you invoke gawk, only descriptors 0, 1 and 2 are available.

The file names /dev/stdin, /dev/stdout, and /dev/stderr are aliases
for /dev/fd/0, /dev/fd/1, and /dev/fd/2, respectively, but they are more
self-explanatory.

The proper way to write an error message in a gawk program is to use
/dev/stderr, like this:

print "Serious error detected!" > "/dev/stderr"

gawk also provides special file names that give access to information about
the running gawk process. Each of these “files” provides a single record of
information. To read them more than once, you must first close them with
the close function (see Section 6.8 [Closing Input and Output Files and
Pipes], page 69). The filenames are:

/dev/pid Reading this file returns the process ID of the current process,
in decimal, terminated with a newline.

/dev/ppid
Reading this file returns the parent process ID of the current
process, in decimal, terminated with a newline.

/dev/pgrpid
Reading this file returns the process group ID of the current
process, in decimal, terminated with a newline.

/dev/user
Reading this file returns a single record terminated with a new-
line. The fields are separated with spaces. The fields represent
the following information:

$1 The return value of the getuid system call (the real
user ID number).

$2 The return value of the geteuid system call (the
effective user ID number).

$3 The return value of the getgid system call (the real
group ID number).

$4 The return value of the getegid system call (the
effective group ID number).

Chapter 6: Printing Output 69

If there are any additional fields, they are the group IDs re-
turned by getgroups system call. (Multiple groups may not be
supported on all systems.)

These special file names may be used on the command line as data files,
as well as for I/O redirections within an awk program. They may not be
used as source files with the ‘-f’ option.

Recognition of these special file names is disabled if gawk is in compati-
bility mode (see Section 14.1 [Command Line Options], page 151).

Caution: Unless your system actually has a /dev/fd directory (or any of
the other above listed special files), the interpretation of these file names is
done by gawk itself. For example, using ‘/dev/fd/4’ for output will actually
write on file descriptor 4, and not on a new file descriptor that was dup’ed
from file descriptor 4. Most of the time this does not matter; however, it is
important to not close any of the files related to file descriptors 0, 1, and 2.
If you do close one of these files, unpredictable behavior will result.

The special files that provide process-related information may disappear
in a future version of gawk. See Section C.3 [Probable Future Extensions],
page 282.

6.8 Closing Input and Output Files and Pipes
If the same file name or the same shell command is used with getline (see
Section 5.8 [Explicit Input with getline], page 50) more than once during
the execution of an awk program, the file is opened (or the command is
executed) only the first time. At that time, the first record of input is read
from that file or command. The next time the same file or command is used
in getline, another record is read from it, and so on.

Similarly, when a file or pipe is opened for output, the file name or com-
mand associated with it is remembered by awk and subsequent writes to the
same file or command are appended to the previous writes. The file or pipe
stays open until awk exits.

This implies that if you want to start reading the same file again from
the beginning, or if you want to rerun a shell command (rather than reading
more output from the command), you must take special steps. What you
must do is use the close function, as follows:

close(filename)

or

close(command)

The argument filename or command can be any expression. Its value
must exactly match the string that was used to open the file or start the
command (spaces and other “irrelevant” characters included). For example,
if you open a pipe with this:

"sort -r names" | getline foo

70 Effective AWK Programming

then you must close it with this:

close("sort -r names")

Once this function call is executed, the next getline from that file or
command, or the next print or printf to that file or command, will reopen
the file or rerun the command.

Because the expression that you use to close a file or pipeline must exactly
match the expression used to open the file or run the command, it is good
practice to use a variable to store the file name or command. The previous
example would become

sortcom = "sort -r names"
sortcom | getline foo
...
close(sortcom)

This helps avoid hard-to-find typographical errors in your awk programs.

Here are some reasons why you might need to close an output file:

• To write a file and read it back later on in the same awk program. Close
the file when you are finished writing it; then you can start reading it
with getline.

• To write numerous files, successively, in the same awk program. If you
don’t close the files, eventually you may exceed a system limit on the
number of open files in one process. So close each one when you are
finished writing it.

• To make a command finish. When you redirect output through a pipe,
the command reading the pipe normally continues to try to read input
as long as the pipe is open. Often this means the command cannot
really do its work until the pipe is closed. For example, if you redirect
output to the mail program, the message is not actually sent until the
pipe is closed.

• To run the same program a second time, with the same arguments. This
is not the same thing as giving more input to the first run!

For example, suppose you pipe output to the mail program. If you
output several lines redirected to this pipe without closing it, they make
a single message of several lines. By contrast, if you close the pipe after
each line of output, then each line makes a separate message.

close returns a value of zero if the close succeeded. Otherwise, the value
will be non-zero. In this case, gawk sets the variable ERRNO to a string
describing the error that occurred.

If you use more files than the system allows you to have open, gawk will
attempt to multiplex the available open files among your data files. gawk’s
ability to do this depends upon the facilities of your operating system: it
may not always work. It is therefore both good practice and good portability
advice to always use close on your files when you are done with them.

Chapter 7: Expressions 71

7 Expressions

Expressions are the basic building blocks of awk patterns and actions. An
expression evaluates to a value, which you can print, test, store in a variable
or pass to a function. Additionally, an expression can assign a new value to
a variable or a field, with an assignment operator.

An expression can serve as a pattern or action statement on its own.
Most other kinds of statements contain one or more expressions which spec-
ify data on which to operate. As in other languages, expressions in awk
include variables, array references, constants, and function calls, as well as
combinations of these with various operators.

7.1 Constant Expressions
The simplest type of expression is the constant, which always has the same
value. There are three types of constants: numeric constants, string con-
stants, and regular expression constants.

7.1.1 Numeric and String Constants

A numeric constant stands for a number. This number can be an integer, a
decimal fraction, or a number in scientific (exponential) notation.1 Here are
some examples of numeric constants, which all have the same value:

105
1.05e+2
1050e-1

A string constant consists of a sequence of characters enclosed in double-
quote marks. For example:

"parrot"

represents the string whose contents are ‘parrot’. Strings in gawk can be of
any length and they can contain any of the possible eight-bit ASCII charac-
ters including ASCII NUL (character code zero). Other awk implementations
may have difficulty with some character codes.

7.1.2 Regular Expression Constants

A regexp constant is a regular expression description enclosed in slashes,
such as /^beginning and end$/. Most regexps used in awk programs are
constant, but the ‘~’ and ‘!~’ matching operators can also match computed
or “dynamic” regexps (which are just ordinary strings or variables that con-
tain a regexp).

1 The internal representation uses double-precision floating point numbers. If you don’t
know what that means, then don’t worry about it.

72 Effective AWK Programming

7.2 Using Regular Expression Constants
When used on the right hand side of the ‘~’ or ‘!~’ operators, a regexp
constant merely stands for the regexp that is to be matched.

Regexp constants (such as /foo/) may be used like simple expressions.
When a regexp constant appears by itself, it has the same meaning as if it ap-
peared in a pattern, i.e. ‘($0 ~ /foo/)’ (d.c.) (see Section 8.1.3 [Expressions
as Patterns], page 92). This means that the two code segments,

if ($0 ~ /barfly/ || $0 ~ /camelot/)
print "found"

and

if (/barfly/ || /camelot/)
print "found"

are exactly equivalent.

One rather bizarre consequence of this rule is that the following boolean
expression is valid, but does not do what the user probably intended:

note that /foo/ is on the left of the ~
if (/foo/ ~ $1) print "found foo"

This code is “obviously” testing $1 for a match against the regexp /foo/.
But in fact, the expression ‘/foo/ ~ $1’ actually means ‘($0 ~ /foo/) ~ $1’.
In other words, first match the input record against the regexp /foo/. The
result will be either zero or one, depending upon the success or failure of the
match. Then match that result against the first field in the record.

Since it is unlikely that you would ever really wish to make this kind of
test, gawk will issue a warning when it sees this construct in a program.

Another consequence of this rule is that the assignment statement

matches = /foo/

will assign either zero or one to the variable matches, depending upon the
contents of the current input record.

This feature of the language was never well documented until the POSIX
specification.

Constant regular expressions are also used as the first argument for
the gensub, sub and gsub functions, and as the second argument of the
match function (see Section 12.3 [Built-in Functions for String Manipula-
tion], page 127). Modern implementations of awk, including gawk, allow the
third argument of split to be a regexp constant, while some older imple-
mentations do not (d.c.).

This can lead to confusion when attempting to use regexp constants as ar-
guments to user defined functions (see Chapter 13 [User-defined Functions],
page 143). For example:

Chapter 7: Expressions 73

function mysub(pat, repl, str, global)
{

if (global)
gsub(pat, repl, str)

else
sub(pat, repl, str)

return str
}

{
...
text = "hi! hi yourself!"
mysub(/hi/, "howdy", text, 1)
...

}

In this example, the programmer wishes to pass a regexp constant to the
user-defined function mysub, which will in turn pass it on to either sub or
gsub. However, what really happens is that the pat parameter will be either
one or zero, depending upon whether or not $0 matches /hi/.

As it is unlikely that you would ever really wish to pass a truth value in
this way, gawk will issue a warning when it sees a regexp constant used as a
parameter to a user-defined function.

7.3 Variables
Variables are ways of storing values at one point in your program for use
later in another part of your program. You can manipulate them entirely
within your program text, and you can also assign values to them on the
awk command line.

7.3.1 Using Variables in a Program

Variables let you give names to values and refer to them later. You have
already seen variables in many of the examples. The name of a variable must
be a sequence of letters, digits and underscores, but it may not begin with
a digit. Case is significant in variable names; a and A are distinct variables.

A variable name is a valid expression by itself; it represents the variable’s
current value. Variables are given new values with assignment operators,
increment operators and decrement operators. See Section 7.7 [Assignment
Expressions], page 77.

A few variables have special built-in meanings, such as FS, the field
separator, and NF, the number of fields in the current input record. See
Chapter 10 [Built-in Variables], page 107, for a list of them. These built-in
variables can be used and assigned just like all other variables, but their
values are also used or changed automatically by awk. All built-in variables
names are entirely upper-case.

74 Effective AWK Programming

Variables in awk can be assigned either numeric or string values. By
default, variables are initialized to the empty string, which is zero if converted
to a number. There is no need to “initialize” each variable explicitly in awk,
the way you would in C and in most other traditional languages.

7.3.2 Assigning Variables on the Command Line

You can set any awk variable by including a variable assignment among
the arguments on the command line when you invoke awk (see Section 14.2
[Other Command Line Arguments], page 155). Such an assignment has this
form:

variable=text

With it, you can set a variable either at the beginning of the awk run or in
between input files.

If you precede the assignment with the ‘-v’ option, like this:

-v variable=text

then the variable is set at the very beginning, before even the BEGIN rules
are run. The ‘-v’ option and its assignment must precede all the file name
arguments, as well as the program text. (See Section 14.1 [Command Line
Options], page 151, for more information about the ‘-v’ option.)

Otherwise, the variable assignment is performed at a time determined
by its position among the input file arguments: after the processing of the
preceding input file argument. For example:

awk ’{ print $n }’ n=4 inventory-shipped n=2 BBS-list

prints the value of field number n for all input records. Before the first file
is read, the command line sets the variable n equal to four. This causes the
fourth field to be printed in lines from the file inventory-shipped. After
the first file has finished, but before the second file is started, n is set to two,
so that the second field is printed in lines from BBS-list.

$ awk ’{ print $n }’ n=4 inventory-shipped n=2 BBS-list
a 15
a 24
...
a 555-5553
a 555-3412
...

Command line arguments are made available for explicit examination by
the awk program in an array named ARGV (see Section 10.3 [Using ARGC and
ARGV], page 111).

awk processes the values of command line assignments for escape se-
quences (d.c.) (see Section 4.2 [Escape Sequences], page 22).

Chapter 7: Expressions 75

7.4 Conversion of Strings and Numbers
Strings are converted to numbers, and numbers to strings, if the context of
the awk program demands it. For example, if the value of either foo or bar
in the expression ‘foo + bar’ happens to be a string, it is converted to a
number before the addition is performed. If numeric values appear in string
concatenation, they are converted to strings. Consider this:

two = 2; three = 3
print (two three) + 4

This prints the (numeric) value 27. The numeric values of the variables
two and three are converted to strings and concatenated together, and the
resulting string is converted back to the number 23, to which four is then
added.

If, for some reason, you need to force a number to be converted to a string,
concatenate the empty string, "", with that number. To force a string to be
converted to a number, add zero to that string.

A string is converted to a number by interpreting any numeric prefix of
the string as numerals: "2.5" converts to 2.5, "1e3" converts to 1000, and
"25fix" has a numeric value of 25. Strings that can’t be interpreted as valid
numbers are converted to zero.

The exact manner in which numbers are converted into strings is con-
trolled by the awk built-in variable CONVFMT (see Chapter 10 [Built-in Vari-
ables], page 107). Numbers are converted using the sprintf function (see
Section 12.3 [Built-in Functions for String Manipulation], page 127) with
CONVFMT as the format specifier.

CONVFMT’s default value is "%.6g", which prints a value with at least six
significant digits. For some applications you will want to change it to specify
more precision. Double precision on most modern machines gives you 16 or
17 decimal digits of precision.

Strange results can happen if you set CONVFMT to a string that doesn’t tell
sprintf how to format floating point numbers in a useful way. For example,
if you forget the ‘%’ in the format, all numbers will be converted to the same
constant string.

As a special case, if a number is an integer, then the result of converting
it to a string is always an integer, no matter what the value of CONVFMT may
be. Given the following code fragment:

CONVFMT = "%2.2f"
a = 12
b = a ""

b has the value "12", not "12.00" (d.c.).

Prior to the POSIX standard, awk specified that the value of OFMT was
used for converting numbers to strings. OFMT specifies the output format to
use when printing numbers with print. CONVFMT was introduced in order to
separate the semantics of conversion from the semantics of printing. Both

76 Effective AWK Programming

CONVFMT and OFMT have the same default value: "%.6g". In the vast majority
of cases, old awk programs will not change their behavior. However, this use
of OFMT is something to keep in mind if you must port your program to
other implementations of awk; we recommend that instead of changing your
programs, you just port gawk itself! See Section 6.1 [The print Statement],
page 57, for more information on the print statement.

7.5 Arithmetic Operators
The awk language uses the common arithmetic operators when evaluating
expressions. All of these arithmetic operators follow normal precedence rules,
and work as you would expect them to.

Here is a file grades containing a list of student names and three test
scores per student (it’s a small class):

Pat 100 97 58
Sandy 84 72 93
Chris 72 92 89

This programs takes the file grades, and prints the average of the scores.

$ awk ’{ sum = $2 + $3 + $4 ; avg = sum / 3
> print $1, avg }’ grades
a Pat 85
a Sandy 83
a Chris 84.3333

This table lists the arithmetic operators in awk, in order from highest
precedence to lowest:

- x Negation.

+ x Unary plus. The expression is converted to a number.

x ^ y
x ** y Exponentiation: x raised to the y power. ‘2 ^ 3’ has the value

eight. The character sequence ‘**’ is equivalent to ‘^’. (The
POSIX standard only specifies the use of ‘^’ for exponentiation.)

x * y Multiplication.

x / y Division. Since all numbers in awk are real numbers, the result
is not rounded to an integer: ‘3 / 4’ has the value 0.75.

x % y Remainder. The quotient is rounded toward zero to an integer,
multiplied by y and this result is subtracted from x. This opera-
tion is sometimes known as “trunc-mod.” The following relation
always holds:

b * int(a / b) + (a % b) == a

One possibly undesirable effect of this definition of remainder is
that x % y is negative if x is negative. Thus,

-17 % 8 = -1

Chapter 7: Expressions 77

In other awk implementations, the signedness of the remainder
may be machine dependent.

x + y Addition.

x - y Subtraction.

For maximum portability, do not use the ‘**’ operator.

Unary plus and minus have the same precedence, the multiplication op-
erators all have the same precedence, and addition and subtraction have the
same precedence.

7.6 String Concatenation
It seemed like a good idea at the time.
Brian Kernighan

There is only one string operation: concatenation. It does not have a
specific operator to represent it. Instead, concatenation is performed by
writing expressions next to one another, with no operator. For example:

$ awk ’{ print "Field number one: " $1 }’ BBS-list
a Field number one: aardvark
a Field number one: alpo-net
...

Without the space in the string constant after the ‘:’, the line would run
together. For example:

$ awk ’{ print "Field number one:" $1 }’ BBS-list
a Field number one:aardvark
a Field number one:alpo-net
...

Since string concatenation does not have an explicit operator, it is often
necessary to insure that it happens where you want it to by using parentheses
to enclose the items to be concatenated. For example, the following code
fragment does not concatenate file and name as you might expect:

file = "file"
name = "name"
print "something meaningful" > file name

It is necessary to use the following:

print "something meaningful" > (file name)

We recommend that you use parentheses around concatenation in all but
the most common contexts (such as on the right-hand side of ‘=’).

7.7 Assignment Expressions
An assignment is an expression that stores a new value into a variable. For
example, let’s assign the value one to the variable z:

78 Effective AWK Programming

z = 1

After this expression is executed, the variable z has the value one. What-
ever old value z had before the assignment is forgotten.

Assignments can store string values also. For example, this would store
the value "this food is good" in the variable message:

thing = "food"
predicate = "good"
message = "this " thing " is " predicate

(This also illustrates string concatenation.)

The ‘=’ sign is called an assignment operator. It is the simplest assignment
operator because the value of the right-hand operand is stored unchanged.

Most operators (addition, concatenation, and so on) have no effect except
to compute a value. If you ignore the value, you might as well not use the
operator. An assignment operator is different; it does produce a value, but
even if you ignore the value, the assignment still makes itself felt through
the alteration of the variable. We call this a side effect.

The left-hand operand of an assignment need not be a variable (see
Section 7.3 [Variables], page 73); it can also be a field (see Section 5.4 [Chang-
ing the Contents of a Field], page 40) or an array element (see Chapter 11
[Arrays in awk], page 115). These are all called lvalues, which means they
can appear on the left-hand side of an assignment operator. The right-hand
operand may be any expression; it produces the new value which the assign-
ment stores in the specified variable, field or array element. (Such values are
called rvalues).

It is important to note that variables do not have permanent types. The
type of a variable is simply the type of whatever value it happens to hold
at the moment. In the following program fragment, the variable foo has a
numeric value at first, and a string value later on:

foo = 1
print foo
foo = "bar"
print foo

When the second assignment gives foo a string value, the fact that it previ-
ously had a numeric value is forgotten.

String values that do not begin with a digit have a numeric value of zero.
After executing this code, the value of foo is five:

foo = "a string"
foo = foo + 5

(Note that using a variable as a number and then later as a string can be
confusing and is poor programming style. The above examples illustrate
how awk works, not how you should write your own programs!)

Chapter 7: Expressions 79

An assignment is an expression, so it has a value: the same value that is
assigned. Thus, ‘z = 1’ as an expression has the value one. One consequence
of this is that you can write multiple assignments together:

x = y = z = 0

stores the value zero in all three variables. It does this because the value
of ‘z = 0’, which is zero, is stored into y, and then the value of ‘y = z = 0’,
which is zero, is stored into x.

You can use an assignment anywhere an expression is called for. For ex-
ample, it is valid to write ‘x != (y = 1)’ to set y to one and then test whether
x equals one. But this style tends to make programs hard to read; except in
a one-shot program, you should not use such nesting of assignments.

Aside from ‘=’, there are several other assignment operators that do arith-
metic with the old value of the variable. For example, the operator ‘+=’
computes a new value by adding the right-hand value to the old value of the
variable. Thus, the following assignment adds five to the value of foo:

foo += 5

This is equivalent to the following:

foo = foo + 5

Use whichever one makes the meaning of your program clearer.

There are situations where using ‘+=’ (or any assignment operator) is
not the same as simply repeating the left-hand operand in the right-hand
expression. For example:

Thanks to Pat Rankin for this example
BEGIN {

foo[rand()] += 5
for (x in foo)

print x, foo[x]

bar[rand()] = bar[rand()] + 5
for (x in bar)

print x, bar[x]
}

The indices of bar are guaranteed to be different, because rand will re-
turn different values each time it is called. (Arrays and the rand function
haven’t been covered yet. See Chapter 11 [Arrays in awk], page 115, and see
Section 12.2 [Numeric Built-in Functions], page 125, for more information).
This example illustrates an important fact about the assignment operators:
the left-hand expression is only evaluated once.

It is also up to the implementation as to which expression is evaluated
first, the left-hand one or the right-hand one. Consider this example:

i = 1
a[i += 2] = i + 1

The value of a[3] could be either two or four.

80 Effective AWK Programming

Here is a table of the arithmetic assignment operators. In each case, the
right-hand operand is an expression whose value is converted to a number.

lvalue += increment
Adds increment to the value of lvalue to make the new value of
lvalue.

lvalue -= decrement
Subtracts decrement from the value of lvalue.

lvalue *= coefficient
Multiplies the value of lvalue by coefficient.

lvalue /= divisor
Divides the value of lvalue by divisor.

lvalue %= modulus
Sets lvalue to its remainder by modulus.

lvalue ^= power
lvalue **= power

Raises lvalue to the power power. (Only the ‘^=’ operator is
specified by POSIX.)

For maximum portability, do not use the ‘**=’ operator.

7.8 Increment and Decrement Operators
Increment and decrement operators increase or decrease the value of a vari-
able by one. You could do the same thing with an assignment operator, so
the increment operators add no power to the awk language; but they are
convenient abbreviations for very common operations.

The operator to add one is written ‘++’. It can be used to increment a
variable either before or after taking its value.

To pre-increment a variable v, write ‘++v’. This adds one to the value of
v and that new value is also the value of this expression. The assignment
expression ‘v += 1’ is completely equivalent.

Writing the ‘++’ after the variable specifies post-increment. This incre-
ments the variable value just the same; the difference is that the value of the
increment expression itself is the variable’s old value. Thus, if foo has the
value four, then the expression ‘foo++’ has the value four, but it changes the
value of foo to five.

The post-increment ‘foo++’ is nearly equivalent to writing ‘(foo += 1)
- 1’. It is not perfectly equivalent because all numbers in awk are floating
point: in floating point, ‘foo + 1 - 1’ does not necessarily equal foo. But
the difference is minute as long as you stick to numbers that are fairly small
(less than 10e12).

Any lvalue can be incremented. Fields and array elements are incre-
mented just like variables. (Use ‘$(i++)’ when you wish to do a field ref-

Chapter 7: Expressions 81

erence and a variable increment at the same time. The parentheses are
necessary because of the precedence of the field reference operator, ‘$’.)

The decrement operator ‘--’ works just like ‘++’ except that it subtracts
one instead of adding. Like ‘++’, it can be used before the lvalue to pre-
decrement or after it to post-decrement.

Here is a summary of increment and decrement expressions.

++lvalue This expression increments lvalue and the new value becomes
the value of the expression.

lvalue++ This expression increments lvalue, but the value of the expres-
sion is the old value of lvalue.

--lvalue Like ‘++lvalue’, but instead of adding, it subtracts. It decre-
ments lvalue and delivers the value that results.

lvalue-- Like ‘lvalue++’, but instead of adding, it subtracts. It decre-
ments lvalue. The value of the expression is the old value of
lvalue.

7.9 True and False in awk

Many programming languages have a special representation for the concepts
of “true” and “false.” Such languages usually use the special constants true
and false, or perhaps their upper-case equivalents.

awk is different. It borrows a very simple concept of true and false from
C. In awk, any non-zero numeric value, or any non-empty string value is
true. Any other value (zero or the null string, "") is false. The following
program will print ‘A strange truth value’ three times:

BEGIN {
if (3.1415927)

print "A strange truth value"
if ("Four Score And Seven Years Ago")

print "A strange truth value"
if (j = 57)

print "A strange truth value"
}

There is a surprising consequence of the “non-zero or non-null” rule: The
string constant "0" is actually true, since it is non-null (d.c.).

7.10 Variable Typing and Comparison Expressions
The Guide is definitive. Reality is frequently inaccurate.
The Hitchhiker’s Guide to the Galaxy

Unlike other programming languages, awk variables do not have a fixed
type. Instead, they can be either a number or a string, depending upon the
value that is assigned to them.

82 Effective AWK Programming

The 1992 POSIX standard introduced the concept of a numeric string,
which is simply a string that looks like a number, for example, " +2". This
concept is used for determining the type of a variable.

The type of the variable is important, since the types of two variables
determine how they are compared.

In gawk, variable typing follows these rules.

1. A numeric literal or the result of a numeric operation has the numeric
attribute.

2. A string literal or the result of a string operation has the string attribute.

3. Fields, getline input, FILENAME, ARGV elements, ENVIRON elements and
the elements of an array created by split that are numeric strings
have the strnum attribute. Otherwise, they have the string attribute.
Uninitialized variables also have the strnum attribute.

4. Attributes propagate across assignments, but are not changed by any
use.

The last rule is particularly important. In the following program, a has
numeric type, even though it is later used in a string operation.

BEGIN {
a = 12.345
b = a " is a cute number"
print b

}

When two operands are compared, either string comparison or numeric
comparison may be used, depending on the attributes of the operands, ac-
cording to the following, symmetric, matrix:

STRING NUMERIC STRNUM

STRING string string string
NUMERIC string numeric numeric
STRNUM string numeric numeric

The basic idea is that user input that looks numeric, and only user input,
should be treated as numeric, even though it is actually made of characters,
and is therefore also a string.

Comparison expressions compare strings or numbers for relationships
such as equality. They are written using relational operators, which are
a superset of those in C. Here is a table of them:

x < y True if x is less than y.

x <= y True if x is less than or equal to y.

x > y True if x is greater than y.

x >= y True if x is greater than or equal to y.

x == y True if x is equal to y.

Chapter 7: Expressions 83

x != y True if x is not equal to y.

x ~ y True if the string x matches the regexp denoted by y.

x !~ y True if the string x does not match the regexp denoted by y.

subscript in array
True if the array array has an element with the subscript
subscript.

Comparison expressions have the value one if true and zero if false.

When comparing operands of mixed types, numeric operands are con-
verted to strings using the value of CONVFMT (see Section 7.4 [Conversion of
Strings and Numbers], page 75).

Strings are compared by comparing the first character of each, then the
second character of each, and so on. Thus "10" is less than "9". If there are
two strings where one is a prefix of the other, the shorter string is less than
the longer one. Thus "abc" is less than "abcd".

It is very easy to accidentally mistype the ‘==’ operator, and leave off one
of the ‘=’s. The result is still valid awk code, but the program will not do
what you mean:

if (a = b) # oops! should be a == b
...

else
...

Unless b happens to be zero or the null string, the if part of the test will
always succeed. Because the operators are so similar, this kind of error is
very difficult to spot when scanning the source code.

Here are some sample expressions, how gawk compares them, and what
the result of the comparison is.

1.5 <= 2.0
numeric comparison (true)

"abc" >= "xyz"
string comparison (false)

1.5 != " +2"
string comparison (true)

"1e2" < "3"
string comparison (true)

a = 2; b = "2"
a == b string comparison (true)

a = 2; b = " +2"
a == b string comparison (false)

In this example,

$ echo 1e2 3 | awk ’{ print ($1 < $2) ? "true" : "false" }’
a false

84 Effective AWK Programming

the result is ‘false’ since both $1 and $2 are numeric strings and thus both
have the strnum attribute, dictating a numeric comparison.

The purpose of the comparison rules and the use of numeric strings is to
attempt to produce the behavior that is “least surprising,” while still “doing
the right thing.”

String comparisons and regular expression comparisons are very different.
For example,

x == "foo"

has the value of one, or is true, if the variable x is precisely ‘foo’. By
contrast,

x ~ /foo/

has the value one if x contains ‘foo’, such as "Oh, what a fool am I!".

The right hand operand of the ‘~’ and ‘!~’ operators may be either a
regexp constant (/.../), or an ordinary expression, in which case the value
of the expression as a string is used as a dynamic regexp (see Section 4.1 [How
to Use Regular Expressions], page 21; also see Section 4.7 [Using Dynamic
Regexps], page 32).

In recent implementations of awk, a constant regular expression in slashes
by itself is also an expression. The regexp /regexp/ is an abbreviation for
this comparison expression:

$0 ~ /regexp/

One special place where /foo/ is not an abbreviation for ‘$0 ~ /foo/’
is when it is the right-hand operand of ‘~’ or ‘!~’! See Section 7.2 [Using
Regular Expression Constants], page 72, where this is discussed in more
detail.

7.11 Boolean Expressions
A boolean expression is a combination of comparison expressions or match-
ing expressions, using the boolean operators “or” (‘||’), “and” (‘&&’), and
“not” (‘!’), along with parentheses to control nesting. The truth value of
the boolean expression is computed by combining the truth values of the
component expressions. Boolean expressions are also referred to as logical
expressions. The terms are equivalent.

Boolean expressions can be used wherever comparison and matching ex-
pressions can be used. They can be used in if, while, do and for statements
(see Chapter 9 [Control Statements in Actions], page 99). They have nu-
meric values (one if true, zero if false), which come into play if the result of
the boolean expression is stored in a variable, or used in arithmetic.

In addition, every boolean expression is also a valid pattern, so you can
use one as a pattern to control the execution of rules.

Here are descriptions of the three boolean operators, with examples.

Chapter 7: Expressions 85

boolean1 && boolean2
True if both boolean1 and boolean2 are true. For example, the
following statement prints the current input record if it contains
both ‘2400’ and ‘foo’.

if ($0 ~ /2400/ && $0 ~ /foo/) print

The subexpression boolean2 is evaluated only if boolean1 is
true. This can make a difference when boolean2 contains ex-
pressions that have side effects: in the case of ‘$0 ~ /foo/ &&
($2 == bar++)’, the variable bar is not incremented if there is
no ‘foo’ in the record.

boolean1 || boolean2
True if at least one of boolean1 or boolean2 is true. For exam-
ple, the following statement prints all records in the input that
contain either ‘2400’ or ‘foo’, or both.

if ($0 ~ /2400/ || $0 ~ /foo/) print

The subexpression boolean2 is evaluated only if boolean1 is
false. This can make a difference when boolean2 contains ex-
pressions that have side effects.

! boolean True if boolean is false. For example, the following program
prints all records in the input file BBS-list that do not contain
the string ‘foo’.

awk ’{ if (! ($0 ~ /foo/)) print }’ BBS-list

The ‘&&’ and ‘||’ operators are called short-circuit operators because of
the way they work. Evaluation of the full expression is “short-circuited” if
the result can be determined part way through its evaluation.

You can continue a statement that uses ‘&&’ or ‘||’ simply by putting
a newline after them. But you cannot put a newline in front of either of
these operators without using backslash continuation (see Section 2.6 [awk
Statements Versus Lines], page 16).

The actual value of an expression using the ‘!’ operator will be either one
or zero, depending upon the truth value of the expression it is applied to.

The ‘!’ operator is often useful for changing the sense of a flag variable
from false to true and back again. For example, the following program is
one way to print lines in between special bracketing lines:

$1 == "START" { interested = ! interested }
interested == 1 { print }
$1 == "END" { interested = ! interested }

The variable interested, like all awk variables, starts out initialized to zero,
which is also false. When a line is seen whose first field is ‘START’, the value
of interested is toggled to true, using ‘!’. The next rule prints lines as
long as interested is true. When a line is seen whose first field is ‘END’,
interested is toggled back to false.

86 Effective AWK Programming

7.12 Conditional Expressions
A conditional expression is a special kind of expression with three operands.
It allows you to use one expression’s value to select one of two other expres-
sions.

The conditional expression is the same as in the C language:

selector ? if-true-exp : if-false-exp

There are three subexpressions. The first, selector, is always computed first.
If it is “true” (not zero and not null) then if-true-exp is computed next and
its value becomes the value of the whole expression. Otherwise, if-false-exp
is computed next and its value becomes the value of the whole expression.

For example, this expression produces the absolute value of x:

x > 0 ? x : -x

Each time the conditional expression is computed, exactly one of if-true-
exp and if-false-exp is computed; the other is ignored. This is important
when the expressions contain side effects. For example, this conditional
expression examines element i of either array a or array b, and increments
i.

x == y ? a[i++] : b[i++]

This is guaranteed to increment i exactly once, because each time only one
of the two increment expressions is executed, and the other is not. See
Chapter 11 [Arrays in awk], page 115, for more information about arrays.

As a minor gawk extension, you can continue a statement that uses ‘?:’
simply by putting a newline after either character. However, you cannot put
a newline in front of either character without using backslash continuation
(see Section 2.6 [awk Statements Versus Lines], page 16).

7.13 Function Calls
A function is a name for a particular calculation. Because it has a name,
you can ask for it by name at any point in the program. For example, the
function sqrt computes the square root of a number.

A fixed set of functions are built-in, which means they are available in
every awk program. The sqrt function is one of these. See Chapter 12 [Built-
in Functions], page 125, for a list of built-in functions and their descriptions.
In addition, you can define your own functions for use in your program. See
Chapter 13 [User-defined Functions], page 143, for how to do this.

The way to use a function is with a function call expression, which con-
sists of the function name followed immediately by a list of arguments in
parentheses. The arguments are expressions which provide the raw materi-
als for the function’s calculations. When there is more than one argument,
they are separated by commas. If there are no arguments, write just ‘()’
after the function name. Here are some examples:

sqrt(x^2 + y^2) one argument

Chapter 7: Expressions 87

atan2(y, x) two arguments
rand() no arguments

Do not put any space between the function name and the open-
parenthesis! A user-defined function name looks just like the name of a
variable, and space would make the expression look like concatenation of a
variable with an expression inside parentheses. Space before the parenthesis
is harmless with built-in functions, but it is best not to get into the habit of
using space to avoid mistakes with user-defined functions.

Each function expects a particular number of arguments. For example,
the sqrt function must be called with a single argument, the number to take
the square root of:

sqrt(argument)

Some of the built-in functions allow you to omit the final argument. If
you do so, they use a reasonable default. See Chapter 12 [Built-in Functions],
page 125, for full details. If arguments are omitted in calls to user-defined
functions, then those arguments are treated as local variables, initialized to
the empty string (see Chapter 13 [User-defined Functions], page 143).

Like every other expression, the function call has a value, which is com-
puted by the function based on the arguments you give it. In this example,
the value of ‘sqrt(argument)’ is the square root of argument. A function
can also have side effects, such as assigning values to certain variables or
doing I/O.

Here is a command to read numbers, one number per line, and print the
square root of each one:

$ awk ’{ print "The square root of", $1, "is", sqrt($1) }’
1
a The square root of 1 is 1
3
a The square root of 3 is 1.73205
5
a The square root of 5 is 2.23607
Control-d

7.14 Operator Precedence (How Operators Nest)
Operator precedence determines how operators are grouped, when different
operators appear close by in one expression. For example, ‘*’ has higher
precedence than ‘+’; thus, ‘a + b * c’ means to multiply b and c, and then
add a to the product (i.e. ‘a + (b * c)’).

You can overrule the precedence of the operators by using parentheses.
You can think of the precedence rules as saying where the parentheses are
assumed to be if you do not write parentheses yourself. In fact, it is wise
to always use parentheses whenever you have an unusual combination of
operators, because other people who read the program may not remember

88 Effective AWK Programming

what the precedence is in this case. You might forget, too; then you could
make a mistake. Explicit parentheses will help prevent any such mistake.

When operators of equal precedence are used together, the leftmost oper-
ator groups first, except for the assignment, conditional and exponentiation
operators, which group in the opposite order. Thus, ‘a - b + c’ groups as
‘(a - b) + c’, and ‘a = b = c’ groups as ‘a = (b = c)’.

The precedence of prefix unary operators does not matter as long as
only unary operators are involved, because there is only one way to inter-
pret them—innermost first. Thus, ‘$++i’ means ‘$(++i)’ and ‘++$x’ means
‘++($x)’. However, when another operator follows the operand, then the
precedence of the unary operators can matter. Thus, ‘$x^2’ means ‘($x)^2’,
but ‘-x^2’ means ‘-(x^2)’, because ‘-’ has lower precedence than ‘^’ while
‘$’ has higher precedence.

Here is a table of awk’s operators, in order from highest precedence to
lowest:

(...) Grouping.

$ Field.

++ -- Increment, decrement.

^ ** Exponentiation. These operators group right-to-left. (The ‘**’
operator is not specified by POSIX.)

+ - ! Unary plus, minus, logical “not”.

* / % Multiplication, division, modulus.

+ - Addition, subtraction.

Concatenation
No special token is used to indicate concatenation. The operands
are simply written side by side.

< <= == !=
> >= >> | Relational, and redirection. The relational operators and the

redirections have the same precedence level. Characters such
as ‘>’ serve both as relationals and as redirections; the context
distinguishes between the two meanings.

Note that the I/O redirection operators in print and printf
statements belong to the statement level, not to expressions.
The redirection does not produce an expression which could be
the operand of another operator. As a result, it does not make
sense to use a redirection operator near another operator of lower
precedence, without parentheses. Such combinations, for exam-
ple ‘print foo > a ? b : c’, result in syntax errors. The correct
way to write this statement is ‘print foo > (a ? b : c)’.

~ !~ Matching, non-matching.

Chapter 7: Expressions 89

in Array membership.

&& Logical “and”.

|| Logical “or”.

?: Conditional. This operator groups right-to-left.

= += -= *=
/= %= ^= **=

Assignment. These operators group right-to-left. (The ‘**=’
operator is not specified by POSIX.)

Chapter 8: Patterns and Actions 91

8 Patterns and Actions

As you have already seen, each awk statement consists of a pattern with
an associated action. This chapter describes how you build patterns and
actions.

8.1 Pattern Elements
Patterns in awk control the execution of rules: a rule is executed when its
pattern matches the current input record. This section explains all about
how to write patterns.

8.1.1 Kinds of Patterns

Here is a summary of the types of patterns supported in awk.

/regular expression/
A regular expression as a pattern. It matches when the text
of the input record fits the regular expression. (See Chapter 4
[Regular Expressions], page 21.)

expression
A single expression. It matches when its value is non-zero (if a
number) or non-null (if a string). (See Section 8.1.3 [Expressions
as Patterns], page 92.)

pat1, pat2
A pair of patterns separated by a comma, specifying a range of
records. The range includes both the initial record that matches
pat1, and the final record that matches pat2. (See Section 8.1.4
[Specifying Record Ranges with Patterns], page 93.)

BEGIN
END Special patterns for you to supply start-up or clean-up actions

for your awk program. (See Section 8.1.5 [The BEGIN and END
Special Patterns], page 94.)

empty The empty pattern matches every input record. (See
Section 8.1.6 [The Empty Pattern], page 96.)

8.1.2 Regular Expressions as Patterns

We have been using regular expressions as patterns since our early examples.
This kind of pattern is simply a regexp constant in the pattern part of a rule.
Its meaning is ‘$0 ~ /pattern/’. The pattern matches when the input record
matches the regexp. For example:

/foo|bar|baz/ { buzzwords++ }
END { print buzzwords, "buzzwords seen" }

92 Effective AWK Programming

8.1.3 Expressions as Patterns

Any awk expression is valid as an awk pattern. Then the pattern matches if
the expression’s value is non-zero (if a number) or non-null (if a string).

The expression is reevaluated each time the rule is tested against a new
input record. If the expression uses fields such as $1, the value depends
directly on the new input record’s text; otherwise, it depends only on what
has happened so far in the execution of the awk program, but that may still
be useful.

A very common kind of expression used as a pattern is the comparison ex-
pression, using the comparison operators described in Section 7.10 [Variable
Typing and Comparison Expressions], page 81.

Regexp matching and non-matching are also very common expressions.
The left operand of the ‘~’ and ‘!~’ operators is a string. The right operand
is either a constant regular expression enclosed in slashes (/regexp/), or any
expression, whose string value is used as a dynamic regular expression (see
Section 4.7 [Using Dynamic Regexps], page 32).

The following example prints the second field of each input record whose
first field is precisely ‘foo’.

$ awk ’$1 == "foo" { print $2 }’ BBS-list

(There is no output, since there is no BBS site named “foo”.) Contrast this
with the following regular expression match, which would accept any record
with a first field that contains ‘foo’:

$ awk ’$1 ~ /foo/ { print $2 }’ BBS-list
a 555-1234
a 555-6699
a 555-6480
a 555-2127

Boolean expressions are also commonly used as patterns. Whether the
pattern matches an input record depends on whether its subexpressions
match.

For example, the following command prints all records in BBS-list that
contain both ‘2400’ and ‘foo’.

$ awk ’/2400/ && /foo/’ BBS-list
a fooey 555-1234 2400/1200/300 B

The following command prints all records in BBS-list that contain either
‘2400’ or ‘foo’, or both.

$ awk ’/2400/ || /foo/’ BBS-list
a alpo-net 555-3412 2400/1200/300 A
a bites 555-1675 2400/1200/300 A
a fooey 555-1234 2400/1200/300 B
a foot 555-6699 1200/300 B
a macfoo 555-6480 1200/300 A
a sdace 555-3430 2400/1200/300 A
a sabafoo 555-2127 1200/300 C

Chapter 8: Patterns and Actions 93

The following command prints all records in BBS-list that do not contain
the string ‘foo’.

$ awk ’! /foo/’ BBS-list
a aardvark 555-5553 1200/300 B
a alpo-net 555-3412 2400/1200/300 A
a barfly 555-7685 1200/300 A
a bites 555-1675 2400/1200/300 A
a camelot 555-0542 300 C
a core 555-2912 1200/300 C
a sdace 555-3430 2400/1200/300 A

The subexpressions of a boolean operator in a pattern can be constant
regular expressions, comparisons, or any other awk expressions. Range pat-
terns are not expressions, so they cannot appear inside boolean patterns.
Likewise, the special patterns BEGIN and END, which never match any input
record, are not expressions and cannot appear inside boolean patterns.

A regexp constant as a pattern is also a special case of an expression pat-
tern. /foo/ as an expression has the value one if ‘foo’ appears in the current
input record; thus, as a pattern, /foo/ matches any record containing ‘foo’.

8.1.4 Specifying Record Ranges with Patterns

A range pattern is made of two patterns separated by a comma, of the form
‘begpat, endpat’. It matches ranges of consecutive input records. The
first pattern, begpat, controls where the range begins, and the second one,
endpat, controls where it ends. For example,

awk ’$1 == "on", $1 == "off"’

prints every record between ‘on’/‘off’ pairs, inclusive.

A range pattern starts out by matching begpat against every input record;
when a record matches begpat, the range pattern becomes turned on. The
range pattern matches this record. As long as it stays turned on, it auto-
matically matches every input record read. It also matches endpat against
every input record; when that succeeds, the range pattern is turned off again
for the following record. Then it goes back to checking begpat against each
record.

The record that turns on the range pattern and the one that turns it off
both match the range pattern. If you don’t want to operate on these records,
you can write if statements in the rule’s action to distinguish them from
the records you are interested in.

It is possible for a pattern to be turned both on and off by the same
record, if the record satisfies both conditions. Then the action is executed
for just that record.

For example, suppose you have text between two identical markers (say
the ‘%’ symbol) that you wish to ignore. You might try to combine a range
pattern that describes the delimited text with the next statement (not dis-
cussed yet, see Section 9.7 [The next Statement], page 104), which causes

94 Effective AWK Programming

awk to skip any further processing of the current record and start over again
with the next input record. Such a program would look like this:

/^%$/,/^%$/ { next }
{ print }

This program fails because the range pattern is both turned on and turned
off by the first line with just a ‘%’ on it. To accomplish this task, you must
write the program this way, using a flag:

/^%$/ { skip = ! skip; next }
skip == 1 { next } # skip lines with ‘skip’ set

Note that in a range pattern, the ‘,’ has the lowest precedence (is eval-
uated last) of all the operators. Thus, for example, the following program
attempts to combine a range pattern with another, simpler test.

echo Yes | awk ’/1/,/2/ || /Yes/’

The author of this program intended it to mean ‘(/1/,/2/) || /Yes/’.
However, awk interprets this as ‘/1/, (/2/ || /Yes/)’. This cannot be
changed or worked around; range patterns do not combine with other pat-
terns.

8.1.5 The BEGIN and END Special Patterns

BEGIN and END are special patterns. They are not used to match input
records. Rather, they supply start-up or clean-up actions for your awk script.

8.1.5.1 Startup and Cleanup Actions

A BEGIN rule is executed, once, before the first input record has been read.
An END rule is executed, once, after all the input has been read. For example:

$ awk ’
> BEGIN { print "Analysis of \"foo\"" }
> /foo/ { ++n }
> END { print "\"foo\" appears " n " times." }’ BBS-list
a Analysis of "foo"
a "foo" appears 4 times.

This program finds the number of records in the input file BBS-list that
contain the string ‘foo’. The BEGIN rule prints a title for the report. There
is no need to use the BEGIN rule to initialize the counter n to zero, as awk
does this automatically (see Section 7.3 [Variables], page 73).

The second rule increments the variable n every time a record containing
the pattern ‘foo’ is read. The END rule prints the value of n at the end of
the run.

The special patterns BEGIN and END cannot be used in ranges or with
boolean operators (indeed, they cannot be used with any operators).

An awk program may have multiple BEGIN and/or END rules. They are
executed in the order they appear, all the BEGIN rules at start-up and all the
END rules at termination. BEGIN and END rules may be intermixed with other

Chapter 8: Patterns and Actions 95

rules. This feature was added in the 1987 version of awk, and is included in
the POSIX standard. The original (1978) version of awk required you to put
the BEGIN rule at the beginning of the program, and the END rule at the end,
and only allowed one of each. This is no longer required, but it is a good
idea in terms of program organization and readability.

Multiple BEGIN and END rules are useful for writing library functions,
since each library file can have its own BEGIN and/or END rule to do its own
initialization and/or cleanup. Note that the order in which library functions
are named on the command line controls the order in which their BEGIN and
END rules are executed. Therefore you have to be careful to write such rules
in library files so that the order in which they are executed doesn’t matter.
See Section 14.1 [Command Line Options], page 151, for more information
on using library functions. See Chapter 15 [A Library of awk Functions],
page 159, for a number of useful library functions.

If an awk program only has a BEGIN rule, and no other rules, then the
program exits after the BEGIN rule has been run. (The original version of awk
used to keep reading and ignoring input until end of file was seen.) However,
if an END rule exists, then the input will be read, even if there are no other
rules in the program. This is necessary in case the END rule checks the FNR
and NR variables (d.c.).

BEGIN and END rules must have actions; there is no default action for
these rules since there is no current record when they run.

8.1.5.2 Input/Output from BEGIN and END Rules

There are several (sometimes subtle) issues involved when doing I/O from a
BEGIN or END rule.

The first has to do with the value of $0 in a BEGIN rule. Since BEGIN
rules are executed before any input is read, there simply is no input record,
and therefore no fields, when executing BEGIN rules. References to $0 and
the fields yield a null string or zero, depending upon the context. One way
to give $0 a real value is to execute a getline command without a variable
(see Section 5.8 [Explicit Input with getline], page 50). Another way is to
simply assign a value to it.

The second point is similar to the first, but from the other direction.
Inside an END rule, what is the value of $0 and NF? Traditionally, due largely
to implementation issues, $0 and NF were undefined inside an END rule. The
POSIX standard specified that NF was available in an END rule, containing
the number of fields from the last input record. Due most probably to an
oversight, the standard does not say that $0 is also preserved, although
logically one would think that it should be. In fact, gawk does preserve the
value of $0 for use in END rules. Be aware, however, that Unix awk, and
possibly other implementations, do not.

The third point follows from the first two. What is the meaning of ‘print’
inside a BEGIN or END rule? The meaning is the same as always, ‘print $0’.

96 Effective AWK Programming

If $0 is the null string, then this prints an empty line. Many long time
awk programmers use ‘print’ in BEGIN and END rules, to mean ‘print ""’,
relying on $0 being null. While you might generally get away with this in
BEGIN rules, in gawk at least, it is a very bad idea in END rules. It is also
poor style, since if you want an empty line in the output, you should say so
explicitly in your program.

8.1.6 The Empty Pattern

An empty (i.e. non-existent) pattern is considered to match every input
record. For example, the program:

awk ’{ print $1 }’ BBS-list

prints the first field of every record.

8.2 Overview of Actions
An awk program or script consists of a series of rules and function definitions,
interspersed. (Functions are described later. See Chapter 13 [User-defined
Functions], page 143.)

A rule contains a pattern and an action, either of which (but not both)
may be omitted. The purpose of the action is to tell awk what to do once a
match for the pattern is found. Thus, in outline, an awk program generally
looks like this:

[pattern] [{ action }]
[pattern] [{ action }]
...
function name(args) { ... }
...

An action consists of one or more awk statements, enclosed in curly braces
(‘{’ and ‘}’). Each statement specifies one thing to be done. The statements
are separated by newlines or semicolons.

The curly braces around an action must be used even if the action contains
only one statement, or even if it contains no statements at all. However, if
you omit the action entirely, omit the curly braces as well. An omitted action
is equivalent to ‘{ print $0 }’.

/foo/ { } # match foo, do nothing - empty action
/foo/ # match foo, print the record - omitted action

Here are the kinds of statements supported in awk:

• Expressions, which can call functions or assign values to variables (see
Chapter 7 [Expressions], page 71). Executing this kind of statement
simply computes the value of the expression. This is useful when the
expression has side effects (see Section 7.7 [Assignment Expressions],
page 77).

• Control statements, which specify the control flow of awk programs.
The awk language gives you C-like constructs (if, for, while, and do)

Chapter 8: Patterns and Actions 97

as well as a few special ones (see Chapter 9 [Control Statements in
Actions], page 99).

• Compound statements, which consist of one or more statements enclosed
in curly braces. A compound statement is used in order to put several
statements together in the body of an if, while, do or for statement.

• Input statements, using the getline command (see Section 5.8 [Explicit
Input with getline], page 50), the next statement (see Section 9.7
[The next Statement], page 104), and the nextfile statement (see
Section 9.8 [The nextfile Statement], page 105).

• Output statements, print and printf. See Chapter 6 [Printing Out-
put], page 57.

• Deletion statements, for deleting array elements. See Section 11.6 [The
delete Statement], page 119.

The next chapter covers control statements in detail.

Chapter 9: Control Statements in Actions 99

9 Control Statements in Actions

Control statements such as if, while, and so on control the flow of execution
in awk programs. Most of the control statements in awk are patterned on
similar statements in C.

All the control statements start with special keywords such as if and
while, to distinguish them from simple expressions.

Many control statements contain other statements; for example, the if
statement contains another statement which may or may not be executed.
The contained statement is called the body. If you want to include more than
one statement in the body, group them into a single compound statement
with curly braces, separating them with newlines or semicolons.

9.1 The if-else Statement
The if-else statement is awk’s decision-making statement. It looks like
this:

if (condition) then-body [else else-body]

The condition is an expression that controls what the rest of the statement
will do. If condition is true, then-body is executed; otherwise, else-body
is executed. The else part of the statement is optional. The condition is
considered false if its value is zero or the null string, and true otherwise.

Here is an example:

if (x % 2 == 0)
print "x is even"

else
print "x is odd"

In this example, if the expression ‘x % 2 == 0’ is true (that is, the value
of x is evenly divisible by two), then the first print statement is executed,
otherwise the second print statement is executed.

If the else appears on the same line as then-body, and then-body is not a
compound statement (i.e. not surrounded by curly braces), then a semicolon
must separate then-body from else. To illustrate this, let’s rewrite the
previous example:

if (x % 2 == 0) print "x is even"; else
print "x is odd"

If you forget the ‘;’, awk won’t be able to interpret the statement, and you
will get a syntax error.

We would not actually write this example this way, because a human
reader might fail to see the else if it were not the first thing on its line.

9.2 The while Statement
In programming, a loop means a part of a program that can be executed
two or more times in succession.

100 Effective AWK Programming

The while statement is the simplest looping statement in awk. It re-
peatedly executes a statement as long as a condition is true. It looks like
this:

while (condition)
body

Here body is a statement that we call the body of the loop, and condition
is an expression that controls how long the loop keeps running.

The first thing the while statement does is test condition. If condition
is true, it executes the statement body. After body has been executed,
condition is tested again, and if it is still true, body is executed again. This
process repeats until condition is no longer true. If condition is initially
false, the body of the loop is never executed, and awk continues with the
statement following the loop.

This example prints the first three fields of each record, one per line.

awk ’{ i = 1
while (i <= 3) {

print $i
i++

}
}’ inventory-shipped

Here the body of the loop is a compound statement enclosed in braces,
containing two statements.

The loop works like this: first, the value of i is set to one. Then, the
while tests whether i is less than or equal to three. This is true when i
equals one, so the i-th field is printed. Then the ‘i++’ increments the value
of i and the loop repeats. The loop terminates when i reaches four.

As you can see, a newline is not required between the condition and
the body; but using one makes the program clearer unless the body is a
compound statement or is very simple. The newline after the open-brace
that begins the compound statement is not required either, but the program
would be harder to read without it.

9.3 The do-while Statement
The do loop is a variation of the while looping statement. The do loop
executes the body once, and then repeats body as long as condition is true.
It looks like this:

do
body

while (condition)

Even if condition is false at the start, body is executed at least once (and
only once, unless executing body makes condition true). Contrast this with
the corresponding while statement:

while (condition)

Chapter 9: Control Statements in Actions 101

body

This statement does not execute body even once if condition is false to begin
with.

Here is an example of a do statement:

awk ’{ i = 1
do {

print $0
i++

} while (i <= 10)
}’

This program prints each input record ten times. It isn’t a very realistic
example, since in this case an ordinary while would do just as well. But
this reflects actual experience; there is only occasionally a real use for a do
statement.

9.4 The for Statement
The for statement makes it more convenient to count iterations of a loop.
The general form of the for statement looks like this:

for (initialization; condition; increment)
body

The initialization, condition and increment parts are arbitrary awk expres-
sions, and body stands for any awk statement.

The for statement starts by executing initialization. Then, as long as
condition is true, it repeatedly executes body and then increment. Typically
initialization sets a variable to either zero or one, increment adds one to it,
and condition compares it against the desired number of iterations.

Here is an example of a for statement:

awk ’{ for (i = 1; i <= 3; i++)
print $i

}’ inventory-shipped

This prints the first three fields of each input record, one field per line.

You cannot set more than one variable in the initialization part unless you
use a multiple assignment statement such as ‘x = y = 0’, which is possible
only if all the initial values are equal. (But you can initialize additional
variables by writing their assignments as separate statements preceding the
for loop.)

The same is true of the increment part; to increment additional variables,
you must write separate statements at the end of the loop. The C compound
expression, using C’s comma operator, would be useful in this context, but
it is not supported in awk.

Most often, increment is an increment expression, as in the example
above. But this is not required; it can be any expression whatever. For
example, this statement prints all the powers of two between one and 100:

102 Effective AWK Programming

for (i = 1; i <= 100; i *= 2)
print i

Any of the three expressions in the parentheses following the for may be
omitted if there is nothing to be done there. Thus, ‘for (; x > 0;)’ is equiv-
alent to ‘while (x > 0)’. If the condition is omitted, it is treated as true,
effectively yielding an infinite loop (i.e. a loop that will never terminate).

In most cases, a for loop is an abbreviation for a while loop, as shown
here:

initialization
while (condition) {
body
increment

}

The only exception is when the continue statement (see Section 9.6 [The
continue Statement], page 103) is used inside the loop; changing a for
statement to a while statement in this way can change the effect of the
continue statement inside the loop.

There is an alternate version of the for loop, for iterating over all the
indices of an array:

for (i in array)
do something with array[i]

See Section 11.5 [Scanning All Elements of an Array], page 118, for more
information on this version of the for loop.

The awk language has a for statement in addition to a while statement
because often a for loop is both less work to type and more natural to think
of. Counting the number of iterations is very common in loops. It can be
easier to think of this counting as part of looping rather than as something
to do inside the loop.

The next section has more complicated examples of for loops.

9.5 The break Statement
The break statement jumps out of the innermost for, while, or do loop that
encloses it. The following example finds the smallest divisor of any integer,
and also identifies prime numbers:

awk ’# find smallest divisor of num
{ num = $1
for (div = 2; div*div <= num; div++)
if (num % div == 0)

break
if (num % div == 0)
printf "Smallest divisor of %d is %d\n", num, div

else
printf "%d is prime\n", num

Chapter 9: Control Statements in Actions 103

}’

When the remainder is zero in the first if statement, awk immediately
breaks out of the containing for loop. This means that awk proceeds imme-
diately to the statement following the loop and continues processing. (This is
very different from the exit statement which stops the entire awk program.
See Section 9.9 [The exit Statement], page 106.)

Here is another program equivalent to the previous one. It illustrates
how the condition of a for or while could just as well be replaced with a
break inside an if:

awk ’# find smallest divisor of num
{ num = $1

for (div = 2; ; div++) {
if (num % div == 0) {
printf "Smallest divisor of %d is %d\n", num, div
break

}
if (div*div > num) {
printf "%d is prime\n", num
break

}
}

}’

As described above, the break statement has no meaning when used
outside the body of a loop. However, although it was never documented,
historical implementations of awk have treated the break statement outside
of a loop as if it were a next statement (see Section 9.7 [The next Statement],
page 104). Recent versions of Unix awk no longer allow this usage. gawk
will support this use of break only if ‘--traditional’ has been specified
on the command line (see Section 14.1 [Command Line Options], page 151).
Otherwise, it will be treated as an error, since the POSIX standard specifies
that break should only be used inside the body of a loop (d.c.).

9.6 The continue Statement
The continue statement, like break, is used only inside for, while, and do
loops. It skips over the rest of the loop body, causing the next cycle around
the loop to begin immediately. Contrast this with break, which jumps out
of the loop altogether.

The continue statement in a for loop directs awk to skip the rest of the
body of the loop, and resume execution with the increment-expression of the
for statement. The following program illustrates this fact:

awk ’BEGIN {
for (x = 0; x <= 20; x++) {

if (x == 5)
continue

104 Effective AWK Programming

printf "%d ", x
}
print ""

}’

This program prints all the numbers from zero to 20, except for five, for
which the printf is skipped. Since the increment ‘x++’ is not skipped, x
does not remain stuck at five. Contrast the for loop above with this while
loop:

awk ’BEGIN {
x = 0
while (x <= 20) {

if (x == 5)
continue

printf "%d ", x
x++

}
print ""

}’

This program loops forever once x gets to five.

As described above, the continue statement has no meaning when used
outside the body of a loop. However, although it was never documented, his-
torical implementations of awk have treated the continue statement outside
of a loop as if it were a next statement (see Section 9.7 [The next State-
ment], page 104). Recent versions of Unix awk no longer allow this usage.
gawk will support this use of continue only if ‘--traditional’ has been
specified on the command line (see Section 14.1 [Command Line Options],
page 151). Otherwise, it will be treated as an error, since the POSIX stan-
dard specifies that continue should only be used inside the body of a loop
(d.c.).

9.7 The next Statement
The next statement forces awk to immediately stop processing the current
record and go on to the next record. This means that no further rules are
executed for the current record. The rest of the current rule’s action is not
executed either.

Contrast this with the effect of the getline function (see Section 5.8
[Explicit Input with getline], page 50). That too causes awk to read the
next record immediately, but it does not alter the flow of control in any way.
So the rest of the current action executes with a new input record.

At the highest level, awk program execution is a loop that reads an input
record and then tests each rule’s pattern against it. If you think of this loop
as a for statement whose body contains the rules, then the next statement
is analogous to a continue statement: it skips to the end of the body of this
implicit loop, and executes the increment (which reads another record).

Chapter 9: Control Statements in Actions 105

For example, if your awk program works only on records with four fields,
and you don’t want it to fail when given bad input, you might use this rule
near the beginning of the program:

NF != 4 {
err = sprintf("%s:%d: skipped: NF != 4\n", FILENAME, FNR)
print err > "/dev/stderr"
next

}

so that the following rules will not see the bad record. The error message
is redirected to the standard error output stream, as error messages should
be. See Section 6.7 [Special File Names in gawk], page 67.

According to the POSIX standard, the behavior is undefined if the next
statement is used in a BEGIN or END rule. gawk will treat it as a syntax error.
Although POSIX permits it, some other awk implementations don’t allow
the next statement inside function bodies (see Chapter 13 [User-defined
Functions], page 143). Just as any other next statement, a next inside a
function body reads the next record and starts processing it with the first
rule in the program.

If the next statement causes the end of the input to be reached, then the
code in any END rules will be executed. See Section 8.1.5 [The BEGIN and
END Special Patterns], page 94.

Caution: Some awk implementations generate a run-time error if you use
the next statement inside a user-defined function (see Chapter 13 [User-
defined Functions], page 143). gawk does not have this problem.

9.8 The nextfile Statement
gawk provides the nextfile statement, which is similar to the next state-
ment. However, instead of abandoning processing of the current record, the
nextfile statement instructs gawk to stop processing the current data file.

Upon execution of the nextfile statement, FILENAME is updated to the
name of the next data file listed on the command line, FNR is reset to one,
ARGIND is incremented, and processing starts over with the first rule in the
progam. See Chapter 10 [Built-in Variables], page 107.

If the nextfile statement causes the end of the input to be reached, then
the code in any END rules will be executed. See Section 8.1.5 [The BEGIN
and END Special Patterns], page 94.

The nextfile statement is a gawk extension; it is not (currently) avail-
able in any other awk implementation. See Section 15.2 [Implementing
nextfile as a Function], page 159, for a user-defined function you can use
to simulate the nextfile statement.

The nextfile statement would be useful if you have many data files to
process, and you expect that you would not want to process every record in
every file. Normally, in order to move on to the next data file, you would

106 Effective AWK Programming

have to continue scanning the unwanted records. The nextfile statement
accomplishes this much more efficiently.

Caution: Versions of gawk prior to 3.0 used two words (‘next file’) for
the nextfile statement. This was changed in 3.0 to one word, since the
treatment of ‘file’ was inconsistent. When it appeared after next, it was
a keyword. Otherwise, it was a regular identifier. The old usage is still
accepted. However, gawk will generate a warning message, and support for
next file will eventually be discontinued in a future version of gawk.

9.9 The exit Statement
The exit statement causes awk to immediately stop executing the current
rule and to stop processing input; any remaining input is ignored. It looks
like this:

exit [return code]

If an exit statement is executed from a BEGIN rule the program stops
processing everything immediately. No input records are read. However, if
an END rule is present, it is executed (see Section 8.1.5 [The BEGIN and END
Special Patterns], page 94).

If exit is used as part of an END rule, it causes the program to stop
immediately.

An exit statement that is not part of a BEGIN or END rule stops the
execution of any further automatic rules for the current record, skips reading
any remaining input records, and executes the END rule if there is one.

If you do not want the END rule to do its job in this case, you can set a
variable to non-zero before the exit statement, and check that variable in
the END rule. See Section 15.3 [Assertions], page 161, for an example that
does this.

If an argument is supplied to exit, its value is used as the exit status
code for the awk process. If no argument is supplied, exit returns status
zero (success). In the case where an argument is supplied to a first exit
statement, and then exit is called a second time with no argument, the
previously supplied exit value is used (d.c.).

For example, let’s say you’ve discovered an error condition you really
don’t know how to handle. Conventionally, programs report this by exit-
ing with a non-zero status. Your awk program can do this using an exit
statement with a non-zero argument. Here is an example:

BEGIN {
if (("date" | getline date_now) < 0) {
print "Can’t get system date" > "/dev/stderr"
exit 1

}
print "current date is", date_now
close("date")

}

Chapter 10: Built-in Variables 107

10 Built-in Variables

Most awk variables are available for you to use for your own purposes; they
never change except when your program assigns values to them, and never
affect anything except when your program examines them. However, a few
variables in awk have special built-in meanings. Some of them awk examines
automatically, so that they enable you to tell awk how to do certain things.
Others are set automatically by awk, so that they carry information from
the internal workings of awk to your program.

This chapter documents all the built-in variables of gawk. Most of them
are also documented in the chapters describing their areas of activity.

10.1 Built-in Variables that Control awk
This is an alphabetical list of the variables which you can change to control
how awk does certain things. Those variables that are specific to gawk are
marked with an asterisk, ‘*’.

CONVFMT This string controls conversion of numbers to strings (see
Section 7.4 [Conversion of Strings and Numbers], page 75).
It works by being passed, in effect, as the first argument to
the sprintf function (see Section 12.3 [Built-in Functions for
String Manipulation], page 127). Its default value is "%.6g".
CONVFMT was introduced by the POSIX standard.

FIELDWIDTHS *
This is a space separated list of columns that tells gawk how to
split input with fixed, columnar boundaries. It is an experimen-
tal feature. Assigning to FIELDWIDTHS overrides the use of FS
for field splitting. See Section 5.6 [Reading Fixed-width Data],
page 46, for more information.

If gawk is in compatibility mode (see Section 14.1 [Command
Line Options], page 151), then FIELDWIDTHS has no special
meaning, and field splitting operations are done based exclu-
sively on the value of FS.

FS FS is the input field separator (see Section 5.5 [Specifying How
Fields are Separated], page 42). The value is a single-character
string or a multi-character regular expression that matches the
separations between fields in an input record. If the value is the
null string (""), then each character in the record becomes a
separate field.

The default value is " ", a string consisting of a single space. As
a special exception, this value means that any sequence of spa-
ces, tabs, and/or newlines is a single separator.1 It also causes

1 In POSIX awk, newline does not count as whitespace.

108 Effective AWK Programming

spaces, tabs, and newlines at the beginning and end of a record
to be ignored.

You can set the value of FS on the command line using the ‘-F’
option:

awk -F, ’program’ input-files

If gawk is using FIELDWIDTHS for field-splitting, assigning a value
to FS will cause gawk to return to the normal, FS-based, field
splitting. An easy way to do this is to simply say ‘FS = FS’,
perhaps with an explanatory comment.

IGNORECASE *
If IGNORECASE is non-zero or non-null, then all string compar-
isons, and all regular expression matching are case-independent.
Thus, regexp matching with ‘~’ and ‘!~’, and the gensub, gsub,
index, match, split and sub functions, record termination with
RS, and field splitting with FS all ignore case when doing their
particular regexp operations. The value of IGNORECASE does not
affect array subscripting. See Section 4.5 [Case-sensitivity in
Matching], page 31.

If gawk is in compatibility mode (see Section 14.1 [Command
Line Options], page 151), then IGNORECASE has no special mean-
ing, and string and regexp operations are always case-sensitive.

OFMT This string controls conversion of numbers to strings (see
Section 7.4 [Conversion of Strings and Numbers], page 75) for
printing with the print statement. It works by being passed,
in effect, as the first argument to the sprintf function (see
Section 12.3 [Built-in Functions for String Manipulation],
page 127). Its default value is "%.6g". Earlier versions of awk
also used OFMT to specify the format for converting numbers to
strings in general expressions; this is now done by CONVFMT.

OFS This is the output field separator (see Section 6.3 [Output Sep-
arators], page 59). It is output between the fields output by a
print statement. Its default value is " ", a string consisting of
a single space.

ORS This is the output record separator. It is output at the end of ev-
ery print statement. Its default value is "\n". (See Section 6.3
[Output Separators], page 59.)

RS This is awk’s input record separator. Its default value is a string
containing a single newline character, which means that an input
record consists of a single line of text. It can also be the null
string, in which case records are separated by runs of blank lines,
or a regexp, in which case records are separated by matches of
the regexp in the input text. (See Section 5.1 [How Input is Split
into Records], page 35.)

Chapter 10: Built-in Variables 109

SUBSEP SUBSEP is the subscript separator. It has the default
value of "\034", and is used to separate the parts of the
indices of a multi-dimensional array. Thus, the expression
foo["A", "B"] really accesses foo["A\034B"] (see Section 11.9
[Multi-dimensional Arrays], page 122).

10.2 Built-in Variables that Convey Information
This is an alphabetical list of the variables that are set automatically by awk
on certain occasions in order to provide information to your program. Those
variables that are specific to gawk are marked with an asterisk, ‘*’.

ARGC
ARGV The command-line arguments available to awk programs are

stored in an array called ARGV. ARGC is the number of command-
line arguments present. See Section 14.2 [Other Command Line
Arguments], page 155. Unlike most awk arrays, ARGV is indexed
from zero to ARGC − 1. For example:

$ awk ’BEGIN {
> for (i = 0; i < ARGC; i++)
> print ARGV[i]
> }’ inventory-shipped BBS-list
a awk
a inventory-shipped
a BBS-list

In this example, ARGV[0] contains "awk", ARGV[1] contains
"inventory-shipped", and ARGV[2] contains "BBS-list". The
value of ARGC is three, one more than the index of the last ele-
ment in ARGV, since the elements are numbered from zero.

The names ARGC and ARGV, as well as the convention of index-
ing the array from zero to ARGC − 1, are derived from the C
language’s method of accessing command line arguments. See
Section 10.3 [Using ARGC and ARGV], page 111, for information
about how awk uses these variables.

ARGIND * The index in ARGV of the current file being processed. Every
time gawk opens a new data file for processing, it sets ARGIND to
the index in ARGV of the file name. When gawk is processing the
input files, it is always true that ‘FILENAME == ARGV[ARGIND]’.

This variable is useful in file processing; it allows you to tell how
far along you are in the list of data files, and to distinguish be-
tween successive instances of the same filename on the command
line.

While you can change the value of ARGIND within your awk pro-
gram, gawk will automatically set it to a new value when the
next file is opened.

110 Effective AWK Programming

This variable is a gawk extension. In other awk implementations,
or if gawk is in compatibility mode (see Section 14.1 [Command
Line Options], page 151), it is not special.

ENVIRON An associative array that contains the values of the environment.
The array indices are the environment variable names; the val-
ues are the values of the particular environment variables. For
example, ENVIRON["HOME"] might be /home/arnold. Chang-
ing this array does not affect the environment passed on to any
programs that awk may spawn via redirection or the system
function. (In a future version of gawk, it may do so.)

Some operating systems may not have environment variables.
On such systems, the ENVIRON array is empty (except for
ENVIRON["AWKPATH"]).

ERRNO * If a system error occurs either doing a redirection for getline,
during a read for getline, or during a close operation, then
ERRNO will contain a string describing the error.

This variable is a gawk extension. In other awk implementations,
or if gawk is in compatibility mode (see Section 14.1 [Command
Line Options], page 151), it is not special.

FILENAME This is the name of the file that awk is currently reading. When
no data files are listed on the command line, awk reads from
the standard input, and FILENAME is set to "-". FILENAME is
changed each time a new file is read (see Chapter 5 [Reading
Input Files], page 35). Inside a BEGIN rule, the value of FILENAME
is "", since there are no input files being processed yet.2 (d.c.)

FNR FNR is the current record number in the current file. FNR is
incremented each time a new record is read (see Section 5.8
[Explicit Input with getline], page 50). It is reinitialized to
zero each time a new input file is started.

NF NF is the number of fields in the current input record. NF is set
each time a new record is read, when a new field is created, or
when $0 changes (see Section 5.2 [Examining Fields], page 38).

NR This is the number of input records awk has processed since
the beginning of the program’s execution (see Section 5.1 [How
Input is Split into Records], page 35). NR is set each time a new
record is read.

RLENGTH RLENGTH is the length of the substring matched by the match
function (see Section 12.3 [Built-in Functions for String Manip-

2 Some early implementations of Unix awk initialized FILENAME to "-", even if there were
data files to be processed. This behavior was incorrect, and should not be relied upon
in your programs.

Chapter 10: Built-in Variables 111

ulation], page 127). RLENGTH is set by invoking the match func-
tion. Its value is the length of the matched string, or −1 if no
match was found.

RSTART RSTART is the start-index in characters of the substring matched
by the match function (see Section 12.3 [Built-in Functions for
String Manipulation], page 127). RSTART is set by invoking the
match function. Its value is the position of the string where the
matched substring starts, or zero if no match was found.

RT * RT is set each time a record is read. It contains the input text
that matched the text denoted by RS, the record separator.

This variable is a gawk extension. In other awk implementations,
or if gawk is in compatibility mode (see Section 14.1 [Command
Line Options], page 151), it is not special.

A side note about NR and FNR. awk simply increments both of these
variables each time it reads a record, instead of setting them to the absolute
value of the number of records read. This means that your program can
change these variables, and their new values will be incremented for each
record (d.c.). For example:

$ echo ’1
> 2
> 3
> 4’ | awk ’NR == 2 { NR = 17 }
> { print NR }’
a 1
a 17
a 18
a 19

Before FNR was added to the awk language (see Section 17.1 [Major Changes
between V7 and SVR3.1], page 237), many awk programs used this feature to
track the number of records in a file by resetting NR to zero when FILENAME
changed.

10.3 Using ARGC and ARGV

In Section 10.2 [Built-in Variables that Convey Information], page 109, you
saw this program describing the information contained in ARGC and ARGV:

$ awk ’BEGIN {
> for (i = 0; i < ARGC; i++)
> print ARGV[i]
> }’ inventory-shipped BBS-list
a awk
a inventory-shipped
a BBS-list

112 Effective AWK Programming

In this example, ARGV[0] contains "awk", ARGV[1] contains
"inventory-shipped", and ARGV[2] contains "BBS-list".

Notice that the awk program is not entered in ARGV. The other special
command line options, with their arguments, are also not entered. But
variable assignments on the command line are treated as arguments, and do
show up in the ARGV array.

Your program can alter ARGC and the elements of ARGV. Each time awk
reaches the end of an input file, it uses the next element of ARGV as the name
of the next input file. By storing a different string there, your program
can change which files are read. You can use "-" to represent the standard
input. By storing additional elements and incrementing ARGC you can cause
additional files to be read.

If you decrease the value of ARGC, that eliminates input files from the end
of the list. By recording the old value of ARGC elsewhere, your program can
treat the eliminated arguments as something other than file names.

To eliminate a file from the middle of the list, store the null string ("")
into ARGV in place of the file’s name. As a special feature, awk ignores
file names that have been replaced with the null string. You may also use
the delete statement to remove elements from ARGV (see Section 11.6 [The
delete Statement], page 119).

All of these actions are typically done from the BEGIN rule, before actual
processing of the input begins. See Section 16.1.4 [Splitting a Large File Into
Pieces], page 204, and see Section 16.1.5 [Duplicating Output Into Multiple
Files], page 206, for an example of each way of removing elements from ARGV.

The following fragment processes ARGV in order to examine, and then
remove, command line options.

BEGIN {
for (i = 1; i < ARGC; i++) {

if (ARGV[i] == "-v")
verbose = 1

else if (ARGV[i] == "-d")
debug = 1

else if (ARGV[i] ~ /^-?/) {
e = sprintf("%s: unrecognized option -- %c",

ARGV[0], substr(ARGV[i], 1, ,1))
print e > "/dev/stderr"

} else
break

delete ARGV[i]
}

}

To actually get the options into the awk program, you have to end the
awk options with ‘--’, and then supply your options, like so:

awk -f myprog -- -v -d file1 file2 ...

Chapter 10: Built-in Variables 113

This is not necessary in gawk: Unless ‘--posix’ has been specified, gawk
silently puts any unrecognized options into ARGV for the awk program to deal
with.

As soon as it sees an unknown option, gawk stops looking for other options
it might otherwise recognize. The above example with gawk would be:

gawk -f myprog -d -v file1 file2 ...

Since ‘-d’ is not a valid gawk option, the following ‘-v’ is passed on to the
awk program.

Chapter 11: Arrays in awk 115

11 Arrays in awk

An array is a table of values, called elements. The elements of an array are
distinguished by their indices. Indices may be either numbers or strings.
awk maintains a single set of names that may be used for naming variables,
arrays and functions (see Chapter 13 [User-defined Functions], page 143).
Thus, you cannot have a variable and an array with the same name in the
same awk program.

11.1 Introduction to Arrays
The awk language provides one-dimensional arrays for storing groups of re-
lated strings or numbers.

Every awk array must have a name. Array names have the same syntax
as variable names; any valid variable name would also be a valid array name.
But you cannot use one name in both ways (as an array and as a variable)
in one awk program.

Arrays in awk superficially resemble arrays in other programming lan-
guages; but there are fundamental differences. In awk, you don’t need to
specify the size of an array before you start to use it. Additionally, any
number or string in awk may be used as an array index, not just consecutive
integers.

In most other languages, you have to declare an array and specify how
many elements or components it contains. In such languages, the declaration
causes a contiguous block of memory to be allocated for that many elements.
An index in the array usually must be a positive integer; for example, the
index zero specifies the first element in the array, which is actually stored
at the beginning of the block of memory. Index one specifies the second
element, which is stored in memory right after the first element, and so on.
It is impossible to add more elements to the array, because it has room for
only as many elements as you declared. (Some languages allow arbitrary
starting and ending indices, e.g., ‘15 .. 27’, but the size of the array is still
fixed when the array is declared.)

A contiguous array of four elements might look like this, conceptually, if
the element values are eight, "foo", "" and 30:

8 "foo" "" 30 value

0 1 2 3 index

Only the values are stored; the indices are implicit from the order of the
values. Eight is the value at index zero, because eight appears in the position
with zero elements before it.

Arrays in awk are different: they are associative. This means that each
array is a collection of pairs: an index, and its corresponding array element
value:

Element 4 Value 30

116 Effective AWK Programming

Element 2 Value "foo"
Element 1 Value 8
Element 3 Value ""

We have shown the pairs in jumbled order because their order is irrelevant.

One advantage of associative arrays is that new pairs can be added at
any time. For example, suppose we add to the above array a tenth element
whose value is "number ten". The result is this:

Element 10 Value "number ten"
Element 4 Value 30
Element 2 Value "foo"
Element 1 Value 8
Element 3 Value ""

Now the array is sparse, which just means some indices are missing: it has
elements 1–4 and 10, but doesn’t have elements 5, 6, 7, 8, or 9.

Another consequence of associative arrays is that the indices don’t have
to be positive integers. Any number, or even a string, can be an index. For
example, here is an array which translates words from English into French:

Element "dog" Value "chien"
Element "cat" Value "chat"
Element "one" Value "un"
Element 1 Value "un"

Here we decided to translate the number one in both spelled-out and numeric
form—thus illustrating that a single array can have both numbers and strings
as indices. (In fact, array subscripts are always strings; this is discussed in
more detail in Section 11.7 [Using Numbers to Subscript Arrays], page 120.)

The value of IGNORECASE has no effect upon array subscripting. You must
use the exact same string value to retrieve an array element as you used to
store it.

When awk creates an array for you, e.g., with the split built-in function,
that array’s indices are consecutive integers starting at one. (See Section 12.3
[Built-in Functions for String Manipulation], page 127.)

11.2 Referring to an Array Element
The principal way of using an array is to refer to one of its elements. An
array reference is an expression which looks like this:

array[index]

Here, array is the name of an array. The expression index is the index of
the element of the array that you want.

The value of the array reference is the current value of that array element.
For example, foo[4.3] is an expression for the element of array foo at index
‘4.3’.

If you refer to an array element that has no recorded value, the value of
the reference is "", the null string. This includes elements to which you have

Chapter 11: Arrays in awk 117

not assigned any value, and elements that have been deleted (see Section 11.6
[The delete Statement], page 119). Such a reference automatically creates
that array element, with the null string as its value. (In some cases, this is
unfortunate, because it might waste memory inside awk.)

You can find out if an element exists in an array at a certain index with
the expression:

index in array

This expression tests whether or not the particular index exists, without the
side effect of creating that element if it is not present. The expression has
the value one (true) if array[index] exists, and zero (false) if it does not
exist.

For example, to test whether the array frequencies contains the index
‘2’, you could write this statement:

if (2 in frequencies)
print "Subscript 2 is present."

Note that this is not a test of whether or not the array frequencies
contains an element whose value is two. (There is no way to do that except
to scan all the elements.) Also, this does not create frequencies[2], while
the following (incorrect) alternative would do so:

if (frequencies[2] != "")
print "Subscript 2 is present."

11.3 Assigning Array Elements
Array elements are lvalues: they can be assigned values just like awk vari-
ables:

array[subscript] = value

Here array is the name of your array. The expression subscript is the index
of the element of the array that you want to assign a value. The expression
value is the value you are assigning to that element of the array.

11.4 Basic Array Example
The following program takes a list of lines, each beginning with a line num-
ber, and prints them out in order of line number. The line numbers are
not in order, however, when they are first read: they are scrambled. This
program sorts the lines by making an array using the line numbers as sub-
scripts. It then prints out the lines in sorted order of their numbers. It is a
very simple program, and gets confused if it encounters repeated numbers,
gaps, or lines that don’t begin with a number.

{
if ($1 > max)
max = $1

arr[$1] = $0

118 Effective AWK Programming

}

END {
for (x = 1; x <= max; x++)
print arr[x]

}

The first rule keeps track of the largest line number seen so far; it also
stores each line into the array arr, at an index that is the line’s number.

The second rule runs after all the input has been read, to print out all
the lines.

When this program is run with the following input:

5 I am the Five man
2 Who are you? The new number two!
4 . . . And four on the floor
1 Who is number one?
3 I three you.

its output is this:

1 Who is number one?
2 Who are you? The new number two!
3 I three you.
4 . . . And four on the floor
5 I am the Five man

If a line number is repeated, the last line with a given number overrides
the others.

Gaps in the line numbers can be handled with an easy improvement to
the program’s END rule:

END {
for (x = 1; x <= max; x++)
if (x in arr)
print arr[x]

}

11.5 Scanning All Elements of an Array
In programs that use arrays, you often need a loop that executes once for
each element of an array. In other languages, where arrays are contiguous
and indices are limited to positive integers, this is easy: you can find all
the valid indices by counting from the lowest index up to the highest. This
technique won’t do the job in awk, since any number or string can be an
array index. So awk has a special kind of for statement for scanning an
array:

for (var in array)
body

Chapter 11: Arrays in awk 119

This loop executes body once for each index in array that your program has
previously used, with the variable var set to that index.

Here is a program that uses this form of the for statement. The first
rule scans the input records and notes which words appear (at least once) in
the input, by storing a one into the array used with the word as index. The
second rule scans the elements of used to find all the distinct words that
appear in the input. It prints each word that is more than 10 characters
long, and also prints the number of such words. See Section 12.3 [Built-in
Functions for String Manipulation], page 127, for more information on the
built-in function length.

Record a 1 for each word that is used at least once.
{

for (i = 1; i <= NF; i++)
used[$i] = 1

}

Find number of distinct words more than 10 characters long.
END {

for (x in used)
if (length(x) > 10) {

++num_long_words
print x

}
print num_long_words, "words longer than 10 characters"

}

See Section 16.2.5 [Generating Word Usage Counts], page 222, for a more
detailed example of this type.

The order in which elements of the array are accessed by this statement
is determined by the internal arrangement of the array elements within awk
and cannot be controlled or changed. This can lead to problems if new
elements are added to array by statements in the loop body; you cannot
predict whether or not the for loop will reach them. Similarly, changing var
inside the loop may produce strange results. It is best to avoid such things.

11.6 The delete Statement
You can remove an individual element of an array using the delete state-
ment:

delete array[index]

Once you have deleted an array element, you can no longer obtain any
value the element once had. It is as if you had never referred to it and had
never given it any value.

Here is an example of deleting elements in an array:

for (i in frequencies)
delete frequencies[i]

120 Effective AWK Programming

This example removes all the elements from the array frequencies.

If you delete an element, a subsequent for statement to scan the array
will not report that element, and the in operator to check for the presence
of that element will return zero (i.e. false):

delete foo[4]
if (4 in foo)

print "This will never be printed"

It is important to note that deleting an element is not the same as as-
signing it a null value (the empty string, "").

foo[4] = ""
if (4 in foo)

print "This is printed, even though foo[4] is empty"

It is not an error to delete an element that does not exist.

You can delete all the elements of an array with a single statement, by
leaving off the subscript in the delete statement.

delete array

This ability is a gawk extension; it is not available in compatibility mode
(see Section 14.1 [Command Line Options], page 151).

Using this version of the delete statement is about three times more
efficient than the equivalent loop that deletes each element one at a time.

The following statement provides a portable, but non-obvious way to
clear out an array.

thanks to Michael Brennan for pointing this out
split("", array)

The split function (see Section 12.3 [Built-in Functions for String Ma-
nipulation], page 127) clears out the target array first. This call asks it to
split apart the null string. Since there is no data to split out, the function
simply clears the array and then returns.

11.7 Using Numbers to Subscript Arrays
An important aspect of arrays to remember is that array subscripts are
always strings. If you use a numeric value as a subscript, it will be converted
to a string value before it is used for subscripting (see Section 7.4 [Conversion
of Strings and Numbers], page 75).

This means that the value of the built-in variable CONVFMT can potentially
affect how your program accesses elements of an array. For example:

xyz = 12.153
data[xyz] = 1
CONVFMT = "%2.2f"
if (xyz in data)

printf "%s is in data\n", xyz
else

printf "%s is not in data\n", xyz

Chapter 11: Arrays in awk 121

This prints ‘12.15 is not in data’. The first statement gives xyz a nu-
meric value. Assigning to data[xyz] subscripts data with the string value
"12.153" (using the default conversion value of CONVFMT, "%.6g"), and
assigns one to data["12.153"]. The program then changes the value of
CONVFMT. The test ‘(xyz in data)’ generates a new string value from xyz,
this time "12.15", since the value of CONVFMT only allows two significant
digits. This test fails, since "12.15" is a different string from "12.153".

According to the rules for conversions (see Section 7.4 [Conversion of
Strings and Numbers], page 75), integer values are always converted to
strings as integers, no matter what the value of CONVFMT may happen to
be. So the usual case of:

for (i = 1; i <= maxsub; i++)
do something with array[i]

will work, no matter what the value of CONVFMT.

Like many things in awk, the majority of the time things work as you
would expect them to work. But it is useful to have a precise knowledge
of the actual rules, since sometimes they can have a subtle effect on your
programs.

11.8 Using Uninitialized Variables as Subscripts
Suppose you want to print your input data in reverse order. A reasonable
attempt at a program to do so (with some test data) might look like this:

$ echo ’line 1
> line 2
> line 3’ | awk ’{ l[lines] = $0; ++lines }
> END {
> for (i = lines-1; i >= 0; --i)
> print l[i]
> }’
a line 3
a line 2

Unfortunately, the very first line of input data did not come out in the
output!

At first glance, this program should have worked. The variable lines is
uninitialized, and uninitialized variables have the numeric value zero. So,
the value of l[0] should have been printed.

The issue here is that subscripts for awk arrays are always strings. And
uninitialized variables, when used as strings, have the value "", not zero.
Thus, ‘line 1’ ended up stored in l[""].

The following version of the program works correctly:

{ l[lines++] = $0 }
END {

for (i = lines - 1; i >= 0; --i)

122 Effective AWK Programming

print l[i]
}

Here, the ‘++’ forces lines to be numeric, thus making the “old value”
numeric zero, which is then converted to "0" as the array subscript.

As we have just seen, even though it is somewhat unusual, the null string
("") is a valid array subscript (d.c.). If ‘--lint’ is provided on the command
line (see Section 14.1 [Command Line Options], page 151), gawk will warn
about the use of the null string as a subscript.

11.9 Multi-dimensional Arrays
A multi-dimensional array is an array in which an element is identified by a
sequence of indices, instead of a single index. For example, a two-dimensional
array requires two indices. The usual way (in most languages, including
awk) to refer to an element of a two-dimensional array named grid is with
grid[x,y].

Multi-dimensional arrays are supported in awk through concatenation of
indices into one string. What happens is that awk converts the indices into
strings (see Section 7.4 [Conversion of Strings and Numbers], page 75) and
concatenates them together, with a separator between them. This creates a
single string that describes the values of the separate indices. The combined
string is used as a single index into an ordinary, one-dimensional array. The
separator used is the value of the built-in variable SUBSEP.

For example, suppose we evaluate the expression ‘foo[5,12] = "value"’
when the value of SUBSEP is "@". The numbers five and 12 are converted to
strings and concatenated with an ‘@’ between them, yielding "5@12"; thus,
the array element foo["5@12"] is set to "value".

Once the element’s value is stored, awk has no record of whether it was
stored with a single index or a sequence of indices. The two expressions
‘foo[5,12]’ and ‘foo[5 SUBSEP 12]’ are always equivalent.

The default value of SUBSEP is the string "\034", which contains a non-
printing character that is unlikely to appear in an awk program or in most
input data.

The usefulness of choosing an unlikely character comes from the fact that
index values that contain a string matching SUBSEP lead to combined strings
that are ambiguous. Suppose that SUBSEP were "@"; then ‘foo["a@b", "c"]’
and ‘foo["a", "b@c"]’ would be indistinguishable because both would ac-
tually be stored as ‘foo["a@b@c"]’.

You can test whether a particular index-sequence exists in a “multi-
dimensional” array with the same operator ‘in’ used for single dimensional
arrays. Instead of a single index as the left-hand operand, write the whole
sequence of indices, separated by commas, in parentheses:

(subscript1, subscript2, ...) in array

Chapter 11: Arrays in awk 123

The following example treats its input as a two-dimensional array of fields;
it rotates this array 90 degrees clockwise and prints the result. It assumes
that all lines have the same number of elements.

awk ’{
if (max_nf < NF)

max_nf = NF
max_nr = NR
for (x = 1; x <= NF; x++)

vector[x, NR] = $x
}

END {
for (x = 1; x <= max_nf; x++) {

for (y = max_nr; y >= 1; --y)
printf("%s ", vector[x, y])

printf("\n")
}

}’

When given the input:

1 2 3 4 5 6
2 3 4 5 6 1
3 4 5 6 1 2
4 5 6 1 2 3

it produces:

4 3 2 1
5 4 3 2
6 5 4 3
1 6 5 4
2 1 6 5
3 2 1 6

11.10 Scanning Multi-dimensional Arrays
There is no special for statement for scanning a “multi-dimensional” array;
there cannot be one, because in truth there are no multi-dimensional arrays
or elements; there is only a multi-dimensional way of accessing an array.

However, if your program has an array that is always accessed as multi-
dimensional, you can get the effect of scanning it by combining the scan-
ning for statement (see Section 11.5 [Scanning All Elements of an Array],
page 118) with the split built-in function (see Section 12.3 [Built-in Func-
tions for String Manipulation], page 127). It works like this:

for (combined in array) {
split(combined, separate, SUBSEP)
...

}

124 Effective AWK Programming

This sets combined to each concatenated, combined index in the array, and
splits it into the individual indices by breaking it apart where the value of
SUBSEP appears. The split-out indices become the elements of the array
separate.

Thus, suppose you have previously stored a value in array[1, "foo"];
then an element with index "1\034foo" exists in array. (Recall that the
default value of SUBSEP is the character with code 034.) Sooner or later the
for statement will find that index and do an iteration with combined set to
"1\034foo". Then the split function is called as follows:

split("1\034foo", separate, "\034")

The result of this is to set separate[1] to "1" and separate[2] to "foo".
Presto, the original sequence of separate indices has been recovered.

Chapter 12: Built-in Functions 125

12 Built-in Functions

Built-in functions are functions that are always available for your awk pro-
gram to call. This chapter defines all the built-in functions in awk; some of
them are mentioned in other sections, but they are summarized here for your
convenience. (You can also define new functions yourself. See Chapter 13
[User-defined Functions], page 143.)

12.1 Calling Built-in Functions
To call a built-in function, write the name of the function followed by ar-
guments in parentheses. For example, ‘atan2(y + z, 1)’ is a call to the
function atan2, with two arguments.

Whitespace is ignored between the built-in function name and the open-
parenthesis, but we recommend that you avoid using whitespace there. User-
defined functions do not permit whitespace in this way, and you will find it
easier to avoid mistakes by following a simple convention which always works:
no whitespace after a function name.

Each built-in function accepts a certain number of arguments. In some
cases, arguments can be omitted. The defaults for omitted arguments vary
from function to function and are described under the individual functions.
In some awk implementations, extra arguments given to built-in functions
are ignored. However, in gawk, it is a fatal error to give extra arguments to
a built-in function.

When a function is called, expressions that create the function’s actual
parameters are evaluated completely before the function call is performed.
For example, in the code fragment:

i = 4
j = sqrt(i++)

the variable i is set to five before sqrt is called with a value of four for its
actual parameter.

The order of evaluation of the expressions used for the function’s param-
eters is undefined. Thus, you should not write programs that assume that
parameters are evaluated from left to right or from right to left. For example,

i = 5
j = atan2(i++, i *= 2)

If the order of evaluation is left to right, then i first becomes six, and
then 12, and atan2 is called with the two arguments six and 12. But if
the order of evaluation is right to left, i first becomes 10, and then 11, and
atan2 is called with the two arguments 11 and 10.

12.2 Numeric Built-in Functions
Here is a full list of built-in functions that work with numbers. Optional
parameters are enclosed in square brackets (“[” and “]”).

126 Effective AWK Programming

int(x) This produces the nearest integer to x, located between x and
zero, truncated toward zero.

For example, int(3) is three, int(3.9) is three, int(-3.9) is
−3, and int(-3) is −3 as well.

sqrt(x) This gives you the positive square root of x. It reports an error
if x is negative. Thus, sqrt(4) is two.

exp(x) This gives you the exponential of x (e ^ x), or reports an error
if x is out of range. The range of values x can have depends on
your machine’s floating point representation.

log(x) This gives you the natural logarithm of x, if x is positive; oth-
erwise, it reports an error.

sin(x) This gives you the sine of x, with x in radians.

cos(x) This gives you the cosine of x, with x in radians.

atan2(y, x)
This gives you the arctangent of y / x in radians.

rand() This gives you a random number. The values of rand are
uniformly-distributed between zero and one. The value is never
zero and never one.

Often you want random integers instead. Here is a user-defined
function you can use to obtain a random non-negative integer
less than n:

function randint(n) {
return int(n * rand())

}

The multiplication produces a random real number greater than
zero and less than n. We then make it an integer (using int)
between zero and n − 1, inclusive.

Here is an example where a similar function is used to produce
random integers between one and n. This program prints a new
random number for each input record.

awk ’
Function to roll a simulated die.
function roll(n) { return 1 + int(rand() * n) }

Roll 3 six-sided dice and
print total number of points.
{

printf("%d points\n",
roll(6)+roll(6)+roll(6))

}’

Caution: In most awk implementations, including gawk, rand
starts generating numbers from the same starting number, or

Chapter 12: Built-in Functions 127

seed, each time you run awk. Thus, a program will generate the
same results each time you run it. The numbers are random
within one awk run, but predictable from run to run. This is
convenient for debugging, but if you want a program to do dif-
ferent things each time it is used, you must change the seed to
a value that will be different in each run. To do this, use srand.

srand([x])
The function srand sets the starting point, or seed, for generat-
ing random numbers to the value x.

Each seed value leads to a particular sequence of random num-
bers.1 Thus, if you set the seed to the same value a second time,
you will get the same sequence of random numbers again.

If you omit the argument x, as in srand(), then the current
date and time of day are used for a seed. This is the way to get
random numbers that are truly unpredictable.

The return value of srand is the previous seed. This makes it
easy to keep track of the seeds for use in consistently reproducing
sequences of random numbers.

12.3 Built-in Functions for String Manipulation
The functions in this section look at or change the text of one or more strings.
Optional parameters are enclosed in square brackets (“[” and “]”).

index(in, find)
This searches the string in for the first occurrence of the string
find, and returns the position in characters where that occur-
rence begins in the string in. For example:

$ awk ’BEGIN { print index("peanut", "an") }’
a 3

If find is not found, index returns zero. (Remember that string
indices in awk start at one.)

length([string])
This gives you the number of characters in string. If string is a
number, the length of the digit string representing that number
is returned. For example, length("abcde") is five. By contrast,
length(15 * 35) works out to three. How? Well, 15 * 35 = 525,
and 525 is then converted to the string "525", which has three
characters.

If no argument is supplied, length returns the length of $0.

1 Computer generated random numbers really are not truly random. They are techni-
cally known as “pseudo-random.” This means that while the numbers in a sequence
appear to be random, you can in fact generate the same sequence of random numbers
over and over again.

128 Effective AWK Programming

In older versions of awk, you could call the length function
without any parentheses. Doing so is marked as “deprecated”
in the POSIX standard. This means that while you can do this
in your programs, it is a feature that can eventually be removed
from a future version of the standard. Therefore, for maximal
portability of your awk programs, you should always supply the
parentheses.

match(string, regexp)
The match function searches the string, string, for the longest,
leftmost substring matched by the regular expression, regexp. It
returns the character position, or index, of where that substring
begins (one, if it starts at the beginning of string). If no match
is found, it returns zero.

The match function sets the built-in variable RSTART to the in-
dex. It also sets the built-in variable RLENGTH to the length
in characters of the matched substring. If no match is found,
RSTART is set to zero, and RLENGTH to −1.
For example:

awk ’{
if ($1 == "FIND")
regex = $2

else {
where = match($0, regex)
if (where != 0)

print "Match of", regex, "found at", \
where, "in", $0

}
}’

This program looks for lines that match the regular expression
stored in the variable regex. This regular expression can be
changed. If the first word on a line is ‘FIND’, regex is changed
to be the second word on that line. Therefore, given:

FIND ru+n
My program runs
but not very quickly
FIND Melvin
JF+KM
This line is property of Reality Engineering Co.
Melvin was here.

awk prints:

Match of ru+n found at 12 in My program runs
Match of Melvin found at 1 in Melvin was here.

Chapter 12: Built-in Functions 129

split(string, array [, fieldsep])
This divides string into pieces separated by fieldsep, and stores
the pieces in array. The first piece is stored in array[1], the
second piece in array[2], and so forth. The string value of the
third argument, fieldsep, is a regexp describing where to split
string (much as FS can be a regexp describing where to split
input records). If the fieldsep is omitted, the value of FS is used.
split returns the number of elements created.

The split function splits strings into pieces in a manner similar
to the way input lines are split into fields. For example:

split("cul-de-sac", a, "-")

splits the string ‘cul-de-sac’ into three fields using ‘-’ as the
separator. It sets the contents of the array a as follows:

a[1] = "cul"
a[2] = "de"
a[3] = "sac"

The value returned by this call to split is three.

As with input field-splitting, when the value of fieldsep is " ",
leading and trailing whitespace is ignored, and the elements are
separated by runs of whitespace.

Also as with input field-splitting, if fieldsep is the null string,
each individual character in the string is split into its own array
element. (This is a gawk-specific extension.)

Recent implementations of awk, including gawk, allow the third
argument to be a regexp constant (/abc/), as well as a string
(d.c.). The POSIX standard allows this as well.

Before splitting the string, split deletes any previously existing
elements in the array array (d.c.).

sprintf(format, expression1,...)
This returns (without printing) the string that printf would
have printed out with the same arguments (see Section 6.5 [Using
printf Statements for Fancier Printing], page 60). For example:

sprintf("pi = %.2f (approx.)", 22/7)

returns the string "pi = 3.14 (approx.)".

sub(regexp, replacement [, target])
The sub function alters the value of target. It searches this
value, which is treated as a string, for the leftmost longest sub-
string matched by the regular expression, regexp, extending this
match as far as possible. Then the entire string is changed by re-
placing the matched text with replacement. The modified string
becomes the new value of target.

This function is peculiar because target is not simply used to
compute a value, and not just any expression will do: it must be

130 Effective AWK Programming

a variable, field or array element, so that sub can store a modi-
fied value there. If this argument is omitted, then the default is
to use and alter $0.

For example:

str = "water, water, everywhere"
sub(/at/, "ith", str)

sets str to "wither, water, everywhere", by replacing the
leftmost, longest occurrence of ‘at’ with ‘ith’.

The sub function returns the number of substitutions made (ei-
ther one or zero).

If the special character ‘&’ appears in replacement, it stands for
the precise substring that was matched by regexp. (If the regexp
can match more than one string, then this precise substring may
vary.) For example:

awk ’{ sub(/candidate/, "& and his wife"); print }’

changes the first occurrence of ‘candidate’ to ‘candidate and
his wife’ on each input line.

Here is another example:

awk ’BEGIN {
str = "daabaaa"
sub(/a*/, "c&c", str)
print str

}’
a dcaacbaaa

This shows how ‘&’ can represent a non-constant string, and also
illustrates the “leftmost, longest” rule in regexp matching (see
Section 4.6 [How Much Text Matches?], page 32).

The effect of this special character (‘&’) can be turned off by
putting a backslash before it in the string. As usual, to insert
one backslash in the string, you must write two backslashes.
Therefore, write ‘\\&’ in a string constant to include a literal ‘&’
in the replacement. For example, here is how to replace the first
‘|’ on each line with an ‘&’:

awk ’{ sub(/\|/, "\\&"); print }’

Note: As mentioned above, the third argument to sub must be
a variable, field or array reference. Some versions of awk allow
the third argument to be an expression which is not an lvalue.
In such a case, sub would still search for the pattern and return
zero or one, but the result of the substitution (if any) would be
thrown away because there is no place to put it. Such versions
of awk accept expressions like this:

sub(/USA/, "United States", "the USA and Canada")

Chapter 12: Built-in Functions 131

For historical compatibility, gawk will accept erroneous code,
such as in the above example. However, using any other non-
changeable object as the third parameter will cause a fatal error,
and your program will not run.

gsub(regexp, replacement [, target])
This is similar to the sub function, except gsub replaces all
of the longest, leftmost, non-overlapping matching substrings
it can find. The ‘g’ in gsub stands for “global,” which means
replace everywhere. For example:

awk ’{ gsub(/Britain/, "United Kingdom"); print }’

replaces all occurrences of the string ‘Britain’ with ‘United
Kingdom’ for all input records.

The gsub function returns the number of substitutions made. If
the variable to be searched and altered, target, is omitted, then
the entire input record, $0, is used.

As in sub, the characters ‘&’ and ‘\’ are special, and the third
argument must be an lvalue.

gensub(regexp, replacement, how [, target])
gensub is a general substitution function. Like sub and gsub,
it searches the target string target for matches of the regular
expression regexp. Unlike sub and gsub, the modified string is
returned as the result of the function, and the original target
string is not changed. If how is a string beginning with ‘g’
or ‘G’, then it replaces all matches of regexp with replacement.
Otherwise, how is a number indicating which match of regexp
to replace. If no target is supplied, $0 is used instead.

gensub provides an additional feature that is not available in
sub or gsub: the ability to specify components of a regexp in
the replacement text. This is done by using parentheses in the
regexp to mark the components, and then specifying ‘\n’ in the
replacement text, where n is a digit from one to nine. For ex-
ample:

$ gawk ’
> BEGIN {
> a = "abc def"
> b = gensub(/(.+) (.+)/, "\\2 \\1", "g", a)
> print b
> }’
a def abc

As described above for sub, you must type two backslashes in
order to get one into the string.

In the replacement text, the sequence ‘\0’ represents the entire
matched text, as does the character ‘&’.

132 Effective AWK Programming

This example shows how you can use the third argument to
control which match of the regexp should be changed.

$ echo a b c a b c |
> gawk ’{ print gensub(/a/, "AA", 2) }’
a a b c AA b c

In this case, $0 is used as the default target string. gensub
returns the new string as its result, which is passed directly to
print for printing.

If the how argument is a string that does not begin with ‘g’ or ‘G’,
or if it is a number that is less than zero, only one substitution
is performed.

gensub is a gawk extension; it is not available in compatibility
mode (see Section 14.1 [Command Line Options], page 151).

substr(string, start [, length])
This returns a length-character-long substring of string, starting
at character number start. The first character of a string is
character number one. For example, substr("washington",
5, 3) returns "ing".

If length is not present, this function returns the whole suffix
of string that begins at character number start. For example,
substr("washington", 5) returns "ington". The whole suffix
is also returned if length is greater than the number of characters
remaining in the string, counting from character number start.

Note: The string returned by substr cannot be assigned to.
Thus, it is a mistake to attempt to change a portion of a string,
like this:

string = "abcdef"
try to get "abCDEf", won’t work
substr(string, 3, 3) = "CDE"

or to use substr as the third agument of sub or gsub:

gsub(/xyz/, "pdq", substr($0, 5, 20)) # WRONG

tolower(string)
This returns a copy of string, with each upper-case character
in the string replaced with its corresponding lower-case charac-
ter. Non-alphabetic characters are left unchanged. For example,
tolower("MiXeD cAsE 123") returns "mixed case 123".

toupper(string)
This returns a copy of string, with each lower-case character
in the string replaced with its corresponding upper-case charac-
ter. Non-alphabetic characters are left unchanged. For example,
toupper("MiXeD cAsE 123") returns "MIXED CASE 123".

Chapter 12: Built-in Functions 133

More About ‘\’ and ‘&’ with sub, gsub and gensub

When using sub, gsub or gensub, and trying to get literal backslashes and
ampersands into the replacement text, you need to remember that there are
several levels of escape processing going on.

First, there is the lexical level, which is when awk reads your program,
and builds an internal copy of your program that can be executed.

Then there is the run-time level, when awk actually scans the replacement
string to determine what to generate.

At both levels, awk looks for a defined set of characters that can come
after a backslash. At the lexical level, it looks for the escape sequences listed
in Section 4.2 [Escape Sequences], page 22. Thus, for every ‘\’ that awk will
process at the run-time level, you type two ‘\’s at the lexical level. When a
character that is not valid for an escape sequence follows the ‘\’, Unix awk
and gawk both simply remove the initial ‘\’, and put the following character
into the string. Thus, for example, "a\qb" is treated as "aqb".

At the run-time level, the various functions handle sequences of ‘\’ and
‘&’ differently. The situation is (sadly) somewhat complex.

Historically, the sub and gsub functions treated the two character se-
quence ‘\&’ specially; this sequence was replaced in the generated text with
a single ‘&’. Any other ‘\’ within the replacement string that did not precede
an ‘&’ was passed through unchanged. To illustrate with a table:

You type sub sees sub generates

\& & the matched text
\\& \& a literal ‘&’
\\\& \& a literal ‘&’

\\\\& \\& a literal ‘\&’
\\\\\& \\& a literal ‘\&’
\\\\\\& \\\& a literal ‘\\&’

\\q \q a literal ‘\q’

This table shows both the lexical level processing, where an odd number of
backslashes becomes an even number at the run time level, and the run-time
processing done by sub. (For the sake of simplicity, the rest of the tables
below only show the case of even numbers of ‘\’s entered at the lexical level.)

The problem with the historical approach is that there is no way to get
a literal ‘\’ followed by the matched text.

The 1992 POSIX standard attempted to fix this problem. The standard
says that sub and gsub look for either a ‘\’ or an ‘&’ after the ‘\’. If either
one follows a ‘\’, that character is output literally. The interpretation of ‘\’
and ‘&’ then becomes like this:

134 Effective AWK Programming

You type sub sees sub generates

& & the matched text
\\& \& a literal ‘&’

\\\\& \\& a literal ‘\’, then the matched text
\\\\\\& \\\& a literal ‘\&’

This would appear to solve the problem. Unfortunately, the phrasing of the
standard is unusual. It says, in effect, that ‘\’ turns off the special meaning
of any following character, but that for anything other than ‘\’ and ‘&’, such
special meaning is undefined. This wording leads to two problems.

1. Backslashes must now be doubled in the replacement string, breaking
historical awk programs.

2. To make sure that an awk program is portable, every character in the
replacement string must be preceded with a backslash.2

The POSIX standard is under revision.3 Because of the above problems,
proposed text for the revised standard reverts to rules that correspond more
closely to the original existing practice. The proposed rules have special
cases that make it possible to produce a ‘\’ preceding the matched text.

You type sub sees sub generates

\\\\\\& \\\& a literal ‘\&’
\\\\& \\& a literal ‘\’, followed by the matched text

\\& \& a literal ‘&’
\\q \q a literal ‘\q’

In a nutshell, at the run-time level, there are now three special sequences
of characters, ‘\\\&’, ‘\\&’ and ‘\&’, whereas historically, there was only one.
However, as in the historical case, any ‘\’ that is not part of one of these
three sequences is not special, and appears in the output literally.

gawk 3.0 follows these proposed POSIX rules for sub and gsub. Whether
these proposed rules will actually become codified into the standard is un-
known at this point. Subsequent gawk releases will track the standard and
implement whatever the final version specifies; this book will be updated as
well.

The rules for gensub are considerably simpler. At the run-time level,
whenever gawk sees a ‘\’, if the following character is a digit, then the text
that matched the corresponding parenthesized subexpression is placed in the
generated output. Otherwise, no matter what the character after the ‘\’ is,
that character will appear in the generated text, and the ‘\’ will not.

2 This consequence was certainly unintended.
3 As of February 1997, with final approval and publication hopefully sometime in 1997.

Chapter 12: Built-in Functions 135

You type gensub sees gensub generates

& & the matched text
\\& \& a literal ‘&’

\\\\ \\ a literal ‘\’
\\\\& \\& a literal ‘\’, then the matched text

\\\\\\& \\\& a literal ‘\&’
\\q \q a literal ‘q’

Because of the complexity of the lexical and run-time level processing,
and the special cases for sub and gsub, we recommend the use of gawk and
gensub for when you have to do substitutions.

12.4 Built-in Functions for Input/Output
The following functions are related to Input/Output (I/O). Optional param-
eters are enclosed in square brackets (“[” and “]”).

close(filename)
Close the file filename, for input or output. The argument may
alternatively be a shell command that was used for redirect-
ing to or from a pipe; then the pipe is closed. See Section 6.8
[Closing Input and Output Files and Pipes], page 69, for more
information.

fflush([filename])
Flush any buffered output associated filename, which is either a
file opened for writing, or a shell command for redirecting output
to a pipe.

Many utility programs will buffer their output; they save in-
formation to be written to a disk file or terminal in memory,
until there is enough for it to be worthwhile to send the data
to the ouput device. This is often more efficient than writing
every little bit of information as soon as it is ready. However,
sometimes it is necessary to force a program to flush its buffers;
that is, write the information to its destination, even if a buffer
is not full. This is the purpose of the fflush function; gawk too
buffers its output, and the fflush function can be used to force
gawk to flush its buffers.

fflush is a recent (1994) addition to the Bell Labs research
version of awk; it is not part of the POSIX standard, and will
not be available if ‘--posix’ has been specified on the command
line (see Section 14.1 [Command Line Options], page 151).

gawk extends the fflush function in two ways. The first is to
allow no argument at all. In this case, the buffer for the standard
output is flushed. The second way is to allow the null string ("")

136 Effective AWK Programming

as the argument. In this case, the buffers for all open output
files and pipes are flushed.

fflush returns zero if the buffer was successfully flushed, and
nonzero otherwise.

system(command)
The system function allows the user to execute operating system
commands and then return to the awk program. The system
function executes the command given by the string command.
It returns, as its value, the status returned by the command that
was executed.

For example, if the following fragment of code is put in your awk
program:

END {
system("date | mail -s ’awk run done’ root")

}

the system administrator will be sent mail when the awk program
finishes processing input and begins its end-of-input processing.

Note that redirecting print or printf into a pipe is often
enough to accomplish your task. However, if your awk program is
interactive, system is useful for cranking up large self-contained
programs, such as a shell or an editor.

Some operating systems cannot implement the system function.
system causes a fatal error if it is not supported.

Interactive vs. Non-Interactive Buffering

As a side point, buffering issues can be even more confusing depending upon
whether or not your program is interactive, i.e., communicating with a user
sitting at a keyboard.4

Interactive programs generally line buffer their output; they write out
every line. Non-interactive programs wait until they have a full buffer, which
may be many lines of output.

Here is an example of the difference.

$ awk ’{ print $1 + $2 }’
1 1
a 2
2 3
a 5
Control-d

Each line of output is printed immediately. Compare that behavior with this
example.

$ awk ’{ print $1 + $2 }’ | cat

4 A program is interactive if the standard output is connected to a terminal device.

Chapter 12: Built-in Functions 137

1 1
2 3
Control-d
a 2
a 5

Here, no output is printed until after the Control-d is typed, since it is all
buffered, and sent down the pipe to cat in one shot.

Controlling Output Buffering with system

The fflush function provides explicit control over output buffering for in-
dividual files and pipes. However, its use is not portable to many other awk
implementations. An alternative method to flush output buffers is by calling
system with a null string as its argument:

system("") # flush output

gawk treats this use of the system function as a special case, and is smart
enough not to run a shell (or other command interpreter) with the empty
command. Therefore, with gawk, this idiom is not only useful, it is efficient.
While this method should work with other awk implementations, it will not
necessarily avoid starting an unnecessary shell. (Other implementations may
only flush the buffer associated with the standard output, and not necessarily
all buffered output.)

If you think about what a programmer expects, it makes sense that
system should flush any pending output. The following program:

BEGIN {
print "first print"
system("echo system echo")
print "second print"

}

must print

first print
system echo
second print

and not

system echo
first print
second print

If awk did not flush its buffers before calling system, the latter (undesir-
able) output is what you would see.

12.5 Functions for Dealing with Time Stamps
A common use for awk programs is the processing of log files containing
time stamp information, indicating when a particular log record was written.
Many programs log their time stamp in the form returned by the time system

138 Effective AWK Programming

call, which is the number of seconds since a particular epoch. On POSIX
systems, it is the number of seconds since Midnight, January 1, 1970, UTC.

In order to make it easier to process such log files, and to produce useful
reports, gawk provides two functions for working with time stamps. Both
of these are gawk extensions; they are not specified in the POSIX standard,
nor are they in any other known version of awk.

Optional parameters are enclosed in square brackets (“[” and “]”).

systime()
This function returns the current time as the number of seconds
since the system epoch. On POSIX systems, this is the number
of seconds since Midnight, January 1, 1970, UTC. It may be a
different number on other systems.

strftime([format [, timestamp]])
This function returns a string. It is similar to the function
of the same name in ANSI C. The time specified by time-
stamp is used to produce a string, based on the contents of
the format string. The timestamp is in the same format as the
value returned by the systime function. If no timestamp argu-
ment is supplied, gawk will use the current time of day as the
time stamp. If no format argument is supplied, strftime uses
"%a %b %d %H:%M:%S %Z %Y". This format string produces out-
put (almost) equivalent to that of the date utility. (Versions of
gawk prior to 3.0 require the format argument.)

The systime function allows you to compare a time stamp from a log file
with the current time of day. In particular, it is easy to determine how long
ago a particular record was logged. It also allows you to produce log records
using the “seconds since the epoch” format.

The strftime function allows you to easily turn a time stamp into
human-readable information. It is similar in nature to the sprintf function
(see Section 12.3 [Built-in Functions for String Manipulation], page 127), in
that it copies non-format specification characters verbatim to the returned
string, while substituting date and time values for format specifications in
the format string.

strftime is guaranteed by the ANSI C standard to support the following
date format specifications:

%a The locale’s abbreviated weekday name.

%A The locale’s full weekday name.

%b The locale’s abbreviated month name.

%B The locale’s full month name.

%c The locale’s “appropriate” date and time representation.

%d The day of the month as a decimal number (01–31).

Chapter 12: Built-in Functions 139

%H The hour (24-hour clock) as a decimal number (00–23).

%I The hour (12-hour clock) as a decimal number (01–12).

%j The day of the year as a decimal number (001–366).

%m The month as a decimal number (01–12).

%M The minute as a decimal number (00–59).

%p The locale’s equivalent of the AM/PM designations associated
with a 12-hour clock.

%S The second as a decimal number (00–60).5

%U The week number of the year (the first Sunday as the first day
of week one) as a decimal number (00–53).

%w The weekday as a decimal number (0–6). Sunday is day zero.

%W The week number of the year (the first Monday as the first day
of week one) as a decimal number (00–53).

%x The locale’s “appropriate” date representation.

%X The locale’s “appropriate” time representation.

%y The year without century as a decimal number (00–99).

%Y The year with century as a decimal number (e.g., 1995).

%Z The time zone name or abbreviation, or no characters if no time
zone is determinable.

%% A literal ‘%’.

If a conversion specifier is not one of the above, the behavior is undefined.6

Informally, a locale is the geographic place in which a program is meant
to run. For example, a common way to abbreviate the date September 4,
1991 in the United States would be “9/4/91”. In many countries in Europe,
however, it would be abbreviated “4.9.91”. Thus, the ‘%x’ specification in
a "US" locale might produce ‘9/4/91’, while in a "EUROPE" locale, it might
produce ‘4.9.91’. The ANSI C standard defines a default "C" locale, which
is an environment that is typical of what most C programmers are used to.

A public-domain C version of strftime is supplied with gawk for systems
that are not yet fully ANSI-compliant. If that version is used to compile gawk
(see Appendix B [Installing gawk], page 263), then the following additional
format specifications are available:

5 Occasionally there are minutes in a year with a leap second, which is why the seconds
can go up to 60.

6 This is because ANSI C leaves the behavior of the C version of strftime undefined, and
gawk will use the system’s version of strftime if it’s there. Typically, the conversion
specifier will either not appear in the returned string, or it will appear literally.

140 Effective AWK Programming

%D Equivalent to specifying ‘%m/%d/%y’.

%e The day of the month, padded with a space if it is only one digit.

%h Equivalent to ‘%b’, above.

%n A newline character (ASCII LF).

%r Equivalent to specifying ‘%I:%M:%S %p’.

%R Equivalent to specifying ‘%H:%M’.

%T Equivalent to specifying ‘%H:%M:%S’.

%t A tab character.

%k The hour (24-hour clock) as a decimal number (0-23). Single
digit numbers are padded with a space.

%l The hour (12-hour clock) as a decimal number (1-12). Single
digit numbers are padded with a space.

%C The century, as a number between 00 and 99.

%u The weekday as a decimal number [1 (Monday)–7].

%V The week number of the year (the first Monday as the first day
of week one) as a decimal number (01–53). The method for
determining the week number is as specified by ISO 8601 (to
wit: if the week containing January 1 has four or more days in
the new year, then it is week one, otherwise it is week 53 of the
previous year and the next week is week one).

%G The year with century of the ISO week number, as a decimal
number.

For example, January 1, 1993, is in week 53 of 1992. Thus, the
year of its ISO week number is 1992, even though its year is
1993. Similarly, December 31, 1973, is in week 1 of 1974. Thus,
the year of its ISO week number is 1974, even though its year is
1973.

%g The year without century of the ISO week number, as a decimal
number (00–99).

%Ec %EC %Ex %Ey %EY %Od %Oe %OH %OI
%Om %OM %OS %Ou %OU %OV %Ow %OW %Oy

These are “alternate representations” for the specifications that
use only the second letter (‘%c’, ‘%C’, and so on). They are
recognized, but their normal representations are used.7 (These
facilitate compliance with the POSIX date utility.)

7 If you don’t understand any of this, don’t worry about it; these facilities are meant to
make it easier to “internationalize” programs.

Chapter 12: Built-in Functions 141

%v The date in VMS format (e.g., 20-JUN-1991).

%z The timezone offset in a +HHMM format (e.g., the format nec-
essary to produce RFC-822/RFC-1036 date headers).

This example is an awk implementation of the POSIX date utility. Nor-
mally, the date utility prints the current date and time of day in a well
known format. However, if you provide an argument to it that begins with
a ‘+’, date will copy non-format specifier characters to the standard output,
and will interpret the current time according to the format specifiers in the
string. For example:

$ date ’+Today is %A, %B %d, %Y.’
a Today is Thursday, July 11, 1991.

Here is the gawk version of the date utility. It has a shell “wrapper”, to
handle the ‘-u’ option, which requires that date run as if the time zone was
set to UTC.

#! /bin/sh
#
date --- approximate the P1003.2 ’date’ command

case $1 in
-u) TZ=GMT0 # use UTC

export TZ
shift ;;

esac

gawk ’BEGIN {
format = "%a %b %d %H:%M:%S %Z %Y"
exitval = 0

if (ARGC > 2)
exitval = 1

else if (ARGC == 2) {
format = ARGV[1]
if (format ~ /^\+/)

format = substr(format, 2) # remove leading +
}
print strftime(format)
exit exitval

}’ "$@"

Chapter 13: User-defined Functions 143

13 User-defined Functions

Complicated awk programs can often be simplified by defining your own
functions. User-defined functions can be called just like built-in ones (see
Section 7.13 [Function Calls], page 86), but it is up to you to define them—to
tell awk what they should do.

13.1 Function Definition Syntax
Definitions of functions can appear anywhere between the rules of an awk
program. Thus, the general form of an awk program is extended to include
sequences of rules and user-defined function definitions. There is no need in
awk to put the definition of a function before all uses of the function. This
is because awk reads the entire program before starting to execute any of it.

The definition of a function named name looks like this:

function name(parameter-list)
{

body-of-function
}

name is the name of the function to be defined. A valid function name is
like a valid variable name: a sequence of letters, digits and underscores, not
starting with a digit. Within a single awk program, any particular name can
only be used as a variable, array or function.

parameter-list is a list of the function’s arguments and local variable
names, separated by commas. When the function is called, the argument
names are used to hold the argument values given in the call. The local
variables are initialized to the empty string. A function cannot have two
parameters with the same name.

The body-of-function consists of awk statements. It is the most important
part of the definition, because it says what the function should actually
do. The argument names exist to give the body a way to talk about the
arguments; local variables, to give the body places to keep temporary values.

Argument names are not distinguished syntactically from local variable
names; instead, the number of arguments supplied when the function is called
determines how many argument variables there are. Thus, if three argument
values are given, the first three names in parameter-list are arguments, and
the rest are local variables.

It follows that if the number of arguments is not the same in all calls
to the function, some of the names in parameter-list may be arguments on
some occasions and local variables on others. Another way to think of this
is that omitted arguments default to the null string.

Usually when you write a function you know how many names you intend
to use for arguments and how many you intend to use as local variables. It
is conventional to place some extra space between the arguments and the
local variables, to document how your function is supposed to be used.

144 Effective AWK Programming

During execution of the function body, the arguments and local variable
values hide or shadow any variables of the same names used in the rest
of the program. The shadowed variables are not accessible in the function
definition, because there is no way to name them while their names have
been taken away for the local variables. All other variables used in the awk
program can be referenced or set normally in the function’s body.

The arguments and local variables last only as long as the function body
is executing. Once the body finishes, you can once again access the variables
that were shadowed while the function was running.

The function body can contain expressions which call functions. They
can even call this function, either directly or by way of another function.
When this happens, we say the function is recursive.

In many awk implementations, including gawk, the keyword function
may be abbreviated func. However, POSIX only specifies the use of the
keyword function. This actually has some practical implications. If gawk
is in POSIX-compatibility mode (see Section 14.1 [Command Line Options],
page 151), then the following statement will not define a function:

func foo() { a = sqrt($1) ; print a }

Instead it defines a rule that, for each record, concatenates the value of the
variable ‘func’ with the return value of the function ‘foo’. If the resulting
string is non-null, the action is executed. This is probably not what was
desired. (awk accepts this input as syntactically valid, since functions may
be used before they are defined in awk programs.)

To ensure that your awk programs are portable, always use the keyword
function when defining a function.

13.2 Function Definition Examples
Here is an example of a user-defined function, called myprint, that takes a
number and prints it in a specific format.

function myprint(num)
{

printf "%6.3g\n", num
}

To illustrate, here is an awk rule which uses our myprint function:

$3 > 0 { myprint($3) }

This program prints, in our special format, all the third fields that contain
a positive number in our input. Therefore, when given:

1.2 3.4 5.6 7.8
9.10 11.12 -13.14 15.16
17.18 19.20 21.22 23.24

this program, using our function to format the results, prints:

5.6
21.2

Chapter 13: User-defined Functions 145

This function deletes all the elements in an array.

function delarray(a, i)
{

for (i in a)
delete a[i]

}

When working with arrays, it is often necessary to delete all the elements
in an array and start over with a new list of elements (see Section 11.6 [The
delete Statement], page 119). Instead of having to repeat this loop every-
where in your program that you need to clear out an array, your program
can just call delarray.

Here is an example of a recursive function. It takes a string as an input
parameter, and returns the string in backwards order.

function rev(str, start)
{

if (start == 0)
return ""

return (substr(str, start, 1) rev(str, start - 1))
}

If this function is in a file named rev.awk, we can test it this way:

$ echo "Don’t Panic!" |
> gawk --source ’{ print rev($0, length($0)) }’ -f rev.awk
a !cinaP t’noD

Here is an example that uses the built-in function strftime. (See
Section 12.5 [Functions for Dealing with Time Stamps], page 137, for more
information on strftime.) The C ctime function takes a timestamp and
returns it in a string, formatted in a well known fashion. Here is an awk
version:

ctime.awk
#
awk version of C ctime(3) function

function ctime(ts, format)
{

format = "%a %b %d %H:%M:%S %Z %Y"
if (ts == 0)

ts = systime() # use current time as default
return strftime(format, ts)

}

146 Effective AWK Programming

13.3 Calling User-defined Functions
Calling a function means causing the function to run and do its job. A
function call is an expression, and its value is the value returned by the
function.

A function call consists of the function name followed by the arguments
in parentheses. What you write in the call for the arguments are awk expres-
sions; each time the call is executed, these expressions are evaluated, and
the values are the actual arguments. For example, here is a call to foo with
three arguments (the first being a string concatenation):

foo(x y, "lose", 4 * z)

Caution: whitespace characters (spaces and tabs) are not allowed between
the function name and the open-parenthesis of the argument list. If you
write whitespace by mistake, awk might think that you mean to concatenate
a variable with an expression in parentheses. However, it notices that you
used a function name and not a variable name, and reports an error.

When a function is called, it is given a copy of the values of its arguments.
This is known as call by value. The caller may use a variable as the expression
for the argument, but the called function does not know this: it only knows
what value the argument had. For example, if you write this code:

foo = "bar"
z = myfunc(foo)

then you should not think of the argument to myfunc as being “the variable
foo.” Instead, think of the argument as the string value, "bar".

If the function myfunc alters the values of its local variables, this has no
effect on any other variables. Thus, if myfunc does this:

function myfunc(str)
{

print str
str = "zzz"
print str

}

to change its first argument variable str, this does not change the value of
foo in the caller. The role of foo in calling myfunc ended when its value,
"bar", was computed. If str also exists outside of myfunc, the function body
cannot alter this outer value, because it is shadowed during the execution of
myfunc and cannot be seen or changed from there.

However, when arrays are the parameters to functions, they are not
copied. Instead, the array itself is made available for direct manipulation by
the function. This is usually called call by reference. Changes made to an
array parameter inside the body of a function are visible outside that func-
tion. This can be very dangerous if you do not watch what you are doing.
For example:

function changeit(array, ind, nvalue)

Chapter 13: User-defined Functions 147

{
array[ind] = nvalue

}

BEGIN {
a[1] = 1; a[2] = 2; a[3] = 3
changeit(a, 2, "two")
printf "a[1] = %s, a[2] = %s, a[3] = %s\n",

a[1], a[2], a[3]
}

This program prints ‘a[1] = 1, a[2] = two, a[3] = 3’, because changeit
stores "two" in the second element of a.

Some awk implementations allow you to call a function that has not been
defined, and only report a problem at run-time when the program actually
tries to call the function. For example:

BEGIN {
if (0)

foo()
else

bar()
}
function bar() { ... }
note that ‘foo’ is not defined

Since the ‘if’ statement will never be true, it is not really a problem that
foo has not been defined. Usually though, it is a problem if a program calls
an undefined function.

If ‘--lint’ has been specified (see Section 14.1 [Command Line Options],
page 151), gawk will report about calls to undefined functions.

Some awk implementations generate a run-time error if you use the next
statement (see Section 9.7 [The next Statement], page 104) inside a user-
defined function. gawk does not have this problem.

13.4 The return Statement
The body of a user-defined function can contain a return statement. This
statement returns control to the rest of the awk program. It can also be used
to return a value for use in the rest of the awk program. It looks like this:

return [expression]

The expression part is optional. If it is omitted, then the returned value
is undefined and, therefore, unpredictable.

A return statement with no value expression is assumed at the end of
every function definition. So if control reaches the end of the function body,
then the function returns an unpredictable value. awk will not warn you if
you use the return value of such a function.

148 Effective AWK Programming

Sometimes, you want to write a function for what it does, not for what
it returns. Such a function corresponds to a void function in C or to a
procedure in Pascal. Thus, it may be appropriate to not return any value;
you should simply bear in mind that if you use the return value of such a
function, you do so at your own risk.

Here is an example of a user-defined function that returns a value for the
largest number among the elements of an array:

function maxelt(vec, i, ret)
{

for (i in vec) {
if (ret == "" || vec[i] > ret)

ret = vec[i]
}
return ret

}

You call maxelt with one argument, which is an array name. The local
variables i and ret are not intended to be arguments; while there is nothing
to stop you from passing two or three arguments to maxelt, the results would
be strange. The extra space before i in the function parameter list indicates
that i and ret are not supposed to be arguments. This is a convention that
you should follow when you define functions.

Here is a program that uses our maxelt function. It loads an array, calls
maxelt, and then reports the maximum number in that array:

awk ’
function maxelt(vec, i, ret)
{

for (i in vec) {
if (ret == "" || vec[i] > ret)

ret = vec[i]
}
return ret

}

Load all fields of each record into nums.
{

for(i = 1; i <= NF; i++)
nums[NR, i] = $i

}

END {
print maxelt(nums)

}’

Given the following input:

Chapter 13: User-defined Functions 149

1 5 23 8 16
44 3 5 2 8 26
256 291 1396 2962 100
-6 467 998 1101
99385 11 0 225

our program tells us (predictably) that 99385 is the largest number in our
array.

Chapter 14: Running awk 151

14 Running awk

There are two ways to run awk: with an explicit program, or with one or
more program files. Here are templates for both of them; items enclosed in
‘[...]’ in these templates are optional.

Besides traditional one-letter POSIX-style options, gawk also supports
GNU long options.

awk [options] -f progfile [--] file ...
awk [options] [--] ’program’ file ...

It is possible to invoke awk with an empty program:

$ awk ’’ datafile1 datafile2

Doing so makes little sense though; awk will simply exit silently when given
an empty program (d.c.). If ‘--lint’ has been specified on the command
line, gawk will issue a warning that the program is empty.

14.1 Command Line Options
Options begin with a dash, and consist of a single character. GNU style long
options consist of two dashes and a keyword. The keyword can be abbre-
viated, as long the abbreviation allows the option to be uniquely identified.
If the option takes an argument, then the keyword is either immediately
followed by an equals sign (‘=’) and the argument’s value, or the keyword
and the argument’s value are separated by whitespace. For brevity, the dis-
cussion below only refers to the traditional short options; however the long
and short options are interchangeable in all contexts.

Each long option for gawk has a corresponding POSIX-style option. The
options and their meanings are as follows:

-F fs
--field-separator fs

Sets the FS variable to fs (see Section 5.5 [Specifying How Fields
are Separated], page 42).

-f source-file
--file source-file

Indicates that the awk program is to be found in source-file in-
stead of in the first non-option argument.

-v var=val
--assign var=val

Sets the variable var to the value val before execution of the
program begins. Such variable values are available inside the
BEGIN rule (see Section 14.2 [Other Command Line Arguments],
page 155).

The ‘-v’ option can only set one variable, but you can use it
more than once, setting another variable each time, like this:
‘awk -v foo=1 -v bar=2 ...’.

152 Effective AWK Programming

-mf NNN
-mr NNN Set various memory limits to the value NNN. The ‘f’ flag sets

the maximum number of fields, and the ‘r’ flag sets the maxi-
mum record size. These two flags and the ‘-m’ option are from
the Bell Labs research version of Unix awk. They are provided
for compatibility, but otherwise ignored by gawk, since gawk has
no predefined limits.

-W gawk-opt
Following the POSIX standard, options that are implementation
specific are supplied as arguments to the ‘-W’ option. These
options also have corresponding GNU style long options. See
below.

-- Signals the end of the command line options. The following
arguments are not treated as options even if they begin with ‘-’.
This interpretation of ‘--’ follows the POSIX argument parsing
conventions.

This is useful if you have file names that start with ‘-’, or in
shell scripts, if you have file names that will be specified by the
user which could start with ‘-’.

The following gawk-specific options are available:

-W traditional
-W compat
--traditional
--compat Specifies compatibility mode, in which the GNU extensions to

the awk language are disabled, so that gawk behaves just like
the Bell Labs research version of Unix awk. ‘--traditional’ is
the preferred form of this option. See Section 17.5 [Extensions
in gawk Not in POSIX awk], page 239, which summarizes the
extensions. Also see Section C.1 [Downward Compatibility and
Debugging], page 279.

-W copyleft
-W copyright
--copyleft
--copyright

Print the short version of the General Public License, and then
exit. This option may disappear in a future version of gawk.

-W help
-W usage
--help
--usage Print a “usage” message summarizing the short and long style

options that gawk accepts, and then exit.

Chapter 14: Running awk 153

-W lint
--lint Warn about constructs that are dubious or non-portable to other

awk implementations. Some warnings are issued when gawk first
reads your program. Others are issued at run-time, as your
program executes.

-W lint-old
--lint-old

Warn about constructs that are not available in the original
Version 7 Unix version of awk (see Section 17.1 [Major Changes
between V7 and SVR3.1], page 237).

-W posix
--posix Operate in strict POSIX mode. This disables all gawk extensions

(just like ‘--traditional’), and adds the following additional
restrictions:

• \x escape sequences are not recognized (see Section 4.2 [Es-
cape Sequences], page 22).

• Newlines do not act as whitespace to separate fields when
FS is equal to a single space.

• The synonym func for the keyword function is not rec-
ognized (see Section 13.1 [Function Definition Syntax],
page 143).

• The operators ‘**’ and ‘**=’ cannot be used in place of ‘^’
and ‘^=’ (see Section 7.5 [Arithmetic Operators], page 76,
and also see Section 7.7 [Assignment Expressions], page 77).

• Specifying ‘-Ft’ on the command line does not set the value
of FS to be a single tab character (see Section 5.5 [Specifying
How Fields are Separated], page 42).

• The fflush built-in function is not supported (see
Section 12.4 [Built-in Functions for Input/Output],
page 135).

If you supply both ‘--traditional’ and ‘--posix’ on the com-
mand line, ‘--posix’ will take precedence. gawk will also issue
a warning if both options are supplied.

-W re-interval
--re-interval

Allow interval expressions (see Section 4.3 [Regular Expression
Operators], page 24), in regexps. Because interval expressions
were traditionally not available in awk, gawk does not provide
them by default. This prevents old awk programs from breaking.

-W source program-text
--source program-text

Program source code is taken from the program-text. This op-
tion allows you to mix source code in files with source code

154 Effective AWK Programming

that you enter on the command line. This is particularly use-
ful when you have library functions that you wish to use from
your command line programs (see Section 14.3 [The AWKPATH
Environment Variable], page 156).

-W version
--version

Prints version information for this particular copy of gawk. This
allows you to determine if your copy of gawk is up to date with
respect to whatever the Free Software Foundation is currently
distributing. It is also useful for bug reports (see Section B.7
[Reporting Problems and Bugs], page 275).

Any other options are flagged as invalid with a warning message, but are
otherwise ignored.

In compatibility mode, as a special case, if the value of fs supplied to the
‘-F’ option is ‘t’, then FS is set to the tab character ("\t"). This is only
true for ‘--traditional’, and not for ‘--posix’ (see Section 5.5 [Specifying
How Fields are Separated], page 42).

The ‘-f’ option may be used more than once on the command line. If
it is, awk reads its program source from all of the named files, as if they
had been concatenated together into one big file. This is useful for creating
libraries of awk functions. Useful functions can be written once, and then
retrieved from a standard place, instead of having to be included into each
individual program.

You can type in a program at the terminal and still use library functions,
by specifying ‘-f /dev/tty’. awk will read a file from the terminal to use
as part of the awk program. After typing your program, type Control-d
(the end-of-file character) to terminate it. (You may also use ‘-f -’ to read
program source from the standard input, but then you will not be able to
also use the standard input as a source of data.)

Because it is clumsy using the standard awk mechanisms to mix source
file and command line awk programs, gawk provides the ‘--source’ option.
This does not require you to pre-empt the standard input for your source
code, and allows you to easily mix command line and library source code
(see Section 14.3 [The AWKPATH Environment Variable], page 156).

If no ‘-f’ or ‘--source’ option is specified, then gawk will use the first
non-option command line argument as the text of the program source code.

If the environment variable POSIXLY_CORRECT exists, then gawk will be-
have in strict POSIX mode, exactly as if you had supplied the ‘--posix’
command line option. Many GNU programs look for this environment vari-
able to turn on strict POSIX mode. If you supply ‘--lint’ on the command
line, and gawk turns on POSIX mode because of POSIXLY_CORRECT, then it
will print a warning message indicating that POSIX mode is in effect.

Chapter 14: Running awk 155

You would typically set this variable in your shell’s startup file. For a
Bourne compatible shell (such as Bash), you would add these lines to the
.profile file in your home directory.

POSIXLY_CORRECT=true
export POSIXLY_CORRECT

For a csh compatible shell,1 you would add this line to the .login file in
your home directory.

setenv POSIXLY_CORRECT true

14.2 Other Command Line Arguments
Any additional arguments on the command line are normally treated as
input files to be processed in the order specified. However, an argument
that has the form var=value, assigns the value value to the variable var—it
does not specify a file at all.

All these arguments are made available to your awk program in the ARGV
array (see Chapter 10 [Built-in Variables], page 107). Command line op-
tions and the program text (if present) are omitted from ARGV. All other
arguments, including variable assignments, are included. As each element of
ARGV is processed, gawk sets the variable ARGIND to the index in ARGV of the
current element.

The distinction between file name arguments and variable-assignment
arguments is made when awk is about to open the next input file. At that
point in execution, it checks the “file name” to see whether it is really a
variable assignment; if so, awk sets the variable instead of reading a file.

Therefore, the variables actually receive the given values after all previ-
ously specified files have been read. In particular, the values of variables as-
signed in this fashion are not available inside a BEGIN rule (see Section 8.1.5
[The BEGIN and END Special Patterns], page 94), since such rules are run
before awk begins scanning the argument list.

The variable values given on the command line are processed for escape
sequences (d.c.) (see Section 4.2 [Escape Sequences], page 22).

In some earlier implementations of awk, when a variable assignment oc-
curred before any file names, the assignment would happen before the BEGIN
rule was executed. awk’s behavior was thus inconsistent; some command
line assignments were available inside the BEGIN rule, while others were not.
However, some applications came to depend upon this “feature.” When awk
was changed to be more consistent, the ‘-v’ option was added to accommo-
date applications that depended upon the old behavior.

The variable assignment feature is most useful for assigning to variables
such as RS, OFS, and ORS, which control input and output formats, before
scanning the data files. It is also useful for controlling state if multiple passes
are needed over a data file. For example:

1 Not recommended.

156 Effective AWK Programming

awk ’pass == 1 { pass 1 stuff }
pass == 2 { pass 2 stuff }’ pass=1 mydata pass=2 mydata

Given the variable assignment feature, the ‘-F’ option for setting the
value of FS is not strictly necessary. It remains for historical compatibility.

14.3 The AWKPATH Environment Variable
The previous section described how awk program files can be named on the
command line with the ‘-f’ option. In most awk implementations, you must
supply a precise path name for each program file, unless the file is in the
current directory.

But in gawk, if the file name supplied to the ‘-f’ option does not contain
a ‘/’, then gawk searches a list of directories (called the search path), one by
one, looking for a file with the specified name.

The search path is a string consisting of directory names separated by
colons. gawk gets its search path from the AWKPATH environment vari-
able. If that variable does not exist, gawk uses a default path, which is
‘.:/usr/local/share/awk’.2 (Programs written for use by system admin-
istrators should use an AWKPATH variable that does not include the current
directory, ..)

The search path feature is particularly useful for building up libraries of
useful awk functions. The library files can be placed in a standard directory
that is in the default path, and then specified on the command line with a
short file name. Otherwise, the full file name would have to be typed for
each file.

By using both the ‘--source’ and ‘-f’ options, your command line awk
programs can use facilities in awk library files. See Chapter 15 [A Library of
awk Functions], page 159.

Path searching is not done if gawk is in compatibility mode. This is true
for both ‘--traditional’ and ‘--posix’. See Section 14.1 [Command Line
Options], page 151.

Note: if you want files in the current directory to be found, you must
include the current directory in the path, either by including . explicitly in
the path, or by writing a null entry in the path. (A null entry is indicated
by starting or ending the path with a colon, or by placing two colons next to
each other (‘::’).) If the current directory is not included in the path, then
files cannot be found in the current directory. This path search mechanism
is identical to the shell’s.

2 Your version of gawk may use a directory that is different than /usr/local/share/awk;
it will depend upon how gawk was built and installed. The actual directory will be the
value of ‘$(datadir)’ generated when gawk was configured. You probably don’t need
to worry about this though.

Chapter 14: Running awk 157

Starting with version 3.0, if AWKPATH is not defined in the environment,
gawk will place its default search path into ENVIRON["AWKPATH"]. This
makes it easy to determine the actual search path gawk will use.

14.4 Obsolete Options and/or Features
This section describes features and/or command line options from previous
releases of gawk that are either not available in the current version, or that
are still supported but deprecated (meaning that they will not be in the next
release).

For version 3.0.3 of gawk, there are no command line options or other
deprecated features from the previous version of gawk. This section is thus
essentially a place holder, in case some option becomes obsolete in a future
version of gawk.

14.5 Undocumented Options and Features
Use the Source, Luke!
Obi-Wan

This section intentionally left blank.

14.6 Known Bugs in gawk

• The ‘-F’ option for changing the value of FS (see Section 14.1 [Command
Line Options], page 151) is not necessary given the command line vari-
able assignment feature; it remains only for backwards compatibility.

• If your system actually has support for /dev/fd and the associated
/dev/stdin, /dev/stdout, and /dev/stderr files, you may get differ-
ent output from gawk than you would get on a system without those
files. When gawk interprets these files internally, it synchronizes output
to the standard output with output to /dev/stdout, while on a sys-
tem with those files, the output is actually to different open files (see
Section 6.7 [Special File Names in gawk], page 67).

• Syntactically invalid single character programs tend to overflow the
parse stack, generating a rather unhelpful message. Such programs are
surprisingly difficult to diagnose in the completely general case, and the
effort to do so really is not worth it.

Chapter 15: A Library of awk Functions 159

15 A Library of awk Functions

This chapter presents a library of useful awk functions. The sample programs
presented later (see Chapter 16 [Practical awk Programs], page 193) use these
functions. The functions are presented here in a progression from simple to
complex.

Section 16.2.7 [Extracting Programs from Texinfo Source Files], page 225,
presents a program that you can use to extract the source code for these
example library functions and programs from the Texinfo source for this
book. (This has already been done as part of the gawk distribution.)

If you have written one or more useful, general purpose awk functions,
and would like to contribute them for a subsequent edition of this book,
please contact the author. See Section B.7 [Reporting Problems and Bugs],
page 275, for information on doing this. Don’t just send code, as you will
be required to either place your code in the public domain, publish it under
the GPL (see [GNU GENERAL PUBLIC LICENSE], page 293), or assign
the copyright in it to the Free Software Foundation.

15.1 Simulating gawk-specific Features
The programs in this chapter and in Chapter 16 [Practical awk Programs],
page 193, freely use features that are specific to gawk. This section briefly
discusses how you can rewrite these programs for different implementations
of awk.

Diagnostic error messages are sent to /dev/stderr. Use ‘| "cat 1>&2"’
instead of ‘> "/dev/stderr"’, if your system does not have a /dev/stderr,
or if you cannot use gawk.

A number of programs use nextfile (see Section 9.8 [The nextfile
Statement], page 105), to skip any remaining input in the input file.
Section 15.2 [Implementing nextfile as a Function], page 159, shows you
how to write a function that will do the same thing.

Finally, some of the programs choose to ignore upper-case and lower-case
distinctions in their input. They do this by assigning one to IGNORECASE.
You can achieve the same effect by adding the following rule to the beginning
of the program:

ignore case
{ $0 = tolower($0) }

Also, verify that all regexp and string constants used in comparisons only
use lower-case letters.

15.2 Implementing nextfile as a Function
The nextfile statement presented in Section 9.8 [The nextfile Statement],
page 105, is a gawk-specific extension. It is not available in other implemen-

160 Effective AWK Programming

tations of awk. This section shows two versions of a nextfile function that
you can use to simulate gawk’s nextfile statement if you cannot use gawk.

Here is a first attempt at writing a nextfile function.

nextfile --- skip remaining records in current file

this should be read in before the "main" awk program

function nextfile() { _abandon_ = FILENAME; next }

abandon == FILENAME { next }

This file should be included before the main program, because it supplies
a rule that must be executed first. This rule compares the current data
file’s name (which is always in the FILENAME variable) to a private variable
named _abandon_. If the file name matches, then the action part of the rule
executes a next statement, to go on to the next record. (The use of ‘_’ in
the variable name is a convention. It is discussed more fully in Section 15.13
[Naming Library Function Global Variables], page 191.)

The use of the next statement effectively creates a loop that reads all the
records from the current data file. Eventually, the end of the file is reached,
and a new data file is opened, changing the value of FILENAME. Once this
happens, the comparison of _abandon_ to FILENAME fails, and execution
continues with the first rule of the “real” program.

The nextfile function itself simply sets the value of _abandon_ and then
executes a next statement to start the loop going.1

This initial version has a subtle problem. What happens if the same
data file is listed twice on the command line, one right after the other, or
even with just a variable assignment between the two occurrences of the file
name?

In such a case, this code will skip right through the file, a second time,
even though it should stop when it gets to the end of the first occurrence.
Here is a second version of nextfile that remedies this problem.

1 Some implementations of awk do not allow you to execute next from within a function
body. Some other work-around will be necessary if you use such a version.

Chapter 15: A Library of awk Functions 161

nextfile --- skip remaining records in current file
correctly handle successive occurrences of the same file
Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain
May, 1993

this should be read in before the "main" awk program

function nextfile() { _abandon_ = FILENAME; next }

abandon == FILENAME {
if (FNR == 1)

abandon = ""
else

next
}

The nextfile function has not changed. It sets _abandon_ equal to the
current file name and then executes a next satement. The next statement
reads the next record and increments FNR, so FNR is guaranteed to have a
value of at least two. However, if nextfile is called for the last record in the
file, then awk will close the current data file and move on to the next one.
Upon doing so, FILENAME will be set to the name of the new file, and FNR will
be reset to one. If this next file is the same as the previous one, _abandon_
will still be equal to FILENAME. However, FNR will be equal to one, telling
us that this is a new occurrence of the file, and not the one we were reading
when the nextfile function was executed. In that case, _abandon_ is reset
to the empty string, so that further executions of this rule will fail (until the
next time that nextfile is called).

If FNR is not one, then we are still in the original data file, and the program
executes a next statement to skip through it.

An important question to ask at this point is: “Given that the function-
ality of nextfile can be provided with a library file, why is it built into
gawk?” This is an important question. Adding features for little reason
leads to larger, slower programs that are harder to maintain.

The answer is that building nextfile into gawk provides significant gains
in efficiency. If the nextfile function is executed at the beginning of a large
data file, awk still has to scan the entire file, splitting it up into records, just to
skip over it. The built-in nextfile can simply close the file immediately and
proceed to the next one, saving a lot of time. This is particularly important
in awk, since awk programs are generally I/O bound (i.e. they spend most of
their time doing input and output, instead of performing computations).

15.3 Assertions
When writing large programs, it is often useful to be able to know that a
condition or set of conditions is true. Before proceeding with a particular

162 Effective AWK Programming

computation, you make a statement about what you believe to be the case.
Such a statement is known as an “assertion.” The C language provides an
<assert.h> header file and corresponding assert macro that the program-
mer can use to make assertions. If an assertion fails, the assert macro
arranges to print a diagnostic message describing the condition that should
have been true but was not, and then it kills the program. In C, using
assert looks this:

#include <assert.h>

int myfunc(int a, double b)
{

assert(a <= 5 && b >= 17);
...

}

If the assertion failed, the program would print a message similar to this:

prog.c:5: assertion failed: a <= 5 && b >= 17

The ANSI C language makes it possible to turn the condition into a string
for use in printing the diagnostic message. This is not possible in awk, so
this assert function also requires a string version of the condition that is
being tested.

assert --- assert that a condition is true. Otherwise exit.
Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain
May, 1993

function assert(condition, string)
{

if (! condition) {
printf("%s:%d: assertion failed: %s\n",

FILENAME, FNR, string) > "/dev/stderr"
_assert_exit = 1
exit 1

}
}

END {
if (_assert_exit)

exit 1
}

The assert function tests the condition parameter. If it is false, it
prints a message to standard error, using the string parameter to describe
the failed condition. It then sets the variable _assert_exit to one, and
executes the exit statement. The exit statement jumps to the END rule. If
the END rules finds _assert_exit to be true, then it exits immediately.

The purpose of the END rule with its test is to keep any other END rules
from running. When an assertion fails, the program should exit immediately.

Chapter 15: A Library of awk Functions 163

If no assertions fail, then _assert_exit will still be false when the END rule
is run normally, and the rest of the program’s END rules will execute. For all
of this to work correctly, assert.awk must be the first source file read by
awk.

You would use this function in your programs this way:

function myfunc(a, b)
{

assert(a <= 5 && b >= 17, "a <= 5 && b >= 17")
...

}

If the assertion failed, you would see a message like this:

mydata:1357: assertion failed: a <= 5 && b >= 17

There is a problem with this version of assert, that it may not be possible
to work around. An END rule is automatically added to the program calling
assert. Normally, if a program consists of just a BEGIN rule, the input files
and/or standard input are not read. However, now that the program has an
END rule, awk will attempt to read the input data files, or standard input (see
Section 8.1.5.1 [Startup and Cleanup Actions], page 94), most likely causing
the program to hang, waiting for input.

15.4 Rounding Numbers
The way printf and sprintf (see Section 6.5 [Using printf Statements for
Fancier Printing], page 60) do rounding will often depend upon the system’s
C sprintf subroutine. On many machines, sprintf rounding is “unbiased,”
which means it doesn’t always round a trailing ‘.5’ up, contrary to naive
expectations. In unbiased rounding, ‘.5’ rounds to even, rather than always
up, so 1.5 rounds to 2 but 4.5 rounds to 4. The result is that if you are using a
format that does rounding (e.g., "%.0f") you should check what your system
does. The following function does traditional rounding; it might be useful if
your awk’s printf does unbiased rounding.

round --- do normal rounding
#
Arnold Robbins, arnold@gnu.ai.mit.edu, August, 1996
Public Domain

function round(x, ival, aval, fraction)
{

ival = int(x) # integer part, int() truncates

see if fractional part
if (ival == x) # no fraction

return x

if (x < 0) {

164 Effective AWK Programming

aval = -x # absolute value
ival = int(aval)
fraction = aval - ival
if (fraction >= .5)

return int(x) - 1 # -2.5 --> -3
else

return int(x) # -2.3 --> -2
} else {

fraction = x - ival
if (fraction >= .5)

return ival + 1
else

return ival
}

}

test harness
{ print $0, round($0) }

15.5 Translating Between Characters and
Numbers

One commercial implementation of awk supplies a built-in function, ord,
which takes a character and returns the numeric value for that character in
the machine’s character set. If the string passed to ord has more than one
character, only the first one is used.

The inverse of this function is chr (from the function of the same name
in Pascal), which takes a number and returns the corresponding character.

Both functions can be written very nicely in awk; there is no real reason
to build them into the awk interpreter.

ord.awk --- do ord and chr
#
Global identifiers:
ord: numerical values indexed by characters
_ord_init: function to initialize _ord_
#
Arnold Robbins
arnold@gnu.ai.mit.edu
Public Domain
16 January, 1992
20 July, 1992, revised

BEGIN { _ord_init() }

function _ord_init(low, high, i, t)

Chapter 15: A Library of awk Functions 165

{
low = sprintf("%c", 7) # BEL is ascii 7
if (low == "\a") { # regular ascii

low = 0
high = 127

} else if (sprintf("%c", 128 + 7) == "\a") {
ascii, mark parity
low = 128
high = 255

} else { # ebcdic(!)
low = 0
high = 255

}

for (i = low; i <= high; i++) {
t = sprintf("%c", i)
ord[t] = i

}
}

Some explanation of the numbers used by chr is worthwhile. The most
prominent character set in use today is ASCII. Although an eight-bit byte
can hold 256 distinct values (from zero to 255), ASCII only defines characters
that use the values from zero to 127.2 At least one computer manufacturer
that we know of uses ASCII, but with mark parity, meaning that the leftmost
bit in the byte is always one. What this means is that on those systems,
characters have numeric values from 128 to 255. Finally, large mainframe
systems use the EBCDIC character set, which uses all 256 values. While
there are other character sets in use on some older systems, they are not
really worth worrying about.

function ord(str, c)
{

only first character is of interest
c = substr(str, 1, 1)
return _ord_[c]

}

function chr(c)
{

force c to be numeric by adding 0
return sprintf("%c", c + 0)

}

2 ASCII has been extended in many countries to use the values from 128 to 255 for
country-specific characters. If your system uses these extensions, you can simplify
_ord_init to simply loop from zero to 255.

166 Effective AWK Programming

test code
BEGIN \
{
for (;;) {
printf("enter a character: ")
if (getline var <= 0)
break
printf("ord(%s) = %d\n", var, ord(var))
}
}

An obvious improvement to these functions would be to move the code
for the _ord_init function into the body of the BEGIN rule. It was written
this way initially for ease of development.

There is a “test program” in a BEGIN rule, for testing the function. It is
commented out for production use.

15.6 Merging an Array Into a String
When doing string processing, it is often useful to be able to join all the
strings in an array into one long string. The following function, join, ac-
complishes this task. It is used later in several of the application programs
(see Chapter 16 [Practical awk Programs], page 193).

Good function design is important; this function needs to be general,
but it should also have a reasonable default behavior. It is called with an
array and the beginning and ending indices of the elements in the array to
be merged. This assumes that the array indices are numeric—a reasonable
assumption since the array was likely created with split (see Section 12.3
[Built-in Functions for String Manipulation], page 127).

join.awk --- join an array into a string
Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain
May 1993

function join(array, start, end, sep, result, i)
{

if (sep == "")
sep = " "

else if (sep == SUBSEP) # magic value
sep = ""

result = array[start]
for (i = start + 1; i <= end; i++)

result = result sep array[i]
return result

}

An optional additional argument is the separator to use when joining the
strings back together. If the caller supplies a non-empty value, join uses it.

Chapter 15: A Library of awk Functions 167

If it is not supplied, it will have a null value. In this case, join uses a single
blank as a default separator for the strings. If the value is equal to SUBSEP,
then join joins the strings with no separator between them. SUBSEP serves
as a “magic” value to indicate that there should be no separation between
the component strings.

It would be nice if awk had an assignment operator for concatenation.
The lack of an explicit operator for concatenation makes string operations
more difficult than they really need to be.

15.7 Turning Dates Into Timestamps
The systime function built in to gawk returns the current time of day as a
timestamp in “seconds since the Epoch.” This timestamp can be converted
into a printable date of almost infinitely variable format using the built-in
strftime function. (For more information on systime and strftime, see
Section 12.5 [Functions for Dealing with Time Stamps], page 137.)

An interesting but difficult problem is to convert a readable representa-
tion of a date back into a timestamp. The ANSI C library provides a mktime
function that does the basic job, converting a canonical representation of a
date into a timestamp.

It would appear at first glance that gawk would have to supply a mktime
built-in function that was simply a “hook” to the C language version. In
fact though, mktime can be implemented entirely in awk.

Here is a version of mktime for awk. It takes a simple representation of
the date and time, and converts it into a timestamp.

The code is presented here intermixed with explanatory prose. In
Section 16.2.7 [Extracting Programs from Texinfo Source Files], page 225,
you will see how the Texinfo source file for this book can be processed to
extract the code into a single source file.

The program begins with a descriptive comment and a BEGIN rule that
initializes a table _tm_months. This table is a two-dimensional array that
has the lengths of the months. The first index is zero for regular years, and
one for leap years. The values are the same for all the months in both kinds
of years, except for February; thus the use of multiple assignment.

mktime.awk --- convert a canonical date representation
into a timestamp
Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain
May 1993

BEGIN \
{

Initialize table of month lengths
_tm_months[0,1] = _tm_months[1,1] = 31
_tm_months[0,2] = 28; _tm_months[1,2] = 29
_tm_months[0,3] = _tm_months[1,3] = 31

168 Effective AWK Programming

_tm_months[0,4] = _tm_months[1,4] = 30
_tm_months[0,5] = _tm_months[1,5] = 31
_tm_months[0,6] = _tm_months[1,6] = 30
_tm_months[0,7] = _tm_months[1,7] = 31
_tm_months[0,8] = _tm_months[1,8] = 31
_tm_months[0,9] = _tm_months[1,9] = 30
_tm_months[0,10] = _tm_months[1,10] = 31
_tm_months[0,11] = _tm_months[1,11] = 30
_tm_months[0,12] = _tm_months[1,12] = 31

}

The benefit of merging multiple BEGIN rules (see Section 8.1.5 [The BEGIN
and END Special Patterns], page 94) is particularly clear when writing library
files. Functions in library files can cleanly initialize their own private data
and also provide clean-up actions in private END rules.

The next function is a simple one that computes whether a given year is
or is not a leap year. If a year is evenly divisible by four, but not evenly
divisible by 100, or if it is evenly divisible by 400, then it is a leap year.
Thus, 1904 was a leap year, 1900 was not, but 2000 will be.

decide if a year is a leap year
function _tm_isleap(year, ret)
{

ret = (year % 4 == 0 && year % 100 != 0) ||
(year % 400 == 0)

return ret
}

This function is only used a few times in this file, and its computation
could have been written in-line (at the point where it’s used). Making it a
separate function made the original development easier, and also avoids the
possibility of typing errors when duplicating the code in multiple places.

The next function is more interesting. It does most of the work of gen-
erating a timestamp, which is converting a date and time into some number
of seconds since the Epoch. The caller passes an array (rather imaginatively
named a) containing six values: the year including century, the month as a
number between one and 12, the day of the month, the hour as a number
between zero and 23, the minute in the hour, and the seconds within the
minute.

The function uses several local variables to precompute the number of
seconds in an hour, seconds in a day, and seconds in a year. Often, simi-
lar C code simply writes out the expression in-line, expecting the compiler
to do constant folding. E.g., most C compilers would turn ‘60 * 60’ into
‘3600’ at compile time, instead of recomputing it every time at run time.
Precomputing these values makes the function more efficient.

convert a date into seconds
function _tm_addup(a, total, yearsecs, daysecs,

Chapter 15: A Library of awk Functions 169

hoursecs, i, j)
{

hoursecs = 60 * 60
daysecs = 24 * hoursecs
yearsecs = 365 * daysecs

total = (a[1] - 1970) * yearsecs

extra day for leap years
for (i = 1970; i < a[1]; i++)

if (_tm_isleap(i))
total += daysecs

j = _tm_isleap(a[1])
for (i = 1; i < a[2]; i++)

total += _tm_months[j, i] * daysecs

total += (a[3] - 1) * daysecs
total += a[4] * hoursecs
total += a[5] * 60
total += a[6]

return total
}

The function starts with a first approximation of all the seconds between
Midnight, January 1, 1970,3 and the beginning of the current year. It then
goes through all those years, and for every leap year, adds an additional
day’s worth of seconds.

The variable j holds either one or zero, if the current year is or is not a
leap year. For every month in the current year prior to the current month,
it adds the number of seconds in the month, using the appropriate entry in
the _tm_months array.

Finally, it adds in the seconds for the number of days prior to the current
day, and the number of hours, minutes, and seconds in the current day.

The result is a count of seconds since January 1, 1970. This value is not
yet what is needed though. The reason why is described shortly.

The main mktime function takes a single character string argument. This
string is a representation of a date and time in a “canonical” (fixed) form.
This string should be "year month day hour minute second".

mktime --- convert a date into seconds,
compensate for time zone

function mktime(str, res1, res2, a, b, i, j, t, diff)

3 This is the Epoch on POSIX systems. It may be different on other systems.

170 Effective AWK Programming

{
i = split(str, a, " ") # don’t rely on FS

if (i != 6)
return -1

force numeric
for (j in a)

a[j] += 0

validate
if (a[1] < 1970 ||

a[2] < 1 || a[2] > 12 ||
a[3] < 1 || a[3] > 31 ||
a[4] < 0 || a[4] > 23 ||
a[5] < 0 || a[5] > 59 ||
a[6] < 0 || a[6] > 60)

return -1

res1 = _tm_addup(a)
t = strftime("%Y %m %d %H %M %S", res1)

if (_tm_debug)
printf("(%s) -> (%s)\n", str, t) > "/dev/stderr"

split(t, b, " ")
res2 = _tm_addup(b)

diff = res1 - res2

if (_tm_debug)
printf("diff = %d seconds\n", diff) > "/dev/stderr"

res1 += diff

return res1
}

The function first splits the string into an array, using spaces and tabs
as separators. If there are not six elements in the array, it returns an error,
signaled as the value −1. Next, it forces each element of the array to be
numeric, by adding zero to it. The following ‘if’ statement then makes sure
that each element is within an allowable range. (This checking could be
extended further, e.g., to make sure that the day of the month is within the
correct range for the particular month supplied.) All of this is essentially
preliminary set-up and error checking.

Chapter 15: A Library of awk Functions 171

Recall that _tm_addup generated a value in seconds since Midnight, Jan-
uary 1, 1970. This value is not directly usable as the result we want, since
the calculation does not account for the local timezone. In other words, the
value represents the count in seconds since the Epoch, but only for UTC
(Universal Coordinated Time). If the local timezone is east or west of UTC,
then some number of hours should be either added to, or subtracted from
the resulting timestamp.

For example, 6:23 p.m. in Atlanta, Georgia (USA), is normally five hours
west of (behind) UTC. It is only four hours behind UTC if daylight savings
time is in effect. If you are calling mktime in Atlanta, with the argument
"1993 5 23 18 23 12", the result from _tm_addup will be for 6:23 p.m. UTC,
which is only 2:23 p.m. in Atlanta. It is necessary to add another four hours
worth of seconds to the result.

How can mktime determine how far away it is from UTC? This is surpris-
ingly easy. The returned timestamp represents the time passed to mktime
as UTC. This timestamp can be fed back to strftime, which will format
it as a local time; i.e. as if it already had the UTC difference added in to
it. This is done by giving "%Y %m %d %H %M %S" to strftime as the format
argument. It returns the computed timestamp in the original string format.
The result represents a time that accounts for the UTC difference. When
the new time is converted back to a timestamp, the difference between the
two timestamps is the difference (in seconds) between the local timezone and
UTC. This difference is then added back to the original result. An example
demonstrating this is presented below.

Finally, there is a “main” program for testing the function.

BEGIN {
if (_tm_test) {

printf "Enter date as yyyy mm dd hh mm ss: "
getline _tm_test_date

t = mktime(_tm_test_date)
r = strftime("%Y %m %d %H %M %S", t)
printf "Got back (%s)\n", r

}
}

The entire program uses two variables that can be set on the command
line to control debugging output and to enable the test in the final BEGIN
rule. Here is the result of a test run. (Note that debugging output is to
standard error, and test output is to standard output.)

$ gawk -f mktime.awk -v _tm_test=1 -v _tm_debug=1
a Enter date as yyyy mm dd hh mm ss: 1993 5 23 15 35 10
error (1993 5 23 15 35 10) -> (1993 05 23 11 35 10)
error diff = 14400 seconds
a Got back (1993 05 23 15 35 10)

172 Effective AWK Programming

The time entered was 3:35 p.m. (15:35 on a 24-hour clock), on May 23,
1993. The first line of debugging output shows the resulting time as UTC—
four hours ahead of the local time zone. The second line shows that the
difference is 14400 seconds, which is four hours. (The difference is only four
hours, since daylight savings time is in effect during May.) The final line
of test output shows that the timezone compensation algorithm works; the
returned time is the same as the entered time.

This program does not solve the general problem of turning an arbitrary
date representation into a timestamp. That problem is very involved. How-
ever, the mktime function provides a foundation upon which to build. Other
software can convert month names into numeric months, and AM/PM times
into 24-hour clocks, to generate the “canonical” format that mktime requires.

15.8 Managing the Time of Day
The systime and strftime functions described in Section 12.5 [Functions
for Dealing with Time Stamps], page 137, provide the minimum function-
ality necessary for dealing with the time of day in human readable form.
While strftime is extensive, the control formats are not necessarily easy to
remember or intuitively obvious when reading a program.

The following function, gettimeofday, populates a user-supplied array
with pre-formatted time information. It returns a string with the current
time formatted in the same way as the date utility.

gettimeofday --- get the time of day in a usable format
Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain, May 1993
#
Returns a string in the format of output of date(1)
Populates the array argument time with individual values:
time["second"] -- seconds (0 - 59)
time["minute"] -- minutes (0 - 59)
time["hour"] -- hours (0 - 23)
time["althour"] -- hours (0 - 12)
time["monthday"] -- day of month (1 - 31)
time["month"] -- month of year (1 - 12)
time["monthname"] -- name of the month
time["shortmonth"] -- short name of the month
time["year"] -- year within century (0 - 99)
time["fullyear"] -- year with century (19xx or 20xx)
time["weekday"] -- day of week (Sunday = 0)
time["altweekday"] -- day of week (Monday = 0)
time["weeknum"] -- week number, Sunday first day
time["altweeknum"] -- week number, Monday first day
time["dayname"] -- name of weekday
time["shortdayname"] -- short name of weekday
time["yearday"] -- day of year (0 - 365)

Chapter 15: A Library of awk Functions 173

time["timezone"] -- abbreviation of timezone name
time["ampm"] -- AM or PM designation

function gettimeofday(time, ret, now, i)
{

get time once, avoids unnecessary system calls
now = systime()

return date(1)-style output
ret = strftime("%a %b %d %H:%M:%S %Z %Y", now)

clear out target array
for (i in time)

delete time[i]

fill in values, force numeric values to be
numeric by adding 0
time["second"] = strftime("%S", now) + 0
time["minute"] = strftime("%M", now) + 0
time["hour"] = strftime("%H", now) + 0
time["althour"] = strftime("%I", now) + 0
time["monthday"] = strftime("%d", now) + 0
time["month"] = strftime("%m", now) + 0
time["monthname"] = strftime("%B", now)
time["shortmonth"] = strftime("%b", now)
time["year"] = strftime("%y", now) + 0
time["fullyear"] = strftime("%Y", now) + 0
time["weekday"] = strftime("%w", now) + 0
time["altweekday"] = strftime("%u", now) + 0
time["dayname"] = strftime("%A", now)
time["shortdayname"] = strftime("%a", now)
time["yearday"] = strftime("%j", now) + 0
time["timezone"] = strftime("%Z", now)
time["ampm"] = strftime("%p", now)
time["weeknum"] = strftime("%U", now) + 0
time["altweeknum"] = strftime("%W", now) + 0

return ret
}

The string indices are easier to use and read than the various formats
required by strftime. The alarm program presented in Section 16.2.2 [An
Alarm Clock Program], page 215, uses this function.

The gettimeofday function is presented above as it was written. A more
general design for this function would have allowed the user to supply an

174 Effective AWK Programming

optional timestamp value that would have been used instead of the current
time.

15.9 Noting Data File Boundaries
The BEGIN and END rules are each executed exactly once, at the beginning
and end respectively of your awk program (see Section 8.1.5 [The BEGIN and
END Special Patterns], page 94). We (the gawk authors) once had a user who
mistakenly thought that the BEGIN rule was executed at the beginning of
each data file and the END rule was executed at the end of each data file.
When informed that this was not the case, the user requested that we add
new special patterns to gawk, named BEGIN_FILE and END_FILE, that would
have the desired behavior. He even supplied us the code to do so.

However, after a little thought, I came up with the following library
program. It arranges to call two user-supplied functions, beginfile and
endfile, at the beginning and end of each data file. Besides solving the
problem in only nine(!) lines of code, it does so portably ; this will work with
any implementation of awk.

transfile.awk
#
Give the user a hook for filename transitions
#
The user must supply functions beginfile() and endfile()
that each take the name of the file being started or
finished, respectively.
#
Arnold Robbins, arnold@gnu.ai.mit.edu, January 1992
Public Domain

FILENAME != _oldfilename \
{

if (_oldfilename != "")
endfile(_oldfilename)

_oldfilename = FILENAME
beginfile(FILENAME)

}

END { endfile(FILENAME) }

This file must be loaded before the user’s “main” program, so that the
rule it supplies will be executed first.

This rule relies on awk’s FILENAME variable that automatically changes
for each new data file. The current file name is saved in a private variable,
_oldfilename. If FILENAME does not equal _oldfilename, then a new data
file is being processed, and it is necessary to call endfile for the old file.
Since endfile should only be called if a file has been processed, the pro-

Chapter 15: A Library of awk Functions 175

gram first checks to make sure that _oldfilename is not the null string.
The program then assigns the current file name to _oldfilename, and calls
beginfile for the file. Since, like all awk variables, _oldfilename will be
initialized to the null string, this rule executes correctly even for the first
data file.

The program also supplies an END rule, to do the final processing for
the last file. Since this END rule comes before any END rules supplied in
the “main” program, endfile will be called first. Once again the value of
multiple BEGIN and END rules should be clear.

This version has same problem as the first version of nextfile (see
Section 15.2 [Implementing nextfile as a Function], page 159). If the
same data file occurs twice in a row on command line, then endfile and
beginfile will not be executed at the end of the first pass and at the be-
ginning of the second pass. This version solves the problem.

ftrans.awk --- handle data file transitions
#
user supplies beginfile() and endfile() functions
#
Arnold Robbins, arnold@gnu.ai.mit.edu. November 1992
Public Domain

FNR == 1 {
if (_filename_ != "")

endfile(_filename_)
filename = FILENAME
beginfile(FILENAME)

}

END { endfile(_filename_) }

In Section 16.1.7 [Counting Things], page 212, you will see how this
library function can be used, and how it simplifies writing the main program.

15.10 Processing Command Line Options
Most utilities on POSIX compatible systems take options or “switches” on
the command line that can be used to change the way a program behaves.
awk is an example of such a program (see Section 14.1 [Command Line
Options], page 151). Often, options take arguments, data that the program
needs to correctly obey the command line option. For example, awk’s ‘-F’
option requires a string to use as the field separator. The first occurrence
on the command line of either ‘--’ or a string that does not begin with ‘-’
ends the options.

Most Unix systems provide a C function named getopt for processing
command line arguments. The programmer provides a string describing
the one letter options. If an option requires an argument, it is followed

176 Effective AWK Programming

in the string with a colon. getopt is also passed the count and values of
the command line arguments, and is called in a loop. getopt processes the
command line arguments for option letters. Each time around the loop, it
returns a single character representing the next option letter that it found,
or ‘?’ if it found an invalid option. When it returns −1, there are no options
left on the command line.

When using getopt, options that do not take arguments can be grouped
together. Furthermore, options that take arguments require that the argu-
ment be present. The argument can immediately follow the option letter, or
it can be a separate command line argument.

Given a hypothetical program that takes three command line options,
‘-a’, ‘-b’, and ‘-c’, and ‘-b’ requires an argument, all of the following are
valid ways of invoking the program:

prog -a -b foo -c data1 data2 data3
prog -ac -bfoo -- data1 data2 data3
prog -acbfoo data1 data2 data3

Notice that when the argument is grouped with its option, the rest of the
command line argument is considered to be the option’s argument. In the
above example, ‘-acbfoo’ indicates that all of the ‘-a’, ‘-b’, and ‘-c’ options
were supplied, and that ‘foo’ is the argument to the ‘-b’ option.

getopt provides four external variables that the programmer can use.

optind The index in the argument value array (argv) where the first
non-option command line argument can be found.

optarg The string value of the argument to an option.

opterr Usually getopt prints an error message when it finds an invalid
option. Setting opterr to zero disables this feature. (An appli-
cation might wish to print its own error message.)

optopt The letter representing the command line option. While not
usually documented, most versions supply this variable.

The following C fragment shows how getopt might process command
line arguments for awk.

int
main(int argc, char *argv[])
{

...
/* print our own message */
opterr = 0;

Chapter 15: A Library of awk Functions 177

while ((c = getopt(argc, argv, "v:f:F:W:")) != -1) {
switch (c) {
case ’f’: /* file */

...
break;

case ’F’: /* field separator */
...
break;

case ’v’: /* variable assignment */
...
break;

case ’W’: /* extension */
...
break;

case ’?’:
default:

usage();
break;

}
}
...

}

As a side point, gawk actually uses the GNU getopt_long function to
process both normal and GNU-style long options (see Section 14.1 [Com-
mand Line Options], page 151).

The abstraction provided by getopt is very useful, and would be quite
handy in awk programs as well. Here is an awk version of getopt. This
function highlights one of the greatest weaknesses in awk, which is that it
is very poor at manipulating single characters. Repeated calls to substr
are necessary for accessing individual characters (see Section 12.3 [Built-in
Functions for String Manipulation], page 127).

The discussion walks through the code a bit at a time.

getopt --- do C library getopt(3) function in awk
#
arnold@gnu.ai.mit.edu
Public domain
#
Initial version: March, 1991
Revised: May, 1993

External variables:
Optind -- index of ARGV for first non-option argument
Optarg -- string value of argument to current option
Opterr -- if non-zero, print our own diagnostic
Optopt -- current option letter

178 Effective AWK Programming

Returns
-1 at end of options
? for unrecognized option
<c> a character representing the current option

Private Data
_opti index in multi-flag option, e.g., -abc

The function starts out with some documentation: who wrote the code,
and when it was revised, followed by a list of the global variables it uses,
what the return values are and what they mean, and any global variables
that are “private” to this library function. Such documentation is essential
for any program, and particularly for library functions.

function getopt(argc, argv, options, optl, thisopt, i)
{

optl = length(options)
if (optl == 0) # no options given

return -1

if (argv[Optind] == "--") { # all done
Optind++
_opti = 0
return -1

} else if (argv[Optind] !~ /^-[^: \t\n\f\r\v\b]/) {
_opti = 0
return -1

}

The function first checks that it was indeed called with a string of options
(the options parameter). If options has a zero length, getopt immediately
returns −1.

The next thing to check for is the end of the options. A ‘--’ ends the
command line options, as does any command line argument that does not
begin with a ‘-’. Optind is used to step through the array of command line
arguments; it retains its value across calls to getopt, since it is a global
variable.

The regexp used, /^-[^: \t\n\f\r\v\b]/, is perhaps a bit of overkill; it
checks for a ‘-’ followed by anything that is not whitespace and not a colon.
If the current command line argument does not match this pattern, it is not
an option, and it ends option processing.

Chapter 15: A Library of awk Functions 179

if (_opti == 0)
_opti = 2

thisopt = substr(argv[Optind], _opti, 1)
Optopt = thisopt
i = index(options, thisopt)
if (i == 0) {

if (Opterr)
printf("%c -- invalid option\n",

thisopt) > "/dev/stderr"
if (_opti >= length(argv[Optind])) {

Optind++
_opti = 0

} else
_opti++

return "?"
}

The _opti variable tracks the position in the current command line ar-
gument (argv[Optind]). In the case that multiple options were grouped
together with one ‘-’ (e.g., ‘-abx’), it is necessary to return them to the user
one at a time.

If _opti is equal to zero, it is set to two, the index in the string of the
next character to look at (we skip the ‘-’, which is at position one). The
variable thisopt holds the character, obtained with substr. It is saved in
Optopt for the main program to use.

If thisopt is not in the options string, then it is an invalid option. If
Opterr is non-zero, getopt prints an error message on the standard error
that is similar to the message from the C version of getopt.

Since the option is invalid, it is necessary to skip it and move on to the
next option character. If _opti is greater than or equal to the length of the
current command line argument, then it is necessary to move on to the next
one, so Optind is incremented and _opti is reset to zero. Otherwise, Optind
is left alone and _opti is merely incremented.

In any case, since the option was invalid, getopt returns ‘?’. The main
program can examine Optopt if it needs to know what the invalid option
letter actually was.

if (substr(options, i + 1, 1) == ":") {
get option argument
if (length(substr(argv[Optind], _opti + 1)) > 0)

Optarg = substr(argv[Optind], _opti + 1)
else

Optarg = argv[++Optind]
_opti = 0

} else
Optarg = ""

180 Effective AWK Programming

If the option requires an argument, the option letter is followed by a
colon in the options string. If there are remaining characters in the current
command line argument (argv[Optind]), then the rest of that string is
assigned to Optarg. Otherwise, the next command line argument is used
(‘-xFOO’ vs. ‘-x FOO’). In either case, _opti is reset to zero, since there are
no more characters left to examine in the current command line argument.

if (_opti == 0 || _opti >= length(argv[Optind])) {
Optind++
_opti = 0

} else
_opti++

return thisopt
}

Finally, if _opti is either zero or greater than the length of the current
command line argument, it means this element in argv is through being
processed, so Optind is incremented to point to the next element in argv. If
neither condition is true, then only _opti is incremented, so that the next
option letter can be processed on the next call to getopt.

BEGIN {
Opterr = 1 # default is to diagnose
Optind = 1 # skip ARGV[0]

test program
if (_getopt_test) {

while ((_go_c = getopt(ARGC, ARGV, "ab:cd")) != -1)
printf("c = <%c>, optarg = <%s>\n",

_go_c, Optarg)
printf("non-option arguments:\n")
for (; Optind < ARGC; Optind++)

printf("\tARGV[%d] = <%s>\n",
Optind, ARGV[Optind])

}
}

The BEGIN rule initializes both Opterr and Optind to one. Opterr is set
to one, since the default behavior is for getopt to print a diagnostic message
upon seeing an invalid option. Optind is set to one, since there’s no reason
to look at the program name, which is in ARGV[0].

The rest of the BEGIN rule is a simple test program. Here is the result of
two sample runs of the test program.

Chapter 15: A Library of awk Functions 181

$ awk -f getopt.awk -v _getopt_test=1 -- -a -cbARG bax -x
a c = <a>, optarg = <>
a c = <c>, optarg = <>
a c = , optarg = <ARG>
a non-option arguments:
a ARGV[3] = <bax>
a ARGV[4] = <-x>

$ awk -f getopt.awk -v _getopt_test=1 -- -a -x -- xyz abc
a c = <a>, optarg = <>
error x -- invalid option
a c = <?>, optarg = <>
a non-option arguments:
a ARGV[4] = <xyz>
a ARGV[5] = <abc>

The first ‘--’ terminates the arguments to awk, so that it does not try to
interpret the ‘-a’ etc. as its own options.

Several of the sample programs presented in Chapter 16 [Practical awk
Programs], page 193, use getopt to process their arguments.

15.11 Reading the User Database
The /dev/user special file (see Section 6.7 [Special File Names in gawk],
page 67) provides access to the current user’s real and effective user and
group id numbers, and if available, the user’s supplementary group set. How-
ever, since these are numbers, they do not provide very useful information
to the average user. There needs to be some way to find the user infor-
mation associated with the user and group numbers. This section presents
a suite of functions for retrieving information from the user database. See
Section 15.12 [Reading the Group Database], page 186, for a similar suite
that retrieves information from the group database.

The POSIX standard does not define the file where user information
is kept. Instead, it provides the <pwd.h> header file and several C lan-
guage subroutines for obtaining user information. The primary function is
getpwent, for “get password entry.” The “password” comes from the origi-
nal user database file, /etc/passwd, which kept user information, along with
the encrypted passwords (hence the name).

While an awk program could simply read /etc/passwd directly (the for-
mat is well known), because of the way password files are handled on net-
worked systems, this file may not contain complete information about the
system’s set of users.

To be sure of being able to produce a readable, complete version of the
user database, it is necessary to write a small C program that calls getpwent.
getpwent is defined to return a pointer to a struct passwd. Each time it
is called, it returns the next entry in the database. When there are no more

182 Effective AWK Programming

entries, it returns NULL, the null pointer. When this happens, the C program
should call endpwent to close the database. Here is pwcat, a C program that
“cats” the password database.

/*
* pwcat.c
*
* Generate a printable version of the password database
*
* Arnold Robbins
* arnold@gnu.ai.mit.edu
* May 1993
* Public Domain
*/

#include <stdio.h>
#include <pwd.h>

int
main(argc, argv)
int argc;
char **argv;
{

struct passwd *p;

while ((p = getpwent()) != NULL)
printf("%s:%s:%d:%d:%s:%s:%s\n",

p->pw_name, p->pw_passwd, p->pw_uid,
p->pw_gid, p->pw_gecos, p->pw_dir, p->pw_shell);

endpwent();
exit(0);

}

If you don’t understand C, don’t worry about it. The output from
pwcat is the user database, in the traditional /etc/passwd format of colon-
separated fields. The fields are:

Login name
The user’s login name.

Encrypted password
The user’s encrypted password. This may not be available on
some systems.

User-ID The user’s numeric user-id number.

Group-ID The user’s numeric group-id number.

Full name The user’s full name, and perhaps other information associated
with the user.

Chapter 15: A Library of awk Functions 183

Home directory
The user’s login, or “home” directory (familiar to shell program-
mers as $HOME).

Login shell
The program that will be run when the user logs in. This is
usually a shell, such as Bash (the Gnu Bourne-Again shell).

Here are a few lines representative of pwcat’s output.

$ pwcat
a root:3Ov02d5VaUPB6:0:1:Operator:/:/bin/sh
a nobody:*:65534:65534::/:
a daemon:*:1:1::/:
a sys:*:2:2::/:/bin/csh
a bin:*:3:3::/bin:
a arnold:xyzzy:2076:10:Arnold Robbins:/home/arnold:/bin/sh
a miriam:yxaay:112:10:Miriam Robbins:/home/miriam:/bin/sh
a andy:abcca2:113:10:Andy Jacobs:/home/andy:/bin/sh
...

With that introduction, here is a group of functions for getting user infor-
mation. There are several functions here, corresponding to the C functions
of the same name.

passwd.awk --- access password file information
Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain
May 1993

BEGIN {
tailor this to suit your system
_pw_awklib = "/usr/local/libexec/awk/"

}

184 Effective AWK Programming

function _pw_init(oldfs, oldrs, olddol0, pwcat)
{

if (_pw_inited)
return

oldfs = FS
oldrs = RS
olddol0 = $0
FS = ":"
RS = "\n"
pwcat = _pw_awklib "pwcat"
while ((pwcat | getline) > 0) {

_pw_byname[$1] = $0
_pw_byuid[$3] = $0
_pw_bycount[++_pw_total] = $0

}
close(pwcat)
_pw_count = 0
_pw_inited = 1
FS = oldfs
RS = oldrs
$0 = olddol0

}

The BEGIN rule sets a private variable to the directory where pwcat is
stored. Since it is used to help out an awk library routine, we have chosen to
put it in /usr/local/libexec/awk. You might want it to be in a different
directory on your system.

The function _pw_init keeps three copies of the user information in three
associative arrays. The arrays are indexed by user name (_pw_byname), by
user-id number (_pw_byuid), and by order of occurrence (_pw_bycount).

The variable _pw_inited is used for efficiency; _pw_init only needs to
be called once.

Since this function uses getline to read information from pwcat, it first
saves the values of FS, RS, and $0. Doing so is necessary, since these functions
could be called from anywhere within a user’s program, and the user may
have his or her own values for FS and RS.

The main part of the function uses a loop to read database lines, split
the line into fields, and then store the line into each array as necessary.
When the loop is done, _pw_init cleans up by closing the pipeline, setting
_pw_inited to one, and restoring FS, RS, and $0. The use of _pw_count will
be explained below.

Chapter 15: A Library of awk Functions 185

function getpwnam(name)
{

_pw_init()
if (name in _pw_byname)

return _pw_byname[name]
return ""

}

The getpwnam function takes a user name as a string argument. If that
user is in the database, it returns the appropriate line. Otherwise it returns
the null string.

function getpwuid(uid)
{

_pw_init()
if (uid in _pw_byuid)

return _pw_byuid[uid]
return ""

}

Similarly, the getpwuid function takes a user-id number argument. If that
user number is in the database, it returns the appropriate line. Otherwise it
returns the null string.

function getpwent()
{

_pw_init()
if (_pw_count < _pw_total)

return _pw_bycount[++_pw_count]
return ""

}

The getpwent function simply steps through the database, one entry at
a time. It uses _pw_count to track its current position in the _pw_bycount
array.

function endpwent()
{

_pw_count = 0
}

The endpwent function resets _pw_count to zero, so that subsequent calls
to getpwent will start over again.

A conscious design decision in this suite is that each subroutine calls
_pw_init to initialize the database arrays. The overhead of running a sepa-
rate process to generate the user database, and the I/O to scan it, will only
be incurred if the user’s main program actually calls one of these functions.
If this library file is loaded along with a user’s program, but none of the
routines are ever called, then there is no extra run-time overhead. (The al-
ternative would be to move the body of _pw_init into a BEGIN rule, which

186 Effective AWK Programming

would always run pwcat. This simplifies the code but runs an extra process
that may never be needed.)

In turn, calling _pw_init is not too expensive, since the _pw_inited
variable keeps the program from reading the data more than once. If you
are worried about squeezing every last cycle out of your awk program, the
check of _pw_inited could be moved out of _pw_init and duplicated in
all the other functions. In practice, this is not necessary, since most awk
programs are I/O bound, and it would clutter up the code.

The id program in Section 16.1.3 [Printing Out User Information],
page 202, uses these functions.

15.12 Reading the Group Database
Much of the discussion presented in Section 15.11 [Reading the User Data-
base], page 181, applies to the group database as well. Although there has
traditionally been a well known file, /etc/group, in a well known format,
the POSIX standard only provides a set of C library routines (<grp.h> and
getgrent) for accessing the information. Even though this file may exist, it
likely does not have complete information. Therefore, as with the user data-
base, it is necessary to have a small C program that generates the group
database as its output.

Here is grcat, a C program that “cats” the group database.

/*
* grcat.c
*
* Generate a printable version of the group database
*
* Arnold Robbins, arnold@gnu.ai.mit.edu
* May 1993
* Public Domain
*/

#include <stdio.h>
#include <grp.h>

int
main(argc, argv)
int argc;
char **argv;
{

struct group *g;
int i;

while ((g = getgrent()) != NULL) {
printf("%s:%s:%d:", g->gr_name, g->gr_passwd,

Chapter 15: A Library of awk Functions 187

g->gr_gid);
for (i = 0; g->gr_mem[i] != NULL; i++) {

printf("%s", g->gr_mem[i]);
if (g->gr_mem[i+1] != NULL)

putchar(’,’);
}
putchar(’\n’);

}
endgrent();
exit(0);

}

Each line in the group database represent one group. The fields are
separated with colons, and represent the following information.

Group Name
The name of the group.

Group Password
The encrypted group password. In practice, this field is never
used. It is usually empty, or set to ‘*’.

Group ID Number
The numeric group-id number. This number should be unique
within the file.

Group Member List
A comma-separated list of user names. These users are members
of the group. Most Unix systems allow users to be members of
several groups simultaneously. If your system does, then reading
/dev/user will return those group-id numbers in $5 through
$NF. (Note that /dev/user is a gawk extension; see Section 6.7
[Special File Names in gawk], page 67.)

Here is what running grcat might produce:

$ grcat
a wheel:*:0:arnold
a nogroup:*:65534:
a daemon:*:1:
a kmem:*:2:
a staff:*:10:arnold,miriam,andy
a other:*:20:
...

Here are the functions for obtaining information from the group database.
There are several, modeled after the C library functions of the same names.

188 Effective AWK Programming

group.awk --- functions for dealing with the group file
Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain
May 1993

BEGIN \
{

Change to suit your system
_gr_awklib = "/usr/local/libexec/awk/"

}

function _gr_init(oldfs, oldrs, olddol0, grcat, n, a, i)
{

if (_gr_inited)
return

oldfs = FS
oldrs = RS
olddol0 = $0
FS = ":"
RS = "\n"

grcat = _gr_awklib "grcat"
while ((grcat | getline) > 0) {

if ($1 in _gr_byname)
_gr_byname[$1] = _gr_byname[$1] "," $4

else
_gr_byname[$1] = $0

if ($3 in _gr_bygid)
_gr_bygid[$3] = _gr_bygid[$3] "," $4

else
_gr_bygid[$3] = $0

n = split($4, a, "[\t]*,[\t]*")
for (i = 1; i <= n; i++)

if (a[i] in _gr_groupsbyuser)
_gr_groupsbyuser[a[i]] = \

_gr_groupsbyuser[a[i]] " " $1
else

_gr_groupsbyuser[a[i]] = $1

_gr_bycount[++_gr_count] = $0
}

Chapter 15: A Library of awk Functions 189

close(grcat)
_gr_count = 0
_gr_inited++
FS = oldfs
RS = oldrs
$0 = olddol0

}

The BEGIN rule sets a private variable to the directory where grcat is
stored. Since it is used to help out an awk library routine, we have chosen to
put it in /usr/local/libexec/awk. You might want it to be in a different
directory on your system.

These routines follow the same general outline as the user database
routines (see Section 15.11 [Reading the User Database], page 181). The
_gr_inited variable is used to ensure that the database is scanned no more
than once. The _gr_init function first saves FS, RS, and $0, and then sets
FS and RS to the correct values for scanning the group information.

The group information is stored is several associative arrays. The arrays
are indexed by group name (_gr_byname), by group-id number (_gr_bygid),
and by position in the database (_gr_bycount). There is an additional array
indexed by user name (_gr_groupsbyuser), that is a space separated list of
groups that each user belongs to.

Unlike the user database, it is possible to have multiple records in the
database for the same group. This is common when a group has a large
number of members. Such a pair of entries might look like:

tvpeople:*:101:johny,jay,arsenio
tvpeople:*:101:david,conan,tom,joan

For this reason, _gr_init looks to see if a group name or group-id number
has already been seen. If it has, then the user names are simply concatenated
onto the previous list of users. (There is actually a subtle problem with the
code presented above. Suppose that the first time there were no names. This
code adds the names with a leading comma. It also doesn’t check that there
is a $4.)

Finally, _gr_init closes the pipeline to grcat, restores FS, RS, and $0,
initializes _gr_count to zero (it is used later), and makes _gr_inited non-
zero.

function getgrnam(group)
{

_gr_init()
if (group in _gr_byname)

return _gr_byname[group]
return ""

}

The getgrnam function takes a group name as its argument, and if that
group exists, it is returned. Otherwise, getgrnam returns the null string.

190 Effective AWK Programming

function getgrgid(gid)
{

_gr_init()
if (gid in _gr_bygid)

return _gr_bygid[gid]
return ""

}

The getgrgid function is similar, it takes a numeric group-id, and looks
up the information associated with that group-id.

function getgruser(user)
{

_gr_init()
if (user in _gr_groupsbyuser)

return _gr_groupsbyuser[user]
return ""

}

The getgruser function does not have a C counterpart. It takes a user
name, and returns the list of groups that have the user as a member.

function getgrent()
{

_gr_init()
if (++gr_count in _gr_bycount)

return _gr_bycount[_gr_count]
return ""

}

The getgrent function steps through the database one entry at a time.
It uses _gr_count to track its position in the list.

function endgrent()
{

_gr_count = 0
}

endgrent resets _gr_count to zero so that getgrent can start over again.

As with the user database routines, each function calls _gr_init to ini-
tialize the arrays. Doing so only incurs the extra overhead of running grcat
if these functions are used (as opposed to moving the body of _gr_init into
a BEGIN rule).

Most of the work is in scanning the database and building the various
associative arrays. The functions that the user calls are themselves very
simple, relying on awk’s associative arrays to do work.

The id program in Section 16.1.3 [Printing Out User Information],
page 202, uses these functions.

Chapter 15: A Library of awk Functions 191

15.13 Naming Library Function Global Variables
Due to the way the awk language evolved, variables are either global (usable
by the entire program), or local (usable just by a specific function). There
is no intermediate state analogous to static variables in C.

Library functions often need to have global variables that they can use
to preserve state information between calls to the function. For example,
getopt’s variable _opti (see Section 15.10 [Processing Command Line Op-
tions], page 175), and the _tm_months array used by mktime (see Section 15.7
[Turning Dates Into Timestamps], page 167). Such variables are called pri-
vate, since the only functions that need to use them are the ones in the
library.

When writing a library function, you should try to choose names for
your private variables so that they will not conflict with any variables used
by either another library function or a user’s main program. For example,
a name like ‘i’ or ‘j’ is not a good choice, since user programs often use
variable names like these for their own purposes.

The example programs shown in this chapter all start the names of their
private variables with an underscore (‘_’). Users generally don’t use leading
underscores in their variable names, so this convention immediately decreases
the chances that the variable name will be accidentally shared with the user’s
program.

In addition, several of the library functions use a prefix that helps in-
dicate what function or set of functions uses the variables. For example,
_tm_months in mktime (see Section 15.7 [Turning Dates Into Timestamps],
page 167), and _pw_byname in the user data base routines (see Section 15.11
[Reading the User Database], page 181). This convention is recommended,
since it even further decreases the chance of inadvertent conflict among vari-
able names. Note that this convention can be used equally well both for
variable names and for private function names too.

While I could have re-written all the library routines to use this conven-
tion, I did not do so, in order to show how my own awk programming style
has evolved, and to provide some basis for this discussion.

As a final note on variable naming, if a function makes global variables
available for use by a main program, it is a good convention to start that
variable’s name with a capital letter. For example, getopt’s Opterr and
Optind variables (see Section 15.10 [Processing Command Line Options],
page 175). The leading capital letter indicates that it is global, while the
fact that the variable name is not all capital letters indicates that the variable
is not one of awk’s built-in variables, like FS.

It is also important that all variables in library functions that do not
need to save state are in fact declared local. If this is not done, the variable
could accidentally be used in the user’s program, leading to bugs that are
very difficult to track down.

function lib_func(x, y, l1, l2)

192 Effective AWK Programming

{
...
use variable some_var # some_var could be local
... # but is not by oversight

}

A different convention, common in the Tcl community, is to use a sin-
gle associative array to hold the values needed by the library function(s),
or “package.” This significantly decreases the number of actual global
names in use. For example, the functions described in Section 15.11 [Read-
ing the User Database], page 181, might have used PW_data["inited"],
PW_data["total"], PW_data["count"] and PW_data["awklib"], instead
of _pw_inited, _pw_awklib, _pw_total, and _pw_count.

The conventions presented in this section are exactly that, conventions.
You are not required to write your programs this way, we merely recommend
that you do so.

Chapter 16: Practical awk Programs 193

16 Practical awk Programs

This chapter presents a potpourri of awk programs for your reading en-
joyment. There are two sections. The first presents awk versions of several
common POSIX utilities. The second is a grab-bag of interesting programs.

Many of these programs use the library functions presented in Chapter 15
[A Library of awk Functions], page 159.

16.1 Re-inventing Wheels for Fun and Profit
This section presents a number of POSIX utilities that are implemented
in awk. Re-inventing these programs in awk is often enjoyable, since the
algorithms can be very clearly expressed, and usually the code is very concise
and simple. This is true because awk does so much for you.

It should be noted that these programs are not necessarily intended to
replace the installed versions on your system. Instead, their purpose is to
illustrate awk language programming for “real world” tasks.

The programs are presented in alphabetical order.

16.1.1 Cutting Out Fields and Columns

The cut utility selects, or “cuts,” either characters or fields from its standard
input and sends them to its standard output. cut can cut out either a list
of characters, or a list of fields. By default, fields are separated by tabs, but
you may supply a command line option to change the field delimiter, i.e. the
field separator character. cut’s definition of fields is less general than awk’s.

A common use of cutmight be to pull out just the login name of logged-on
users from the output of who. For example, the following pipeline generates
a sorted, unique list of the logged on users:

who | cut -c1-8 | sort | uniq

The options for cut are:

-c list Use list as the list of characters to cut out. Items within the list
may be separated by commas, and ranges of characters can be
separated with dashes. The list ‘1-8,15,22-35’ specifies char-
acters one through eight, 15, and 22 through 35.

-f list Use list as the list of fields to cut out.

-d delim Use delim as the field separator character instead of the tab
character.

-s Suppress printing of lines that do not contain the field delimiter.

The awk implementation of cut uses the getopt library function (see
Section 15.10 [Processing Command Line Options], page 175), and the join
library function (see Section 15.6 [Merging an Array Into a String], page 166).

194 Effective AWK Programming

The program begins with a comment describing the options and a usage
function which prints out a usage message and exits. usage is called if invalid
arguments are supplied.

cut.awk --- implement cut in awk
Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain
May 1993

Options:
-f list Cut fields
-d c Field delimiter character
-c list Cut characters
#
-s Suppress lines without the delimiter character

function usage(e1, e2)
{

e1 = "usage: cut [-f list] [-d c] [-s] [files...]"
e2 = "usage: cut [-c list] [files...]"
print e1 > "/dev/stderr"
print e2 > "/dev/stderr"
exit 1

}

The variables e1 and e2 are used so that the function fits nicely on the page.

Next comes a BEGIN rule that parses the command line options. It sets
FS to a single tab character, since that is cut’s default field separator. The
output field separator is also set to be the same as the input field separator.
Then getopt is used to step through the command line options. One or
the other of the variables by_fields or by_chars is set to true, to indicate
that processing should be done by fields or by characters respectively. When
cutting by characters, the output field separator is set to the null string.

BEGIN \
{

FS = "\t" # default
OFS = FS
while ((c = getopt(ARGC, ARGV, "sf:c:d:")) != -1) {

if (c == "f") {
by_fields = 1
fieldlist = Optarg

Chapter 16: Practical awk Programs 195

} else if (c == "c") {
by_chars = 1
fieldlist = Optarg
OFS = ""

} else if (c == "d") {
if (length(Optarg) > 1) {

printf("Using first character of %s" \
" for delimiter\n", Optarg) > "/dev/stderr"
Optarg = substr(Optarg, 1, 1)

}
FS = Optarg
OFS = FS
if (FS == " ") # defeat awk semantics

FS = "[]"
} else if (c == "s")

suppress++
else

usage()
}

for (i = 1; i < Optind; i++)
ARGV[i] = ""

Special care is taken when the field delimiter is a space. Using " " (a
single space) for the value of FS is incorrect—awk would separate fields with
runs of spaces, tabs and/or newlines, and we want them to be separated
with individual spaces. Also, note that after getopt is through, we have to
clear out all the elements of ARGV from one to Optind, so that awk will not
try to process the command line options as file names.

After dealing with the command line options, the program verifies that
the options make sense. Only one or the other of ‘-c’ and ‘-f’ should be used,
and both require a field list. Then either set_fieldlist or set_charlist
is called to pull apart the list of fields or characters.

if (by_fields && by_chars)
usage()

if (by_fields == 0 && by_chars == 0)
by_fields = 1 # default

if (fieldlist == "") {
print "cut: needs list for -c or -f" > "/dev/stderr"
exit 1

}

196 Effective AWK Programming

if (by_fields)
set_fieldlist()

else
set_charlist()

}

Here is set_fieldlist. It first splits the field list apart at the commas,
into an array. Then, for each element of the array, it looks to see if it is
actually a range, and if so splits it apart. The range is verified to make
sure the first number is smaller than the second. Each number in the list is
added to the flist array, which simply lists the fields that will be printed.
Normal field splitting is used. The program lets awk handle the job of doing
the field splitting.

function set_fieldlist(n, m, i, j, k, f, g)
{

n = split(fieldlist, f, ",")
j = 1 # index in flist
for (i = 1; i <= n; i++) {

if (index(f[i], "-") != 0) { # a range
m = split(f[i], g, "-")
if (m != 2 || g[1] >= g[2]) {

printf("bad field list: %s\n",
f[i]) > "/dev/stderr"

exit 1
}
for (k = g[1]; k <= g[2]; k++)

flist[j++] = k
} else

flist[j++] = f[i]
}
nfields = j - 1

}

The set_charlist function is more complicated than set_fieldlist.
The idea here is to use gawk’s FIELDWIDTHS variable (see Section 5.6 [Reading
Fixed-width Data], page 46), which describes constant width input. When
using a character list, that is exactly what we have.

Setting up FIELDWIDTHS is more complicated than simply listing the fields
that need to be printed. We have to keep track of the fields to be printed,
and also the intervening characters that have to be skipped. For example,
suppose you wanted characters one through eight, 15, and 22 through 35.
You would use ‘-c 1-8,15,22-35’. The necessary value for FIELDWIDTHS
would be "8 6 1 6 14". This gives us five fields, and what should be printed
are $1, $3, and $5. The intermediate fields are “filler,” stuff in between the
desired data.

flist lists the fields to be printed, and t tracks the complete field list,
including filler fields.

Chapter 16: Practical awk Programs 197

function set_charlist(field, i, j, f, g, t,
filler, last, len)

{
field = 1 # count total fields
n = split(fieldlist, f, ",")
j = 1 # index in flist
for (i = 1; i <= n; i++) {

if (index(f[i], "-") != 0) { # range
m = split(f[i], g, "-")
if (m != 2 || g[1] >= g[2]) {

printf("bad character list: %s\n",
f[i]) > "/dev/stderr"

exit 1
}
len = g[2] - g[1] + 1
if (g[1] > 1) # compute length of filler

filler = g[1] - last - 1
else

filler = 0
if (filler)

t[field++] = filler
t[field++] = len # length of field
last = g[2]
flist[j++] = field - 1

} else {
if (f[i] > 1)

filler = f[i] - last - 1
else

filler = 0
if (filler)

t[field++] = filler
t[field++] = 1
last = f[i]
flist[j++] = field - 1

}
}
FIELDWIDTHS = join(t, 1, field - 1)
nfields = j - 1

}

Here is the rule that actually processes the data. If the ‘-s’ option was
given, then suppress will be true. The first if statement makes sure that
the input record does have the field separator. If cut is processing fields,
suppress is true, and the field separator character is not in the record, then
the record is skipped.

198 Effective AWK Programming

If the record is valid, then at this point, gawk has split the data into fields,
either using the character in FS or using fixed-length fields and FIELDWIDTHS.
The loop goes through the list of fields that should be printed. If the cor-
responding field has data in it, it is printed. If the next field also has data,
then the separator character is written out in between the fields.

{
if (by_fields && suppress && $0 !~ FS)

next

for (i = 1; i <= nfields; i++) {
if ($flist[i] != "") {

printf "%s", $flist[i]
if (i < nfields && $flist[i+1] != "")

printf "%s", OFS
}

}
print ""

}

This version of cut relies on gawk’s FIELDWIDTHS variable to do the
character-based cutting. While it would be possible in other awk imple-
mentations to use substr (see Section 12.3 [Built-in Functions for String
Manipulation], page 127), it would also be extremely painful to do so. The
FIELDWIDTHS variable supplies an elegant solution to the problem of picking
the input line apart by characters.

16.1.2 Searching for Regular Expressions in Files

The egrep utility searches files for patterns. It uses regular expressions that
are almost identical to those available in awk (see Section 7.1.2 [Regular
Expression Constants], page 71). It is used this way:

egrep [options] ’pattern’ files ...

The pattern is a regexp. In typical usage, the regexp is quoted to prevent
the shell from expanding any of the special characters as file name wildcards.
Normally, egrep prints the lines that matched. If multiple file names are
provided on the command line, each output line is preceded by the name of
the file and a colon.

Chapter 16: Practical awk Programs 199

The options are:

-c Print out a count of the lines that matched the pattern, instead
of the lines themselves.

-s Be silent. No output is produced, and the exit value indicates
whether or not the pattern was matched.

-v Invert the sense of the test. egrep prints the lines that do not
match the pattern, and exits successfully if the pattern was not
matched.

-i Ignore case distinctions in both the pattern and the input data.

-l Only print the names of the files that matched, not the lines
that matched.

-e pattern
Use pattern as the regexp to match. The purpose of the ‘-e’
option is to allow patterns that start with a ‘-’.

This version uses the getopt library function (see Section 15.10 [Pro-
cessing Command Line Options], page 175), and the file transition library
program (see Section 15.9 [Noting Data File Boundaries], page 174).

The program begins with a descriptive comment, and then a BEGIN rule
that processes the command line arguments with getopt. The ‘-i’ (ignore
case) option is particularly easy with gawk; we just use the IGNORECASE built
in variable (see Chapter 10 [Built-in Variables], page 107).

egrep.awk --- simulate egrep in awk
Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain
May 1993

Options:
-c count of lines
-s silent - use exit value
-v invert test, success if no match
-i ignore case
-l print filenames only
-e argument is pattern

BEGIN {
while ((c = getopt(ARGC, ARGV, "ce:svil")) != -1) {

if (c == "c")
count_only++

else if (c == "s")
no_print++

else if (c == "v")
invert++

else if (c == "i")

200 Effective AWK Programming

IGNORECASE = 1
else if (c == "l")

filenames_only++
else if (c == "e")

pattern = Optarg
else

usage()
}

Next comes the code that handles the egrep specific behavior. If no
pattern was supplied with ‘-e’, the first non-option on the command line is
used. The awk command line arguments up to ARGV[Optind] are cleared,
so that awk won’t try to process them as files. If no files were specified, the
standard input is used, and if multiple files were specified, we make sure to
note this so that the file names can precede the matched lines in the output.

The last two lines are commented out, since they are not needed in gawk.
They should be uncommented if you have to use another version of awk.

if (pattern == "")
pattern = ARGV[Optind++]

for (i = 1; i < Optind; i++)
ARGV[i] = ""

if (Optind >= ARGC) {
ARGV[1] = "-"
ARGC = 2

} else if (ARGC - Optind > 1)
do_filenames++

if (IGNORECASE)
pattern = tolower(pattern)
}

The next set of lines should be uncommented if you are not using gawk.
This rule translates all the characters in the input line into lower-case if the
‘-i’ option was specified. The rule is commented out since it is not necessary
with gawk.

#{
if (IGNORECASE)
$0 = tolower($0)
#}

The beginfile function is called by the rule in ftrans.awk when each
new file is processed. In this case, it is very simple; all it does is initialize
a variable fcount to zero. fcount tracks how many lines in the current file
matched the pattern.

Chapter 16: Practical awk Programs 201

function beginfile(junk)
{

fcount = 0
}

The endfile function is called after each file has been processed. It is
used only when the user wants a count of the number of lines that matched.
no_print will be true only if the exit status is desired. count_only will be
true if line counts are desired. egrep will therefore only print line counts
if printing and counting are enabled. The output format must be adjusted
depending upon the number of files to be processed. Finally, fcount is added
to total, so that we know how many lines altogether matched the pattern.

function endfile(file)
{

if (! no_print && count_only)
if (do_filenames)

print file ":" fcount
else

print fcount

total += fcount
}

This rule does most of the work of matching lines. The variable matches
will be true if the line matched the pattern. If the user wants lines that
did not match, the sense of the matches is inverted using the ‘!’ operator.
fcount is incremented with the value of matches, which will be either one
or zero, depending upon a successful or unsuccessful match. If the line did
not match, the next statement just moves on to the next record.

There are several optimizations for performance in the following few lines
of code. If the user only wants exit status (no_print is true), and we don’t
have to count lines, then it is enough to know that one line in this file
matched, and we can skip on to the next file with nextfile. Along similar
lines, if we are only printing file names, and we don’t need to count lines, we
can print the file name, and then skip to the next file with nextfile.

Finally, each line is printed, with a leading filename and colon if necessary.

{
matches = ($0 ~ pattern)
if (invert)

matches = ! matches

fcount += matches # 1 or 0

if (! matches)
next

if (no_print && ! count_only)

202 Effective AWK Programming

nextfile

if (filenames_only && ! count_only) {
print FILENAME
nextfile

}

if (do_filenames && ! count_only)
print FILENAME ":" $0

else if (! count_only)
print

}

The END rule takes care of producing the correct exit status. If there were
no matches, the exit status is one, otherwise it is zero.

END \
{

if (total == 0)
exit 1

exit 0
}

The usage function prints a usage message in case of invalid options and
then exits.

function usage(e)
{

e = "Usage: egrep [-csvil] [-e pat] [files ...]"
print e > "/dev/stderr"
exit 1

}

The variable e is used so that the function fits nicely on the printed page.

Just a note on programming style. You may have noticed that the END
rule uses backslash continuation, with the open brace on a line by itself. This
is so that it more closely resembles the way functions are written. Many of
the examples in this chapter use this style. You can decide for yourself if
you like writing your BEGIN and END rules this way, or not.

16.1.3 Printing Out User Information

The id utility lists a user’s real and effective user-id numbers, real and
effective group-id numbers, and the user’s group set, if any. id will only
print the effective user-id and group-id if they are different from the real
ones. If possible, id will also supply the corresponding user and group
names. The output might look like this:

$ id
a uid=2076(arnold) gid=10(staff) groups=10(staff),4(tty)

Chapter 16: Practical awk Programs 203

This information is exactly what is provided by gawk’s /dev/user special
file (see Section 6.7 [Special File Names in gawk], page 67). However, the id
utility provides a more palatable output than just a string of numbers.

Here is a simple version of id written in awk. It uses the user database
library functions (see Section 15.11 [Reading the User Database], page 181),
and the group database library functions (see Section 15.12 [Reading the
Group Database], page 186).

The program is fairly straightforward. All the work is done in the BEGIN
rule. The user and group id numbers are obtained from /dev/user. If there
is no support for /dev/user, the program gives up.

The code is repetitive. The entry in the user database for the real user-id
number is split into parts at the ‘:’. The name is the first field. Similar code
is used for the effective user-id number, and the group numbers.

id.awk --- implement id in awk
Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain
May 1993

output is:
uid=12(foo) euid=34(bar) gid=3(baz) \
egid=5(blat) groups=9(nine),2(two),1(one)

BEGIN \
{

if ((getline < "/dev/user") < 0) {
err = "id: no /dev/user support - cannot run"
print err > "/dev/stderr"
exit 1

}
close("/dev/user")

uid = $1
euid = $2
gid = $3
egid = $4

printf("uid=%d", uid)
pw = getpwuid(uid)
if (pw != "") {

split(pw, a, ":")
printf("(%s)", a[1])

}

if (euid != uid) {
printf(" euid=%d", euid)
pw = getpwuid(euid)

204 Effective AWK Programming

if (pw != "") {
split(pw, a, ":")
printf("(%s)", a[1])

}
}

printf(" gid=%d", gid)
pw = getgrgid(gid)
if (pw != "") {

split(pw, a, ":")
printf("(%s)", a[1])

}

if (egid != gid) {
printf(" egid=%d", egid)
pw = getgrgid(egid)
if (pw != "") {

split(pw, a, ":")
printf("(%s)", a[1])

}
}

if (NF > 4) {
printf(" groups=");
for (i = 5; i <= NF; i++) {

printf("%d", $i)
pw = getgrgid($i)
if (pw != "") {

split(pw, a, ":")
printf("(%s)", a[1])

}
if (i < NF)

printf(",")
}

}
print ""

}

16.1.4 Splitting a Large File Into Pieces

The split program splits large text files into smaller pieces. By default, the
output files are named xaa, xab, and so on. Each file has 1000 lines in it,
with the likely exception of the last file. To change the number of lines in
each file, you supply a number on the command line preceded with a minus,
e.g., ‘-500’ for files with 500 lines in them instead of 1000. To change the

Chapter 16: Practical awk Programs 205

name of the output files to something like myfileaa, myfileab, and so on,
you supply an additional argument that specifies the filename.

Here is a version of split in awk. It uses the ord and chr functions
presented in Section 15.5 [Translating Between Characters and Numbers],
page 164.

The program first sets its defaults, and then tests to make sure there are
not too many arguments. It then looks at each argument in turn. The first
argument could be a minus followed by a number. If it is, this happens to
look like a negative number, so it is made positive, and that is the count of
lines. The data file name is skipped over, and the final argument is used as
the prefix for the output file names.

split.awk --- do split in awk
Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain
May 1993

usage: split [-num] [file] [outname]

BEGIN {
outfile = "x" # default
count = 1000
if (ARGC > 4)

usage()

i = 1
if (ARGV[i] ~ /^-[0-9]+$/) {

count = -ARGV[i]
ARGV[i] = ""
i++

}
test argv in case reading from stdin instead of file
if (i in ARGV)

i++ # skip data file name
if (i in ARGV) {

outfile = ARGV[i]
ARGV[i] = ""

}

s1 = s2 = "a"
out = (outfile s1 s2)

}

The next rule does most of the work. tcount (temporary count) tracks
how many lines have been printed to the output file so far. If it is greater
than count, it is time to close the current file and start a new one. s1 and
s2 track the current suffixes for the file name. If they are both ‘z’, the file

206 Effective AWK Programming

is just too big. Otherwise, s1 moves to the next letter in the alphabet and
s2 starts over again at ‘a’.

{
if (++tcount > count) {

close(out)
if (s2 == "z") {

if (s1 == "z") {
printf("split: %s is too large to split\n", \

FILENAME) > "/dev/stderr"
exit 1

}
s1 = chr(ord(s1) + 1)
s2 = "a"

} else
s2 = chr(ord(s2) + 1)

out = (outfile s1 s2)
tcount = 1

}
print > out

}

The usage function simply prints an error message and exits.

function usage(e)
{

e = "usage: split [-num] [file] [outname]"
print e > "/dev/stderr"
exit 1

}

The variable e is used so that the function fits nicely on the page.

This program is a bit sloppy; it relies on awk to close the last file for it
automatically, instead of doing it in an END rule.

16.1.5 Duplicating Output Into Multiple Files

The tee program is known as a “pipe fitting.” tee copies its standard
input to its standard output, and also duplicates it to the files named on the
command line. Its usage is:

tee [-a] file ...

The ‘-a’ option tells tee to append to the named files, instead of trun-
cating them and starting over.

The BEGIN rule first makes a copy of all the command line arguments,
into an array named copy. ARGV[0] is not copied, since it is not needed. tee
cannot use ARGV directly, since awk will attempt to process each file named
in ARGV as input data.

If the first argument is ‘-a’, then the flag variable append is set to true,
and both ARGV[1] and copy[1] are deleted. If ARGC is less than two, then no

Chapter 16: Practical awk Programs 207

file names were supplied, and tee prints a usage message and exits. Finally,
awk is forced to read the standard input by setting ARGV[1] to "-", and
ARGC to two.

tee.awk --- tee in awk
Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain
May 1993
Revised December 1995

BEGIN \
{

for (i = 1; i < ARGC; i++)
copy[i] = ARGV[i]

if (ARGV[1] == "-a") {
append = 1
delete ARGV[1]
delete copy[1]
ARGC--

}
if (ARGC < 2) {

print "usage: tee [-a] file ..." > "/dev/stderr"
exit 1

}
ARGV[1] = "-"
ARGC = 2

}

The single rule does all the work. Since there is no pattern, it is executed
for each line of input. The body of the rule simply prints the line into each
file on the command line, and then to the standard output.

{
moving the if outside the loop makes it run faster
if (append)

for (i in copy)
print >> copy[i]

else
for (i in copy)

print > copy[i]
print

}

It would have been possible to code the loop this way:

for (i in copy)
if (append)

print >> copy[i]
else

print > copy[i]

208 Effective AWK Programming

This is more concise, but it is also less efficient. The ‘if’ is tested for each
record and for each output file. By duplicating the loop body, the ‘if’ is
only tested once for each input record. If there are N input records and
M input files, the first method only executes N ‘if’ statements, while the
second would execute N*M ‘if’ statements.

Finally, the END rule cleans up, by closing all the output files.

END \
{

for (i in copy)
close(copy[i])

}

16.1.6 Printing Non-duplicated Lines of Text

The uniq utility reads sorted lines of data on its standard input, and (by de-
fault) removes duplicate lines. In other words, only unique lines are printed,
hence the name. uniq has a number of options. The usage is:

uniq [-udc [-n]] [+n] [input file [output file]]

The option meanings are:

-d Only print repeated lines.

-u Only print non-repeated lines.

-c Count lines. This option overrides ‘-d’ and ‘-u’. Both repeated
and non-repeated lines are counted.

-n Skip n fields before comparing lines. The definition of fields is
similar to awk’s default: non-whitespace characters separated by
runs of spaces and/or tabs.

+n Skip n characters before comparing lines. Any fields specified
with ‘-n’ are skipped first.

input file
Data is read from the input file named on the command line,
instead of from the standard input.

output file
The generated output is sent to the named output file, instead
of to the standard output.

Normally uniq behaves as if both the ‘-d’ and ‘-u’ options had been
provided.

Here is an awk implementation of uniq. It uses the getopt library func-
tion (see Section 15.10 [Processing Command Line Options], page 175), and
the join library function (see Section 15.6 [Merging an Array Into a String],
page 166).

The program begins with a usage function and then a brief outline of
the options and their meanings in a comment.

Chapter 16: Practical awk Programs 209

The BEGIN rule deals with the command line arguments and options.
It uses a trick to get getopt to handle options of the form ‘-25’, treating
such an option as the option letter ‘2’ with an argument of ‘5’. If indeed
two or more digits were supplied (Optarg looks like a number), Optarg is
concatenated with the option digit, and then result is added to zero to make
it into a number. If there is only one digit in the option, then Optarg is
not needed, and Optind must be decremented so that getopt will process it
next time. This code is admittedly a bit tricky.

If no options were supplied, then the default is taken, to print both re-
peated and non-repeated lines. The output file, if provided, is assigned to
outputfile. Earlier, outputfile was initialized to the standard output,
/dev/stdout.

uniq.awk --- do uniq in awk
Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain
May 1993

function usage(e)
{

e = "Usage: uniq [-udc [-n]] [+n] [in [out]]"
print e > "/dev/stderr"
exit 1

}

-c count lines. overrides -d and -u
-d only repeated lines
-u only non-repeated lines
-n skip n fields
+n skip n characters, skip fields first

BEGIN \
{

count = 1
outputfile = "/dev/stdout"
opts = "udc0:1:2:3:4:5:6:7:8:9:"
while ((c = getopt(ARGC, ARGV, opts)) != -1) {

if (c == "u")
non_repeated_only++

else if (c == "d")
repeated_only++

else if (c == "c")
do_count++

else if (index("0123456789", c) != 0) {
getopt requires args to options
this messes us up for things like -5
if (Optarg ~ /^[0-9]+$/)

210 Effective AWK Programming

fcount = (c Optarg) + 0
else {

fcount = c + 0
Optind--

}
} else

usage()
}

if (ARGV[Optind] ~ /^\+[0-9]+$/) {
charcount = substr(ARGV[Optind], 2) + 0
Optind++

}

for (i = 1; i < Optind; i++)
ARGV[i] = ""

if (repeated_only == 0 && non_repeated_only == 0)
repeated_only = non_repeated_only = 1

if (ARGC - Optind == 2) {
outputfile = ARGV[ARGC - 1]
ARGV[ARGC - 1] = ""

}
}

The following function, are_equal, compares the current line, $0, to the
previous line, last. It handles skipping fields and characters.

If no field count and no character count were specified, are_equal simply
returns one or zero depending upon the result of a simple string comparison
of last and $0. Otherwise, things get more complicated.

If fields have to be skipped, each line is broken into an array using split
(see Section 12.3 [Built-in Functions for String Manipulation], page 127), and
then the desired fields are joined back into a line using join. The joined
lines are stored in clast and cline. If no fields are skipped, clast and
cline are set to last and $0 respectively.

Finally, if characters are skipped, substr is used to strip off the lead-
ing charcount characters in clast and cline. The two strings are then
compared, and are_equal returns the result.

function are_equal(n, m, clast, cline, alast, aline)
{

if (fcount == 0 && charcount == 0)
return (last == $0)

if (fcount > 0) {
n = split(last, alast)

Chapter 16: Practical awk Programs 211

m = split($0, aline)
clast = join(alast, fcount+1, n)
cline = join(aline, fcount+1, m)

} else {
clast = last
cline = $0

}
if (charcount) {

clast = substr(clast, charcount + 1)
cline = substr(cline, charcount + 1)

}

return (clast == cline)
}

The following two rules are the body of the program. The first one is
executed only for the very first line of data. It sets last equal to $0, so that
subsequent lines of text have something to be compared to.

The second rule does the work. The variable equal will be one or zero
depending upon the results of are_equal’s comparison. If uniq is counting
repeated lines, then the count variable is incremented if the lines are equal.
Otherwise the line is printed and count is reset, since the two lines are not
equal.

If uniq is not counting, count is incremented if the lines are equal. Oth-
erwise, if uniq is counting repeated lines, and more than one line has been
seen, or if uniq is counting non-repeated lines, and only one line has been
seen, then the line is printed, and count is reset.

Finally, similar logic is used in the END rule to print the final line of input
data.

NR == 1 {
last = $0
next

}

{
equal = are_equal()

if (do_count) { # overrides -d and -u
if (equal)

count++
else {

printf("%4d %s\n", count, last) > outputfile
last = $0
count = 1 # reset

}
next

212 Effective AWK Programming

}

if (equal)
count++

else {
if ((repeated_only && count > 1) ||

(non_repeated_only && count == 1))
print last > outputfile

last = $0
count = 1

}
}

END {
if (do_count)

printf("%4d %s\n", count, last) > outputfile
else if ((repeated_only && count > 1) ||

(non_repeated_only && count == 1))
print last > outputfile

}

16.1.7 Counting Things

The wc (word count) utility counts lines, words, and characters in one or
more input files. Its usage is:

wc [-lwc] [files ...]

If no files are specified on the command line, wc reads its standard input.
If there are multiple files, it will also print total counts for all the files. The
options and their meanings are:

-l Only count lines.

-w Only count words. A “word” is a contiguous sequence of non-
whitespace characters, separated by spaces and/or tabs. Hap-
pily, this is the normal way awk separates fields in its input data.

-c Only count characters.

Implementing wc in awk is particularly elegant, since awk does a lot of the
work for us; it splits lines into words (i.e. fields) and counts them, it counts
lines (i.e. records) for us, and it can easily tell us how long a line is.

This version uses the getopt library function (see Section 15.10 [Process-
ing Command Line Options], page 175), and the file transition functions (see
Section 15.9 [Noting Data File Boundaries], page 174).

This version has one major difference from traditional versions of wc. Our
version always prints the counts in the order lines, words, and characters.
Traditional versions note the order of the ‘-l’, ‘-w’, and ‘-c’ options on the
command line, and print the counts in that order.

Chapter 16: Practical awk Programs 213

The BEGIN rule does the argument processing. The variable print_total
will be true if more than one file was named on the command line.

wc.awk --- count lines, words, characters
Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain
May 1993

Options:
-l only count lines
-w only count words
-c only count characters
#
Default is to count lines, words, characters

BEGIN {
let getopt print a message about
invalid options. we ignore them
while ((c = getopt(ARGC, ARGV, "lwc")) != -1) {

if (c == "l")
do_lines = 1

else if (c == "w")
do_words = 1

else if (c == "c")
do_chars = 1

}
for (i = 1; i < Optind; i++)

ARGV[i] = ""

if no options, do all
if (! do_lines && ! do_words && ! do_chars)

do_lines = do_words = do_chars = 1

print_total = (ARGC - i > 2)
}

The beginfile function is simple; it just resets the counts of lines, words,
and characters to zero, and saves the current file name in fname.

The endfile function adds the current file’s numbers to the running
totals of lines, words, and characters. It then prints out those numbers for
the file that was just read. It relies on beginfile to reset the numbers for
the following data file.

function beginfile(file)
{

chars = lines = words = 0
fname = FILENAME

}

214 Effective AWK Programming

function endfile(file)
{

tchars += chars
tlines += lines
twords += words
if (do_lines)

printf "\t%d", lines
if (do_words)

printf "\t%d", words
if (do_chars)

printf "\t%d", chars
printf "\t%s\n", fname

}

There is one rule that is executed for each line. It adds the length of the
record to chars. It has to add one, since the newline character separating
records (the value of RS) is not part of the record itself. lines is incremented
for each line read, and words is incremented by the value of NF, the number
of “words” on this line.1

Finally, the END rule simply prints the totals for all the files.

do per line
{

chars += length($0) + 1 # get newline
lines++
words += NF

}

END {
if (print_total) {

if (do_lines)
printf "\t%d", tlines

if (do_words)
printf "\t%d", twords

if (do_chars)
printf "\t%d", tchars

print "\ttotal"
}

}

16.2 A Grab Bag of awk Programs
This section is a large “grab bag” of miscellaneous programs. We hope you
find them both interesting and enjoyable.

1 Examine the code in Section 15.9 [Noting Data File Boundaries], page 174. Why must
wc use a separate lines variable, instead of using the value of FNR in endfile?

Chapter 16: Practical awk Programs 215

16.2.1 Finding Duplicated Words in a Document

A common error when writing large amounts of prose is to accidentally
duplicate words. Often you will see this in text as something like “the
the program does the following” When the text is on-line, often the
duplicated words occur at the end of one line and the beginning of another,
making them very difficult to spot.

This program, dupword.awk, scans through a file one line at a time, and
looks for adjacent occurrences of the same word. It also saves the last word
on a line (in the variable prev) for comparison with the first word on the
next line.

The first two statements make sure that the line is all lower-case, so that,
for example, “The” and “the” compare equal to each other. The second
statement removes all non-alphanumeric and non-whitespace characters from
the line, so that punctuation does not affect the comparison either. This
sometimes leads to reports of duplicated words that really are different, but
this is unusual.

dupword --- find duplicate words in text
Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain
December 1991

{
$0 = tolower($0)
gsub(/[^A-Za-z0-9 \t]/, "");
if ($1 == prev)

printf("%s:%d: duplicate %s\n",
FILENAME, FNR, $1)

for (i = 2; i <= NF; i++)
if ($i == $(i-1))

printf("%s:%d: duplicate %s\n",
FILENAME, FNR, $i)

prev = $NF
}

16.2.2 An Alarm Clock Program

The following program is a simple “alarm clock” program. You give it a time
of day, and an optional message. At the given time, it prints the message
on the standard output. In addition, you can give it the number of times to
repeat the message, and also a delay between repetitions.

This program uses the gettimeofday function from Section 15.8 [Man-
aging the Time of Day], page 172.

All the work is done in the BEGIN rule. The first part is argument checking
and setting of defaults; the delay, the count, and the message to print. If the
user supplied a message, but it does not contain the ASCII BEL character
(known as the “alert” character, ‘\a’), then it is added to the message. (On

216 Effective AWK Programming

many systems, printing the ASCII BEL generates some sort of audible alert.
Thus, when the alarm goes off, the system calls attention to itself, in case
the user is not looking at their computer or terminal.)

alarm --- set an alarm
Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain
May 1993

usage: alarm time ["message" [count [delay]]]

BEGIN \
{

Initial argument sanity checking
usage1 = "usage: alarm time [’message’ [count [delay]]]"
usage2 = sprintf("\t(%s) time ::= hh:mm", ARGV[1])

if (ARGC < 2) {
print usage > "/dev/stderr"
exit 1

} else if (ARGC == 5) {
delay = ARGV[4] + 0
count = ARGV[3] + 0
message = ARGV[2]

} else if (ARGC == 4) {
count = ARGV[3] + 0
message = ARGV[2]

} else if (ARGC == 3) {
message = ARGV[2]

} else if (ARGV[1] !~ /[0-9]?[0-9]:[0-9][0-9]/) {
print usage1 > "/dev/stderr"
print usage2 > "/dev/stderr"
exit 1

}

set defaults for once we reach the desired time
if (delay == 0)

delay = 180 # 3 minutes
if (count == 0)

count = 5
if (message == "")

message = sprintf("\aIt is now %s!\a", ARGV[1])
else if (index(message, "\a") == 0)

message = "\a" message "\a"

The next section of code turns the alarm time into hours and minutes,
and converts it if necessary to a 24-hour clock. Then it turns that time into
a count of the seconds since midnight. Next it turns the current time into

Chapter 16: Practical awk Programs 217

a count of seconds since midnight. The difference between the two is how
long to wait before setting off the alarm.

split up dest time
split(ARGV[1], atime, ":")
hour = atime[1] + 0 # force numeric
minute = atime[2] + 0 # force numeric

get current broken down time
gettimeofday(now)

if time given is 12-hour hours and it’s after that
hour, e.g., ‘alarm 5:30’ at 9 a.m. means 5:30 p.m.,
then add 12 to real hour
if (hour < 12 && now["hour"] > hour)

hour += 12

set target time in seconds since midnight
target = (hour * 60 * 60) + (minute * 60)

get current time in seconds since midnight
current = (now["hour"] * 60 * 60) + \

(now["minute"] * 60) + now["second"]

how long to sleep for
naptime = target - current
if (naptime <= 0) {

print "time is in the past!" > "/dev/stderr"
exit 1

}

Finally, the program uses the system function (see Section 12.4 [Built-in
Functions for Input/Output], page 135) to call the sleep utility. The sleep
utility simply pauses for the given number of seconds. If the exit status is not
zero, the program assumes that sleep was interrupted, and exits. If sleep
exited with an OK status (zero), then the program prints the message in a
loop, again using sleep to delay for however many seconds are necessary.

zzzzzz..... go away if interrupted
if (system(sprintf("sleep %d", naptime)) != 0)

exit 1

time to notify!
command = sprintf("sleep %d", delay)
for (i = 1; i <= count; i++) {

print message
if sleep command interrupted, go away
if (system(command) != 0)

218 Effective AWK Programming

break
}

exit 0
}

16.2.3 Transliterating Characters

The system tr utility transliterates characters. For example, it is often used
to map upper-case letters into lower-case, for further processing.

generate data | tr ’[A-Z]’ ’[a-z]’ | process data ...

You give tr two lists of characters enclosed in square brackets. Usually,
the lists are quoted to keep the shell from attempting to do a filename
expansion.2 When processing the input, the first character in the first list
is replaced with the first character in the second list, the second character
in the first list is replaced with the second character in the second list, and
so on. If there are more characters in the “from” list than in the “to” list,
the last character of the “to” list is used for the remaining characters in the
“from” list.

Some time ago, a user proposed to us that we add a transliteration func-
tion to gawk. Being opposed to “creeping featurism,” I wrote the following
program to prove that character transliteration could be done with a user-
level function. This program is not as complete as the system tr utility, but
it will do most of the job.

The translate program demonstrates one of the few weaknesses of
standard awk: dealing with individual characters is very painful, requir-
ing repeated use of the substr, index, and gsub built-in functions (see
Section 12.3 [Built-in Functions for String Manipulation], page 127).3

There are two functions. The first, stranslate, takes three arguments.

from A list of characters to translate from.

to A list of characters to translate to.

target The string to do the translation on.

Associative arrays make the translation part fairly easy. t_ar holds the
“to” characters, indexed by the “from” characters. Then a simple loop goes
through from, one character at a time. For each character in from, if the
character appears in target, gsub is used to change it to the corresponding
to character.

The translate function simply calls stranslate using $0 as the target.
The main program sets two global variables, FROM and TO, from the command
line, and then changes ARGV so that awk will read from the standard input.

2 On older, non-POSIX systems, tr often does not require that the lists be enclosed in
square brackets and quoted. This is a feature.

3 This program was written before gawk acquired the ability to split each character in a
string into separate array elements. How might this ability simplify the program?

Chapter 16: Practical awk Programs 219

Finally, the processing rule simply calls translate for each record.

translate --- do tr like stuff
Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain
August 1989

bugs: does not handle things like: tr A-Z a-z, it has
to be spelled out. However, if ‘to’ is shorter than ‘from’,
the last character in ‘to’ is used for the rest of ‘from’.

function stranslate(from, to, target, lf, lt, t_ar, i, c)
{

lf = length(from)
lt = length(to)
for (i = 1; i <= lt; i++)

t_ar[substr(from, i, 1)] = substr(to, i, 1)
if (lt < lf)

for (; i <= lf; i++)
t_ar[substr(from, i, 1)] = substr(to, lt, 1)

for (i = 1; i <= lf; i++) {
c = substr(from, i, 1)
if (index(target, c) > 0)

gsub(c, t_ar[c], target)
}
return target

}

function translate(from, to)
{

return $0 = stranslate(from, to, $0)
}

main program
BEGIN {

if (ARGC < 3) {
print "usage: translate from to" > "/dev/stderr"
exit

}
FROM = ARGV[1]
TO = ARGV[2]
ARGC = 2
ARGV[1] = "-"

}

{
translate(FROM, TO)
print

220 Effective AWK Programming

}

While it is possible to do character transliteration in a user-level func-
tion, it is not necessarily efficient, and we started to consider adding a built-
in function. However, shortly after writing this program, we learned that
the System V Release 4 awk had added the toupper and tolower func-
tions. These functions handle the vast majority of the cases where character
transliteration is necessary, and so we chose to simply add those functions
to gawk as well, and then leave well enough alone.

An obvious improvement to this program would be to set up the t_ar
array only once, in a BEGIN rule. However, this assumes that the “from” and
“to” lists will never change throughout the lifetime of the program.

16.2.4 Printing Mailing Labels

Here is a “real world”4 program. This script reads lists of names and ad-
dresses, and generates mailing labels. Each page of labels has 20 labels on
it, two across and ten down. The addresses are guaranteed to be no more
than five lines of data. Each address is separated from the next by a blank
line.

The basic idea is to read 20 labels worth of data. Each line of each label
is stored in the line array. The single rule takes care of filling the line
array and printing the page when 20 labels have been read.

The BEGIN rule simply sets RS to the empty string, so that awk will split
records at blank lines (see Section 5.1 [How Input is Split into Records],
page 35). It sets MAXLINES to 100, since MAXLINE is the maximum number
of lines on the page (20 * 5 = 100).

Most of the work is done in the printpage function. The label lines
are stored sequentially in the line array. But they have to be printed
horizontally; line[1] next to line[6], line[2] next to line[7], and so
on. Two loops are used to accomplish this. The outer loop, controlled by
i, steps through every 10 lines of data; this is each row of labels. The inner
loop, controlled by j, goes through the lines within the row. As j goes from
zero to four, ‘i+j’ is the j’th line in the row, and ‘i+j+5’ is the entry next
to it. The output ends up looking something like this:

line 1 line 6
line 2 line 7
line 3 line 8
line 4 line 9
line 5 line 10

As a final note, at lines 21 and 61, an extra blank line is printed, to keep
the output lined up on the labels. This is dependent on the particular brand
of labels in use when the program was written. You will also note that there
are two blank lines at the top and two blank lines at the bottom.

4 “Real world” is defined as “a program actually used to get something done.”

Chapter 16: Practical awk Programs 221

The END rule arranges to flush the final page of labels; there may not
have been an even multiple of 20 labels in the data.

labels.awk
Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain
June 1992

Program to print labels. Each label is 5 lines of data
that may have blank lines. The label sheets have 2
blank lines at the top and 2 at the bottom.

BEGIN { RS = "" ; MAXLINES = 100 }

function printpage(i, j)
{

if (Nlines <= 0)
return

printf "\n\n" # header

for (i = 1; i <= Nlines; i += 10) {
if (i == 21 || i == 61)

print ""
for (j = 0; j < 5; j++) {

if (i + j > MAXLINES)
break

printf " %-41s %s\n", line[i+j], line[i+j+5]
}
print ""

}

printf "\n\n" # footer

for (i in line)
line[i] = ""

}

main rule
{

if (Count >= 20) {
printpage()
Count = 0
Nlines = 0

}
n = split($0, a, "\n")
for (i = 1; i <= n; i++)

line[++Nlines] = a[i]

222 Effective AWK Programming

for (; i <= 5; i++)
line[++Nlines] = ""

Count++
}

END \
{

printpage()
}

16.2.5 Generating Word Usage Counts

The following awk program prints the number of occurrences of each word in
its input. It illustrates the associative nature of awk arrays by using strings as
subscripts. It also demonstrates the ‘for x in array’ construction. Finally,
it shows how awk can be used in conjunction with other utility programs
to do a useful task of some complexity with a minimum of effort. Some
explanations follow the program listing.

awk ’
Print list of word frequencies
{

for (i = 1; i <= NF; i++)
freq[$i]++

}

END {
for (word in freq)

printf "%s\t%d\n", word, freq[word]
}’

The first thing to notice about this program is that it has two rules. The
first rule, because it has an empty pattern, is executed on every line of the
input. It uses awk’s field-accessing mechanism (see Section 5.2 [Examining
Fields], page 38) to pick out the individual words from the line, and the
built-in variable NF (see Chapter 10 [Built-in Variables], page 107) to know
how many fields are available.

For each input word, an element of the array freq is incremented to
reflect that the word has been seen an additional time.

The second rule, because it has the pattern END, is not executed until the
input has been exhausted. It prints out the contents of the freq table that
has been built up inside the first action.

This program has several problems that would prevent it from being
useful by itself on real text files:

• Words are detected using the awk convention that fields are separated
by whitespace and that other characters in the input (except newlines)

Chapter 16: Practical awk Programs 223

don’t have any special meaning to awk. This means that punctuation
characters count as part of words.

• The awk language considers upper- and lower-case characters to be dis-
tinct. Therefore, ‘bartender’ and ‘Bartender’ are not treated as the
same word. This is undesirable since, in normal text, words are capi-
talized if they begin sentences, and a frequency analyzer should not be
sensitive to capitalization.

• The output does not come out in any useful order. You’re more likely
to be interested in which words occur most frequently, or having an
alphabetized table of how frequently each word occurs.

The way to solve these problems is to use some of the more advanced
features of the awk language. First, we use tolower to remove case distinc-
tions. Next, we use gsub to remove punctuation characters. Finally, we use
the system sort utility to process the output of the awk script. Here is the
new version of the program:

Print list of word frequencies
{

$0 = tolower($0) # remove case distinctions
gsub(/[^a-z0-9_ \t]/, "", $0) # remove punctuation
for (i = 1; i <= NF; i++)

freq[$i]++
}

END {
for (word in freq)

printf "%s\t%d\n", word, freq[word]
}

Assuming we have saved this program in a file named wordfreq.awk, and
that the data is in file1, the following pipeline

awk -f wordfreq.awk file1 | sort +1 -nr

produces a table of the words appearing in file1 in order of decreasing
frequency.

The awk program suitably massages the data and produces a word fre-
quency table, which is not ordered.

The awk script’s output is then sorted by the sort utility and printed
on the terminal. The options given to sort in this example specify to sort
using the second field of each input line (skipping one field), that the sort keys
should be treated as numeric quantities (otherwise ‘15’ would come before
‘5’), and that the sorting should be done in descending (reverse) order.

We could have even done the sort from within the program, by changing
the END action to:

END {
sort = "sort +1 -nr"
for (word in freq)

224 Effective AWK Programming

printf "%s\t%d\n", word, freq[word] | sort
close(sort)

}

You would have to use this way of sorting on systems that do not have
true pipes.

See the general operating system documentation for more information on
how to use the sort program.

16.2.6 Removing Duplicates from Unsorted Text

The uniq program (see Section 16.1.6 [Printing Non-duplicated Lines of
Text], page 208), removes duplicate lines from sorted data.

Suppose, however, you need to remove duplicate lines from a data file,
but that you wish to preserve the order the lines are in? A good example
of this might be a shell history file. The history file keeps a copy of all the
commands you have entered, and it is not unusual to repeat a command
several times in a row. Occasionally you might wish to compact the history
by removing duplicate entries. Yet it is desirable to maintain the order of
the original commands.

This simple program does the job. It uses two arrays. The data array is
indexed by the text of each line. For each line, data[$0] is incremented.

If a particular line has not been seen before, then data[$0] will be zero.
In that case, the text of the line is stored in lines[count]. Each element
of lines is a unique command, and the indices of lines indicate the order
in which those lines were encountered. The END rule simply prints out the
lines, in order.

histsort.awk --- compact a shell history file
Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain
May 1993

Thanks to Byron Rakitzis for the general idea
{

if (data[$0]++ == 0)
lines[++count] = $0

}

END {
for (i = 1; i <= count; i++)

print lines[i]
}

This program also provides a foundation for generating other useful in-
formation. For example, using the following print satement in the END rule
would indicate how often a particular command was used.

print data[lines[i]], lines[i]

This works because data[$0] was incremented each time a line was seen.

Chapter 16: Practical awk Programs 225

16.2.7 Extracting Programs from Texinfo Source Files

Both this chapter and the previous chapter (Chapter 15 [A Library of awk
Functions], page 159), present a large number of awk programs. If you wish
to experiment with these programs, it is tedious to have to type them in by
hand. Here we present a program that can extract parts of a Texinfo input
file into separate files.

This book is written in Texinfo, the GNU project’s document formatting
language. A single Texinfo source file can be used to produce both printed
and on-line documentation. Texinfo is fully documented in Texinfo—The
GNU Documentation Format, available from the Free Software Foundation.

For our purposes, it is enough to know three things about Texinfo input
files.

• The “at” symbol, ‘@’, is special in Texinfo, much like ‘\’ in C or awk.
Literal ‘@’ symbols are represented in Texinfo source files as ‘@@’.

• Comments start with either ‘@c’ or ‘@comment’. The file extraction
program will work by using special comments that start at the beginning
of a line.

• Example text that should not be split across a page boundary is brack-
eted between lines containing ‘@group’ and ‘@end group’ commands.

The following program, extract.awk, reads through a Texinfo source
file, and does two things, based on the special comments. Upon seeing
‘@c system ...’, it runs a command, by extracting the command text from
the control line and passing it on to the system function (see Section 12.4
[Built-in Functions for Input/Output], page 135). Upon seeing ‘@c file
filename’, each subsequent line is sent to the file filename, until ‘@c
endfile’ is encountered. The rules in extract.awk will match either ‘@c’
or ‘@comment’ by letting the ‘omment’ part be optional. Lines containing
‘@group’ and ‘@end group’ are simply removed. extract.awk uses the join
library function (see Section 15.6 [Merging an Array Into a String], page 166).

The example programs in the on-line Texinfo source for Effective AWK
Programming (gawk.texi) have all been bracketed inside ‘file’, and
‘endfile’ lines. The gawk distribution uses a copy of extract.awk to ex-
tract the sample programs and install many of them in a standard directory,
where gawk can find them.

extract.awk begins by setting IGNORECASE to one, so that mixed upper-
case and lower-case letters in the directives won’t matter.

The first rule handles calling system, checking that a command was given
(NF is at least three), and also checking that the command exited with a zero
exit status, signifying OK.

extract.awk --- extract files and run programs
from texinfo files
Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain
May 1993

226 Effective AWK Programming

BEGIN { IGNORECASE = 1 }

/^@c(omment)?[\t]+system/ \
{

if (NF < 3) {
e = (FILENAME ":" FNR)
e = (e ": badly formed ‘system’ line")
print e > "/dev/stderr"
next

}
$1 = ""
$2 = ""
stat = system($0)
if (stat != 0) {

e = (FILENAME ":" FNR)
e = (e ": warning: system returned " stat)
print e > "/dev/stderr"

}
}

The variable e is used so that the function fits nicely on the page.

The second rule handles moving data into files. It verifies that a file name
was given in the directive. If the file named is not the current file, then the
current file is closed. This means that an ‘@c endfile’ was not given for
that file. (We should probably print a diagnostic in this case, although at
the moment we do not.)

The ‘for’ loop does the work. It reads lines using getline (see Section 5.8
[Explicit Input with getline], page 50). For an unexpected end of file, it
calls the unexpected_eof function. If the line is an “endfile” line, then it
breaks out of the loop. If the line is an ‘@group’ or ‘@end group’ line, then
it ignores it, and goes on to the next line.

Most of the work is in the following few lines. If the line has no ‘@’
symbols, it can be printed directly. Otherwise, each leading ‘@’ must be
stripped off.

To remove the ‘@’ symbols, the line is split into separate elements of the
array a, using the split function (see Section 12.3 [Built-in Functions for
String Manipulation], page 127). Each element of a that is empty indicates
two successive ‘@’ symbols in the original line. For each two empty elements
(‘@@’ in the original file), we have to add back in a single ‘@’ symbol.

When the processing of the array is finished, join is called with the
value of SUBSEP, to rejoin the pieces back into a single line. That line is then
printed to the output file.

Chapter 16: Practical awk Programs 227

/^@c(omment)?[\t]+file/ \
{

if (NF != 3) {
e = (FILENAME ":" FNR ": badly formed ‘file’ line")
print e > "/dev/stderr"
next

}
if ($3 != curfile) {

if (curfile != "")
close(curfile)

curfile = $3
}

for (;;) {
if ((getline line) <= 0)

unexpected_eof()
if (line ~ /^@c(omment)?[\t]+endfile/)

break
else if (line ~ /^@(end[\t]+)?group/)

continue
if (index(line, "@") == 0) {

print line > curfile
continue

}
n = split(line, a, "@")
if a[1] == "", means leading @,
don’t add one back in.
for (i = 2; i <= n; i++) {

if (a[i] == "") { # was an @@
a[i] = "@"
if (a[i+1] == "")

i++
}

}
print join(a, 1, n, SUBSEP) > curfile

}
}

An important thing to note is the use of the ‘>’ redirection. Output
done with ‘>’ only opens the file once; it stays open and subsequent output
is appended to the file (see Section 6.6 [Redirecting Output of print and
printf], page 65). This allows us to easily mix program text and explanatory
prose for the same sample source file (as has been done here!) without any
hassle. The file is only closed when a new data file name is encountered, or
at the end of the input file.

228 Effective AWK Programming

Finally, the function unexpected_eof prints an appropriate error mes-
sage and then exits.

The END rule handles the final cleanup, closing the open file.

function unexpected_eof()
{

printf("%s:%d: unexpected EOF or error\n", \
FILENAME, FNR) > "/dev/stderr"

exit 1
}

END {
if (curfile)

close(curfile)
}

16.2.8 A Simple Stream Editor

The sed utility is a “stream editor,” a program that reads a stream of data,
makes changes to it, and passes the modified data on. It is often used to
make global changes to a large file, or to a stream of data generated by a
pipeline of commands.

While sed is a complicated program in its own right, its most common
use is to perform global substitutions in the middle of a pipeline:

command1 < orig.data | sed ’s/old/new/g’ | command2 > result

Here, the ‘s/old/new/g’ tells sed to look for the regexp ‘old’ on each
input line, and replace it with the text ‘new’, globally (i.e. all the occurrences
on a line). This is similar to awk’s gsub function (see Section 12.3 [Built-in
Functions for String Manipulation], page 127).

The following program, awksed.awk, accepts at least two command line
arguments; the pattern to look for and the text to replace it with. Any
additional arguments are treated as data file names to process. If none are
provided, the standard input is used.

awksed.awk --- do s/foo/bar/g using just print
Thanks to Michael Brennan for the idea

Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain
August 1995

function usage()
{

print "usage: awksed pat repl [files...]" > "/dev/stderr"
exit 1

}

BEGIN {

Chapter 16: Practical awk Programs 229

validate arguments
if (ARGC < 3)

usage()

RS = ARGV[1]
ORS = ARGV[2]

don’t use arguments as files
ARGV[1] = ARGV[2] = ""

}

look ma, no hands!
{

if (RT == "")
printf "%s", $0

else
print

}

The program relies on gawk’s ability to have RS be a regexp and on the
setting of RT to the actual text that terminated the record (see Section 5.1
[How Input is Split into Records], page 35).

The idea is to have RS be the pattern to look for. gawk will automatically
set $0 to the text between matches of the pattern. This is text that we
wish to keep, unmodified. Then, by setting ORS to the replacement text, a
simple print statement will output the text we wish to keep, followed by
the replacement text.

There is one wrinkle to this scheme, which is what to do if the last
record doesn’t end with text that matches RS? Using a print statement
unconditionally prints the replacement text, which is not correct.

However, if the file did not end in text that matches RS, RT will be set to
the null string. In this case, we can print $0 using printf (see Section 6.5
[Using printf Statements for Fancier Printing], page 60).

The BEGIN rule handles the setup, checking for the right number of ar-
guments, and calling usage if there is a problem. Then it sets RS and ORS
from the command line arguments, and sets ARGV[1] and ARGV[2] to the
null string, so that they will not be treated as file names (see Section 10.3
[Using ARGC and ARGV], page 111).

The usage function prints an error message and exits.

Finally, the single rule handles the printing scheme outlined above, using
print or printf as appropriate, depending upon the value of RT.

16.2.9 An Easy Way to Use Library Functions

Using library functions in awk can be very beneficial. It encourages code re-
use and the writing of general functions. Programs are smaller, and therefore

230 Effective AWK Programming

clearer. However, using library functions is only easy when writing awk
programs; it is painful when running them, requiring multiple ‘-f’ options.
If gawk is unavailable, then so too is the AWKPATH environment variable and
the ability to put awk functions into a library directory (see Section 14.1
[Command Line Options], page 151).

It would be nice to be able to write programs like so:

library functions
@include getopt.awk
@include join.awk
...

main program
BEGIN {

while ((c = getopt(ARGC, ARGV, "a:b:cde")) != -1)
...

...
}

The following program, igawk.sh, provides this service. It simulates
gawk’s searching of the AWKPATH variable, and also allows nested includes; i.e.
a file that has been included with ‘@include’ can contain further ‘@include’
statements. igawk will make an effort to only include files once, so that
nested includes don’t accidentally include a library function twice.

igawk should behave externally just like gawk. This means it should
accept all of gawk’s command line arguments, including the ability to have
multiple source files specified via ‘-f’, and the ability to mix command line
and library source files.

The program is written using the POSIX Shell (sh) command language.
The way the program works is as follows:

1. Loop through the arguments, saving anything that doesn’t represent
awk source code for later, when the expanded program is run.

2. For any arguments that do represent awk text, put the arguments into
a temporary file that will be expanded. There are two cases.

a. Literal text, provided with ‘--source’ or ‘--source=’. This text is
just echoed directly. The echo program will automatically supply
a trailing newline.

b. File names provided with ‘-f’. We use a neat trick, and echo
‘@include filename’ into the temporary file. Since the file inclu-
sion program will work the way gawk does, this will get the text of
the file included into the program at the correct point.

3. Run an awk program (naturally) over the temporary file to expand
‘@include’ statements. The expanded program is placed in a second
temporary file.

4. Run the expanded program with gawk and any other original command
line arguments that the user supplied (such as the data file names).

Chapter 16: Practical awk Programs 231

The initial part of the program turns on shell tracing if the first argument
was ‘debug’. Otherwise, a shell trap statement arranges to clean up any
temporary files on program exit or upon an interrupt.

The next part loops through all the command line arguments. There are
several cases of interest.

-- This ends the arguments to igawk. Anything else should be
passed on to the user’s awk program without being evaluated.

-W This indicates that the next option is specific to gawk. To make
argument processing easier, the ‘-W’ is appended to the front of
the remaining arguments and the loop continues. (This is an sh
programming trick. Don’t worry about it if you are not familiar
with sh.)

-v
-F These are saved and passed on to gawk.

-f
--file
--file=
-Wfile= The file name is saved to the temporary file /tmp/ig.s.$$ with

an ‘@include’ statement. The sed utility is used to remove the
leading option part of the argument (e.g., ‘--file=’).

--source
--source=
-Wsource=

The source text is echoed into /tmp/ig.s.$$.

--version
--version
-Wversion

igawk prints its version number, and runs ‘gawk --version’ to
get the gawk version information, and then exits.

If none of ‘-f’, ‘--file’, ‘-Wfile’, ‘--source’, or ‘-Wsource’, were sup-
plied, then the first non-option argument should be the awk program. If
there are no command line arguments left, igawk prints an error message
and exits. Otherwise, the first argument is echoed into /tmp/ig.s.$$.

In any case, after the arguments have been processed, /tmp/ig.s.$$
contains the complete text of the original awk program.

The ‘$$’ in sh represents the current process ID number. It is often
used in shell programs to generate unique temporary file names. This allows
multiple users to run igawk without worrying that the temporary file names
will clash.

Here’s the program:

#! /bin/sh

232 Effective AWK Programming

igawk --- like gawk but do @include processing
Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain
July 1993

if ["$1" = debug]
then

set -x
shift

else
cleanup on exit, hangup, interrupt, quit, termination
trap ’rm -f /tmp/ig.[se].$$’ 0 1 2 3 15

fi

while [$# -ne 0] # loop over arguments
do

case $1 in
--) shift; break;;

-W) shift
set -- -W"$@"
continue;;

-[vF]) opts="$opts $1 ’$2’"
shift;;

-[vF]*) opts="$opts ’$1’" ;;

-f) echo @include "$2" >> /tmp/ig.s.$$
shift;;

-f*) f=‘echo "$1" | sed ’s/-f//’‘
echo @include "$f" >> /tmp/ig.s.$$;;

-?file=*) # -Wfile or --file
f=‘echo "$1" | sed ’s/-.file=//’‘
echo @include "$f" >> /tmp/ig.s.$$;;

-?file) # get arg, $2
echo @include "$2" >> /tmp/ig.s.$$
shift;;

-?source=*) # -Wsource or --source
t=‘echo "$1" | sed ’s/-.source=//’‘
echo "$t" >> /tmp/ig.s.$$;;

-?source) # get arg, $2

Chapter 16: Practical awk Programs 233

echo "$2" >> /tmp/ig.s.$$
shift;;

-?version)
echo igawk: version 1.0 1>&2
gawk --version
exit 0 ;;

-[W-]*) opts="$opts ’$1’" ;;

*) break;;
esac
shift

done

if [! -s /tmp/ig.s.$$]
then

if [-z "$1"]
then

echo igawk: no program! 1>&2
exit 1

else
echo "$1" > /tmp/ig.s.$$
shift

fi
fi

at this point, /tmp/ig.s.$$ has the program

The awk program to process ‘@include’ directives reads through the pro-
gram, one line at a time using getline (see Section 5.8 [Explicit Input with
getline], page 50). The input file names and ‘@include’ statements are
managed using a stack. As each ‘@include’ is encountered, the current file
name is “pushed” onto the stack, and the file named in the ‘@include’ di-
rective becomes the current file name. As each file is finished, the stack is
“popped,” and the previous input file becomes the current input file again.
The process is started by making the original file the first one on the stack.

The pathto function does the work of finding the full path to a file. It
simulates gawk’s behavior when searching the AWKPATH environment variable
(see Section 14.3 [The AWKPATH Environment Variable], page 156). If a file
name has a ‘/’ in it, no path search is done. Otherwise, the file name is
concatenated with the name of each directory in the path, and an attempt
is made to open the generated file name. The only way in awk to test if
a file can be read is to go ahead and try to read it with getline; that is

234 Effective AWK Programming

what pathto does.5 If the file can be read, it is closed, and the file name is
returned.

gawk -- ’
process @include directives

function pathto(file, i, t, junk)
{

if (index(file, "/") != 0)
return file

for (i = 1; i <= ndirs; i++) {
t = (pathlist[i] "/" file)
if ((getline junk < t) > 0) {

found it
close(t)
return t

}
}
return ""

}

The main program is contained inside one BEGIN rule. The first thing it
does is set up the pathlist array that pathto uses. After splitting the path
on ‘:’, null elements are replaced with ".", which represents the current
directory.

BEGIN {
path = ENVIRON["AWKPATH"]
ndirs = split(path, pathlist, ":")
for (i = 1; i <= ndirs; i++) {

if (pathlist[i] == "")
pathlist[i] = "."

}

The stack is initialized with ARGV[1], which will be /tmp/ig.s.$$. The
main loop comes next. Input lines are read in succession. Lines that do not
start with ‘@include’ are printed verbatim.

If the line does start with ‘@include’, the file name is in $2. pathto
is called to generate the full path. If it could not, then we print an error
message and continue.

The next thing to check is if the file has been included already. The
processed array is indexed by the full file name of each included file, and
it tracks this information for us. If the file has been seen, a warning mes-
sage is printed. Otherwise, the new file name is pushed onto the stack and
processing continues.

5 On some very old versions of awk, the test ‘getline junk < t’ can loop forever if the
file exists but is empty. Caveat Emptor.

Chapter 16: Practical awk Programs 235

Finally, when getline encounters the end of the input file, the file is
closed and the stack is popped. When stackptr is less than zero, the pro-
gram is done.

stackptr = 0
input[stackptr] = ARGV[1] # ARGV[1] is first file

for (; stackptr >= 0; stackptr--) {
while ((getline < input[stackptr]) > 0) {

if (tolower($1) != "@include") {
print
continue

}
fpath = pathto($2)
if (fpath == "") {

printf("igawk:%s:%d: cannot find %s\n", \
input[stackptr], FNR, $2) > "/dev/stderr"

continue
}
if (! (fpath in processed)) {

processed[fpath] = input[stackptr]
input[++stackptr] = fpath

} else
print $2, "included in", input[stackptr], \

"already included in", \
processed[fpath] > "/dev/stderr"

}
close(input[stackptr])

}
}’ /tmp/ig.s.$$ > /tmp/ig.e.$$

The last step is to call gawk with the expanded program and the original
options and command line arguments that the user supplied. gawk’s exit
status is passed back on to igawk’s calling program.

eval gawk -f /tmp/ig.e.$$ $opts -- "$@"

exit $?

This version of igawk represents my third attempt at this program. There
are three key simplifications that made the program work better.

1. Using ‘@include’ even for the files named with ‘-f’ makes building the
initial collected awk program much simpler; all the ‘@include’ process-
ing can be done once.

2. The pathto function doesn’t try to save the line read with getline
when testing for the file’s accessibility. Trying to save this line for use
with the main program complicates things considerably.

3. Using a getline loop in the BEGIN rule does it all in one place. It is not

236 Effective AWK Programming

necessary to call out to a separate loop for processing nested ‘@include’
statements.

Also, this program illustrates that it is often worthwhile to combine sh
and awk programming together. You can usually accomplish quite a lot,
without having to resort to low-level programming in C or C++, and it is
frequently easier to do certain kinds of string and argument manipulation
using the shell than it is in awk.

Finally, igawk shows that it is not always necessary to add new features
to a program; they can often be layered on top. With igawk, there is no real
reason to build ‘@include’ processing into gawk itself.

As an additional example of this, consider the idea of having two files in
a directory in the search path.

default.awk
This file would contain a set of default library functions, such as
getopt and assert.

site.awk This file would contain library functions that are specific to a
site or installation, i.e. locally developed functions. Having a
separate file allows default.awk to change with new gawk re-
leases, without requiring the system administrator to update it
each time by adding the local functions.

One user suggested that gawk be modified to automatically read these
files upon startup. Instead, it would be very simple to modify igawk to
do this. Since igawk can process nested ‘@include’ directives, default.awk
could simply contain ‘@include’ statements for the desired library functions.

Chapter 17: The Evolution of the awk Language 237

17 The Evolution of the awk Language

This book describes the GNU implementation of awk, which follows the
POSIX specification. Many awk users are only familiar with the original awk
implementation in Version 7 Unix. (This implementation was the basis for
awk in Berkeley Unix, through 4.3–Reno. The 4.4 release of Berkeley Unix
uses gawk 2.15.2 for its version of awk.) This chapter briefly describes the
evolution of the awk language, with cross references to other parts of the
book where you can find more information.

17.1 Major Changes between V7 and SVR3.1
The awk language evolved considerably between the release of Version 7
Unix (1978) and the new version first made generally available in System
V Release 3.1 (1987). This section summarizes the changes, with cross-
references to further details.

• The requirement for ‘;’ to separate rules on a line (see Section 2.6 [awk
Statements Versus Lines], page 16).

• User-defined functions, and the return statement (see Chapter 13 [User-
defined Functions], page 143).

• The delete statement (see Section 11.6 [The delete Statement],
page 119).

• The do-while statement (see Section 9.3 [The do-while Statement],
page 100).

• The built-in functions atan2, cos, sin, rand and srand (see Section 12.2
[Numeric Built-in Functions], page 125).

• The built-in functions gsub, sub, and match (see Section 12.3 [Built-in
Functions for String Manipulation], page 127).

• The built-in functions close, and system (see Section 12.4 [Built-in
Functions for Input/Output], page 135).

• The ARGC, ARGV, FNR, RLENGTH, RSTART, and SUBSEP built-in variables
(see Chapter 10 [Built-in Variables], page 107).

• The conditional expression using the ternary operator ‘?:’ (see
Section 7.12 [Conditional Expressions], page 86).

• The exponentiation operator ‘^’ (see Section 7.5 [Arithmetic Opera-
tors], page 76) and its assignment operator form ‘^=’ (see Section 7.7
[Assignment Expressions], page 77).

• C-compatible operator precedence, which breaks some old awk pro-
grams (see Section 7.14 [Operator Precedence (How Operators Nest)],
page 87).

• Regexps as the value of FS (see Section 5.5 [Specifying How Fields are
Separated], page 42), and as the third argument to the split function
(see Section 12.3 [Built-in Functions for String Manipulation], page 127).

238 Effective AWK Programming

• Dynamic regexps as operands of the ‘~’ and ‘!~’ operators (see
Section 4.1 [How to Use Regular Expressions], page 21).

• The escape sequences ‘\b’, ‘\f’, and ‘\r’ (see Section 4.2 [Escape Se-
quences], page 22). (Some vendors have updated their old versions of
awk to recognize ‘\r’, ‘\b’, and ‘\f’, but this is not something you can
rely on.)

• Redirection of input for the getline function (see Section 5.8 [Explicit
Input with getline], page 50).

• Multiple BEGIN and END rules (see Section 8.1.5 [The BEGIN and END
Special Patterns], page 94).

• Multi-dimensional arrays (see Section 11.9 [Multi-dimensional Arrays],
page 122).

17.2 Changes between SVR3.1 and SVR4
The System V Release 4 version of Unix awk added these features (some of
which originated in gawk):

• The ENVIRON variable (see Chapter 10 [Built-in Variables], page 107).

• Multiple ‘-f’ options on the command line (see Section 14.1 [Command
Line Options], page 151).

• The ‘-v’ option for assigning variables before program execution begins
(see Section 14.1 [Command Line Options], page 151).

• The ‘--’ option for terminating command line options.

• The ‘\a’, ‘\v’, and ‘\x’ escape sequences (see Section 4.2 [Escape Se-
quences], page 22).

• A defined return value for the srand built-in function (see Section 12.2
[Numeric Built-in Functions], page 125).

• The toupper and tolower built-in string functions for case translation
(see Section 12.3 [Built-in Functions for String Manipulation], page 127).

• A cleaner specification for the ‘%c’ format-control letter in the printf
function (see Section 6.5.2 [Format-Control Letters], page 61).

• The ability to dynamically pass the field width and precision ("%*.*d")
in the argument list of the printf function (see Section 6.5.2 [Format-
Control Letters], page 61).

• The use of regexp constants such as /foo/ as expressions, where they
are equivalent to using the matching operator, as in ‘$0 ~ /foo/’ (see
Section 7.2 [Using Regular Expression Constants], page 72).

17.3 Changes between SVR4 and POSIX awk

The POSIX Command Language and Utilities standard for awk introduced
the following changes into the language:

• The use of ‘-W’ for implementation-specific options.

Chapter 17: The Evolution of the awk Language 239

• The use of CONVFMT for controlling the conversion of numbers to strings
(see Section 7.4 [Conversion of Strings and Numbers], page 75).

• The concept of a numeric string, and tighter comparison rules to go
with it (see Section 7.10 [Variable Typing and Comparison Expressions],
page 81).

• More complete documentation of many of the previously undocumented
features of the language.

The following common extensions are not permitted by the POSIX stan-
dard:

• \x escape sequences are not recognized (see Section 4.2 [Escape Se-
quences], page 22).

• Newlines do not act as whitespace to separate fields when FS is equal
to a single space.

• The synonym func for the keyword function is not recognized (see
Section 13.1 [Function Definition Syntax], page 143).

• The operators ‘**’ and ‘**=’ cannot be used in place of ‘^’ and ‘^=’ (see
Section 7.5 [Arithmetic Operators], page 76, and also see Section 7.7
[Assignment Expressions], page 77).

• Specifying ‘-Ft’ on the command line does not set the value of FS to
be a single tab character (see Section 5.5 [Specifying How Fields are
Separated], page 42).

• The fflush built-in function is not supported (see Section 12.4 [Built-in
Functions for Input/Output], page 135).

17.4 Extensions in the Bell Laboratories awk

Brian Kernighan, one of the original designers of Unix awk, has made his
version available via anonymous ftp (see Section B.8 [Other Freely Available
awk Implementations], page 277). This section describes extensions in his
version of awk that are not in POSIX awk.

• The ‘-mf NNN’ and ‘-mr NNN’ command line options to set the maxi-
mum number of fields, and the maximum record size, respectively (see
Section 14.1 [Command Line Options], page 151).

• The fflush built-in function for flushing buffered output (see
Section 12.4 [Built-in Functions for Input/Output], page 135).

17.5 Extensions in gawk Not in POSIX awk

The GNU implementation, gawk, adds a number of features. This sections
lists them in the order they were added to gawk. They can all be dis-
abled with either the ‘--traditional’ or ‘--posix’ options (see Section 14.1
[Command Line Options], page 151).

Version 2.10 of gawk introduced these features:

240 Effective AWK Programming

• The AWKPATH environment variable for specifying a path search for the
‘-f’ command line option (see Section 14.1 [Command Line Options],
page 151).

• The IGNORECASE variable and its effects (see Section 4.5 [Case-sensitivity
in Matching], page 31).

• The /dev/stdin, /dev/stdout, /dev/stderr, and /dev/fd/n file name
interpretation (see Section 6.7 [Special File Names in gawk], page 67).

Version 2.13 of gawk introduced these features:

• The FIELDWIDTHS variable and its effects (see Section 5.6 [Reading
Fixed-width Data], page 46).

• The systime and strftime built-in functions for obtaining and printing
time stamps (see Section 12.5 [Functions for Dealing with Time Stamps],
page 137).

• The ‘-W lint’ option to provide source code and run time error
and portability checking (see Section 14.1 [Command Line Options],
page 151).

• The ‘-W compat’ option to turn off these extensions (see Section 14.1
[Command Line Options], page 151).

• The ‘-W posix’ option for full POSIX compliance (see Section 14.1
[Command Line Options], page 151).

Version 2.14 of gawk introduced these features:

• The next file statement for skipping to the next data file (see
Section 9.8 [The nextfile Statement], page 105).

Version 2.15 of gawk introduced these features:

• The ARGIND variable, that tracks the movement of FILENAME through
ARGV (see Chapter 10 [Built-in Variables], page 107).

• The ERRNO variable, that contains the system error message when
getline returns −1, or when close fails (see Chapter 10 [Built-in Vari-
ables], page 107).

• The ability to use GNU-style long named options that start with ‘--’
(see Section 14.1 [Command Line Options], page 151).

• The ‘--source’ option for mixing command line and library file source
code (see Section 14.1 [Command Line Options], page 151).

• The /dev/pid, /dev/ppid, /dev/pgrpid, and /dev/user file name in-
terpretation (see Section 6.7 [Special File Names in gawk], page 67).

Version 3.0 of gawk introduced these features:

• The next file statement became nextfile (see Section 9.8 [The
nextfile Statement], page 105).

• The ‘--lint-old’ option to warn about constructs that are not available
in the original Version 7 Unix version of awk (see Section 17.1 [Major
Changes between V7 and SVR3.1], page 237).

Chapter 17: The Evolution of the awk Language 241

• The ‘--traditional’ option was added as a better name for ‘--compat’
(see Section 14.1 [Command Line Options], page 151).

• The ability for FS to be a null string, and for the third argument to
split to be the null string (see Section 5.5.3 [Making Each Character
a Separate Field], page 44).

• The ability for RS to be a regexp (see Section 5.1 [How Input is Split
into Records], page 35).

• The RT variable (see Section 5.1 [How Input is Split into Records],
page 35).

• The gensub function for more powerful text manipulation (see
Section 12.3 [Built-in Functions for String Manipulation], page 127).

• The strftime function acquired a default time format, allowing it to be
called with no arguments (see Section 12.5 [Functions for Dealing with
Time Stamps], page 137).

• Full support for both POSIX and GNU regexps (see Chapter 4 [Regular
Expressions], page 21).

• The ‘--re-interval’ option to provide interval expressions in regexps
(see Section 4.3 [Regular Expression Operators], page 24).

• IGNORECASE changed, now applying to string comparison as well as reg-
exp operations (see Section 4.5 [Case-sensitivity in Matching], page 31).

• The ‘-m’ option and the fflush function from the Bell Labs research
version of awk (see Section 14.1 [Command Line Options], page 151;
also see Section 12.4 [Built-in Functions for Input/Output], page 135).

• The use of GNU Autoconf to control the configuration process (see
Section B.2.1 [Compiling gawk for Unix], page 268).

• Amiga support (see Section B.6 [Installing gawk on an Amiga],
page 275).

Appendix A: gawk Summary 243

Appendix A gawk Summary

This appendix provides a brief summary of the gawk command line and the
awk language. It is designed to serve as “quick reference.” It is therefore
terse, but complete.

A.1 Command Line Options Summary
The command line consists of options to gawk itself, the awk program text
(if not supplied via the ‘-f’ option), and values to be made available in the
ARGC and ARGV predefined awk variables:

gawk [POSIX or GNU style options] -f source-file [--] file ...
gawk [POSIX or GNU style options] [--] ’program’ file ...

The options that gawk accepts are:

-F fs
--field-separator fs

Use fs for the input field separator (the value of the FS predefined
variable).

-f program-file
--file program-file

Read the awk program source from the file program-file, instead
of from the first command line argument.

-mf NNN
-mr NNN The ‘f’ flag sets the maximum number of fields, and the ‘r’

flag sets the maximum record size. These options are ignored
by gawk, since gawk has no predefined limits; they are only for
compatibility with the Bell Labs research version of Unix awk.

-v var=val
--assign var=val

Assign the variable var the value val before program execution
begins.

-W traditional
-W compat
--traditional
--compat Use compatibility mode, in which gawk extensions are turned

off.

-W copyleft
-W copyright
--copyleft
--copyright

Print the short version of the General Public License on the stan-
dard output, and exit. This option may disappear in a future
version of gawk.

244 Effective AWK Programming

-W help
-W usage
--help
--usage Print a relatively short summary of the available options on the

standard output, and exit.

-W lint
--lint Give warnings about dubious or non-portable awk constructs.

-W lint-old
--lint-old

Warn about constructs that are not available in the original
Version 7 Unix version of awk.

-W posix
--posix Use POSIX compatibility mode, in which gawk extensions are

turned off and additional restrictions apply.

-W re-interval
--re-interval

Allow interval expressions (see Section 4.3 [Regular Expression
Operators], page 24), in regexps.

-W source=program-text
--source program-text

Use program-text as awk program source code. This option al-
lows mixing command line source code with source code from
files, and is particularly useful for mixing command line pro-
grams with library functions.

-W version
--version

Print version information for this particular copy of gawk on the
error output.

-- Signal the end of options. This is useful to allow further argu-
ments to the awk program itself to start with a ‘-’. This is mainly
for consistency with POSIX argument parsing conventions.

Any other options are flagged as invalid, but are otherwise ignored. See
Section 14.1 [Command Line Options], page 151, for more details.

A.2 Language Summary
An awk program consists of a sequence of zero or more pattern-action state-
ments and optional function definitions. One or the other of the pattern and
action may be omitted.

pattern { action statements }
pattern

{ action statements }

Appendix A: gawk Summary 245

function name(parameter list) { action statements }

gawk first reads the program source from the program-file(s), if specified,
or from the first non-option argument on the command line. The ‘-f’ option
may be used multiple times on the command line. gawk reads the program
text from all the program-file files, effectively concatenating them in the
order they are specified. This is useful for building libraries of awk functions,
without having to include them in each new awk program that uses them.
To use a library function in a file from a program typed in on the command
line, specify ‘--source ’program’’, and type your program in between the
single quotes. See Section 14.1 [Command Line Options], page 151.

The environment variable AWKPATH specifies a search path to use when
finding source files named with the ‘-f’ option. The default path, which
is ‘.:/usr/local/share/awk’1 is used if AWKPATH is not set. If a file name
given to the ‘-f’ option contains a ‘/’ character, no path search is performed.
See Section 14.3 [The AWKPATH Environment Variable], page 156.

gawk compiles the program into an internal form, and then proceeds to
read each file named in the ARGV array. The initial values of ARGV come from
the command line arguments. If there are no files named on the command
line, gawk reads the standard input.

If a “file” named on the command line has the form ‘var=val’, it is
treated as a variable assignment: the variable var is assigned the value val.
If any of the files have a value that is the null string, that element in the list
is skipped.

For each record in the input, gawk tests to see if it matches any pattern in
the awk program. For each pattern that the record matches, the associated
action is executed.

A.3 Variables and Fields
awk variables are not declared; they come into existence when they are first
used. Their values are either floating-point numbers or strings. awk also
has one-dimensional arrays; multiple-dimensional arrays may be simulated.
There are several predefined variables that awk sets as a program runs; these
are summarized below.

A.3.1 Fields

As each input line is read, gawk splits the line into fields, using the value of
the FS variable as the field separator. If FS is a single character, fields are
separated by that character. Otherwise, FS is expected to be a full regular
expression. In the special case that FS is a single space, fields are sepa-

1 The path may use a directory other than /usr/local/share/awk, depending upon how
gawk was built and installed.

246 Effective AWK Programming

rated by runs of spaces, tabs and/or newlines.2 If FS is the null string (""),
then each individual character in the record becomes a separate field. Note
that the value of IGNORECASE (see Section 4.5 [Case-sensitivity in Matching],
page 31) also affects how fields are split when FS is a regular expression.

Each field in the input line may be referenced by its position, $1, $2, and
so on. $0 is the whole line. The value of a field may be assigned to as well.
Field numbers need not be constants:

n = 5
print $n

prints the fifth field in the input line. The variable NF is set to the total
number of fields in the input line.

References to non-existent fields (i.e. fields after $NF) return the null
string. However, assigning to a non-existent field (e.g., $(NF+2) = 5) in-
creases the value of NF, creates any intervening fields with the null string
as their value, and causes the value of $0 to be recomputed, with the fields
being separated by the value of OFS. Decrementing NF causes the values of
fields past the new value to be lost, and the value of $0 to be recomputed,
with the fields being separated by the value of OFS. See Chapter 5 [Reading
Input Files], page 35.

A.3.2 Built-in Variables

gawk’s built-in variables are:

ARGC The number of elements in ARGV. See below for what is actually
included in ARGV.

ARGIND The index in ARGV of the current file being processed. When
gawk is processing the input data files, it is always true that
‘FILENAME == ARGV[ARGIND]’.

ARGV The array of command line arguments. The array is indexed
from zero to ARGC − 1. Dynamically changing ARGC and the
contents of ARGV can control the files used for data. A null-
valued element in ARGV is ignored. ARGV does not include the
options to awk or the text of the awk program itself.

CONVFMT The conversion format to use when converting numbers to
strings.

FIELDWIDTHS
A space separated list of numbers describing the fixed-width
input data.

ENVIRON An array of environment variable values. The array is indexed
by variable name, each element being the value of that variable.
Thus, the environment variable HOME is ENVIRON["HOME"]. One
possible value might be /home/arnold.

2 In POSIX awk, newline does not separate fields.

Appendix A: gawk Summary 247

Changing this array does not affect the environment seen by pro-
grams which gawk spawns via redirection or the system function.
(This may change in a future version of gawk.)

Some operating systems do not have environment variables. The
ENVIRON array is empty when running on these systems.

ERRNO The system error message when an error occurs using getline
or close.

FILENAME The name of the current input file. If no files are specified on
the command line, the value of FILENAME is the null string.

FNR The input record number in the current input file.

FS The input field separator, a space by default.

IGNORECASE
The case-sensitivity flag for string comparisons and regular ex-
pression operations. If IGNORECASE has a non-zero value, then
pattern matching in rules, record separating with RS, field split-
ting with FS, regular expression matching with ‘~’ and ‘!~’, and
the gensub, gsub, index, match, split and sub built-in func-
tions all ignore case when doing regular expression operations,
and all string comparisons are done ignoring case. The value of
IGNORECASE does not affect array subscripting.

NF The number of fields in the current input record.

NR The total number of input records seen so far.

OFMT The output format for numbers for the print statement, "%.6g"
by default.

OFS The output field separator, a space by default.

ORS The output record separator, by default a newline.

RS The input record separator, by default a newline. If RS is set to
the null string, then records are separated by blank lines. When
RS is set to the null string, then the newline character always
acts as a field separator, in addition to whatever value FS may
have. If RS is set to a multi-character string, it denotes a regexp;
input text matching the regexp separates records.

RT The input text that matched the text denoted by RS, the record
separator.

RSTART The index of the first character last matched by match; zero if
no match.

RLENGTH The length of the string last matched by match; −1 if no match.

SUBSEP The string used to separate multiple subscripts in array ele-
ments, by default "\034".

See Chapter 10 [Built-in Variables], page 107, for more information.

248 Effective AWK Programming

A.3.3 Arrays

Arrays are subscripted with an expression between square brackets (‘[’ and
‘]’). Array subscripts are always strings; numbers are converted to strings
as necessary, following the standard conversion rules (see Section 7.4 [Con-
version of Strings and Numbers], page 75).

If you use multiple expressions separated by commas inside the square
brackets, then the array subscript is a string consisting of the concatenation
of the individual subscript values, converted to strings, separated by the
subscript separator (the value of SUBSEP).

The special operator in may be used in a conditional context to see if an
array has an index consisting of a particular value.

if (val in array)
print array[val]

If the array has multiple subscripts, use ‘(i, j, ...) in array’ to test
for existence of an element.

The in construct may also be used in a for loop to iterate over all the
elements of an array. See Section 11.5 [Scanning All Elements of an Array],
page 118.

You can remove an element from an array using the delete statement.

You can clear an entire array using ‘delete array’.

See Chapter 11 [Arrays in awk], page 115.

A.3.4 Data Types

The value of an awk expression is always either a number or a string.

Some contexts (such as arithmetic operators) require numeric values.
They convert strings to numbers by interpreting the text of the string as
a number. If the string does not look like a number, it converts to zero.

Other contexts (such as concatenation) require string values. They con-
vert numbers to strings by effectively printing them with sprintf. See
Section 7.4 [Conversion of Strings and Numbers], page 75, for the details.

To force conversion of a string value to a number, simply add zero to it.
If the value you start with is already a number, this does not change it.

To force conversion of a numeric value to a string, concatenate it with
the null string.

Comparisons are done numerically if both operands are numeric, or if
one is numeric and the other is a numeric string. Otherwise one or both
operands are converted to strings and a string comparison is performed.
Fields, getline input, FILENAME, ARGV elements, ENVIRON elements and the
elements of an array created by split are the only items that can be numeric
strings. String constants, such as "3.1415927" are not numeric strings,
they are string constants. The full rules for comparisons are described in
Section 7.10 [Variable Typing and Comparison Expressions], page 81.

Appendix A: gawk Summary 249

Uninitialized variables have the string value "" (the null, or empty,
string). In contexts where a number is required, this is equivalent to zero.

See Section 7.3 [Variables], page 73, for more information on variable
naming and initialization; see Section 7.4 [Conversion of Strings and Num-
bers], page 75, for more information on how variable values are interpreted.

A.4 Patterns
An awk program is mostly composed of rules, each consisting of a pattern
followed by an action. The action is enclosed in ‘{’ and ‘}’. Either the
pattern may be missing, or the action may be missing, but not both. If the
pattern is missing, the action is executed for every input record. A missing
action is equivalent to ‘{ print }’, which prints the entire line.

Comments begin with the ‘#’ character, and continue until the end of the
line. Blank lines may be used to separate statements. Statements normally
end with a newline; however, this is not the case for lines ending in a ‘,’, ‘{’,
‘?’, ‘:’, ‘&&’, or ‘||’. Lines ending in do or else also have their statements
automatically continued on the following line. In other cases, a line can be
continued by ending it with a ‘\’, in which case the newline is ignored.

Multiple statements may be put on one line by separating each one with
a ‘;’. This applies to both the statements within the action part of a rule
(the usual case), and to the rule statements.

See Section 2.2.5 [Comments in awk Programs], page 13, for information
on awk’s commenting convention; see Section 2.6 [awk Statements Versus
Lines], page 16, for a description of the line continuation mechanism in awk.

A.4.1 Pattern Summary

awk patterns may be one of the following:

/regular expression/
relational expression
pattern && pattern
pattern || pattern
pattern ? pattern : pattern
(pattern)
! pattern
pattern1, pattern2
BEGIN
END

BEGIN and END are two special kinds of patterns that are not tested against
the input. The action parts of all BEGIN rules are concatenated as if all the
statements had been written in a single BEGIN rule. They are executed before
any of the input is read. Similarly, all the END rules are concatenated, and
executed when all the input is exhausted (or when an exit statement is
executed). BEGIN and END patterns cannot be combined with other patterns

250 Effective AWK Programming

in pattern expressions. BEGIN and END rules cannot have missing action
parts.

For /regular-expression/ patterns, the associated statement is exe-
cuted for each input record that matches the regular expression. Regular
expressions are summarized below.

A relational expression may use any of the operators defined below in the
section on actions. These generally test whether certain fields match certain
regular expressions.

The ‘&&’, ‘||’, and ‘!’ operators are logical “and,” logical “or,” and logical
“not,” respectively, as in C. They do short-circuit evaluation, also as in C,
and are used for combining more primitive pattern expressions. As in most
languages, parentheses may be used to change the order of evaluation.

The ‘?:’ operator is like the same operator in C. If the first pattern
matches, then the second pattern is matched against the input record; oth-
erwise, the third is matched. Only one of the second and third patterns is
matched.

The ‘pattern1, pattern2’ form of a pattern is called a range pattern.
It matches all input lines starting with a line that matches pattern1, and
continuing until a line that matches pattern2, inclusive. A range pattern
cannot be used as an operand of any of the pattern operators.

See Section 8.1 [Pattern Elements], page 91.

A.4.2 Regular Expressions

Regular expressions are based on POSIX EREs (extended regular expres-
sions). The escape sequences allowed in string constants are also valid in
regular expressions (see Section 4.2 [Escape Sequences], page 22). Regexps
are composed of characters as follows:

c matches the character c (assuming c is none of the characters
listed below).

\c matches the literal character c.

. matches any character, including newline. In strict POSIX
mode, ‘.’ does not match the nul character, which is a character
with all bits equal to zero.

^ matches the beginning of a string.

$ matches the end of a string.

[abc...] matches any of the characters abc . . . (character list).

[[:class:]]
matches any character in the character class class. Allowable
classes are alnum, alpha, blank, cntrl, digit, graph, lower,
print, punct, space, upper, and xdigit.

Appendix A: gawk Summary 251

[[.symbol.]]
matches the multi-character collating symbol symbol. gawk does
not currently support collating symbols.

[[=classname=]]
matches any of the equivalent characters in the current locale
named by the equivalence class classname. gawk does not cur-
rently support equivalence classes.

[^abc...]
matches any character except abc . . . (negated character list).

r1|r2 matches either r1 or r2 (alternation).

r1r2 matches r1, and then r2 (concatenation).

r+ matches one or more r’s.

r* matches zero or more r’s.

r? matches zero or one r’s.

(r) matches r (grouping).

r{n}
r{n,}
r{n,m} matches at least n, n to any number, or n to m occurrences of r

(interval expressions).

\y matches the empty string at either the beginning or the end of
a word.

\B matches the empty string within a word.

\< matches the empty string at the beginning of a word.

\> matches the empty string at the end of a word.

\w matches any word-constituent character (alphanumeric charac-
ters and the underscore).

\W matches any character that is not word-constituent.

\‘ matches the empty string at the beginning of a buffer (same as
a string in gawk).

\’ matches the empty string at the end of a buffer.

The various command line options control how gawk interprets characters
in regexps.

No options
In the default case, gawk provide all the facilities of POSIX reg-
exps and the GNU regexp operators described above. However,
interval expressions are not supported.

252 Effective AWK Programming

--posix Only POSIX regexps are supported, the GNU operators are not
special (e.g., ‘\w’ matches a literal ‘w’). Interval expressions are
allowed.

--traditional
Traditional Unix awk regexps are matched. The GNU operators
are not special, interval expressions are not available, and nei-
ther are the POSIX character classes ([[:alnum:]] and so on).
Characters described by octal and hexadecimal escape sequences
are treated literally, even if they represent regexp metacharac-
ters.

--re-interval
Allow interval expressions in regexps, even if ‘--traditional’
has been provided.

See Chapter 4 [Regular Expressions], page 21.

A.5 Actions
Action statements are enclosed in braces, ‘{’ and ‘}’. A missing action
statement is equivalent to ‘{ print }’.

Action statements consist of the usual assignment, conditional, and loop-
ing statements found in most languages. The operators, control statements,
and Input/Output statements available are similar to those in C.

Comments begin with the ‘#’ character, and continue until the end of the
line. Blank lines may be used to separate statements. Statements normally
end with a newline; however, this is not the case for lines ending in a ‘,’, ‘{’,
‘?’, ‘:’, ‘&&’, or ‘||’. Lines ending in do or else also have their statements
automatically continued on the following line. In other cases, a line can be
continued by ending it with a ‘\’, in which case the newline is ignored.

Multiple statements may be put on one line by separating each one with
a ‘;’. This applies to both the statements within the action part of a rule
(the usual case), and to the rule statements.

See Section 2.2.5 [Comments in awk Programs], page 13, for information
on awk’s commenting convention; see Section 2.6 [awk Statements Versus
Lines], page 16, for a description of the line continuation mechanism in awk.

A.5.1 Operators

The operators in awk, in order of decreasing precedence, are:

(...) Grouping.

$ Field reference.

++ -- Increment and decrement, both prefix and postfix.

^ Exponentiation (‘**’ may also be used, and ‘**=’ for the assign-
ment operator, but they are not specified in the POSIX stan-
dard).

Appendix A: gawk Summary 253

+ - ! Unary plus, unary minus, and logical negation.

* / % Multiplication, division, and modulus.

+ - Addition and subtraction.

space String concatenation.

< <= > >= != ==
The usual relational operators.

~ !~ Regular expression match, negated match.

in Array membership.

&& Logical “and”.

|| Logical “or”.

?: A conditional expression. This has the form ‘expr1 ? expr2 :
expr3’. If expr1 is true, the value of the expression is expr2;
otherwise it is expr3. Only one of expr2 and expr3 is evaluated.

= += -= *= /= %= ^=
Assignment. Both absolute assignment (var=value) and oper-
ator assignment (the other forms) are supported.

See Chapter 7 [Expressions], page 71.

A.5.2 Control Statements

The control statements are as follows:

if (condition) statement [else statement]
while (condition) statement
do statement while (condition)
for (expr1; expr2; expr3) statement
for (var in array) statement
break
continue
delete array[index]
delete array
exit [expression]
{ statements }

See Chapter 9 [Control Statements in Actions], page 99.

A.5.3 I/O Statements

The Input/Output statements are as follows:

getline Set $0 from next input record; set NF, NR, FNR. See Section 5.8
[Explicit Input with getline], page 50.

getline <file
Set $0 from next record of file; set NF.

254 Effective AWK Programming

getline var
Set var from next input record; set NR, FNR.

getline var <file
Set var from next record of file.

command | getline
Run command, piping its output into getline; sets $0, NF, NR.

command | getline var
Run command, piping its output into getline; sets var.

next Stop processing the current input record. The next input record
is read and processing starts over with the first pattern in the awk
program. If the end of the input data is reached, the END rule(s),
if any, are executed. See Section 9.7 [The next Statement],
page 104.

nextfile Stop processing the current input file. The next input record
read comes from the next input file. FILENAME is updated, FNR
is set to one, ARGIND is incremented, and processing starts over
with the first pattern in the awk program. If the end of the input
data is reached, the END rule(s), if any, are executed. Earlier ver-
sions of gawk used ‘next file’; this usage is still supported, but
is considered to be deprecated. See Section 9.8 [The nextfile
Statement], page 105.

print Prints the current record. See Chapter 6 [Printing Output],
page 57.

print expr-list
Prints expressions.

print expr-list > file
Prints expressions to file. If file does not exist, it is created. If
it does exist, its contents are deleted the first time the print is
executed.

print expr-list >> file
Prints expressions to file. The previous contents of file are re-
tained, and the output of print is appended to the file.

print expr-list | command
Prints expressions, sending the output down a pipe to command.
The pipeline to the command stays open until the close func-
tion is called.

printf fmt, expr-list
Format and print.

printf fmt, expr-list > file
Format and print to file. If file does not exist, it is created. If
it does exist, its contents are deleted the first time the printf
is executed.

Appendix A: gawk Summary 255

printf fmt, expr-list >> file
Format and print to file. The previous contents of file are re-
tained, and the output of printf is appended to the file.

printf fmt, expr-list | command
Format and print, sending the output down a pipe to command.
The pipeline to the command stays open until the close func-
tion is called.

getline returns zero on end of file, and −1 on an error. In the event of
an error, getline will set ERRNO to the value of a system-dependent string
that describes the error.

A.5.4 printf Summary

Conversion specification have the form %[flag][width][.prec]format. Items in
brackets are optional.

The awk printf statement and sprintf function accept the following
conversion specification formats:

%c An ASCII character. If the argument used for ‘%c’ is numeric, it
is treated as a character and printed. Otherwise, the argument
is assumed to be a string, and the only first character of that
string is printed.

%d
%i A decimal number (the integer part).

%e
%E A floating point number of the form ‘[-]d.dddddde[+-]dd’. The

‘%E’ format uses ‘E’ instead of ‘e’.

%f A floating point number of the form [-]ddd.dddddd.

%g
%G Use either the ‘%e’ or ‘%f’ formats, whichever produces a shorter

string, with non-significant zeros suppressed. ‘%G’ will use ‘%E’
instead of ‘%e’.

%o An unsigned octal number (again, an integer).

%s A character string.

%x
%X An unsigned hexadecimal number (an integer). The ‘%X’ format

uses ‘A’ through ‘F’ instead of ‘a’ through ‘f’ for decimal 10
through 15.

%% A single ‘%’ character; no argument is converted.

There are optional, additional parameters that may lie between the ‘%’
and the control letter:

- The expression should be left-justified within its field.

256 Effective AWK Programming

space For numeric conversions, prefix positive values with a space, and
negative values with a minus sign.

+ The plus sign, used before the width modifier (see below), says
to always supply a sign for numeric conversions, even if the data
to be formatted is positive. The ‘+’ overrides the space modifier.

Use an “alternate form” for certain control letters. For ‘o’, sup-
ply a leading zero. For ‘x’, and ‘X’, supply a leading ‘0x’ or ‘0X’
for a non-zero result. For ‘e’, ‘E’, and ‘f’, the result will always
contain a decimal point. For ‘g’, and ‘G’, trailing zeros are not
removed from the result.

0 A leading ‘0’ (zero) acts as a flag, that indicates output should
be padded with zeros instead of spaces. This applies even to
non-numeric output formats. This flag only has an effect when
the field width is wider than the value to be printed.

width The field should be padded to this width. The field is normally
padded with spaces. If the ‘0’ flag has been used, it is padded
with zeros.

.prec A number that specifies the precision to use when printing. For
the ‘e’, ‘E’, and ‘f’ formats, this specifies the number of digits
you want printed to the right of the decimal point. For the ‘g’,
and ‘G’ formats, it specifies the maximum number of significant
digits. For the ‘d’, ‘o’, ‘i’, ‘u’, ‘x’, and ‘X’ formats, it specifies
the minimum number of digits to print. For the ‘s’ format, it
specifies the maximum number of characters from the string that
should be printed.

Either or both of the width and prec values may be specified as ‘*’. In
that case, the particular value is taken from the argument list.

See Section 6.5 [Using printf Statements for Fancier Printing], page 60.

A.5.5 Special File Names

When doing I/O redirection from either print or printf into a file, or via
getline from a file, gawk recognizes certain special file names internally.
These file names allow access to open file descriptors inherited from gawk’s
parent process (usually the shell). The file names are:

/dev/stdin
The standard input.

/dev/stdout
The standard output.

/dev/stderr
The standard error output.

Appendix A: gawk Summary 257

/dev/fd/n
The file denoted by the open file descriptor n.

In addition, reading the following files provides process related informa-
tion about the running gawk program. All returned records are terminated
with a newline.

/dev/pid Returns the process ID of the current process.

/dev/ppid
Returns the parent process ID of the current process.

/dev/pgrpid
Returns the process group ID of the current process.

/dev/user
At least four space-separated fields, containing the return values
of the getuid, geteuid, getgid, and getegid system calls. If
there are any additional fields, they are the group IDs returned
by getgroups system call. (Multiple groups may not be sup-
ported on all systems.)

These file names may also be used on the command line to name data files.
These file names are only recognized internally if you do not actually have
files with these names on your system.

See Section 6.7 [Special File Names in gawk], page 67, for a longer de-
scription that provides the motivation for this feature.

A.5.6 Built-in Functions

awk provides a number of built-in functions for performing numeric opera-
tions, string related operations, and I/O related operations.

The built-in arithmetic functions are:

atan2(y, x)
the arctangent of y/x in radians.

cos(expr)
the cosine of expr, which is in radians.

exp(expr)
the exponential function (e ^ expr).

int(expr)
truncates to integer.

log(expr)
the natural logarithm of expr.

rand() a random number between zero and one.

sin(expr)
the sine of expr, which is in radians.

258 Effective AWK Programming

sqrt(expr)
the square root function.

srand([expr])
use expr as a new seed for the random number generator. If no
expr is provided, the time of day is used. The return value is
the previous seed for the random number generator.

awk has the following built-in string functions:

gensub(regex, subst, how [, target])
If how is a string beginning with ‘g’ or ‘G’, then replace each
match of regex in target with subst. Otherwise, replace the
how ’th occurrence. If target is not supplied, use $0. The return
value is the changed string; the original target is not modified.
Within subst, ‘\n’, where n is a digit from one to nine, can be
used to indicate the text that matched the n’th parenthesized
subexpression. This function is gawk-specific.

gsub(regex, subst [, target])
for each substring matching the regular expression regex in the
string target, substitute the string subst, and return the number
of substitutions. If target is not supplied, use $0.

index(str, search)
returns the index of the string search in the string str, or zero if
search is not present.

length([str])
returns the length of the string str. The length of $0 is returned
if no argument is supplied.

match(str, regex)
returns the position in str where the regular expression regex
occurs, or zero if regex is not present, and sets the values of
RSTART and RLENGTH.

split(str, arr [, regex])
splits the string str into the array arr on the regular expression
regex, and returns the number of elements. If regex is omitted,
FS is used instead. regex can be the null string, causing each
character to be placed into its own array element. The array arr
is cleared first.

sprintf(fmt, expr-list)
prints expr-list according to fmt, and returns the resulting string.

sub(regex, subst [, target])
just like gsub, but only the first matching substring is replaced.

substr(str, index [, len])
returns the len-character substring of str starting at index. If
len is omitted, the rest of str is used.

Appendix A: gawk Summary 259

tolower(str)
returns a copy of the string str, with all the upper-case characters
in str translated to their corresponding lower-case counterparts.
Non-alphabetic characters are left unchanged.

toupper(str)
returns a copy of the string str, with all the lower-case characters
in str translated to their corresponding upper-case counterparts.
Non-alphabetic characters are left unchanged.

The I/O related functions are:

close(expr)
Close the open file or pipe denoted by expr.

fflush([expr])
Flush any buffered output for the output file or pipe denoted by
expr. If expr is omitted, standard output is flushed. If expr is
the null string (""), all output buffers are flushed.

system(cmd-line)
Execute the command cmd-line, and return the exit status. If
your operating system does not support system, calling it will
generate a fatal error.

‘system("")’ can be used to force awk to flush any pending
output. This is more portable, but less obvious, than calling
fflush.

A.5.7 Time Functions

The following two functions are available for getting the current time of day,
and for formatting time stamps. They are specific to gawk.

systime()
returns the current time of day as the number of seconds since
a particular epoch (Midnight, January 1, 1970 UTC, on POSIX
systems).

strftime([format[, timestamp]])
formats timestamp according to the specification in format. The
current time of day is used if no timestamp is supplied. A default
format equivalent to the output of the date utility is used if
no format is supplied. See Section 12.5 [Functions for Dealing
with Time Stamps], page 137, for the details on the conversion
specifiers that strftime accepts.

See Chapter 12 [Built-in Functions], page 125, for a description of all of
awk’s built-in functions.

260 Effective AWK Programming

A.5.8 String Constants

String constants in awk are sequences of characters enclosed in double quotes
("). Within strings, certain escape sequences are recognized, as in C. These
are:

\\ A literal backslash.

\a The “alert” character; usually the ASCII BEL character.

\b Backspace.

\f Formfeed.

\n Newline.

\r Carriage return.

\t Horizontal tab.

\v Vertical tab.

\xhex digits
The character represented by the string of hexadecimal digits
following the ‘\x’. As in ANSI C, all following hexadecimal
digits are considered part of the escape sequence. E.g., "\x1B"
is a string containing the ASCII ESC (escape) character. (The
‘\x’ escape sequence is not in POSIX awk.)

\ddd The character represented by the one, two, or three digit se-
quence of octal digits. Thus, "\033" is also a string containing
the ASCII ESC (escape) character.

\c The literal character c, if c is not one of the above.

The escape sequences may also be used inside constant regular expressions
(e.g., the regexp /[\t\f\n\r\v]/ matches whitespace characters).

See Section 4.2 [Escape Sequences], page 22.

A.6 User-defined Functions
Functions in awk are defined as follows:

function name(parameter list) { statements }

Actual parameters supplied in the function call are used to instantiate the
formal parameters declared in the function. Arrays are passed by reference,
other variables are passed by value.

If there are fewer arguments passed than there are names in parameter-
list, the extra names are given the null string as their value. Extra names
have the effect of local variables.

The open-parenthesis in a function call of a user-defined function must
immediately follow the function name, without any intervening white space.
This is to avoid a syntactic ambiguity with the concatenation operator.

Appendix A: gawk Summary 261

The word func may be used in place of function (but not in POSIX
awk).

Use the return statement to return a value from a function.

See Chapter 13 [User-defined Functions], page 143.

A.7 Historical Features
There are two features of historical awk implementations that gawk supports.

First, it is possible to call the length built-in function not only with no
arguments, but even without parentheses!

a = length

is the same as either of

a = length()
a = length($0)

For example:

$ echo abcdef | awk ’{ print length }’
a 6

This feature is marked as “deprecated” in the POSIX standard, and gawk
will issue a warning about its use if ‘--lint’ is specified on the command line.
(The ability to use length this way was actually an accident of the original
Unix awk implementation. If any built-in function used $0 as its default
argument, it was possible to call that function without the parentheses. In
particular, it was common practice to use the length function in this fashion,
and this usage was documented in the awk manual page.)

The other historical feature is the use of either the break statement,
or the continue statement outside the body of a while, for, or do loop.
Traditional awk implementations have treated such usage as equivalent to
the next statement. More recent versions of Unix awk do not allow it. gawk
supports this usage if ‘--traditional’ has been specified.

See Section 14.1 [Command Line Options], page 151, for more information
about the ‘--posix’ and ‘--lint’ options.

Appendix B: Installing gawk 263

Appendix B Installing gawk

This appendix provides instructions for installing gawk on the various plat-
forms that are supported by the developers. The primary developers support
Unix (and one day, GNU), while the other ports were contributed. The file
ACKNOWLEDGMENT in the gawk distribution lists the electronic mail addresses
of the people who did the respective ports, and they are also provided in
Section B.7 [Reporting Problems and Bugs], page 275.

B.1 The gawk Distribution
This section first describes how to get the gawk distribution, how to extract
it, and then what is in the various files and subdirectories.

B.1.1 Getting the gawk Distribution

There are three ways you can get GNU software.

1. You can copy it from someone else who already has it.

2. You can order gawk directly from the Free Software Foundation. Soft-
ware distributions are available for Unix, MS-DOS, and VMS, on tape
and CD-ROM. The address is:

Free Software Foundation
59 Temple Place—Suite 330
Boston, MA 02111-1307 USA
Phone: +1-617-542-5942
Fax (including Japan): +1-617-542-2652
E-mail: gnu@prep.ai.mit.edu

Ordering from the FSF directly contributes to the support of the foun-
dation and to the production of more free software.

3. You can get gawk by using anonymous ftp to the Internet host
ftp.gnu.ai.mit.edu, in the directory /pub/gnu.

Here is a list of alternate ftp sites from which you can obtain GNU
software. When a site is listed as “site:directory” the directory indi-
cates the directory where GNU software is kept. You should use a site
that is geographically close to you.

Asia:

cair-archive.kaist.ac.kr:/pub/gnu
ftp.cs.titech.ac.jp
ftp.nectec.or.th:/pub/mirrors/gnu
utsun.s.u-tokyo.ac.jp:/ftpsync/prep

Australia:

archie.au:/gnu
(archie.oz or archie.oz.au for ACSnet)

264 Effective AWK Programming

Africa:

ftp.sun.ac.za:/pub/gnu

Middle East:

ftp.technion.ac.il:/pub/unsupported/gnu

Europe:

archive.eu.net
ftp.denet.dk
ftp.eunet.ch
ftp.funet.fi:/pub/gnu
ftp.ieunet.ie:pub/gnu
ftp.informatik.rwth-aachen.de:/pub/gnu
ftp.informatik.tu-muenchen.de
ftp.luth.se:/pub/unix/gnu
ftp.mcc.ac.uk
ftp.stacken.kth.se
ftp.sunet.se:/pub/gnu
ftp.univ-lyon1.fr:pub/gnu
ftp.win.tue.nl:/pub/gnu
irisa.irisa.fr:/pub/gnu
isy.liu.se
nic.switch.ch:/mirror/gnu
src.doc.ic.ac.uk:/gnu
unix.hensa.ac.uk:/pub/uunet/systems/gnu

South America:

ftp.inf.utfsm.cl:/pub/gnu
ftp.unicamp.br:/pub/gnu

Western Canada:

ftp.cs.ubc.ca:/mirror2/gnu

USA:

col.hp.com:/mirrors/gnu
f.ms.uky.edu:/pub3/gnu
ftp.cc.gatech.edu:/pub/gnu
ftp.cs.columbia.edu:/archives/gnu/prep
ftp.digex.net:/pub/gnu
ftp.hawaii.edu:/mirrors/gnu
ftp.kpc.com:/pub/mirror/gnu

Appendix B: Installing gawk 265

USA (continued):

ftp.uu.net:/systems/gnu
gatekeeper.dec.com:/pub/GNU
jaguar.utah.edu:/gnustuff
labrea.stanford.edu
mrcnext.cso.uiuc.edu:/pub/gnu
vixen.cso.uiuc.edu:/gnu
wuarchive.wustl.edu:/systems/gnu

B.1.2 Extracting the Distribution

gawk is distributed as a tar file compressed with the GNU Zip program,
gzip.

Once you have the distribution (for example, gawk-3.0.3.tar.gz), first
use gzip to expand the file, and then use tar to extract it. You can use the
following pipeline to produce the gawk distribution:

Under System V, add ’o’ to the tar flags
gzip -d -c gawk-3.0.3.tar.gz | tar -xvpf -

This will create a directory named gawk-3.0.3 in the current directory.

The distribution file name is of the form gawk-V.R.n.tar.gz. The V
represents the major version of gawk, the R represents the current release of
version V, and the n represents a patch level, meaning that minor bugs have
been fixed in the release. The current patch level is 3, but when retrieving
distributions, you should get the version with the highest version, release,
and patch level. (Note that release levels greater than or equal to 90 denote
“beta,” or non-production software; you may not wish to retrieve such a
version unless you don’t mind experimenting.)

If you are not on a Unix system, you will need to make other arrangements
for getting and extracting the gawk distribution. You should consult a local
expert.

B.1.3 Contents of the gawk Distribution

The gawk distribution has a number of C source files, documentation files,
subdirectories and files related to the configuration process (see Section B.2
[Compiling and Installing gawk on Unix], page 268), and several subdirecto-
ries related to different, non-Unix, operating systems.

various ‘.c’, ‘.y’, and ‘.h’ files
These files are the actual gawk source code.

README
README_d/README.*

Descriptive files: README for gawk under Unix, and the rest for
the various hardware and software combinations.

INSTALL A file providing an overview of the configuration and installation
process.

266 Effective AWK Programming

PORTS A list of systems to which gawk has been ported, and which have
successfully run the test suite.

ACKNOWLEDGMENT
A list of the people who contributed major parts of the code or
documentation.

ChangeLog
A detailed list of source code changes as bugs are fixed or im-
provements made.

NEWS A list of changes to gawk since the last release or patch.

COPYING The GNU General Public License.

FUTURES A brief list of features and/or changes being contemplated for
future releases, with some indication of the time frame for the
feature, based on its difficulty.

LIMITATIONS
A list of those factors that limit gawk’s performance. Most of
these depend on the hardware or operating system software, and
are not limits in gawk itself.

POSIX.STD
A description of one area where the POSIX standard for awk is
incorrect, and how gawk handles the problem.

PROBLEMS A file describing known problems with the current release.

doc/awkforai.txt
A short article describing why gawk is a good language for AI
(Artificial Intelligence) programming.

doc/README.card
doc/ad.block
doc/awkcard.in
doc/cardfonts
doc/colors
doc/macros
doc/no.colors
doc/setter.outline

The troff source for a five-color awk reference card. A modern
version of troff, such as GNU Troff (groff) is needed to pro-
duce the color version. See the file README.card for instructions
if you have an older troff.

doc/gawk.1
The troff source for a manual page describing gawk. This is
distributed for the convenience of Unix users.

Appendix B: Installing gawk 267

doc/gawk.texi
The Texinfo source file for this book. It should be processed
with TEX to produce a printed document, and with makeinfo
to produce an Info file.

doc/gawk.info
The generated Info file for this book.

doc/igawk.1
The troff source for a manual page describing the igawk pro-
gram presented in Section 16.2.9 [An Easy Way to Use Library
Functions], page 229.

doc/Makefile.in
The input file used during the configuration process to generate
the actual Makefile for creating the documentation.

Makefile.in
acconfig.h
aclocal.m4
configh.in
configure.in
configure
custom.h
missing/*

These files and subdirectory are used when configuring gawk
for various Unix systems. They are explained in detail in
Section B.2 [Compiling and Installing gawk on Unix], page 268.

awklib/extract.awk
awklib/Makefile.in

The awklib directory contains a copy of extract.awk (see
Section 16.2.7 [Extracting Programs from Texinfo Source Files],
page 225), which can be used to extract the sample programs
from the Texinfo source file for this book, and a Makefile.in
file, which configure uses to generate a Makefile. As part
of the process of building gawk, the library functions from
Chapter 15 [A Library of awk Functions], page 159, and the
igawk program from Section 16.2.9 [An Easy Way to Use Li-
brary Functions], page 229, are extracted into ready to use files.
They are installed as part of the installation process.

atari/* Files needed for building gawk on an Atari ST. See Section B.5
[Installing gawk on the Atari ST], page 273, for details.

pc/* Files needed for building gawk under MS-DOS and OS/2. See
Section B.4 [MS-DOS and OS/2 Installation and Compilation],
page 272, for details.

vms/* Files needed for building gawk under VMS. See Section B.3 [How
to Compile and Install gawk on VMS], page 269, for details.

268 Effective AWK Programming

test/* A test suite for gawk. You can use ‘make check’ from the top
level gawk directory to run your version of gawk against the test
suite. If gawk successfully passes ‘make check’ then you can be
confident of a successful port.

B.2 Compiling and Installing gawk on Unix
Usually, you can compile and install gawk by typing only two commands.
However, if you do use an unusual system, you may need to configure gawk
for your system yourself.

B.2.1 Compiling gawk for Unix

After you have extracted the gawk distribution, cd to gawk-3.0.3. Like most
GNU software, gawk is configured automatically for your Unix system by
running the configure program. This program is a Bourne shell script that
was generated automatically using GNU autoconf. (The autoconf software
is described fully in Autoconf—Generating Automatic Configuration Scripts,
which is available from the Free Software Foundation.)

To configure gawk, simply run configure:

sh ./configure

This produces a Makefile and config.h tailored to your system. The
config.h file describes various facts about your system. You may wish to
edit the Makefile to change the CFLAGS variable, which controls the com-
mand line options that are passed to the C compiler (such as optimization
levels, or compiling for debugging).

Alternatively, you can add your own values for most make variables, such
as CC and CFLAGS, on the command line when running configure:

CC=cc CFLAGS=-g sh ./configure

See the file INSTALL in the gawk distribution for all the details.

After you have run configure, and possibly edited the Makefile, type:

make

and shortly thereafter, you should have an executable version of gawk. That’s
all there is to it! (If these steps do not work, please send in a bug report;
see Section B.7 [Reporting Problems and Bugs], page 275.)

B.2.2 The Configuration Process

(This section is of interest only if you know something about using the C
language and the Unix operating system.)

The source code for gawk generally attempts to adhere to formal stan-
dards wherever possible. This means that gawk uses library routines that
are specified by the ANSI C standard and by the POSIX operating system
interface standard. When using an ANSI C compiler, function prototypes
are used to help improve the compile-time checking.

Appendix B: Installing gawk 269

Many Unix systems do not support all of either the ANSI or the POSIX
standards. The missing subdirectory in the gawk distribution contains re-
placement versions of those subroutines that are most likely to be missing.

The config.h file that is created by the configure program contains
definitions that describe features of the particular operating system where
you are attempting to compile gawk. The three things described by this
file are what header files are available, so that they can be correctly in-
cluded, what (supposedly) standard functions are actually available in your
C libraries, and other miscellaneous facts about your variant of Unix. For
example, there may not be an st_blksize element in the stat structure.
In this case ‘HAVE_ST_BLKSIZE’ would be undefined.

It is possible for your C compiler to lie to configure. It may do so by not
exiting with an error when a library function is not available. To get around
this, you can edit the file custom.h. Use an ‘#ifdef’ that is appropriate
for your system, and either #define any constants that configure should
have defined but didn’t, or #undef any constants that configure defined
and should not have. custom.h is automatically included by config.h.

It is also possible that the configure program generated by autoconf will
not work on your system in some other fashion. If you do have a problem, the
file configure.in is the input for autoconf. You may be able to change this
file, and generate a new version of configure that will work on your system.
See Section B.7 [Reporting Problems and Bugs], page 275, for information
on how to report problems in configuring gawk. The same mechanism may
be used to send in updates to configure.in and/or custom.h.

B.3 How to Compile and Install gawk on VMS
This section describes how to compile and install gawk under VMS.

B.3.1 Compiling gawk on VMS

To compile gawk under VMS, there is a DCL command procedure that will
issue all the necessary CC and LINK commands, and there is also a Makefile
for use with the MMS utility. From the source directory, use either

$ @[.VMS]VMSBUILD.COM

or

$ MMS/DESCRIPTION=[.VMS]DESCRIP.MMS GAWK

Depending upon which C compiler you are using, follow one of the sets
of instructions in this table:

VAX C V3.x
Use either vmsbuild.com or descrip.mms as is. These use
CC/OPTIMIZE=NOLINE, which is essential for Version 3.0.

VAX C V2.x
You must have Version 2.3 or 2.4; older ones won’t work. Edit
either vmsbuild.com or descrip.mms according to the com-

270 Effective AWK Programming

ments in them. For vmsbuild.com, this just entails removing
two ‘!’ delimiters. Also edit config.h (which is a copy of file
[.config]vms-conf.h) and comment out or delete the two lines
‘#define __STDC__ 0’ and ‘#define VAXC_BUILTINS’ near the
end.

GNU C Edit vmsbuild.com or descrip.mms; the changes are different
from those for VAX C V2.x, but equally straightforward. No
changes to config.h should be needed.

DEC C Edit vmsbuild.com or descrip.mms according to their com-
ments. No changes to config.h should be needed.

gawk has been tested under VAX/VMS 5.5-1 using VAX C V3.2, GNU C
1.40 and 2.3. It should work without modifications for VMS V4.6 and up.

B.3.2 Installing gawk on VMS

To install gawk, all you need is a “foreign” command, which is a DCL symbol
whose value begins with a dollar sign. For example:

$ GAWK :== $disk1:[gnubin]GAWK

(Substitute the actual location of gawk.exe for ‘$disk1:[gnubin]’.) The
symbol should be placed in the login.com of any user who wishes to run
gawk, so that it will be defined every time the user logs on. Alternatively,
the symbol may be placed in the system-wide sylogin.com procedure, which
will allow all users to run gawk.

Optionally, the help entry can be loaded into a VMS help library:

$ LIBRARY/HELP SYS$HELP:HELPLIB [.VMS]GAWK.HLP

(You may want to substitute a site-specific help library rather than the
standard VMS library ‘HELPLIB’.) After loading the help text,

$ HELP GAWK

will provide information about both the gawk implementation and the awk
programming language.

The logical name ‘AWK_LIBRARY’ can designate a default location for awk
program files. For the ‘-f’ option, if the specified filename has no device
or directory path information in it, gawk will look in the current directory
first, then in the directory specified by the translation of ‘AWK_LIBRARY’ if
the file was not found. If after searching in both directories, the file still is
not found, then gawk appends the suffix ‘.awk’ to the filename and the file
search will be re-tried. If ‘AWK_LIBRARY’ is not defined, that portion of the
file search will fail benignly.

B.3.3 Running gawk on VMS

Command line parsing and quoting conventions are significantly different
on VMS, so examples in this book or from other sources often need minor
changes. They are minor though, and all awk programs should run correctly.

Appendix B: Installing gawk 271

Here are a couple of trivial tests:

$ gawk -- "BEGIN {print ""Hello, World!""}"
$ gawk -"W" version
! could also be -"W version" or "-W version"

Note that upper-case and mixed-case text must be quoted.

The VMS port of gawk includes a DCL-style interface in addition to the
original shell-style interface (see the help entry for details). One side-effect
of dual command line parsing is that if there is only a single parameter (as
in the quoted string program above), the command becomes ambiguous. To
work around this, the normally optional ‘--’ flag is required to force Unix
style rather than DCL parsing. If any other dash-type options (or multi-
ple parameters such as data files to be processed) are present, there is no
ambiguity and ‘--’ can be omitted.

The default search path when looking for awk program files specified
by the ‘-f’ option is "SYS$DISK:[],AWK_LIBRARY:". The logical name
‘AWKPATH’ can be used to override this default. The format of ‘AWKPATH’
is a comma-separated list of directory specifications. When defining it, the
value should be quoted so that it retains a single translation, and not a
multi-translation RMS searchlist.

B.3.4 Building and Using gawk on VMS POSIX

Ignore the instructions above, although vms/gawk.hlp should still be made
available in a help library. The source tree should be unpacked into a con-
tainer file subsystem rather than into the ordinary VMS file system. Make
sure that the two scripts, configure and vms/posix-cc.sh, are executable;
use ‘chmod +x’ on them if necessary. Then execute the following two com-
mands:

psx> CC=vms/posix-cc.sh configure
psx> make CC=c89 gawk

The first command will construct files config.h and Makefile out of tem-
plates, using a script to make the C compiler fit configure’s expectations.
The second command will compile and link gawk using the C compiler di-
rectly; ignore any warnings from make about being unable to redefine CC.
configure will take a very long time to execute, but at least it provides
incremental feedback as it runs.

This has been tested with VAX/VMS V6.2, VMS POSIX V2.0, and DEC
C V5.2.

Once built, gawk will work like any other shell utility. Unlike the normal
VMS port of gawk, no special command line manipulation is needed in the
VMS POSIX environment.

272 Effective AWK Programming

B.4 MS-DOS and OS/2 Installation and
Compilation

If you have received a binary distribution prepared by the DOS maintainers,
then gawk and the necessary support files will appear under the gnu directory,
with executables in gnu/bin, libraries in gnu/lib/awk, and manual pages
under gnu/man. This is designed for easy installation to a /gnu directory on
your drive, but the files can be installed anywhere provided AWKPATH is set
properly. Regardless of the installation directory, the first line of igawk.cmd
and igawk.bat (in gnu/bin) may need to be edited.

The binary distribution will contain a separate file describing the con-
tents. In particular, it may include more than one version of the gawk
executable. OS/2 binary distributions may have a different arrangement,
but installation is similar.

The OS/2 and MS-DOS versions of gawk search for program files as
described in Section 14.3 [The AWKPATH Environment Variable], page 156.
However, semicolons (rather than colons) separate elements in the AWKPATH
variable. If AWKPATH is not set or is empty, then the default search path is
".;c:/lib/awk;c:/gnu/lib/awk".

An sh-like shell (as opposed to command.com under MS-DOS or cmd.exe
under OS/2) may be useful for awk programming. Ian Stewartson has writ-
ten an excellent shell for MS-DOS and OS/2, and a ksh clone and GNU
Bash are available for OS/2. The file README_d/README.pc in the gawk dis-
tribution contains information on these shells. Users of Stewartson’s shell
on DOS should examine its documentation on handling of command-lines.
In particular, the setting for gawk in the shell configuration may need to be
changed, and the ignoretype option may also be of interest.

gawk can be compiled for MS-DOS and OS/2 using the GNU development
tools from DJ Delorie (DJGPP, MS-DOS-only) or Eberhard Mattes (EMX,
MS-DOS and OS/2). Microsoft C can be used to build 16-bit versions for
MS-DOS and OS/2. The file README_d/README.pc in the gawk distribution
contains additional notes, and pc/Makefile contains important notes on
compilation options.

To build gawk, copy the files in the pc directory (except for ChangeLog)
to the directory with the rest of the gawk sources. The Makefile contains
a configuration section with comments, and may need to be edited in order
to work with your make utility.

The Makefile contains a number of targets for building various MS-DOS
and OS/2 versions. A list of targets will be printed if the make command
is given without a target. As an example, to build gawk using the DJGPP
tools, enter ‘make djgpp’.

Using make to run the standard tests and to install gawk requires addi-
tional Unix-like tools, including sh, sed, and cp. In order to run the tests,
the test/*.ok files may need to be converted so that they have the usual
DOS-style end-of-line markers. Most of the tests will work properly with

Appendix B: Installing gawk 273

Stewartson’s shell along with the companion utilities or appropriate GNU
utilities. However, some editing of test/Makefile is required. It is recom-
mended that the file pc/Makefile.tst be copied to test/Makefile as a
replacement. Details can be found in README_d/README.pc.

B.5 Installing gawk on the Atari ST
There are no substantial differences when installing gawk on various Atari
models. Compiled gawk executables do not require a large amount of memory
with most awk programs and should run on all Motorola processor based
models (called further ST, even if that is not exactly right).

In order to use gawk, you need to have a shell, either text or graphics,
that does not map all the characters of a command line to upper-case. Main-
taining case distinction in option flags is very important (see Section 14.1
[Command Line Options], page 151). These days this is the default, and it
may only be a problem for some very old machines. If your system does not
preserve the case of option flags, you will need to upgrade your tools. Sup-
port for I/O redirection is necessary to make it easy to import awk programs
from other environments. Pipes are nice to have, but not vital.

B.5.1 Compiling gawk on the Atari ST

A proper compilation of gawk sources when sizeof(int) differs from
sizeof(void *) requires an ANSI C compiler. An initial port was done
with gcc. You may actually prefer executables where ints are four bytes
wide, but the other variant works as well.

You may need quite a bit of memory when trying to recompile the gawk
sources, as some source files (regex.c in particular) are quite big. If you
run out of memory compiling such a file, try reducing the optimization level
for this particular file; this may help.

With a reasonable shell (Bash will do), and in particular if you run Linux,
MiNT or a similar operating system, you have a pretty good chance that
the configure utility will succeed. Otherwise sample versions of config.h
and Makefile.st are given in the atari subdirectory and can be edited
and copied to the corresponding files in the main source directory. Even if
configure produced something, it might be advisable to compare its results
with the sample versions and possibly make adjustments.

Some gawk source code fragments depend on a preprocessor define
‘atarist’. This basically assumes the TOS environment with gcc. Modify
these sections as appropriate if they are not right for your environment. Also
see the remarks about AWKPATH and envsep in Section B.5.2 [Running gawk
on the Atari ST], page 274.

As shipped, the sample config.h claims that the system function is miss-
ing from the libraries, which is not true, and an alternative implementation
of this function is provided in atari/system.c. Depending upon your par-

274 Effective AWK Programming

ticular combination of shell and operating system, you may wish to change
the file to indicate that system is available.

B.5.2 Running gawk on the Atari ST

An executable version of gawk should be placed, as usual, anywhere in your
PATH where your shell can find it.

While executing, gawk creates a number of temporary files. When using
gcc libraries for TOS, gawk looks for either of the environment variables
TEMP or TMPDIR, in that order. If either one is found, its value is assumed to
be a directory for temporary files. This directory must exist, and if you can
spare the memory, it is a good idea to put it on a RAM drive. If neither TEMP
nor TMPDIR are found, then gawk uses the current directory for its temporary
files.

The ST version of gawk searches for its program files as described in
Section 14.3 [The AWKPATH Environment Variable], page 156. The default
value for the AWKPATH variable is taken from DEFPATH defined in Makefile.
The sample gcc/TOS Makefile for the ST in the distribution sets DEFPATH
to ".,c:\lib\awk,c:\gnu\lib\awk". The search path can be modified by
explicitly setting AWKPATH to whatever you wish. Note that colons cannot
be used on the ST to separate elements in the AWKPATH variable, since they
have another, reserved, meaning. Instead, you must use a comma to sepa-
rate elements in the path. When recompiling, the separating character can
be modified by initializing the envsep variable in atari/gawkmisc.atr to
another value.

Although awk allows great flexibility in doing I/O redirections from within
a program, this facility should be used with care on the ST running under
TOS. In some circumstances the OS routines for file handle pool processing
lose track of certain events, causing the computer to crash, and requiring
a reboot. Often a warm reboot is sufficient. Fortunately, this happens
infrequently, and in rather esoteric situations. In particular, avoid having
one part of an awk program using print statements explicitly redirected
to "/dev/stdout", while other print statements use the default standard
output, and a calling shell has redirected standard output to a file.

When gawk is compiled with the ST version of gcc and its usual libraries,
it will accept both ‘/’ and ‘\’ as path separators. While this is convenient,
it should be remembered that this removes one, technically valid, charac-
ter (‘/’) from your file names, and that it may create problems for external
programs, called via the system function, which may not support this con-
vention. Whenever it is possible that a file created by gawk will be used
by some other program, use only backslashes. Also remember that in awk,
backslashes in strings have to be doubled in order to get literal backslashes
(see Section 4.2 [Escape Sequences], page 22).

Appendix B: Installing gawk 275

B.6 Installing gawk on an Amiga
You can install gawk on an Amiga system using a Unix emulation environ-
ment available via anonymous ftp from ftp.ninemoons.com in the directory
pub/ade/current. This includes a shell based on pdksh. The primary com-
ponent of this environment is a Unix emulation library, ixemul.lib.

A more complete distribution for the Amiga is available on the Geek
Gadgets CD-ROM from:

CRONUS
1840 E. Warner Road #105-265
Tempe, AZ 85284 USA
US Toll Free: (800) 804-0833
Phone: +1-602-491-0442
FAX: +1-602-491-0048
Email: info@ninemoons.com
WWW: http://www.ninemoons.com
Anonymous ftp site: ftp.ninemoons.com

Once you have the distribution, you can configure gawk simply by running
configure:

configure -v m68k-amigaos

Then run make, and you should be all set! (If these steps do not work,
please send in a bug report; see Section B.7 [Reporting Problems and Bugs],
page 275.)

B.7 Reporting Problems and Bugs
There is nothing more dangerous than a bored archeologist.
The Hitchhiker’s Guide to the Galaxy

If you have problems with gawk or think that you have found a bug,
please report it to the developers; we cannot promise to do anything but we
might well want to fix it.

Before reporting a bug, make sure you have actually found a real bug.
Carefully reread the documentation and see if it really says you can do what
you’re trying to do. If it’s not clear whether you should be able to do
something or not, report that too; it’s a bug in the documentation!

Before reporting a bug or trying to fix it yourself, try to isolate it to
the smallest possible awk program and input data file that reproduces the
problem. Then send us the program and data file, some idea of what kind
of Unix system you’re using, and the exact results gawk gave you. Also say
what you expected to occur; this will help us decide whether the problem
was really in the documentation.

Once you have a precise problem, there are two e-mail addresses you can
send mail to.

276 Effective AWK Programming

Internet: ‘bug-gnu-utils@prep.ai.mit.edu’

UUCP: ‘uunet!prep.ai.mit.edu!bug-gnu-utils’

Please include the version number of gawk you are using. You can get
this information with the command ‘gawk --version’. You should send
a carbon copy of your mail to Arnold Robbins, who can be reached at
‘arnold@gnu.ai.mit.edu’.

Important! Do not try to report bugs in gawk by posting to the
Usenet/Internet newsgroup comp.lang.awk. While the gawk developers do
occasionally read this newsgroup, there is no guarantee that we will see
your posting. The steps described above are the official, recognized ways for
reporting bugs.

Non-bug suggestions are always welcome as well. If you have questions
about things that are unclear in the documentation or are just obscure fea-
tures, ask Arnold Robbins; he will try to help you out, although he may not
have the time to fix the problem. You can send him electronic mail at the
Internet address above.

If you find bugs in one of the non-Unix ports of gawk, please send an
electronic mail message to the person who maintains that port. They are
listed below, and also in the README file in the gawk distribution. Information
in the README file should be considered authoritative if it conflicts with this
book.

Appendix B: Installing gawk 277

The people maintaining the non-Unix ports of gawk are:

MS-DOS Scott Deifik, ‘scottd@amgen.com’, and Darrel Hankerson,
‘hankedr@mail.auburn.edu’.

OS/2 Kai Uwe Rommel, ‘rommel@ars.de’.

VMS Pat Rankin, ‘rankin@eql.caltech.edu’.

Atari ST Michal Jaegermann, ‘michal@gortel.phys.ualberta.ca’.

Amiga Fred Fish, ‘fnf@ninemoons.com’.

If your bug is also reproducible under Unix, please send copies of your
report to the general GNU bug list, as well as to Arnold Robbins, at the
addresses listed above.

B.8 Other Freely Available awk Implementations
It’s kind of fun to put comments like this in your awk code.

// Do C++ comments work? answer: yes! of course
Michael Brennan

There are two other freely available awk implementations. This section
briefly describes where to get them.

Unix awk Brian Kernighan has been able to make his implementation of
awk freely available. You can get it via anonymous ftp to the
host netlib.att.com. Change directory to /netlib/research.
Use “binary” or “image” mode, and retrieve awk.bundle.Z.

This is a shell archive that has been compressed with
the compress utility. It can be uncompressed with either
uncompress or the GNU gunzip utility.

This version requires an ANSI C compiler; GCC (the GNU C
compiler) works quite nicely.

mawk Michael Brennan has written an independent implementation
of awk, called mawk. It is available under the GPL (see [GNU
GENERAL PUBLIC LICENSE], page 293), just as gawk is.

You can get it via anonymous ftp to the host ftp.whidbey.net.
Change directory to /pub/brennan. Use “binary” or “image”
mode, and retrieve mawk1.3.3.tar.gz (or the latest version that
is there).

gunzip may be used to decompress this file. Installation is sim-
ilar to gawk’s (see Section B.2 [Compiling and Installing gawk
on Unix], page 268).

Appendix C: Implementation Notes 279

Appendix C Implementation Notes

This appendix contains information mainly of interest to implementors and
maintainers of gawk. Everything in it applies specifically to gawk, and not
to other implementations.

C.1 Downward Compatibility and Debugging
See Section 17.5 [Extensions in gawk Not in POSIX awk], page 239, for a
summary of the GNU extensions to the awk language and program. All of
these features can be turned off by invoking gawk with the ‘--traditional’
option, or with the ‘--posix’ option.

If gawk is compiled for debugging with ‘-DDEBUG’, then there is one more
option available on the command line:

-W parsedebug
--parsedebug

Print out the parse stack information as the program is being
parsed.

This option is intended only for serious gawk developers, and not for the
casual user. It probably has not even been compiled into your version of
gawk, since it slows down execution.

C.2 Making Additions to gawk

If you should find that you wish to enhance gawk in a significant fashion,
you are perfectly free to do so. That is the point of having free software;
the source code is available, and you are free to change it as you wish (see
[GNU GENERAL PUBLIC LICENSE], page 293).

This section discusses the ways you might wish to change gawk, and any
considerations you should bear in mind.

C.2.1 Adding New Features

You are free to add any new features you like to gawk. However, if you want
your changes to be incorporated into the gawk distribution, there are several
steps that you need to take in order to make it possible for me to include to
your changes.

1. Get the latest version. It is much easier for me to integrate changes
if they are relative to the most recent distributed version of gawk. If
your version of gawk is very old, I may not be able to integrate them
at all. See Section B.1.1 [Getting the gawk Distribution], page 263, for
information on getting the latest version of gawk.

2. Follow the GNU Coding Standards. This document describes how
GNU software should be written. If you haven’t read it, please do so,
preferably before starting to modify gawk. (The GNU Coding Standards
are available as part of the Autoconf distribution, from the FSF.)

280 Effective AWK Programming

3. Use the gawk coding style. The C code for gawk follows the instructions
in the GNU Coding Standards, with minor exceptions. The code is
formatted using the traditional “K&R” style, particularly as regards
the placement of braces and the use of tabs. In brief, the coding rules
for gawk are:

• Use old style (non-prototype) function headers when defining func-
tions.

• Put the name of the function at the beginning of its own line.

• Put the return type of the function, even if it is int, on the line
above the line with the name and arguments of the function.

• The declarations for the function arguments should not be indented.

• Put spaces around parentheses used in control structures (if,
while, for, do, switch and return).

• Do not put spaces in front of parentheses used in function calls.

• Put spaces around all C operators, and after commas in function
calls.

• Do not use the comma operator to produce multiple side-effects,
except in for loop initialization and increment parts, and in macro
bodies.

• Use real tabs for indenting, not spaces.

• Use the “K&R” brace layout style.

• Use comparisons against NULL and ’\0’ in the conditions of if,
while and for statements, and in the cases of switch statements,
instead of just the plain pointer or character value.

• Use the TRUE, FALSE, and NULL symbolic constants, and the char-
acter constant ’\0’ where appropriate, instead of 1 and 0.

• Provide one-line descriptive comments for each function.

• Do not use ‘#elif’. Many older Unix C compilers cannot handle
it.

• Do not use the alloca function for allocating memory off the stack.
Its use causes more portability trouble than the minor benefit of
not having to free the storage. Instead, use malloc and free.

If I have to reformat your code to follow the coding style used in gawk,
I may not bother.

4. Be prepared to sign the appropriate paperwork. In order for the FSF to
distribute your changes, you must either place those changes in the pub-
lic domain, and submit a signed statement to that effect, or assign the
copyright in your changes to the FSF. Both of these actions are easy to
do, and many people have done so already. If you have questions, please
contact me (see Section B.7 [Reporting Problems and Bugs], page 275),
or gnu@prep.ai.mit.edu.

Appendix C: Implementation Notes 281

5. Update the documentation. Along with your new code, please supply
new sections and or chapters for this book. If at all possible, please
use real Texinfo, instead of just supplying unformatted ASCII text (al-
though even that is better than no documentation at all). Conventions
to be followed in Effective AWK Programming are provided after the
‘@bye’ at the end of the Texinfo source file. If possible, please update
the man page as well.

You will also have to sign paperwork for your documentation changes.

6. Submit changes as context diffs or unified diffs. Use ‘diff -c -r -N’
or ‘diff -u -r -N’ to compare the original gawk source tree with your
version. (I find context diffs to be more readable, but unified diffs are
more compact.) I recommend using the GNU version of diff. Send
the output produced by either run of diff to me when you submit your
changes. See Section B.7 [Reporting Problems and Bugs], page 275, for
the electronic mail information.

Using this format makes it easy for me to apply your changes to the
master version of the gawk source code (using patch). If I have to apply
the changes manually, using a text editor, I may not do so, particularly
if there are lots of changes.

Although this sounds like a lot of work, please remember that while you
may write the new code, I have to maintain it and support it, and if it isn’t
possible for me to do that with a minimum of extra work, then I probably
will not.

C.2.2 Porting gawk to a New Operating System

If you wish to port gawk to a new operating system, there are several steps
to follow.

1. Follow the guidelines in Section C.2.1 [Adding New Features], page 279,
concerning coding style, submission of diffs, and so on.

2. When doing a port, bear in mind that your code must co-exist peacefully
with the rest of gawk, and the other ports. Avoid gratuitous changes
to the system-independent parts of the code. If at all possible, avoid
sprinkling ‘#ifdef’s just for your port throughout the code.

If the changes needed for a particular system affect too much of the code,
I probably will not accept them. In such a case, you will, of course, be
able to distribute your changes on your own, as long as you comply with
the GPL (see [GNU GENERAL PUBLIC LICENSE], page 293).

3. A number of the files that come with gawk are maintained by other peo-
ple at the Free Software Foundation. Thus, you should not change them
unless it is for a very good reason. I.e. changes are not out of the ques-
tion, but changes to these files will be scrutinized extra carefully. The
files are alloca.c, getopt.h, getopt.c, getopt1.c, regex.h, regex.c,
dfa.h, dfa.c, install-sh, and mkinstalldirs.

282 Effective AWK Programming

4. Be willing to continue to maintain the port. Non-Unix operating sys-
tems are supported by volunteers who maintain the code needed to
compile and run gawk on their systems. If no-one volunteers to main-
tain a port, that port becomes unsupported, and it may be necessary
to remove it from the distribution.

5. Supply an appropriate gawkmisc.??? file. Each port has its own
gawkmisc.??? that implements certain operating system specific func-
tions. This is cleaner than a plethora of ‘#ifdef’s scattered throughout
the code. The gawkmisc.c in the main source directory includes the ap-
propriate gawkmisc.??? file from each subdirectory. Be sure to update
it as well.

Each port’s gawkmisc.??? file has a suffix reminiscent of the ma-
chine or operating system for the port. For example, pc/gawkmisc.pc
and vms/gawkmisc.vms. The use of separate suffixes, instead of plain
gawkmisc.c, makes it possible to move files from a port’s subdirec-
tory into the main subdirectory, without accidentally destroying the
real gawkmisc.c file. (Currently, this is only an issue for the MS-DOS
and OS/2 ports.)

6. Supply a Makefile and any other C source and header files that are
necessary for your operating system. All your code should be in a
separate subdirectory, with a name that is the same as, or reminiscent
of, either your operating system or the computer system. If possible,
try to structure things so that it is not necessary to move files out of the
subdirectory into the main source directory. If that is not possible, then
be sure to avoid using names for your files that duplicate the names of
files in the main source directory.

7. Update the documentation. Please write a section (or sections) for this
book describing the installation and compilation steps needed to install
and/or compile gawk for your system.

8. Be prepared to sign the appropriate paperwork. In order for the FSF
to distribute your code, you must either place your code in the public
domain, and submit a signed statement to that effect, or assign the
copyright in your code to the FSF.

Following these steps will make it much easier to integrate your changes
into gawk, and have them co-exist happily with the code for other operating
systems that is already there.

In the code that you supply, and that you maintain, feel free to use a
coding style and brace layout that suits your taste.

C.3 Probable Future Extensions
AWK is a language similar to PERL, only considerably more elegant.
Arnold Robbins

Appendix C: Implementation Notes 283

Hey!
Larry Wall

This section briefly lists extensions and possible improvements that indi-
cate the directions we are currently considering for gawk. The file FUTURES
in the gawk distributions lists these extensions as well.

This is a list of probable future changes that will be usable by the awk
language programmer.

Localization
The GNU project is starting to support multiple languages. It
will at least be possible to make gawk print its warnings and error
messages in languages other than English. It may be possible
for awk programs to also use the multiple language facilities,
separate from gawk itself.

Databases It may be possible to map a GDBM/NDBM/SDBM file into an
awk array.

A PROCINFO Array
The special files that provide process-related information (see
Section 6.7 [Special File Names in gawk], page 67) may be su-
perseded by a PROCINFO array that would provide the same in-
formation, in an easier to access fashion.

More lint warnings
There are more things that could be checked for portability.

Control of subprocess environment
Changes made in gawk to the array ENVIRON may be propagated
to subprocesses run by gawk.

This is a list of probable improvements that will make gawk perform
better.

An Improved Version of dfa
The dfa pattern matcher from GNU grep has some problems.
Either a new version or a fixed one will deal with some important
regexp matching issues.

Use of GNU malloc
The GNU version of malloc could potentially speed up gawk,
since it relies heavily on the use of dynamic memory allocation.

Use of the rx regexp library
The rx regular expression library could potentially speed up
all regexp operations that require knowing the exact location
of matches. This includes record termination, field and array
splitting, and the sub, gsub, gensub and match functions.

284 Effective AWK Programming

C.4 Suggestions for Improvements
Here are some projects that would-be gawk hackers might like to take on.
They vary in size from a few days to a few weeks of programming, depending
on which one you choose and how fast a programmer you are. Please send
any improvements you write to the maintainers at the GNU project. See
Section C.2.1 [Adding New Features], page 279, for guidelines to follow when
adding new features to gawk. See Section B.7 [Reporting Problems and
Bugs], page 275, for information on contacting the maintainers.

1. Compilation of awk programs: gawk uses a Bison (YACC-like) parser
to convert the script given it into a syntax tree; the syntax tree is then
executed by a simple recursive evaluator. This method incurs a lot of
overhead, since the recursive evaluator performs many procedure calls
to do even the simplest things.

It should be possible for gawk to convert the script’s parse tree into
a C program which the user would then compile, using the normal C
compiler and a special gawk library to provide all the needed functions
(regexps, fields, associative arrays, type coercion, and so on).

An easier possibility might be for an intermediate phase of awk to con-
vert the parse tree into a linear byte code form like the one used in
GNU Emacs Lisp. The recursive evaluator would then be replaced by a
straight line byte code interpreter that would be intermediate in speed
between running a compiled program and doing what gawk does now.

2. The programs in the test suite could use documenting in this book.

3. See the FUTURES file for more ideas. Contact us if you would seriously
like to tackle any of the items listed there.

Appendix D: Glossary 285

Appendix D Glossary

Action A series of awk statements attached to a rule. If the rule’s pat-
tern matches an input record, awk executes the rule’s action.
Actions are always enclosed in curly braces. See Section 8.2
[Overview of Actions], page 96.

Amazing awk Assembler
Henry Spencer at the University of Toronto wrote a retargetable
assembler completely as awk scripts. It is thousands of lines
long, including machine descriptions for several eight-bit micro-
computers. It is a good example of a program that would have
been better written in another language.

Amazingly Workable Formatter (awf)
Henry Spencer at the University of Toronto wrote a formatter
that accepts a large subset of the ‘nroff -ms’ and ‘nroff -man’
formatting commands, using awk and sh.

ANSI The American National Standards Institute. This organization
produces many standards, among them the standards for the C
and C++ programming languages.

Assignment
An awk expression that changes the value of some awk variable
or data object. An object that you can assign to is called an
lvalue. The assigned values are called rvalues. See Section 7.7
[Assignment Expressions], page 77.

awk Language
The language in which awk programs are written.

awk Program
An awk program consists of a series of patterns and actions,
collectively known as rules. For each input record given to the
program, the program’s rules are all processed in turn. awk
programs may also contain function definitions.

awk Script Another name for an awk program.

Bash The GNU version of the standard shell (the Bourne-Again shell).
See “Bourne Shell.”

BBS See “Bulletin Board System.”

Boolean Expression
Named after the English mathematician Boole. See “Logical
Expression.”

Bourne Shell
The standard shell (/bin/sh) on Unix and Unix-like systems,
originally written by Steven R. Bourne. Many shells (Bash, ksh,

286 Effective AWK Programming

pdksh, zsh) are generally upwardly compatible with the Bourne
shell.

Built-in Function
The awk language provides built-in functions that perform var-
ious numerical, time stamp related, and string computations.
Examples are sqrt (for the square root of a number) and substr
(for a substring of a string). See Chapter 12 [Built-in Functions],
page 125.

Built-in Variable
ARGC, ARGIND, ARGV, CONVFMT, ENVIRON, ERRNO, FIELDWIDTHS,
FILENAME, FNR, FS, IGNORECASE, NF, NR, OFMT, OFS, ORS,
RLENGTH, RSTART, RS, RT, and SUBSEP, are the variables that
have special meaning to awk. Changing some of them affects
awk’s running environment. Several of these variables are spe-
cific to gawk. See Chapter 10 [Built-in Variables], page 107.

Braces See “Curly Braces.”

Bulletin Board System
A computer system allowing users to log in and read and/or
leave messages for other users of the system, much like leaving
paper notes on a bulletin board.

C The system programming language that most GNU software is
written in. The awk programming language has C-like syntax,
and this book points out similarities between awk and C when
appropriate.

Character Set
The set of numeric codes used by a computer system to repre-
sent the characters (letters, numbers, punctuation, etc.) of a
particular country or place. The most common character set
in use today is ASCII (American Standard Code for Informa-
tion Interchange). Many European countries use an extension
of ASCII known as ISO-8859-1 (ISO Latin-1).

CHEM A preprocessor for pic that reads descriptions of molecules and
produces pic input for drawing them. It was written in awk
by Brian Kernighan and Jon Bentley, and is available from
netlib@research.att.com.

Compound Statement
A series of awk statements, enclosed in curly braces. Compound
statements may be nested. See Chapter 9 [Control Statements
in Actions], page 99.

Concatenation
Concatenating two strings means sticking them together, one
after another, giving a new string. For example, the string ‘foo’

Appendix D: Glossary 287

concatenated with the string ‘bar’ gives the string ‘foobar’. See
Section 7.6 [String Concatenation], page 77.

Conditional Expression
An expression using the ‘?:’ ternary operator, such as ‘expr1
? expr2 : expr3’. The expression expr1 is evaluated; if the re-
sult is true, the value of the whole expression is the value of
expr2, otherwise the value is expr3. In either case, only one
of expr2 and expr3 is evaluated. See Section 7.12 [Conditional
Expressions], page 86.

Comparison Expression
A relation that is either true or false, such as ‘(a < b)’. Com-
parison expressions are used in if, while, do, and for state-
ments, and in patterns to select which input records to process.
See Section 7.10 [Variable Typing and Comparison Expressions],
page 81.

Curly Braces
The characters ‘{’ and ‘}’. Curly braces are used in awk for
delimiting actions, compound statements, and function bodies.

Dark Corner
An area in the language where specifications often were (or still
are) not clear, leading to unexpected or undesirable behavior.
Such areas are marked in this book with “(d.c.)” in the text,
and are indexed under the heading “dark corner.”

Data Objects
These are numbers and strings of characters. Numbers are con-
verted into strings and vice versa, as needed. See Section 7.4
[Conversion of Strings and Numbers], page 75.

Double Precision
An internal representation of numbers that can have fractional
parts. Double precision numbers keep track of more digits than
do single precision numbers, but operations on them are more
expensive. This is the way awk stores numeric values. It is the
C type double.

Dynamic Regular Expression
A dynamic regular expression is a regular expression written as
an ordinary expression. It could be a string constant, such as
"foo", but it may also be an expression whose value can vary.
See Section 4.7 [Using Dynamic Regexps], page 32.

Environment
A collection of strings, of the form name=val, that each program
has available to it. Users generally place values into the envi-
ronment in order to provide information to various programs.
Typical examples are the environment variables HOME and PATH.

288 Effective AWK Programming

Empty String
See “Null String.”

Escape Sequences
A special sequence of characters used for describing non-printing
characters, such as ‘\n’ for newline, or ‘\033’ for the ASCII ESC
(escape) character. See Section 4.2 [Escape Sequences], page 22.

Field When awk reads an input record, it splits the record into pieces
separated by whitespace (or by a separator regexp which you
can change by setting the built-in variable FS). Such pieces
are called fields. If the pieces are of fixed length, you can use
the built-in variable FIELDWIDTHS to describe their lengths. See
Section 5.5 [Specifying How Fields are Separated], page 42, and
also see See Section 5.6 [Reading Fixed-width Data], page 46.

Floating Point Number
Often referred to in mathematical terms as a “rational” number,
this is just a number that can have a fractional part. See “Double
Precision” and “Single Precision.”

Format Format strings are used to control the appearance of output in
the printf statement. Also, data conversions from numbers to
strings are controlled by the format string contained in the built-
in variable CONVFMT. See Section 6.5.2 [Format-Control Letters],
page 61.

Function A specialized group of statements used to encapsulate general or
program-specific tasks. awk has a number of built-in functions,
and also allows you to define your own. See Chapter 12 [Built-in
Functions], page 125, and Chapter 13 [User-defined Functions],
page 143.

FSF See “Free Software Foundation.”

Free Software Foundation
A non-profit organization dedicated to the production and dis-
tribution of freely distributable software. It was founded by
Richard M. Stallman, the author of the original Emacs editor.
GNU Emacs is the most widely used version of Emacs today.

gawk The GNU implementation of awk.

General Public License
This document describes the terms under which gawk and its
source code may be distributed. (see [GNU GENERAL PUBLIC
LICENSE], page 293)

GNU “GNU’s not Unix”. An on-going project of the Free Software
Foundation to create a complete, freely distributable, POSIX-
compliant computing environment.

Appendix D: Glossary 289

GPL See “General Public License.”

Hexadecimal
Base 16 notation, where the digits are 0-9 and A-F, with ‘A’
representing 10, ‘B’ representing 11, and so on up to ‘F’ for 15.
Hexadecimal numbers are written in C using a leading ‘0x’, to
indicate their base. Thus, 0x12 is 18 (one times 16 plus 2).

I/O Abbreviation for “Input/Output,” the act of moving data into
and/or out of a running program.

Input Record
A single chunk of data read in by awk. Usually, an awk input
record consists of one line of text. See Section 5.1 [How Input is
Split into Records], page 35.

Integer A whole number, i.e. a number that does not have a fractional
part.

Keyword In the awk language, a keyword is a word that has special mean-
ing. Keywords are reserved and may not be used as variable
names.

gawk’s keywords are: BEGIN, END, if, else, while, do...while,
for, for...in, break, continue, delete, next, nextfile,
function, func, and exit.

Logical Expression
An expression using the operators for logic, AND, OR, and
NOT, written ‘&&’, ‘||’, and ‘!’ in awk. Often called Boolean
expressions, after the mathematician who pioneered this kind of
mathematical logic.

Lvalue An expression that can appear on the left side of an assignment
operator. In most languages, lvalues can be variables or array
elements. In awk, a field designator can also be used as an lvalue.

Null String
A string with no characters in it. It is represented explicitly
in awk programs by placing two double-quote characters next
to each other (""). It can appear in input data by having two
successive occurrences of the field separator appear next to each
other.

Number A numeric valued data object. The gawk implementation uses
double precision floating point to represent numbers. Very old
awk implementations use single precision floating point.

Octal Base-eight notation, where the digits are 0-7. Octal numbers are
written in C using a leading ‘0’, to indicate their base. Thus,
013 is 11 (one times 8 plus 3).

290 Effective AWK Programming

Pattern Patterns tell awk which input records are interesting to which
rules.

A pattern is an arbitrary conditional expression against which
input is tested. If the condition is satisfied, the pattern is said
to match the input record. A typical pattern might compare
the input record against a regular expression. See Section 8.1
[Pattern Elements], page 91.

POSIX The name for a series of standards being developed by the IEEE
that specify a Portable Operating System interface. The “IX”
denotes the Unix heritage of these standards. The main stan-
dard of interest for awk users is IEEE Standard for Information
Technology, Standard 1003.2-1992, Portable Operating System
Interface (POSIX) Part 2: Shell and Utilities. Informally, this
standard is often referred to as simply “P1003.2.”

Private Variables and/or functions that are meant for use exclusively by
library functions, and not for the main awk program. Special
care must be taken when naming such variables and functions.
See Section 15.13 [Naming Library Function Global Variables],
page 191.

Range (of input lines)
A sequence of consecutive lines from the input file. A pattern
can specify ranges of input lines for awk to process, or it can
specify single lines. See Section 8.1 [Pattern Elements], page 91.

Recursion When a function calls itself, either directly or indirectly. If this
isn’t clear, refer to the entry for “recursion.”

Redirection
Redirection means performing input from other than the stan-
dard input stream, or output to other than the standard output
stream.

You can redirect the output of the print and printf statements
to a file or a system command, using the ‘>’, ‘>>’, and ‘|’ op-
erators. You can redirect input to the getline statement using
the ‘<’ and ‘|’ operators. See Section 6.6 [Redirecting Output
of print and printf], page 65, and Section 5.8 [Explicit Input
with getline], page 50.

Regexp Short for regular expression. A regexp is a pattern that denotes
a set of strings, possibly an infinite set. For example, the regexp
‘R.*xp’ matches any string starting with the letter ‘R’ and ending
with the letters ‘xp’. In awk, regexps are used in patterns and in
conditional expressions. Regexps may contain escape sequences.
See Chapter 4 [Regular Expressions], page 21.

Regular Expression
See “regexp.”

Appendix D: Glossary 291

Regular Expression Constant
A regular expression constant is a regular expression written
within slashes, such as /foo/. This regular expression is chosen
when you write the awk program, and cannot be changed doing
its execution. See Section 4.1 [How to Use Regular Expressions],
page 21.

Rule A segment of an awk program that specifies how to process single
input records. A rule consists of a pattern and an action. awk
reads an input record; then, for each rule, if the input record
satisfies the rule’s pattern, awk executes the rule’s action. Oth-
erwise, the rule does nothing for that input record.

Rvalue A value that can appear on the right side of an assignment op-
erator. In awk, essentially every expression has a value. These
values are rvalues.

sed See “Stream Editor.”

Short-Circuit
The nature of the awk logical operators ‘&&’ and ‘||’. If the value
of the entire expression can be deduced from evaluating just the
left-hand side of these operators, the right-hand side will not be
evaluated (see Section 7.11 [Boolean Expressions], page 84).

Side Effect
A side effect occurs when an expression has an effect aside from
merely producing a value. Assignment expressions, increment
and decrement expressions and function calls have side effects.
See Section 7.7 [Assignment Expressions], page 77.

Single Precision
An internal representation of numbers that can have fractional
parts. Single precision numbers keep track of fewer digits than
do double precision numbers, but operations on them are less
expensive in terms of CPU time. This is the type used by some
very old versions of awk to store numeric values. It is the C type
float.

Space The character generated by hitting the space bar on the key-
board.

Special File
A file name interpreted internally by gawk, instead of being
handed directly to the underlying operating system. For ex-
ample, /dev/stderr. See Section 6.7 [Special File Names in
gawk], page 67.

Stream Editor
A program that reads records from an input stream and pro-
cesses them one or more at a time. This is in contrast with batch

292 Effective AWK Programming

programs, which may expect to read their input files in entirety
before starting to do anything, and with interactive programs,
which require input from the user.

String A datum consisting of a sequence of characters, such as ‘I am a
string’. Constant strings are written with double-quotes in the
awk language, and may contain escape sequences. See Section 4.2
[Escape Sequences], page 22.

Tab The character generated by hitting the TAB key on the keyboard.
It usually expands to up to eight spaces upon output.

Unix A computer operating system originally developed in the early
1970’s at AT&T Bell Laboratories. It initially became popular in
universities around the world, and later moved into commercial
evnironments as a software development system and network
server system. There are many commercial versions of Unix, as
well as several work-alike systems whose source code is freely
available (such as Linux, NetBSD, and FreeBSD).

Whitespace
A sequence of space, tab, or newline characters occurring inside
an input record or a string.

GNU GENERAL PUBLIC LICENSE 293

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place — Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble
The licenses for most software are designed to take away your freedom to
share and change it. By contrast, the GNU General Public License is in-
tended to guarantee your freedom to share and change free software—to
make sure the software is free for all its users. This General Public Li-
cense applies to most of the Free Software Foundation’s software and to any
other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price.
Our General Public Licenses are designed to make sure that you have the
freedom to distribute copies of free software (and charge for this service if
you wish), that you receive source code or can get it if you want it, that you
can change the software or use pieces of it in new free programs; and that
you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to
deny you these rights or to ask you to surrender the rights. These restrictions
translate to certain responsibilities for you if you distribute copies of the
software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis
or for a fee, you must give the recipients all the rights that you have. You
must make sure that they, too, receive or can get the source code. And you
must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy, distribute
and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free software.
If the software is modified by someone else and passed on, we want its recip-
ients to know that what they have is not the original, so that any problems
introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents.
We wish to avoid the danger that redistributors of a free program will in-
dividually obtain patent licenses, in effect making the program proprietary.

294 Effective AWK Programming

To prevent this, we have made it clear that any patent must be licensed for
everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modifica-
tion follow.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a
notice placed by the copyright holder saying it may be distributed un-
der the terms of this General Public License. The “Program”, below,
refers to any such program or work, and a “work based on the Pro-
gram” means either the Program or any derivative work under copy-
right law: that is to say, a work containing the Program or a portion of
it, either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in the
term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of running
the Program is not restricted, and the output from the Program is
covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source
code as you receive it, in any medium, provided that you conspicuously
and appropriately publish on each copy an appropriate copyright notice
and disclaimer of warranty; keep intact all the notices that refer to this
License and to the absence of any warranty; and give any other recipients
of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of
it, thus forming a work based on the Program, and copy and distribute
such modifications or work under the terms of Section 1 above, provided
that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c. If the modified program normally reads commands interactively
when run, you must cause it, when started running for such in-
teractive use in the most ordinary way, to print or display an an-
nouncement including an appropriate copyright notice and a notice

GNU GENERAL PUBLIC LICENSE 295

that there is no warranty (or else, saying that you provide a war-
ranty) and that users may redistribute the program under these
conditions, and telling the user how to view a copy of this Li-
cense. (Exception: if the Program itself is interactive but does
not normally print such an announcement, your work based on the
Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be
reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when
you distribute them as separate works. But when you distribute the
same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to
each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise
the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume
of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections
1 and 2 above provided that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sec-
tions 1 and 2 above on a medium customarily used for software
interchange; or,

b. Accompany it with a written offer, valid for at least three years, to
give any third party, for a charge no more than your cost of physi-
cally performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the
terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or,

c. Accompany it with the information you received as to the offer to
distribute corresponding source code. (This alternative is allowed
only for non-commercial distribution and only if you received the
program in object code or executable form with such an offer, in
accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any

296 Effective AWK Programming

associated interface definition files, plus the scripts used to control com-
pilation and installation of the executable. However, as a special ex-
ception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.

If distribution of executable or object code is made by offering access
to copy from a designated place, then offering equivalent access to copy
the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source
along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except
as expressly provided under this License. Any attempt otherwise to
copy, modify, sublicense or distribute the Program is void, and will au-
tomatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this License will
not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the
Program or its derivative works. These actions are prohibited by law if
you do not accept this License. Therefore, by modifying or distributing
the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the original
licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the
recipients’ exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringe-
ment or for any other reason (not limited to patent issues), conditions
are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to sat-
isfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute
the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy
both it and this License would be to refrain entirely from distribution
of the Program.

GNU GENERAL PUBLIC LICENSE 297

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims;
this section has the sole purpose of protecting the integrity of the free
software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consis-
tent application of that system; it is up to the author/donor to decide
if he or she is willing to distribute software through any other system
and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain
countries either by patents or by copyrighted interfaces, the original
copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and “any
later version”, you have the option of following the terms and condi-
tions either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number
of this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask
for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make
exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EX-
TENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN

298 Effective AWK Programming

OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS”
WITHOUTWARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUAL-
ITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR COR-
RECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDIS-
TRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUD-
ING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPER-
ATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

GNU GENERAL PUBLIC LICENSE 299

How to Apply These Terms to Your New
Programs
If you develop a new program, and you want it to be of the greatest possible
use to the public, the best way to achieve this is to make it free software
which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to
attach them to the start of each source file to most effectively convey the
exclusion of warranty; and each file should have at least the “copyright” line
and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.

Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2

of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place --- Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when
it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details

type ‘show w’. This is free software, and you are welcome

to redistribute it under certain conditions; type ‘show c’

for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the ap-
propriate parts of the General Public License. Of course, the commands you
use may be called something other than ‘show w’ and ‘show c’; they could
even be mouse-clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a “copyright disclaimer” for the program, if necessary.
Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright

interest in the program ‘Gnomovision’

(which makes passes at compilers) written

by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

300 Effective AWK Programming

This General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General Public
License instead of this License.

Index 301

Index

!
! operator . 84
!= operator . 82
!~ operator 21, 31, 32, 71, 82

#
(comment) . 13
#! (executable scripts) 12

$
$ (field operator) . 38

&
&& operator . 84

–
--assign option . 151
--compat option . 152
--copyleft option 152
--copyright option 152
--field-separator option 151
--file option . 151
--help option . 152
--lint option . 153
--lint-old option 153
--posix option . 153
--source option . 153
--traditional option 152
--usage option . 152
--version option . 154
-f option . 11, 151
-F option . 44, 151
-v option . 151
-W option . 152

/
/dev/fd . 67
/dev/pgrpid . 68
/dev/pid . 68
/dev/ppid . 68
/dev/stderr . 67
/dev/stdin . 67
/dev/stdout . 67
/dev/user . 68, 181

<
< operator . 82
<= operator . 82

=
== operator . 82

>
> operator . 82
>= operator . 82

_gr_init . 187
_pw_init . 183
_tm_addup . 168
_tm_isleap . 168

\
\’ regexp operator . 30
\< regexp operator . 29
\> regexp operator . 30
\‘ regexp operator . 30
\B regexp operator . 30
\w regexp operator . 29
\W regexp operator . 29
\y regexp operator . 30

|
|| operator . 84

302 Effective AWK Programming

~
~ operator 21, 31, 32, 71, 82

A
accessing fields . 38
account information 181, 186
acronym . 1
action, curly braces . 96
action, default . 13
action, definition of . 96
action, empty . 14
action, separating statements 96
adding new features 279
addition . 76
Aho, Alfred . 1
AI programming, using gawk 266
alarm.awk . 216
amiga . 275
anchors in regexps . 25
and operator . 84
anonymous ftp 263, 277
applications of awk . 18
ARGC . 109
ARGIND . 109, 155
argument processing 175
arguments in function call 86
arguments, command line 151
ARGV . 109, 155
arithmetic operators 76
array assignment . 117
array reference . 116
Array subscripts and IGNORECASE 116
array subscripts,

uninitialized variables 121
arrays . 115
arrays, associative . 115
arrays, definition of 115
arrays, deleting an element 119
arrays, deleting entire contents 120
arrays, multi-dimensional subscripts . . 122
arrays, presence of elements 117
arrays, sparse . 116
arrays, special for statement 118
arrays, the in operator 117
artificial intelligence, using gawk 266
ASCII . 165
assert . 162
assert, C version . 161
assertions . 161
assignment operators 77
assignment to fields . 40

associative arrays . 115
atan2 . 126
atari . 273
automatic initialization 15
awk language, POSIX version . . 23, 25, 26,
28, 45, 60, 64, 75, 76, 80, 88, 89, 103, 104,

105, 107, 127, 133, 144
awk language, V.4 version 22, 23, 238
AWKPATH environment variable 156
awksed . 228

B
backslash continuation 16, 202
backslash continuation

and comments . 17
backslash continuation in csh 15, 16
basic function of awk . 9
BBS-list file . 7
BEGIN special pattern 94
beginfile . 175
body of a loop . 99
book, using this . 5
boolean expressions . 84
boolean operators . 84
break statement . 102
break, outside of loops 103
Brennan, Michael 120, 228, 277
buffer matching operators 30
buffering output 135, 137
buffering, interactive vs.

non-interactive . 136
buffering, non-interactive

vs. interactive . 136
buffers, flushing 135, 137
bugs, known in gawk 157
built-in functions . 125
built-in variables . 107
built-in variables, convey

information . 109
built-in variables, user modifiable 107

Index 303

C
call by reference . 146
call by value . 146
calling a function 86, 146
case conversion . 132
case sensitivity . 31
changing contents of a field 40
changing the record separator 35
character classes . 26
character encodings 165
character list . 25
character list, complemented 27
character sets . 165
chr . 164
close . 69, 135
closing input files and pipes 69
closing output files and pipes 69
coding style used in gawk 279
collating elements . 27
collating symbols . 27
command line . 151
command line formats 10
command line, setting FS on 44
comments . 13
comments and backslash

continuation . 17
common mistakes 33, 42, 58, 83
comp.lang.awk . 276
comparison expressions 81
comparisons, string vs. regexp 84
compatibility mode 152, 239
complemented character list 27
compound statement 99
computed regular expressions 32
concatenation . 77
conditional expression 86
configuring gawk . 268
constants, types of . 71
continuation of lines 16
continue statement 103
continue, outside of loops 104
control statement . 99
conversion of case . 132
conversion of strings and numbers 75
conversions, during subscripting 120
converting dates to timestamps 167
CONVFMT . 75, 107, 120
cos . 126
csh, backslash continuation 15, 16
curly braces . 96
custom.h configuration file 269
cut utility . 193

cut.awk . 194

D
d.c., see “dark corner” 6
dark corner 6, 24, 36, 44, 45, 48, 52,
56, 60, 62, 72, 74, 75, 81, 95, 103, 104, 106,

110, 111, 122, 129, 151, 155
data-driven languages 9
dates, converting to timestamps 167
decrement operators 81
default action . 13
default pattern . 13
defining functions . 143
Deifik, Scott . 3, 277
delete statement . 119
deleting elements of arrays 119
deleting entire arrays 120
deprecated features 157
deprecated options 157
differences between gawk and awk . . 31, 37,
44, 51, 55, 67, 70, 71, 72, 76, 86, 95, 105,

112, 120, 125, 129, 132, 156
directory search . 156
division . 76
documenting awk programs 13, 191
dupword.awk . 215
dynamic regular expressions 32

E
EBCDIC . 165
egrep . 10, 26
egrep utility . 198
egrep.awk . 199
element assignment 117
element of array . 116
empty action . 14
empty pattern . 96
empty program . 151
empty string 37, 43, 75, 81
END special pattern . 94
endfile . 175
endgrent . 190
endpwent . 185
environment variable, AWKPATH 156
environment variable,
POSIXLY_CORRECT 154

ENVIRON . 110
equivalence classes . 27
ERRNO . 51, 70, 110
errors, common 33, 42, 58, 83

304 Effective AWK Programming

escape processing, sub et. al. 133
escape sequence notation 22
evaluation, order of 125
examining fields . 38
executable scripts . 12
exit statement . 106
exp . 126
explicit input . 50
exponentiation . 76
expression . 71
expression, assignment 77
expression, boolean . 84
expression, comparison 81
expression, conditional 86
expression, matching 81
extract.awk . 225

F
features, adding . 279
fflush . 135
field operator $. 38
field separator, choice of 42
field separator, FS . 42
field separator, on command line 44
field, changing contents of 40
fields . 38
fields, separating . 42
FIELDWIDTHS . 107
file descriptors . 67
file, awk program . 11
FILENAME . 35, 56, 110
FILENAME, being set by getline 56
Fish, Fred . 277
flushing buffers 135, 137
FNR . 37, 110
for (x in ...) . 118
for statement . 101
format specifier . 61
format string . 60
format, numeric output 60
formatted output . 60
formatted timestamps 172
Free Software Foundation 1, 263
FreeBSD . 2
Friedl, Jeffrey . 4
FS . 42, 107
ftp, anonymous 263, 277
function call . 86, 146
function definition . 143
function, recursive . 144
functions, undefined 147

functions, user-defined 143

G
gawk coding style . 279

gensub . 131

getgrent . 190

getgrent, C version 186

getgrgid . 189

getgrnam . 189

getgruser . 190

getline . 50

getline, return values 51

getline, setting FILENAME 56

getopt . 178

getopt, C version . 175

getpwent . 185

getpwent, C version 181

getpwnam . 184

getpwuid . 185

gettimeofday . 172

getting gawk . 263

GNU Project . 1

grcat program . 186

grcat.c . 186

group file . 186

group information . 186

gsub . 131

gsub, third argument of 130

H
Hankerson, Darrel 3, 277

historical features . . 44, 103, 104, 127, 261

history of awk . 1

histsort.awk . 224

how awk works . 14

Hughes, Phil . 4

Index 305

I
I/O from BEGIN and END 95
id utility . 202
id.awk . 203
if-else statement . 99
igawk.sh . 231
IGNORECASE 31, 108, 116
IGNORECASE and array subscripts 116
ignoring case . 31
implementation limits 55, 67
in operator . 82
increment operators 80
index . 127
initialization, automatic 15
input . 35
input file, sample . 7
input files, skipping 159
input pipeline . 54
input redirection . 52
input, explicit . 50
input, getline command 50
input, multiple line records 48
input, standard . 10
installation, amiga . 275
installation, atari . 273
installation, MS-DOS and OS/2 272
installation, unix . 268
installation, vms . 269
int . 126
interaction, awk and other programs . . 136
interactive buffering vs.

non-interactive . 136
interval expressions . 28
inventory-shipped file 7
invocation of gawk . 151
ISO 8601 . 140
ISO 8859-1 . 32, 286
ISO Latin-1 . 32, 286

J
Jaegermann, Michal 3, 277
join . 166

K
Kernighan, Brian 1, 4, 77, 239, 277
known bugs . 157

L
labels.awk . 221

language, awk . 5

language, data-driven 9

language, procedural . 9

leftmost longest match 32, 48

length . 127

limitations . 55, 67

line break . 16

line continuation 16, 59, 85, 86

Linux . 2, 273

locale, definition of 139

log . 126

logical false . 81

logical operations . 84

logical true . 81

login information . 181

long options . 151

loop . 99

loops, exiting . 102

lvalue . 78

M
mark parity . 165

match . 128

matching ranges of lines 93

matching, leftmost longest 32, 48

mawk . 277

merging strings . 166

metacharacters . 24

mistakes, common 33, 42, 58, 83

mktime . 169

modifiers (in format specifiers) 62

multi-dimensional subscripts 122

multiple line records 48

multiple passes over data 155

multiple statements on one line 17

multiplication . 76

306 Effective AWK Programming

N
names, use of . 143
namespace issues in awk 191
namespaces . 143
NetBSD . 2
new awk . 1
new awk vs. old awk . 9
newline . 16
next file statement 106
next statement . 104
next, inside a user-defined function . . . 105
nextfile function . 160
nextfile statement 105
NF . 38, 110
non-interactive buffering

vs. interactive . 136
not operator . 84
NR . 37, 110
null string . 43, 75, 81
null string, as array subscript 122
number of fields, NF . 38
number of records, NR, FNR 37
numbers, used as subscripts 120
numeric character values 164
numeric constant . 71
numeric output format 60
numeric string . 81
numeric value . 71

O
obsolete features . 157
obsolete options . 157
OFMT . 60, 75, 108
OFS . 59, 108
old awk . 1
old awk vs. new awk . 9
one-liners . 19
operations, logical . 84
operator precedence 87
operators, arithmetic 76
operators, assignment 77
operators, boolean . 84
operators, decrement 81
operators, increment 80
operators, regexp matching 21
operators, relational 81, 82
operators, short-circuit 84
operators, string . 77
operators, string-matching 21
options, command line 151
options, long . 151

or operator . 84
ord . 164
order of evaluation 125
ORS . 59, 108
output . 57
output field separator, OFS 59
output format specifier, OFMT 60
output record separator, ORS 59
output redirection . 65
output, buffering 135, 137
output, formatted . 60
output, piping . 66

P
passes, multiple . 155
password file . 181
path, search . 156
pattern, BEGIN . 94
pattern, default . 13
pattern, definition of 91
pattern, empty . 96
pattern, END . 94
pattern, range . 93
pattern, regular expressions 21
patterns, types of . 91
per file initialization and clean-up 174
PERL . 282
pipeline, input . 54
pipes for output . 66
portability issues 16, 23, 70, 120, 127,

135, 144, 159
porting gawk . 281
POSIX awk . . 23, 25, 26, 28, 45, 60, 64, 75,
76, 80, 88, 89, 103, 104, 105, 107, 127, 133,

144
POSIX mode . 153
POSIXLY_CORRECT

environment variable 154
precedence . 87
precedence, regexp operators 29
print statement . 57
printf statement, syntax of 60
printf, format-control characters 61
printf, modifiers . 62
printing . 57
procedural languages 9
process information . 68
processing arguments 175
program file . 11
program, awk . 5
program, definition of 9

Index 307

program, self contained 12
programs, documenting 13, 191
pwcat program . 181
pwcat.c . 182

Q
quotient . 76
quoting, shell . 11

R
Rakitzis, Byron . 224
rand . 126
random numbers, seed of 126
range pattern . 93
Rankin, Pat . 3, 79, 277
reading files . 35
reading files, getline command 50
reading files, multiple line records 48
record separator, RS 35
record terminator, RT 37
record, definition of . 35
records, multiple line 48
recursive function . 144
redirection of input . 52
redirection of output 65
reference to array . 116
regexp . 21
regexp as expression 84
regexp comparison vs.

string comparison 84
regexp constant . 22
regexp constants, difference between

slashes and quotes 33
regexp

match/non-match operators 21, 81
regexp matching operators 21
regexp operators . 24
regexp operators, GNU specific 29
regexp operators, precedence of 29
regexp, anchors . 25
regexp, dynamic . 32
regexp, effect of command

line options . 30
regular expression . 21
regular expression metacharacters 24
regular expressions as field separators . . 42
regular expressions as patterns 21
regular expressions as

record separators . 37
regular expressions, computed 32

relational operators 81, 82
remainder . 76
removing elements of arrays 119
return statement . 147
RFC-1036 . 141
RFC-822 . 141
RLENGTH . 110, 128
Robbins, Miriam . 4
Rommel, Kai Uwe 3, 277
round . 163
rounding . 163
RS . 35, 108
RSTART . 111, 128
RT . 37, 50, 111
rule, definition of . 9
running awk programs 10
running long programs 11
rvalue . 78

S
sample input file . 7
scanning an array . 118
script, definition of . 9
scripts, executable . 12
scripts, shell . 12
search path . 156
search path, for source files 156
sed utility 45, 228, 231
seed for random numbers 126
self contained programs 12
shell quoting . 11
shell scripts . 12
short-circuit operators 84
side effect . 78
simple stream editor 228
sin . 126
single character fields 44
single quotes, why needed 10
skipping input files 159
skipping lines between markers 94
sparse arrays . 116
split . 129
split utility . 204
split.awk . 205
sprintf . 129
sqrt . 126
srand . 127
Stallman, Richard . 1, 3
standard error output 67
standard input 10, 35, 67
standard output . 67

308 Effective AWK Programming

statement, compound 99
stream editor . 45
stream editor, simple 228
strftime . 138
string comparison vs.

regexp comparison 84
string constants . 71
string operators . 77
string-matching operators 21
sub . 129
sub, third argument of 130
subscripts in arrays 122
SUBSEP . 108, 122
substr . 132
subtraction . 76
system . 136
systime . 138

T
Tcl . 192
tee utility . 206
tee.awk . 207
terminator, record . 37
time of day . 137
timestamps . 137
timestamps, converting from dates 167
timestamps, formatted 172
tolower . 132
toupper . 132
translate.awk . 219
Trueman, David . 3
truth values . 81
type conversion . 75
types of variables 78, 81

U
undefined functions 147
undocumented features 157
uninitialized variables, as

array subscripts . 121
uniq utility . 208
uniq.awk . 209
use of comments . 13
user information . 181
user-defined functions 143
user-defined variables 73
uses of awk . 5
using this book . 5

V
values of characters as numbers 164
variable shadowing 143
variable typing . 81
variables, user-defined 73

W
Wall, Larry . 282
wc utility . 212
wc.awk . 213
Weinberger, Peter . 1
when to use awk . 18
while statement . 99
word boundaries, matching 30
word, regexp definition of 29
wordfreq.sh . 223

i

Short Contents

Preface . 1

1 Introduction . 5
2 Getting Started with awk . 9
3 Useful One Line Programs . 19
4 Regular Expressions . 21

5 Reading Input Files . 35
6 Printing Output . 57

7 Expressions . 71

8 Patterns and Actions . 91
9 Control Statements in Actions . 99

10 Built-in Variables . 107
11 Arrays in awk . 115
12 Built-in Functions . 125
13 User-defined Functions . 143

14 Running awk . 151

15 A Library of awk Functions . 159
16 Practical awk Programs . 193

17 The Evolution of the awk Language . 237

A gawk Summary . 243
B Installing gawk . 263
C Implementation Notes . 279
D Glossary . 285

GNU GENERAL PUBLIC LICENSE . 293

Index . 301

iii

Table of Contents

Preface . 1
History of awk and gawk . 1
The GNU Project and This Book . 1
Acknowledgements . 3

1 Introduction . 5
1.1 Using This Book . 5

Dark Corners . 6
1.2 Typographical Conventions . 6
1.3 Data Files for the Examples . 7

2 Getting Started with awk . 9
2.1 A Rose By Any Other Name . 9
2.2 How to Run awk Programs . 10

2.2.1 One-shot Throw-away awk Programs . 10
2.2.2 Running awk without Input Files . 10
2.2.3 Running Long Programs . 11
2.2.4 Executable awk Programs . 12
2.2.5 Comments in awk Programs . 13

2.3 A Very Simple Example . 13
2.4 An Example with Two Rules . 14
2.5 A More Complex Example . 15
2.6 awk Statements Versus Lines . 16
2.7 Other Features of awk . 17
2.8 When to Use awk . 18

3 Useful One Line Programs . 19

4 Regular Expressions . 21
4.1 How to Use Regular Expressions . 21
4.2 Escape Sequences . 22
4.3 Regular Expression Operators . 24
4.4 Additional Regexp Operators Only in gawk . 29
4.5 Case-sensitivity in Matching . 31
4.6 How Much Text Matches? . 32
4.7 Using Dynamic Regexps . 32

5 Reading Input Files . 35
5.1 How Input is Split into Records . 35

iv Effective AWK Programming

5.2 Examining Fields . 38
5.3 Non-constant Field Numbers . 39
5.4 Changing the Contents of a Field . 40
5.5 Specifying How Fields are Separated . 42

5.5.1 The Basics of Field Separating . 42
5.5.2 Using Regular Expressions to Separate Fields 43
5.5.3 Making Each Character a Separate Field 44
5.5.4 Setting FS from the Command Line . 44
5.5.5 Field Splitting Summary . 45

5.6 Reading Fixed-width Data . 46
5.7 Multiple-Line Records . 48
5.8 Explicit Input with getline . 50

5.8.1 Introduction to getline . 50
5.8.2 Using getline with No Arguments . 51
5.8.3 Using getline Into a Variable . 52
5.8.4 Using getline from a File . 52
5.8.5 Using getline Into a Variable from a File 53
5.8.6 Using getline from a Pipe . 54
5.8.7 Using getline Into a Variable from a Pipe 55
5.8.8 Summary of getline Variants . 55

6 Printing Output . 57
6.1 The print Statement . 57
6.2 Examples of print Statements . 57
6.3 Output Separators . 59
6.4 Controlling Numeric Output with print . 60
6.5 Using printf Statements for Fancier Printing 60

6.5.1 Introduction to the printf Statement . 60
6.5.2 Format-Control Letters . 61
6.5.3 Modifiers for printf Formats . 62
6.5.4 Examples Using printf . 64

6.6 Redirecting Output of print and printf . 65
6.7 Special File Names in gawk . 67
6.8 Closing Input and Output Files and Pipes . 69

7 Expressions . 71
7.1 Constant Expressions . 71

7.1.1 Numeric and String Constants . 71
7.1.2 Regular Expression Constants . 71

7.2 Using Regular Expression Constants . 72
7.3 Variables . 73

7.3.1 Using Variables in a Program . 73
7.3.2 Assigning Variables on the Command Line 74

7.4 Conversion of Strings and Numbers . 75
7.5 Arithmetic Operators . 76

v

7.6 String Concatenation . 77
7.7 Assignment Expressions . 77
7.8 Increment and Decrement Operators . 80
7.9 True and False in awk . 81
7.10 Variable Typing and Comparison Expressions 81
7.11 Boolean Expressions . 84
7.12 Conditional Expressions . 86
7.13 Function Calls . 86
7.14 Operator Precedence (How Operators Nest) 87

8 Patterns and Actions . 91
8.1 Pattern Elements . 91

8.1.1 Kinds of Patterns . 91
8.1.2 Regular Expressions as Patterns . 91
8.1.3 Expressions as Patterns . 92
8.1.4 Specifying Record Ranges with Patterns 93
8.1.5 The BEGIN and END Special Patterns . 94

8.1.5.1 Startup and Cleanup Actions . 94
8.1.5.2 Input/Output from BEGIN and END Rules 95

8.1.6 The Empty Pattern . 96
8.2 Overview of Actions . 96

9 Control Statements in Actions 99
9.1 The if-else Statement . 99
9.2 The while Statement . 99
9.3 The do-while Statement . 100
9.4 The for Statement . 101
9.5 The break Statement . 102
9.6 The continue Statement . 103
9.7 The next Statement . 104
9.8 The nextfile Statement . 105
9.9 The exit Statement . 106

10 Built-in Variables . 107
10.1 Built-in Variables that Control awk . 107
10.2 Built-in Variables that Convey Information 109
10.3 Using ARGC and ARGV . 111

vi Effective AWK Programming

11 Arrays in awk . 115
11.1 Introduction to Arrays . 115
11.2 Referring to an Array Element . 116
11.3 Assigning Array Elements . 117
11.4 Basic Array Example . 117
11.5 Scanning All Elements of an Array . 118
11.6 The delete Statement . 119
11.7 Using Numbers to Subscript Arrays . 120
11.8 Using Uninitialized Variables as Subscripts 121
11.9 Multi-dimensional Arrays . 122
11.10 Scanning Multi-dimensional Arrays . 123

12 Built-in Functions . 125
12.1 Calling Built-in Functions . 125
12.2 Numeric Built-in Functions . 125
12.3 Built-in Functions for String Manipulation 127
12.4 Built-in Functions for Input/Output . 135
12.5 Functions for Dealing with Time Stamps . 137

13 User-defined Functions . 143
13.1 Function Definition Syntax . 143
13.2 Function Definition Examples . 144
13.3 Calling User-defined Functions . 146
13.4 The return Statement . 147

14 Running awk . 151
14.1 Command Line Options . 151
14.2 Other Command Line Arguments . 155
14.3 The AWKPATH Environment Variable . 156
14.4 Obsolete Options and/or Features . 157
14.5 Undocumented Options and Features . 157
14.6 Known Bugs in gawk . 157

15 A Library of awk Functions 159
15.1 Simulating gawk-specific Features . 159
15.2 Implementing nextfile as a Function . 159
15.3 Assertions . 161
15.4 Rounding Numbers . 163
15.5 Translating Between Characters and Numbers 164
15.6 Merging an Array Into a String . 166
15.7 Turning Dates Into Timestamps . 167
15.8 Managing the Time of Day . 172
15.9 Noting Data File Boundaries . 174

vii

15.10 Processing Command Line Options . 175
15.11 Reading the User Database . 181
15.12 Reading the Group Database . 186
15.13 Naming Library Function Global Variables 191

16 Practical awk Programs . 193
16.1 Re-inventing Wheels for Fun and Profit . 193

16.1.1 Cutting Out Fields and Columns . 193
16.1.2 Searching for Regular Expressions in Files 198
16.1.3 Printing Out User Information . 202
16.1.4 Splitting a Large File Into Pieces . 204
16.1.5 Duplicating Output Into Multiple Files 206
16.1.6 Printing Non-duplicated Lines of Text 208
16.1.7 Counting Things . 212

16.2 A Grab Bag of awk Programs . 214
16.2.1 Finding Duplicated Words in a Document 215
16.2.2 An Alarm Clock Program . 215
16.2.3 Transliterating Characters . 218
16.2.4 Printing Mailing Labels . 220
16.2.5 Generating Word Usage Counts . 222
16.2.6 Removing Duplicates from Unsorted Text 224
16.2.7 Extracting Programs from Texinfo Source Files 225
16.2.8 A Simple Stream Editor . 228
16.2.9 An Easy Way to Use Library Functions 229

17 The Evolution of the awk Language 237
17.1 Major Changes between V7 and SVR3.1 . 237
17.2 Changes between SVR3.1 and SVR4 . 238
17.3 Changes between SVR4 and POSIX awk . 238
17.4 Extensions in the Bell Laboratories awk . 239
17.5 Extensions in gawk Not in POSIX awk . 239

Appendix A gawk Summary . 243
A.1 Command Line Options Summary . 243
A.2 Language Summary . 244
A.3 Variables and Fields . 245

A.3.1 Fields . 245
A.3.2 Built-in Variables . 246
A.3.3 Arrays . 248
A.3.4 Data Types . 248

A.4 Patterns . 249
A.4.1 Pattern Summary . 249
A.4.2 Regular Expressions . 250

A.5 Actions . 252

viii Effective AWK Programming

A.5.1 Operators . 252
A.5.2 Control Statements . 253
A.5.3 I/O Statements . 253
A.5.4 printf Summary . 255
A.5.5 Special File Names . 256
A.5.6 Built-in Functions . 257
A.5.7 Time Functions . 259
A.5.8 String Constants . 260

A.6 User-defined Functions . 260
A.7 Historical Features . 261

Appendix B Installing gawk . 263
B.1 The gawk Distribution . 263

B.1.1 Getting the gawk Distribution . 263
B.1.2 Extracting the Distribution . 265
B.1.3 Contents of the gawk Distribution . 265

B.2 Compiling and Installing gawk on Unix . 268
B.2.1 Compiling gawk for Unix . 268
B.2.2 The Configuration Process . 268

B.3 How to Compile and Install gawk on VMS . 269
B.3.1 Compiling gawk on VMS . 269
B.3.2 Installing gawk on VMS . 270
B.3.3 Running gawk on VMS . 270
B.3.4 Building and Using gawk on VMS POSIX 271

B.4 MS-DOS and OS/2 Installation and Compilation 272
B.5 Installing gawk on the Atari ST . 273

B.5.1 Compiling gawk on the Atari ST . 273
B.5.2 Running gawk on the Atari ST . 274

B.6 Installing gawk on an Amiga . 275
B.7 Reporting Problems and Bugs . 275
B.8 Other Freely Available awk Implementations 277

Appendix C Implementation Notes 279
C.1 Downward Compatibility and Debugging . 279
C.2 Making Additions to gawk . 279

C.2.1 Adding New Features . 279
C.2.2 Porting gawk to a New Operating System 281

C.3 Probable Future Extensions . 282
C.4 Suggestions for Improvements . 284

Appendix D Glossary . 285

ix

GNU GENERAL PUBLIC LICENSE 293
Preamble . 293
TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION . 294

How to Apply These Terms to Your New Programs 299

Index . 301

	Preface
	History of awk and gawk
	The GNU Project and This Book
	Acknowledgements

	1 Introduction
	Using This Book
	Dark Corners

	Typographical Conventions
	Data Files for the Examples

	2 Getting Started with awk
	A Rose By Any Other Name
	How to Run awk Programs
	One-shot Throw-away awk Programs
	Running awk without Input Files
	Running Long Programs
	Executable awk Programs
	Comments in awk Programs

	A Very Simple Example
	An Example with Two Rules
	A More Complex Example
	awk Statements Versus Lines
	Other Features of awk
	When to Use awk

	3 Useful One Line Programs
	4 Regular Expressions
	How to Use Regular Expressions
	Escape Sequences
	Regular Expression Operators
	Additional Regexp Operators Only in gawk
	Case-sensitivity in Matching
	How Much Text Matches?
	Using Dynamic Regexps

	5 Reading Input Files
	How Input is Split into Records
	Examining Fields
	Non-constant Field Numbers
	Changing the Contents of a Field
	Specifying How Fields are Separated
	The Basics of Field Separating
	Using Regular Expressions to Separate Fields
	Making Each Character a Separate Field
	Setting FS from the Command Line
	Field Splitting Summary

	Reading Fixed-width Data
	Multiple-Line Records
	Explicit Input with getline
	Introduction to getline
	Using getline with No Arguments
	Using getline Into a Variable
	Using getline from a File
	Using getline Into a Variable from a File
	Using getline from a Pipe
	Using getline Into a Variable from a Pipe
	Summary of getline Variants

	6 Printing Output
	The print Statement
	Examples of print Statements
	Output Separators
	Controlling Numeric Output with print
	Using printf Statements for Fancier Printing
	Introduction to the printf Statement
	Format-Control Letters
	Modifiers for printf Formats
	Examples Using printf

	Redirecting Output of print and printf
	Special File Names in gawk
	Closing Input and Output Files and Pipes

	7 Expressions
	Constant Expressions
	Numeric and String Constants
	Regular Expression Constants

	Using Regular Expression Constants
	Variables
	Using Variables in a Program
	Assigning Variables on the Command Line

	Conversion of Strings and Numbers
	Arithmetic Operators
	String Concatenation
	Assignment Expressions
	Increment and Decrement Operators
	True and False in awk
	Variable Typing and Comparison Expressions
	Boolean Expressions
	Conditional Expressions
	Function Calls
	Operator Precedence (How Operators Nest)

	8 Patterns and Actions
	Pattern Elements
	Kinds of Patterns
	Regular Expressions as Patterns
	Expressions as Patterns
	Specifying Record Ranges with Patterns
	The BEGIN and END Special Patterns
	Startup and Cleanup Actions
	Input/Output from BEGIN and END Rules

	The Empty Pattern

	Overview of Actions

	9 Control Statements in Actions
	The if-else Statement
	The while Statement
	The do-while Statement
	The for Statement
	The break Statement
	The continue Statement
	The next Statement
	The nextfile Statement
	The exit Statement

	10 Built-in Variables
	Built-in Variables that Control awk
	Built-in Variables that Convey Information
	Using ARGC and ARGV

	11 Arrays in awk
	Introduction to Arrays
	Referring to an Array Element
	Assigning Array Elements
	Basic Array Example
	Scanning All Elements of an Array
	The delete Statement
	Using Numbers to Subscript Arrays
	Using Uninitialized Variables as Subscripts
	Multi-dimensional Arrays
	Scanning Multi-dimensional Arrays

	12 Built-in Functions
	Calling Built-in Functions
	Numeric Built-in Functions
	Built-in Functions for String Manipulation
	Built-in Functions for Input/Output
	Functions for Dealing with Time Stamps

	13 User-defined Functions
	Function Definition Syntax
	Function Definition Examples
	Calling User-defined Functions
	The return Statement

	14 Running awk
	Command Line Options
	Other Command Line Arguments
	The AWKPATH Environment Variable
	Obsolete Options and/or Features
	Undocumented Options and Features
	Known Bugs in gawk

	15 A Library of awk Functions
	Simulating gawk-specific Features
	Implementing nextfile as a Function
	Assertions
	Rounding Numbers
	Translating Between Characters and Numbers
	Merging an Array Into a String
	Turning Dates Into Timestamps
	Managing the Time of Day
	Noting Data File Boundaries
	Processing Command Line Options
	Reading the User Database
	Reading the Group Database
	Naming Library Function Global Variables

	16 Practical awk Programs
	Re-inventing Wheels for Fun and Profit
	Cutting Out Fields and Columns
	Searching for Regular Expressions in Files
	Printing Out User Information
	Splitting a Large File Into Pieces
	Duplicating Output Into Multiple Files
	Printing Non-duplicated Lines of Text
	Counting Things

	A Grab Bag of awk Programs
	Finding Duplicated Words in a Document
	An Alarm Clock Program
	Transliterating Characters
	Printing Mailing Labels
	Generating Word Usage Counts
	Removing Duplicates from Unsorted Text
	Extracting Programs from Texinfo Source Files
	A Simple Stream Editor
	An Easy Way to Use Library Functions

	17 The Evolution of the awk Language
	Major Changes between V7 and SVR3.1
	Changes between SVR3.1 and SVR4
	Changes between SVR4 and POSIX awk
	Extensions in the Bell Laboratories awk
	Extensions in gawk Not in POSIX awk

	A gawk Summary
	Command Line Options Summary
	Language Summary
	Variables and Fields
	Fields
	Built-in Variables
	Arrays
	Data Types

	Patterns
	Pattern Summary
	Regular Expressions

	Actions
	Operators
	Control Statements
	I/O Statements
	printf Summary
	Special File Names
	Built-in Functions
	Time Functions
	String Constants

	User-defined Functions
	Historical Features

	B Installing gawk
	The gawk Distribution
	Getting the gawk Distribution
	Extracting the Distribution
	Contents of the gawk Distribution

	Compiling and Installing gawk on Unix
	Compiling gawk for Unix
	The Configuration Process

	How to Compile and Install gawk on VMS
	Compiling gawk on VMS
	Installing gawk on VMS
	Running gawk on VMS
	Building and Using gawk on VMS POSIX

	MS-DOS and OS/2 Installation and Compilation
	Installing gawk on the Atari ST
	Compiling gawk on the Atari ST
	Running gawk on the Atari ST

	Installing gawk on an Amiga
	Reporting Problems and Bugs
	Other Freely Available awk Implementations

	C Implementation Notes
	Downward Compatibility and Debugging
	Making Additions to gawk
	Adding New Features
	Porting gawk to a New Operating System

	Probable Future Extensions
	Suggestions for Improvements

	D Glossary
	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Programs

	Index

