
Contributed by James Craig Burley (burley@gnu.org). Inspired by a �rst pass at trans-

lating `g77-0.5.16/f/DOC' that was contributed to Craig by David Ronis (ronis@onsager.chem.mcgill.ca).

Using GNU Fortran

James Craig Burley

Last updated 1998-01-11

for version 0.5.21

Copyright

c

 1995-1997 Free Software Foundation, Inc.

For GNU Fortran Version 0.5.21*

Published by the Free Software Foundation

59 Temple Place - Suite 330

Boston, MA 02111-1307, USA

Permission is granted to make and distribute verbatim copies of this manual provided the

copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modi�ed versions of this manual under the

conditions for verbatim copying, provided also that the sections entitled \GNU General

Public License," \Funding for Free Software," and \Protect Your Freedom|Fight `Look

And Feel'" are included exactly as in the original, and provided that the entire resulting

derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-

guage, under the above conditions for modi�ed versions, except that the sections entitled

\GNU General Public License," \Funding for Free Software," and \Protect Your Freedom|

Fight `Look And Feel'", and this permission notice, may be included in translations ap-

proved by the Free Software Foundation instead of in the original English.

GNU GENERAL PUBLIC LICENSE 1

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright

c

 1989, 1991 Free Software Foundation, Inc.

59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and

change it. By contrast, the GNU General Public License is intended to guarantee your

freedom to share and change free software|to make sure the software is free for all its users.

This General Public License applies to most of the Free Software Foundation's software

and to any other program whose authors commit to using it. (Some other Free Software

Foundation software is covered by the GNU Library General Public License instead.) You

can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General

Public Licenses are designed to make sure that you have the freedom to distribute copies

of free software (and charge for this service if you wish), that you receive source code or

can get it if you want it, that you can change the software or use pieces of it in new free

programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you

these rights or to ask you to surrender the rights. These restrictions translate to certain

responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you

must give the recipients all the rights that you have. You must make sure that they, too,

receive or can get the source code. And you must show them these terms so they know

their rights.

We protect your rights with two steps: (1) copyright the software, and (2) o�er you this

license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone

understands that there is no warranty for this free software. If the software is modi�ed by

someone else and passed on, we want its recipients to know that what they have is not the

original, so that any problems introduced by others will not reect on the original authors'

reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid

the danger that redistributors of a free program will individually obtain patent licenses, in

e�ect making the program proprietary. To prevent this, we have made it clear that any

patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modi�cation follow.

2 Using and Porting GNU Fortran

TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed

by the copyright holder saying it may be distributed under the terms of this General

Public License. The \Program", below, refers to any such program or work, and a

\work based on the Program" means either the Program or any derivative work under

copyright law: that is to say, a work containing the Program or a portion of it, either

verbatim or with modi�cations and/or translated into another language. (Hereinafter,

translation is included without limitation in the term \modi�cation".) Each licensee is

addressed as \you".

Activities other than copying, distribution and modi�cation are not covered by this

License; they are outside its scope. The act of running the Program is not restricted,

and the output from the Program is covered only if its contents constitute a work based

on the Program (independent of having been made by running the Program). Whether

that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you

receive it, in any medium, provided that you conspicuously and appropriately publish

on each copy an appropriate copyright notice and disclaimer of warranty; keep intact

all the notices that refer to this License and to the absence of any warranty; and give

any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your

option o�er warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a

work based on the Program, and copy and distribute such modi�cations or work under

the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modi�ed �les to carry prominent notices stating that you

changed the �les and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as a

whole at no charge to all third parties under the terms of this License.

c. If the modi�ed program normally reads commands interactively when run, you

must cause it, when started running for such interactive use in the most ordinary

way, to print or display an announcement including an appropriate copyright notice

and a notice that there is no warranty (or else, saying that you provide a warranty)

and that users may redistribute the program under these conditions, and telling

the user how to view a copy of this License. (Exception: if the Program itself is

interactive but does not normally print such an announcement, your work based

on the Program is not required to print an announcement.)

These requirements apply to the modi�ed work as a whole. If identi�able sections

of that work are not derived from the Program, and can be reasonably considered

independent and separate works in themselves, then this License, and its terms, do not

apply to those sections when you distribute them as separate works. But when you

distribute the same sections as part of a whole which is a work based on the Program,

the distribution of the whole must be on the terms of this License, whose permissions

GNU GENERAL PUBLIC LICENSE 3

for other licensees extend to the entire whole, and thus to each and every part regardless

of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to

work written entirely by you; rather, the intent is to exercise the right to control the

distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the

Program (or with a work based on the Program) on a volume of a storage or distribution

medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)

in object code or executable form under the terms of Sections 1 and 2 above provided

that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium

customarily used for software interchange; or,

b. Accompany it with a written o�er, valid for at least three years, to give any third

party, for a charge no more than your cost of physically performing source distri-

bution, a complete machine-readable copy of the corresponding source code, to be

distributed under the terms of Sections 1 and 2 above on a medium customarily

used for software interchange; or,

c. Accompany it with the information you received as to the o�er to distribute cor-

responding source code. (This alternative is allowed only for noncommercial dis-

tribution and only if you received the program in object code or executable form

with such an o�er, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modi�-

cations to it. For an executable work, complete source code means all the source code

for all modules it contains, plus any associated interface de�nition �les, plus the scripts

used to control compilation and installation of the executable. However, as a spe-

cial exception, the source code distributed need not include anything that is normally

distributed (in either source or binary form) with the major components (compiler,

kernel, and so on) of the operating system on which the executable runs, unless that

component itself accompanies the executable.

If distribution of executable or object code is made by o�ering access to copy from

a designated place, then o�ering equivalent access to copy the source code from the

same place counts as distribution of the source code, even though third parties are not

compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly

provided under this License. Any attempt otherwise to copy, modify, sublicense or

distribute the Program is void, and will automatically terminate your rights under this

License. However, parties who have received copies, or rights, from you under this

License will not have their licenses terminated so long as such parties remain in full

compliance.

5. You are not required to accept this License, since you have not signed it. However,

nothing else grants you permission to modify or distribute the Program or its derivative

works. These actions are prohibited by law if you do not accept this License. Therefore,

4 Using and Porting GNU Fortran

by modifying or distributing the Program (or any work based on the Program), you

indicate your acceptance of this License to do so, and all its terms and conditions for

copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the

recipient automatically receives a license from the original licensor to copy, distribute

or modify the Program subject to these terms and conditions. You may not impose

any further restrictions on the recipients' exercise of the rights granted herein. You are

not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any

other reason (not limited to patent issues), conditions are imposed on you (whether by

court order, agreement or otherwise) that contradict the conditions of this License, they

do not excuse you from the conditions of this License. If you cannot distribute so as

to satisfy simultaneously your obligations under this License and any other pertinent

obligations, then as a consequence you may not distribute the Program at all. For

example, if a patent license would not permit royalty-free redistribution of the Program

by all those who receive copies directly or indirectly through you, then the only way

you could satisfy both it and this License would be to refrain entirely from distribution

of the Program.

If any portion of this section is held invalid or unenforceable under any particular

circumstance, the balance of the section is intended to apply and the section as a

whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other

property right claims or to contest validity of any such claims; this section has the

sole purpose of protecting the integrity of the free software distribution system, which

is implemented by public license practices. Many people have made generous contri-

butions to the wide range of software distributed through that system in reliance on

consistent application of that system; it is up to the author/donor to decide if he or

she is willing to distribute software through any other system and a licensee cannot

impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence

of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either

by patents or by copyrighted interfaces, the original copyright holder who places the

Program under this License may add an explicit geographical distribution limitation

excluding those countries, so that distribution is permitted only in or among countries

not thus excluded. In such case, this License incorporates the limitation as if written

in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General

Public License from time to time. Such new versions will be similar in spirit to the

present version, but may di�er in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program speci�es a

version number of this License which applies to it and \any later version", you have

the option of following the terms and conditions either of that version or of any later

version published by the Free Software Foundation. If the Program does not specify a

GNU GENERAL PUBLIC LICENSE 5

version number of this License, you may choose any version ever published by the Free

Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distri-

bution conditions are di�erent, write to the author to ask for permission. For software

which is copyrighted by the Free Software Foundation, write to the Free Software Foun-

dation; we sometimes make exceptions for this. Our decision will be guided by the two

goals of preserving the free status of all derivatives of our free software and of promoting

the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-

CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-

RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM \AS

IS" WITHOUTWARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-

CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE

RISKAS TO THEQUALITY AND PERFORMANCE OF THE PROGRAM ISWITH

YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST

OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO

MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED

ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,

SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF

THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT

LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR

LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE

PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH

HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGES.

END OF TERMS AND CONDITIONS

6 Using and Porting GNU Fortran

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to

the public, the best way to achieve this is to make it free software which everyone can

redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the

start of each source �le to most e�ectively convey the exclusion of warranty; and each �le

should have at least the \copyright" line and a pointer to where the full notice is found.

one line to give the program's name and a brief idea of what it does.

Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an

interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details

type `show w'.

This is free software, and you are welcome to redistribute it

under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of

the General Public License. Of course, the commands you use may be called something

other than `show w' and `show c'; they could even be mouse-clicks or menu items|whatever

suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,

to sign a \copyright disclaimer" for the program, if necessary. Here is a sample; alter the

names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program

`Gnomovision' (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary

programs. If your program is a subroutine library, you may consider it more useful to permit

GNU GENERAL PUBLIC LICENSE 7

linking proprietary applications with the library. If this is what you want to do, use the

GNU Library General Public License instead of this License.

8 Using and Porting GNU Fortran

Contributors to GNU Fortran 9

Contributors to GNU Fortran

In addition to James Craig Burley, who wrote the front end, many people have helped

create and improve GNU Fortran.

� The packaging and compiler portions of GNU Fortran are based largely on the GNU

CC compiler. See section \Contributors to GNU CC" in Using and Porting GNU CC ,

for more information.

� The run-time library used by GNU Fortran is a repackaged version of the libf2c library

(combined from the libF77 and libI77 libraries) provided as part of f2c, available for

free from netlib sites on the Internet.

� Cygnus Support and The Free Software Foundation contributed signi�cant money

and/or equipment to Craig's e�orts.

� The following individuals served as alpha testers prior to g77's public release. This

work consisted of testing, researching, sometimes debugging, and occasionally providing

small amounts of code and �xes for g77, plus o�ering plenty of helpful advice to Craig:

Jonathan Corbet

Dr. Mark Fernyhough

Takafumi Hayashi (The University of AIzu)|takafumi@u-aizu.ac.jp

Kate Hedstrom

Michel Kern (INRIA and Rice University)|Michel.Kern@inria.fr

Dr. A. O. V. Le Blanc

Dave Love

Rick Lutowski

Toon Moene

Rick Niles

Derk Reefman

Wayne K. Schroll

Bill Thorson

Pedro A. M. Vazquez

Ian Watson

� Scott Snyder (snyder@d0sgif.fnal.gov) provided the patch to add rudimentary sup-

port for INTEGER*1, INTEGER*2, and LOGICAL*1. This inspired Craig to add further

support, even though the resulting support would still be incomplete, because version

0.6 is still a ways o�.

� David Ronis (ronis@onsager.chem.mcgill.ca) inspired and encouraged Craig to

rewrite the documentation in texinfo format by contributing a �rst pass at a transla-

tion of the old `g77-0.5.16/f/DOC' �le.

� Toon Moene (toon@moene.indiv.nluug.nl) performed some analysis of generated

code as part of an overall project to improve g77 code generation to at least be as

good as f2c used in conjunction with gcc. So far, this has resulted in the three,

somewhat experimental, options added by g77 to the gcc compiler and its back end.

10 Using and Porting GNU Fortran

� John Carr (jfc@mit.edu) wrote the alias analysis improvements.

� Thanks to Mary Cortani and the sta� at Craftwork Solutions (support@craftwork.com)

for all of their support.

� Many other individuals have helped debug, test, and improve g77 over the past several

years, and undoubtedly more people will be doing so in the future. If you have done

so, and would like to see your name listed in the above list, please ask! The default is

that people wish to remain anonymous.

Chapter 1: Funding Free Software 11

1 Funding Free Software

If you want to have more free software a few years from now, it makes sense for you to

help encourage people to contribute funds for its development. The most e�ective approach

known is to encourage commercial redistributors to donate.

Users of free software systems can boost the pace of development by encouraging for-a-

fee distributors to donate part of their selling price to free software developers|the Free

Software Foundation, and others.

The way to convince distributors to do this is to demand it and expect it from them. So

when you compare distributors, judge them partly by how much they give to free software

development. Show distributors they must compete to be the one who gives the most.

To make this approach work, you must insist on numbers that you can compare, such as,

\We will donate ten dollars to the Frobnitz project for each disk sold." Don't be satis�ed

with a vague promise, such as \A portion of the pro�ts are donated," since it doesn't give

a basis for comparison.

Even a precise fraction \of the pro�ts from this disk" is not very meaningful, since

creative accounting and unrelated business decisions can greatly alter what fraction of the

sales price counts as pro�t. If the price you pay is $50, ten percent of the pro�t is probably

less than a dollar; it might be a few cents, or nothing at all.

Some redistributors do development work themselves. This is useful too; but to keep

everyone honest, you need to inquire how much they do, and what kind. Some kinds of

development make much more long-term di�erence than others. For example, maintaining

a separate version of a program contributes very little; maintaining the standard version

of a program for the whole community contributes much. Easy new ports contribute little,

since someone else would surely do them; di�cult ports such as adding a new CPU to the

GNU C compiler contribute more; major new features or packages contribute the most.

By establishing the idea that supporting further development is \the proper thing to

do" when distributing free software for a fee, we can assure a steady ow of resources into

making more free software.

Copyright (C) 1994 Free Software Foundation, Inc.

Verbatim copying and redistribution of this section is permitted

without royalty; alteration is not permitted.

12 Using and Porting GNU Fortran

Chapter 2: Funding GNU Fortran 13

2 Funding GNU Fortran

Work on GNU Fortran is still being done mostly by its author, James Craig Burley

(burley@gnu.org), who is a volunteer for, not an employee of, the Free Software Foundation

(FSF). As with other GNU software, funding is important because it can pay for needed

equipment, personnel, and so on.

The FSF provides information on the best way to fund ongoing development of GNU

software (such as GNU Fortran) in documents such as the \GNUS Bulletin". Email

gnu@prep.ai.mit.edu for information on funding the FSF.

To fund speci�c GNU Fortran work in particular, the FSF might provide a means for

that, but the FSF does not provide direct funding to the author of GNU Fortran to continue

his work. The FSF has employee salary restrictions that can be incompatible with the

�nancial needs of some volunteers, who therefore choose to remain volunteers and thus be

able to be free to do contract work and otherwise make their own schedules for doing GNU

work.

Still, funding the FSF at least indirectly bene�ts work on speci�c projects like GNU

Fortran because it ensures the continuing operation of the FSF o�ces, their workstations,

their network connections, and so on, which are invaluable to volunteers. (Similarly, hiring

Cygnus Support can help a project like GNU Fortran|Cygnus has been a long-time donor

of equipment usage to the author of GNU Fortran, and this too has been invaluable|See

[Contributors], page 9.)

Currently, the only way to directly fund the author of GNU Fortran in his work on that

project is to hire him for the work you want him to do, or donate money to him. Several

people have done this already, with the result that he has not needed to immediately �nd

contract work on a few occasions. If more people did this, he would be able to plan on not

doing contract work for many months and could thus devote that time to work on projects

(such as the planned changes for 0.6) that require longer timeframes to complete. For the

latest information on the status of the author, do finger -l burley@gnu.org on a UNIX

system (or any system with a command like UNIX finger).

Another important way to support work on GNU Fortran is to volunteer to help out.

Work is needed on documentation, testing, porting to various machines, and in some cases,

coding (although major changes planned for version 0.6 make it di�cult to add manpower

to this area). Email fortran@gnu.org to volunteer for this work.

See Chapter 1 [Funding Free Software], page 11, for more information.

14 Using and Porting GNU Fortran

Chapter 3: Protect Your Freedom|Fight \Look And Feel" 15

3 Protect Your Freedom|Fight \Look And Feel"

To preserve the ability to write free software, including replacements for proprietary

software, authors must be free to replicate the user interface to which users of existing

software have become accustomed.

See section \Protect Your Freedom|Fight \Look And Feel"" in Using and Porting GNU

CC , for more information.

16 Using and Porting GNU Fortran

Chapter 4: Getting Started 17

4 Getting Started

If you don't need help getting started reading the portions of this manual that are most

important to you, you should skip this portion of the manual.

If you are new to compilers, especially Fortran compilers, or new to how compilers are

structured under UNIX and UNIX-like systems, you'll want to see Chapter 5 [What is GNU

Fortran?], page 19.

If you are new to GNU compilers, or have used only one GNU compiler in the past and

not had to delve into how it lets you manage various versions and con�gurations of gcc,

you should see Chapter 6 [G77 and GCC], page 23.

Everyone except experienced g77 users should see Chapter 7 [Invoking G77], page 25.

If you're acquainted with previous versions of g77, you should see Chapter 8 [News],

page 47. Further, if you've actually used previous versions of g77, especially if you've

written or modi�ed Fortran code to be compiled by previous versions of g77, you should

see Chapter 9 [Changes], page 65.

If you intend to write or otherwise compile code that is not already strictly conforming

ANSI FORTRAN 77|and this is probably everyone|you should see Chapter 10 [Lan-

guage], page 71.

If you don't already have g77 installed on your system, you must see Chapter 15 [Instal-

lation], page 213.

If you run into trouble getting Fortran code to compile, link, run, or work properly,

you might �nd answers if you see Chapter 16 [Debugging and Interfacing], page 239, see

Chapter 17 [Collected Fortran Wisdom], page 251, and see Chapter 18 [Trouble], page 265.

You might also �nd that the problems you are encountering are bugs in g77|see Chapter 20

[Bugs], page 293, for information on reporting them, after reading the other material.

If you need further help with g77, or with freely redistributable software in general, see

Chapter 21 [Service], page 303.

If you would like to help the g77 project, see Chapter 2 [Funding GNU Fortran], page 13,

for information on helping �nancially, and see Chapter 23 [Projects], page 307, for informa-

tion on helping in other ways.

If you're generally curious about the future of g77, see Chapter 23 [Projects], page 307.

If you're curious about its past, see [Contributors], page 9, and see Chapter 2 [Funding

GNU Fortran], page 13.

To see a few of the questions maintainers of g77 have, and that you might be able to

answer, see Chapter 19 [Open Questions], page 291.

18 Using and Porting GNU Fortran

Chapter 5: What is GNU Fortran? 19

5 What is GNU Fortran?

GNU Fortran, or g77, is designed initially as a free replacement for, or alternative to,

the UNIX f77 command. (Similarly, gcc is designed as a replacement for the UNIX cc

command.)

g77 also is designed to �t in well with the other �ne GNU compilers and tools.

Sometimes these design goals conict|in such cases, resolution often is made in favor

of �tting in well with Project GNU. These cases are usually identi�ed in the appropriate

sections of this manual.

As compilers, g77, gcc, and f77 share the following characteristics:

� They read a user's program, stored in a �le and containing instructions written in the

appropriate language (Fortran, C, and so on). This �le contains source code.

� They translate the user's program into instructions a computer can carry out more

quickly than it takes to translate the instructions in the �rst place. These instructions

are called machine code|code designed to be e�ciently translated and processed by

a machine such as a computer. Humans usually aren't as good writing machine code

as they are at writing Fortran or C, because it is easy to make tiny mistakes writing

machine code. When writing Fortran or C, it is easy to make big mistakes.

� They provide information in the generated machine code that can make it easier to

�nd bugs in the program (using a debugging tool, called a debugger, such as gdb).

� They locate and gather machine code already generated to perform actions requested

by statements in the user's program. This machine code is organized into libraries and

is located and gathered during the link phase of the compilation process. (Linking

often is thought of as a separate step, because it can be directly invoked via the ld

command. However, the g77 and gcc commands, as with most compiler commands,

automatically perform the linking step by calling on ld directly, unless asked to not do

so by the user.)

� They attempt to diagnose cases where the user's program contains incorrect usages of

the language. The diagnostics produced by the compiler indicate the problem and the

location in the user's source �le where the problem was �rst noticed. The user can use

this information to locate and �x the problem. (Sometimes an incorrect usage of the

language leads to a situation where the compiler can no longer make any sense of what

follows|while a human might be able to|and thus ends up complaining about many

\problems" it encounters that, in fact, stem from just one problem, usually the �rst

one reported.)

� They attempt to diagnose cases where the user's program contains a correct usage of the

language, but instructs the computer to do something questionable. These diagnostics

often are in the form of warnings, instead of the errors that indicate incorrect usage of

the language.

How these actions are performed is generally under the control of the user. Using

command-line options, the user can specify how persnickety the compiler is to be regarding

the program (whether to diagnose questionable usage of the language), how much time to

spend making the generated machine code run faster, and so on.

g77 consists of several components:

20 Using and Porting GNU Fortran

� A modi�ed version of the gcc command, which also might be installed as the system's

cc command. (In many cases, cc refers to the system's \native" C compiler, which

might be a non-GNU compiler, or an older version of gcc considered more stable or

that is used to build the operating system kernel.)

� The g77 command itself, which also might be installed as the system's f77 command.

� The libf2c run-time library. This library contains the machine code needed to support

capabilities of the Fortran language that are not directly provided by the machine code

generated by the g77 compilation phase.

� The compiler itself, internally named f771.

Note that f771 does not generate machine code directly|it generates assembly code

that is a more readable form of machine code, leaving the conversion to actual machine

code to an assembler, usually named as.

gcc is often thought of as \the C compiler" only, but it does more than that. Based

on command-line options and the names given for �les on the command line, gcc deter-

mines which actions to perform, including preprocessing, compiling (in a variety of possible

languages), assembling, and linking.

For example, the command `gcc foo.c' drives the �le `foo.c' through the preprocessor

cpp, then the C compiler (internally named cc1), then the assembler (usually as), then the

linker (ld), producing an executable program named `a.out' (on UNIX systems).

As another example, the command `gcc foo.cc' would do much the same as `gcc foo.c',

but instead of using the C compiler named cc1, gcc would use the C++ compiler (named

cc1plus).

In a GNU Fortran installation, gcc recognizes Fortran source �les by name just like it

does C and C++ source �les. It knows to use the Fortran compiler named f771, instead of

cc1 or cc1plus, to compile Fortran �les.

Non-Fortran-related operation of gcc is generally una�ected by installing the GNU For-

tran version of gcc. However, without the installed version of gcc being the GNU Fortran

version, gcc will not be able to compile and link Fortran programs|and since g77 uses gcc

to do most of the actual work, neither will g77!

The g77 command is essentially just a front-end for the gcc command. Fortran users

will normally use g77 instead of gcc, because g77 knows how to specify the libraries needed

to link with Fortran programs (libf2c and lm). g77 can still compile and link programs

and source �les written in other languages, just like gcc.

The command `g77 -v' is a quick way to display lots of version information for the

various programs used to compile a typical preprocessed Fortran source �le|this produces

much more output than `gcc -v' currently does. (If it produces an error message near

the end of the output|diagnostics from the linker, usually ld|you might have an out-of-

date libf2c that improperly handles complex arithmetic.) In the output of this command,

the line beginning `GNU Fortran Front End' identi�es the version number of GNU Fortran;

immediately preceding that line is a line identifying the version of gcc with which that

version of g77 was built.

The libf2c library is distributed with GNU Fortran for the convenience of its users, but

is not part of GNU Fortran. It contains the procedures needed by Fortran programs while

they are running.

Chapter 5: What is GNU Fortran? 21

For example, while code generated by g77 is likely to do additions, subtractions, and

multiplications in line|in the actual compiled code|it is not likely to do trigonometric

functions this way.

Instead, operations like trigonometric functions are compiled by the f771 compiler (in-

voked by g77 when compiling Fortran code) into machine code that, when run, calls on

functions in libf2c, so libf2c must be linked with almost every useful program having

any component compiled by GNU Fortran. (As mentioned above, the g77 command takes

care of all this for you.)

The f771 program represents most of what is unique to GNU Fortran. While much of

the libf2c component is really part of f2c, a free Fortran-to-C converter distributed by

Bellcore (AT&T), plus libU77, provided by Dave Love, and the g77 command is just a

small front-end to gcc, f771 is a combination of two rather large chunks of code.

One chunk is the so-called GNU Back End, or GBE, which knows how to generate fast

code for a wide variety of processors. The same GBE is used by the C, C++, and Fortran

compiler programs cc1, cc1plus, and f771, plus others. Often the GBE is referred to as

the \gcc back end" or even just \gcc"|in this manual, the term GBE is used whenever the

distinction is important.

The other chunk of f771 is the majority of what is unique about GNU Fortran|the code

that knows how to interpret Fortran programs to determine what they are intending to do,

and then communicate that knowledge to the GBE for actual compilation of those programs.

This chunk is called the Fortran Front End (FFE). The cc1 and cc1plus programs have

their own front ends, for the C and C++ languages, respectively. These fronts ends are

responsible for diagnosing incorrect usage of their respective languages by the programs the

process, and are responsible for most of the warnings about questionable constructs as well.

(The GBE handles producing some warnings, like those concerning possible references to

unde�ned variables.)

Because so much is shared among the compilers for various languages, much of the be-

havior and many of the user-selectable options for these compilers are similar. For example,

diagnostics (error messages and warnings) are similar in appearance; command-line options

like `-Wall' have generally similar e�ects; and the quality of generated code (in terms of

speed and size) is roughly similar (since that work is done by the shared GBE).

22 Using and Porting GNU Fortran

Chapter 6: Compile Fortran, C, or Other Programs 23

6 Compile Fortran, C, or Other Programs

A GNU Fortran installation includes a modi�ed version of the gcc command.

In a non-Fortran installation, gcc recognizes C, C++, and Objective-C source �les.

In a GNU Fortran installation, gcc also recognizes Fortran source �les and accepts

Fortran-speci�c command-line options, plus some command-line options that are designed

to cater to Fortran users but apply to other languages as well.

See section \Compile C; C++; or Objective-C" in Using and Porting GNU CC , for

information on the way di�erent languages are handled by the GNU CC compiler (gcc).

Also provided as part of GNU Fortran is the g77 command. The g77 command is

designed to make compiling and linking Fortran programs somewhat easier than when using

the gcc command for these tasks. It does this by analyzing the command line somewhat

and changing it appropriately before submitting it to the gcc command.

Use the `-v' option with g77 to see what is going on|the �rst line of output is the

invocation of the gcc command. Use `--driver=true' to disable actual invocation of gcc

(this works because `true' is the name of a UNIX command that simply returns success

status).

24 Using and Porting GNU Fortran

Chapter 7: GNU Fortran Command Options 25

7 GNU Fortran Command Options

The g77 command supports all the options supported by the gcc command. See section

\GNU CC Command Options" in Using and Porting GNU CC , for information on the

non-Fortran-speci�c aspects of the gcc command (and, therefore, the g77 command).

The g77 command supports one option not supported by the gcc command:

--driver=command

Speci�es that command, rather than gcc, is to be invoked by g77 to do its job.

For example, within the gcc build directory after building GNU Fortran (but

without having to install it), ./g77 --driver=./xgcc foo.f -B./.

All other options are supported both by g77 and by gcc as modi�ed (and reinstalled) by

the g77 distribution. In some cases, options have positive and negative forms; the negative

form of `-ffoo' would be `-fno-foo'. This manual documents only one of these two forms,

whichever one is not the default.

7.1 Option Summary

Here is a summary of all the options speci�c to GNU Fortran, grouped by type. Expla-

nations are in the following sections.

Overall Options

See Section 7.2 [Options Controlling the Kind of Output], page 27.

--driver -fversion -fset-g77-defaults -fno-silent

Shorthand Options

See Section 7.3 [Shorthand Options], page 28.

-ff66 -fno-f66 -ff77 -fno-f77 -fugly -fno-ugly

Fortran Language Options

See Section 7.4 [Options Controlling Fortran Dialect], page 29.

-ffree-form -fno-fixed-form -ff90

-fvxt -fdollar-ok -fno-backslash

-fno-ugly-args -fno-ugly-assign -fno-ugly-assumed

-fugly-comma -fugly-complex -fugly-init -fugly-logint

-fonetrip -ftypeless-boz

-fintrin-case-initcap -fintrin-case-upper

-fintrin-case-lower -fintrin-case-any

-fmatch-case-initcap -fmatch-case-upper

-fmatch-case-lower -fmatch-case-any

-fsource-case-upper -fsource-case-lower -fsource-case-preserve

-fsymbol-case-initcap -fsymbol-case-upper

-fsymbol-case-lower -fsymbol-case-any

-fcase-strict-upper -fcase-strict-lower

-fcase-initcap -fcase-upper -fcase-lower -fcase-preserve

-ff2c-intrinsics-delete -ff2c-intrinsics-hide

-ff2c-intrinsics-disable -ff2c-intrinsics-enable

-fbadu77-intrinsics-delete -fbadu77-intrinsics-hide

26 Using and Porting GNU Fortran

-fbadu77-intrinsics-disable -fbadu77-intrinsics-enable

-ff90-intrinsics-delete -ff90-intrinsics-hide

-ff90-intrinsics-disable -ff90-intrinsics-enable

-fgnu-intrinsics-delete -fgnu-intrinsics-hide

-fgnu-intrinsics-disable -fgnu-intrinsics-enable

-fmil-intrinsics-delete -fmil-intrinsics-hide

-fmil-intrinsics-disable -fmil-intrinsics-enable

-funix-intrinsics-delete -funix-intrinsics-hide

-funix-intrinsics-disable -funix-intrinsics-enable

-fvxt-intrinsics-delete -fvxt-intrinsics-hide

-fvxt-intrinsics-disable -fvxt-intrinsics-enable

-ffixed-line-length-n -ffixed-line-length-none

Warning Options

See Section 7.5 [Options to Request or Suppress Warnings], page 35.

-fsyntax-only -pedantic -pedantic-errors -fpedantic

-w -Wno-globals -Wimplicit -Wunused -Wuninitialized

-Wall -Wsurprising

-Werror -W

Debugging Options

See Section 7.6 [Options for Debugging Your Program or GCC], page 38.

-g

Optimization Options

See Section 7.7 [Options that Control Optimization], page 38.

-malign-double

-ffloat-store -fforce-mem -fforce-addr -fno-inline

-ffast-math -fstrength-reduce -frerun-cse-after-loop

-fexpensive-optimizations -fdelayed-branch

-fschedule-insns -fschedule-insn2 -fcaller-saves

-funroll-loops -funroll-all-loops

-fno-move-all-movables -fno-reduce-all-givs

-fno-rerun-loop-opt

Directory Options

See Section 7.9 [Options for Directory Search], page 40.

-Idir -I-

Code Generation Options

See Section 7.10 [Options for Code Generation Conventions], page 41.

-fno-automatic -finit-local-zero -fno-f2c

-ff2c-library -fno-underscoring -fno-ident

-fpcc-struct-return -freg-struct-return

-fshort-double -fno-common -fpack-struct

-fzeros -fno-second-underscore

-fdebug-kludge -fno-emulate-complex

-falias-check -fargument-alias

-fargument-noalias -fno-argument-noalias-global

-fno-globals

Chapter 7: GNU Fortran Command Options 27

7.2 Options Controlling the Kind of Output

Compilation can involve as many as four stages: preprocessing, code generation (often

what is really meant by the term \compilation"), assembly, and linking, always in that

order. The �rst three stages apply to an individual source �le, and end by producing an

object �le; linking combines all the object �les (those newly compiled, and those speci�ed

as input) into an executable �le.

For any given input �le, the �le name su�x determines what kind of program is contained

in the �le|that is, the language in which the program is written is generally indicated by

the su�x. Su�xes speci�c to GNU Fortran are listed below. See Section 7.2 [gcc], page 27,

for information on su�xes recognized by GNU CC.

�le.f

�le.for Fortran source code that should not be preprocessed.

Such source code cannot contain any preprocessor directives, such as #include,

#define, #if, and so on.

�le.F

�le.fpp Fortran source code that must be preprocessed (by the C preprocessor cpp,

which is part of GNU CC).

Note that preprocessing is not extended to the contents of �les included by the

INCLUDE directive|the #include preprocessor directive must be used instead.

�le.r Ratfor source code, which must be preprocessed by the ratfor command, which

is available separately (as it is not yet part of the GNU Fortran distribution).

UNIX users typically use the `�le.f' and `�le.F' nomenclature. Users of other operating

systems, especially those that cannot distinguish upper-case letters from lower-case letters

in their �le names, typically use the `�le.for' and `�le.fpp' nomenclature.

Use of the preprocessor cpp allows use of C-like constructs such as #define and

#include, but can lead to unexpected, even mistaken, results due to Fortran's source

�le format. It is recommended that use of the C preprocessor be limited to #include and,

in conjunction with #define, only #if and related directives, thus avoiding in-line macro

expansion entirely. This recommendation applies especially when using the traditional �xed

source form. With free source form, fewer unexpected transformations are likely to happen,

but use of constructs such as Hollerith and character constants can nevertheless present

problems, especially when these are continued across multiple source lines. These problems

result, primarily, from di�erences between the way such constants are interpreted by the C

preprocessor and by a Fortran compiler.

Another example of a problem that results from using the C preprocessor is that a Fortran

comment line that happens to contain any characters \interesting" to the C preprocessor,

such as a backslash at the end of the line, is not recognized by the preprocessor as a

comment line, so instead of being passed through \raw", the line is edited according to the

rules for the preprocessor. For example, the backslash at the end of the line is removed,

along with the subsequent newline, resulting in the next line being e�ectively commented

out|unfortunate if that line is a non-comment line of important code!

28 Using and Porting GNU Fortran

Note: The `-traditional' and `-undef' ags are supplied to cpp by default, to avoid

unpleasant surprises. See section \Options Controlling the Preprocessor" in Using and

Porting GNU CC . This means that ANSI C preprocessor features (such as the `#' operator)

aren't available, and only variables in the C reserved namespace (generally, names with

a leading underscore) are liable to substitution by C prede�nes. Thus, if you want to do

system-speci�c tests, use, for example, `#ifdef __linux__' rather than `#ifdef linux'.

Use the `-v' option to see exactly how the preprocessor is invoked.

The following options that a�ect overall processing are recognized by the g77 and gcc

commands in a GNU Fortran installation:

--driver=command

This works when invoking only the g77 command, not when invoking the gcc

command. See Chapter 7 [GNU Fortran Command Options], page 25, for

information on this option.

-fversion

Ensure that the g77-speci�c version of the compiler phase is reported, if run.

(This is supplied automatically when `-v' or `--verbose' is speci�ed as a

command-line option for g77 or gcc and when the resulting commands compile

Fortran source �les.)

-fset-g77-defaults

Set up whatever gcc options are to apply to Fortran compilations, and avoid

running internal consistency checks that might take some time.

As of version 0.5.20, this is equivalent to `-fmove-all-movables -freduce-all-givs

-frerun-loop-opt -fargument-noalias-global'.

This option is supplied automatically when compiling Fortran code via the g77

or gcc command. The description of this option is provided so that users seeing

it in the output of, say, `g77 -v' understand why it is there.

Also, developers who run f771 directly might want to specify it by hand to get

the same defaults as they would running f771 via g77 or gcc. However, such

developers should, after linking a new f771 executable, invoke it without this

option once, e.g. via ./f771 -quiet < /dev/null, to ensure that they have not

introduced any internal inconsistencies (such as in the table of intrinsics) before

proceeding|g77 will crash with a diagnostic if it detects an inconsistency.

-fno-silent

Print (to stderr) the names of the program units as they are compiled, in a

form similar to that used by popular UNIX f77 implementations and f2c.

See section \Options Controlling the Kind of Output" in Using and Porting GNU CC ,

for information on more options that control the overall operation of the gcc command

(and, by extension, the g77 command).

7.3 Shorthand Options

The following options serve as \shorthand" for other options accepted by the compiler:

-fugly Specify that certain \ugly" constructs are to be quietly accepted. Same as:

Chapter 7: GNU Fortran Command Options 29

-fugly-args -fugly-assign -fugly-assumed

-fugly-comma -fugly-complex -fugly-init

-fugly-logint

These constructs are considered inappropriate to use in new or well-maintained

portable Fortran code, but widely used in old code. See Section 11.9 [Disten-

sions], page 178, for more information.

Note: The `-fugly' option is likely to be removed in a future version. Implicitly

enabling all the `-fugly-*' options is unlikely to be feasible, or sensible, in the

future, so users should learn to specify only those `-fugly-*' options they really

need for a particular source �le.

-fno-ugly

Specify that all \ugly" constructs are to be noisily rejected. Same as:

-fno-ugly-args -fno-ugly-assign -fno-ugly-assumed

-fno-ugly-comma -fno-ugly-complex -fno-ugly-init

-fno-ugly-logint

See Section 11.9 [Distensions], page 178, for more information.

-ff66 Specify that the program is written in idiomatic FORTRAN 66. Same as

`-fonetrip -fugly-assumed'.

The `-fno-f66' option is the inverse of `-ff66'. As such, it is the same as

`-fno-onetrip -fno-ugly-assumed'.

The meaning of this option is likely to be re�ned as future versions of g77

provide more compatibility with other existing and obsolete Fortran implemen-

tations.

-ff77 Specify that the program is written in idiomatic UNIX FORTRAN 77 and/or

the dialect accepted by the f2c product. Same as `-fbackslash -fno-typeless-boz'.

The meaning of this option is likely to be re�ned as future versions of g77

provide more compatibility with other existing and obsolete Fortran implemen-

tations.

-fno-f77 The `-fno-f77' option is not the inverse of `-ff77'. It speci�es that the program

is not written in idiomatic UNIX FORTRAN 77 or f2c, but in a more widely

portable dialect. `-fno-f77' is the same as `-fno-backslash'.

The meaning of this option is likely to be re�ned as future versions of g77

provide more compatibility with other existing and obsolete Fortran implemen-

tations.

7.4 Options Controlling Fortran Dialect

The following options control the dialect of Fortran that the compiler accepts:

-ffree-form

-fno-fixed-form

Specify that the source �le is written in free form (introduced in Fortran 90)

instead of the more-traditional �xed form.

30 Using and Porting GNU Fortran

-ff90 Allow certain Fortran-90 constructs.

This option controls whether certain Fortran 90 constructs are recognized.

(Other Fortran 90 constructs might or might not be recognized depending on

other options such as `-fvxt', `-ff90-intrinsics-enable', and the current

level of support for Fortran 90.)

See Section 11.7 [Fortran 90], page 176, for more information.

-fvxt Specify the treatment of certain constructs that have di�erent meanings de-

pending on whether the code is written in GNU Fortran (based on FORTRAN

77 and akin to Fortran 90) or VXT Fortran (more like VAX FORTRAN).

The default is `-fno-vxt'. `-fvxt' speci�es that the VXT Fortran interpreta-

tions for those constructs are to be chosen.

See Section 11.6 [VXT Fortran], page 175, for more information.

-fdollar-ok

Allow `$' as a valid character in a symbol name.

-fno-backslash

Specify that `\' is not to be specially interpreted in character and Hollerith

constants a la C and many UNIX Fortran compilers.

For example, with `-fbackslash' in e�ect, `A\nB' speci�es three characters,

with the second one being newline. With `-fno-backslash', it speci�es four

characters, `A', `\', `n', and `B'.

Note that g77 implements a fairly general form of backslash processing that is

incompatible with the narrower forms supported by some other compilers. For

example, `'A\003B'' is a three-character string in g77, whereas other compilers

that support backslash might not support the three-octal-digit form, and thus

treat that string as longer than three characters.

See Section 18.5.1 [Backslash in Constants], page 284, for information on why

`-fbackslash' is the default instead of `-fno-backslash'.

-fno-ugly-args

Disallow passing Hollerith and typeless constants as actual arguments (for ex-

ample, `CALL FOO(4HABCD)').

See Section 11.9.1 [Ugly Implicit Argument Conversion], page 178, for more

information.

-fugly-assign

Use the same storage for a given variable regardless of whether it is used to hold

an assigned-statement label (as in `ASSIGN 10 TO I') or used to hold numeric

data (as in `I = 3').

See Section 11.9.7 [Ugly Assigned Labels], page 181, for more information.

-fugly-assumed

Assume any dummy array with a �nal dimension speci�ed as `1' is really an

assumed-size array, as if `*' had been speci�ed for the �nal dimension instead

of `1'.

For example, `DIMENSION X(1)' is treated as if it had read `DIMENSION X(*)'.

Chapter 7: GNU Fortran Command Options 31

See Section 11.9.2 [Ugly Assumed-Size Arrays], page 179, for more information.

-fugly-comma

In an external-procedure invocation, treat a trailing comma in the argument

list as speci�cation of a trailing null argument, and treat an empty argument

list as speci�cation of a single null argument.

For example, `CALL FOO(,)' is treated as `CALL FOO(%VAL(0), %VAL(0))'. That

is, two null arguments are speci�ed by the procedure call when `-fugly-comma'

is in force. And `F = FUNC()' is treated as `F = FUNC(%VAL(0))'.

The default behavior, `-fno-ugly-comma', is to ignore a single trailing comma

in an argument list. So, by default, `CALL FOO(X,)' is treated exactly the same

as `CALL FOO(X)'.

See Section 11.9.4 [Ugly Null Arguments], page 180, for more information.

-fugly-complex

Do not complain about `REAL(expr)' or `AIMAG(expr)' when expr is a COMPLEX

type other than COMPLEX(KIND=1)|usually this is used to permit COMPLEX(KIND=2)

(DOUBLE COMPLEX) operands.

The `-ff90' option controls the interpretation of this construct.

See Section 11.9.3 [Ugly Complex Part Extraction], page 179, for more infor-

mation.

-fno-ugly-init

Disallow use of Hollerith and typeless constants as initial values (in PARAMETER

and DATA statements), and use of character constants to initialize numeric types

and vice versa.

For example, `DATA I/'F'/, CHRVAR/65/, J/4HABCD/' is disallowed by `-fno-ugly-init'.

See Section 11.9.5 [Ugly Conversion of Initializers], page 180, for more informa-

tion.

-fugly-logint

Treat INTEGER and LOGICAL variables and expressions as potential stand-ins for

each other.

For example, automatic conversion between INTEGER and LOGICAL is enabled,

for many contexts, via this option.

See Section 11.9.6 [Ugly Integer Conversions], page 181, for more information.

-fonetrip

Imperative executable DO loops are to be executed at least once each time they

are reached.

ANSI FORTRAN 77 and more recent versions of the Fortran standard specify

that the body of an imperative DO loop is not executed if the number of iterations

calculated from the parameters of the loop is less than 1. (For example, `DO 10

I = 1, 0'.) Such a loop is called a zero-trip loop.

Prior to ANSI FORTRAN 77, many compilers implemented DO loops such that

the body of a loop would be executed at least once, even if the iteration count

32 Using and Porting GNU Fortran

was zero. Fortran code written assuming this behavior is said to require one-

trip loops. For example, some code written to the FORTRAN 66 standard

expects this behavior from its DO loops, although that standard did not specify

this behavior.

The `-fonetrip' option speci�es that the source �le(s) being compiled require

one-trip loops.

This option a�ects only those loops speci�ed by the (imperative) DO statement

and by implied-DO lists in I/O statements. Loops speci�ed by implied-DO lists

in DATA and speci�cation (non-executable) statements are not a�ected.

-ftypeless-boz

Speci�es that pre�x-radix non-decimal constants, such as `Z'ABCD'', are type-

less instead of INTEGER(KIND=1).

You can test for yourself whether a particular compiler treats the pre�x form

as INTEGER(KIND=1) or typeless by running the following program:

EQUIVALENCE (I, R)

R = Z'ABCD1234'

J = Z'ABCD1234'

IF (J .EQ. I) PRINT *, 'Prefix form is TYPELESS'

IF (J .NE. I) PRINT *, 'Prefix form is INTEGER'

END

Reports indicate that many compilers process this form as INTEGER(KIND=1),

though a few as typeless, and at least one based on a command-line option

specifying some kind of compatibility.

-fintrin-case-initcap

-fintrin-case-upper

-fintrin-case-lower

-fintrin-case-any

Specify expected case for intrinsic names. `-fintrin-case-lower' is the de-

fault.

-fmatch-case-initcap

-fmatch-case-upper

-fmatch-case-lower

-fmatch-case-any

Specify expected case for keywords. `-fmatch-case-lower' is the default.

-fsource-case-upper

-fsource-case-lower

-fsource-case-preserve

Specify whether source text other than character and Hollerith constants is to be

translated to uppercase, to lowercase, or preserved as is. `-fsource-case-lower'

is the default.

-fsymbol-case-initcap

Chapter 7: GNU Fortran Command Options 33

-fsymbol-case-upper

-fsymbol-case-lower

-fsymbol-case-any

Specify valid cases for user-de�ned symbol names. `-fsymbol-case-any' is the

default.

-fcase-strict-upper

Same as `-fintrin-case-upper -fmatch-case-upper -fsource-case-preserve

-fsymbol-case-upper'. (Requires all pertinent source to be in uppercase.)

-fcase-strict-lower

Same as `-fintrin-case-lower -fmatch-case-lower -fsource-case-preserve

-fsymbol-case-lower'. (Requires all pertinent source to be in lowercase.)

-fcase-initcap

Same as `-fintrin-case-initcap -fmatch-case-initcap -fsource-case-preserve

-fsymbol-case-initcap'. (Requires all pertinent source to be in initial capi-

tals, as in `Print *,SqRt(Value)'.)

-fcase-upper

Same as `-fintrin-case-any -fmatch-case-any -fsource-case-upper -fsymbol-case-any'.

(Maps all pertinent source to uppercase.)

-fcase-lower

Same as `-fintrin-case-any -fmatch-case-any -fsource-case-lower -fsymbol-case-any'.

(Maps all pertinent source to lowercase.)

-fcase-preserve

Same as `-fintrin-case-any -fmatch-case-any -fsource-case-preserve

-fsymbol-case-any'. (Preserves all case in user-de�ned symbols, while al-

lowing any-case matching of intrinsics and keywords. For example, `call

Foo(i,I)' would pass two di�erent variables named `i' and `I' to a procedure

named `Foo'.)

-fbadu77-intrinsics-delete

-fbadu77-intrinsics-hide

-fbadu77-intrinsics-disable

-fbadu77-intrinsics-enable

Specify status of UNIX intrinsics having inappropriate forms. `-fbadu77-intrinsics-enable'

is the default. See Section 12.4.1 [Intrinsic Groups], page 185.

-ff2c-intrinsics-delete

-ff2c-intrinsics-hide

-ff2c-intrinsics-disable

-ff2c-intrinsics-enable

Specify status of f2c-speci�c intrinsics. `-ff2c-intrinsics-enable' is the de-

fault. See Section 12.4.1 [Intrinsic Groups], page 185.

-ff90-intrinsics-delete

-ff90-intrinsics-hide

34 Using and Porting GNU Fortran

-ff90-intrinsics-disable

-ff90-intrinsics-enable

Specify status of F90-speci�c intrinsics. `-ff90-intrinsics-enable' is the

default. See Section 12.4.1 [Intrinsic Groups], page 185.

-fgnu-intrinsics-delete

-fgnu-intrinsics-hide

-fgnu-intrinsics-disable

-fgnu-intrinsics-enable

Specify status of Digital's COMPLEX-related intrinsics. `-fgnu-intrinsics-enable'

is the default. See Section 12.4.1 [Intrinsic Groups], page 185.

-fmil-intrinsics-delete

-fmil-intrinsics-hide

-fmil-intrinsics-disable

-fmil-intrinsics-enable

Specify status of MIL-STD-1753-speci�c intrinsics. `-fmil-intrinsics-enable'

is the default. See Section 12.4.1 [Intrinsic Groups], page 185.

-funix-intrinsics-delete

-funix-intrinsics-hide

-funix-intrinsics-disable

-funix-intrinsics-enable

Specify status of UNIX intrinsics. `-funix-intrinsics-enable' is the default.

See Section 12.4.1 [Intrinsic Groups], page 185.

-fvxt-intrinsics-delete

-fvxt-intrinsics-hide

-fvxt-intrinsics-disable

-fvxt-intrinsics-enable

Specify status of VXT intrinsics. `-fvxt-intrinsics-enable' is the default.

See Section 12.4.1 [Intrinsic Groups], page 185.

-ffixed-line-length-n

Set column after which characters are ignored in typical �xed-form lines in the

source �le, and through which spaces are assumed (as if padded to that length)

after the ends of short �xed-form lines.

Popular values for n include 72 (the standard and the default), 80 (card im-

age), and 132 (corresponds to \extended-source" options in some popular com-

pilers). n may be `none', meaning that the entire line is meaningful and

that continued character constants never have implicit spaces appended to

them to �ll out the line. `-ffixed-line-length-0' means the same thing

as `-ffixed-line-length-none'.

See Section 11.1 [Source Form], page 169, for more information.

Chapter 7: GNU Fortran Command Options 35

7.5 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which are not inherently

erroneous but which are risky or suggest there might have been an error.

You can request many speci�c warnings with options beginning `-W', for example

`-Wimplicit' to request warnings on implicit declarations. Each of these speci�c warning

options also has a negative form beginning `-Wno-' to turn o� warnings; for example,

`-Wno-implicit'. This manual lists only one of the two forms, whichever is not the default.

These options control the amount and kinds of warnings produced by GNU Fortran:

-fsyntax-only

Check the code for syntax errors, but don't do anything beyond that.

-pedantic

Issue warnings for uses of extensions to ANSI FORTRAN 77. `-pedantic' also

applies to C-language constructs where they occur in GNU Fortran source �les,

such as use of `\e' in a character constant within a directive like `#include'.

Valid ANSI FORTRAN 77 programs should compile properly with or without

this option. However, without this option, certain GNU extensions and tradi-

tional Fortran features are supported as well. With this option, many of them

are rejected.

Some users try to use `-pedantic' to check programs for strict ANSI confor-

mance. They soon �nd that it does not do quite what they want|it �nds some

non-ANSI practices, but not all. However, improvements to g77 in this area

are welcome.

-pedantic-errors

Like `-pedantic', except that errors are produced rather than warnings.

-fpedantic

Like `-pedantic', but applies only to Fortran constructs.

-w Inhibit all warning messages.

-Wno-globals

Inhibit warnings about use of a name as both a global name (a subroutine,

function, or block data program unit, or a common block) and implicitly as the

name of an intrinsic in a source �le.

Also inhibit warnings about inconsistent invocations and/or de�nitions of global

procedures (function and subroutines). Such inconsistencies include di�erent

numbers of arguments and di�erent types of arguments.

-Wimplicit

Warn whenever a variable, array, or function is implicitly declared. Has an

e�ect similar to using the IMPLICIT NONE statement in every program unit.

(Some Fortran compilers provide this feature by an option named `-u' or

`/WARNINGS=DECLARATIONS'.)

-Wunused Warn whenever a variable is unused aside from its declaration.

36 Using and Porting GNU Fortran

-Wuninitialized

Warn whenever an automatic variable is used without �rst being initialized.

These warnings are possible only in optimizing compilation, because they re-

quire data-ow information that is computed only when optimizing. If you

don't specify `-O', you simply won't get these warnings.

These warnings occur only for variables that are candidates for register allo-

cation. Therefore, they do not occur for a variable whose address is taken, or

whose size is other than 1, 2, 4 or 8 bytes. Also, they do not occur for arrays,

even when they are in registers.

Note that there might be no warning about a variable that is used only to

compute a value that itself is never used, because such computations may be

deleted by data-ow analysis before the warnings are printed.

These warnings are made optional because GNU Fortran is not smart enough

to see all the reasons why the code might be correct despite appearing to have

an error. Here is one example of how this can happen:

SUBROUTINE DISPAT(J)

IF (J.EQ.1) I=1

IF (J.EQ.2) I=4

IF (J.EQ.3) I=5

CALL FOO(I)

END

If the value of J is always 1, 2 or 3, then I is always initialized, but GNU

Fortran doesn't know this. Here is another common case:

SUBROUTINE MAYBE(FLAG)

LOGICAL FLAG

IF (FLAG) VALUE = 9.4

: : :

IF (FLAG) PRINT *, VALUE

END

This has no bug because VALUE is used only if it is set.

-Wall The `-Wunused' and `-Wuninitialized' options combined. These are all the

options which pertain to usage that we recommend avoiding and that we believe

is easy to avoid. (As more warnings are added to g77, some might be added to

the list enabled by `-Wall'.)

The remaining `-W: : :' options are not implied by `-Wall' because they warn about con-

structions that we consider reasonable to use, on occasion, in clean programs.

-Wsurprising

Warn about \suspicious" constructs that are interpreted by the compiler in a

way that might well be surprising to someone reading the code. These dif-

ferences can result in subtle, compiler-dependent (even machine-dependent)

behavioral di�erences. The constructs warned about include:

� Expressions having two arithmetic operators in a row, such as `X*-Y'.

Such a construct is nonstandard, and can produce unexpected results in

Chapter 7: GNU Fortran Command Options 37

more complicated situations such as `X**-Y*Z'. g77, along with many

other compilers, interprets this example di�erently than many program-

mers, and a few other compilers. Speci�cally, g77 interprets `X**-Y*Z'

as `(X**(-Y))*Z', while others might think it should be interpreted as

`X**(-(Y*Z))'.

A revealing example is the constant expression `2**-2*1.', which g77 eval-

uates to .25, while others might evaluate it to 0., the di�erence resulting

from the way precedence a�ects type promotion.

(The `-fpedantic' option also warns about expressions having two arith-

metic operators in a row.)

� Expressions with a unary minus followed by an operand and then a binary

operator other than plus or minus. For example, `-2**2' produces a warn-

ing, because the precedence is `-(2**2)', yielding -4, not `(-2)**2', which

yields 4, and which might represent what a programmer expects.

An example of an expression producing di�erent results in a surprising way

is `-I*S', where I holds the value `-2147483648' and S holds `0.5'. On

many systems, negating I results in the same value, not a positive number,

because it is already the lower bound of what an INTEGER(KIND=1) variable

can hold. So, the expression evaluates to a positive number, while the

\expected" interpretation, `(-I)*S', would evaluate to a negative number.

Even cases such as `-I*J' produce warnings, even though, in most con�g-

urations and situations, there is no computational di�erence between the

results of the two interpretations|the purpose of this warning is to warn

about di�ering interpretations and encourage a better style of coding, not

to identify only those places where bugs might exist in the user's code.

� DO loops with DO variables that are not of integral type|that is, using REAL

variables as loop control variables. Although such loops can be written to

work in the \obvious" way, the way g77 is required by the Fortran standard

to interpret such code is likely to be quite di�erent from the way many

programmers expect. (This is true of all DO loops, but the di�erences are

pronounced for non-integral loop control variables.)

See Section 17.3 [Loops], page 254, for more information.

-Werror Make all warnings into errors.

-W Turns on \extra warnings" and, if optimization is speci�ed via `-O', the

`-Wuninitialized' option. (This might change in future versions of g77.)

\Extra warnings" are issued for:

� Unused parameters to a procedure (when `-Wunused' also is speci�ed).

� Overows involving oating-point constants (not available for certain con-

�gurations).

See section \Options to Request or Suppress Warnings" in Using and Porting GNU CC ,

for information on more options o�ered by the GBE shared by g77, gcc, and other GNU

compilers.

Some of these have no e�ect when compiling programs written in Fortran:

38 Using and Porting GNU Fortran

-Wcomment

-Wformat

-Wparentheses

-Wswitch

-Wtraditional

-Wshadow

-Wid-clash-len

-Wlarger-than-len

-Wconversion

-Waggregate-return

-Wredundant-decls

These options all could have some relevant meaning for GNU Fortran programs,

but are not yet supported.

7.6 Options for Debugging Your Program or GNU Fortran

GNU Fortran has various special options that are used for debugging either your program

or g77.

-g Produce debugging information in the operating system's native format (stabs,

COFF, XCOFF, or DWARF). GDB can work with this debugging information.

Support for this option in Fortran programs is incomplete. In particular, names

of variables and arrays in common blocks or that are storage-associated via

EQUIVALENCE are unavailable to the debugger.

However, version 0.5.19 of g77 does provide this information in a rudimentary

way, as controlled by the `-fdebug-kludge' option.

See Section 7.10 [Options for Code Generation Conventions], page 41, for more

information.

See section \Options for Debugging Your Program or GNU CC" in Using and Porting

GNU CC , for more information on debugging options.

7.7 Options That Control Optimization

Most Fortran users will want to use no optimization when developing and testing pro-

grams, and use `-O' or `-O2' when compiling programs for late-cycle testing and for produc-

tion use.

The following ags have particular applicability when compiling Fortran programs:

-malign-double

(Intel 386 architecture only.)

Noticeably improves performance of g77 programs making heavy use of REAL(KIND=2)

(DOUBLE PRECISION) data on some systems. In particular, systems using Pen-

tium, Pentium Pro, 586, and 686 implementations of the i386 architecture

Chapter 7: GNU Fortran Command Options 39

execute programs faster when REAL(KIND=2) (DOUBLE PRECISION) data are

aligned on 64-bit boundaries in memory.

This option can, at least, make benchmark results more consistent across various

system con�gurations, versions of the program, and data sets.

Note: The warning in the gcc documentation about this option does not apply,

generally speaking, to Fortran code compiled by g77.

Also note: g77 �xes a gcc backend bug to allow `-malign-double' to work

generally, not just with statically-allocated data.

Also also note: The negative form of `-malign-double' is `-mno-align-double',

not `-benign-double'.

-ffloat-store

Might help a Fortran program that depends on exact IEEE conformance on

some machines, but might slow down a program that doesn't.

-fforce-mem

-fforce-addr

Might improve optimization of loops.

-fno-inline

Don't compile statement functions inline. Might reduce the size of a program

unit|which might be at expense of some speed (though it should compile

faster). Note that if you are not optimizing, no functions can be expanded

inline.

-ffast-math

Might allow some programs designed to not be too dependent on IEEE behavior

for oating-point to run faster, or die trying.

-fstrength-reduce

Might make some loops run faster.

-frerun-cse-after-loop

-fexpensive-optimizations

-fdelayed-branch

-fschedule-insns

-fschedule-insns2

-fcaller-saves

Might improve performance on some code.

-funroll-loops

De�nitely improves performance on some code.

-funroll-all-loops

De�nitely improves performance on some code.

-fno-move-all-movables

-fno-reduce-all-givs

40 Using and Porting GNU Fortran

-fno-rerun-loop-opt

Each of these might improve performance on some code.

Analysis of Fortran code optimization and the resulting optimizations triggered

by the above options were contributed by Toon Moene (toon@moene.indiv.nluug.nl).

These three options are intended to be removed someday, once they have helped

determine the e�cacy of various approaches to improving the performance of

Fortran code.

Please let us know how use of these options a�ects the performance of your

production code. We're particularly interested in code that runs faster when

these options are disabled, and in non-Fortran code that bene�ts when they are

enabled via the above gcc command-line options.

See section \Options That Control Optimization" in Using and Porting GNU CC , for

more information on options to optimize the generated machine code.

7.8 Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C source �le before actual

compilation.

See section \Options Controlling the Preprocessor" in Using and Porting GNU CC , for

information on C preprocessor options.

Some of these options also a�ect how g77 processes the INCLUDE directive. Since this

directive is processed even when preprocessing is not requested, it is not described in this

section. See Section 7.9 [Options for Directory Search], page 40, for information on how

g77 processes the INCLUDE directive.

However, the INCLUDE directive does not apply preprocessing to the contents of the

included �le itself.

Therefore, any �le that contains preprocessor directives (such as #include, #define, and

#if) must be included via the #include directive, not via the INCLUDE directive. Therefore,

any �le containing preprocessor directives, if included, is necessarily included by a �le that

itself contains preprocessor directives.

7.9 Options for Directory Search

These options a�ect how the cpp preprocessor searches for �les speci�ed via the #include

directive. Therefore, when compiling Fortran programs, they are meaningful when the

preproecssor is used.

Some of these options also a�ect how g77 searches for �les speci�ed via the INCLUDE

directive, although �les included by that directive are not, themselves, preprocessed. These

options are:

-I-

-Idir These a�ect interpretation of the INCLUDE directive (as well as of the #include

directive of the cpp preprocessor).

Chapter 7: GNU Fortran Command Options 41

Note that `-Idir' must be speci�ed without any spaces between `-I' and the

directory name|that is, `-Ifoo/bar' is valid, but `-I foo/bar' is rejected by

the g77 compiler (though the preprocessor supports the latter form). Also note

that the general behavior of `-I' and INCLUDE is pretty much the same as of `-I'

with #include in the cpp preprocessor, with regard to looking for `header.gcc'

�les and other such things.

See section \Options for Directory Search" in Using and Porting GNU CC , for

information on the `-I' option.

7.10 Options for Code Generation Conventions

These machine-independent options control the interface conventions used in code gen-

eration.

Most of them have both positive and negative forms; the negative form of `-ffoo' would

be `-fno-foo'. In the table below, only one of the forms is listed|the one which is not the

default. You can �gure out the other form by either removing `no-' or adding it.

-fno-automatic

Treat each program unit as if the SAVE statement was speci�ed for every local

variable and array referenced in it. Does not a�ect common blocks. (Some

Fortran compilers provide this option under the name `-static'.)

-finit-local-zero

Specify that variables and arrays that are local to a program unit (not in a

common block and not passed as an argument) are to be initialized to binary

zeros.

Since there is a run-time penalty for initialization of variables that are not given

the SAVE attribute, it might be a good idea to also use `-fno-automatic' with

`-finit-local-zero'.

-fno-f2c Do not generate code designed to be compatible with code generated by f2c;

use the GNU calling conventions instead.

The f2c calling conventions require functions that return type REAL(KIND=1)

to actually return the C type double, and functions that return type COMPLEX

to return the values via an extra argument in the calling sequence that points

to where to store the return value. Under the GNU calling conventions, such

functions simply return their results as they would in GNU C|REAL(KIND=1)

functions return the C type float, and COMPLEX functions return the GNU C

type complex (or its struct equivalent).

This does not a�ect the generation of code that interfaces with the libf2c

library.

However, because the libf2c library uses f2c calling conventions, g77 rejects

attempts to pass intrinsics implemented by routines in this library as actual

arguments when `-fno-f2c' is used, to avoid bugs when they are actually called

by code expecting the GNU calling conventions to work.

For example, `INTRINSIC ABS;CALL FOO(ABS)' is rejected when `-fno-f2c' is

in force. (Future versions of the g77 run-time library might o�er routines that

42 Using and Porting GNU Fortran

provide GNU-callable versions of the routines that implement the f2c-callable

intrinsics that may be passed as actual arguments, so that valid programs need

not be rejected when `-fno-f2c' is used.)

Caution: If `-fno-f2c' is used when compiling any source �le used in a program,

it must be used when compiling all Fortran source �les used in that program.

-ff2c-library

Specify that use of libf2c is required. This is the default for the current version

of g77.

Currently it is not valid to specify `-fno-f2c-library'. This option is provided

so users can specify it in shell scripts that build programs and libraries that

require the libf2c library, even when being compiled by future versions of g77

that might otherwise default to generating code for an incompatible library.

-fno-underscoring

Do not transform names of entities speci�ed in the Fortran source �le by ap-

pending underscores to them.

With `-funderscoring' in e�ect, g77 appends two underscores to names with

underscores and one underscore to external names with no underscores. (g77

also appends two underscores to internal names with underscores to avoid nam-

ing collisions with external names. The `-fno-second-underscore' option dis-

ables appending of the second underscore in all cases.)

This is done to ensure compatibility with code produced by many UNIX Fortran

compilers, including f2c, which perform the same transformations.

Use of `-fno-underscoring' is not recommended unless you are experimenting

with issues such as integration of (GNU) Fortran into existing system environ-

ments (vis-a-vis existing libraries, tools, and so on).

For example, with `-funderscoring', and assuming other defaults like `-fcase-lower'

and that `j()' and `max_count()' are external functions while `my_var' and

`lvar' are local variables, a statement like

I = J() + MAX_COUNT (MY_VAR, LVAR)

is implemented as something akin to:

i = j_() + max_count__(&my_var__, &lvar);

With `-fno-underscoring', the same statement is implemented as:

i = j() + max_count(&my_var, &lvar);

Use of `-fno-underscoring' allows direct speci�cation of user-de�ned names

while debugging and when interfacing g77-compiled code with other languages.

Note that just because the names match does not mean that the interface

implemented by g77 for an external name matches the interface implemented

by some other language for that same name. That is, getting code produced

by g77 to link to code produced by some other compiler using this or any

other method can be only a small part of the overall solution|getting the code

generated by both compilers to agree on issues other than naming can require

signi�cant e�ort, and, unlike naming disagreements, linkers normally cannot

detect disagreements in these other areas.

Chapter 7: GNU Fortran Command Options 43

Also, note that with `-fno-underscoring', the lack of appended underscores in-

troduces the very real possibility that a user-de�ned external name will conict

with a name in a system library, which could make �nding unresolved-reference

bugs quite di�cult in some cases|they might occur at program run time, and

show up only as buggy behavior at run time.

In future versions of g77, we hope to improve naming and linking issues so that

debugging always involves using the names as they appear in the source, even

if the names as seen by the linker are mangled to prevent accidental linking

between procedures with incompatible interfaces.

-fno-second-underscore

Do not append a second underscore to names of entities speci�ed in the Fortran

source �le.

This option has no e�ect if `-fno-underscoring' is in e�ect.

Otherwise, with this option, an external name such as `MAX_COUNT' is imple-

mented as a reference to the link-time external symbol `max_count_', instead

of `max_count__'.

-fno-ident

Ignore the `#ident' directive.

-fzeros Treat initial values of zero as if they were any other value.

As of version 0.5.18, g77 normally treats DATA and other statements that are

used to specify initial values of zero for variables and arrays as if no values were

actually speci�ed, in the sense that no diagnostics regarding multiple initializa-

tions are produced.

This is done to speed up compiling of programs that initialize large arrays to

zeros.

Use `-fzeros' to revert to the simpler, slower behavior that can catch multiple

initializations by keeping track of all initializations, zero or otherwise.

Caution: Future versions of g77 might disregard this option (and its nega-

tive form, the default) or interpret it somewhat di�erently. The interpretation

changes will a�ect only non-standard programs; standard-conforming programs

should not be a�ected.

-fdebug-kludge

Emit information on COMMON and EQUIVALENCE members that might help users

of debuggers work around lack of proper debugging information on such mem-

bers.

As of version 0.5.19, g77 o�ers this option to emit information on members of

aggregate areas to help users while debugging. This information consists of es-

tablishing the type and contents of each such member so that, when a debugger

is asked to print the contents, the printed information provides rudimentary de-

bugging information. This information identi�es the name of the aggregate area

(either the COMMON block name, or the g77-assigned name for the EQUIVALENCE

name) and the o�set, in bytes, of the member from the beginning of the area.

44 Using and Porting GNU Fortran

Using gdb, this information is not coherently displayed in the Fortran language

mode, so temporarily switching to the C language mode to display the in-

formation is suggested. Use `set language c' and `set language fortran' to

accomplish this.

For example:

COMMON /X/A,B

EQUIVALENCE (C,D)

CHARACTER XX*50

EQUIVALENCE (I,XX(20:20))

END

GDB is free software and you are welcome to distribute copies of it

under certain conditions; type "show copying" to see the conditions.

There is absolutely no warranty for GDB; type "show warranty" for details.

GDB 4.16 (lm-gnits-dwim), Copyright 1996 Free Software Foundation, Inc...

(gdb) b MAIN__

Breakpoint 1 at 0t1200000201120112: file cd.f, line 5.

(gdb) r

Starting program: /home/user/a.out

Breakpoint 1, MAIN__ () at cd.f:5

Current language: auto; currently fortran

(gdb) set language c

Warning: the current language does not match this frame.

(gdb) p a

$2 = "At (COMMON) `x_' plus 0 bytes"

(gdb) p b

$3 = "At (COMMON) `x_' plus 4 bytes"

(gdb) p c

$4 = "At (EQUIVALENCE) `__g77_equiv_c' plus 0 bytes"

(gdb) p d

$5 = "At (EQUIVALENCE) `__g77_equiv_c' plus 0 bytes"

(gdb) p i

$6 = "At (EQUIVALENCE) `__g77_equiv_xx' plus 20 bytes"

(gdb) p xx

$7 = "At (EQUIVALENCE) `__g77_equiv_xx' plus 1 bytes"

(gdb) set language fortran

(gdb)

Use `-fdebug-kludge' to generate this information, which might make some

programs noticeably larger.

Caution: Future versions of g77 might disregard this option (and its negative

form). Current plans call for this to happen when published versions of g77

and gdb exist that provide proper access to debugging information on COMMON

and EQUIVALENCE members.

-fno-emulate-complex

Implement COMPLEX arithmetic using the facilities in the gcc back end that pro-

vide direct support of complex arithmetic, instead of emulating the arithmetic.

Chapter 7: GNU Fortran Command Options 45

gcc has some known problems in its back-end support for complex arithmetic,

due primarily to the support not being completed as of version 2.7.2.2. Other

front ends for the gcc back end avoid this problem by emulating complex arith-

metic at a higher level, so the back end sees arithmetic on the real and imaginary

components. To make g77 more portable to systems where complex support in

the gcc back end is particularly troublesome, g77 now defaults to performing

the same kinds of emulations done by these other front ends.

Use `-fno-emulate-complex' to try the complex support in the gcc back end,

in case it works and produces faster programs. So far, all the known bugs seem

to involve compile-time crashes, rather than the generation of incorrect code.

Use of this option should not a�ect how Fortran code compiled by g77 works

in terms of its interfaces to other code, e.g. that compiled by f2c.

Caution: Future versions of g77 are likely to change the default for this option

to `-fno-emulate-complex', and perhaps someday ignore both forms of this

option.

Also, it is possible that use of the `-fno-emulate-complex' option could result

in incorrect code being silently produced by g77. But, this is generally true of

compilers anyway, so, as usual, test the programs you compile before assuming

they are working.

-falias-check

-fargument-alias

-fargument-noalias

-fno-argument-noalias-global

These options specify to what degree aliasing (overlap) is permitted between

arguments (passed as pointers) and COMMON (external, or public) storage.

The default for Fortran code, as mandated by the FORTRAN 77 and Fortran

90 standards, is `-fargument-noalias-global'. The default for code written

in the C language family is `-fargument-alias'.

Note that, on some systems, compiling with `-fforce-addr' in e�ect can pro-

duce more optimal code when the default aliasing options are in e�ect (and

when optimization is enabled).

See Section 17.4.7 [Aliasing Assumed To Work], page 258, for detailed informa-

tion on the implications of compiling Fortran code that depends on the ability

to alias dummy arguments.

-fno-globals

Disable diagnostics about inter-procedural analysis problems, such as disagree-

ments about the type of a function or a procedure's argument, that might cause

a compiler crash when attempting to inline a reference to a procedure within a

program unit. (The diagnostics themselves are still produced, but as warnings,

unless `-Wno-globals' is speci�ed, in which case no relevant diagnostics are

produced.)

Further, this option disables such inlining, to avoid compiler crashes resulting

from incorrect code that would otherwise be diagnosed.

46 Using and Porting GNU Fortran

As such, this option might be quite useful when compiling existing, \working"

code that happens to have a few bugs that do not generally show themselves,

but g77 exposes via a diagnostic.

Use of this option therefore has the e�ect of instructing g77 to behave more

like it did up through version 0.5.19.1, when it paid little or no attention to

disagreements between program units about a procedure's type and argument

information, and when it performed no inlining of procedures (except statement

functions).

Without this option, g77 defaults to performing the potentially inlining pro-

cedures as it started doing in version 0.5.20, but as of version 0.5.21, it also

diagnoses disagreements that might cause such inlining to crash the compiler.

See section \Options for Code Generation Conventions" in Using and Porting GNU CC ,

for information on more options o�ered by the GBE shared by g77, gcc, and other GNU

compilers.

Some of these do not work when compiling programs written in Fortran:

-fpcc-struct-return

-freg-struct-return

You should not use these except strictly the same way as you used them to

build the version of libf2c with which you will be linking all code compiled by

g77 with the same option.

-fshort-double

This probably either has no e�ect on Fortran programs, or makes them act

loopy.

-fno-common

Do not use this when compiling Fortran programs, or there will be Trouble.

-fpack-struct

This probably will break any calls to the libf2c library, at the very least, even

if it is built with the same option.

7.11 Environment Variables A�ecting GNU Fortran

GNU Fortran currently does not make use of any environment variables to control its

operation above and beyond those that a�ect the operation of gcc.

See section \Environment Variables A�ecting GNU CC" in Using and Porting GNU CC ,

for information on environment variables.

Chapter 8: News About GNU Fortran 47

8 News About GNU Fortran

Changes made to recent versions of GNU Fortran are listed below, with the most recent

version �rst.

The changes are generally listed in order:

1. Code-generation and run-time-library bugs

2. Compiler and run-time-library crashes involving valid code

3. New features

4. Fixes and enhancements to existing features

5. New diagnostics

6. Internal improvements

7. Miscellany

This order is not strict|for example, some items involve a combination of these elements.

In 0.5.22:

� Fix code generation for iterative DO loops that have one or more references to the

iteration variable, or to aliases of it, in their control expressions. For example, `DO 10

J=2,J' now is compiled correctly.

� Fix a code-generation bug that a�icted Intel x86 targets when `-O2' was speci�ed

compiling, for example, an old version of the `DNRM2' routine.

The x87 coprocessor stack was being mismanaged in cases involving assigned GOTO and

ASSIGN.

� Fix DTime intrinsic so as not to truncate results to integer values (on some systems).

� Fix SIGNAL intrinsic so it o�ers portable support for 64-bit systems (such as Digital

Alphas running GNU/Linux).

� Fix run-time crash involving NAMELIST on 64-bit machines such as Alphas.

� Fix g77 version of libf2c so it no longer produces a spurious `I/O recursion' diagnos-

tic at run time when an I/O operation (such as `READ *,I') is interrupted in a manner

that causes the program to be terminated via the `f_exit' routine (such as via C-c).

� Fix g77 crash triggered by CASE statement with an omitted lower or upper bound.

� Fix g77 crash compiling references to CPU_Time intrinsic.

� Fix g77 crash (or apparently in�nite run-time) when compiling certain complicated

expressions involving COMPLEX arithmetic (especially multiplication).

� Fix g77 crash on statements such as `PRINT *, (REAL(Z(I)),I=1,2)', where `Z' is

DOUBLE COMPLEX.

� Fix a g++ crash.

� Support `FORMAT(I<expr>)' when expr is a compile-time constant INTEGER expression.

� Fix g77 `-g' option so procedures that use `ENTRY' can be stepped through, line by line,

in gdb.

� Fix a pro�ling-related bug in gcc back end for Intel x86 architecture.

48 Using and Porting GNU Fortran

� Allow any REAL argument to intrinsics Second and CPU_Time.

� Allow any numeric argument to intrinsics Int2 and Int8.

� Use tempnam, if available, to open scratch �les (as in `OPEN(STATUS='SCRATCH')' so

that the TMPDIR environment variable, if present, is used.

� Rename the gcc keyword restrict to __restrict__, to avoid rejecting valid, existing,

C programs. Support for restrict is now more like support for complex.

� Fix `-fpedantic' to not reject procedure invocations such as `I=J()' and `CALL FOO()'.

� Fix `-fugly-comma' to a�ect invocations of only external procedures. Restore rejection

of gratuitous trailing omitted arguments to intrinsics, as in `I=MAX(3,4,,)'.

� Fix compiler so it accepts `-fgnu-intrinsics-*' and `-fbadu77-intrinsics-*' op-

tions.

� Improve diagnostic messages from libf2c so it is more likely that the printing of the

active format string is limited to the string, with no trailing garbage being printed.

(Unlike f2c, g77 did not append a null byte to its compiled form of every format string

speci�ed via a FORMAT statement. However, f2c would exhibit the problem anyway

for a statement like `PRINT '(I)garbage', 1' by printing `(I)garbage' as the format

string.)

� Improve compilation of FORMAT expressions so that a null byte is appended to the

last operand if it is a constant. This provides a cleaner run-time diagnostic as provided

by libf2c for statements like `PRINT '(I1', 42'.

� Fix various crashes involving code with diagnosed errors.

� Fix cross-compilation bug when con�guring libf2c.

� Improve diagnostics.

� Improve documentation and indexing.

� Upgrade to libf2c as of 1997-09-23. This �xes a formatted-I/O bug that a�icted

64-bit systems with 32-bit integers (such as Digital Alpha running GNU/Linux).

In 0.5.21:

� Fix a code-generation bug introduced by 0.5.20 caused by loop unrolling (by specifying

`-funroll-loops' or similar). This bug a�icted all code compiled by version 2.7.2.2.f.2

of gcc (C, C++, Fortran, and so on).

� Fix a code-generation bug manifested when combining local EQUIVALENCE with a DATA

statement that follows the �rst executable statement (or is treated as an executable-

context statement as a result of using the `-fpedantic' option).

� Fix a compiler crash that occured when an integer division by a constant zero is de-

tected. Instead, when the `-W' option is speci�ed, the gcc back end issues a warning

about such a case. This bug a�icted all code compiled by version 2.7.2.2.f.2 of gcc (C,

C++, Fortran, and so on).

� Fix a compiler crash that occurred in some cases of procedure inlining. (Such cases

became more frequent in 0.5.20.)

� Fix a compiler crash resulting from using DATA or similar to initialize a COMPLEX variable

or array to zero.

Chapter 8: News About GNU Fortran 49

� Fix compiler crashes involving use of AND, OR, or XOR intrinsics.

� Fix compiler bug triggered when using a COMMON or EQUIVALENCE variable as the target

of an ASSIGN or assigned-GOTO statement.

� Fix compiler crashes due to using the name of a some non-standard intrinsics (such as

`FTELL' or `FPUTC') as such and as the name of a procedure or common block. Such

dual use of a name in a program is allowed by the standard.

� Place automatic arrays on the stack, even if SAVE or the `-fno-automatic' option is

in e�ect. This avoids a compiler crash in some cases.

� The `-malign-double' option now reliably aligns DOUBLE PRECISION optimally on Pen-

tium and Pentium Pro architectures (586 and 686 in gcc).

� New option `-Wno-globals' disables warnings about \suspicious" use of a name both

as a global name and as the implicit name of an intrinsic, and warnings about dis-

agreements over the number or natures of arguments passed to global procedures, or

the natures of the procedures themselves.

The default is to issue such warnings, which are new as of this version of g77.

� New option `-fno-globals' disables diagnostics about potentially fatal disagreements

analysis problems, such as disagreements over the number or natures of arguments

passed to global procedures, or the natures of those procedures themselves.

The default is to issue such diagnostics and ag the compilation as unsuccessful. With

this option, the diagnostics are issued as warnings, or, if `-Wno-globals' is speci�ed,

are not issued at all.

This option also disables inlining of global procedures, to avoid compiler crashes re-

sulting from coding errors that these diagnostics normally would identify.

� Diagnose cases where a reference to a procedure disagrees with the type of that pro-

cedure, or where disagreements about the number or nature of arguments exist. This

avoids a compiler crash.

� Fix parsing bug whereby g77 rejected a second initialization speci�cation immediately

following the �rst's closing `/' without an intervening comma in a DATA statement, and

the second speci�cation was an implied-DO list.

� Improve performance of the gcc back end so certain complicated expressions involving

COMPLEX arithmetic (especially multiplication) don't appear to take forever to compile.

� Fix a couple of pro�ling-related bugs in gcc back end.

� Integrate GNU Ada's (GNAT's) changes to the back end, which consist almost entirely

of bug �xes. These �xes are circa version 3.10p of GNAT.

� Include some other gcc �xes that seem useful in g77's version of gcc. (See `gcc/ChangeLog'

for details|compare it to that �le in the vanilla gcc-2.7.2.3.tar.gz distribution.)

� Fix libU77 routines that accept �le and other names to strip trailing blanks from them,

for consistency with other implementations. Blanks may be forcibly appended to such

names by appending a single null character (`CHAR(0)') to the signi�cant trailing blanks.

� Fix CHMOD intrinsic to work with �le names that have embedded blanks, commas, and

so on.

� Fix SIGNAL intrinsic so it accepts an optional third `Status' argument.

50 Using and Porting GNU Fortran

� Fix IDATE() intrinsic subroutine (VXT form) so it accepts arguments in the correct

order. Documentation �xed accordingly, and for GMTIME() and LTIME() as well.

� Make many changes to libU77 intrinsics to support existing code more directly.

Such changes include allowing both subroutine and function forms of many rou-

tines, changing MCLOCK() and TIME() to return INTEGER(KIND=1) values, introducing

MCLOCK8() and TIME8() to return INTEGER(KIND=2) values, and placing functions that

are intended to perform side e�ects in a new intrinsic group, badu77.

� Improve libU77 so it is more portable.

� Add options `-fbadu77-intrinsics-delete', `-fbadu77-intrinsics-hide', and so

on.

� Fix crashes involving diagnosed or invalid code.

� g77 and gcc now do a somewhat better job detecting and diagnosing arrays that are

too large to handle before these cause diagnostics during the assembler or linker phase,

a compiler crash, or generation of incorrect code.

� Make some �xes to alias analysis code.

� Add support for restrict keyword in gcc front end.

� Support gcc version 2.7.2.3 (modi�ed by g77 into version 2.7.2.3.f.1), and remove

support for prior versions of gcc.

� Incorporate GNAT's patches to the gcc back end into g77's, so GNAT users do not

need to apply GNAT's patches to build both GNAT and g77 from the same source

tree.

� Modify make rules and related code so that generation of Info documentation doesn't

require compilation using gcc. Now, any ANSI C compiler should be adequate to

produce the g77 documentation (in particular, the tables of intrinsics) from scratch.

� Add INT2 and INT8 intrinsics.

� Add CPU_TIME intrinsic.

� Add ALARM intrinsic.

� CTIME intrinsic now accepts any INTEGER argument, not just INTEGER(KIND=2).

� Warn when explicit type declaration disagrees with the type of an intrinsic invocation.

� Support `*f771' entry in gcc `specs' �le.

� Fix typo in make rule `g77-cross', used only for cross-compiling.

� Fix libf2c build procedure to re-archive library if previous attempt to archive was

interrupted.

� Change gcc to unroll loops only during the last invocation (of as many as two invoca-

tions) of loop optimization.

� Improve handling of `-fno-f2c' so that code that attempts to pass an intrinsic as an

actual argument, such as `CALL FOO(ABS)', is rejected due to the fact that the run-

time-library routine is, e�ectively, compiled with `-ff2c' in e�ect.

� Fix g77 driver to recognize `-fsyntax-only' as an option that inhibits linking, just

like `-c' or `-S', and to recognize and properly handle the `-nostdlib', `-M', `-MM',

`-nodefaultlibs', and `-Xlinker' options.

Chapter 8: News About GNU Fortran 51

� Upgrade to libf2c as of 1997-08-16.

� Modify libf2c to consistently and clearly diagnose recursive I/O (at run time).

� g77 driver now prints version information (such as produced by g77 -v) to stderr

instead of stdout.

� The `.r' su�x now designates a Ratfor source �le, to be preprocessed via the ratfor

command, available separately.

� Fix some aspects of how gcc determines what kind of system is being con�gured and

what kinds are supported. For example, GNU Linux/Alpha ELF systems now are

directly supported.

� Improve diagnostics.

� Improve documentation and indexing.

� Include all pertinent �les for libf2c that come from netlib.bell-labs.com; give any

such �les that aren't quite accurate in g77's version of libf2c the su�x `.netlib'.

� Reserve INTEGER(KIND=0) for future use.

In 0.5.20:

� The `-fno-typeless-boz' option is now the default.

This option speci�es that non-decimal-radix constants using the pre�xed-radix form

(such as `Z'1234'') are to be interpreted as INTEGER constants. Specify `-ftypeless-boz'

to cause such constants to be interpreted as typeless.

(Version 0.5.19 introduced `-fno-typeless-boz' and its inverse.)

� Options `-ff90-intrinsics-enable' and `-fvxt-intrinsics-enable' now are the

defaults.

Some programs might use names that clash with intrinsic names de�ned (and now

enabled) by these options or by the new libU77 intrinsics. Users of such programs might

need to compile them di�erently (using, for example, `-ff90-intrinsics-disable')

or, better yet, insert appropriate EXTERNAL statements specifying that these names are

not intended to be names of intrinsics.

� The `ALWAYS_FLUSH' macro is no longer de�ned when building libf2c, which should

result in improved I/O performance, especially over NFS.

Note: If you have code that depends on the behavior of libf2c when built with

`ALWAYS_FLUSH' de�ned, you will have to modify libf2c accordingly before building it

from this and future versions of g77.

� Dave Love's implementation of libU77 has been added to the version of libf2c dis-

tributed with and built as part of g77. g77 now knows about the routines in this library

as intrinsics.

� New option `-fvxt' speci�es that the source �le is written in VXT Fortran, instead of

GNU Fortran.

� The `-fvxt-not-f90' option has been deleted, along with its inverse, `-ff90-not-vxt'.

If you used one of these deleted options, you should re-read the pertinent documentation

to determine which options, if any, are appropriate for compiling your code with this

version of g77.

52 Using and Porting GNU Fortran

� The `-fugly' option now issues a warning, as it likely will be removed in a future

version.

(Enabling all the `-fugly-*' options is unlikely to be feasible, or sensible, in the future,

so users should learn to specify only those `-fugly-*' options they really need for a

particular source �le.)

� The `-fugly-assumed' option, introduced in version 0.5.19, has been changed to better

accommodate old and new code.

� Make a number of �xes to the g77 front end and the gcc back end to better support

Alpha (AXP) machines. This includes providing at least one bug-�x to the gcc back

end for Alphas.

� Related to supporting Alpha (AXP) machines, the LOC() intrinsic and %LOC() con-

struct now return values of integer type that is the same width (holds the same number

of bits) as the pointer type on the machine.

On most machines, this won't make a di�erence, whereas on Alphas, the type these

constructs return is INTEGER*8 instead of the more common INTEGER*4.

� Emulate COMPLEX arithmetic in the g77 front end, to avoid bugs in complex support

in the gcc back end. New option `-fno-emulate-complex' causes g77 to revert the

0.5.19 behavior.

� Fix bug whereby `REAL A(1)', for example, caused a compiler crash if `-fugly-assumed'

was in e�ect and A was a local (automatic) array. That case is no longer a�ected by

the new handling of `-fugly-assumed'.

� Fix g77 command driver so that `g77 -o foo.f' no longer deletes `foo.f' before issuing

other diagnostics, and so the `-x' option is properly handled.

� Enable inlining of subroutines and functions by the gcc back end. This works as it

does for gcc itself|program units may be inlined for invocations that follow them in

the same program unit, as long as the appropriate compile-time options are speci�ed.

� Dummy arguments are no longer assumed to potentially alias (overlap) other dummy

arguments or COMMON areas when any of these are de�ned (assigned to) by Fortran code.

This can result in faster and/or smaller programs when compiling with optimization

enabled, though on some systems this e�ect is observed only when `-fforce-addr' also

is speci�ed.

New options `-falias-check', `-fargument-alias', `-fargument-noalias', and

`-fno-argument-noalias-global' control the way g77 handles potential aliasing.

� The CONJG() and DCONJG() intrinsics now are compiled in-line.

� The bug-�x for 0.5.19.1 has been re-done. The g77 compiler has been changed back to

assume libf2c has no aliasing problems in its implementations of the COMPLEX (and

DOUBLE COMPLEX) intrinsics. The libf2c has been changed to have no such problems.

As a result, 0.5.20 is expected to o�er improved performance over 0.5.19.1, perhaps as

good as 0.5.19 in most or all cases, due to this change alone.

Note: This change requires version 0.5.20 of libf2c, at least, when linking code pro-

duced by any versions of g77 other than 0.5.19.1. Use `g77 -v' to determine the version

numbers of the libF77, libI77, and libU77 components of the libf2c library. (If these

version numbers are not printed|in particular, if the linker complains about unresolved

Chapter 8: News About GNU Fortran 53

references to names like `g77__fvers__'|that strongly suggests your installation has

an obsolete version of libf2c.)

� New option `-fugly-assign' speci�es that the same memory locations are to be used to

hold the values assigned by both statements `I = 3' and `ASSIGN 10 TO I', for example.

(Normally, g77 uses a separate memory location to hold assigned statement labels.)

� FORMAT and ENTRY statements now are allowed to precede IMPLICIT NONE statements.

� Produce diagnostic for unsupported SELECT CASE on CHARACTER type, instead of crash-

ing, at compile time.

� Fix crashes involving diagnosed or invalid code.

� Change approach to building libf2c archive (`libf2c.a') so that members are added

to it only when truly necessary, so the user that installs an already-built g77 doesn't

need to have write access to the build tree (whereas the user doing the build might not

have access to install new software on the system).

� Support gcc version 2.7.2.2 (modi�ed by g77 into version 2.7.2.2.f.2), and remove

support for prior versions of gcc.

� Upgrade to libf2c as of 1997-02-08, and �x up some of the build procedures.

� Improve general build procedures for g77, �xing minor bugs (such as deletion of any

�le named `f771' in the parent directory of gcc/).

� Enable full support of INTEGER*8 available in libf2c and `f2c.h' so that f2c users

may make full use of its features via the g77 version of `f2c.h' and the INTEGER*8

support routines in the g77 version of libf2c.

� Improve g77 driver and libf2c so that `g77 -v' yields version information on the

library.

� The SNGL and FLOAT intrinsics now are speci�c intrinsics, instead of synonyms for the

generic intrinsic REAL.

� New intrinsics have been added. These are REALPART, IMAGPART, COMPLEX, LONG, and

SHORT.

� A new group of intrinsics, `gnu', has been added to contain the new REALPART,

IMAGPART, and COMPLEX intrinsics. An old group, `dcp', has been removed.

� Complain about industry-wide ambiguous references `REAL(expr)' and `AIMAG(expr)',

where expr is DOUBLE COMPLEX (or any complex type other than COMPLEX), unless

`-ff90' option speci�es Fortran 90 interpretation or new `-fugly-complex' option,

in conjunction with `-fnot-f90', speci�es f2c interpretation.

� Make improvements to diagnostics.

� Speed up compiler a bit.

� Improvements to documentation and indexing, including a new chapter containing

information on one, later more, diagnostics that users are directed to pull up automat-

ically via a message in the diagnostic itself.

(Hence the menu item `M' for the node `Diagnostics' in the top-level menu of the Info

documentation.)

54 Using and Porting GNU Fortran

In 0.5.19.1:

� Code-generation bugs a�icting operations on complex data have been �xed.

These bugs occurred when assigning the result of an operation to a complex variable

(or array element) that also served as an input to that operation.

The operations a�ected by this bug were: `CONJG()', `DCONJG()', `CCOS()', `CDCOS()',

`CLOG()', `CDLOG()', `CSIN()', `CDSIN()', `CSQRT()', `CDSQRT()', complex division, and

raising a DOUBLE COMPLEX operand to an INTEGER power. (The related generic and `Z'-

pre�xed intrinsics, such as `ZSIN()', also were a�ected.)

For example, `C = CSQRT(C)', `Z = Z/C', and `Z = Z**I' (where `C' is COMPLEX and `Z' is

DOUBLE COMPLEX) have been �xed.

In 0.5.19:

� Fix FORMAT statement parsing so negative values for speci�ers such as `P' (e.g.

`FORMAT(-1PF8.1)') are correctly processed as negative.

� Fix SIGNAL intrinsic so it once again accepts a procedure as its second argument.

� A temporary kludge option provides bare-bones information on COMMON and EQUIVALENCE

members at debug time.

� New `-fonetrip' option speci�es FORTRAN-66-style one-trip DO loops.

� New `-fno-silent' option causes names of program units to be printed as they are

compiled, in a fashion similar to UNIX f77 and f2c.

� New `-fugly-assumed' option speci�es that arrays dimensioned via `DIMENSION X(1)',

for example, are to be treated as assumed-size.

� New `-fno-typeless-boz' option speci�es that non-decimal-radix constants using the

pre�xed-radix form (such as `Z'1234'') are to be interpreted as INTEGER constants.

� New `-ff66' option is a \shorthand" option that speci�es behaviors considered appro-

priate for FORTRAN 66 programs.

� New `-ff77' option is a \shorthand" option that speci�es behaviors considered appro-

priate for UNIX f77 programs.

� New `-fugly-comma' and `-fugly-logint' options provided to perform some of what

`-fugly' used to do. `-fugly' and `-fno-ugly' are now \shorthand" options, in that

they do nothing more than enable (or disable) other `-fugly-*' options.

� Fix parsing of assignment statements involving targets that are substrings of el-

ements of CHARACTER arrays having names such as `READ', `WRITE', `GOTO', and

`REALFUNCTIONFOO'.

� Fix crashes involving diagnosed code.

� Fix handling of local EQUIVALENCE areas so certain cases of valid Fortran programs are

not misdiagnosed as improperly extending the area backwards.

� Support gcc version 2.7.2.1.

� Upgrade to libf2c as of 1996-09-26, and �x up some of the build procedures.

Chapter 8: News About GNU Fortran 55

� Change code generation for list-directed I/O so it allows for new versions of libf2c

that might return non-zero status codes for some operations previously assumed to

always return zero.

This change not only a�ects how IOSTAT= variables are set by list-directed I/O, it also

a�ects whether END= and ERR= labels are reached by these operations.

� Add intrinsic support for new FTELL and FSEEK procedures in libf2c.

� Modify fseek_() in libf2c to be more portable (though, in practice, there might be

no systems where this matters) and to catch invalid `whence' arguments.

� Some useless warnings from the `-Wunused' option have been eliminated.

� Fix a problem building the `f771' executable on AIX systems by linking with the

`-bbigtoc' option.

� Abort con�guration if gcc has not been patched using the patch �le provided in the

`gcc/f/gbe/' subdirectory.

� Add options `--help' and `--version' to the g77 command, to conform to GNU coding

guidelines. Also add printing of g77 version number when the `--verbose' (`-v') option

is used.

� Change internally generated name for local EQUIVALENCE areas to one based on the

alphabetically sorted �rst name in the list of names for entities placed at the beginning

of the areas.

� Improvements to documentation and indexing.

In 0.5.18:

� Add some rudimentary support for INTEGER*1, INTEGER*2, INTEGER*8, and their

LOGICAL equivalents. (This support works on most, maybe all, gcc targets.)

Thanks to Scott Snyder (snyder@d0sgif.fnal.gov) for providing the patch for this!

Among the missing elements from the support for these features are full intrinsic sup-

port and constants.

� Add some rudimentary support for the BYTE and WORD type-declaration statements.

BYTE corresponds to INTEGER*1, while WORD corresponds to INTEGER*2.

Thanks to Scott Snyder (snyder@d0sgif.fnal.gov) for providing the patch for this!

� The compiler code handling intrinsics has been largely rewritten to accommodate the

new types. No new intrinsics or arguments for existing intrinsics have been added, so

there is, at this point, no intrinsic to convert to INTEGER*8, for example.

� Support automatic arrays in procedures.

� Reduce space/time requirements for handling large sparsely initialized aggregate ar-

rays. This improvement applies to only a subset of the general problem to be addressed

in 0.6.

� Treat initial values of zero as if they weren't speci�ed (in DATA and type-declaration

statements). The initial values will be set to zero anyway, but the amount of compile

time processing them will be reduced, in some cases signi�cantly (though, again, this

is only a subset of the general problem to be addressed in 0.6).

56 Using and Porting GNU Fortran

A new option, `-fzeros', is introduced to enable the traditional treatment of zeros as

any other value.

� With `-ff90' in force, g77 incorrectly interpreted `REAL(Z)' as returning a REAL result,

instead of as a DOUBLE PRECISION result. (Here, `Z' is DOUBLE COMPLEX.)

With `-fno-f90' in force, the interpretation remains unchanged, since this appears to

be how at least some F77 code using the DOUBLE COMPLEX extension expected it to

work.

Essentially, `REAL(Z)' in F90 is the same as `DBLE(Z)', while in extended F77, it appears

to be the same as `REAL(REAL(Z))'.

� An expression involving exponentiation, where both operands were type INTEGER and

the right-hand operand was negative, was erroneously evaluated.

� Fix bugs involving DATA implied-DO constructs (these involved an errant diagnostic and

a crash, both on good code, one involving subsequent statement-function de�nition).

� Close INCLUDE �les after processing them, so compiling source �les with lots of INCLUDE

statements does not result in being unable to open INCLUDE �les after all the available

�le descriptors are used up.

� Speed up compiling, especially of larger programs, and perhaps slightly reduce memory

utilization while compiling (this is not the improvement planned for 0.6 involving large

aggregate areas)|these improvements result from simply turning o� some low-level

code to do self-checking that hasn't been triggered in a long time.

� Introduce three new options that implement optimizations in the gcc back end (GBE).

These options are `-fmove-all-movables', `-freduce-all-givs', and `-frerun-loop-opt',

which are enabled, by default, for Fortran compilations. These optimizations are in-

tended to help toon Fortran programs.

� Patch the GBE to do a better job optimizing certain kinds of references to array

elements.

� Due to patches to the GBE, the version number of gcc also is patched to make it easier

to manage installations, especially useful if it turns out a g77 change to the GBE has

a bug.

The g77-modi�ed version number is the gcc version number with the string `.f.n'

appended, where `f' identi�es the version as enhanced for Fortran, and n is `1' for the

�rst Fortran patch for that version of gcc, `2' for the second, and so on.

So, this introduces version 2.7.2.f.1 of gcc.

� Make several improvements and �xes to diagnostics, including the removal of two that

were inappropriate or inadequate.

� Warning about two successive arithmetic operators, produced by `-Wsurprising', now

produced only when both operators are, indeed, arithmetic (not relational/boolean).

� `-Wsurprising' now warns about the remaining cases of using non-integral variables

for implied-DO loops, instead of these being rejected unless `-fpedantic' or `-fugly'

speci�ed.

� Allow SAVE of a local variable or array, even after it has been given an initial value via

DATA, for example.

Chapter 8: News About GNU Fortran 57

� Introduce an Info version of g77 documentation, which supercedes `gcc/f/CREDITS',

`gcc/f/DOC', and `gcc/f/PROJECTS'. These �les will be removed in a future release.

The �les `gcc/f/BUGS', `gcc/f/INSTALL', and `gcc/f/NEWS' now are automatically

built from the texinfo source when distributions are made.

This e�ort was inspired by a �rst pass at translating `g77-0.5.16/f/DOC' that was

contributed to Craig by David Ronis (ronis@onsager.chem.mcgill.ca).

� New `-fno-second-underscore' option to specify that, when `-funderscoring' is in

e�ect, a second underscore is not to be appended to Fortran names already containing

an underscore.

� Change the way iterative DO loops work to follow the F90 standard. In particular, cal-

culation of the iteration count is still done by converting the start, end, and increment

parameters to the type of the DO variable, but the result of the calculation is always

converted to the default INTEGER type.

(This should have no e�ect on existing code compiled by g77, but code written to

assume that use of a wider type for the DO variable will result in an iteration count

being fully calculated using that wider type (wider than default INTEGER) must be

rewritten.)

� Support gcc version 2.7.2.

� Upgrade to libf2c as of 1996-03-23, and �x up some of the build procedures.

Note that the email addresses related to f2c have changed|the distribution site now is

named netlib.bell-labs.com, and the maintainer's new address is dmg@bell-labs.com.

In 0.5.17:

� Fix serious bug in `g77 -v' command that can cause removal of a system's `/dev/null'

special �le if run by user `root'.

All users of version 0.5.16 should ensure that they have not removed `/dev/null' or

replaced it with an ordinary �le (e.g. by comparing the output of `ls -l /dev/null'

with `ls -l /dev/zero'. If the output isn't basically the same, contact your system

administrator about restoring `/dev/null' to its proper status).

This bug is particularly insidious because removing `/dev/null' as a special �le can go

undetected for quite a while, aside from various applications and programs exhibiting

sudden, strange behaviors.

I sincerely apologize for not realizing the implications of the fact that when `g77 -v'

runs the ld command with `-o /dev/null' that ld tries to remove the executable it is

supposed to build (especially if it reports unresolved references, which it should in this

case)!

� Fix crash on `CHARACTER*(*) FOO' in a main or block data program unit.

� Fix crash that can occur when diagnostics given outside of any program unit (such as

when input �le contains `@foo').

� Fix crashes, in�nite loops (hangs), and such involving diagnosed code.

� Fix ASSIGN'ed variables so they can be SAVE'd or dummy arguments, and issue clearer

error message in cases where target of ASSIGN or ASSIGNed GOTO/FORMAT is too small

(which should never happen).

58 Using and Porting GNU Fortran

� Make libf2c build procedures work on more systems again by eliminating unnecessary

invocations of `ld -r -x' and `mv'.

� Fix omission of `-funix-intrinsics-: : :' options in list of permitted options to com-

piler.

� Fix failure to always diagnose missing type declaration for IMPLICIT NONE.

� Fix compile-time performance problem (which could sometimes crash the compiler,

cause a hang, or whatever, due to a bug in the back end) involving exponentiation with

a large INTEGER constant for the right-hand operator (e.g. `I**32767').

� Fix build procedures so cross-compiling g77 (the fini utility in particular) is properly

built using the host compiler.

� Add new `-Wsurprising' option to warn about constructs that are interpreted by the

Fortran standard (and g77) in ways that are surprising to many programmers.

� Add ERF() and ERFC() as generic intrinsics mapping to existing ERF/DERF and

ERFC/DERFC speci�c intrinsics.

Note: You should specify `INTRINSIC ERF,ERFC' in any code where you might use these

as generic intrinsics, to improve likelihood of diagnostics (instead of subtle run-time

bugs) when using a compiler that doesn't support these as intrinsics (e.g. f2c).

� Remove from `-fno-pedantic' the diagnostic about DO with non-INTEGER index vari-

able; issue that under `-Wsurprising' instead.

� Clarify some diagnostics that say things like \ignored" when that's misleading.

� Clarify diagnostic on use of .EQ./.NE. on LOGICAL operands.

� Minor improvements to code generation for various operations on LOGICAL operands.

� Minor improvement to code generation for some DO loops on some machines.

� Support gcc version 2.7.1.

� Upgrade to libf2c as of 1995-11-15.

In 0.5.16:

� Fix a code-generation bug involving complicated EQUIVALENCE statements not involving

COMMON.

� Fix code-generation bugs involving invoking \gratis" library procedures in libf2c from

code compiled with `-fno-f2c' by making these procedures known to g77 as intrinsics

(not a�ected by -fno-f2c). This is known to �x code invoking ERF(), ERFC(), DERF(),

and DERFC().

� Update libf2c to include netlib patches through 1995-08-16, and #define `WANT_LEAD_0'

to 1 to make g77-compiled code more consistent with other Fortran implementations

by outputting leading zeros in formatted and list-directed output.

� Fix a code-generation bug involving adjustable dummy arrays with high bounds whose

primaries are changed during procedure execution, and which might well improve code-

generation performance for such arrays compared to f2c plus gcc (but apparently only

when using `gcc-2.7.0' or later).

Chapter 8: News About GNU Fortran 59

� Fix a code-generation bug involving invocation of COMPLEX and DOUBLE COMPLEX

FUNCTIONs and doing COMPLEX and DOUBLE COMPLEX divides, when the result of the

invocation or divide is assigned directly to a variable that overlaps one or more of the

arguments to the invocation or divide.

� Fix crash by not generating new optimal code for `X**I' if `I' is nonconstant and the

expression is used to dimension a dummy array, since the gcc back end does not support

the necessary mechanics (and the gcc front end rejects the equivalent construct, as it

turns out).

� Fix crash on expressions like `COMPLEX**INTEGER'.

� Fix crash on expressions like `(1D0,2D0)**2', i.e. raising a DOUBLE COMPLEX constant

to an INTEGER constant power.

� Fix crashes and such involving diagnosed code.

� Diagnose, instead of crashing on, statement function de�nitions having duplicate

dummy argument names.

� Fix bug causing rejection of good code involving statement function de�nitions.

� Fix bug resulting in debugger not knowing size of local equivalence area when any

member of area has initial value (via DATA, for example).

� Fix installation bug that prevented installation of g77 driver. Provide for easy selection

of whether to install copy of g77 as f77 to replace the broken code.

� Fix gcc driver (a�ects g77 thereby) to not gratuitously invoke the f771 program (e.g.

when `-E' is speci�ed).

� Fix diagnostic to point to correct source line when it immediately follows an INCLUDE

statement.

� Support more compiler options in gcc/g77 when compiling Fortran �les. These options

include `-p', `-pg', `-aux-info', `-P', correct setting of version-number macros for

preprocessing, full recognition of `-O0', and automatic insertion of con�guration-speci�c

linker specs.

� Add new intrinsics that interface to existing routines in libf2c: ABORT, DERF, DERFC,

ERF, ERFC, EXIT, FLUSH, GETARG, GETENV, IARGC, SIGNAL, and SYSTEM. Note that

ABORT, EXIT, FLUSH, SIGNAL, and SYSTEM are intrinsic subroutines, not functions (since

they have side e�ects), so to get the return values from SIGNAL and SYSTEM, append a

�nal argument specifying an INTEGER variable or array element (e.g. `CALL SYSTEM('rm

foo',ISTAT)').

� Add new intrinsic group named `unix' to contain the new intrinsics, and by default

enable this new group.

� Move LOC() intrinsic out of the `vxt' group to the new `unix' group.

� Improve g77 so that `g77 -v' by itself (or with certain other options, including `-B', `-b',

`-i', `-nostdlib', and `-V') reports lots more useful version info, and so that long-form

options gcc accepts are understood by g77 as well (even in truncated, unambiguous

forms).

� Add new g77 option `--driver=name' to specify driver when default, gcc, isn't appro-

priate.

60 Using and Porting GNU Fortran

� Add support for `#' directives (as output by the preprocessor) in the compiler, and

enable generation of those directives by the preprocessor (when compiling `.F' �les) so

diagnostics and debugging info are more useful to users of the preprocessor.

� Produce better diagnostics, more like gcc, with info such as `In function `foo':' and

`In file included from...:'.

� Support gcc's `-fident' and `-fno-ident' options.

� When `-Wunused' in e�ect, don't warn about local variables used as statement-function

dummy arguments or DATA implied-DO iteration variables, even though, strictly speak-

ing, these are not uses of the variables themselves.

� When `-W -Wunused' in e�ect, don't warn about unused dummy arguments at all, since

there's no way to turn this o� for individual cases (g77 might someday start warning

about these)|applies to gcc versions 2.7.0 and later, since earlier versions didn't warn

about unused dummy arguments.

� New option `-fno-underscoring' that inhibits transformation of names (by append-

ing one or two underscores) so users may experiment with implications of such an

environment.

� Minor improvement to `gcc/f/info' module to make it easier to build g77 using the

native (non-gcc) compiler on certain machines (but de�nitely not all machines nor all

non-gcc compilers). Please do not report bugs showing problems compilers have with

macros de�ned in `gcc/f/target.h' and used in places like `gcc/f/expr.c'.

� Add warning to be printed for each invocation of the compiler if the target machine

INTEGER, REAL, or LOGICAL size is not 32 bits, since g77 is known to not work well for

such cases (to be �xed in Version 0.6|see Section 18.2 [Actual Bugs We Haven't Fixed

Yet], page 271).

� Lots of new documentation (though work is still needed to put it into canonical GNU

format).

� Build libf2c with `-g0', not `-g2', in e�ect (by default), to produce smaller library

without lots of debugging clutter.

In 0.5.15:

� Fix bad code generation involving `X**I' and temporary, internal variables generated

by g77 and the back end (such as for DO loops).

� Fix crash given `CHARACTER A;DATA A/.TRUE./'.

� Replace crash with diagnostic given `CHARACTER A;DATA A/1.0/'.

� Fix crash or other erratic behavior when null character constant (`''') is encountered.

� Fix crash or other erratic behavior involving diagnosed code.

� Fix code generation for external functions returning type REAL when the `-ff2c' option

is in force (which it is by default) so that f2c compatibility is indeed provided.

� Disallow `COMMON I(10)' if `I' has previously been speci�ed with an array declarator.

� New `-ffixed-line-length-n' option, where n is the maximum length of a typical

�xed-form line, defaulting to 72 columns, such that characters beyond column n are

ignored, or n is `none', meaning no characters are ignored. does not a�ect lines with

Chapter 8: News About GNU Fortran 61

`&' in column 1, which are always processed as if `-ffixed-line-length-none' was in

e�ect.

� No longer generate better code for some kinds of array references, as gcc back end is

to be �xed to do this even better, and it turned out to slow down some code in some

cases after all.

� In COMMON and EQUIVALENCE areas with any members given initial values (e.g. via

DATA), uninitialized members now always initialized to binary zeros (though this is not

required by the standard, and might not be done in future versions of g77). Previously,

in some COMMON/EQUIVALENCE areas (essentially those with members of more than one

type), the uninitializedmembers were initialized to spaces, to cater to CHARACTER types,

but it seems no existing code expects that, while much existing code expects binary

zeros.

In 0.5.14:

� Don't emit bad code when low bound of adjustable array is nonconstant and thus might

vary as an expression at run time.

� Emit correct code for calculation of number of trips in DO loops for cases where the loop

should not execute at all. (This bug a�ected cases where the di�erence between the

begin and end values was less than the step count, though probably not for oating-

point cases.)

� Fix crash when extra parentheses surround item in DATA implied-DO list.

� Fix crash over minor internal inconsistencies in handling diagnostics, just substitute

dummy strings where necessary.

� Fix crash on some systems when compiling call to MVBITS() intrinsic.

� Fix crash on array assignment `TYPEddd(: : :)=: : :', where ddd is a string of one or more

digits.

� Fix crash on DCMPLX() with a single INTEGER argument.

� Fix various crashes involving code with diagnosed errors.

� Support `-I' option for INCLUDE statement, plus gcc's `header.gcc' facility for han-

dling systems like MS-DOS.

� Allow INCLUDE statement to be continued across multiple lines, even allow it to coexist

with other statements on the same line.

� Incorporate Bellcore �xes to libf2c through 1995-03-15|this �xes a bug involving

in�nite loops reading EOF with empty list-directed I/O list.

� Remove all the g77-speci�c auto-con�guration scripts, code, and so on, except for tem-

porary substitutes for bsearch() and strtoul(), as too many con�gure/build problems

were reported in these areas. People will have to �x their systems' problems themselves,

or at least somewhere other than g77, which expects a working ANSI C environment

(and, for now, a GNU C compiler to compile g77 itself).

� Complain if initialized common redeclared as larger in subsequent program unit.

� Warn if blank common initialized, since its size can vary and hence related warnings

that might be helpful won't be seen.

62 Using and Porting GNU Fortran

� New `-fbackslash' option, on by default, that causes `\' within CHARACTER and Hol-

lerith constants to be interpreted a la GNU C. Note that this behavior is somewhat

di�erent from f2c's, which supports only a limited subset of backslash (escape) se-

quences.

� Make `-fugly-args' the default.

� New `-fugly-init' option, on by default, that allows typeless/Hollerith to be spec-

i�ed as initial values for variables or named constants (PARAMETER), and also allows

character<->numeric conversion in those contexts|turn o� via `-fno-ugly-init'.

� New `-finit-local-zero' option to initialize local variables to binary zeros. This does

not a�ect whether they are SAVEd, i.e. made automatic or static.

� New `-Wimplicit' option to warn about implicitly typed variables, arrays, and func-

tions. (Basically causes all program units to default to IMPLICIT NONE.)

� `-Wall' now implies `-Wuninitialized' as with gcc (i.e. unless `-O' not speci�ed, since

`-Wuninitialized' requires `-O'), and implies `-Wunused' as well.

� `-Wunused' no longer gives spurious messages for unused EXTERNAL names (since they

are assumed to refer to block data program units, to make use of libraries more reliable).

� Support %LOC() and LOC() of character arguments.

� Support null (zero-length) character constants and expressions.

� Support f2c's IMAG() generic intrinsic.

� Support ICHAR(), IACHAR(), and LEN() of character expressions that are valid in as-

signments but not normally as actual arguments.

� Support f2c-style `&' in column 1 to mean continuation line.

� Allow NAMELIST, EXTERNAL, INTRINSIC, and VOLATILE in BLOCK DATA, even though

these are not allowed by the standard.

� Allow RETURN in main program unit.

� Changes to Hollerith-constant support to obey Appendix C of the standard:

{ Now padded on the right with zeros, not spaces.

{ Hollerith \format speci�cations" in the form of arrays of non-character allowed.

{ Warnings issued when non-space truncation occurs when converting to another

type.

{ When speci�ed as actual argument, now passed by reference to INTEGER (padded

on right with spaces if constant too small, otherwise fully intact if constant wider

the INTEGER type) instead of by value.

Warning: f2c di�ers on the interpretation of `CALL FOO(1HX)', which it treats ex-

actly the same as `CALL FOO('X')', but which the standard and g77 treat as `CALL

FOO(%REF('X '))' (padded with as many spaces as necessary to widen to INTEGER),

essentially.

� Changes and �xes to typeless-constant support:

{ Now treated as a typeless double-length INTEGER value.

{ Warnings issued when overow occurs.

{ Padded on the left with zeros when converting to a larger type.

Chapter 8: News About GNU Fortran 63

{ Should be properly aligned and ordered on the target machine for whatever type

it is turned into.

{ When speci�ed as actual argument, now passed as reference to a default INTEGER

constant.

� %DESCR() of a non-CHARACTER expression now passes a pointer to the expression plus a

length for the expression just as if it were a CHARACTER expression. For example, `CALL

FOO(%DESCR(D))', where `D' is REAL*8, is the same as `CALL FOO(D,%VAL(8)))'.

� Name of multi-entrypoint master function changed to incorporate the name of the

primary entry point instead of a decimal value, so the name of the master function for

`SUBROUTINE X' with alternate entry points is now `__g77_masterfun_x'.

� Remove redundant message about zero-step-count DO loops.

� Clean up diagnostic messages, shortening many of them.

� Fix typo in g77 man page.

� Clarify implications of constant-handling bugs in `f/BUGS'.

� Generate better code for `**' operator with a right-hand operand of type INTEGER.

� Generate better code for SQRT() and DSQRT(), also when `-ffast-math' speci�ed,

enable better code generation for SIN() and COS().

� Generate better code for some kinds of array references.

� Speed up lexing somewhat (this makes the compilation phase noticeably faster).

64 Using and Porting GNU Fortran

Chapter 9: User-visible Changes 65

9 User-visible Changes

This section describes changes to g77 that are visible to the programmers who actually

write and maintain Fortran code they compile with g77. Information on changes to instal-

lation procedures, changes to the documentation, and bug �xes is not provided here, unless

it is likely to a�ect how users use g77. See Chapter 8 [News About GNU Fortran], page 47,

for information on such changes to g77.

To �nd out about existing bugs and ongoing plans for GNU Fortran, retrieve ftp://alpha.gnu.org/g77.plan

or, if you cannot do that, email fortran@gnu.org asking for a recent copy of the GNU

Fortran `.plan' �le.

In 0.5.21:

� When the `-W' option is speci�ed, gcc, g77, and other GNU compilers that incorporate

the gcc back end as modi�ed by g77, issue a warning about integer division by constant

zero.

� New option `-Wno-globals' disables warnings about \suspicious" use of a name both

as a global name and as the implicit name of an intrinsic, and warnings about dis-

agreements over the number or natures of arguments passed to global procedures, or

the natures of the procedures themselves.

The default is to issue such warnings, which are new as of this version of g77.

� New option `-fno-globals' disables diagnostics about potentially fatal disagreements

analysis problems, such as disagreements over the number or natures of arguments

passed to global procedures, or the natures of those procedures themselves.

The default is to issue such diagnostics and ag the compilation as unsuccessful. With

this option, the diagnostics are issued as warnings, or, if `-Wno-globals' is speci�ed,

are not issued at all.

This option also disables inlining of global procedures, to avoid compiler crashes re-

sulting from coding errors that these diagnostics normally would identify.

� Fix libU77 routines that accept �le names to strip trailing spaces from them, for

consistency with other implementations.

� Fix SIGNAL intrinsic so it accepts an optional third `Status' argument.

� Make many changes to libU77 intrinsics to support existing code more directly.

Such changes include allowing both subroutine and function forms of many rou-

tines, changing MCLOCK() and TIME() to return INTEGER(KIND=1) values, introducing

MCLOCK8() and TIME8() to return INTEGER(KIND=2) values, and placing functions that

are intended to perform side e�ects in a new intrinsic group, badu77.

� Add options `-fbadu77-intrinsics-delete', `-fbadu77-intrinsics-hide', and so

on.

� Add INT2 and INT8 intrinsics.

� Add CPU_TIME intrinsic.

� CTIME intrinsic now accepts any INTEGER argument, not just INTEGER(KIND=2).

66 Using and Porting GNU Fortran

In 0.5.20:

� The `-fno-typeless-boz' option is now the default.

This option speci�es that non-decimal-radix constants using the pre�xed-radix form

(such as `Z'1234'') are to be interpreted as INTEGER(KIND=1) constants. Specify

`-ftypeless-boz' to cause such constants to be interpreted as typeless.

(Version 0.5.19 introduced `-fno-typeless-boz' and its inverse.)

See Section 7.4 [Options Controlling Fortran Dialect], page 29, for information on the

`-ftypeless-boz' option.

� Options `-ff90-intrinsics-enable' and `-fvxt-intrinsics-enable' now are the

defaults.

Some programs might use names that clash with intrinsic names de�ned (and now

enabled) by these options or by the new libU77 intrinsics. Users of such programs might

need to compile them di�erently (using, for example, `-ff90-intrinsics-disable')

or, better yet, insert appropriate EXTERNAL statements specifying that these names are

not intended to be names of intrinsics.

� The `ALWAYS_FLUSH' macro is no longer de�ned when building libf2c, which should

result in improved I/O performance, especially over NFS.

Note: If you have code that depends on the behavior of libf2c when built with

`ALWAYS_FLUSH' de�ned, you will have to modify libf2c accordingly before building it

from this and future versions of g77.

See Section 17.4.8 [Output Assumed To Flush], page 260, for more information.

� Dave Love's implementation of libU77 has been added to the version of libf2c dis-

tributed with and built by g77. g77 now knows about the routines in this library as

intrinsics.

� New option `-fvxt' speci�es that the source �le is written in VXT Fortran, instead of

GNU Fortran.

See Section 11.6 [VXT Fortran], page 175, for more information on the constructs

recognized when the `-fvxt' option is speci�ed.

� The `-fvxt-not-f90' option has been deleted, along with its inverse, `-ff90-not-vxt'.

If you used one of these deleted options, you should re-read the pertinent documentation

to determine which options, if any, are appropriate for compiling your code with this

version of g77.

See Chapter 11 [Other Dialects], page 169, for more information.

� The `-fugly' option now issues a warning, as it likely will be removed in a future

version.

(Enabling all the `-fugly-*' options is unlikely to be feasible, or sensible, in the future,

so users should learn to specify only those `-fugly-*' options they really need for a

particular source �le.)

� The `-fugly-assumed' option, introduced in version 0.5.19, has been changed to bet-

ter accommodate old and new code. See Section 11.9.2 [Ugly Assumed-Size Arrays],

page 179, for more information.

Chapter 9: User-visible Changes 67

� Related to supporting Alpha (AXP) machines, the LOC() intrinsic and %LOC() con-

struct now return values of INTEGER(KIND=0) type, as de�ned by the GNU Fortran

language.

This type is wide enough (holds the same number of bits) as the character-pointer type

on the machine.

On most systems, this won't make a noticable di�erence, whereas on Alphas and

other systems with 64-bit pointers, the INTEGER(KIND=0) type is equivalent to

INTEGER(KIND=2) (often referred to as INTEGER*8) instead of the more common

INTEGER(KIND=1) (often referred to as INTEGER*4).

� Emulate COMPLEX arithmetic in the g77 front end, to avoid bugs in complex support

in the gcc back end. New option `-fno-emulate-complex' causes g77 to revert the

0.5.19 behavior.

� Dummy arguments are no longer assumed to potentially alias (overlap) other dummy

arguments or COMMON areas when any of these are de�ned (assigned to) by Fortran code.

This can result in faster and/or smaller programs when compiling with optimization

enabled, though on some systems this e�ect is observed only when `-fforce-addr' also

is speci�ed.

New options `-falias-check', `-fargument-alias', `-fargument-noalias', and

`-fno-argument-noalias-global' control the way g77 handles potential aliasing.

See Section 17.4.7 [Aliasing Assumed To Work], page 258, for detailed information on

why the new defaults might result in some programs no longer working the way they

did when compiled by previous versions of g77.

� New option `-fugly-assign' speci�es that the same memory locations are to be used to

hold the values assigned by both statements `I = 3' and `ASSIGN 10 TO I', for example.

(Normally, g77 uses a separate memory location to hold assigned statement labels.)

See Section 11.9.7 [Ugly Assigned Labels], page 181, for more information.

� FORMAT and ENTRY statements now are allowed to precede IMPLICIT NONE statements.

� Enable full support of INTEGER(KIND=2) (often referred to as INTEGER*8) available in

libf2c and `f2c.h' so that f2c users may make full use of its features via the g77

version of `f2c.h' and the INTEGER(KIND=2) support routines in the g77 version of

libf2c.

� Improve g77 driver and libf2c so that `g77 -v' yields version information on the

library.

� The SNGL and FLOAT intrinsics now are speci�c intrinsics, instead of synonyms for the

generic intrinsic REAL.

� New intrinsics have been added. These are REALPART, IMAGPART, COMPLEX, LONG, and

SHORT.

� A new group of intrinsics, `gnu', has been added to contain the new REALPART,

IMAGPART, and COMPLEX intrinsics. An old group, `dcp', has been removed.

In 0.5.19:

68 Using and Porting GNU Fortran

� A temporary kludge option provides bare-bones information on COMMON and EQUIVALENCE

members at debug time. See Section 7.10 [Options for Code Generation Conventions],

page 41, for information on the `-fdebug-kludge' option.

� New `-fonetrip' option speci�es FORTRAN-66-style one-trip DO loops.

� New `-fno-silent' option causes names of program units to be printed as they are

compiled, in a fashion similar to UNIX f77 and f2c.

� New `-fugly-assumed' option speci�es that arrays dimensioned via `DIMENSION X(1)',

for example, are to be treated as assumed-size.

� New `-fno-typeless-boz' option speci�es that non-decimal-radix constants using the

pre�xed-radix form (such as `Z'1234'') are to be interpreted as INTEGER(KIND=1)

constants.

� New `-ff66' option is a \shorthand" option that speci�es behaviors considered appro-

priate for FORTRAN 66 programs.

� New `-ff77' option is a \shorthand" option that speci�es behaviors considered appro-

priate for UNIX f77 programs.

� New `-fugly-comma' and `-fugly-logint' options provided to perform some of what

`-fugly' used to do. `-fugly' and `-fno-ugly' are now \shorthand" options, in that

they do nothing more than enable (or disable) other `-fugly-*' options.

� Change code generation for list-directed I/O so it allows for new versions of libf2c

that might return non-zero status codes for some operations previously assumed to

always return zero.

This change not only a�ects how IOSTAT= variables are set by list-directed I/O, it also

a�ects whether END= and ERR= labels are reached by these operations.

� Add intrinsic support for new FTELL and FSEEK procedures in libf2c.

� Add options `--help' and `--version' to the g77 command, to conform to GNU coding

guidelines. Also add printing of g77 version number when the `--verbose' (`-v') option

is used.

In 0.5.18:

� The BYTE and WORD statements now are supported, to a limited extent.

� INTEGER*1, INTEGER*2, INTEGER*8, and their LOGICAL equivalents, now are supported

to a limited extent. Among the missing elements are complete intrinsic and constant

support.

� Support automatic arrays in procedures. For example, `REAL A(N)', where `A' is not a

dummy argument, speci�es that `A' is an automatic array. The size of `A' is calculated

from the value of `N' each time the procedure is called, that amount of space is allocated,

and that space is freed when the procedure returns to its caller.

� Add `-fno-zeros' option, enabled by default, to reduce compile-time CPU and memory

usage for code that provides initial zero values for variables and arrays.

� Introduce three new options that apply to all compilations by g77-aware GNU

compilers|`-fmove-all-movables', `-freduce-all-givs', and `-frerun-loop-opt'|

which can improve the run-time performance of some programs.

Chapter 9: User-visible Changes 69

� Replace much of the existing documentation with a single Info document.

� New option `-fno-second-underscore'.

In 0.5.17:

� The ERF() and ERFC() intrinsics now are generic intrinsics, mapping to ERF/DERF and

ERFC/DERFC, respectively. Note: Use `INTRINSIC ERF,ERFC' in any code that might

reference these as generic intrinsics, to improve the likelihood of diagnostics (instead

of subtle run-time bugs) when using compilers that don't support these as intrinsics.

� New option `-Wsurprising'.

� DO loops with non-INTEGER variables now diagnosed only when `-Wsurprising' spec-

i�ed. Previously, this was diagnosed unless `-fpedantic' or `-fugly' was speci�ed.

In 0.5.16:

� libf2c changed to output a leading zero (0) digit for oating-point values output via

list-directed and formatted output (to bring g77 more into line with many existing

Fortran implementations|the ANSI FORTRAN 77 standard leaves this choice to the

implementation).

� libf2c no longer built with debugging information intact, making it much smaller.

� Automatic installation of the g77 command now works.

� Diagnostic messages now more informative, a la gcc, including messages like `In

function `foo':' and `In file included from...:'.

� New group of intrinsics called `unix', including ABORT, DERF, DERFC, ERF, ERFC, EXIT,

FLUSH, GETARG, GETENV, SIGNAL, and SYSTEM.

� `-funix-intrinsics-{delete,hide,disable,enable}' options added.

� `-fno-underscoring' option added.

� `--driver' option added to the g77 command.

� Support for the gcc options `-fident' and `-fno-ident' added.

� `g77 -v' returns much more version info, making the submission of better bug reports

easily.

� Many improvements to the g77 command to better ful�ll its role as a front-end to the

gcc driver. For example, g77 now recognizes `--verbose' as a verbose way of specifying

`-v'.

� Compiling preprocessed (`*.F' and `*.fpp') �les now results in better diagnostics and

debugging information, as the source-location info now is passed all the way through

the compilation process instead of being lost.

70 Using and Porting GNU Fortran

Chapter 10: The GNU Fortran Language 71

10 The GNU Fortran Language

GNU Fortran supports a variety of extensions to, and dialects of, the Fortran language.

Its primary base is the ANSI FORTRAN 77 standard, currently available on the network at

http://kumo.swcp.com/fortran/F77_std/f77_std.html or in ftp://ftp.ast.cam.ac.uk/pub/michael/.

It o�ers some extensions that are popular among users of UNIX f77 and f2c compilers,

some that are popular among users of other compilers (such as Digital products), some that

are popular among users of the newer Fortran 90 standard, and some that are introduced

by GNU Fortran.

(If you need a text on Fortran, a few freely available electronic references have pointers

from http://www.fortran.com/fortran/Books/.)

Part of what de�nes a particular implementation of a Fortran system, such as g77, is

the particular characteristics of how it supports types, constants, and so on. Much of this

is left up to the implementation by the various Fortran standards and accepted practice in

the industry.

The GNU Fortran language is described below. Much of the material is organized along

the same lines as the ANSI FORTRAN 77 standard itself.

See Chapter 11 [Other Dialects], page 169, for information on features g77 supports that

are not part of the GNU Fortran language.

Note: This portion of the documentation de�nitely needs a lot of work!

10.1 Direction of Language Development

The purpose of the following description of the GNU Fortran language is to promote

wide portability of GNU Fortran programs.

GNU Fortran is an evolving language, due to the fact that g77 itself is in beta test. Some

current features of the language might later be rede�ned as dialects of Fortran supported

by g77 when better ways to express these features are added to g77, for example. Such

features would still be supported by g77, but would be available only when one or more

command-line options were used.

The GNU Fortran language is distinct from the GNU Fortran compilation system (g77).

For example, g77 supports various dialects of Fortran|in a sense, these are languages

other than GNU Fortran|though its primary purpose is to support the GNU Fortran

language, which also is described in its documentation and by its implementation.

On the other hand, non-GNU compilers might o�er support for the GNU Fortran lan-

guage, and are encouraged to do so.

Currently, the GNU Fortran language is a fairly fuzzy object. It represents something

of a cross between what g77 accepts when compiling using the prevailing defaults and what

this document describes as being part of the language.

Future versions of g77 are expected to clarify the de�nition of the language in the docu-

mentation. Often, this will mean adding new features to the language, in the form of both

new documentation and new support in g77. However, it might occasionally mean removing

a feature from the language itself to \dialect" status. In such a case, the documentation

72 Using and Porting GNU Fortran

would be adjusted to reect the change, and g77 itself would likely be changed to require

one or more command-line options to continue supporting the feature.

The development of the GNU Fortran language is intended to strike a balance between:

� Serving as a mostly-upwards-compatible language from the de facto UNIX Fortran

dialect as supported by f77.

� O�ering new, well-designed language features. Attributes of such features include not

making existing code any harder to read (for those who might be unaware that the new

features are not in use) and not making state-of-the-art compilers take longer to issue

diagnostics, among others.

� Supporting existing, well-written code without gratuitously rejecting non-standard con-

structs, regardless of the origin of the code (its dialect).

� O�ering default behavior and command-line options to reduce and, where reasonable,

eliminate the need for programmers to make any modi�cations to code that already

works in existing production environments.

� Diagnosing constructs that have di�erent meanings in di�erent systems, languages,

and dialects, while o�ering clear, less ambiguous ways to express each of the di�erent

meanings so programmers can change their code appropriately.

One of the biggest practical challenges for the developers of the GNU Fortran language

is meeting the sometimes contradictory demands of the above items.

For example, a feature might be widely used in one popular environment, but the exact

same code that utilizes that feature might not work as expected|perhaps it might mean

something entirely di�erent|in another popular environment.

Traditionally, Fortran compilers|even portable ones|have solved this problem by sim-

ply o�ering the appropriate feature to users of the respective systems. This approach treats

users of various Fortran systems and dialects as remote \islands", or camps, of program-

mers, and assume that these camps rarely come into contact with each other (or, especially,

with each other's code).

Project GNU takes a radically di�erent approach to software and language design, in

that it assumes that users of GNU software do not necessarily care what kind of underlying

system they are using, regardless of whether they are using software (at the user-interface

level) or writing it (for example, writing Fortran or C code).

As such, GNU users rarely need consider just what kind of underlying hardware (or, in

many cases, operating system) they are using at any particular time. They can use and write

software designed for a general-purpose, widely portable, heteregenous environment|the

GNU environment.

In line with this philosophy, GNU Fortran must evolve into a product that is widely

ported and portable not only in the sense that it can be successfully built, installed, and

run by users, but in the larger sense that its users can use it in the same way, and expect

largely the same behaviors from it, regardless of the kind of system they are using at any

particular time.

This approach constrains the solutions g77 can use to resolve conicts between various

camps of Fortran users. If these two camps disagree about what a particular construct

should mean, g77 cannot simply be changed to treat that particular construct as having

Chapter 10: The GNU Fortran Language 73

one meaning without comment (such as a warning), lest the users expecting it to have the

other meaning are unpleasantly surprised that their code misbehaves when executed.

The use of the ASCII backslash character in character constants is an excellent (and still

somewhat unresolved) example of this kind of controversy. See Section 18.5.1 [Backslash in

Constants], page 284. Other examples are likely to arise in the future, as g77 developers

strive to improve its ability to accept an ever-wider variety of existing Fortran code without

requiring signi�cant modi�cations to said code.

Development of GNU Fortran is further constrained by the desire to avoid requiring

programmers to change their code. This is important because it allows programmers, ad-

ministrators, and others to more faithfully evaluate and validate g77 (as an overall product

and as new versions are distributed) without having to support multiple versions of their

programs so that they continue to work the same way on their existing systems (non-GNU

perhaps, but possibly also earlier versions of g77).

10.2 ANSI FORTRAN 77 Standard Support

GNU Fortran supports ANSI FORTRAN 77 with the following caveats. In summary, the

only ANSI FORTRAN 77 features g77 doesn't support are those that are probably rarely

used in actual code, some of which are explicitly disallowed by the Fortran 90 standard.

10.2.1 No Passing External Assumed-length

g77 disallows passing of an external procedure as an actual argument if the procedure's

type is declared CHARACTER*(*). For example:

CHARACTER*(*) CFUNC

EXTERNAL CFUNC

CALL FOO(CFUNC)

END

It isn't clear whether the standard considers this conforming.

10.2.2 No Passing Dummy Assumed-length

g77 disallows passing of a dummy procedure as an actual argument if the procedure's

type is declared CHARACTER*(*).

SUBROUTINE BAR(CFUNC)

CHARACTER*(*) CFUNC

EXTERNAL CFUNC

CALL FOO(CFUNC)

END

It isn't clear whether the standard considers this conforming.

10.2.3 No Pathological Implied-DO

The DO variable for an implied-DO construct in a DATA statement may not be used as the

DO variable for an outer implied-DO construct. For example, this fragment is disallowed by

g77:

74 Using and Porting GNU Fortran

DATA ((A(I, I), I= 1, 10), I= 1, 10) /: : :/

This also is disallowed by Fortran 90, as it o�ers no additional capabilities and would have

a variety of possible meanings.

Note that it is very unlikely that any production Fortran code tries to use this unsup-

ported construct.

10.2.4 No Useless Implied-DO

An array element initializer in an implied-DO construct in a DATA statement must contain

at least one reference to the DO variables of each outer implied-DO construct. For example,

this fragment is disallowed by g77:

DATA (A, I= 1, 1) /1./

This also is disallowed by Fortran 90, as FORTRAN 77's more permissive requirements

o�er no additional capabilities. However, g77 doesn't necessarily diagnose all cases where

this requirement is not met.

Note that it is very unlikely that any production Fortran code tries to use this unsup-

ported construct.

10.3 Conformance

(The following information augments or overrides the information in Section 1.4 of ANSI

X3.9-1978 FORTRAN 77 in specifying the GNU Fortran language. Chapter 1 of that

document otherwise serves as the basis for the relevant aspects of GNU Fortran.)

The de�nition of the GNU Fortran language is akin to that of the ANSI FORTRAN

77 language in that it does not generally require conforming implementations to diagnose

cases where programs do not conform to the language.

However, g77 as a compiler is being developed in a way that is intended to enable it to

diagnose such cases in an easy-to-understand manner.

A program that conforms to the GNU Fortran language should, when compiled, linked,

and executed using a properly installed g77 system, perform as described by the GNU

Fortran language de�nition. Reasons for di�erent behavior include, among others:

� Use of resources (memory|heap, stack, and so on; disk space; CPU time; etc.) exceeds

those of the system.

� Range and/or precision of calculations required by the program exceeds that of the

system.

� Excessive reliance on behaviors that are system-dependent (non-portable Fortran code).

� Bugs in the program.

� Bug in g77.

� Bugs in the system.

Despite these \loopholes", the availability of a clear speci�cation of the language of

programs submitted to g77, as this document is intended to provide, is considered an

important aspect of providing a robust, clean, predictable Fortran implementation.

Chapter 10: The GNU Fortran Language 75

The de�nition of the GNU Fortran language, while having no special legal status, can

therefore be viewed as a sort of contract, or agreement. This agreement says, in essence, \if

you write a program in this language, and run it in an environment (such as a g77 system)

that supports this language, the program should behave in a largely predictable way".

10.4 Notation Used in This Chapter

(The following information augments or overrides the information in Section 1.5 of ANSI

X3.9-1978 FORTRAN 77 in specifying the GNU Fortran language. Chapter 1 of that

document otherwise serves as the basis for the relevant aspects of GNU Fortran.)

In this chapter, \must" denotes a requirement, \may" denotes permission, and \must

not" and \may not" denote prohibition. Terms such as \might", \should", and \can"

generally add little or nothing in the way of weight to the GNU Fortran language itself, but

are used to explain or illustrate the language.

For example:

\The FROBNITZ statement must precede all executable

statements in a program unit, and may not specify any dummy

arguments. It may specify local or common variables and arrays.

Its use should be limited to portions of the program designed to

be non-portable and system-speci�c, because it might cause the

containing program unit to behave quite di�erently on di�erent

systems."

Insofar as the GNU Fortran language is speci�ed, the requirements and permissions

denoted by the above sample statement are limited to the placement of the statement and

the kinds of things it may specify. The rest of the statement|the content regarding non-

portable portions of the program and the di�ering behavior of program units containing

the FROBNITZ statement|does not pertain the GNU Fortran language itself. That content

o�ers advice and warnings about the FROBNITZ statement.

Remember: The GNU Fortran language de�nition speci�es both what constitutes a valid

GNU Fortran program and how, given such a program, a valid GNU Fortran implementation

is to interpret that program.

It is not incumbent upon a valid GNU Fortran implementation to behave in any par-

ticular way, any consistent way, or any predictable way when it is asked to interpret input

that is not a valid GNU Fortran program.

Such input is said to have unde�ned behavior when interpreted by a valid GNU Fortran

implementation, though an implementation may choose to specify behaviors for some cases

of inputs that are not valid GNU Fortran programs.

Other notation used herein is that of the GNU texinfo format, which is used to generate

printed hardcopy, on-line hypertext (Info), and on-line HTML versions, all from a single

source document. This notation is used as follows:

� Keywords de�ned by the GNU Fortran language are shown in uppercase, as in: COMMON,

INTEGER, and BLOCK DATA.

Note that, in practice, many Fortran programs are written in lowercase|uppercase is

used in this manual as a means to readily distinguish keywords and sample Fortran-

related text from the prose in this document.

76 Using and Porting GNU Fortran

� Portions of actual sample program, input, or output text look like this: `Actual

program text'.

Generally, uppercase is used for all Fortran-speci�c and Fortran-related text, though

this does not always include literal text within Fortran code.

For example: `PRINT *, 'My name is Bob''.

� A metasyntactic variable|that is, a name used in this document to serve as a place-

holder for whatever text is used by the user or programmer{appears as shown in the

following example:

\The INTEGER ivar statement speci�es that ivar is a variable or array of type INTEGER."

In the above example, any valid text may be substituted for the metasyntactic variable

ivar to make the statement apply to a speci�c instance, as long as the same text is

substituted for both occurrences of ivar.

� Ellipses (\: : :") are used to indicate further text that is either unimportant or expanded

upon further, elsewhere.

� Names of data types are in the style of Fortran 90, in most cases.

See Section 10.7.1.3 [Kind Notation], page 84, for information on the relationship be-

tween Fortran 90 nomenclature (such as INTEGER(KIND=1)) and the more traditional,

less portably concise nomenclature (such as INTEGER*4).

10.5 Fortran Terms and Concepts

(The following information augments or overrides the information in Chapter 2 of ANSI

X3.9-1978 FORTRAN 77 in specifying the GNU Fortran language. Chapter 2 of that

document otherwise serves as the basis for the relevant aspects of GNU Fortran.)

10.5.1 Syntactic Items

(Corresponds to Section 2.2 of ANSI X3.9-1978 FORTRAN 77.)

In GNU Fortran, a symbolic name is at least one character long, and has no arbitrary

upper limit on length. However, names of entities requiring external linkage (such as exter-

nal functions, external subroutines, and COMMON areas) might be restricted to some arbitrary

length by the system. Such a restriction is no more constrained than that of one through

six characters.

Underscores (`_') are accepted in symbol names after the �rst character (which must be

a letter).

10.5.2 Statements, Comments, and Lines

(Corresponds to Section 2.3 of ANSI X3.9-1978 FORTRAN 77.)

Use of an exclamation point (`!') to begin a trailing comment (a comment that extends

to the end of the same source line) is permitted under the following conditions:

� The exclamation point does not appear in column 6. Otherwise, it is treated as an

indicator of a continuation line.

Chapter 10: The GNU Fortran Language 77

� The exclamation point appears outside a character or hollerith constant. Otherwise,

the exclamation point is considered part of the constant.

� The exclamation point appears to the left of any other possible trailing comment. That

is, a trailing comment may contain exclamation points in their commentary text.

Use of a semicolon (`;') as a statement separator is permitted under the following con-

ditions:

� The semicolon appears outside a character or hollerith constant. Otherwise, the semi-

colon is considered part of the constant.

� The semicolon appears to the left of a trailing comment. Otherwise, the semicolon is

considered part of that comment.

� Neither a logical IF statement nor a non-construct WHERE statement (a Fortran 90

feature) may be followed (in the same, possibly continued, line) by a semicolon used

as a statement separator.

This restriction avoids the confusion that can result when reading a line such as:

IF (VALIDP) CALL FOO; CALL BAR

Some readers might think the `CALL BAR' is executed only if `VALIDP' is .TRUE., while

others might assume its execution is unconditional.

(At present, g77 does not diagnose code that violates this restriction.)

10.5.3 Scope of Symbolic Names and Statement Labels

(Corresponds to Section 2.9 of ANSI X3.9-1978 FORTRAN 77.)

Included in the list of entities that have a scope of a program unit are construct names (a

Fortran 90 feature). See Section 10.10.3 [Construct Names], page 89, for more information.

10.6 Characters, Lines, and Execution Sequence

(The following information augments or overrides the information in Chapter 3 of ANSI

X3.9-1978 FORTRAN 77 in specifying the GNU Fortran language. Chapter 3 of that

document otherwise serves as the basis for the relevant aspects of GNU Fortran.)

10.6.1 GNU Fortran Character Set

(Corresponds to Section 3.1 of ANSI X3.9-1978 FORTRAN 77.)

Letters include uppercase letters (the twenty-six characters of the English alphabet) and

lowercase letters (their lowercase equivalent). Generally, lowercase letters may be used in

place of uppercase letters, though in character and hollerith constants, they are distinct.

Special characters include:

� Semicolon (`;')

� Exclamation point (`!')

� Double quote (`"')

� Backslash (`\')

� Question mark (`?')

78 Using and Porting GNU Fortran

� Hash mark (`#')

� Ampersand (`&')

� Percent sign (`%')

� Underscore (`_')

� Open angle (`<')

� Close angle (`>')

� The FORTRAN 77 special characters (

h

SPC

i

, `=', `+', `-', `*', `/', `(', `)', `,', `.', `$', `'',

and `:')

Note that this document refers to

h

SPC

i

as space, while X3.9-1978 FORTRAN 77 refers

to it as blank.

10.6.2 Lines

(Corresponds to Section 3.2 of ANSI X3.9-1978 FORTRAN 77.)

The way a Fortran compiler views source �les depends entirely on the implementation

choices made for the compiler, since those choices are explicitly left to the implementation

by the published Fortran standards.

The GNU Fortran language mandates a view applicable to UNIX-like text �les|�les that

are made up of an arbitrary number of lines, each with an arbitrary number of characters

(sometimes called stream-based �les).

This view does not apply to types of �les that are speci�ed as having a particular number

of characters on every single line (sometimes referred to as record-based �les).

Because a \line in a program unit is a sequence of 72 characters", to quote X3.9-1978, the

GNU Fortran language speci�es that a stream-based text �le is translated to GNU Fortran

lines as follows:

� A newline in the �le is the character that represents the end of a line of text to the un-

derlying system. For example, on ASCII-based systems, a newline is the

h

NL

i

character,

which has ASCII value 12 (decimal).

� Each newline in the �le serves to end the line of text that precedes it (and that does

not contain a newline).

� The end-of-�le marker (EOF) also serves to end the line of text that precedes it (and

that does not contain a newline).

� Any line of text that is shorter than 72 characters is padded to that length with spaces

(called \blanks" in the standard).

� Any line of text that is longer than 72 characters is truncated to that length, but the

truncated remainder must consist entirely of spaces.

� Characters other than newline and the GNU Fortran character set are invalid.

For the purposes of the remainder of this description of the GNU Fortran language, the

translation described above has already taken place, unless otherwise speci�ed.

The result of the above translation is that the source �le appears, in terms of the re-

mainder of this description of the GNU Fortran language, as if it had an arbitrary number

of 72-character lines, each character being among the GNU Fortran character set.

Chapter 10: The GNU Fortran Language 79

For example, if the source �le itself has two newlines in a row, the second newline

becomes, after the above translation, a single line containing 72 spaces.

10.6.3 Continuation Line

(Corresponds to Section 3.2.3 of ANSI X3.9-1978 FORTRAN 77.)

A continuation line is any line that both

� Contains a continuation character, and

� Contains only spaces in columns 1 through 5

A continuation character is any character of the GNU Fortran character set other than

space (

h

SPC

i

) or zero (`0') in column 6, or a digit (`0' through `9') in column 7 through 72

of a line that has only spaces to the left of that digit.

The continuation character is ignored as far as the content of the statement is concerned.

The GNU Fortran language places no limit on the number of continuation lines in a

statement. In practice, the limit depends on a variety of factors, such as available memory,

statement content, and so on, but no GNU Fortran system may impose an arbitrary limit.

10.6.4 Statements

(Corresponds to Section 3.3 of ANSI X3.9-1978 FORTRAN 77.)

Statements may be written using an arbitrary number of continuation lines.

Statements may be separated using the semicolon (`;'), except that the logical IF and

non-construct WHERE statements may not be separated from subsequent statements using

only a semicolon as statement separator.

The END PROGRAM, END SUBROUTINE, END FUNCTION, and END BLOCK DATA statements

are alternatives to the END statement. These alternatives may be written as normal

statements|they are not subject to the restrictions of the END statement.

However, no statement other than END may have an initial line that appears to be an

END statement|even END PROGRAM, for example, must not be written as:

END

&PROGRAM

10.6.5 Statement Labels

(Corresponds to Section 3.4 of ANSI X3.9-1978 FORTRAN 77.)

A statement separated from its predecessor via a semicolon may be labeled as follows:

� The semicolon is followed by the label for the statement, which in turn follows the

label.

� The label must be no more than �ve digits in length.

� The �rst digit of the label for the statement is not the �rst non-space character on a

line. Otherwise, that character is treated as a continuation character.

A statement may have only one label de�ned for it.

80 Using and Porting GNU Fortran

10.6.6 Order of Statements and Lines

(Corresponds to Section 3.5 of ANSI X3.9-1978 FORTRAN 77.)

Generally, DATA statements may precede executable statements. However, speci�cation

statements pertaining to any entities initialized by a DATA statement must precede that DATA

statement. For example, after `DATA I/1/', `INTEGER I' is not permitted, but `INTEGER J'

is permitted.

The last line of a program unit may be an END statement, or may be:

� An END PROGRAM statement, if the program unit is a main program.

� An END SUBROUTINE statement, if the program unit is a subroutine.

� An END FUNCTION statement, if the program unit is a function.

� An END BLOCK DATA statement, if the program unit is a block data.

10.6.7 Including Source Text

Additional source text may be included in the processing of the source �le via the

INCLUDE directive:

INCLUDE �lename

The source text to be included is identi�ed by �lename, which is a literal GNU Fortran char-

acter constant. The meaning and interpretation of �lename depends on the implementation,

but typically is a �lename.

(g77 treats it as a �lename that it searches for in the current directory and/or directories

speci�ed via the `-I' command-line option.)

The e�ect of the INCLUDE directive is as if the included text directly replaced the directive

in the source �le prior to interpretation of the program. Included text may itself use

INCLUDE. The depth of nested INCLUDE references depends on the implementation, but

typically is a positive integer.

This virtual replacement treats the statements and INCLUDE directives in the included

text as syntactically distinct from those in the including text.

Therefore, the �rst non-comment line of the included text must not be a continuation

line. The included text must therefore have, after the non-comment lines, either an initial

line (statement), an INCLUDE directive, or nothing (the end of the included text).

Similarly, the including text may end the INCLUDE directive with a semicolon or the

end of the line, but it cannot follow an INCLUDE directive at the end of its line with a

continuation line. Thus, the last statement in an included text may not be continued.

Any statements between two INCLUDE directives on the same line are treated as if they

appeared in between the respective included texts. For example:

INCLUDE 'A'; PRINT *, 'B'; INCLUDE 'C'; END PROGRAM

If the text included by `INCLUDE 'A'' constitutes a `PRINT *, 'A'' statement and the text

included by `INCLUDE 'C'' constitutes a `PRINT *, 'C'' statement, then the output of the

above sample program would be

A

B

Chapter 10: The GNU Fortran Language 81

C

(with suitable allowances for how an implementation de�nes its handling of output).

Included text must not include itself directly or indirectly, regardless of whether the

�lename used to reference the text is the same.

Note that INCLUDE is not a statement. As such, it is neither a non-executable or ex-

ecutable statement. However, if the text it includes constitutes one or more executable

statements, then the placement of INCLUDE is subject to e�ectively the same restrictions as

those on executable statements.

An INCLUDE directive may be continued across multiple lines as if it were a statement.

This permits long names to be used for �lename.

10.7 Data Types and Constants

(The following information augments or overrides the information in Chapter 4 of ANSI

X3.9-1978 FORTRAN 77 in specifying the GNU Fortran language. Chapter 4 of that

document otherwise serves as the basis for the relevant aspects of GNU Fortran.)

To more concisely express the appropriate types for entities, this document uses the

more concise Fortran 90 nomenclature such as INTEGER(KIND=1) instead of the more tradi-

tional, but less portably concise, byte-size-based nomenclature such as INTEGER*4, wherever

reasonable.

When referring to generic types|in contexts where the speci�c precision and range of

a type are not important|this document uses the generic type names INTEGER, LOGICAL,

REAL, COMPLEX, and CHARACTER.

In some cases, the context requires speci�cation of a particular type. This document

uses the `KIND=' notation to accomplish this throughout, sometimes supplying the more

traditional notation for clari�cation, though the traditional notation might not work the

same way on all GNU Fortran implementations.

Use of `KIND=' makes this document more concise because g77 is able to de�ne values

for `KIND=' that have the same meanings on all systems, due to the way the Fortran 90

standard speci�es these values are to be used.

(In particular, that standard permits an implementation to arbitrarily assign nonnegative

values. There are four distinct sets of assignments: one to the CHARACTER type; one to the

INTEGER type; one to the LOGICAL type; and the fourth to both the REAL and COMPLEX types.

Implementations are free to assign these values in any order, leave gaps in the ordering of

assignments, and assign more than one value to a representation.)

This makes `KIND=' values superior to the values used in non-standard statements such

as `INTEGER*4', because the meanings of the values in those statements vary from machine

to machine, compiler to compiler, even operating system to operating system.

However, use of `KIND=' is not generally recommended when writing portable code (un-

less, for example, the code is going to be compiled only via g77, which is a widely ported

compiler). GNU Fortran does not yet have adequate language constructs to permit use of

`KIND=' in a fashion that would make the code portable to Fortran 90 implementations; and,

this construct is known to not be accepted by many popular FORTRAN 77 implementa-

tions, so it cannot be used in code that is to be ported to those.

82 Using and Porting GNU Fortran

The distinction here is that this document is able to use speci�c values for `KIND=' to

concisely document the types of various operations and operands.

A Fortran program should use the FORTRAN 77 designations for the appropriate GNU

Fortran types|such as INTEGER for INTEGER(KIND=1), REAL for REAL(KIND=1), and DOUBLE

COMPLEX for COMPLEX(KIND=2)|and, where no such designations exist, make use of appro-

priate techniques (preprocessor macros, parameters, and so on) to specify the types in a

fashion that may be easily adjusted to suit each particular implementation to which the

program is ported. (These types generally won't need to be adjusted for ports of g77.)

Further details regarding GNU Fortran data types and constants are provided below.

10.7.1 Data Types

(Corresponds to Section 4.1 of ANSI X3.9-1978 FORTRAN 77.)

GNU Fortran supports these types:

1. Integer (generic type INTEGER)

2. Real (generic type REAL)

3. Double precision

4. Complex (generic type COMPLEX)

5. Logical (generic type LOGICAL)

6. Character (generic type CHARACTER)

7. Double Complex

(The types numbered 1 through 6 above are standard FORTRAN 77 types.)

The generic types shown above are referred to in this document using only their generic

type names. Such references usually indicate that any speci�c type (kind) of that generic

type is valid.

For example, a context described in this document as accepting the COMPLEX type also

is likely to accept the DOUBLE COMPLEX type.

The GNU Fortran language supports three ways to specify a speci�c kind of a generic

type.

10.7.1.1 Double Notation

The GNU Fortran language supports two uses of the keyword DOUBLE to specify a speci�c

kind of type:

� DOUBLE PRECISION, equivalent to REAL(KIND=2)

� DOUBLE COMPLEX, equivalent to COMPLEX(KIND=2)

Use one of the above forms where a type name is valid.

While use of this notation is popular, it doesn't scale well in a language or dialect rich

in intrinsic types, as is the case for the GNU Fortran language (especially planned future

versions of it).

After all, one rarely sees type names such as `DOUBLE INTEGER', `QUADRUPLE REAL', or

`QUARTER INTEGER'. Instead, INTEGER*8, REAL*16, and INTEGER*1 often are substituted for

Chapter 10: The GNU Fortran Language 83

these, respectively, even though they do not always have the same meanings on all systems.

(And, the fact that `DOUBLE REAL' does not exist as such is an inconsistency.)

Therefore, this document uses \double notation" only on occasion for the bene�t of those

readers who are accustomed to it.

10.7.1.2 Star Notation

The following notation speci�es the storage size for a type:

generic-type*n

generic-type must be a generic type|one of INTEGER, REAL, COMPLEX, LOGICAL, or

CHARACTER. n must be one or more digits comprising a decimal integer number greater

than zero.

Use the above form where a type name is valid.

The `*n' notation speci�es that the amount of storage occupied by variables and array

elements of that type is n times the storage occupied by a CHARACTER*1 variable.

This notation might indicate a di�erent degree of precision and/or range for such vari-

ables and array elements, and the functions that return values of types using this notation.

It does not limit the precision or range of values of that type in any particular way|use

explicit code to do that.

Further, the GNU Fortran language requires no particular values for n to be supported

by an implementation via the `*n' notation. g77 supports INTEGER*1 (as INTEGER(KIND=3))

on all systems, for example, but not all implementations are required to do so, and g77 is

known to not support REAL*1 on most (or all) systems.

As a result, except for generic-type of CHARACTER, uses of this notation should be limited

to isolated portions of a program that are intended to handle system-speci�c tasks and are

expected to be non-portable.

(Standard FORTRAN 77 supports the `*n' notation for only CHARACTER, where it sig-

ni�es not only the amount of storage occupied, but the number of characters in entities of

that type. However, almost all Fortran compilers have supported this notation for generic

types, though with a variety of meanings for n.)

Speci�cations of types using the `*n' notation always are interpreted as speci�cations of

the appropriate types described in this document using the `KIND=n' notation, described

below.

While use of this notation is popular, it doesn't serve well in the context of a widely

portable dialect of Fortran, such as the GNU Fortran language.

For example, even on one particular machine, two or more popular Fortran compilers

might well disagree on the size of a type declared INTEGER*2 or REAL*16. Certainly there is

known to be disagreement over such things among Fortran compilers on di�erent systems.

Further, this notation o�ers no elegant way to specify sizes that are not even multiples

of the \byte size" typically designated by INTEGER*1. Use of \absurd" values (such as

INTEGER*1000) would certainly be possible, but would perhaps be stretching the original

intent of this notation beyond the breaking point in terms of widespread readability of

documentation and code making use of it.

84 Using and Porting GNU Fortran

Therefore, this document uses \star notation" only on occasion for the bene�t of those

readers who are accustomed to it.

10.7.1.3 Kind Notation

The following notation speci�es the kind-type selector of a type:

generic-type(KIND=n)

Use the above form where a type name is valid.

generic-type must be a generic type|one of INTEGER, REAL, COMPLEX, LOGICAL, or

CHARACTER. n must be an integer initialization expression that is a positive, nonzero value.

Programmers are discouraged from writing these values directly into their code. Future

versions of the GNU Fortran language will o�er facilities that will make the writing of code

portable to g77 and Fortran 90 implementations simpler.

However, writing code that ports to existing FORTRAN 77 implementations depends

on avoiding the `KIND=' construct.

The `KIND=' construct is thus useful in the context of GNU Fortran for two reasons:

� It provides a means to specify a type in a fashion that is portable across all GNU Fortran

implementations (though not other FORTRAN 77 and Fortran 90 implementations).

� It provides a sort of Rosetta stone for this document to use to concisely describe the

types of various operations and operands.

The values of n in the GNU Fortran language are assigned using a scheme that:

� Attempts to maximize the ability of readers of this document to quickly familiarize

themselves with assignments for popular types

� Provides a unique value for each speci�c desired meaning

� Provides a means to automatically assign new values so they have a \natural" rela-

tionship to existing values, if appropriate, or, if no such relationship exists, will not

interfere with future values assigned on the basis of such relationships

� Avoids using values that are similar to values used in the existing, popular `*n' notation,

to prevent readers from expecting that these implied correspondences work on all GNU

Fortran implementations

The assignment system accomplishes this by assigning to each \fundamental meaning"

of a speci�c type a unique prime number. Combinations of fundamental meanings|for

example, a type that is two times the size of some other type|are assigned values of n that

are the products of the values for those fundamental meanings.

A prime value of n is never given more than one fundamental meaning, to avoid situations

where some code or system cannot reasonably provide those meanings in the form of a single

type.

The values of n assigned so far are:

KIND=0 This value is reserved for future use.

The planned future use is for this value to designate, explicitly, context-sensitive

kind-type selection. For example, the expression `1D0 * 0.1_0' would be equiv-

alent to `1D0 * 0.1D0'.

Chapter 10: The GNU Fortran Language 85

KIND=1 This corresponds to the default types for REAL, INTEGER, LOGICAL, COMPLEX,

and CHARACTER, as appropriate.

These are the \default" types described in the Fortran 90 standard, though

that standard does not assign any particular `KIND=' value to these types.

(Typically, these are REAL*4, INTEGER*4, LOGICAL*4, and COMPLEX*8.)

KIND=2 This corresponds to types that occupy twice as much storage as the default

types. REAL(KIND=2) is DOUBLE PRECISION (typically REAL*8), COMPLEX(KIND=2)

is DOUBLE COMPLEX (typically COMPLEX*16),

These are the \double precision" types described in the Fortran 90 standard,

though that standard does not assign any particular `KIND=' value to these

types.

n of 4 thus corresponds to types that occupy four times as much storage as the

default types, n of 8 to types that occupy eight times as much storage, and so

on.

The INTEGER(KIND=2) and LOGICAL(KIND=2) types are not necessarily sup-

ported by every GNU Fortran implementation.

KIND=3 This corresponds to types that occupy as much storage as the default CHARACTER

type, which is the same e�ective type as CHARACTER(KIND=1) (making that type

e�ectively the same as CHARACTER(KIND=3)).

(Typically, these are INTEGER*1 and LOGICAL*1.)

n of 6 thus corresponds to types that occupy twice as much storage as the n=3

types, n of 12 to types that occupy four times as much storage, and so on.

These are not necessarily supported by every GNU Fortran implementation.

KIND=5 This corresponds to types that occupy half the storage as the default (n=1)

types.

(Typically, these are INTEGER*2 and LOGICAL*2.)

n of 25 thus corresponds to types that occupy one-quarter as much storage as

the default types.

These are not necessarily supported by every GNU Fortran implementation.

KIND=7 This is valid only as INTEGER(KIND=7) and denotes the INTEGER type that has

the smallest storage size that holds a pointer on the system.

A pointer representable by this type is capable of uniquely addressing a

CHARACTER*1 variable, array, array element, or substring.

(Typically this is equivalent to INTEGER*4 or, on 64-bit systems, INTEGER*8.

In a compatible C implementation, it typically would be the same size and

semantics of the C type void *.)

Note that these are proposed correspondences and might change in future versions of

g77|avoid writing code depending on them while g77, and therefore the GNU Fortran

language it de�nes, is in beta testing.

Values not speci�ed in the above list are reserved to future versions of the GNU Fortran

language.

86 Using and Porting GNU Fortran

Implementation-dependent meanings will be assigned new, unique prime numbers so as

to not interfere with other implementation-dependent meanings, and o�er the possibility of

increasing the portability of code depending on such types by o�ering support for them in

other GNU Fortran implementations.

Other meanings that might be given unique values are:

� Types that make use of only half their storage size for representing precision and range.

For example, some compilers o�er options that cause INTEGER types to occupy the

amount of storage that would be needed for INTEGER(KIND=2) types, but the range

remains that of INTEGER(KIND=1).

� The IEEE single oating-point type.

� Types with a speci�c bit pattern (endianness), such as the little-endian form of

INTEGER(KIND=1). These could permit, conceptually, use of portable code and imple-

mentations on data �les written by existing systems.

Future prime numbers should be given meanings in as incremental a fashion as possible,

to allow for exibility and expressiveness in combining types.

For example, instead of de�ning a prime number for little-endian IEEE doubles, one

prime number might be assigned the meaning \little-endian", another the meaning \IEEE

double", and the value of n for a little-endian IEEE double would thus naturally be the

product of those two respective assigned values. (It could even be reasonable to have

IEEE values result from the products of prime values denoting exponent and fraction sizes

and meanings, hidden bit usage, availability and representations of special values such as

subnormals, in�nities, and Not-A-Numbers (NaNs), and so on.)

This assignment mechanism, while not inherently required for future versions of the

GNU Fortran language, is worth using because it could ease management of the \space" of

supported types much easier in the long run.

The above approach suggests a mechanism for specifying inheritance of intrinsic (built-

in) types for an entire, widely portable product line. It is certainly reasonable that, unlike

programmers of other languages o�ering inheritance mechanisms that employ verbose names

for classes and subclasses, along with graphical browsers to elucidate the relationships,

Fortran programmers would employ a mechanism that works by multiplying prime numbers

together and �nding the prime factors of such products.

Most of the advantages for the above scheme have been explained above. One disadvan-

tage is that it could lead to the de�ning, by the GNU Fortran language, of some fairly large

prime numbers. This could lead to the GNU Fortran language being declared \munitions"

by the United States Department of Defense.

10.7.2 Constants

(Corresponds to Section 4.2 of ANSI X3.9-1978 FORTRAN 77.)

A typeless constant has one of the following forms:

'binary-digits'B

'octal-digits'O

'hexadecimal-digits'Z

'hexadecimal-digits'X

Chapter 10: The GNU Fortran Language 87

binary-digits, octal-digits, and hexadecimal-digits are nonempty strings of characters in the

set `01', `01234567', and `0123456789ABCDEFabcdef', respectively. (The value for `A' (and

`a') is 10, for `B' and `b' is 11, and so on.)

Typeless constants have values that depend on the context in which they are used.

All other constants, called typed constants, are interpreted|converted to internal form|

according to their inherent type. Thus, context is never a determining factor for the type,

and hence the interpretation, of a typed constant. (All constants in the ANSI FORTRAN

77 language are typed constants.)

For example, `1' is always type INTEGER(KIND=1) in GNU Fortran (called default IN-

TEGER in Fortran 90), `9.435784839284958' is always type REAL(KIND=1) (even if the

additional precision speci�ed is lost, and even when used in a REAL(KIND=2) context), `1E0'

is always type REAL(KIND=2), and `1D0' is always type REAL(KIND=2).

10.7.3 Integer Type

(Corresponds to Section 4.3 of ANSI X3.9-1978 FORTRAN 77.)

An integer constant also may have one of the following forms:

B'binary-digits'

O'octal-digits'

Z'hexadecimal-digits'

X'hexadecimal-digits'

binary-digits, octal-digits, and hexadecimal-digits are nonempty strings of characters in the

set `01', `01234567', and `0123456789ABCDEFabcdef', respectively. (The value for `A' (and

`a') is 10, for `B' and `b' is 11, and so on.)

10.7.4 Character Type

(Corresponds to Section 4.8 of ANSI X3.9-1978 FORTRAN 77.)

A character constant may be delimited by a pair of double quotes (`"') instead of apos-

trophes. In this case, an apostrophe within the constant represents a single apostrophe,

while a double quote is represented in the source text of the constant by two consecutive

double quotes with no intervening spaces.

A character constant may be empty (have a length of zero).

A character constant may include a substring speci�cation, The value of such a constant

is the value of the substring|for example, the value of `'hello'(3:5)' is the same as the

value of `'llo''.

10.8 Expressions

(The following information augments or overrides the information in Chapter 6 of ANSI

X3.9-1978 FORTRAN 77 in specifying the GNU Fortran language. Chapter 6 of that

document otherwise serves as the basis for the relevant aspects of GNU Fortran.)

88 Using and Porting GNU Fortran

10.8.1 The %LOC() Construct

%LOC(arg)

The %LOC() construct is an expression that yields the value of the location of its ar-

gument, arg, in memory. The size of the type of the expression depends on the system|

typically, it is equivalent to either INTEGER(KIND=1) or INTEGER(KIND=2), though it is

actually type INTEGER(KIND=7).

The argument to %LOC() must be suitable as the left-hand side of an assignment state-

ment. That is, it may not be a general expression involving operators such as addition,

subtraction, and so on, nor may it be a constant.

Use of %LOC() is recommended only for code that is accessing facilities outside of GNU

Fortran, such as operating system or windowing facilities. It is best to constrain such uses

to isolated portions of a program|portions that deal speci�cally and exclusively with low-

level, system-dependent facilities. Such portions might well provide a portable interface for

use by the program as a whole, but are themselves not portable, and should be thoroughly

tested each time they are rebuilt using a new compiler or version of a compiler.

Do not depend on %LOC() returning a pointer that can be safely used to de�ne (change)

the argument. While this might work in some circumstances, it is hard to predict whether it

will continue to work when a program (that works using this unsafe behavior) is recompiled

using di�erent command-line options or a di�erent version of g77.

Generally, %LOC() is safe when used as an argument to a procedure that makes use of

the value of the corresponding dummy argument only during its activation, and only when

such use is restricted to referencing (reading) the value of the argument to %LOC().

Implementation Note: Currently, g77 passes arguments (those not passed using a con-

struct such as %VAL()) by reference or descriptor, depending on the type of the actual

argument. Thus, given `INTEGER I', `CALL FOO(I)' would seem to mean the same thing as

`CALL FOO(%LOC(I))', and in fact might compile to identical code.

However, `CALL FOO(%LOC(I))' emphatically means \pass the address of `I' in memory".

While `CALL FOO(I)' might use that same approach in a particular version of g77, another

version or compiler might choose a di�erent implementation, such as copy-in/copy-out, to

e�ect the desired behavior|and which will therefore not necessarily compile to the same

code as would `CALL FOO(%LOC(I))' using the same version or compiler.

See Chapter 16 [Debugging and Interfacing], page 239, for detailed information on how

this particular version of g77 implements various constructs.

10.9 Speci�cation Statements

(The following information augments or overrides the information in Chapter 8 of ANSI

X3.9-1978 FORTRAN 77 in specifying the GNU Fortran language. Chapter 8 of that

document otherwise serves as the basis for the relevant aspects of GNU Fortran.)

10.9.1 NAMELIST Statement

The NAMELIST statement, and related I/O constructs, are supported by the GNU Fortran

language in essentially the same way as they are by f2c.

Chapter 10: The GNU Fortran Language 89

10.9.2 DOUBLE COMPLEX Statement

DOUBLE COMPLEX is a type-statement (and type) that speci�es the type COMPLEX(KIND=2)

in GNU Fortran.

10.10 Control Statements

(The following information augments or overrides the information in Chapter 11 of ANSI

X3.9-1978 FORTRAN 77 in specifying the GNU Fortran language. Chapter 11 of that

document otherwise serves as the basis for the relevant aspects of GNU Fortran.)

10.10.1 DO WHILE

The DO WHILE statement, a feature of both the MIL-STD 1753 and Fortran 90 standards,

is provided by the GNU Fortran language.

10.10.2 END DO

The END DO statement is provided by the GNU Fortran language.

This statement is used in one of two ways:

� The Fortran 90 meaning, in which it speci�es the termination point of a single DO loop

started with a DO statement that speci�es no termination label.

� The MIL-STD 1753 meaning, in which it speci�es the termination point of one or more

DO loops, all of which start with a DO statement that specify the label de�ned for the

END DO statement.

This kind of END DO statement is merely a synonym for CONTINUE, except it is permitted

only when the statement is labeled and a target of one or more labeled DO loops.

It is expected that this use of END DO will be removed from the GNU Fortran language

in the future, though it is likely that it will long be supported by g77 as a dialect form.

10.10.3 Construct Names

The GNU Fortran language supports construct names as de�ned by the Fortran 90

standard. These names are local to the program unit and are de�ned as follows:

construct-name: block-statement

Here, construct-name is the construct name itself; its de�nition is connoted by the single

colon (`:'); and block-statement is an IF, DO, or SELECT CASE statement that begins a block.

A block that is given a construct name must also specify the same construct name in its

termination statement:

END block construct-name

Here, block must be IF, DO, or SELECT, as appropriate.

90 Using and Porting GNU Fortran

10.10.4 The CYCLE and EXIT Statements

The CYCLE and EXIT statements specify that the remaining statements in the current

iteration of a particular active (enclosing) DO loop are to be skipped.

CYCLE speci�es that these statements are skipped, but the END DO statement that marks

the end of the DO loop be executed|that is, the next iteration, if any, is to be started. If

the statement marking the end of the DO loop is not END DO|in other words, if the loop is

not a block DO|the CYCLE statement does not execute that statement, but does start the

next iteration (if any).

EXIT speci�es that the loop speci�ed by the DO construct is terminated.

The DO loop a�ected by CYCLE and EXIT is the innermost enclosing DO loop when the

following forms are used:

CYCLE

EXIT

Otherwise, the following forms specify the construct name of the pertinent DO loop:

CYCLE construct-name

EXIT construct-name

CYCLE and EXIT can be viewed as glori�ed GO TO statements. However, they cannot be

easily thought of as GO TO statements in obscure cases involving FORTRAN 77 loops. For

example:

DO 10 I = 1, 5

DO 10 J = 1, 5

IF (J .EQ. 5) EXIT

DO 10 K = 1, 5

IF (K .EQ. 3) CYCLE

10 PRINT *, 'I=', I, ' J=', J, ' K=', K

20 CONTINUE

In particular, neither the EXIT nor CYCLE statements above are equivalent to a GO TO state-

ment to either label `10' or `20'.

To understand the e�ect of CYCLE and EXIT in the above fragment, it is helpful to �rst

translate it to its equivalent using only block DO loops:

DO I = 1, 5

DO J = 1, 5

IF (J .EQ. 5) EXIT

DO K = 1, 5

IF (K .EQ. 3) CYCLE

10 PRINT *, 'I=', I, ' J=', J, ' K=', K

END DO

END DO

END DO

20 CONTINUE

Adding new labels allows translation of CYCLE and EXIT to GO TO so they may be more

easily understood by programmers accustomed to FORTRAN coding:

DO I = 1, 5

DO J = 1, 5

Chapter 10: The GNU Fortran Language 91

IF (J .EQ. 5) GOTO 18

DO K = 1, 5

IF (K .EQ. 3) GO TO 12

10 PRINT *, 'I=', I, ' J=', J, ' K=', K

12 END DO

END DO

18 END DO

20 CONTINUE

Thus, the CYCLE statement in the innermost loop skips over the PRINT statement as it begins

the next iteration of the loop, while the EXIT statement in the middle loop ends that loop

but not the outermost loop.

10.11 Functions and Subroutines

(The following information augments or overrides the information in Chapter 15 of ANSI

X3.9-1978 FORTRAN 77 in specifying the GNU Fortran language. Chapter 15 of that

document otherwise serves as the basis for the relevant aspects of GNU Fortran.)

10.11.1 The %VAL() Construct

%VAL(arg)

The %VAL() construct speci�es that an argument, arg, is to be passed by value, instead

of by reference or descriptor.

%VAL() is restricted to actual arguments in invocations of external procedures.

Use of %VAL() is recommended only for code that is accessing facilities outside of GNU

Fortran, such as operating system or windowing facilities. It is best to constrain such uses

to isolated portions of a program|portions the deal speci�cally and exclusively with low-

level, system-dependent facilities. Such portions might well provide a portable interface for

use by the program as a whole, but are themselves not portable, and should be thoroughly

tested each time they are rebuilt using a new compiler or version of a compiler.

Implementation Note: Currently, g77 passes all arguments either by reference or by

descriptor.

Thus, use of %VAL() tends to be restricted to cases where the called procedure is written

in a language other than Fortran that supports call-by-value semantics. (C is an example

of such a language.)

See Section 16.2 [Procedures (SUBROUTINE and FUNCTION)], page 240, for detailed

information on how this particular version of g77 passes arguments to procedures.

10.11.2 The %REF() Construct

%REF(arg)

The %REF() construct speci�es that an argument, arg, is to be passed by reference,

instead of by value or descriptor.

%REF() is restricted to actual arguments in invocations of external procedures.

92 Using and Porting GNU Fortran

Use of %REF() is recommended only for code that is accessing facilities outside of GNU

Fortran, such as operating system or windowing facilities. It is best to constrain such uses

to isolated portions of a program|portions the deal speci�cally and exclusively with low-

level, system-dependent facilities. Such portions might well provide a portable interface for

use by the program as a whole, but are themselves not portable, and should be thoroughly

tested each time they are rebuilt using a new compiler or version of a compiler.

Do not depend on %REF() supplying a pointer to the procedure being invoked. While that

is a likely implementation choice, other implementation choices are available that preserve

Fortran pass-by-reference semantics without passing a pointer to the argument, arg. (For

example, a copy-in/copy-out implementation.)

Implementation Note: Currently, g77 passes all arguments (other than variables and

arrays of type CHARACTER) by reference. Future versions of, or dialects supported by, g77

might not pass CHARACTER functions by reference.

Thus, use of %REF() tends to be restricted to cases where arg is type CHARACTER but the

called procedure accesses it via a means other than the method used for Fortran CHARACTER

arguments.

See Section 16.2 [Procedures (SUBROUTINE and FUNCTION)], page 240, for detailed

information on how this particular version of g77 passes arguments to procedures.

10.11.3 The %DESCR() Construct

%DESCR(arg)

The %DESCR() construct speci�es that an argument, arg, is to be passed by descriptor,

instead of by value or reference.

%DESCR() is restricted to actual arguments in invocations of external procedures.

Use of %DESCR() is recommended only for code that is accessing facilities outside of GNU

Fortran, such as operating system or windowing facilities. It is best to constrain such uses

to isolated portions of a program|portions the deal speci�cally and exclusively with low-

level, system-dependent facilities. Such portions might well provide a portable interface for

use by the program as a whole, but are themselves not portable, and should be thoroughly

tested each time they are rebuilt using a new compiler or version of a compiler.

Do not depend on %DESCR() supplying a pointer and/or a length passed by value to the

procedure being invoked. While that is a likely implementation choice, other implemen-

tation choices are available that preserve the pass-by-reference semantics without passing

a pointer to the argument, arg. (For example, a copy-in/copy-out implementation.) And,

future versions of g77 might change the way descriptors are implemented, such as passing

a single argument pointing to a record containing the pointer/length information instead of

passing that same information via two arguments as it currently does.

Implementation Note: Currently, g77 passes all variables and arrays of type CHARACTER

by descriptor. Future versions of, or dialects supported by, g77 might pass CHARACTER

functions by descriptor as well.

Thus, use of %DESCR() tends to be restricted to cases where arg is not type CHARACTER

but the called procedure accesses it via a means similar to the method used for Fortran

CHARACTER arguments.

Chapter 10: The GNU Fortran Language 93

See Section 16.2 [Procedures (SUBROUTINE and FUNCTION)], page 240, for detailed

information on how this particular version of g77 passes arguments to procedures.

10.11.4 Generics and Speci�cs

The ANSI FORTRAN 77 language de�nes generic and speci�c intrinsics. In short, the

distinctions are:

� Speci�c intrinsics have speci�c types for their arguments and a speci�c return type.

� Generic intrinsics are treated, on a case-by-case basis in the program's source code, as

one of several possible speci�c intrinsics.

Typically, a generic intrinsic has a return type that is determined by the type of one

or more of its arguments.

The GNU Fortran language generalizes these concepts somewhat, especially by providing

intrinsic subroutines and generic intrinsics that are treated as either a speci�c intrinsic

subroutine or a speci�c intrinsic function (e.g. SECOND).

However, GNU Fortran avoids generalizing this concept to the point where existing code

would be accepted as meaning something possibly di�erent than what was intended.

For example, ABS is a generic intrinsic, so all working code written using ABS of an

INTEGER argument expects an INTEGER return value. Similarly, all such code expects that

ABS of an INTEGER*2 argument returns an INTEGER*2 return value.

Yet, IABS is a speci�c intrinsic that accepts only an INTEGER(KIND=1) argument. Code

that passes something other than an INTEGER(KIND=1) argument to IABS is not valid GNU

Fortran code, because it is not clear what the author intended.

For example, if `J' is INTEGER(KIND=6), `IABS(J)' is not de�ned by the GNU Fortran

language, because the programmer might have used that construct to mean any of the

following, subtly di�erent, things:

� Convert `J' to INTEGER(KIND=1) �rst (as if `IABS(INT(J))' had been written).

� Convert the result of the intrinsic to INTEGER(KIND=1) (as if `INT(ABS(J))' had been

written).

� No conversion (as if `ABS(J)' had been written).

The distinctions matter especially when types and values wider than INTEGER(KIND=1)

(such as INTEGER(KIND=2)), or when operations performing more \arithmetic" than

absolute-value, are involved.

The following sample program is not a valid GNU Fortran program, but might be ac-

cepted by other compilers. If so, the output is likely to be revealing in terms of how a given

compiler treats intrinsics (that normally are speci�c) when they are given arguments that

do not conform to their stated requirements:

PROGRAM JCB002

C Version 1:

C Modified 1997-05-21 (Burley) to accommodate compilers that implement

C INT(I1-I2) as INT(I1)-INT(I2) given INTEGER*2 I1,I2.

C

C Version 0:

94 Using and Porting GNU Fortran

C Written by James Craig Burley 1997-02-20.

C Contact via Internet email: burley@gnu.org

C

C Purpose:

C Determine how compilers handle non-standard IDIM

C on INTEGER*2 operands, which presumably can be

C extrapolated into understanding how the compiler

C generally treats specific intrinsics that are passed

C arguments not of the correct types.

C

C If your compiler implements INTEGER*2 and INTEGER

C as the same type, change all INTEGER*2 below to

C INTEGER*1.

C

INTEGER*2 I0, I4

INTEGER I1, I2, I3

INTEGER*2 ISMALL, ILARGE

INTEGER*2 ITOOLG, ITWO

INTEGER*2 ITMP

LOGICAL L2, L3, L4

C

C Find smallest INTEGER*2 number.

C

ISMALL=0

10 I0 = ISMALL-1

IF ((I0 .GE. ISMALL) .OR. (I0+1 .NE. ISMALL)) GOTO 20

ISMALL = I0

GOTO 10

20 CONTINUE

C

C Find largest INTEGER*2 number.

C

ILARGE=0

30 I0 = ILARGE+1

IF ((I0 .LE. ILARGE) .OR. (I0-1 .NE. ILARGE)) GOTO 40

ILARGE = I0

GOTO 30

40 CONTINUE

C

C Multiplying by two adds stress to the situation.

C

ITWO = 2

C

C Need a number that, added to -2, is too wide to fit in I*2.

C

ITOOLG = ISMALL

C

C Use IDIM the straightforward way.

Chapter 10: The GNU Fortran Language 95

C

I1 = IDIM (ILARGE, ISMALL) * ITWO + ITOOLG

C

C Calculate result for first interpretation.

C

I2 = (INT (ILARGE) - INT (ISMALL)) * ITWO + ITOOLG

C

C Calculate result for second interpretation.

C

ITMP = ILARGE - ISMALL

I3 = (INT (ITMP)) * ITWO + ITOOLG

C

C Calculate result for third interpretation.

C

I4 = (ILARGE - ISMALL) * ITWO + ITOOLG

C

C Print results.

C

PRINT *, 'ILARGE=', ILARGE

PRINT *, 'ITWO=', ITWO

PRINT *, 'ITOOLG=', ITOOLG

PRINT *, 'ISMALL=', ISMALL

PRINT *, 'I1=', I1

PRINT *, 'I2=', I2

PRINT *, 'I3=', I3

PRINT *, 'I4=', I4

PRINT *

L2 = (I1 .EQ. I2)

L3 = (I1 .EQ. I3)

L4 = (I1 .EQ. I4)

IF (L2 .AND. .NOT.L3 .AND. .NOT.L4) THEN

PRINT *, 'Interp 1: IDIM(I*2,I*2) => IDIM(INT(I*2),INT(I*2))'

STOP

END IF

IF (L3 .AND. .NOT.L2 .AND. .NOT.L4) THEN

PRINT *, 'Interp 2: IDIM(I*2,I*2) => INT(DIM(I*2,I*2))'

STOP

END IF

IF (L4 .AND. .NOT.L2 .AND. .NOT.L3) THEN

PRINT *, 'Interp 3: IDIM(I*2,I*2) => DIM(I*2,I*2)'

STOP

END IF

PRINT *, 'Results need careful analysis.'

END

No future version of the GNU Fortran language will likely permit speci�c intrinsic invo-

cations with wrong-typed arguments (such as IDIM in the above example), since it has been

determined that disagreements exist among many production compilers on the interpreta-

96 Using and Porting GNU Fortran

tion of such invocations. These disagreements strongly suggest that Fortran programmers,

and certainly existing Fortran programs, disagree about the meaning of such invocations.

The �rst version of `JCB002' didn't accommodate some compilers' treatment of `INT(I1-I2)'

where `I1' and `I2' are INTEGER*2. In such a case, these compilers apparently convert

both operands to INTEGER*4 and then do an INTEGER*4 subtraction, instead of doing an

INTEGER*2 subtraction on the original values in `I1' and `I2'.

However, the results of the careful analyses done on the outputs of programs compiled

by these various compilers show that they all implement either `Interp 1' or `Interp 2'

above.

Speci�cally, it is believed that the new version of `JCB002' above will con�rm that:

� Digital Semiconductor (\DEC") Alpha OSF/1, HP-UX 10.0.1, AIX 3.2.5 f77 compilers

all implement `Interp 1'.

� IRIX 5.3 f77 compiler implements `Interp 2'.

� Solaris 2.5, SunOS 4.1.3, DECstation ULTRIX 4.3, and IRIX 6.1 f77 compilers all

implement `Interp 3'.

If you get di�erent results than the above for the stated compilers, or have results for

other compilers that might be worth adding to the above list, please let us know the details

(compiler product, version, machine, results, and so on).

10.11.5 REAL() and AIMAG() of Complex

The GNU Fortran language disallows REAL(expr) and AIMAG(expr), where expr is any

COMPLEX type other than COMPLEX(KIND=1), except when they are used in the following

way:

REAL(REAL(expr))

REAL(AIMAG(expr))

The above forms explicitly specify that the desired e�ect is to convert the real or imag-

inary part of expr, which might be some REAL type other than REAL(KIND=1), to type

REAL(KIND=1), and have that serve as the value of the expression.

The GNU Fortran language o�ers clearly named intrinsics to extract the real and imag-

inary parts of a complex entity without any conversion:

REALPART(expr)

IMAGPART(expr)

To express the above using typical extended FORTRAN 77, use the following constructs

(when expr is COMPLEX(KIND=2)):

DBLE(expr)

DIMAG(expr)

The FORTRAN 77 language o�ers no way to explicitly specify the real and imaginary

parts of a complex expression of arbitrary type, apparently as a result of requiring support

for only one COMPLEX type (COMPLEX(KIND=1)). The concepts of converting an expression

to type REAL(KIND=1) and of extracting the real part of a complex expression were thus

\smooshed" by FORTRAN 77 into a single intrinsic, since they happened to have the exact

same e�ect in that language (due to having only one COMPLEX type).

Chapter 10: The GNU Fortran Language 97

Note: When `-ff90' is in e�ect, g77 treats `REAL(expr)', where expr is of type COMPLEX,

as `REALPART(expr)', whereas with `-fugly-complex -fno-f90' in e�ect, it is treated as

`REAL(REALPART(expr))'.

See Section 11.9.3 [Ugly Complex Part Extraction], page 179, for more information.

10.11.6 CMPLX() of DOUBLE PRECISION

In accordance with Fortran 90 and at least some (perhaps all) other compilers, the GNU

Fortran language de�nes CMPLX() as always returning a result that is type COMPLEX(KIND=1).

This means `CMPLX(D1,D2)', where `D1' and `D2' are REAL(KIND=2) (DOUBLE PRECISION),

is treated as:

CMPLX(SNGL(D1), SNGL(D2))

(It was necessary for Fortran 90 to specify this behavior for DOUBLE PRECISION argu-

ments, since that is the behavior mandated by FORTRAN 77.)

The GNU Fortran language also provides the DCMPLX() intrinsic, which is provided

by some FORTRAN 77 compilers to construct a DOUBLE COMPLEX entity from of DOUBLE

PRECISION operands. However, this solution does not scale well when more COMPLEX types

(having various precisions and ranges) are o�ered by Fortran implementations.

Fortran 90 extends the CMPLX() intrinsic by adding an extra argument used to specify

the desired kind of complex result. However, this solution is somewhat awkward to use,

and g77 currently does not support it.

The GNU Fortran language provides a simple way to build a complex value out of two

numbers, with the precise type of the value determined by the types of the two numbers

(via the usual type-promotion mechanism):

COMPLEX(real, imag)

When real and imag are the same REAL types, COMPLEX() performs no conversion other

than to put them together to form a complex result of the same (complex version of real)

type.

See Section 10.11.9.44 [Complex Intrinsic], page 110, for more information.

10.11.7 MIL-STD 1753 Support

The GNU Fortran language includes the MIL-STD 1753 intrinsics BTEST, IAND, IBCLR,

IBITS, IBSET, IEOR, IOR, ISHFT, ISHFTC, MVBITS, and NOT.

10.11.8 f77/f2c Intrinsics

The bit-manipulation intrinsics supported by traditional f77 and by f2c are available

in the GNU Fortran language. These include AND, LSHIFT, OR, RSHIFT, and XOR.

Also supported are the intrinsics CDABS, CDCOS, CDEXP, CDLOG, CDSIN, CDSQRT, DCMPLX,

DCONJG, DFLOAT, DIMAG, DREAL, and IMAG, ZABS, ZCOS, ZEXP, ZLOG, ZSIN, and ZSQRT.

98 Using and Porting GNU Fortran

10.11.9 Table of Intrinsic Functions

(Corresponds to Section 15.10 of ANSI X3.9-1978 FORTRAN 77.)

The GNU Fortran language adds various functions, subroutines, types, and arguments

to the set of intrinsic functions in ANSI FORTRAN 77. The complete set of intrinsics

supported by the GNU Fortran language is described below.

Note that a name is not treated as that of an intrinsic if it is speci�ed in an EXTERNAL

statement in the same program unit; if a command-line option is used to disable the groups

to which the intrinsic belongs; or if the intrinsic is not named in an INTRINSIC statement

and a command-line option is used to hide the groups to which the intrinsic belongs.

So, it is recommended that any reference in a program unit to an intrinsic procedure

that is not a standard FORTRAN 77 intrinsic be accompanied by an appropriate INTRINSIC

statement in that program unit. This sort of defensive programming makes it more likely

that an implementation will issue a diagnostic rather than generate incorrect code for such

a reference.

The terminology used below is based on that of the Fortran 90 standard, so that the

text may be more concise and accurate:

� OPTIONAL means the argument may be omitted.

� `A-1, A-2, : : :, A-n' means more than one argument (generally named `A') may be

speci�ed.

� `scalar' means the argument must not be an array (must be a variable or array element,

or perhaps a constant if expressions are permitted).

� `DIMENSION(4)' means the argument must be an array having 4 elements.

� INTENT(IN)means the argument must be an expression (such as a constant or a variable

that is de�ned upon invocation of the intrinsic).

� INTENT(OUT) means the argument must be de�nable by the invocation of the intrinsic

(that is, must not be a constant nor an expression involving operators other than array

reference and substring reference).

� INTENT(INOUT) means the argument must be de�ned prior to, and de�nable by,

invocation of the intrinsic (a combination of the requirements of INTENT(IN) and

INTENT(OUT).

� See Section 10.7.1.3 [Kind Notation], page 84 for explanation of KIND.

10.11.9.1 Abort Intrinsic

CALL Abort()

Intrinsic groups: unix.

Description:

Prints a message and potentially causes a core dump via abort(3).

10.11.9.2 Abs Intrinsic

Abs(A)

Chapter 10: The GNU Fortran Language 99

Abs: INTEGER or REAL function. The exact type depends on that of argument A|if A

is COMPLEX, this function's type is REAL with the same `KIND=' value as the type of A.

Otherwise, this function's type is the same as that of A.

A: INTEGER, REAL, or COMPLEX; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the absolute value of A.

If A is type COMPLEX, the absolute value is computed as:

SQRT(REALPART(A)**2, IMAGPART(A)**2)

Otherwise, it is computed by negating the A if it is negative, or returning A.

See Section 10.11.9.227 [Sign Intrinsic], page 158, for how to explicitly compute the

positive or negative form of the absolute value of an expression.

10.11.9.3 Access Intrinsic

Access(Name, Mode)

Access: INTEGER(KIND=1) function.

Name: CHARACTER; scalar; INTENT(IN).

Mode: CHARACTER; scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Checks �le Name for accessibility in the mode speci�ed by Mode and returns 0 if the

�le is accessible in that mode, otherwise an error code if the �le is inaccessible or Mode

is invalid. See access(2). A null character (`CHAR(0)') marks the end of the name in

Name|otherwise, trailing blanks in Name are ignored. Mode may be a concatenation of

any of the following characters:

`r' Read permission

`w' Write permission

`x' Execute permission

`SPC' Existence

10.11.9.4 AChar Intrinsic

AChar(I)

AChar: CHARACTER*1 function.

I : INTEGER; scalar; INTENT(IN).

Intrinsic groups: f2c, f90.

Description:

Returns the ASCII character corresponding to the code speci�ed by I.

See Section 10.11.9.131 [IAChar Intrinsic], page 133, for the inverse of this function.

See Section 10.11.9.39 [Char Intrinsic], page 108, for the function corresponding to the

system's native character set.

100 Using and Porting GNU Fortran

10.11.9.5 ACos Intrinsic

ACos(X)

ACos: REAL function, the `KIND=' value of the type being that of argument X.

X : REAL; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the arc-cosine (inverse cosine) of X in radians.

See Section 10.11.9.46 [Cos Intrinsic], page 110, for the inverse of this function.

10.11.9.6 AdjustL Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL AdjustL' to use this name for an external procedure.

10.11.9.7 AdjustR Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL AdjustR' to use this name for an external procedure.

10.11.9.8 AImag Intrinsic

AImag(Z)

AImag: REAL function. This intrinsic is valid when argument Z is COMPLEX(KIND=1). When

Z is any other COMPLEX type, this intrinsic is valid only when used as the argument to

REAL(), as explained below.

Z : COMPLEX; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the (possibly converted) imaginary part of Z.

Use of AIMAG() with an argument of a type other than COMPLEX(KIND=1) is restricted

to the following case:

REAL(AIMAG(Z))

This expression converts the imaginary part of Z to REAL(KIND=1).

See Section 10.11.5 [REAL() and AIMAG() of Complex], page 96, for more information.

10.11.9.9 AInt Intrinsic

AInt(A)

AInt: REAL function, the `KIND=' value of the type being that of argument A.

A: REAL; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Chapter 10: The GNU Fortran Language 101

Returns A with the fractional portion of its magnitude truncated and its sign preserved.

(Also called \truncation towards zero".)

See Section 10.11.9.21 [ANInt Intrinsic], page 103, for how to round to nearest whole

number.

See Section 10.11.9.148 [Int Intrinsic], page 138, for how to truncate and then convert

number to INTEGER.

10.11.9.10 Alarm Intrinsic

CALL Alarm(Seconds, Handler, Status)

Seconds: INTEGER; scalar; INTENT(IN).

Handler: Signal handler (INTEGER FUNCTION or SUBROUTINE) or dummy/global INTEGER(KIND=1)

scalar.

Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Causes external subroutine Handler to be executed after a delay of Seconds seconds

by using alarm(1) to set up a signal and signal(2) to catch it. If Status is supplied, it

will be returned with the the number of seconds remaining until any previously scheduled

alarm was due to be delivered, or zero if there was no previously scheduled alarm. See

Section 10.11.9.228 [Signal Intrinsic (subroutine)], page 158.

10.11.9.11 All Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL All' to use this name for an external procedure.

10.11.9.12 Allocated Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Allocated' to use this name for an external procedure.

10.11.9.13 ALog Intrinsic

ALog(X)

ALog: REAL(KIND=1) function.

X : REAL(KIND=1); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of LOG() that is speci�c to one type for X. See Section 10.11.9.170 [Log

Intrinsic], page 145.

102 Using and Porting GNU Fortran

10.11.9.14 ALog10 Intrinsic

ALog10(X)

ALog10: REAL(KIND=1) function.

X : REAL(KIND=1); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of LOG10() that is speci�c to one type for X. See Section 10.11.9.171 [Log10

Intrinsic], page 145.

10.11.9.15 AMax0 Intrinsic

AMax0(A-1, A-2, : : :, A-n)

AMax0: REAL(KIND=1) function.

A: INTEGER(KIND=1); at least two such arguments must be provided; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of MAX() that is speci�c to one type for A and a di�erent return type. See

Section 10.11.9.179 [Max Intrinsic], page 149.

10.11.9.16 AMax1 Intrinsic

AMax1(A-1, A-2, : : :, A-n)

AMax1: REAL(KIND=1) function.

A: REAL(KIND=1); at least two such arguments must be provided; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of MAX() that is speci�c to one type for A. See Section 10.11.9.179 [Max

Intrinsic], page 149.

10.11.9.17 AMin0 Intrinsic

AMin0(A-1, A-2, : : :, A-n)

AMin0: REAL(KIND=1) function.

A: INTEGER(KIND=1); at least two such arguments must be provided; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of MIN() that is speci�c to one type for A and a di�erent return type. See

Section 10.11.9.188 [Min Intrinsic], page 150.

Chapter 10: The GNU Fortran Language 103

10.11.9.18 AMin1 Intrinsic

AMin1(A-1, A-2, : : :, A-n)

AMin1: REAL(KIND=1) function.

A: REAL(KIND=1); at least two such arguments must be provided; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of MIN() that is speci�c to one type for A. See Section 10.11.9.188 [Min

Intrinsic], page 150.

10.11.9.19 AMod Intrinsic

AMod(A, P)

AMod: REAL(KIND=1) function.

A: REAL(KIND=1); scalar; INTENT(IN).

P: REAL(KIND=1); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of MOD() that is speci�c to one type for A. See Section 10.11.9.194 [Mod

Intrinsic], page 151.

10.11.9.20 And Intrinsic

And(I, J)

And: INTEGER or LOGICAL function, the exact type being the result of cross-promoting the

types of all the arguments.

I : INTEGER or LOGICAL; scalar; INTENT(IN).

J : INTEGER or LOGICAL; scalar; INTENT(IN).

Intrinsic groups: f2c.

Description:

Returns value resulting from boolean AND of pair of bits in each of I and J.

10.11.9.21 ANInt Intrinsic

ANInt(A)

ANInt: REAL function, the `KIND=' value of the type being that of argument A.

A: REAL; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns A with the fractional portion of its magnitude eliminated by rounding to the

nearest whole number and with its sign preserved.

A fractional portion exactly equal to `.5' is rounded to the whole number that is larger

in magnitude. (Also called \Fortran round".)

104 Using and Porting GNU Fortran

See Section 10.11.9.9 [AInt Intrinsic], page 100, for how to truncate to whole number.

See Section 10.11.9.198 [NInt Intrinsic], page 152, for how to round and then convert

number to INTEGER.

10.11.9.22 Any Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Any' to use this name for an external procedure.

10.11.9.23 ASin Intrinsic

ASin(X)

ASin: REAL function, the `KIND=' value of the type being that of argument X.

X : REAL; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the arc-sine (inverse sine) of X in radians.

See Section 10.11.9.229 [Sin Intrinsic], page 159, for the inverse of this function.

10.11.9.24 Associated Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Associated' to use this name for an external procedure.

10.11.9.25 ATan Intrinsic

ATan(X)

ATan: REAL function, the `KIND=' value of the type being that of argument X.

X : REAL; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the arc-tangent (inverse tangent) of X in radians.

See Section 10.11.9.243 [Tan Intrinsic], page 164, for the inverse of this function.

10.11.9.26 ATan2 Intrinsic

ATan2(Y, X)

ATan2: REAL function, the exact type being the result of cross-promoting the types of all

the arguments.

Y : REAL; scalar; INTENT(IN).

X : REAL; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the arc-tangent (inverse tangent) of the complex number (Y, X) in radians.

See Section 10.11.9.243 [Tan Intrinsic], page 164, for the inverse of this function.

Chapter 10: The GNU Fortran Language 105

10.11.9.27 BesJ0 Intrinsic

BesJ0(X)

BesJ0: REAL function, the `KIND=' value of the type being that of argument X.

X : REAL; scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Calculates the Bessel function of the �rst kind of order 0 of X. See bessel(3m), on whose

implementation the function depends.

10.11.9.28 BesJ1 Intrinsic

BesJ1(X)

BesJ1: REAL function, the `KIND=' value of the type being that of argument X.

X : REAL; scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Calculates the Bessel function of the �rst kind of order 1 of X. See bessel(3m), on whose

implementation the function depends.

10.11.9.29 BesJN Intrinsic

BesJN(N, X)

BesJN: REAL function, the `KIND=' value of the type being that of argument X.

N : INTEGER; scalar; INTENT(IN).

X : REAL; scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Calculates the Bessel function of the �rst kind of order N of X. See bessel(3m), on

whose implementation the function depends.

10.11.9.30 BesY0 Intrinsic

BesY0(X)

BesY0: REAL function, the `KIND=' value of the type being that of argument X.

X : REAL; scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Calculates the Bessel function of the second kind of order 0 of X. See bessel(3m), on

whose implementation the function depends.

106 Using and Porting GNU Fortran

10.11.9.31 BesY1 Intrinsic

BesY1(X)

BesY1: REAL function, the `KIND=' value of the type being that of argument X.

X : REAL; scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Calculates the Bessel function of the second kind of order 1 of X. See bessel(3m), on

whose implementation the function depends.

10.11.9.32 BesYN Intrinsic

BesYN(N, X)

BesYN: REAL function, the `KIND=' value of the type being that of argument X.

N : INTEGER; scalar; INTENT(IN).

X : REAL; scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Calculates the Bessel function of the second kind of order N of X. See bessel(3m), on

whose implementation the function depends.

10.11.9.33 Bit Size Intrinsic

Bit_Size(I)

Bit Size: INTEGER function, the `KIND=' value of the type being that of argument I.

I : INTEGER; scalar.

Intrinsic groups: f90.

Description:

Returns the number of bits (integer precision plus sign bit) represented by the type for

I.

See Section 10.11.9.34 [BTest Intrinsic], page 106, for how to test the value of a bit in a

variable or array.

See Section 10.11.9.136 [IBSet Intrinsic], page 134, for how to set a bit in a variable to

1.

See Section 10.11.9.134 [IBClr Intrinsic], page 134, for how to set a bit in a variable to

0.

10.11.9.34 BTest Intrinsic

BTest(I, Pos)

BTest: LOGICAL(KIND=1) function.

I : INTEGER; scalar; INTENT(IN).

Chapter 10: The GNU Fortran Language 107

Pos: INTEGER; scalar; INTENT(IN).

Intrinsic groups: mil, f90, vxt.

Description:

Returns .TRUE. if bit Pos in I is 1, .FALSE. otherwise.

(Bit 0 is the low-order (rightmost) bit, adding the value 2

0

, or 1, to the number if set to

1; bit 1 is the next-higher-order bit, adding 2

1

, or 2; bit 2 adds 2

2

, or 4; and so on.)

See Section 10.11.9.33 [Bit Size Intrinsic], page 106, for how to obtain the number of

bits in a type. The leftmost bit of I is `BIT_SIZE(I-1)'.

10.11.9.35 CAbs Intrinsic

CAbs(A)

CAbs: REAL(KIND=1) function.

A: COMPLEX(KIND=1); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of ABS() that is speci�c to one type for A. See Section 10.11.9.2 [Abs

Intrinsic], page 98.

10.11.9.36 CCos Intrinsic

CCos(X)

CCos: COMPLEX(KIND=1) function.

X : COMPLEX(KIND=1); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of COS() that is speci�c to one type for X. See Section 10.11.9.46 [Cos

Intrinsic], page 110.

10.11.9.37 Ceiling Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Ceiling' to use this name for an external procedure.

10.11.9.38 CExp Intrinsic

CExp(X)

CExp: COMPLEX(KIND=1) function.

X : COMPLEX(KIND=1); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of EXP() that is speci�c to one type for X. See Section 10.11.9.99 [Exp

Intrinsic], page 123.

108 Using and Porting GNU Fortran

10.11.9.39 Char Intrinsic

Char(I)

Char: CHARACTER*1 function.

I : INTEGER; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the character corresponding to the code speci�ed by I, using the system's native

character set.

Because the system's native character set is used, the correspondence between character

and their codes is not necessarily the same between GNU Fortran implementations.

Note that no intrinsic exists to convert a numerical value to a printable character string.

For example, there is no intrinsic that, given an INTEGER or REAL argument with the value

`154', returns the CHARACTER result `'154''.

Instead, you can use internal-�le I/O to do this kind of conversion. For example:

INTEGER VALUE

CHARACTER*10 STRING

VALUE = 154

WRITE (STRING, '(I10)'), VALUE

PRINT *, STRING

END

The above program, when run, prints:

154

See Section 10.11.9.137 [IChar Intrinsic], page 134, for the inverse of the CHAR function.

See Section 10.11.9.4 [AChar Intrinsic], page 99, for the function corresponding to the

ASCII character set.

10.11.9.40 ChDir Intrinsic (subroutine)

CALL ChDir(Dir, Status)

Dir: CHARACTER; scalar; INTENT(IN).

Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Sets the current working directory to be Dir. If the Status argument is supplied, it

contains 0 on success or a non-zero error code otherwise upon return. See chdir(3).

Caution: Using this routine during I/O to a unit connected with a non-absolute �le

name can cause subsequent I/O on such a unit to fail because the I/O library may reopen

�les by name.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not

as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 12.4.2.17 [ChDir

Intrinsic (function)], page 189.

Chapter 10: The GNU Fortran Language 109

10.11.9.41 ChMod Intrinsic (subroutine)

CALL ChMod(Name, Mode, Status)

Name: CHARACTER; scalar; INTENT(IN).

Mode: CHARACTER; scalar; INTENT(IN).

Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Changes the access mode of �le Name according to the speci�cation Mode, which is

given in the format of chmod(1). A null character (`CHAR(0)') marks the end of the name in

Name|otherwise, trailing blanks in Name are ignored. Currently, Name must not contain

the single quote character.

If the Status argument is supplied, it contains 0 on success or a non-zero error code upon

return.

Note that this currently works by actually invoking /bin/chmod (or the chmod found

when the library was con�gured) and so may fail in some circumstances and will, anyway,

be slow.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not

as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 12.4.2.18 [ChMod

Intrinsic (function)], page 189.

10.11.9.42 CLog Intrinsic

CLog(X)

CLog: COMPLEX(KIND=1) function.

X : COMPLEX(KIND=1); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of LOG() that is speci�c to one type for X. See Section 10.11.9.170 [Log

Intrinsic], page 145.

10.11.9.43 Cmplx Intrinsic

Cmplx(X, Y)

Cmplx: COMPLEX(KIND=1) function.

X : INTEGER, REAL, or COMPLEX; scalar; INTENT(IN).

Y : INTEGER or REAL; OPTIONAL (must be omitted if X is COMPLEX); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

If X is not type COMPLEX, constructs a value of type COMPLEX(KIND=1) from the real and

imaginary values speci�ed by X and Y, respectively. If Y is omitted, `0.' is assumed.

110 Using and Porting GNU Fortran

If X is type COMPLEX, converts it to type COMPLEX(KIND=1).

See Section 10.11.9.44 [Complex Intrinsic], page 110, for information on easily construct-

ing a COMPLEX value of arbitrary precision from REAL arguments.

10.11.9.44 Complex Intrinsic

Complex(Real, Imag)

Complex: COMPLEX function, the exact type being the result of cross-promoting the types

of all the arguments.

Real: INTEGER or REAL; scalar; INTENT(IN).

Imag : INTEGER or REAL; scalar; INTENT(IN).

Intrinsic groups: gnu.

Description:

Returns a COMPLEX value that has `Real' and `Imag' as its real and imaginary parts,

respectively.

If Real and Imag are the same type, and that type is not INTEGER, no data conversion

is performed, and the type of the resulting value has the same kind value as the types of

Real and Imag.

If Real and Imag are not the same type, the usual type-promotion rules are applied to

both, converting either or both to the appropriate REAL type. The type of the resulting

value has the same kind value as the type to which both Real and Imag were converted, in

this case.

If Real and Imag are both INTEGER, they are both converted to REAL(KIND=1), and the

result of the COMPLEX() invocation is type COMPLEX(KIND=1).

Note: The way to do this in standard Fortran 90 is too hairy to describe here, but it is

important to note that `CMPLX(D1,D2)' returns a COMPLEX(KIND=1) result even if `D1' and

`D2' are type REAL(KIND=2). Hence the availability of COMPLEX() in GNU Fortran.

10.11.9.45 Conjg Intrinsic

Conjg(Z)

Conjg: COMPLEX function, the `KIND=' value of the type being that of argument Z.

Z : COMPLEX; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the complex conjugate:

COMPLEX(REALPART(Z), -IMAGPART(Z))

10.11.9.46 Cos Intrinsic

Cos(X)

Cos: REAL or COMPLEX function, the exact type being that of argument X.

X : REAL or COMPLEX; scalar; INTENT(IN).

Chapter 10: The GNU Fortran Language 111

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the cosine of X, an angle measured in radians.

See Section 10.11.9.5 [ACos Intrinsic], page 100, for the inverse of this function.

10.11.9.47 CosH Intrinsic

CosH(X)

CosH: REAL function, the `KIND=' value of the type being that of argument X.

X : REAL; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the hyperbolic cosine of X.

10.11.9.48 Count Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Count' to use this name for an external procedure.

10.11.9.49 CPU Time Intrinsic

CALL CPU_Time(Seconds)

Seconds: REAL; scalar; INTENT(OUT).

Intrinsic groups: f90.

Description:

Returns in Seconds the current value of the system time. This implementation of the

Fortran 95 intrinsic is just an alias for second See Section 10.11.9.221 [Second Intrinsic

(subroutine)], page 157.

10.11.9.50 CShift Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL CShift' to use this name for an external procedure.

10.11.9.51 CSin Intrinsic

CSin(X)

CSin: COMPLEX(KIND=1) function.

X : COMPLEX(KIND=1); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of SIN() that is speci�c to one type for X. See Section 10.11.9.229 [Sin

Intrinsic], page 159.

112 Using and Porting GNU Fortran

10.11.9.52 CSqRt Intrinsic

CSqRt(X)

CSqRt: COMPLEX(KIND=1) function.

X : COMPLEX(KIND=1); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of SQRT() that is speci�c to one type for X. See Section 10.11.9.235 [SqRt

Intrinsic], page 160.

10.11.9.53 CTime Intrinsic (subroutine)

CALL CTime(Result, STime)

Result: CHARACTER; scalar; INTENT(OUT).

STime: INTEGER; scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Converts STime, a system time value, such as returned by TIME8(), to a string of the

form `Sat Aug 19 18:13:14 1995', and returns that string in Result.

See Section 10.11.9.246 [Time8 Intrinsic], page 164.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not

as a subroutine.

For information on other intrinsics with the same name: See Section 10.11.9.54 [CTime

Intrinsic (function)], page 112.

10.11.9.54 CTime Intrinsic (function)

CTime(STime)

CTime: CHARACTER*(*) function.

STime: INTEGER; scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Converts STime, a system time value, such as returned by TIME8(), to a string of the

form `Sat Aug 19 18:13:14 1995', and returns that string as the function value.

See Section 10.11.9.246 [Time8 Intrinsic], page 164.

For information on other intrinsics with the same name: See Section 10.11.9.53 [CTime

Intrinsic (subroutine)], page 112.

Chapter 10: The GNU Fortran Language 113

10.11.9.55 DAbs Intrinsic

DAbs(A)

DAbs: REAL(KIND=2) function.

A: REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of ABS() that is speci�c to one type for A. See Section 10.11.9.2 [Abs

Intrinsic], page 98.

10.11.9.56 DACos Intrinsic

DACos(X)

DACos: REAL(KIND=2) function.

X : REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of ACOS() that is speci�c to one type for X. See Section 10.11.9.5 [ACos

Intrinsic], page 100.

10.11.9.57 DASin Intrinsic

DASin(X)

DASin: REAL(KIND=2) function.

X : REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of ASIN() that is speci�c to one type for X. See Section 10.11.9.23 [ASin

Intrinsic], page 104.

10.11.9.58 DATan Intrinsic

DATan(X)

DATan: REAL(KIND=2) function.

X : REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of ATAN() that is speci�c to one type for X. See Section 10.11.9.25 [ATan

Intrinsic], page 104.

114 Using and Porting GNU Fortran

10.11.9.59 DATan2 Intrinsic

DATan2(Y, X)

DATan2: REAL(KIND=2) function.

Y : REAL(KIND=2); scalar; INTENT(IN).

X : REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of ATAN2() that is speci�c to one type for Y and X. See Section 10.11.9.26

[ATan2 Intrinsic], page 104.

10.11.9.60 Date and Time Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Date_and_Time' to use this name for an external procedure.

10.11.9.61 DbesJ0 Intrinsic

DbesJ0(X)

DbesJ0: REAL(KIND=2) function.

X : REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Archaic form of BESJ0() that is speci�c to one type for X. See Section 10.11.9.27 [BesJ0

Intrinsic], page 105.

10.11.9.62 DbesJ1 Intrinsic

DbesJ1(X)

DbesJ1: REAL(KIND=2) function.

X : REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Archaic form of BESJ1() that is speci�c to one type for X. See Section 10.11.9.28 [BesJ1

Intrinsic], page 105.

10.11.9.63 DbesJN Intrinsic

DbesJN(N, X)

DbesJN: REAL(KIND=2) function.

N : INTEGER; scalar; INTENT(IN).

X : REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: unix.

Chapter 10: The GNU Fortran Language 115

Description:

Archaic form of BESJN() that is speci�c to one type for X. See Section 10.11.9.29 [BesJN

Intrinsic], page 105.

10.11.9.64 DbesY0 Intrinsic

DbesY0(X)

DbesY0: REAL(KIND=2) function.

X : REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Archaic form of BESY0() that is speci�c to one type for X. See Section 10.11.9.30 [BesY0

Intrinsic], page 105.

10.11.9.65 DbesY1 Intrinsic

DbesY1(X)

DbesY1: REAL(KIND=2) function.

X : REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Archaic form of BESY1() that is speci�c to one type for X. See Section 10.11.9.31 [BesY1

Intrinsic], page 106.

10.11.9.66 DbesYN Intrinsic

DbesYN(N, X)

DbesYN: REAL(KIND=2) function.

N : INTEGER; scalar; INTENT(IN).

X : REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Archaic form of BESYN() that is speci�c to one type for X. See Section 10.11.9.32 [BesYN

Intrinsic], page 106.

10.11.9.67 Dble Intrinsic

Dble(A)

Dble: REAL(KIND=2) function.

A: INTEGER, REAL, or COMPLEX; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

116 Using and Porting GNU Fortran

Returns A converted to double precision (REAL(KIND=2)). If A is COMPLEX, the real part

of A is used for the conversion and the imaginary part disregarded.

See Section 10.11.9.232 [Sngl Intrinsic], page 160, for the function that converts to single

precision.

See Section 10.11.9.148 [Int Intrinsic], page 138, for the function that converts to

INTEGER.

See Section 10.11.9.44 [Complex Intrinsic], page 110, for the function that converts to

COMPLEX.

10.11.9.68 DCos Intrinsic

DCos(X)

DCos: REAL(KIND=2) function.

X : REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of COS() that is speci�c to one type for X. See Section 10.11.9.46 [Cos

Intrinsic], page 110.

10.11.9.69 DCosH Intrinsic

DCosH(X)

DCosH: REAL(KIND=2) function.

X : REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of COSH() that is speci�c to one type for X. See Section 10.11.9.47 [CosH

Intrinsic], page 111.

10.11.9.70 DDiM Intrinsic

DDiM(X, Y)

DDiM: REAL(KIND=2) function.

X : REAL(KIND=2); scalar; INTENT(IN).

Y : REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of DIM() that is speci�c to one type for X and Y. See Section 10.11.9.75

[DiM Intrinsic], page 117.

Chapter 10: The GNU Fortran Language 117

10.11.9.71 DErF Intrinsic

DErF(X)

DErF: REAL(KIND=2) function.

X : REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Archaic form of ERF() that is speci�c to one type for X. See Section 10.11.9.94 [ErF

Intrinsic], page 122.

10.11.9.72 DErFC Intrinsic

DErFC(X)

DErFC: REAL(KIND=2) function.

X : REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Archaic form of ERFC() that is speci�c to one type for X. See Section 10.11.9.95 [ErFC

Intrinsic], page 122.

10.11.9.73 DExp Intrinsic

DExp(X)

DExp: REAL(KIND=2) function.

X : REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of EXP() that is speci�c to one type for X. See Section 10.11.9.99 [Exp

Intrinsic], page 123.

10.11.9.74 Digits Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Digits' to use this name for an external procedure.

10.11.9.75 DiM Intrinsic

DiM(X, Y)

DiM: INTEGER or REAL function, the exact type being the result of cross-promoting the

types of all the arguments.

X : INTEGER or REAL; scalar; INTENT(IN).

Y : INTEGER or REAL; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns `X-Y ' if X is greater than Y ; otherwise returns zero.

118 Using and Porting GNU Fortran

10.11.9.76 DInt Intrinsic

DInt(A)

DInt: REAL(KIND=2) function.

A: REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of AINT() that is speci�c to one type for A. See Section 10.11.9.9 [AInt

Intrinsic], page 100.

10.11.9.77 DLog Intrinsic

DLog(X)

DLog: REAL(KIND=2) function.

X : REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of LOG() that is speci�c to one type for X. See Section 10.11.9.170 [Log

Intrinsic], page 145.

10.11.9.78 DLog10 Intrinsic

DLog10(X)

DLog10: REAL(KIND=2) function.

X : REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of LOG10() that is speci�c to one type for X. See Section 10.11.9.171 [Log10

Intrinsic], page 145.

10.11.9.79 DMax1 Intrinsic

DMax1(A-1, A-2, : : :, A-n)

DMax1: REAL(KIND=2) function.

A: REAL(KIND=2); at least two such arguments must be provided; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of MAX() that is speci�c to one type for A. See Section 10.11.9.179 [Max

Intrinsic], page 149.

Chapter 10: The GNU Fortran Language 119

10.11.9.80 DMin1 Intrinsic

DMin1(A-1, A-2, : : :, A-n)

DMin1: REAL(KIND=2) function.

A: REAL(KIND=2); at least two such arguments must be provided; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of MIN() that is speci�c to one type for A. See Section 10.11.9.188 [Min

Intrinsic], page 150.

10.11.9.81 DMod Intrinsic

DMod(A, P)

DMod: REAL(KIND=2) function.

A: REAL(KIND=2); scalar; INTENT(IN).

P: REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of MOD() that is speci�c to one type for A. See Section 10.11.9.194 [Mod

Intrinsic], page 151.

10.11.9.82 DNInt Intrinsic

DNInt(A)

DNInt: REAL(KIND=2) function.

A: REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of ANINT() that is speci�c to one type for A. See Section 10.11.9.21 [ANInt

Intrinsic], page 103.

10.11.9.83 Dot Product Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Dot_Product' to use this name for an external procedure.

10.11.9.84 DProd Intrinsic

DProd(X, Y)

DProd: REAL(KIND=2) function.

X : REAL(KIND=1); scalar; INTENT(IN).

Y : REAL(KIND=1); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns `DBLE(X)*DBLE(Y)'.

120 Using and Porting GNU Fortran

10.11.9.85 DSign Intrinsic

DSign(A, B)

DSign: REAL(KIND=2) function.

A: REAL(KIND=2); scalar; INTENT(IN).

B: REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of SIGN() that is speci�c to one type for A and B. See Section 10.11.9.227

[Sign Intrinsic], page 158.

10.11.9.86 DSin Intrinsic

DSin(X)

DSin: REAL(KIND=2) function.

X : REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of SIN() that is speci�c to one type for X. See Section 10.11.9.229 [Sin

Intrinsic], page 159.

10.11.9.87 DSinH Intrinsic

DSinH(X)

DSinH: REAL(KIND=2) function.

X : REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of SINH() that is speci�c to one type for X. See Section 10.11.9.230 [SinH

Intrinsic], page 159.

10.11.9.88 DSqRt Intrinsic

DSqRt(X)

DSqRt: REAL(KIND=2) function.

X : REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of SQRT() that is speci�c to one type for X. See Section 10.11.9.235 [SqRt

Intrinsic], page 160.

Chapter 10: The GNU Fortran Language 121

10.11.9.89 DTan Intrinsic

DTan(X)

DTan: REAL(KIND=2) function.

X : REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of TAN() that is speci�c to one type for X. See Section 10.11.9.243 [Tan

Intrinsic], page 164.

10.11.9.90 DTanH Intrinsic

DTanH(X)

DTanH: REAL(KIND=2) function.

X : REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of TANH() that is speci�c to one type for X. See Section 10.11.9.244 [TanH

Intrinsic], page 164.

10.11.9.91 Dtime Intrinsic (subroutine)

CALL Dtime(Result, TArray)

Result: REAL(KIND=1); scalar; INTENT(OUT).

TArray : REAL(KIND=1); DIMENSION(2); INTENT(OUT).

Intrinsic groups: unix.

Description:

Initially, return the number of seconds of runtime since the start of the process's execu-

tion in Result, and the user and system components of this in `TArray(1)' and `TArray(2)'

respectively. The value of Result is equal to `TArray(1) + TArray(2)'.

Subsequent invocations of `DTIME()' set values based on accumulations since the previous

invocation.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not

as a subroutine.

For information on other intrinsics with the same name: See Section 12.4.2.36 [Dtime

Intrinsic (function)], page 193.

10.11.9.92 EOShift Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL EOShift' to use this name for an external procedure.

122 Using and Porting GNU Fortran

10.11.9.93 Epsilon Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Epsilon' to use this name for an external procedure.

10.11.9.94 ErF Intrinsic

ErF(X)

ErF: REAL function, the `KIND=' value of the type being that of argument X.

X : REAL; scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Returns the error function of X. See erf(3m), which provides the implementation.

10.11.9.95 ErFC Intrinsic

ErFC(X)

ErFC: REAL function, the `KIND=' value of the type being that of argument X.

X : REAL; scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Returns the complementary error function of X : `ERFC(R) = 1 - ERF(R)' (except that

the result may be more accurate than explicitly evaluating that formulae would give). See

erfc(3m), which provides the implementation.

10.11.9.96 ETime Intrinsic (subroutine)

CALL ETime(Result, TArray)

Result: REAL(KIND=1); scalar; INTENT(OUT).

TArray : REAL(KIND=1); DIMENSION(2); INTENT(OUT).

Intrinsic groups: unix.

Description:

Return the number of seconds of runtime since the start of the process's execution

in Result, and the user and system components of this in `TArray(1)' and `TArray(2)'

respectively. The value of Result is equal to `TArray(1) + TArray(2)'.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not

as a subroutine.

For information on other intrinsics with the same name: See Section 10.11.9.97 [ETime

Intrinsic (function)], page 123.

Chapter 10: The GNU Fortran Language 123

10.11.9.97 ETime Intrinsic (function)

ETime(TArray)

ETime: REAL(KIND=1) function.

TArray : REAL(KIND=1); DIMENSION(2); INTENT(OUT).

Intrinsic groups: unix.

Description:

Return the number of seconds of runtime since the start of the process's execution as the

function value, and the user and system components of this in `TArray(1)' and `TArray(2)'

respectively. The functions' value is equal to `TArray(1) + TArray(2)'.

For information on other intrinsics with the same name: See Section 10.11.9.96 [ETime

Intrinsic (subroutine)], page 122.

10.11.9.98 Exit Intrinsic

CALL Exit(Status)

Status: INTEGER; OPTIONAL; scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Exit the program with status Status after closing open Fortran I/O units and otherwise

behaving as exit(2). If Status is omitted the canonical `success' value will be returned to

the system.

10.11.9.99 Exp Intrinsic

Exp(X)

Exp: REAL or COMPLEX function, the exact type being that of argument X.

X : REAL or COMPLEX; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns `e**X ', where e is approximately 2.7182818.

See Section 10.11.9.170 [Log Intrinsic], page 145, for the inverse of this function.

10.11.9.100 Exponent Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Exponent' to use this name for an external procedure.

10.11.9.101 Fdate Intrinsic (subroutine)

CALL Fdate(Date)

Date: CHARACTER; scalar; INTENT(OUT).

Intrinsic groups: unix.

124 Using and Porting GNU Fortran

Description:

Returns the current date (using the same format as CTIME()) in Date.

Equivalent to:

CALL CTIME(Date, TIME8())

See Section 10.11.9.53 [CTime Intrinsic (subroutine)], page 112.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not

as a subroutine.

For information on other intrinsics with the same name: See Section 10.11.9.102 [Fdate

Intrinsic (function)], page 124.

10.11.9.102 Fdate Intrinsic (function)

Fdate()

Fdate: CHARACTER*(*) function.

Intrinsic groups: unix.

Description:

Returns the current date (using the same format as CTIME()).

Equivalent to:

CTIME(TIME8())

See Section 10.11.9.54 [CTime Intrinsic (function)], page 112.

For information on other intrinsics with the same name: See Section 10.11.9.101 [Fdate

Intrinsic (subroutine)], page 123.

10.11.9.103 FGet Intrinsic (subroutine)

CALL FGet(C, Status)

C : CHARACTER; scalar; INTENT(OUT).

Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Reads a single character into C in stream mode from unit 5 (by-passing normal formatted

output) using getc(3). Returns in Status 0 on success, �1 on end-of-�le, and the error

code from ferror(3) otherwise.

Stream I/O should not be mixed with normal record-oriented (formatted or unformatted)

I/O on the same unit; the results are unpredictable.

For information on other intrinsics with the same name: See Section 12.4.2.37 [FGet

Intrinsic (function)], page 194.

Chapter 10: The GNU Fortran Language 125

10.11.9.104 FGetC Intrinsic (subroutine)

CALL FGetC(Unit, C, Status)

Unit: INTEGER; scalar; INTENT(IN).

C : CHARACTER; scalar; INTENT(OUT).

Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Reads a single character into C in stream mode from unit Unit (by-passing normal

formatted output) using getc(3). Returns in Status 0 on success, �1 on end-of-�le, and

the error code from ferror(3) otherwise.

Stream I/O should not be mixed with normal record-oriented (formatted or unformatted)

I/O on the same unit; the results are unpredictable.

For information on other intrinsics with the same name: See Section 12.4.2.38 [FGetC

Intrinsic (function)], page 194.

10.11.9.105 Float Intrinsic

Float(A)

Float: REAL(KIND=1) function.

A: INTEGER; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of REAL() that is speci�c to one type for A. See Section 10.11.9.211 [Real

Intrinsic], page 154.

10.11.9.106 Floor Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Floor' to use this name for an external procedure.

10.11.9.107 Flush Intrinsic

CALL Flush(Unit)

Unit: INTEGER; OPTIONAL; scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Flushes Fortran unit(s) currently open for output. Without the optional argument, all

such units are ushed, otherwise just the unit speci�ed by Unit.

Some non-GNU implementations of Fortran provide this intrinsic as a library procedure

that might or might not support the (optional) Unit argument.

126 Using and Porting GNU Fortran

10.11.9.108 FNum Intrinsic

FNum(Unit)

FNum: INTEGER(KIND=1) function.

Unit: INTEGER; scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Returns the Unix �le descriptor number corresponding to the open Fortran I/O unit

Unit. This could be passed to an interface to C I/O routines.

10.11.9.109 FPut Intrinsic (subroutine)

CALL FPut(C, Status)

C : CHARACTER; scalar; INTENT(IN).

Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Writes the single character C in stream mode to unit 6 (by-passing normal formatted

output) using putc(3). Returns in Status 0 on success, the error code from ferror(3)

otherwise.

Stream I/O should not be mixed with normal record-oriented (formatted or unformatted)

I/O on the same unit; the results are unpredictable.

For information on other intrinsics with the same name: See Section 12.4.2.41 [FPut

Intrinsic (function)], page 195.

10.11.9.110 FPutC Intrinsic (subroutine)

CALL FPutC(Unit, C, Status)

Unit: INTEGER; scalar; INTENT(IN).

C : CHARACTER; scalar; INTENT(IN).

Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Writes the single character Unit in stream mode to unit 6 (by-passing normal formatted

output) using putc(3). Returns in C 0 on success, the error code from ferror(3) otherwise.

Stream I/O should not be mixed with normal record-oriented (formatted or unformatted)

I/O on the same unit; the results are unpredictable.

For information on other intrinsics with the same name: See Section 12.4.2.42 [FPutC

Intrinsic (function)], page 195.

10.11.9.111 Fraction Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Fraction' to use this name for an external procedure.

Chapter 10: The GNU Fortran Language 127

10.11.9.112 FSeek Intrinsic

CALL FSeek(Unit, O�set, Whence, ErrLab)

Unit: INTEGER; scalar; INTENT(IN).

O�set: INTEGER; scalar; INTENT(IN).

Whence: INTEGER; scalar; INTENT(IN).

ErrLab: `*label', where label is the label of an executable statement; OPTIONAL.

Intrinsic groups: unix.

Description:

Attempts to move Fortran unit Unit to the speci�ed O�set: absolute o�set if O�set=0;

relative to the current o�set if O�set=1; relative to the end of the �le if O�set=2. It

branches to label Whence if Unit is not open or if the call otherwise fails.

10.11.9.113 FStat Intrinsic (subroutine)

CALL FStat(Unit, SArray, Status)

Unit: INTEGER; scalar; INTENT(IN).

SArray : INTEGER(KIND=1); DIMENSION(13); INTENT(OUT).

Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Obtains data about the �le open on Fortran I/O unit Unit and places them in the array

SArray. The values in this array are extracted from the stat structure as returned by

fstat(2) q.v., as follows:

1. File mode

2. Inode number

3. ID of device containing directory entry for �le

4. Device id (if relevant)

5. Number of links

6. Owner's uid

7. Owner's gid

8. File size (bytes)

9. Last access time

10. Last modi�cation time

11. Last �le status change time

12. Preferred I/O block size

13. Number of blocks allocated

Not all these elements are relevant on all systems. If an element is not relevant, it is

returned as 0.

If the Status argument is supplied, it contains 0 on success or a non-zero error code upon

return.

128 Using and Porting GNU Fortran

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not

as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 10.11.9.114 [FStat

Intrinsic (function)], page 128.

10.11.9.114 FStat Intrinsic (function)

FStat(Unit, SArray)

FStat: INTEGER(KIND=1) function.

Unit: INTEGER; scalar; INTENT(IN).

SArray : INTEGER(KIND=1); DIMENSION(13); INTENT(OUT).

Intrinsic groups: unix.

Description:

Obtains data about the �le open on Fortran I/O unit Unit and places them in the array

SArray. The values in this array are extracted from the stat structure as returned by

fstat(2) q.v., as follows:

1. File mode

2. Inode number

3. ID of device containing directory entry for �le

4. Device id (if relevant)

5. Number of links

6. Owner's uid

7. Owner's gid

8. File size (bytes)

9. Last access time

10. Last modi�cation time

11. Last �le status change time

12. Preferred I/O block size

13. Number of blocks allocated

Not all these elements are relevant on all systems. If an element is not relevant, it is

returned as 0.

Returns 0 on success or a non-zero error code.

For information on other intrinsics with the same name: See Section 10.11.9.113 [FStat

Intrinsic (subroutine)], page 127.

10.11.9.115 FTell Intrinsic (subroutine)

CALL FTell(Unit, O�set)

Unit: INTEGER; scalar; INTENT(IN).

O�set: INTEGER(KIND=1); scalar; INTENT(OUT).

Intrinsic groups: unix.

Chapter 10: The GNU Fortran Language 129

Description:

Sets O�set to the current o�set of Fortran unit Unit (or to �1 if Unit is not open).

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not

as a subroutine.

For information on other intrinsics with the same name: See Section 10.11.9.116 [FTell

Intrinsic (function)], page 129.

10.11.9.116 FTell Intrinsic (function)

FTell(Unit)

FTell: INTEGER(KIND=1) function.

Unit: INTEGER; scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Returns the current o�set of Fortran unit Unit (or �1 if Unit is not open).

For information on other intrinsics with the same name: See Section 10.11.9.115 [FTell

Intrinsic (subroutine)], page 128.

10.11.9.117 GError Intrinsic

CALL GError(Message)

Message: CHARACTER; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Returns the system error message corresponding to the last system error (C errno).

10.11.9.118 GetArg Intrinsic

CALL GetArg(Pos, Value)

Pos: INTEGER; scalar; INTENT(IN).

Value: CHARACTER; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Sets Value to the Pos-th command-line argument (or to all blanks if there are fewer

than Value command-line arguments); CALL GETARG(0, value) sets value to the name of

the program (on systems that support this feature).

See Section 10.11.9.133 [IArgC Intrinsic], page 133, for information on how to get the

number of arguments.

130 Using and Porting GNU Fortran

10.11.9.119 GetCWD Intrinsic (subroutine)

CALL GetCWD(Name, Status)

Name: CHARACTER; scalar; INTENT(OUT).

Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Places the current working directory in Name. If the Status argument is supplied, it

contains 0 success or a non-zero error code upon return (ENOSYS if the system does not

provide getcwd(3) or getwd(3)).

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not

as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 10.11.9.120

[GetCWD Intrinsic (function)], page 130.

10.11.9.120 GetCWD Intrinsic (function)

GetCWD(Name)

GetCWD: INTEGER(KIND=1) function.

Name: CHARACTER; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Places the current working directory inName. Returns 0 on success, otherwise a non-zero

error code (ENOSYS if the system does not provide getcwd(3) or getwd(3)).

For information on other intrinsics with the same name: See Section 10.11.9.119

[GetCWD Intrinsic (subroutine)], page 130.

10.11.9.121 GetEnv Intrinsic

CALL GetEnv(Name, Value)

Name: CHARACTER; scalar; INTENT(IN).

Value: CHARACTER; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Sets Value to the value of environment variable given by the value of Name ($name in

shell terms) or to blanks if $name has not been set. A null character (`CHAR(0)') marks the

end of the name in Name|otherwise, trailing blanks in Name are ignored.

10.11.9.122 GetGId Intrinsic

GetGId()

GetGId: INTEGER(KIND=1) function.

Intrinsic groups: unix.

Description:

Returns the group id for the current process.

Chapter 10: The GNU Fortran Language 131

10.11.9.123 GetLog Intrinsic

CALL GetLog(Login)

Login: CHARACTER; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Returns the login name for the process in Login.

Caution: On some systems, the getlogin(3) function, which this intrinsic calls at run

time, is either not implemented or returns a null pointer. In the latter case, this intrinsic

returns blanks in Login.

10.11.9.124 GetPId Intrinsic

GetPId()

GetPId: INTEGER(KIND=1) function.

Intrinsic groups: unix.

Description:

Returns the process id for the current process.

10.11.9.125 GetUId Intrinsic

GetUId()

GetUId: INTEGER(KIND=1) function.

Intrinsic groups: unix.

Description:

Returns the user id for the current process.

10.11.9.126 GMTime Intrinsic

CALL GMTime(STime, TArray)

STime: INTEGER(KIND=1); scalar; INTENT(IN).

TArray : INTEGER(KIND=1); DIMENSION(9); INTENT(OUT).

Intrinsic groups: unix.

Description:

Given a system time value STime, �lls TArray with values extracted from it appropriate

to the GMT time zone using gmtime(3).

The array elements are as follows:

1. Seconds after the minute, range 0{59 or 0{61 to allow for leap seconds

2. Minutes after the hour, range 0{59

3. Hours past midnight, range 0{23

4. Day of month, range 0{31

5. Number of months since January, range 0{12

132 Using and Porting GNU Fortran

6. Years since 1900

7. Number of days since Sunday, range 0{6

8. Days since January 1

9. Daylight savings indicator: positive if daylight savings is in e�ect, zero if not, and

negative if the information isn't available.

10.11.9.127 HostNm Intrinsic (subroutine)

CALL HostNm(Name, Status)

Name: CHARACTER; scalar; INTENT(OUT).

Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Fills Name with the system's host name returned by gethostname(2). If the Status

argument is supplied, it contains 0 on success or a non-zero error code upon return (ENOSYS

if the system does not provide gethostname(2)).

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not

as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 10.11.9.128 [HostNm

Intrinsic (function)], page 132.

10.11.9.128 HostNm Intrinsic (function)

HostNm(Name)

HostNm: INTEGER(KIND=1) function.

Name: CHARACTER; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Fills Name with the system's host name returned by gethostname(2), returning 0 on

success or a non-zero error code (ENOSYS if the system does not provide gethostname(2)).

For information on other intrinsics with the same name: See Section 10.11.9.127 [HostNm

Intrinsic (subroutine)], page 132.

10.11.9.129 Huge Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Huge' to use this name for an external procedure.

10.11.9.130 IAbs Intrinsic

IAbs(A)

IAbs: INTEGER(KIND=1) function.

A: INTEGER(KIND=1); scalar; INTENT(IN).

Chapter 10: The GNU Fortran Language 133

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of ABS() that is speci�c to one type for A. See Section 10.11.9.2 [Abs

Intrinsic], page 98.

10.11.9.131 IAChar Intrinsic

IAChar(C)

IAChar: INTEGER(KIND=1) function.

C : CHARACTER; scalar; INTENT(IN).

Intrinsic groups: f2c, f90.

Description:

Returns the code for the ASCII character in the �rst character position of C.

See Section 10.11.9.4 [AChar Intrinsic], page 99, for the inverse of this function.

See Section 10.11.9.137 [IChar Intrinsic], page 134, for the function corresponding to the

system's native character set.

10.11.9.132 IAnd Intrinsic

IAnd(I, J)

IAnd: INTEGER function, the exact type being the result of cross-promoting the types of all

the arguments.

I : INTEGER; scalar; INTENT(IN).

J : INTEGER; scalar; INTENT(IN).

Intrinsic groups: mil, f90, vxt.

Description:

Returns value resulting from boolean AND of pair of bits in each of I and J.

10.11.9.133 IArgC Intrinsic

IArgC()

IArgC: INTEGER(KIND=1) function.

Intrinsic groups: unix.

Description:

Returns the number of command-line arguments.

This count does not include the speci�cation of the program name itself.

134 Using and Porting GNU Fortran

10.11.9.134 IBClr Intrinsic

IBClr(I, Pos)

IBClr: INTEGER function, the `KIND=' value of the type being that of argument I.

I : INTEGER; scalar; INTENT(IN).

Pos: INTEGER; scalar; INTENT(IN).

Intrinsic groups: mil, f90, vxt.

Description:

Returns the value of I with bit Pos cleared (set to zero). See Section 10.11.9.34 [BTest

Intrinsic], page 106 for information on bit positions.

10.11.9.135 IBits Intrinsic

IBits(I, Pos, Len)

IBits: INTEGER function, the `KIND=' value of the type being that of argument I.

I : INTEGER; scalar; INTENT(IN).

Pos: INTEGER; scalar; INTENT(IN).

Len: INTEGER; scalar; INTENT(IN).

Intrinsic groups: mil, f90, vxt.

Description:

Extracts a sub�eld of length Len from I, starting from bit position Pos and extending

left for Len bits. The result is right-justi�ed and the remaining bits are zeroed. The value

of `Pos+Len' must be less than or equal to the value `BIT_SIZE(I)'. See Section 10.11.9.33

[Bit Size Intrinsic], page 106.

10.11.9.136 IBSet Intrinsic

IBSet(I, Pos)

IBSet: INTEGER function, the `KIND=' value of the type being that of argument I.

I : INTEGER; scalar; INTENT(IN).

Pos: INTEGER; scalar; INTENT(IN).

Intrinsic groups: mil, f90, vxt.

Description:

Returns the value of I with bit Pos set (to one). See Section 10.11.9.34 [BTest Intrinsic],

page 106 for information on bit positions.

10.11.9.137 IChar Intrinsic

IChar(C)

IChar: INTEGER(KIND=1) function.

C : CHARACTER; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Chapter 10: The GNU Fortran Language 135

Description:

Returns the code for the character in the �rst character position of C.

Because the system's native character set is used, the correspondence between character

and their codes is not necessarily the same between GNU Fortran implementations.

Note that no intrinsic exists to convert a printable character string to a numerical value.

For example, there is no intrinsic that, given the CHARACTER value `'154'', returns an

INTEGER or REAL value with the value `154'.

Instead, you can use internal-�le I/O to do this kind of conversion. For example:

INTEGER VALUE

CHARACTER*10 STRING

STRING = '154'

READ (STRING, '(I10)'), VALUE

PRINT *, VALUE

END

The above program, when run, prints:

154

See Section 10.11.9.39 [Char Intrinsic], page 108, for the inverse of the ICHAR function.

See Section 10.11.9.131 [IAChar Intrinsic], page 133, for the function corresponding to

the ASCII character set.

10.11.9.138 IDate Intrinsic (UNIX)

CALL IDate(TArray)

TArray : INTEGER(KIND=1); DIMENSION(3); INTENT(OUT).

Intrinsic groups: unix.

Description:

Fills TArray with the numerical values at the current local time of day, month (in the

range 1{12), and year in elements 1, 2, and 3, respectively. The year has four signi�cant

digits.

For information on other intrinsics with the same name: See Section 12.4.2.43 [IDate

Intrinsic (VXT)], page 195.

10.11.9.139 IDiM Intrinsic

IDiM(X, Y)

IDiM: INTEGER(KIND=1) function.

X : INTEGER(KIND=1); scalar; INTENT(IN).

Y : INTEGER(KIND=1); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of DIM() that is speci�c to one type for X and Y. See Section 10.11.9.75

[DiM Intrinsic], page 117.

136 Using and Porting GNU Fortran

10.11.9.140 IDInt Intrinsic

IDInt(A)

IDInt: INTEGER(KIND=1) function.

A: REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of INT() that is speci�c to one type for A. See Section 10.11.9.148 [Int

Intrinsic], page 138.

10.11.9.141 IDNInt Intrinsic

IDNInt(A)

IDNInt: INTEGER(KIND=1) function.

A: REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of NINT() that is speci�c to one type for A. See Section 10.11.9.198 [NInt

Intrinsic], page 152.

10.11.9.142 IEOr Intrinsic

IEOr(I, J)

IEOr: INTEGER function, the exact type being the result of cross-promoting the types of all

the arguments.

I : INTEGER; scalar; INTENT(IN).

J : INTEGER; scalar; INTENT(IN).

Intrinsic groups: mil, f90, vxt.

Description:

Returns value resulting from boolean exclusive-OR of pair of bits in each of I and J.

10.11.9.143 IErrNo Intrinsic

IErrNo()

IErrNo: INTEGER(KIND=1) function.

Intrinsic groups: unix.

Description:

Returns the last system error number (corresponding to the C errno).

Chapter 10: The GNU Fortran Language 137

10.11.9.144 IFix Intrinsic

IFix(A)

IFix: INTEGER(KIND=1) function.

A: REAL(KIND=1); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of INT() that is speci�c to one type for A. See Section 10.11.9.148 [Int

Intrinsic], page 138.

10.11.9.145 Imag Intrinsic

Imag(Z)

Imag: REAL function, the `KIND=' value of the type being that of argument Z.

Z : COMPLEX; scalar; INTENT(IN).

Intrinsic groups: f2c.

Description:

The imaginary part of Z is returned, without conversion.

Note: The way to do this in standard Fortran 90 is `AIMAG(Z)'. However, when, for

example, Z is DOUBLE COMPLEX, `AIMAG(Z)' means something di�erent for some compilers

that are not true Fortran 90 compilers but o�er some extensions standardized by Fortran

90 (such as the DOUBLE COMPLEX type, also known as COMPLEX(KIND=2)).

The advantage of IMAG() is that, while not necessarily more or less portable than

AIMAG(), it is more likely to cause a compiler that doesn't support it to produce a di-

agnostic than generate incorrect code.

See Section 10.11.5 [REAL() and AIMAG() of Complex], page 96, for more information.

10.11.9.146 ImagPart Intrinsic

ImagPart(Z)

ImagPart: REAL function, the `KIND=' value of the type being that of argument Z.

Z : COMPLEX; scalar; INTENT(IN).

Intrinsic groups: gnu.

Description:

The imaginary part of Z is returned, without conversion.

Note: The way to do this in standard Fortran 90 is `AIMAG(Z)'. However, when, for

example, Z is DOUBLE COMPLEX, `AIMAG(Z)' means something di�erent for some compilers

that are not true Fortran 90 compilers but o�er some extensions standardized by Fortran

90 (such as the DOUBLE COMPLEX type, also known as COMPLEX(KIND=2)).

The advantage of IMAGPART() is that, while not necessarily more or less portable than

AIMAG(), it is more likely to cause a compiler that doesn't support it to produce a diagnostic

than generate incorrect code.

See Section 10.11.5 [REAL() and AIMAG() of Complex], page 96, for more information.

138 Using and Porting GNU Fortran

10.11.9.147 Index Intrinsic

Index(String, Substring)

Index: INTEGER(KIND=1) function.

String : CHARACTER; scalar; INTENT(IN).

Substring : CHARACTER; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the position of the start of the �rst occurrence of string Substring as a substring

in String, counting from one. If Substring doesn't occur in String, zero is returned.

10.11.9.148 Int Intrinsic

Int(A)

Int: INTEGER(KIND=1) function.

A: INTEGER, REAL, or COMPLEX; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns A with the fractional portion of its magnitude truncated and its sign preserved,

converted to type INTEGER(KIND=1).

If A is type COMPLEX, its real part is truncated and converted, and its imaginary part is

disregarded.

See Section 10.11.9.198 [NInt Intrinsic], page 152, for how to convert, rounded to nearest

whole number.

See Section 10.11.9.9 [AInt Intrinsic], page 100, for how to truncate to whole number

without converting.

10.11.9.149 Int2 Intrinsic

Int2(A)

Int2: INTEGER(KIND=6) function.

A: INTEGER, REAL, or COMPLEX; scalar; INTENT(IN).

Intrinsic groups: gnu.

Description:

Returns A with the fractional portion of its magnitude truncated and its sign preserved,

converted to type INTEGER(KIND=6).

If A is type COMPLEX, its real part is truncated and converted, and its imaginary part is

disgregarded.

See Section 10.11.9.148 [Int Intrinsic], page 138.

The precise meaning of this intrinsic might change in a future version of the GNU Fortran

language, as more is learned about how it is used.

Chapter 10: The GNU Fortran Language 139

10.11.9.150 Int8 Intrinsic

Int8(A)

Int8: INTEGER(KIND=2) function.

A: INTEGER, REAL, or COMPLEX; scalar; INTENT(IN).

Intrinsic groups: gnu.

Description:

Returns A with the fractional portion of its magnitude truncated and its sign preserved,

converted to type INTEGER(KIND=2).

If A is type COMPLEX, its real part is truncated and converted, and its imaginary part is

disgregarded.

See Section 10.11.9.148 [Int Intrinsic], page 138.

The precise meaning of this intrinsic might change in a future version of the GNU Fortran

language, as more is learned about how it is used.

10.11.9.151 IOr Intrinsic

IOr(I, J)

IOr: INTEGER function, the exact type being the result of cross-promoting the types of all

the arguments.

I : INTEGER; scalar; INTENT(IN).

J : INTEGER; scalar; INTENT(IN).

Intrinsic groups: mil, f90, vxt.

Description:

Returns value resulting from boolean OR of pair of bits in each of I and J.

10.11.9.152 IRand Intrinsic

IRand(Flag)

IRand: INTEGER(KIND=1) function.

Flag : INTEGER; OPTIONAL; scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Returns a uniform quasi-random number up to a system-dependent limit. If Flag is 0,

the next number in sequence is returned; if Flag is 1, the generator is restarted by calling

the UNIX function `srand(0)'; if Flag has any other value, it is used as a new seed with

srand().

See Section 10.11.9.236 [SRand Intrinsic], page 161.

Note: As typically implemented (by the routine of the same name in the C library), this

random number generator is a very poor one, though the BSD and GNU libraries provide

a much better implementation than the `traditional' one. On a di�erent system you almost

certainly want to use something better.

140 Using and Porting GNU Fortran

10.11.9.153 IsaTty Intrinsic

IsaTty(Unit)

IsaTty: LOGICAL(KIND=1) function.

Unit: INTEGER; scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Returns .TRUE. if and only if the Fortran I/O unit speci�ed by Unit is connected to a

terminal device. See isatty(3).

10.11.9.154 IShft Intrinsic

IShft(I, Shift)

IShft: INTEGER function, the `KIND=' value of the type being that of argument I.

I : INTEGER; scalar; INTENT(IN).

Shift: INTEGER; scalar; INTENT(IN).

Intrinsic groups: mil, f90, vxt.

Description:

All bits representing I are shifted Shift places. `Shift.GT.0' indicates a left shift,

`Shift.EQ.0' indicates no shift and `Shift.LT.0' indicates a right shift. If the absolute

value of the shift count is greater than `BIT_SIZE(I)', the result is unde�ned. Bits shifted

out from the left end or the right end, as the case may be, are lost. Zeros are shifted in

from the opposite end.

See Section 10.11.9.155 [IShftC Intrinsic], page 140 for the circular-shift equivalent.

10.11.9.155 IShftC Intrinsic

IShftC(I, Shift, Size)

IShftC: INTEGER function, the `KIND=' value of the type being that of argument I.

I : INTEGER; scalar; INTENT(IN).

Shift: INTEGER; scalar; INTENT(IN).

Size: INTEGER; scalar; INTENT(IN).

Intrinsic groups: mil, f90, vxt.

Description:

The rightmost Size bits of the argument I are shifted circularly Shift places, i.e. the bits

shifted out of one end are shifted into the opposite end. No bits are lost. The unshifted

bits of the result are the same as the unshifted bits of I. The absolute value of the argument

Shift must be less than or equal to Size. The value of Size must be greater than or equal

to one and less than or equal to `BIT_SIZE(I)'.

See Section 10.11.9.154 [IShft Intrinsic], page 140 for the logical shift equivalent.

Chapter 10: The GNU Fortran Language 141

10.11.9.156 ISign Intrinsic

ISign(A, B)

ISign: INTEGER(KIND=1) function.

A: INTEGER(KIND=1); scalar; INTENT(IN).

B: INTEGER(KIND=1); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of SIGN() that is speci�c to one type for A and B. See Section 10.11.9.227

[Sign Intrinsic], page 158.

10.11.9.157 ITime Intrinsic

CALL ITime(TArray)

TArray : INTEGER(KIND=1); DIMENSION(3); INTENT(OUT).

Intrinsic groups: unix.

Description:

Returns the current local time hour, minutes, and seconds in elements 1, 2, and 3 of

TArray, respectively.

10.11.9.158 Kill Intrinsic (subroutine)

CALL Kill(Pid, Signal, Status)

Pid: INTEGER; scalar; INTENT(IN).

Signal: INTEGER; scalar; INTENT(IN).

Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Sends the signal speci�ed by Signal to the process Pid. If the Status argument is supplied,

it contains 0 on success or a non-zero error code upon return. See kill(2).

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not

as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 12.4.2.93 [Kill

Intrinsic (function)], page 201.

10.11.9.159 Kind Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Kind' to use this name for an external procedure.

10.11.9.160 LBound Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL LBound' to use this name for an external procedure.

142 Using and Porting GNU Fortran

10.11.9.161 Len Intrinsic

Len(String)

Len: INTEGER(KIND=1) function.

String : CHARACTER; scalar.

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the length of String.

If String is an array, the length of an element of String is returned.

Note that String need not be de�ned when this intrinsic is invoked, since only the length,

not the content, of String is needed.

See Section 10.11.9.33 [Bit Size Intrinsic], page 106, for the function that determines the

size of its argument in bits.

10.11.9.162 Len Trim Intrinsic

Len_Trim(String)

Len Trim: INTEGER(KIND=1) function.

String : CHARACTER; scalar; INTENT(IN).

Intrinsic groups: f90.

Description:

Returns the index of the last non-blank character in String. LNBLNK and LEN_TRIM are

equivalent.

10.11.9.163 LGe Intrinsic

LGe(String A, String B)

LGe: LOGICAL(KIND=1) function.

String A: CHARACTER; scalar; INTENT(IN).

String B: CHARACTER; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns `.TRUE.' if `String A.GE.String B', `.FALSE.' otherwise. String A and String B

are interpreted as containing ASCII character codes. If either value contains a character

not in the ASCII character set, the result is processor dependent.

If the String A and String B are not the same length, the shorter is compared as if spaces

were appended to it to form a value that has the same length as the longer.

The lexical comparison intrinsics LGe, LGt, LLe, and LLt di�er from the correspond-

ing intrinsic operators .GE., .GT., .LE., .LT.. Because the ASCII collating sequence is

assumed, the following expressions always return `.TRUE.':

Chapter 10: The GNU Fortran Language 143

LGE ('0', ' ')

LGE ('A', '0')

LGE ('a', 'A')

The following related expressions do not always return `.TRUE.', as they are not neces-

sarily evaluated assuming the arguments use ASCII encoding:

'0' .GE. ' '

'A' .GE. '0'

'a' .GE. 'A'

The same di�erence exists between LGt and .GT.; between LLe and .LE.; and between

LLt and .LT..

10.11.9.164 LGt Intrinsic

LGt(String A, String B)

LGt: LOGICAL(KIND=1) function.

String A: CHARACTER; scalar; INTENT(IN).

String B: CHARACTER; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns `.TRUE.' if `String A.GT.String B', `.FALSE.' otherwise. String A and String B

are interpreted as containing ASCII character codes. If either value contains a character

not in the ASCII character set, the result is processor dependent.

If the String A and String B are not the same length, the shorter is compared as if spaces

were appended to it to form a value that has the same length as the longer.

See Section 10.11.9.163 [LGe Intrinsic], page 142, for information on the distinction

between the LGT intrinsic and the .GT. operator.

10.11.9.165 Link Intrinsic (subroutine)

CALL Link(Path1, Path2, Status)

Path1: CHARACTER; scalar; INTENT(IN).

Path2: CHARACTER; scalar; INTENT(IN).

Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Makes a (hard) link from �le Path1 to Path2. A null character (`CHAR(0)') marks the

end of the names in Path1 and Path2|otherwise, trailing blanks in Path1 and Path2 are

ignored. If the Status argument is supplied, it contains 0 on success or a non-zero error

code upon return. See link(2).

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not

as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 12.4.2.94 [Link

Intrinsic (function)], page 201.

144 Using and Porting GNU Fortran

10.11.9.166 LLe Intrinsic

LLe(String A, String B)

LLe: LOGICAL(KIND=1) function.

String A: CHARACTER; scalar; INTENT(IN).

String B: CHARACTER; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns `.TRUE.' if `String A.LE.String B', `.FALSE.' otherwise. String A and String B

are interpreted as containing ASCII character codes. If either value contains a character

not in the ASCII character set, the result is processor dependent.

If the String A and String B are not the same length, the shorter is compared as if spaces

were appended to it to form a value that has the same length as the longer.

See Section 10.11.9.163 [LGe Intrinsic], page 142, for information on the distinction

between the LLE intrinsic and the .LE. operator.

10.11.9.167 LLt Intrinsic

LLt(String A, String B)

LLt: LOGICAL(KIND=1) function.

String A: CHARACTER; scalar; INTENT(IN).

String B: CHARACTER; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns `.TRUE.' if `String A.LT.String B', `.FALSE.' otherwise. String A and String B

are interpreted as containing ASCII character codes. If either value contains a character

not in the ASCII character set, the result is processor dependent.

If the String A and String B are not the same length, the shorter is compared as if spaces

were appended to it to form a value that has the same length as the longer.

See Section 10.11.9.163 [LGe Intrinsic], page 142, for information on the distinction

between the LLT intrinsic and the .LT. operator.

10.11.9.168 LnBlnk Intrinsic

LnBlnk(String)

LnBlnk: INTEGER(KIND=1) function.

String : CHARACTER; scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Returns the index of the last non-blank character in String. LNBLNK and LEN_TRIM are

equivalent.

Chapter 10: The GNU Fortran Language 145

10.11.9.169 Loc Intrinsic

Loc(Entity)

Loc: INTEGER(KIND=7) function.

Entity : Any type; cannot be a constant or expression.

Intrinsic groups: unix.

Description:

The LOC() intrinsic works the same way as the %LOC() construct. See Section 10.8.1

[The %LOC() Construct], page 88, for more information.

10.11.9.170 Log Intrinsic

Log(X)

Log: REAL or COMPLEX function, the exact type being that of argument X.

X : REAL or COMPLEX; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the natural logarithm of X, which must be greater than zero or, if type COMPLEX,

must not be zero.

See Section 10.11.9.99 [Exp Intrinsic], page 123, for the inverse of this function.

See Section 10.11.9.171 [Log10 Intrinsic], page 145, for the base-10 logarithm function.

10.11.9.171 Log10 Intrinsic

Log10(X)

Log10: REAL function, the `KIND=' value of the type being that of argument X.

X : REAL; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the natural logarithm of X, which must be greater than zero or, if type COMPLEX,

must not be zero.

The inverse of this function is `10. ** LOG10(X)'.

See Section 10.11.9.170 [Log Intrinsic], page 145, for the natural logarithm function.

10.11.9.172 Logical Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Logical' to use this name for an external procedure.

146 Using and Porting GNU Fortran

10.11.9.173 Long Intrinsic

Long(A)

Long: INTEGER(KIND=1) function.

A: INTEGER(KIND=6); scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Archaic form of INT() that is speci�c to one type for A. See Section 10.11.9.148 [Int

Intrinsic], page 138.

The precise meaning of this intrinsic might change in a future version of the GNU Fortran

language, as more is learned about how it is used.

10.11.9.174 LShift Intrinsic

LShift(I, Shift)

LShift: INTEGER function, the `KIND=' value of the type being that of argument I.

I : INTEGER; scalar; INTENT(IN).

Shift: INTEGER; scalar; INTENT(IN).

Intrinsic groups: f2c.

Description:

Returns I shifted to the left Shift bits.

Although similar to the expression `I*(2**Shift)', there are important di�erences. For

example, the sign of the result is not necessarily the same as the sign of I.

Currently this intrinsic is de�ned assuming the underlying representation of I is as a

two's-complement integer. It is unclear at this point whether that de�nition will apply

when a di�erent representation is involved.

See Section 10.11.9.174 [LShift Intrinsic], page 146, for the inverse of this function.

See Section 10.11.9.154 [IShft Intrinsic], page 140, for information on a more widely

available left-shifting intrinsic that is also more precisely de�ned.

10.11.9.175 LStat Intrinsic (subroutine)

CALL LStat(File, SArray, Status)

File: CHARACTER; scalar; INTENT(IN).

SArray : INTEGER(KIND=1); DIMENSION(13); INTENT(OUT).

Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Obtains data about the given �le File and places them in the array SArray. A null

character (`CHAR(0)') marks the end of the name in File|otherwise, trailing blanks in File

are ignored. If File is a symbolic link it returns data on the link itself, so the routine is

available only on systems that support symbolic links. The values in this array are extracted

from the stat structure as returned by fstat(2) q.v., as follows:

Chapter 10: The GNU Fortran Language 147

1. File mode

2. Inode number

3. ID of device containing directory entry for �le

4. Device id (if relevant)

5. Number of links

6. Owner's uid

7. Owner's gid

8. File size (bytes)

9. Last access time

10. Last modi�cation time

11. Last �le status change time

12. Preferred I/O block size

13. Number of blocks allocated

Not all these elements are relevant on all systems. If an element is not relevant, it is

returned as 0.

If the Status argument is supplied, it contains 0 on success or a non-zero error code upon

return (ENOSYS if the system does not provide lstat(2)).

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not

as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 10.11.9.176 [LStat

Intrinsic (function)], page 147.

10.11.9.176 LStat Intrinsic (function)

LStat(File, SArray)

LStat: INTEGER(KIND=1) function.

File: CHARACTER; scalar; INTENT(IN).

SArray : INTEGER(KIND=1); DIMENSION(13); INTENT(OUT).

Intrinsic groups: unix.

Description:

Obtains data about the given �le File and places them in the array SArray. A null

character (`CHAR(0)') marks the end of the name in File|otherwise, trailing blanks in File

are ignored. If File is a symbolic link it returns data on the link itself, so the routine is

available only on systems that support symbolic links. The values in this array are extracted

from the stat structure as returned by fstat(2) q.v., as follows:

1. File mode

2. Inode number

3. ID of device containing directory entry for �le

4. Device id (if relevant)

5. Number of links

148 Using and Porting GNU Fortran

6. Owner's uid

7. Owner's gid

8. File size (bytes)

9. Last access time

10. Last modi�cation time

11. Last �le status change time

12. Preferred I/O block size

13. Number of blocks allocated

Not all these elements are relevant on all systems. If an element is not relevant, it is

returned as 0.

Returns 0 on success or a non-zero error code (ENOSYS if the system does not provide

lstat(2)).

For information on other intrinsics with the same name: See Section 10.11.9.175 [LStat

Intrinsic (subroutine)], page 146.

10.11.9.177 LTime Intrinsic

CALL LTime(STime, TArray)

STime: INTEGER(KIND=1); scalar; INTENT(IN).

TArray : INTEGER(KIND=1); DIMENSION(9); INTENT(OUT).

Intrinsic groups: unix.

Description:

Given a system time value STime, �lls TArray with values extracted from it appropriate

to the GMT time zone using localtime(3).

The array elements are as follows:

1. Seconds after the minute, range 0{59 or 0{61 to allow for leap seconds

2. Minutes after the hour, range 0{59

3. Hours past midnight, range 0{23

4. Day of month, range 0{31

5. Number of months since January, range 0{12

6. Years since 1900

7. Number of days since Sunday, range 0{6

8. Days since January 1

9. Daylight savings indicator: positive if daylight savings is in e�ect, zero if not, and

negative if the information isn't available.

10.11.9.178 MatMul Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL MatMul' to use this name for an external procedure.

Chapter 10: The GNU Fortran Language 149

10.11.9.179 Max Intrinsic

Max(A-1, A-2, : : :, A-n)

Max: INTEGER or REAL function, the exact type being the result of cross-promoting the

types of all the arguments.

A: INTEGER or REAL; at least two such arguments must be provided; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the argument with the largest value.

See Section 10.11.9.188 [Min Intrinsic], page 150, for the opposite function.

10.11.9.180 Max0 Intrinsic

Max0(A-1, A-2, : : :, A-n)

Max0: INTEGER(KIND=1) function.

A: INTEGER(KIND=1); at least two such arguments must be provided; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of MAX() that is speci�c to one type for A. See Section 10.11.9.179 [Max

Intrinsic], page 149.

10.11.9.181 Max1 Intrinsic

Max1(A-1, A-2, : : :, A-n)

Max1: INTEGER(KIND=1) function.

A: REAL(KIND=1); at least two such arguments must be provided; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of MAX() that is speci�c to one type for A and a di�erent return type. See

Section 10.11.9.179 [Max Intrinsic], page 149.

10.11.9.182 MaxExponent Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL MaxExponent' to use this name for an external procedure.

10.11.9.183 MaxLoc Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL MaxLoc' to use this name for an external procedure.

10.11.9.184 MaxVal Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL MaxVal' to use this name for an external procedure.

150 Using and Porting GNU Fortran

10.11.9.185 MClock Intrinsic

MClock()

MClock: INTEGER(KIND=1) function.

Intrinsic groups: unix.

Description:

Returns the number of clock ticks since the start of the process. Supported on systems

with clock(3) (q.v.).

This intrinsic is not fully portable, such as to systems with 32-bit INTEGER types but

supporting times wider than 32 bits. See Section 10.11.9.186 [MClock8 Intrinsic], page 150,

for information on a similar intrinsic that might be portable to more GNU Fortran imple-

mentations, though to fewer Fortran compilers.

If the system does not support clock(3), -1 is returned.

10.11.9.186 MClock8 Intrinsic

MClock8()

MClock8: INTEGER(KIND=2) function.

Intrinsic groups: unix.

Description:

Returns the number of clock ticks since the start of the process. Supported on systems

with clock(3) (q.v.).

No Fortran implementations other than GNU Fortran are known to support this intrin-

sic at the time of this writing. See Section 10.11.9.185 [MClock Intrinsic], page 150, for

information on a similar intrinsic that might be portable to more Fortran compilers, though

to fewer GNU Fortran implementations.

If the system does not support clock(3), -1 is returned.

10.11.9.187 Merge Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Merge' to use this name for an external procedure.

10.11.9.188 Min Intrinsic

Min(A-1, A-2, : : :, A-n)

Min: INTEGER or REAL function, the exact type being the result of cross-promoting the types

of all the arguments.

A: INTEGER or REAL; at least two such arguments must be provided; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the argument with the smallest value.

See Section 10.11.9.179 [Max Intrinsic], page 149, for the opposite function.

Chapter 10: The GNU Fortran Language 151

10.11.9.189 Min0 Intrinsic

Min0(A-1, A-2, : : :, A-n)

Min0: INTEGER(KIND=1) function.

A: INTEGER(KIND=1); at least two such arguments must be provided; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of MIN() that is speci�c to one type for A. See Section 10.11.9.188 [Min

Intrinsic], page 150.

10.11.9.190 Min1 Intrinsic

Min1(A-1, A-2, : : :, A-n)

Min1: INTEGER(KIND=1) function.

A: REAL(KIND=1); at least two such arguments must be provided; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of MIN() that is speci�c to one type for A and a di�erent return type. See

Section 10.11.9.188 [Min Intrinsic], page 150.

10.11.9.191 MinExponent Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL MinExponent' to use this name for an external procedure.

10.11.9.192 MinLoc Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL MinLoc' to use this name for an external procedure.

10.11.9.193 MinVal Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL MinVal' to use this name for an external procedure.

10.11.9.194 Mod Intrinsic

Mod(A, P)

Mod: INTEGER or REAL function, the exact type being the result of cross-promoting the

types of all the arguments.

A: INTEGER or REAL; scalar; INTENT(IN).

P: INTEGER or REAL; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns remainder calculated as:

152 Using and Porting GNU Fortran

A - (INT(A / P) * P)

P must not be zero.

10.11.9.195 Modulo Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Modulo' to use this name for an external procedure.

10.11.9.196 MvBits Intrinsic

CALL MvBits(From, FromPos, Len, TO, ToPos)

From: INTEGER; scalar; INTENT(IN).

FromPos: INTEGER; scalar; INTENT(IN).

Len: INTEGER; scalar; INTENT(IN).

TO: INTEGER with same `KIND=' value as for From; scalar; INTENT(INOUT).

ToPos: INTEGER; scalar; INTENT(IN).

Intrinsic groups: mil, f90, vxt.

Description:

Moves Len bits from positions FromPos through `FromPos+Len-1' of From to positions

ToPos through `FromPos+Len-1' of TO. The portion of argument TO not a�ected by the

movement of bits is unchanged. Arguments From and TO are permitted to be the same

numeric storage unit. The values of `FromPos+Len' and `ToPos+Len' must be less than or

equal to `BIT_SIZE(From)'.

10.11.9.197 Nearest Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Nearest' to use this name for an external procedure.

10.11.9.198 NInt Intrinsic

NInt(A)

NInt: INTEGER(KIND=1) function.

A: REAL; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns A with the fractional portion of its magnitude eliminated by rounding to the

nearest whole number and with its sign preserved, converted to type INTEGER(KIND=1).

If A is type COMPLEX, its real part is rounded and converted.

A fractional portion exactly equal to `.5' is rounded to the whole number that is larger

in magnitude. (Also called \Fortran round".)

See Section 10.11.9.148 [Int Intrinsic], page 138, for how to convert, truncate to whole

number.

See Section 10.11.9.21 [ANInt Intrinsic], page 103, for how to round to nearest whole

number without converting.

Chapter 10: The GNU Fortran Language 153

10.11.9.199 Not Intrinsic

Not(I)

Not: INTEGER function, the `KIND=' value of the type being that of argument I.

I : INTEGER; scalar; INTENT(IN).

Intrinsic groups: mil, f90, vxt.

Description:

Returns value resulting from boolean NOT of each bit in I.

10.11.9.200 Or Intrinsic

Or(I, J)

Or: INTEGER or LOGICAL function, the exact type being the result of cross-promoting the

types of all the arguments.

I : INTEGER or LOGICAL; scalar; INTENT(IN).

J : INTEGER or LOGICAL; scalar; INTENT(IN).

Intrinsic groups: f2c.

Description:

Returns value resulting from boolean OR of pair of bits in each of I and J.

10.11.9.201 Pack Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Pack' to use this name for an external procedure.

10.11.9.202 PError Intrinsic

CALL PError(String)

String : CHARACTER; scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Prints (on the C stderr stream) a newline-terminated error message corresponding to

the last system error. This is pre�xed by String, a colon and a space. See perror(3).

10.11.9.203 Precision Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Precision' to use this name for an external procedure.

10.11.9.204 Present Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Present' to use this name for an external procedure.

154 Using and Porting GNU Fortran

10.11.9.205 Product Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Product' to use this name for an external procedure.

10.11.9.206 Radix Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Radix' to use this name for an external procedure.

10.11.9.207 Rand Intrinsic

Rand(Flag)

Rand: REAL(KIND=1) function.

Flag : INTEGER; OPTIONAL; scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Returns a uniform quasi-random number between 0 and 1. If Flag is 0, the next number

in sequence is returned; if Flag is 1, the generator is restarted by calling `srand(0)'; if Flag

has any other value, it is used as a new seed with srand.

See Section 10.11.9.236 [SRand Intrinsic], page 161.

Note: As typically implemented (by the routine of the same name in the C library), this

random number generator is a very poor one, though the BSD and GNU libraries provide

a much better implementation than the `traditional' one. On a di�erent system you almost

certainly want to use something better.

10.11.9.208 Random Number Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Random_Number' to use this name for an external procedure.

10.11.9.209 Random Seed Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Random_Seed' to use this name for an external procedure.

10.11.9.210 Range Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Range' to use this name for an external procedure.

10.11.9.211 Real Intrinsic

Real(A)

Real: REAL function. The exact type is `REAL(KIND=1)' when argument A is any type other

than COMPLEX, or when it is COMPLEX(KIND=1). When A is any COMPLEX type other than

Chapter 10: The GNU Fortran Language 155

COMPLEX(KIND=1), this intrinsic is valid only when used as the argument to REAL(), as

explained below.

A: INTEGER, REAL, or COMPLEX; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Converts A to REAL(KIND=1).

Use of REAL() with a COMPLEX argument (other than COMPLEX(KIND=1)) is restricted to

the following case:

REAL(REAL(A))

This expression converts the real part of A to REAL(KIND=1).

See Section 10.11.9.212 [RealPart Intrinsic], page 155, for information on a GNU Fortran

intrinsic that extracts the real part of an arbitrary COMPLEX value.

See Section 10.11.5 [REAL() and AIMAG() of Complex], page 96, for more information.

10.11.9.212 RealPart Intrinsic

RealPart(Z)

RealPart: REAL function, the `KIND=' value of the type being that of argument Z.

Z : COMPLEX; scalar; INTENT(IN).

Intrinsic groups: gnu.

Description:

The real part of Z is returned, without conversion.

Note: The way to do this in standard Fortran 90 is `REAL(Z)'. However, when, for

example, Z is COMPLEX(KIND=2), `REAL(Z)' means something di�erent for some compilers

that are not true Fortran 90 compilers but o�er some extensions standardized by Fortran

90 (such as the DOUBLE COMPLEX type, also known as COMPLEX(KIND=2)).

The advantage of REALPART() is that, while not necessarily more or less portable than

REAL(), it is more likely to cause a compiler that doesn't support it to produce a diagnostic

than generate incorrect code.

See Section 10.11.5 [REAL() and AIMAG() of Complex], page 96, for more information.

10.11.9.213 Rename Intrinsic (subroutine)

CALL Rename(Path1, Path2, Status)

Path1: CHARACTER; scalar; INTENT(IN).

Path2: CHARACTER; scalar; INTENT(IN).

Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Renames the �le Path1 to Path2. A null character (`CHAR(0)') marks the end of the

names in Path1 and Path2|otherwise, trailing blanks in Path1 and Path2 are ignored. See

156 Using and Porting GNU Fortran

rename(2). If the Status argument is supplied, it contains 0 on success or a non-zero error

code upon return.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not

as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 12.4.2.126 [Rename

Intrinsic (function)], page 204.

10.11.9.214 Repeat Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Repeat' to use this name for an external procedure.

10.11.9.215 Reshape Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Reshape' to use this name for an external procedure.

10.11.9.216 RRSpacing Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL RRSpacing' to use this name for an external procedure.

10.11.9.217 RShift Intrinsic

RShift(I, Shift)

RShift: INTEGER function, the `KIND=' value of the type being that of argument I.

I : INTEGER; scalar; INTENT(IN).

Shift: INTEGER; scalar; INTENT(IN).

Intrinsic groups: f2c.

Description:

Returns I shifted to the right Shift bits.

Although similar to the expression `I/(2**Shift)', there are important di�erences. For

example, the sign of the result is unde�ned.

Currently this intrinsic is de�ned assuming the underlying representation of I is as a

two's-complement integer. It is unclear at this point whether that de�nition will apply

when a di�erent representation is involved.

See Section 10.11.9.217 [RShift Intrinsic], page 156, for the inverse of this function.

See Section 10.11.9.154 [IShft Intrinsic], page 140, for information on a more widely

available right-shifting intrinsic that is also more precisely de�ned.

10.11.9.218 Scale Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Scale' to use this name for an external procedure.

Chapter 10: The GNU Fortran Language 157

10.11.9.219 Scan Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Scan' to use this name for an external procedure.

10.11.9.220 Second Intrinsic (function)

Second()

Second: REAL(KIND=1) function.

Intrinsic groups: unix.

Description:

Returns the process's runtime in seconds|the same value as the UNIX function etime

returns.

For information on other intrinsics with the same name: See Section 10.11.9.221 [Second

Intrinsic (subroutine)], page 157.

10.11.9.221 Second Intrinsic (subroutine)

CALL Second(Seconds)

Seconds: REAL; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Returns the process's runtime in seconds in Seconds|the same value as the UNIX func-

tion etime returns.

This routine is known from Cray Fortran. See Section 10.11.9.49 [CPU Time Intrinsic],

page 111 for a standard equivalent.

For information on other intrinsics with the same name: See Section 10.11.9.220 [Second

Intrinsic (function)], page 157.

10.11.9.222 Selected Int Kind Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Selected_Int_Kind' to use this name for an external procedure.

10.11.9.223 Selected Real Kind Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Selected_Real_Kind' to use this name for an external procedure.

10.11.9.224 Set Exponent Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Set_Exponent' to use this name for an external procedure.

158 Using and Porting GNU Fortran

10.11.9.225 Shape Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Shape' to use this name for an external procedure.

10.11.9.226 Short Intrinsic

Short(A)

Short: INTEGER(KIND=6) function.

A: INTEGER; scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Returns A with the fractional portion of its magnitude truncated and its sign preserved,

converted to type INTEGER(KIND=6).

If A is type COMPLEX, its real part is truncated and converted, and its imaginary part is

disgregarded.

See Section 10.11.9.148 [Int Intrinsic], page 138.

The precise meaning of this intrinsic might change in a future version of the GNU Fortran

language, as more is learned about how it is used.

10.11.9.227 Sign Intrinsic

Sign(A, B)

Sign: INTEGER or REAL function, the exact type being the result of cross-promoting the

types of all the arguments.

A: INTEGER or REAL; scalar; INTENT(IN).

B: INTEGER or REAL; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns `ABS(A)*s', where s is +1 if `B.GE.0', -1 otherwise.

See Section 10.11.9.2 [Abs Intrinsic], page 98, for the function that returns the magnitude

of a value.

10.11.9.228 Signal Intrinsic (subroutine)

CALL Signal(Number, Handler, Status)

Number: INTEGER; scalar; INTENT(IN).

Handler: Signal handler (INTEGER FUNCTION or SUBROUTINE) or dummy/global INTEGER(KIND=1)

scalar.

Status: INTEGER(KIND=7); OPTIONAL; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Chapter 10: The GNU Fortran Language 159

If Handler is a an EXTERNAL routine, arranges for it to be invoked with a single integer

argument (of system-dependent length) when signal Number occurs. If Handler is an in-

teger, it can be used to turn o� handling of signal Number or revert to its default action.

See signal(2).

Note that Handler will be called using C conventions, so the value of its argument in

Fortran terms Fortran terms is obtained by applying %LOC() (or LOC()) to it.

The value returned by signal(2) is written to Status, if that argument is supplied.

Otherwise the return value is ignored.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not

as a subroutine, or do not support the (optional) Status argument.

Warning: Use of the libf2c run-time library function `signal_' directly (such as via

`EXTERNAL SIGNAL') requires use of the %VAL() construct to pass an INTEGER value (such as

`SIG_IGN' or `SIG_DFL') for the Handler argument.

However, while `CALL SIGNAL(signum, %VAL(SIG_IGN))' works when `SIGNAL' is treated

as an external procedure (and resolves, at link time, to libf2c's `signal_' routine), this

construct is not valid when `SIGNAL' is recognized as the intrinsic of that name.

Therefore, for maximum portability and reliability, code such references to the `SIGNAL'

facility as follows:

INTRINSIC SIGNAL

: : :

CALL SIGNAL(signum, SIG_IGN)

g77 will compile such a call correctly, while other compilers will generally either do so

as well or reject the `INTRINSIC SIGNAL' statement via a diagnostic, allowing you to take

appropriate action.

For information on other intrinsics with the same name: See Section 12.4.2.128 [Signal

Intrinsic (function)], page 205.

10.11.9.229 Sin Intrinsic

Sin(X)

Sin: REAL or COMPLEX function, the exact type being that of argument X.

X : REAL or COMPLEX; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the sine of X, an angle measured in radians.

See Section 10.11.9.23 [ASin Intrinsic], page 104, for the inverse of this function.

10.11.9.230 SinH Intrinsic

SinH(X)

SinH: REAL function, the `KIND=' value of the type being that of argument X.

X : REAL; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

160 Using and Porting GNU Fortran

Description:

Returns the hyperbolic sine of X.

10.11.9.231 Sleep Intrinsic

CALL Sleep(Seconds)

Seconds: INTEGER(KIND=1); scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Causes the process to pause for Seconds seconds. See sleep(2).

10.11.9.232 Sngl Intrinsic

Sngl(A)

Sngl: REAL(KIND=1) function.

A: REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of REAL() that is speci�c to one type for A. See Section 10.11.9.211 [Real

Intrinsic], page 154.

10.11.9.233 Spacing Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Spacing' to use this name for an external procedure.

10.11.9.234 Spread Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Spread' to use this name for an external procedure.

10.11.9.235 SqRt Intrinsic

SqRt(X)

SqRt: REAL or COMPLEX function, the exact type being that of argument X.

X : REAL or COMPLEX; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the square root of X, which must not be negative.

To calculate and represent the square root of a negative number, complex arithmetic

must be used. For example, `SQRT(COMPLEX(X))'.

The inverse of this function is `SQRT(X) * SQRT(X)'.

Chapter 10: The GNU Fortran Language 161

10.11.9.236 SRand Intrinsic

CALL SRand(Seed)

Seed: INTEGER; scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Reinitialises the generator with the seed in Seed. See Section 10.11.9.152 [IRand Intrin-

sic], page 139. See Section 10.11.9.207 [Rand Intrinsic], page 154.

10.11.9.237 Stat Intrinsic (subroutine)

CALL Stat(File, SArray, Status)

File: CHARACTER; scalar; INTENT(IN).

SArray : INTEGER(KIND=1); DIMENSION(13); INTENT(OUT).

Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Obtains data about the given �le File and places them in the array SArray. A null

character (`CHAR(0)') marks the end of the name in File|otherwise, trailing blanks in File

are ignored. The values in this array are extracted from the stat structure as returned by

fstat(2) q.v., as follows:

1. File mode

2. Inode number

3. ID of device containing directory entry for �le

4. Device id (if relevant)

5. Number of links

6. Owner's uid

7. Owner's gid

8. File size (bytes)

9. Last access time

10. Last modi�cation time

11. Last �le status change time

12. Preferred I/O block size

13. Number of blocks allocated

Not all these elements are relevant on all systems. If an element is not relevant, it is

returned as 0.

If the Status argument is supplied, it contains 0 on success or a non-zero error code upon

return.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not

as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 10.11.9.238 [Stat

Intrinsic (function)], page 162.

162 Using and Porting GNU Fortran

10.11.9.238 Stat Intrinsic (function)

Stat(File, SArray)

Stat: INTEGER(KIND=1) function.

File: CHARACTER; scalar; INTENT(IN).

SArray : INTEGER(KIND=1); DIMENSION(13); INTENT(OUT).

Intrinsic groups: unix.

Description:

Obtains data about the given �le File and places them in the array SArray. A null

character (`CHAR(0)') marks the end of the name in File|otherwise, trailing blanks in File

are ignored. The values in this array are extracted from the stat structure as returned by

fstat(2) q.v., as follows:

1. File mode

2. Inode number

3. ID of device containing directory entry for �le

4. Device id (if relevant)

5. Number of links

6. Owner's uid

7. Owner's gid

8. File size (bytes)

9. Last access time

10. Last modi�cation time

11. Last �le status change time

12. Preferred I/O block size

13. Number of blocks allocated

Not all these elements are relevant on all systems. If an element is not relevant, it is

returned as 0.

Returns 0 on success or a non-zero error code.

For information on other intrinsics with the same name: See Section 10.11.9.237 [Stat

Intrinsic (subroutine)], page 161.

10.11.9.239 Sum Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Sum' to use this name for an external procedure.

10.11.9.240 SymLnk Intrinsic (subroutine)

CALL SymLnk(Path1, Path2, Status)

Path1: CHARACTER; scalar; INTENT(IN).

Path2: CHARACTER; scalar; INTENT(IN).

Chapter 10: The GNU Fortran Language 163

Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Makes a symbolic link from �le Path1 to Path2. A null character (`CHAR(0)') marks the

end of the names in Path1 and Path2|otherwise, trailing blanks in Path1 and Path2 are

ignored. If the Status argument is supplied, it contains 0 on success or a non-zero error

code upon return (ENOSYS if the system does not provide symlink(2)).

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not

as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 12.4.2.131 [SymLnk

Intrinsic (function)], page 206.

10.11.9.241 System Intrinsic (subroutine)

CALL System(Command, Status)

Command: CHARACTER; scalar; INTENT(IN).

Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Passes the command Command to a shell (see system(3)). If argument Status is present,

it contains the value returned by system(3), presumably 0 if the shell command succeeded.

Note that which shell is used to invoke the command is system-dependent and environment-

dependent.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not

as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 12.4.2.132 [System

Intrinsic (function)], page 207.

10.11.9.242 System Clock Intrinsic

CALL System_Clock(Count, Rate, Max)

Count: INTEGER(KIND=1); scalar; INTENT(OUT).

Rate: INTEGER(KIND=1); scalar; INTENT(OUT).

Max: INTEGER(KIND=1); scalar; INTENT(OUT).

Intrinsic groups: f90.

Description:

Returns in Count the current value of the system clock; this is the value returned by the

UNIX function times(2) in this implementation, but isn't in general. Rate is the number

of clock ticks per second and Max is the maximum value this can take, which isn't very

useful in this implementation since it's just the maximum C unsigned int value.

164 Using and Porting GNU Fortran

10.11.9.243 Tan Intrinsic

Tan(X)

Tan: REAL function, the `KIND=' value of the type being that of argument X.

X : REAL; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the tangent of X, an angle measured in radians.

See Section 10.11.9.25 [ATan Intrinsic], page 104, for the inverse of this function.

10.11.9.244 TanH Intrinsic

TanH(X)

TanH: REAL function, the `KIND=' value of the type being that of argument X.

X : REAL; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the hyperbolic tangent of X.

10.11.9.245 Time Intrinsic (UNIX)

Time()

Time: INTEGER(KIND=1) function.

Intrinsic groups: unix.

Description:

Returns the current time encoded as an integer (in the manner of the UNIX function

time(3)). This value is suitable for passing to CTIME, GMTIME, and LTIME.

This intrinsic is not fully portable, such as to systems with 32-bit INTEGER types but

supporting times wider than 32 bits. See Section 10.11.9.246 [Time8 Intrinsic], page 164,

for information on a similar intrinsic that might be portable to more GNU Fortran imple-

mentations, though to fewer Fortran compilers.

For information on other intrinsics with the same name: See Section 12.4.2.134 [Time

Intrinsic (VXT)], page 207.

10.11.9.246 Time8 Intrinsic

Time8()

Time8: INTEGER(KIND=2) function.

Intrinsic groups: unix.

Description:

Returns the current time encoded as a long integer (in the manner of the UNIX function

time(3)). This value is suitable for passing to CTIME, GMTIME, and LTIME.

Chapter 10: The GNU Fortran Language 165

No Fortran implementations other than GNU Fortran are known to support this intrinsic

at the time of this writing. See Section 10.11.9.245 [Time Intrinsic (UNIX)], page 164, for

information on a similar intrinsic that might be portable to more Fortran compilers, though

to fewer GNU Fortran implementations.

10.11.9.247 Tiny Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Tiny' to use this name for an external procedure.

10.11.9.248 Transfer Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Transfer' to use this name for an external procedure.

10.11.9.249 Transpose Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Transpose' to use this name for an external procedure.

10.11.9.250 Trim Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Trim' to use this name for an external procedure.

10.11.9.251 TtyNam Intrinsic (subroutine)

CALL TtyNam(Name, Unit)

Name: CHARACTER; scalar; INTENT(OUT).

Unit: INTEGER; scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Sets Name to the name of the terminal device open on logical unit Unit or a blank string

if Unit is not connected to a terminal.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not

as a subroutine.

For information on other intrinsics with the same name: See Section 10.11.9.252 [TtyNam

Intrinsic (function)], page 165.

10.11.9.252 TtyNam Intrinsic (function)

TtyNam(Unit)

TtyNam: CHARACTER*(*) function.

Unit: INTEGER; scalar; INTENT(IN).

Intrinsic groups: unix.

166 Using and Porting GNU Fortran

Description:

Returns the name of the terminal device open on logical unit Unit or a blank string if

Unit is not connected to a terminal.

For information on other intrinsics with the same name: See Section 10.11.9.251 [TtyNam

Intrinsic (subroutine)], page 165.

10.11.9.253 UBound Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL UBound' to use this name for an external procedure.

10.11.9.254 UMask Intrinsic (subroutine)

CALL UMask(Mask, Old)

Mask: INTEGER; scalar; INTENT(IN).

Old: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Sets the �le creation mask to Mask and returns the old value in argument Old if it is

supplied. See umask(2).

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not

as a subroutine.

For information on other intrinsics with the same name: See Section 12.4.2.135 [UMask

Intrinsic (function)], page 208.

10.11.9.255 Unlink Intrinsic (subroutine)

CALL Unlink(File, Status)

File: CHARACTER; scalar; INTENT(IN).

Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Unlink the �le File. A null character (`CHAR(0)') marks the end of the name in File|

otherwise, trailing blanks in File are ignored. If the Status argument is supplied, it contains

0 on success or a non-zero error code upon return. See unlink(2).

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not

as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 12.4.2.136 [Unlink

Intrinsic (function)], page 208.

10.11.9.256 Unpack Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Unpack' to use this name for an external procedure.

Chapter 10: The GNU Fortran Language 167

10.11.9.257 Verify Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL Verify' to use this name for an external procedure.

10.11.9.258 XOr Intrinsic

XOr(I, J)

XOr: INTEGER or LOGICAL function, the exact type being the result of cross-promoting the

types of all the arguments.

I : INTEGER or LOGICAL; scalar; INTENT(IN).

J : INTEGER or LOGICAL; scalar; INTENT(IN).

Intrinsic groups: f2c.

Description:

Returns value resulting from boolean exclusive-OR of pair of bits in each of I and J.

10.11.9.259 ZAbs Intrinsic

ZAbs(A)

ZAbs: REAL(KIND=2) function.

A: COMPLEX(KIND=2); scalar; INTENT(IN).

Intrinsic groups: f2c.

Description:

Archaic form of ABS() that is speci�c to one type for A. See Section 10.11.9.2 [Abs

Intrinsic], page 98.

10.11.9.260 ZCos Intrinsic

ZCos(X)

ZCos: COMPLEX(KIND=2) function.

X : COMPLEX(KIND=2); scalar; INTENT(IN).

Intrinsic groups: f2c.

Description:

Archaic form of COS() that is speci�c to one type for X. See Section 10.11.9.46 [Cos

Intrinsic], page 110.

10.11.9.261 ZExp Intrinsic

ZExp(X)

ZExp: COMPLEX(KIND=2) function.

X : COMPLEX(KIND=2); scalar; INTENT(IN).

Intrinsic groups: f2c.

Description:

Archaic form of EXP() that is speci�c to one type for X. See Section 10.11.9.99 [Exp

Intrinsic], page 123.

168 Using and Porting GNU Fortran

10.11.9.262 ZLog Intrinsic

ZLog(X)

ZLog: COMPLEX(KIND=2) function.

X : COMPLEX(KIND=2); scalar; INTENT(IN).

Intrinsic groups: f2c.

Description:

Archaic form of LOG() that is speci�c to one type for X. See Section 10.11.9.170 [Log

Intrinsic], page 145.

10.11.9.263 ZSin Intrinsic

ZSin(X)

ZSin: COMPLEX(KIND=2) function.

X : COMPLEX(KIND=2); scalar; INTENT(IN).

Intrinsic groups: f2c.

Description:

Archaic form of SIN() that is speci�c to one type for X. See Section 10.11.9.229 [Sin

Intrinsic], page 159.

10.11.9.264 ZSqRt Intrinsic

ZSqRt(X)

ZSqRt: COMPLEX(KIND=2) function.

X : COMPLEX(KIND=2); scalar; INTENT(IN).

Intrinsic groups: f2c.

Description:

Archaic form of SQRT() that is speci�c to one type for X. See Section 10.11.9.235 [SqRt

Intrinsic], page 160.

10.12 Scope and Classes of Symbolic Names

(The following information augments or overrides the information in Chapter 18 of ANSI

X3.9-1978 FORTRAN 77 in specifying the GNU Fortran language. Chapter 18 of that

document otherwise serves as the basis for the relevant aspects of GNU Fortran.)

10.12.1 Underscores in Symbol Names

Underscores (`_') are accepted in symbol names after the �rst character (which must be

a letter).

Chapter 11: Other Dialects 169

11 Other Dialects

GNU Fortran supports a variety of features that are not considered part of the GNU For-

tran language itself, but are representative of various dialects of Fortran that g77 supports

in whole or in part.

Any of the features listed below might be disallowed by g77 unless some command-line

option is speci�ed. Currently, some of the features are accepted using the default invocation

of g77, but that might change in the future.

Note: This portion of the documentation de�nitely needs a lot of work!

11.1 Source Form

GNU Fortran accepts programs written in either �xed form or free form.

Fixed form corresponds to ANSI FORTRAN 77 (plus popular extensions, such as allow-

ing tabs) and Fortran 90's �xed form.

Free form corresponds to Fortran 90's free form (though possibly not entirely up-to-date,

and without complaining about some things that for which Fortran 90 requires diagnostics,

such as the spaces in the constant in `R = 3 . 1').

The way a Fortran compiler views source �les depends entirely on the implementation

choices made for the compiler, since those choices are explicitly left to the implementation

by the published Fortran standards. GNU Fortran currently tries to be somewhat like a

few popular compilers (f2c, Digital (\DEC") Fortran, and so on), though a cleaner default

de�nition along with more exibility o�ered by command-line options is likely to be o�ered

in version 0.6.

This section describes how g77 interprets source lines.

11.1.1 Carriage Returns

Carriage returns (`\r') in source lines are ignored. This is somewhat di�erent from f2c,

which seems to treat them as spaces outside character/Hollerith constants, and encodes

them as `\r' inside such constants.

11.1.2 Tabs

A source line with a

h

TAB

i

character anywhere in it is treated as entirely signi�cant|

however long it is|instead of ending in column 72 (for �xed-form source) or 132 (for

free-form source). This also is di�erent from f2c, which encodes tabs as `\t' (the ASCII

h

TAB

i

character) inside character and Hollerith constants, but nevertheless seems to treat

the column position as if it had been a�ected by the canonical tab positioning.

g77 e�ectively translates tabs to the appropriate number of spaces (a la the default

for the UNIX expand command) before doing any other processing, other than (currently)

noting whether a tab was found on a line and using this information to decide how to

interpret the length of the line and continued constants.

Note that this default behavior probably will change for version 0.6, when it will pre-

sumably be available via a command-line option. The default as of version 0.6 is planned

170 Using and Porting GNU Fortran

to be a \pure visual" model, where tabs are immediately converted to spaces and other-

wise have no e�ect, so the way a typical user sees source lines produces a consistent result

no matter how the spacing in those source lines is actually implemented via tabs, spaces,

and trailing tabs/spaces before newline. Command-line options are likely to be added to

specify whether all or just-tabbed lines are to be extended to 132 or full input-line length,

and perhaps even an option will be added to specify the truncated-line behavior to which

some Digital compilers default (and which a�ects the way continued character/Hollerith

constants are interpreted).

11.1.3 Short Lines

Source lines shorter than the applicable �xed-form length are treated as if they were

padded with spaces to that length. (None of this is relevant to source �les written in free

form.)

This a�ects only continued character and Hollerith constants, and is a di�erent interpre-

tation than provided by some other popular compilers (although a bit more consistent with

the traditional punched-card basis of Fortran and the way the Fortran standard expressed

�xed source form).

g77 might someday o�er an option to warn about cases where di�erences might be seen

as a result of this treatment, and perhaps an option to specify the alternate behavior as

well.

Note that this padding cannot apply to lines that are e�ectively of in�nite length|

such lines are speci�ed using command-line options like `-ffixed-line-length-none', for

example.

11.1.4 Long Lines

Source lines longer than the applicable length are truncated to that length. Currently,

g77 does not warn if the truncated characters are not spaces, to accommodate existing code

written for systems that treated truncated text as commentary (especially in columns 73

through 80).

See Section 7.4 [Options Controlling Fortran Dialect], page 29, for information on the

`-ffixed-line-length-n' option, which can be used to set the line length applicable to

�xed-form source �les.

11.1.5 Ampersand Continuation Line

A `&' in column 1 of �xed-form source denotes an arbitrary-length continuation line,

imitating the behavior of f2c.

11.2 Trailing Comment

g77 supports use of `/*' to start a trailing comment. In the GNU Fortran language, `!'

is used for this purpose.

Chapter 11: Other Dialects 171

`/*' is not in the GNU Fortran language because the use of `/*' in a program might

suggest to some readers that a block, not trailing, comment is started (and thus ended by

`*/', not end of line), since that is the meaning of `/*' in C.

Also, such readers might think they can use `//' to start a trailing comment as an

alternative to `/*', but `//' already denotes concatenation, and such a \comment" might

actually result in a program that compiles without error (though it would likely behave

incorrectly).

11.3 Debug Line

Use of `D' or `d' as the �rst character (column 1) of a source line denotes a debug line.

In turn, a debug line is treated as either a comment line or a normal line, depending on

whether debug lines are enabled.

When treated as a comment line, a line beginning with `D' or `d' is treated as if it the

�rst character was `C' or `c', respectively. When treated as a normal line, such a line is

treated as if the �rst character was

h

SPC

i

(space).

(Currently, g77 provides no means for treating debug lines as normal lines.)

11.4 Dollar Signs in Symbol Names

Dollar signs (`$') are allowed in symbol names (after the �rst character) when the

`-fdollar-ok' option is speci�ed.

11.5 Case Sensitivity

GNU Fortran o�ers the programmer way too much exibility in deciding how source �les

are to be treated vis-a-vis uppercase and lowercase characters. There are 66 useful settings

that a�ect case sensitivity, plus 10 settings that are nearly useless, with the remaining 116

settings being either redundant or useless.

None of these settings have any e�ect on the contents of comments (the text after a `c'

or `C' in Column 1, for example) or of character or Hollerith constants. Note that things

like the `E' in the statement `CALL FOO(3.2E10)' and the `TO' in `ASSIGN 10 TO LAB' are

considered built-in keywords, and so are a�ected by these settings.

Low-level switches are identi�ed in this section as follows:

A Source Case Conversion:

0 Preserve (see Note 1)

1 Convert to Upper Case

2 Convert to Lower Case

B Built-in Keyword Matching:

0 Match Any Case (per-character basis)

1 Match Upper Case Only

2 Match Lower Case Only

3 Match InitialCaps Only (see tables for spellings)

172 Using and Porting GNU Fortran

C Built-in Intrinsic Matching:

0 Match Any Case (per-character basis)

1 Match Upper Case Only

2 Match Lower Case Only

3 Match InitialCaps Only (see tables for spellings)

D User-de�ned Symbol Possibilities (warnings only):

0 Allow Any Case (per-character basis)

1 Allow Upper Case Only

2 Allow Lower Case Only

3 Allow InitialCaps Only (see Note 2)

Note 1: g77 eventually will support NAMELIST in a manner that is consistent with these

source switches|in the sense that input will be expected to meet the same requirements as

source code in terms of matching symbol names and keywords (for the exponent letters).

Currently, however, NAMELIST is supported by libf2c, which uppercases NAMELIST input

and symbol names for matching. This means not only that NAMELIST output currently shows

symbol (and keyword) names in uppercase even if lower-case source conversion (option A2) is

selected, but that NAMELIST cannot be adequately supported when source case preservation

(option A0) is selected.

If A0 is selected, a warning message will be output for each NAMELIST statement to this

e�ect. The behavior of the program is unde�ned at run time if two or more symbol names

appear in a given NAMELIST such that the names are identical when converted to upper

case (e.g. `NAMELIST /X/ VAR, Var, var'). For complete and total elegance, perhaps there

should be a warning when option A2 is selected, since the output of NAMELIST is currently

in uppercase but will someday be lowercase (when a libg77 is written), but that seems to

be overkill for a product in beta test.

Note 2: Rules for InitialCaps names are:

{ Must be a single uppercase letter, or

{ Must start with an uppercase letter and contain at least one lowercase letter.

So `A', `Ab', `ABc', `AbC', and `Abc' are valid InitialCaps names, but `AB', `A2', and `ABC' are

not. Note that most, but not all, built-in names meet these requirements|the exceptions

are some of the two-letter format speci�ers, such as `BN' and `BZ'.

Here are the names of the corresponding command-line options:

A0: -fsource-case-preserve

A1: -fsource-case-upper

A2: -fsource-case-lower

B0: -fmatch-case-any

B1: -fmatch-case-upper

B2: -fmatch-case-lower

B3: -fmatch-case-initcap

C0: -fintrin-case-any

Chapter 11: Other Dialects 173

C1: -fintrin-case-upper

C2: -fintrin-case-lower

C3: -fintrin-case-initcap

D0: -fsymbol-case-any

D1: -fsymbol-case-upper

D2: -fsymbol-case-lower

D3: -fsymbol-case-initcap

Useful combinations of the above settings, along with abbreviated option names that set

some of these combinations all at once:

1: A0-- B0--- C0--- D0--- -fcase-preserve

2: A0-- B0--- C0--- D-1--

3: A0-- B0--- C0--- D--2-

4: A0-- B0--- C0--- D---3

5: A0-- B0--- C-1-- D0---

6: A0-- B0--- C-1-- D-1--

7: A0-- B0--- C-1-- D--2-

8: A0-- B0--- C-1-- D---3

9: A0-- B0--- C--2- D0---

10: A0-- B0--- C--2- D-1--

11: A0-- B0--- C--2- D--2-

12: A0-- B0--- C--2- D---3

13: A0-- B0--- C---3 D0---

14: A0-- B0--- C---3 D-1--

15: A0-- B0--- C---3 D--2-

16: A0-- B0--- C---3 D---3

17: A0-- B-1-- C0--- D0---

18: A0-- B-1-- C0--- D-1--

19: A0-- B-1-- C0--- D--2-

20: A0-- B-1-- C0--- D---3

21: A0-- B-1-- C-1-- D0---

22: A0-- B-1-- C-1-- D-1-- -fcase-strict-upper

23: A0-- B-1-- C-1-- D--2-

24: A0-- B-1-- C-1-- D---3

25: A0-- B-1-- C--2- D0---

26: A0-- B-1-- C--2- D-1--

27: A0-- B-1-- C--2- D--2-

28: A0-- B-1-- C--2- D---3

29: A0-- B-1-- C---3 D0---

30: A0-- B-1-- C---3 D-1--

31: A0-- B-1-- C---3 D--2-

32: A0-- B-1-- C---3 D---3

33: A0-- B--2- C0--- D0---

34: A0-- B--2- C0--- D-1--

35: A0-- B--2- C0--- D--2-

36: A0-- B--2- C0--- D---3

37: A0-- B--2- C-1-- D0---

38: A0-- B--2- C-1-- D-1--

174 Using and Porting GNU Fortran

39: A0-- B--2- C-1-- D--2-

40: A0-- B--2- C-1-- D---3

41: A0-- B--2- C--2- D0---

42: A0-- B--2- C--2- D-1--

43: A0-- B--2- C--2- D--2- -fcase-strict-lower

44: A0-- B--2- C--2- D---3

45: A0-- B--2- C---3 D0---

46: A0-- B--2- C---3 D-1--

47: A0-- B--2- C---3 D--2-

48: A0-- B--2- C---3 D---3

49: A0-- B---3 C0--- D0---

50: A0-- B---3 C0--- D-1--

51: A0-- B---3 C0--- D--2-

52: A0-- B---3 C0--- D---3

53: A0-- B---3 C-1-- D0---

54: A0-- B---3 C-1-- D-1--

55: A0-- B---3 C-1-- D--2-

56: A0-- B---3 C-1-- D---3

57: A0-- B---3 C--2- D0---

58: A0-- B---3 C--2- D-1--

59: A0-- B---3 C--2- D--2-

60: A0-- B---3 C--2- D---3

61: A0-- B---3 C---3 D0---

62: A0-- B---3 C---3 D-1--

63: A0-- B---3 C---3 D--2-

64: A0-- B---3 C---3 D---3 -fcase-initcap

65: A-1- B01-- C01-- D01-- -fcase-upper

66: A--2 B0-2- C0-2- D0-2- -fcase-lower

Number 22 is the \strict" ANSI FORTRAN 77 model wherein all input (except com-

ments, character constants, and Hollerith strings) must be entered in uppercase. Use

`-fcase-strict-upper' to specify this combination.

Number 43 is like Number 22 except all input must be lowercase. Use `-fcase-strict-lower'

to specify this combination.

Number 65 is the \classic" ANSI FORTRAN 77 model as implemented on many non-

UNIX machines whereby all the source is translated to uppercase. Use `-fcase-upper' to

specify this combination.

Number 66 is the \canonical" UNIX model whereby all the source is translated to low-

ercase. Use `-fcase-lower' to specify this combination.

There are a few nearly useless combinations:

67: A-1- B01-- C01-- D--2-

68: A-1- B01-- C01-- D---3

69: A-1- B01-- C--23 D01--

70: A-1- B01-- C--23 D--2-

71: A-1- B01-- C--23 D---3

72: A--2 B01-- C0-2- D-1--

73: A--2 B01-- C0-2- D---3

74: A--2 B01-- C-1-3 D0-2-

Chapter 11: Other Dialects 175

75: A--2 B01-- C-1-3 D-1--

76: A--2 B01-- C-1-3 D---3

The above allow some programs to be compiled but with restrictions that make most

useful programs impossible: Numbers 67 and 72 warn about any user-de�ned symbol names

(such as `SUBROUTINE FOO'); Numbers 68 and 73 warn about any user-de�ned symbol names

longer than one character that don't have at least one non-alphabetic character after the

�rst; Numbers 69 and 74 disallow any references to intrinsics; and Numbers 70, 71, 75, and

76 are combinations of the restrictions in 67+69, 68+69, 72+74, and 73+74, respectively.

All redundant combinations are shown in the above tables anyplace where more than

one setting is shown for a low-level switch. For example, `B0-2-' means either setting 0 or

2 is valid for switch B. The \proper" setting in such a case is the one that copies the setting

of switch A|any other setting might slightly reduce the speed of the compiler, though

possibly to an unmeasurable extent.

All remaining combinations are useless in that they prevent successful compilation of

non-null source �les (source �les with something other than comments).

11.6 VXT Fortran

g77 supports certain constructs that have di�erent meanings in VXT Fortran than they

do in the GNU Fortran language.

Generally, this manual uses the invented term VXT Fortran to refer VAX FORTRAN

(circa v4). That compiler o�ered many popular features, though not necessarily those

that are speci�c to the VAX processor architecture, the VMS operating system, or Digital

Equipment Corporation's Fortran product line. (VAX and VMS probably are trademarks

of Digital Equipment Corporation.)

An extension o�ered by a Digital Fortran product that also is o�ered by several other

Fortran products for di�erent kinds of systems is probably going to be considered for inclu-

sion in g77 someday, and is considered a VXT Fortran feature.

The `-fvxt' option generally speci�es that, where the meaning of a construct is ambigu-

ous (means one thing in GNU Fortran and another in VXT Fortran), the VXT Fortran

meaning is to be assumed.

11.6.1 Meaning of Double Quote

g77 treats double-quote (`"') as beginning an octal constant of INTEGER(KIND=1) type

when the -fvxt option is speci�ed. The form of this octal constant is

"octal-digits

where octal-digits is a nonempty string of characters in the set `01234567'.

For example, the -fvxt option permits this:

PRINT *, "20

END

The above program would print the value `16'.

See Section 10.7.3 [Integer Type], page 87, for information on the preferred construct for

integer constants speci�ed using GNU Fortran's octal notation.

176 Using and Porting GNU Fortran

(In the GNU Fortran language, the double-quote character (`"') delimits a character

constant just as does apostrophe (`''). There is no way to allow both constructs in the

general case, since statements like `PRINT *,"2000 !comment?"' would be ambiguous.)

11.6.2 Meaning of Exclamation Point in Column 6

g77 treats an exclamation point (`!') in column 6 of a �xed-form source �le as a continu-

ation character rather than as the beginning of a comment (as it does in any other column)

when the -fvxt option is speci�ed.

The following program, when run, prints a message indicating whether it is interpreted

according to GNU Fortran (and Fortran 90) rules or VXT Fortran rules:

C234567 (This line begins in column 1.)

I = 0

!1

IF (I.EQ.0) PRINT *, ' I am a VXT Fortran program'

IF (I.EQ.1) PRINT *, ' I am a Fortran 90 program'

IF (I.LT.0 .OR. I.GT.1) PRINT *, ' I am a HAL 9000 computer'

END

(In the GNU Fortran and Fortran 90 languages, exclamation point is a valid character

and, unlike space (

h

SPC

i

) or zero (`0'), marks a line as a continuation line when it appears

in column 6.)

11.7 Fortran 90

The GNU Fortran language includes a number of features that are part of Fortran 90,

even when the `-ff90' option is not speci�ed. The features enabled by `-ff90' are intended

to be those that, when `-ff90' is not speci�ed, would have another meaning to g77|usually

meaning something invalid in the GNU Fortran language.

So, the purpose of `-ff90' is not to specify whether g77 is to gratuitously reject Fortran

90 constructs. The `-pedantic' option speci�ed with `-fno-f90' is intended to do that,

although its implementation is certainly incomplete at this point.

When `-ff90' is speci�ed:

� The type of `REAL(expr)' and `AIMAG(expr)', where expr is COMPLEX type, is the same

type as the real part of expr.

For example, assuming `Z' is type COMPLEX(KIND=2), `REAL(Z)' would return a value

of type REAL(KIND=2), not of type REAL(KIND=1), since `-ff90' is speci�ed.

11.8 Pedantic Compilation

The `-fpedantic' command-line option speci�es that g77 is to warn about code that is

not standard-conforming. This is useful for �nding some extensions g77 accepts that other

compilers might not accept. (Note that the `-pedantic' and `-pedantic-errors' options

always imply `-fpedantic'.)

With `-fno-f90' in force, ANSI FORTRAN 77 is used as the standard for conforming

code. With `-ff90' in force, Fortran 90 is used.

Chapter 11: Other Dialects 177

The constructs for which g77 issues diagnostics when `-fpedantic' and `-fno-f90' are

in force are:

� Automatic arrays, as in

SUBROUTINE X(N)

REAL A(N)

: : :

where `A' is not listed in any ENTRY statement, and thus is not a dummy argument.

� The commas in `READ (5), I' and `WRITE (10), J'.

These commas are disallowed by FORTRAN 77, but, while strictly superuous, are

syntactically elegant, especially given that commas are required in statements such as

`READ 99, I' and `PRINT *, J'. Many compilers permit the superuous commas for this

reason.

� DOUBLE COMPLEX, either explicitly or implicitly.

An explicit use of this type is via a DOUBLE COMPLEX or IMPLICIT DOUBLE COMPLEX

statement, for examples.

An example of an implicit use is the expression `C*D', where `C' is COMPLEX(KIND=1) and

`D' is DOUBLE PRECISION. This expression is prohibited by ANSI FORTRAN 77 because

the rules of promotion would suggest that it produce a DOUBLE COMPLEX result|a type

not provided for by that standard.

� Automatic conversion of numeric expressions to INTEGER(KIND=1) in contexts such as:

{ Array-reference indexes.

{ Alternate-return values.

{ Computed GOTO.

{ FORMAT run-time expressions (not yet supported).

{ Dimension lists in speci�cation statements.

{ Numbers for I/O statements (such as `READ (UNIT=3.2), I')

{ Sizes of CHARACTER entities in speci�cation statements.

{ Kind types in speci�cation entities (a Fortran 90 feature).

{ Initial, terminal, and incrementation parameters for implied-DO constructs in DATA

statements.

� Automatic conversion of LOGICAL expressions to INTEGER in contexts such as arithmetic

IF (where COMPLEX expressions are disallowed anyway).

� Zero-size array dimensions, as in:

INTEGER I(10,20,4:2)

� Zero-length CHARACTER entities, as in:

PRINT *, ''

� Substring operators applied to character constants and named constants, as in:

PRINT *, 'hello'(3:5)

� Null arguments passed to statement function, as in:

PRINT *, FOO(,3)

178 Using and Porting GNU Fortran

� Disagreement among program units regarding whether a given COMMON area is SAVEd

(for targets where program units in a single source �le are \glued" together as they

typically are for UNIX development environments).

� Disagreement among program units regarding the size of a named COMMON block.

� Speci�cation statements following �rst DATA statement.

(In the GNU Fortran language, `DATA I/1/' may be followed by `INTEGER J', but not

`INTEGER I'. The `-fpedantic' option disallows both of these.)

� Semicolon as statement separator, as in:

CALL FOO; CALL BAR

� Use of `&' in column 1 of �xed-form source (to indicate continuation).

� Use of CHARACTER constants to initialize numeric entities, and vice versa.

� Expressions having two arithmetic operators in a row, such as `X*-Y'.

If `-fpedantic' is speci�ed along with `-ff90', the following constructs result in diag-

nostics:

� Use of semicolon as a statement separator on a line that has an INCLUDE directive.

11.9 Distensions

The `-fugly-*' command-line options determine whether certain features supported by

VAX FORTRAN and other such compilers, but considered too ugly to be in code that

can be changed to use safer and/or more portable constructs, are accepted. These are

humorously referred to as \distensions", extensions that just plain look ugly in the harsh

light of day.

Note: The `-fugly' option, which currently serves as shorthand to enable all of the

distensions below, is likely to be removed in a future version of g77. That's because it's

likely new distensions will be added that conict with existing ones in terms of assigning

meaning to a given chunk of code. (Also, it's pretty clear that users should not use `-fugly'

as shorthand when the next release of g77 might add a distension to that that causes their

existing code, when recompiled, to behave di�erently|perhaps even fail to compile or run

correctly.)

11.9.1 Implicit Argument Conversion

The `-fno-ugly-args' option disables passing typeless and Hollerith constants as actual

arguments in procedure invocations. For example:

CALL FOO(4HABCD)

CALL BAR('123'O)

These constructs can be too easily used to create non-portable code, but are not considered

as \ugly" as others. Further, they are widely used in existing Fortran source code in ways

that often are quite portable. Therefore, they are enabled by default.

Chapter 11: Other Dialects 179

11.9.2 Ugly Assumed-Size Arrays

The `-fugly-assumed' option enables the treatment of any array with a �nal dimension

speci�ed as `1' as an assumed-size array, as if `*' had been speci�ed instead.

For example, `DIMENSION X(1)' is treated as if it had read `DIMENSION X(*)' if `X' is

listed as a dummy argument in a preceding SUBROUTINE, FUNCTION, or ENTRY statement in

the same program unit.

Use an explicit lower bound to avoid this interpretation. For example, `DIMENSION

X(1:1)' is never treated as if it had read `DIMENSION X(*)' or `DIMENSION X(1:*)'. Nor

is `DIMENSION X(2-1)' a�ected by this option, since that kind of expression is unlikely to

have been intended to designate an assumed-size array.

This option is used to prevent warnings being issued about apparent out-of-bounds

reference such as `X(2) = 99'.

It also prevents the array from being used in contexts that disallow assumed-size arrays,

such as `PRINT *,X'. In such cases, a diagnostic is generated and the source �le is not

compiled.

The construct a�ected by this option is used only in old code that pre-exists the

widespread acceptance of adjustable and assumed-size arrays in the Fortran community.

Note: This option does not a�ect how `DIMENSION X(1)' is treated if `X' is listed as a

dummy argument only after the DIMENSION statement (presumably in an ENTRY statement).

For example, `-fugly-assumed' has no e�ect on the following program unit:

SUBROUTINE X

REAL A(1)

RETURN

ENTRY Y(A)

PRINT *, A

END

11.9.3 Ugly Complex Part Extraction

The `-fugly-complex' option enables use of the REAL() and AIMAG() intrinsics with

arguments that are COMPLEX types other than COMPLEX(KIND=1).

With `-ff90' in e�ect, these intrinsics return the unconverted real and imaginary parts

(respectively) of their argument.

With `-fno-f90' in e�ect, these intrinsics convert the real and imaginary parts to

REAL(KIND=1), and return the result of that conversion.

Due to this ambiguity, the GNU Fortran language de�nes these constructs as invalid,

except in the speci�c case where they are entirely and solely passed as an argument to an

invocation of the REAL() intrinsic. For example,

REAL(REAL(Z))

is permitted even when `Z' is COMPLEX(KIND=2) and `-fno-ugly-complex' is in e�ect, be-

cause the meaning is clear.

g77 enforces this restriction, unless `-fugly-complex' is speci�ed, in which case the

appropriate interpretation is chosen and no diagnostic is issued.

180 Using and Porting GNU Fortran

See Section 24.1 [CMPAMBIG], page 313, for information on how to cope with existing

code with unclear expectations of REAL() and AIMAG() with COMPLEX(KIND=2) arguments.

See Section 10.11.9.212 [RealPart Intrinsic], page 155, for information on the REALPART()

intrinsic, used to extract the real part of a complex expression without conversion. See Sec-

tion 10.11.9.146 [ImagPart Intrinsic], page 137, for information on the IMAGPART() intrinsic,

used to extract the imaginary part of a complex expression without conversion.

11.9.4 Ugly Null Arguments

The `-fugly-comma' option enables use of a single trailing comma to mean \pass an

extra trailing null argument" in a list of actual arguments to an external procedure, and

use of an empty list of arguments to such a procedure to mean \pass a single null argument".

(Null arguments often are used in some procedure-calling schemes to indicate omitted

arguments.)

For example, `CALL FOO(,)' means \pass two null arguments", rather than \pass one

null argument". Also, `CALL BAR()' means \pass one null argument".

This construct is considered \ugly" because it does not provide an elegant way to pass a

single null argument that is syntactically distinct from passing no arguments. That is, this

construct changes the meaning of code that makes no use of the construct.

So, with `-fugly-comma' in force, `CALL FOO()' and `I = JFUNC()' pass a single null

argument, instead of passing no arguments as required by the Fortran 77 and 90 standards.

Note: Many systems gracefully allow the case where a procedure call passes one extra

argument that the called procedure does not expect.

So, in practice, there might be no di�erence in the behavior of a program that does `CALL

FOO()' or `I = JFUNC()' and is compiled with `-fugly-comma' in force as compared to its

behavior when compiled with the default, `-fno-ugly-comma', in force, assuming `FOO' and

`JFUNC' do not expect any arguments to be passed.

11.9.5 Ugly Conversion of Initializers

The constructs disabled by `-fno-ugly-init' are:

� Use of Hollerith and typeless constants in contexts where they set initial (compile-

time) values for variables, arrays, and named constants|that is, DATA and PARAMETER

statements, plus type-declaration statements specifying initial values.

Here are some sample initializations that are disabled by the `-fno-ugly-init' option:

PARAMETER (VAL='9A304FFE'X)

REAL*8 STRING/8HOUTPUT00/

DATA VAR/4HABCD/

� In the same contexts as above, use of character constants to initialize numeric items

and vice versa (one constant per item).

Here are more sample initializations that are disabled by the `-fno-ugly-init' option:

INTEGER IA

CHARACTER BELL

PARAMETER (IA = 'A')

PARAMETER (BELL = 7)

Chapter 11: Other Dialects 181

� Use of Hollerith and typeless constants on the right-hand side of assignment statements

to numeric types, and in other contexts (such as passing arguments in invocations of

intrinsic procedures and statement functions) that are treated as assignments to known

types (the dummy arguments, in these cases).

Here are sample statements that are disabled by the `-fno-ugly-init' option:

IVAR = 4HABCD

PRINT *, IMAX0(2HAB, 2HBA)

The above constructs, when used, can tend to result in non-portable code. But, they

are widely used in existing Fortran code in ways that often are quite portable. Therefore,

they are enabled by default.

11.9.6 Ugly Integer Conversions

The constructs enabled via `-fugly-logint' are:

� Automatic conversion between INTEGER and LOGICAL as dictated by context (typically

implies nonportable dependencies on how a particular implementation encodes .TRUE.

and .FALSE.).

� Use of a LOGICAL variable in ASSIGN and assigned-GOTO statements.

The above constructs are disabled by default because use of them tends to lead to non-

portable code. Even existing Fortran code that uses that often turns out to be non-portable,

if not outright buggy.

Some of this is due to di�erences among implementations as far as how .TRUE. and

.FALSE. are encoded as INTEGER values|Fortran code that assumes a particular coding

is likely to use one of the above constructs, and is also likely to not work correctly on

implementations using di�erent encodings.

See Section 18.5.5 [Equivalence Versus Equality], page 287, for more information.

11.9.7 Ugly Assigned Labels

The `-fugly-assign' option forces g77 to use the same storage for assigned labels as it

would for a normal assignment to the same variable.

For example, consider the following code fragment:

I = 3

ASSIGN 10 TO I

Normally, for portability and improved diagnostics, g77 reserves distinct storage for a \sib-

ling" of `I', used only for ASSIGN statements to that variable (along with the corresponding

assigned-GOTO and assigned-`FORMAT'-I/O statements that reference the variable).

However, some code (that violates the ANSI FORTRAN 77 standard) attempts to copy

assigned labels among variables involved with ASSIGN statements, as in:

ASSIGN 10 TO I

ISTATE(5) = I

: : :

J = ISTATE(ICUR)

GOTO J

182 Using and Porting GNU Fortran

Such code doesn't work under g77 unless `-fugly-assign' is speci�ed on the command-

line, ensuring that the value of I referenced in the second line is whatever value g77 uses

to designate statement label `10', so the value may be copied into the `ISTATE' array, later

retrieved into a variable of the appropriate type (`J'), and used as the target of an assigned-

GOTO statement.

Note: To avoid subtle program bugs, when `-fugly-assign' is speci�ed, g77 requires

the type of variables speci�ed in assigned-label contexts must be the same type returned

by %LOC(). On many systems, this type is e�ectively the same as INTEGER(KIND=1), while,

on others, it is e�ectively the same as INTEGER(KIND=2).

Do not depend on g77 actually writing valid pointers to these variables, however. While

g77 currently chooses that implementation, it might be changed in the future.

See Section 16.12 [Assigned Statement Labels (ASSIGN and GOTO)], page 249, for

implementation details on assigned-statement labels.

Chapter 12: The GNU Fortran Compiler 183

12 The GNU Fortran Compiler

The GNU Fortran compiler, g77, supports programs written in the GNU Fortran lan-

guage and in some other dialects of Fortran.

Some aspects of how g77 works are universal regardless of dialect, and yet are not

properly part of the GNU Fortran language itself. These are described below.

Note: This portion of the documentation de�nitely needs a lot of work!

12.1 Compiler Limits

g77, as with GNU tools in general, imposes few arbitrary restrictions on lengths of

identi�ers, number of continuation lines, number of external symbols in a program, and so

on.

For example, some other Fortran compiler have an option (such as `-Nlx') to increase

the limit on the number of continuation lines. Also, some Fortran compilation systems have

an option (such as `-Nxx') to increase the limit on the number of external symbols.

g77, gcc, and GNU ld (the GNU linker) have no equivalent options, since they do not

impose arbitrary limits in these areas.

g77 does currently limit the number of dimensions in an array to the same degree as do

the Fortran standards|seven (7). This restriction might well be lifted in a future version.

12.2 Compiler Types

Fortran implementations have a fair amount of freedom given them by the standard as

far as how much storage space is used and how much precision and range is o�ered by the

various types such as LOGICAL(KIND=1), INTEGER(KIND=1), REAL(KIND=1), REAL(KIND=2),

COMPLEX(KIND=1), and CHARACTER. Further, many compilers o�er so-called `*n' notation,

but the interpretation of n varies across compilers and target architectures.

The standard requires that LOGICAL(KIND=1), INTEGER(KIND=1), and REAL(KIND=1) oc-

cupy the same amount of storage space, and that COMPLEX(KIND=1) and REAL(KIND=2) take

twice as much storage space as REAL(KIND=1). Further, it requires that COMPLEX(KIND=1)

entities be ordered such that when a COMPLEX(KIND=1) variable is storage-associated (such

as via EQUIVALENCE) with a two-element REAL(KIND=1) array named `R', `R(1)' corresponds

to the real element and `R(2)' to the imaginary element of the COMPLEX(KIND=1) variable.

(Few requirements as to precision or ranges of any of these are placed on the implemen-

tation, nor is the relationship of storage sizes of these types to the CHARACTER type speci�ed,

by the standard.)

g77 follows the above requirements, warning when compiling a program requires place-

ment of items in memory that contradict the requirements of the target architecture. (For

example, a program can require placement of a REAL(KIND=2) on a boundary that is not an

even multiple of its size, but still an even multiple of the size of a REAL(KIND=1) variable.

On some target architectures, using the canonical mapping of Fortran types to underlying

architectural types, such placement is prohibited by the machine de�nition or the Applica-

tion Binary Interface (ABI) in force for the con�guration de�ned for building gcc and g77.

g77 warns about such situations when it encounters them.)

184 Using and Porting GNU Fortran

g77 follows consistent rules for con�guring the mapping between Fortran types, includ-

ing the `*n' notation, and the underlying architectural types as accessed by a similarly-

con�gured applicable version of the gcc compiler. These rules o�er a widely portable,

consistent Fortran/C environment, although they might well conict with the expectations

of users of Fortran compilers designed and written for particular architectures.

These rules are based on the con�guration that is in force for the version of gcc built

in the same release as g77 (and which was therefore used to build both the g77 compiler

components and the libf2c run-time library):

REAL(KIND=1)

Same as float type.

REAL(KIND=2)

Same as whatever oating-point type that is twice the size of a float|usually,

this is a double.

INTEGER(KIND=1)

Same as an integral type that is occupies the same amount of memory storage

as float|usually, this is either an int or a long int.

LOGICAL(KIND=1)

Same gcc type as INTEGER(KIND=1).

INTEGER(KIND=2)

Twice the size, and usually nearly twice the range, as INTEGER(KIND=1)|

usually, this is either a long int or a long long int.

LOGICAL(KIND=2)

Same gcc type as INTEGER(KIND=2).

INTEGER(KIND=3)

Same gcc type as signed char.

LOGICAL(KIND=3)

Same gcc type as INTEGER(KIND=3).

INTEGER(KIND=6)

Twice the size, and usually nearly twice the range, as INTEGER(KIND=3)|

usually, this is a short.

LOGICAL(KIND=6)

Same gcc type as INTEGER(KIND=6).

COMPLEX(KIND=1)

Two REAL(KIND=1) scalars (one for the real part followed by one for the imag-

inary part).

COMPLEX(KIND=2)

Two REAL(KIND=2) scalars.

numeric-type*n

(Where numeric-type is any type other than CHARACTER.) Same as whatever

gcc type occupies n times the storage space of a gcc char item.

Chapter 12: The GNU Fortran Compiler 185

DOUBLE PRECISION

Same as REAL(KIND=2).

DOUBLE COMPLEX

Same as COMPLEX(KIND=2).

Note that the above are proposed correspondences and might change in future versions

of g77|avoid writing code depending on them.

Other types supported by g77 are derived from gcc types such as char, short, int,

long int, long long int, long double, and so on. That is, whatever types gcc already

supports, g77 supports now or probably will support in a future version. The rules for the

`numeric-type*n' notation apply to these types, and new values for `numeric-type(KIND=n)'

will be assigned in a way that encourages clarity, consistency, and portability.

12.3 Compiler Constants

g77 strictly assigns types to all constants not documented as \typeless" (typeless con-

stants including `'1'Z', for example). Many other Fortran compilers attempt to assign

types to typed constants based on their context. This results in hard-to-�nd bugs, non-

portable code, and is not in the spirit (though it strictly follows the letter) of the 77 and

90 standards.

g77 might o�er, in a future release, explicit constructs by which a wider variety of

typeless constants may be speci�ed, and/or user-requested warnings indicating places where

g77 might di�er from how other compilers assign types to constants.

See Section 18.5.4 [Context-Sensitive Constants], page 286, for more information on this

issue.

12.4 Compiler Intrinsics

g77 o�ers an ever-widening set of intrinsics. Currently these all are procedures (functions

and subroutines).

Some of these intrinsics are unimplemented, but their names reserved to reduce future

problems with existing code as they are implemented. Others are implemented as part

of the GNU Fortran language, while yet others are provided for compatibility with other

dialects of Fortran but are not part of the GNU Fortran language.

To manage these distinctions, g77 provides intrinsic groups, a facility that is simply an

extension of the intrinsic groups provided by the GNU Fortran language.

12.4.1 Intrinsic Groups

A given speci�c intrinsic belongs in one or more groups. Each group is deleted, disabled,

hidden, or enabled by default or a command-line option. The meaning of each term follows.

Deleted No intrinsics are recognized as belonging to that group.

Disabled Intrinsics are recognized as belonging to the group, but references to them

(other than via the INTRINSIC statement) are disallowed through that group.

186 Using and Porting GNU Fortran

Hidden Intrinsics in that group are recognized and enabled (if implemented) only if

the �rst mention of the actual name of an intrinsic in a program unit is in an

INTRINSIC statement.

Enabled Intrinsics in that group are recognized and enabled (if implemented).

The distinction between deleting and disabling a group is illustrated by the following

example. Assume intrinsic `FOO' belongs only to group `FGR'. If group `FGR' is deleted, the

following program unit will successfully compile, because `FOO()' will be seen as a reference

to an external function named `FOO':

PRINT *, FOO()

END

If group `FGR' is disabled, compiling the above program will produce diagnostics, either

because the `FOO' intrinsic is improperly invoked or, if properly invoked, it is not enabled.

To change the above program so it references an external function `FOO' instead of the

disabled `FOO' intrinsic, add the following line to the top:

EXTERNAL FOO

So, deleting a group tells g77 to pretend as though the intrinsics in that group do not exist

at all, whereas disabling it tells g77 to recognize them as (disabled) intrinsics in intrinsic-like

contexts.

Hiding a group is like enabling it, but the intrinsic must be �rst named in an INTRINSIC

statement to be considered a reference to the intrinsic rather than to an external procedure.

This might be the \safest" way to treat a new group of intrinsics when compiling old code,

because it allows the old code to be generally written as if those new intrinsics never existed,

but to be changed to use them by inserting INTRINSIC statements in the appropriate places.

However, it should be the goal of development to use EXTERNAL for all names of external

procedures that might be intrinsic names.

If an intrinsic is in more than one group, it is enabled if any of its containing groups

are enabled; if not so enabled, it is hidden if any of its containing groups are hidden; if

not so hidden, it is disabled if any of its containing groups are disabled; if not so disabled,

it is deleted. This extra complication is necessary because some intrinsics, such as IBITS,

belong to more than one group, and hence should be enabled if any of the groups to which

they belong are enabled, and so on.

The groups are:

badu77 UNIX intrinsics having inappropriate forms (usually functions that have in-

tended side e�ects).

gnu Intrinsics the GNU Fortran language supports that are extensions to the Fortran

standards (77 and 90).

f2c Intrinsics supported by AT&T's f2c converter and/or libf2c.

f90 Fortran 90 intrinsics.

mil MIL-STD 1753 intrinsics (MVBITS, IAND, BTEST, and so on).

unix UNIX intrinsics (IARGC, EXIT, ERF, and so on).

vxt VAX/VMS FORTRAN (current as of v4) intrinsics.

Chapter 12: The GNU Fortran Compiler 187

12.4.2 Other Intrinsics

g77 supports intrinsics other than those in the GNU Fortran language proper. This set

of intrinsics is described below.

12.4.2.1 ACosD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL ACosD' to use this name for an external procedure.

12.4.2.2 AIMax0 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL AIMax0' to use this name for an external procedure.

12.4.2.3 AIMin0 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL AIMin0' to use this name for an external procedure.

12.4.2.4 AJMax0 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL AJMax0' to use this name for an external procedure.

12.4.2.5 AJMin0 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL AJMin0' to use this name for an external procedure.

12.4.2.6 ASinD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL ASinD' to use this name for an external procedure.

12.4.2.7 ATan2D Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL ATan2D' to use this name for an external procedure.

12.4.2.8 ATanD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL ATanD' to use this name for an external procedure.

12.4.2.9 BITest Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL BITest' to use this name for an external procedure.

188 Using and Porting GNU Fortran

12.4.2.10 BJTest Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL BJTest' to use this name for an external procedure.

12.4.2.11 CDAbs Intrinsic

CDAbs(A)

CDAbs: REAL(KIND=2) function.

A: COMPLEX(KIND=2); scalar; INTENT(IN).

Intrinsic groups: f2c, vxt.

Description:

Archaic form of ABS() that is speci�c to one type for A. See Section 10.11.9.2 [Abs

Intrinsic], page 98.

12.4.2.12 CDCos Intrinsic

CDCos(X)

CDCos: COMPLEX(KIND=2) function.

X : COMPLEX(KIND=2); scalar; INTENT(IN).

Intrinsic groups: f2c, vxt.

Description:

Archaic form of COS() that is speci�c to one type for X. See Section 10.11.9.46 [Cos

Intrinsic], page 110.

12.4.2.13 CDExp Intrinsic

CDExp(X)

CDExp: COMPLEX(KIND=2) function.

X : COMPLEX(KIND=2); scalar; INTENT(IN).

Intrinsic groups: f2c, vxt.

Description:

Archaic form of EXP() that is speci�c to one type for X. See Section 10.11.9.99 [Exp

Intrinsic], page 123.

12.4.2.14 CDLog Intrinsic

CDLog(X)

CDLog: COMPLEX(KIND=2) function.

X : COMPLEX(KIND=2); scalar; INTENT(IN).

Intrinsic groups: f2c, vxt.

Description:

Archaic form of LOG() that is speci�c to one type for X. See Section 10.11.9.170 [Log

Intrinsic], page 145.

Chapter 12: The GNU Fortran Compiler 189

12.4.2.15 CDSin Intrinsic

CDSin(X)

CDSin: COMPLEX(KIND=2) function.

X : COMPLEX(KIND=2); scalar; INTENT(IN).

Intrinsic groups: f2c, vxt.

Description:

Archaic form of SIN() that is speci�c to one type for X. See Section 10.11.9.229 [Sin

Intrinsic], page 159.

12.4.2.16 CDSqRt Intrinsic

CDSqRt(X)

CDSqRt: COMPLEX(KIND=2) function.

X : COMPLEX(KIND=2); scalar; INTENT(IN).

Intrinsic groups: f2c, vxt.

Description:

Archaic form of SQRT() that is speci�c to one type for X. See Section 10.11.9.235 [SqRt

Intrinsic], page 160.

12.4.2.17 ChDir Intrinsic (function)

ChDir(Dir)

ChDir: INTEGER(KIND=1) function.

Dir: CHARACTER; scalar; INTENT(IN).

Intrinsic groups: badu77.

Description:

Sets the current working directory to be Dir. Returns 0 on success or a non-zero error

code. See chdir(3).

Caution: Using this routine during I/O to a unit connected with a non-absolute �le

name can cause subsequent I/O on such a unit to fail because the I/O library may reopen

�les by name.

Due to the side e�ects performed by this intrinsic, the function form is not recommended.

For information on other intrinsics with the same name: See Section 10.11.9.40 [ChDir

Intrinsic (subroutine)], page 108.

12.4.2.18 ChMod Intrinsic (function)

ChMod(Name, Mode)

ChMod: INTEGER(KIND=1) function.

Name: CHARACTER; scalar; INTENT(IN).

Mode: CHARACTER; scalar; INTENT(IN).

190 Using and Porting GNU Fortran

Intrinsic groups: badu77.

Description:

Changes the access mode of �le Name according to the speci�cation Mode, which is

given in the format of chmod(1). A null character (`CHAR(0)') marks the end of the name in

Name|otherwise, trailing blanks in Name are ignored. Currently, Name must not contain

the single quote character.

Returns 0 on success or a non-zero error code otherwise.

Note that this currently works by actually invoking /bin/chmod (or the chmod found

when the library was con�gured) and so may fail in some circumstances and will, anyway,

be slow.

Due to the side e�ects performed by this intrinsic, the function form is not recommended.

For information on other intrinsics with the same name: See Section 10.11.9.41 [ChMod

Intrinsic (subroutine)], page 109.

12.4.2.19 CosD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL CosD' to use this name for an external procedure.

12.4.2.20 DACosD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL DACosD' to use this name for an external procedure.

12.4.2.21 DASinD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL DASinD' to use this name for an external procedure.

12.4.2.22 DATan2D Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL DATan2D' to use this name for an external procedure.

12.4.2.23 DATanD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL DATanD' to use this name for an external procedure.

12.4.2.24 Date Intrinsic

CALL Date(Date)

Date: CHARACTER; scalar; INTENT(OUT).

Intrinsic groups: vxt.

Description:

Chapter 12: The GNU Fortran Compiler 191

Returns Date in the form `dd-mmm-yy ', representing the numeric day of the month

dd, a three-character abbreviation of the month name mmm and the last two digits of the

year yy, e.g. `25-Nov-96'.

This intrinsic is not recommended, due to the year 2000 approaching. See Sec-

tion 10.11.9.53 [CTime Intrinsic (subroutine)], page 112, for information on obtaining

more digits for the current (or any) date.

12.4.2.25 DbleQ Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL DbleQ' to use this name for an external procedure.

12.4.2.26 DCmplx Intrinsic

DCmplx(X, Y)

DCmplx: COMPLEX(KIND=2) function.

X : INTEGER, REAL, or COMPLEX; scalar; INTENT(IN).

Y : INTEGER or REAL; OPTIONAL (must be omitted if X is COMPLEX); scalar; INTENT(IN).

Intrinsic groups: f2c, vxt.

Description:

If X is not type COMPLEX, constructs a value of type COMPLEX(KIND=2) from the real and

imaginary values speci�ed by X and Y, respectively. If Y is omitted, `0D0' is assumed.

If X is type COMPLEX, converts it to type COMPLEX(KIND=2).

Although this intrinsic is not standard Fortran, it is a popular extension o�ered by many

compilers that support DOUBLE COMPLEX, since it o�ers the easiest way to convert to DOUBLE

COMPLEX without using Fortran 90 features (such as the `KIND=' argument to the CMPLX()

intrinsic).

(`CMPLX(0D0, 0D0)' returns a single-precision COMPLEX result, as required by standard

FORTRAN 77. That's why so many compilers provide DCMPLX(), since `DCMPLX(0D0,

0D0)' returns a DOUBLE COMPLEX result. Still, DCMPLX() converts even REAL*16 arguments

to their REAL*8 equivalents in most dialects of Fortran, so neither it nor CMPLX() allow easy

construction of arbitrary-precision values without potentially forcing a conversion involving

extending or reducing precision. GNU Fortran provides such an intrinsic, called COMPLEX().)

See Section 10.11.9.44 [Complex Intrinsic], page 110, for information on easily construct-

ing a COMPLEX value of arbitrary precision from REAL arguments.

12.4.2.27 DConjg Intrinsic

DConjg(Z)

DConjg: COMPLEX(KIND=2) function.

Z : COMPLEX(KIND=2); scalar; INTENT(IN).

Intrinsic groups: f2c, vxt.

Description:

Archaic form of CONJG() that is speci�c to one type for Z. See Section 10.11.9.45 [Conjg

Intrinsic], page 110.

192 Using and Porting GNU Fortran

12.4.2.28 DCosD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL DCosD' to use this name for an external procedure.

12.4.2.29 DFloat Intrinsic

DFloat(A)

DFloat: REAL(KIND=2) function.

A: INTEGER; scalar; INTENT(IN).

Intrinsic groups: f2c, vxt.

Description:

Archaic form of REAL() that is speci�c to one type for A. See Section 10.11.9.211 [Real

Intrinsic], page 154.

12.4.2.30 DFlotI Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL DFlotI' to use this name for an external procedure.

12.4.2.31 DFlotJ Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL DFlotJ' to use this name for an external procedure.

12.4.2.32 DImag Intrinsic

DImag(Z)

DImag: REAL(KIND=2) function.

Z : COMPLEX(KIND=2); scalar; INTENT(IN).

Intrinsic groups: f2c, vxt.

Description:

Archaic form of AIMAG() that is speci�c to one type for Z. See Section 10.11.9.8 [AImag

Intrinsic], page 100.

12.4.2.33 DReal Intrinsic

DReal(A)

DReal: REAL(KIND=2) function.

A: INTEGER, REAL, or COMPLEX; scalar; INTENT(IN).

Intrinsic groups: vxt.

Description:

Converts A to REAL(KIND=2).

Chapter 12: The GNU Fortran Compiler 193

If A is type COMPLEX, its real part is converted (if necessary) to REAL(KIND=2), and its

imaginary part is disregarded.

Although this intrinsic is not standard Fortran, it is a popular extension o�ered by many

compilers that support DOUBLE COMPLEX, since it o�ers the easiest way to extract the real

part of a DOUBLE COMPLEX value without using the Fortran 90 REAL() intrinsic in a way that

produces a return value inconsistent with the way many FORTRAN 77 compilers handle

REAL() of a DOUBLE COMPLEX value.

See Section 10.11.9.212 [RealPart Intrinsic], page 155, for information on a GNU Fortran

intrinsic that avoids these areas of confusion.

See Section 10.11.9.67 [Dble Intrinsic], page 115, for information on the standard FOR-

TRAN 77 replacement for DREAL().

See Section 10.11.5 [REAL() and AIMAG() of Complex], page 96, for more information

on this issue.

12.4.2.34 DSinD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL DSinD' to use this name for an external procedure.

12.4.2.35 DTanD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL DTanD' to use this name for an external procedure.

12.4.2.36 Dtime Intrinsic (function)

Dtime(TArray)

Dtime: REAL(KIND=1) function.

TArray : REAL(KIND=1); DIMENSION(2); INTENT(OUT).

Intrinsic groups: badu77.

Description:

Initially, return the number of seconds of runtime since the start of the process's execu-

tion as the function value, and the user and system components of this in `TArray(1)' and

`TArray(2)' respectively. The functions' value is equal to `TArray(1) + TArray(2)'.

Subsequent invocations of `DTIME()' return values accumulated since the previous invo-

cation.

Due to the side e�ects performed by this intrinsic, the function form is not recommended.

For information on other intrinsics with the same name: See Section 10.11.9.91 [Dtime

Intrinsic (subroutine)], page 121.

194 Using and Porting GNU Fortran

12.4.2.37 FGet Intrinsic (function)

FGet(C)

FGet: INTEGER(KIND=1) function.

C : CHARACTER; scalar; INTENT(OUT).

Intrinsic groups: badu77.

Description:

Reads a single character into C in stream mode from unit 5 (by-passing normal formatted

input) using getc(3). Returns 0 on success, �1 on end-of-�le, and the error code from

ferror(3) otherwise.

Stream I/O should not be mixed with normal record-oriented (formatted or unformatted)

I/O on the same unit; the results are unpredictable.

For information on other intrinsics with the same name: See Section 10.11.9.103 [FGet

Intrinsic (subroutine)], page 124.

12.4.2.38 FGetC Intrinsic (function)

FGetC(Unit, C)

FGetC: INTEGER(KIND=1) function.

Unit: INTEGER; scalar; INTENT(IN).

C : CHARACTER; scalar; INTENT(OUT).

Intrinsic groups: badu77.

Description:

Reads a single character into C in stream mode from unit Unit (by-passing normal

formatted output) using getc(3). Returns 0 on success, �1 on end-of-�le, and the error

code from ferror(3) otherwise.

Stream I/O should not be mixed with normal record-oriented (formatted or unformatted)

I/O on the same unit; the results are unpredictable.

For information on other intrinsics with the same name: See Section 10.11.9.104 [FGetC

Intrinsic (subroutine)], page 125.

12.4.2.39 FloatI Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL FloatI' to use this name for an external procedure.

12.4.2.40 FloatJ Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL FloatJ' to use this name for an external procedure.

Chapter 12: The GNU Fortran Compiler 195

12.4.2.41 FPut Intrinsic (function)

FPut(C)

FPut: INTEGER(KIND=1) function.

C : CHARACTER; scalar; INTENT(IN).

Intrinsic groups: badu77.

Description:

Writes the single character C in stream mode to unit 6 (by-passing normal formatted

output) using getc(3). Returns 0 on success, the error code from ferror(3) otherwise.

Stream I/O should not be mixed with normal record-oriented (formatted or unformatted)

I/O on the same unit; the results are unpredictable.

For information on other intrinsics with the same name: See Section 10.11.9.109 [FPut

Intrinsic (subroutine)], page 126.

12.4.2.42 FPutC Intrinsic (function)

FPutC(Unit, C)

FPutC: INTEGER(KIND=1) function.

Unit: INTEGER; scalar; INTENT(IN).

C : CHARACTER; scalar; INTENT(IN).

Intrinsic groups: badu77.

Description:

Writes the single character C in stream mode to unit Unit (by-passing normal formatted

output) using putc(3). Returns 0 on success, the error code from ferror(3) otherwise.

Stream I/O should not be mixed with normal record-oriented (formatted or unformatted)

I/O on the same unit; the results are unpredictable.

For information on other intrinsics with the same name: See Section 10.11.9.110 [FPutC

Intrinsic (subroutine)], page 126.

12.4.2.43 IDate Intrinsic (VXT)

CALL IDate(M, D, Y)

M : INTEGER(KIND=1); scalar; INTENT(OUT).

D: INTEGER(KIND=1); scalar; INTENT(OUT).

Y : INTEGER(KIND=1); scalar; INTENT(OUT).

Intrinsic groups: vxt.

Description:

Returns the numerical values of the current local time. The month (in the range 1{12)

is returned in M, the day (in the range 1{7) in D, and the year in Y (in the range 0{99).

This intrinsic is not recommended, due to the year 2000 approaching.

For information on other intrinsics with the same name: See Section 10.11.9.138 [IDate

Intrinsic (UNIX)], page 135.

196 Using and Porting GNU Fortran

12.4.2.44 IIAbs Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL IIAbs' to use this name for an external procedure.

12.4.2.45 IIAnd Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL IIAnd' to use this name for an external procedure.

12.4.2.46 IIBClr Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL IIBClr' to use this name for an external procedure.

12.4.2.47 IIBits Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL IIBits' to use this name for an external procedure.

12.4.2.48 IIBSet Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL IIBSet' to use this name for an external procedure.

12.4.2.49 IIDiM Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL IIDiM' to use this name for an external procedure.

12.4.2.50 IIDInt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL IIDInt' to use this name for an external procedure.

12.4.2.51 IIDNnt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL IIDNnt' to use this name for an external procedure.

12.4.2.52 IIEOr Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL IIEOr' to use this name for an external procedure.

12.4.2.53 IIFix Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL IIFix' to use this name for an external procedure.

Chapter 12: The GNU Fortran Compiler 197

12.4.2.54 IInt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL IInt' to use this name for an external procedure.

12.4.2.55 IIOr Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL IIOr' to use this name for an external procedure.

12.4.2.56 IIQint Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL IIQint' to use this name for an external procedure.

12.4.2.57 IIQNnt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL IIQNnt' to use this name for an external procedure.

12.4.2.58 IIShftC Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL IIShftC' to use this name for an external procedure.

12.4.2.59 IISign Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL IISign' to use this name for an external procedure.

12.4.2.60 IMax0 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL IMax0' to use this name for an external procedure.

12.4.2.61 IMax1 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL IMax1' to use this name for an external procedure.

12.4.2.62 IMin0 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL IMin0' to use this name for an external procedure.

12.4.2.63 IMin1 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL IMin1' to use this name for an external procedure.

198 Using and Porting GNU Fortran

12.4.2.64 IMod Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL IMod' to use this name for an external procedure.

12.4.2.65 INInt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL INInt' to use this name for an external procedure.

12.4.2.66 INot Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL INot' to use this name for an external procedure.

12.4.2.67 IZExt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL IZExt' to use this name for an external procedure.

12.4.2.68 JIAbs Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL JIAbs' to use this name for an external procedure.

12.4.2.69 JIAnd Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL JIAnd' to use this name for an external procedure.

12.4.2.70 JIBClr Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL JIBClr' to use this name for an external procedure.

12.4.2.71 JIBits Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL JIBits' to use this name for an external procedure.

12.4.2.72 JIBSet Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL JIBSet' to use this name for an external procedure.

12.4.2.73 JIDiM Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL JIDiM' to use this name for an external procedure.

Chapter 12: The GNU Fortran Compiler 199

12.4.2.74 JIDInt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL JIDInt' to use this name for an external procedure.

12.4.2.75 JIDNnt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL JIDNnt' to use this name for an external procedure.

12.4.2.76 JIEOr Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL JIEOr' to use this name for an external procedure.

12.4.2.77 JIFix Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL JIFix' to use this name for an external procedure.

12.4.2.78 JInt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL JInt' to use this name for an external procedure.

12.4.2.79 JIOr Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL JIOr' to use this name for an external procedure.

12.4.2.80 JIQint Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL JIQint' to use this name for an external procedure.

12.4.2.81 JIQNnt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL JIQNnt' to use this name for an external procedure.

12.4.2.82 JIShft Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL JIShft' to use this name for an external procedure.

12.4.2.83 JIShftC Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL JIShftC' to use this name for an external procedure.

200 Using and Porting GNU Fortran

12.4.2.84 JISign Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL JISign' to use this name for an external procedure.

12.4.2.85 JMax0 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL JMax0' to use this name for an external procedure.

12.4.2.86 JMax1 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL JMax1' to use this name for an external procedure.

12.4.2.87 JMin0 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL JMin0' to use this name for an external procedure.

12.4.2.88 JMin1 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL JMin1' to use this name for an external procedure.

12.4.2.89 JMod Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL JMod' to use this name for an external procedure.

12.4.2.90 JNInt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL JNInt' to use this name for an external procedure.

12.4.2.91 JNot Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL JNot' to use this name for an external procedure.

12.4.2.92 JZExt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL JZExt' to use this name for an external procedure.

Chapter 12: The GNU Fortran Compiler 201

12.4.2.93 Kill Intrinsic (function)

Kill(Pid, Signal)

Kill: INTEGER(KIND=1) function.

Pid: INTEGER; scalar; INTENT(IN).

Signal: INTEGER; scalar; INTENT(IN).

Intrinsic groups: badu77.

Description:

Sends the signal speci�ed by Signal to the process Pid. Returns 0 on success or a non-zero

error code. See kill(2).

Due to the side e�ects performed by this intrinsic, the function form is not recommended.

For information on other intrinsics with the same name: See Section 10.11.9.158 [Kill

Intrinsic (subroutine)], page 141.

12.4.2.94 Link Intrinsic (function)

Link(Path1, Path2)

Link: INTEGER(KIND=1) function.

Path1: CHARACTER; scalar; INTENT(IN).

Path2: CHARACTER; scalar; INTENT(IN).

Intrinsic groups: badu77.

Description:

Makes a (hard) link from �le Path1 to Path2. A null character (`CHAR(0)') marks the

end of the names in Path1 and Path2|otherwise, trailing blanks in Path1 and Path2 are

ignored. Returns 0 on success or a non-zero error code. See link(2).

Due to the side e�ects performed by this intrinsic, the function form is not recommended.

For information on other intrinsics with the same name: See Section 10.11.9.165 [Link

Intrinsic (subroutine)], page 143.

12.4.2.95 QAbs Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL QAbs' to use this name for an external procedure.

12.4.2.96 QACos Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL QACos' to use this name for an external procedure.

12.4.2.97 QACosD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL QACosD' to use this name for an external procedure.

202 Using and Porting GNU Fortran

12.4.2.98 QASin Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL QASin' to use this name for an external procedure.

12.4.2.99 QASinD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL QASinD' to use this name for an external procedure.

12.4.2.100 QATan Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL QATan' to use this name for an external procedure.

12.4.2.101 QATan2 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL QATan2' to use this name for an external procedure.

12.4.2.102 QATan2D Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL QATan2D' to use this name for an external procedure.

12.4.2.103 QATanD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL QATanD' to use this name for an external procedure.

12.4.2.104 QCos Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL QCos' to use this name for an external procedure.

12.4.2.105 QCosD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL QCosD' to use this name for an external procedure.

12.4.2.106 QCosH Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL QCosH' to use this name for an external procedure.

12.4.2.107 QDiM Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL QDiM' to use this name for an external procedure.

Chapter 12: The GNU Fortran Compiler 203

12.4.2.108 QExp Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL QExp' to use this name for an external procedure.

12.4.2.109 QExt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL QExt' to use this name for an external procedure.

12.4.2.110 QExtD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL QExtD' to use this name for an external procedure.

12.4.2.111 QFloat Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL QFloat' to use this name for an external procedure.

12.4.2.112 QInt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL QInt' to use this name for an external procedure.

12.4.2.113 QLog Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL QLog' to use this name for an external procedure.

12.4.2.114 QLog10 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL QLog10' to use this name for an external procedure.

12.4.2.115 QMax1 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL QMax1' to use this name for an external procedure.

12.4.2.116 QMin1 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL QMin1' to use this name for an external procedure.

12.4.2.117 QMod Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL QMod' to use this name for an external procedure.

204 Using and Porting GNU Fortran

12.4.2.118 QNInt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL QNInt' to use this name for an external procedure.

12.4.2.119 QSin Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL QSin' to use this name for an external procedure.

12.4.2.120 QSinD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL QSinD' to use this name for an external procedure.

12.4.2.121 QSinH Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL QSinH' to use this name for an external procedure.

12.4.2.122 QSqRt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL QSqRt' to use this name for an external procedure.

12.4.2.123 QTan Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL QTan' to use this name for an external procedure.

12.4.2.124 QTanD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL QTanD' to use this name for an external procedure.

12.4.2.125 QTanH Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL QTanH' to use this name for an external procedure.

12.4.2.126 Rename Intrinsic (function)

Rename(Path1, Path2)

Rename: INTEGER(KIND=1) function.

Path1: CHARACTER; scalar; INTENT(IN).

Path2: CHARACTER; scalar; INTENT(IN).

Intrinsic groups: badu77.

Chapter 12: The GNU Fortran Compiler 205

Description:

Renames the �le Path1 to Path2. A null character (`CHAR(0)') marks the end of the

names in Path1 and Path2|otherwise, trailing blanks in Path1 and Path2 are ignored. See

rename(2). Returns 0 on success or a non-zero error code.

Due to the side e�ects performed by this intrinsic, the function form is not recommended.

For information on other intrinsics with the same name: See Section 10.11.9.213 [Rename

Intrinsic (subroutine)], page 155.

12.4.2.127 Secnds Intrinsic

Secnds(T)

Secnds: REAL(KIND=1) function.

T: REAL(KIND=1); scalar; INTENT(IN).

Intrinsic groups: vxt.

Description:

Returns the local time in seconds since midnight minus the value T.

12.4.2.128 Signal Intrinsic (function)

Signal(Number, Handler)

Signal: INTEGER(KIND=7) function.

Number: INTEGER; scalar; INTENT(IN).

Handler: Signal handler (INTEGER FUNCTION or SUBROUTINE) or dummy/global INTEGER(KIND=1)

scalar.

Intrinsic groups: badu77.

Description:

If Handler is a an EXTERNAL routine, arranges for it to be invoked with a single integer

argument (of system-dependent length) when signal Number occurs. If Handler is an in-

teger, it can be used to turn o� handling of signal Number or revert to its default action.

See signal(2).

Note that Handler will be called using C conventions, so the value of its argument in

Fortran terms is obtained by applying %LOC() (or LOC()) to it.

The value returned by signal(2) is returned.

Due to the side e�ects performed by this intrinsic, the function form is not recommended.

Warning: If the returned value is stored in an INTEGER(KIND=1) (default INTEGER)

argument, truncation of the original return value occurs on some systems (such as Alphas,

which have 64-bit pointers but 32-bit default integers), with no warning issued by g77 under

normal circumstances.

Therefore, the following code fragment might silently fail on some systems:

INTEGER RTN

EXTERNAL MYHNDL

RTN = SIGNAL(signum, MYHNDL)

206 Using and Porting GNU Fortran

: : :

! Restore original handler:

RTN = SIGNAL(signum, RTN)

The reason for the failure is that `RTN' might not hold all the information on the original

handler for the signal, thus restoring an invalid handler. This bug could manifest itself as

a spurious run-time failure at an arbitrary point later during the program's execution, for

example.

Warning: Use of the libf2c run-time library function `signal_' directly (such as via

`EXTERNAL SIGNAL') requires use of the %VAL() construct to pass an INTEGER value (such as

`SIG_IGN' or `SIG_DFL') for the Handler argument.

However, while `RTN = SIGNAL(signum, %VAL(SIG_IGN))' works when `SIGNAL' is treated

as an external procedure (and resolves, at link time, to libf2c's `signal_' routine), this

construct is not valid when `SIGNAL' is recognized as the intrinsic of that name.

Therefore, for maximum portability and reliability, code such references to the `SIGNAL'

facility as follows:

INTRINSIC SIGNAL

: : :

RTN = SIGNAL(signum, SIG_IGN)

g77 will compile such a call correctly, while other compilers will generally either do so

as well or reject the `INTRINSIC SIGNAL' statement via a diagnostic, allowing you to take

appropriate action.

For information on other intrinsics with the same name: See Section 10.11.9.228 [Signal

Intrinsic (subroutine)], page 158.

12.4.2.129 SinD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL SinD' to use this name for an external procedure.

12.4.2.130 SnglQ Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL SnglQ' to use this name for an external procedure.

12.4.2.131 SymLnk Intrinsic (function)

SymLnk(Path1, Path2)

SymLnk: INTEGER(KIND=1) function.

Path1: CHARACTER; scalar; INTENT(IN).

Path2: CHARACTER; scalar; INTENT(IN).

Intrinsic groups: badu77.

Description:

Makes a symbolic link from �le Path1 to Path2. A null character (`CHAR(0)') marks

the end of the names in Path1 and Path2|otherwise, trailing blanks in Path1 and Path2

Chapter 12: The GNU Fortran Compiler 207

are ignored. Returns 0 on success or a non-zero error code (ENOSYS if the system does not

provide symlink(2)).

Due to the side e�ects performed by this intrinsic, the function form is not recommended.

For information on other intrinsics with the same name: See Section 10.11.9.240 [SymLnk

Intrinsic (subroutine)], page 162.

12.4.2.132 System Intrinsic (function)

System(Command)

System: INTEGER(KIND=1) function.

Command: CHARACTER; scalar; INTENT(IN).

Intrinsic groups: badu77.

Description:

Passes the command Command to a shell (see system(3)). Returns the value returned

by system(3), presumably 0 if the shell command succeeded. Note that which shell is used

to invoke the command is system-dependent and environment-dependent.

Due to the side e�ects performed by this intrinsic, the function form is not recommended.

However, the function form can be valid in cases where the actual side e�ects performed by

the call are unimportant to the application.

For example, on a UNIX system, `SAME = SYSTEM('cmp a b')' does not perform any

side e�ects likely to be important to the program, so the programmer would not care if

the actual system call (and invocation of cmp) was optimized away in a situation where the

return value could be determined otherwise, or was not actually needed (`SAME' not actually

referenced after the sample assignment statement).

For information on other intrinsics with the same name: See Section 10.11.9.241 [System

Intrinsic (subroutine)], page 163.

12.4.2.133 TanD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL TanD' to use this name for an external procedure.

12.4.2.134 Time Intrinsic (VXT)

CALL Time(Time)

Time: CHARACTER*8; scalar; INTENT(OUT).

Intrinsic groups: vxt.

Description:

Returns in Time a character representation of the current time as obtained from

ctime(3).

See Section 10.11.9.101 [Fdate Intrinsic (subroutine)], page 123 for an equivalent routine.

For information on other intrinsics with the same name: See Section 10.11.9.245 [Time

Intrinsic (UNIX)], page 164.

208 Using and Porting GNU Fortran

12.4.2.135 UMask Intrinsic (function)

UMask(Mask)

UMask: INTEGER(KIND=1) function.

Mask: INTEGER; scalar; INTENT(IN).

Intrinsic groups: badu77.

Description:

Sets the �le creation mask to Mask and returns the old value. See umask(2).

Due to the side e�ects performed by this intrinsic, the function form is not recommended.

For information on other intrinsics with the same name: See Section 10.11.9.254 [UMask

Intrinsic (subroutine)], page 166.

12.4.2.136 Unlink Intrinsic (function)

Unlink(File)

Unlink: INTEGER(KIND=1) function.

File: CHARACTER; scalar; INTENT(IN).

Intrinsic groups: badu77.

Description:

Unlink the �le File. A null character (`CHAR(0)') marks the end of the name in File|

otherwise, trailing blanks in File are ignored. Returns 0 on success or a non-zero error code.

See unlink(2).

Due to the side e�ects performed by this intrinsic, the function form is not recommended.

For information on other intrinsics with the same name: See Section 10.11.9.255 [Unlink

Intrinsic (subroutine)], page 166.

12.4.2.137 ZExt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.

Use `EXTERNAL ZExt' to use this name for an external procedure.

Chapter 13: Other Compilers 209

13 Other Compilers

An individual Fortran source �le can be compiled to an object (`*.o') �le instead of to

the �nal program executable. This allows several portions of a program to be compiled

at di�erent times and linked together whenever a new version of the program is needed.

However, it introduces the issue of object compatibility across the various object �les (and

libraries, or `*.a' �les) that are linked together to produce any particular executable �le.

Object compatibility is an issue when combining, in one program, Fortran code compiled

by more than one compiler (or more than one con�guration of a compiler). If the compilers

disagree on how to transform the names of procedures, there will normally be errors when

linking such programs. Worse, if the compilers agree on naming, but disagree on issues like

how to pass parameters, return arguments, and lay out COMMON areas, the earliest detected

errors might be the incorrect results produced by the program (and that assumes these

errors are detected, which is not always the case).

Normally, g77 generates code that is object-compatible with code generated by a version

of f2c con�gured (with, for example, `f2c.h' de�nitions) to be generally compatible with

g77 as built by gcc. (Normally, f2c will, by default, conform to the appropriate con�g-

uration, but it is possible that older or perhaps even newer versions of f2c, or versions

having certain con�guration changes to f2c internals, will produce object �les that are

incompatible with g77.)

For example, a Fortran string subroutine argument will become two arguments on the

C side: a char * and an int length.

Much of this compatibility results from the fact that g77 uses the same run-time library,

libf2c, used by f2c.

Other compilers might or might not generate code that is object-compatible with libf2c

and current g77, and some might o�er such compatibility only when explicitly selected via

a command-line option to the compiler.

Note: This portion of the documentation de�nitely needs a lot of work!

13.1 Dropping f2c Compatibility

Specifying `-fno-f2c' allows g77 to generate, in some cases, faster code, by not needing

to allow to the possibility of linking with code compiled by f2c.

For example, this a�ects how REAL(KIND=1), COMPLEX(KIND=1), and COMPLEX(KIND=2)

functions are called. With `-fno-f2c', they are compiled as returning the appropriate gcc

type (float, __complex__ float, __complex__ double, in many con�gurations).

With `-ff2c' in force, they are compiled di�erently (with perhaps slower run-time perfor-

mance) to accommodate the restrictions inherent in f2c's use of K&R C as an intermediate

language|REAL(KIND=1) functions return C's double type, while COMPLEX functions return

void and use an extra argument pointing to a place for the functions to return their values.

It is possible that, in some cases, leaving `-ff2c' in force might produce faster code than

using `-fno-f2c'. Feel free to experiment, but remember to experiment with changing the

way entire programs and their Fortran libraries are compiled at a time, since this sort of

210 Using and Porting GNU Fortran

experimentation a�ects the interface of code generated for a Fortran source �le|that is, it

a�ects object compatibility.

Note that f2c compatibility is a fairly static target to achieve, though not necessarily

perfectly so, since, like g77, it is still being improved. However, specifying `-fno-f2c' causes

g77 to generate code that will probably be incompatible with code generated by future

versions of g77 when the same option is in force. You should make sure you are always able

to recompile complete programs from source code when upgrading to new versions of g77

or f2c, especially when using options such as `-fno-f2c'.

Therefore, if you are using g77 to compile libraries and other object �les for possible

future use and you don't want to require recompilation for future use with subsequent

versions of g77, you might want to stick with f2c compatibility for now, and carefully

watch for any announcements about changes to the f2c/libf2c interface that might a�ect

existing programs (thus requiring recompilation).

It is probable that a future version of g77 will not, by default, generate object �les

compatible with f2c, and that version probably would no longer use libf2c. If you expect

to depend on this compatibility in the long term, use the options `-ff2c -ff2c-library'

when compiling all of the applicable code. This should cause future versions of g77 ei-

ther to produce compatible code (at the expense of the availability of some features and

performance), or at the very least, to produce diagnostics.

13.2 Compilers Other Than f2c

On systems with Fortran compilers other than f2c and g77, code compiled by g77 is

not expected to work well with code compiled by the native compiler. (This is true for

f2c-compiled objects as well.) Libraries compiled with the native compiler probably will

have to be recompiled with g77 to be used with g77-compiled code.

Reasons for such incompatibilities include:

� There might be di�erences in the way names of Fortran procedures are translated for

use in the system's object-�le format. For example, the statement `CALL FOO' might be

compiled by g77 to call a procedure the linker ld sees given the name `_foo_', while

the apparently corresponding statement `SUBROUTINE FOO' might be compiled by the

native compiler to de�ne the linker-visible name `_foo', or `_FOO_', and so on.

� There might be subtle type mismatches which cause subroutine arguments and function

return values to get corrupted.

This is why simply getting g77 to transform procedure names the same way a native

compiler does is not usually a good idea|unless some e�ort has been made to ensure

that, aside from the way the two compilers transform procedure names, everything else

about the way they generate code for procedure interfaces is identical.

� Native compilers use libraries of private I/O routines which will not be available at

link time unless you have the native compiler|and you would have to explicitly ask

for them.

For example, on the Sun you would have to add `-L/usr/lang/SCx.x -lF77 -lV77' to

the link command.

Chapter 14: Other Languages 211

14 Other Languages

Note: This portion of the documentation de�nitely needs a lot of work!

14.1 Tools and advice for interoperating with C and C++

The following discussion assumes that you are running g77 in f2c compatibility mode,

i.e. not using `-fno-f2c'. It provides some advice about quick and simple techniques for

linking Fortran and C (or C++), the most common requirement. For the full story consult

the description of code generation. See Chapter 16 [Debugging and Interfacing], page 239.

When linking Fortran and C, it's usually best to use g77 to do the linking so that the

correct libraries are included (including the maths one). If you're linking with C++ you will

want to add `-lstdc++', `-lg++' or whatever. If you need to use another driver program

(or ld directly), you can �nd out what linkage options g77 passes by running `g77 -v'.

14.1.1 C Interfacing Tools

Even if you don't actually use it as a compiler, `f2c' from ftp://ftp.netlib.org/f2c/src,

can be a useful tool when you're interfacing (linking) Fortran and C. See Section 14.1.3

[Generating Skeletons and Prototypes with f2c], page 211.

To use f2c for this purpose you only need retrieve and build the `src' directory from

the distribution, consult the `README' instructions there for machine-speci�cs, and install

the f2c program on your path.

Something else that might be useful is `cfortran.h' from ftp://zebra/desy.de/cfortran.

This is a fairly general tool which can be used to generate interfaces for calling in both

directions between Fortran and C. It can be used in f2c mode with g77|consult its

documentation for details.

14.1.2 Accessing Type Information in C

Generally, C code written to link with g77 code|calling and/or being called from

Fortran|should `#include <f2c.h>' to de�ne the C versions of the Fortran types. Don't

assume Fortran INTEGER types correspond to C `int's, for instance; instead, declare them

as integer, a type de�ned by `f2c.h'. `f2c.h' is installed where gcc will �nd it by default,

assuming you use a copy of gcc compatible with g77, probably built at the same time as

g77.

14.1.3 Generating Skeletons and Prototypes with f2c

A simple and foolproof way to write g77-callable C routines|e.g. to interface with

an existing library|is to write a �le (named, for example, `fred.f') of dummy Fortran

skeletons comprising just the declaration of the routine(s) and dummy arguments plus

`END' statements. Then run f2c on �le `fred.f' to produce `fred.c' into which you can

edit useful code, con�dent the calling sequence is correct, at least. (There are some errors

otherwise commonly made in generating C interfaces with f2c conventions, such as not using

doublereal as the return type of a REAL FUNCTION.)

212 Using and Porting GNU Fortran

f2c also can help with calling Fortran from C, using its `-P' option to generate C pro-

totypes appropriate for calling the Fortran.

1

If the Fortran code containing any routines

to be called from C is in �le `joe.f', use the command f2c -P joe.f to generate the �le

`joe.P' containing prototype information. #include this in the C which has to call the

Fortran routines to make sure you get it right.

See Section 16.8 [Arrays (DIMENSION], page 244, for information on the di�erences

between the way Fortran (including compilers like g77) and C handle arrays.

14.1.4 C++ Considerations

f2c can be used to generate suitable code for compilation with a C++ system using the

`-C++' option. The important thing about linking g77-compiled code with C++ is that the

prototypes for the g77 routines must specify C linkage to avoid name mangling. So, use

an `extern "C"' declaration. f2c's `-C++' option will take care of this when generating

skeletons or prototype �les as above, and also avoid clashes with C++ reserved words in

addition to those in C.

14.1.5 Startup Code

Unlike with some runtime systems, it shouldn't be necessary (unless there are bugs) to

use a Fortran main program to ensure the runtime|speci�cally the i/o system|is initial-

ized. However, to use the g77 intrinsics GETARG() and IARGC() the main() routine from

the `libf2c' library must be used, either explicitly or implicitly by using a Fortran main

program. This main() program calls MAIN__() (where the names are C-type extern names,

i.e. not mangled). You need to provide this nullary procedure as the entry point for your

C code if using `libf2c''s main. In some cases it might be necessary to provide a dummy

version of this to avoid linkers complaining about failure to resolve MAIN__() if linking

against `libf2c' and not using main() from it.

1

The �les generated like this can also be used for inter-unit consistency checking of dummy

and actual arguments, although the `ftnchek' tool from ftp://ftp.netlib.org/fortran

or ftp://ftp.dsm.fordham.edu is probably better for this purpose.

Chapter 15: Installing GNU Fortran 213

15 Installing GNU Fortran

The following information describes how to install g77.

The information in this �le generally pertains to dealing with source distributions of

g77 and gcc. It is possible that some of this information will be applicable to some binary

distributions of these products|however, since these distributions are not made by the

maintainers of g77, responsibility for binary distributions rests with whoever built and �rst

distributed them.

Nevertheless, e�orts to make g77 easier to both build and install from source and package

up as a binary distribution are ongoing.

15.1 Prerequisites

The procedures described to unpack, con�gure, build, and install g77 assume your system

has certain programs already installed.

The following prerequisites should be met by your system before you follow the g77

installation instructions:

gzip To unpack the gcc and g77 distributions, you'll need the gunzip utility in the

gzip distribution. Most UNIX systems already have gzip installed. If yours

doesn't, you can get it from the FSF.

Note that you'll need tar and other utilities as well, but all UNIX systems have

these. There are GNU versions of all these available|in fact, a complete GNU

UNIX system can be put together on most systems, if desired.

The version of GNU gzip used to package this release is 1.2.4. (The version of

GNU tar used to package this release is 1.12.)

`gcc-2.7.2.3.tar.gz'

You need to have this, or some other applicable, version of gcc on your system.

The version should be an exact copy of a distribution from the FSF. Its size is

approximately 7.1MB.

If you've already unpacked `gcc-2.7.2.3.tar.gz' into a directory (named

`gcc-2.7.2.3') called the source tree for gcc, you can delete the distribu-

tion itself, but you'll need to remember to skip any instructions to unpack this

distribution.

Without an applicable gcc source tree, you cannot build g77. You can obtain

an FSF distribution of gcc from the FSF.

`g77-0.5.22.tar.gz'

You probably have already unpacked this package, or you are reading an ad-

vance copy of these installation instructions, which are contained in this distri-

bution. The size of this package is approximately 1.5MB.

You can obtain an FSF distribution of g77 from the FSF, the same way you

obtained gcc.

214 Using and Porting GNU Fortran

Enough disk space

The amount of disk space needed to unpack, build, install, and use g77 depends

on the type of system you're using, how you build g77, and how much of it you

install (primarily, which languages you install).

The sizes shown below assume all languages distributed in gcc-gcc, plus g77,

will be built and installed. These sizes are indicative of GNU/Linux systems on

Intel x86 running COFF and on Digital Alpha (AXP) systems running ELF.

These should be fairly representative of 32-bit and 64-bit systems, respectively.

Note that all sizes are approximate and subject to change without notice! They

are based on preliminary releases of g77 made shortly before the public beta

release.

| gcc and g77 distributions occupy 8.6MB packed, 35MB unpacked. These

consist of the source code and documentation, plus some derived �les

(mostly documentation), for gcc and g77. Any deviations from these num-

bers for di�erent kinds of systems are likely to be very minor.

| A \bootstrap" build requires an additional 67.3MB for a total of 102MB

on an ix86, and an additional 98MB for a total of 165MB on an Alpha.

| Removing `gcc/stage1' after the build recovers 10.7MB for a total of 91MB

on an ix86, and recovers ??MB for a total of ??MB on an Alpha.

After doing this, the integrity of the build can still be veri�ed via `make

compare', and the gcc compiler modi�ed and used to build itself for testing

fairly quickly, using the copy of the compiler kept in gcc/stage2.

| Removing `gcc/stage2' after the build further recovers 27.3MB for a total

of 64.3MB, and recovers ??MB for a total of ??MB on an Alpha.

After doing this, the compiler can still be installed, especially if GNU make

is used to avoid gratuitous rebuilds (or, the installation can be done by

hand).

| Installing gcc and g77 copies 14.9MB onto the `--prefix' disk for a total

of 79.2MB on an ix86, and copies ??MB onto the `--prefix' disk for a

total of ??MB on an Alpha.

After installation, if no further modi�cations and builds of gcc or g77 are

planned, the source and build directory may be removed, leaving the total im-

pact on a system's disk storage as that of the amount copied during installation.

Systems with the appropriate version of gcc installed don't require the com-

plete bootstrap build. Doing a \straight build" requires about as much space

as does a bootstrap build followed by removing both the `gcc/stage1' and

`gcc/stage2' directories.

Installing gcc and g77 over existing versions might require less new disk space,

but note that, unlike many products, gcc installs itself in a way that avoids

overwriting other installed versions of itself, so that other versions may easily

be invoked (via `gcc -V version').

So, the amount of space saved as a result of having an existing version of gcc and

g77 already installed is not much|typically only the command drivers (gcc,

Chapter 15: Installing GNU Fortran 215

g77, g++, and so on, which are small) and the documentation is overwritten by

the new installation. The rest of the new installation is done without replacing

existing installed versions (assuming they have di�erent version numbers).

patch Although you can do everything patch does yourself, by hand, without much

trouble, having patch installed makes installation of new versions of GNU util-

ities such as g77 so much easier that it is worth getting. You can obtain patch

the same way you obtained gcc and g77.

In any case, you can apply patches by hand|patch �les are designed for humans

to read them.

The version of GNU patch used to develop this release is 2.5.

make Your system must have make, and you will probably save yourself a lot of trouble

if it is GNU make (sometimes referred to as gmake).

The version of GNU make used to develop this release is 3.76.1.

cc Your system must have a working C compiler.

See section \Installing GNU CC" in Using and Porting GNU CC , for more

information on prerequisites for installing gcc.

bison If you do not have bison installed, you can usually work around any need for it,

since g77 itself does not use it, and gcc normally includes all �les generated by

running it in its distribution. You can obtain bison the same way you obtained

gcc and g77.

The version of GNU bison used to develop this release is 1.25.

See Section 15.5.12 [Missing bison?], page 235, for information on how to work

around not having bison.

makeinfo If you are missing makeinfo, you can usually work around any need for it. You

can obtain makeinfo the same way you obtained gcc and g77.

The version of GNU makeinfo used to develop this release is 1.68, from GNU

texinfo version 3.11.

See Section 15.5.13 [Missing makeinfo?], page 236, for information on getting

around the lack of makeinfo.

sed All UNIX systems have sed, but some have a broken version that cannot handle

con�guring, building, or installing gcc or g77.

The version of GNU sed used to develop this release is 2.05. (Note that GNU

sed version 3.0 was withdrawn by the FSF|if you happen to have this version

installed, replace it with version 2.05 immediately. See a GNU distribution site

for further explanation.)

root access or equivalent

To perform the complete installation procedures on a system, you need to have

root access to that system, or equivalent access to the `--prefix' directory

tree speci�ed on the configure command line.

Portions of the procedure (such as con�guring and building g77) can be per-

formed by any user with enough disk space and virtual memory.

216 Using and Porting GNU Fortran

However, these instructions are oriented towards less-experienced users who

want to install g77 on their own personal systems.

System administrators with more experience will want to determine for them-

selves how they want to modify the procedures described below to suit the needs

of their installation.

15.2 Problems Installing

This is a list of problems (and some apparent problems which don't really mean anything

is wrong) that show up when con�guring, building, installing, or porting GNU Fortran.

See section \Installation Problems" in Using and Porting GNU CC , for more information

on installation problems that can a�ict either gcc or g77.

15.2.1 General Problems

These problems can occur on most or all systems.

15.2.1.1 GNU C Required

Compiling g77 requires GNU C, not just ANSI C. Fixing this wouldn't be very hard

(just tedious), but the code using GNU extensions to the C language is expected to be

rewritten for 0.6 anyway, so there are no plans for an interim �x.

This requirement does not mean you must already have gcc installed to build g77. As

long as you have a working C compiler, you can use a bootstrap build to automate the

process of �rst building gcc using the working C compiler you have, then building g77 and

rebuilding gcc using that just-built gcc, and so on.

15.2.1.2 Patching GNU CC Necessary

g77 currently requires application of a patch �le to the gcc compiler tree. The necessary

patches should be folded in to the mainline gcc distribution.

Some combinations of versions of g77 and gcc might actually require no patches, but the

patch �les will be provided anyway as long as there are more changes expected in subsequent

releases. These patch �les might contain unnecessary, but possibly helpful, patches. As a

result, it is possible this issue might never be resolved, except by eliminating the need for the

person con�guring g77 to apply a patch by hand, by going to a more automated approach

(such as con�gure-time patching).

15.2.1.3 Building GNU CC Necessary

It should be possible to build the runtime without building cc1 and other non-Fortran

items, but, for now, an easy way to do that is not yet established.

Chapter 15: Installing GNU Fortran 217

15.2.1.4 Missing strtoul

On SunOS4 systems, linking the f771 program produces an error message concerning

an unde�ned symbol named `_strtoul'.

This is not a g77 bug. See Section 15.5.5 [Patching GNU Fortran], page 229, for infor-

mation on a workaround provided by g77.

The proper �x is either to upgrade your system to one that provides a complete ANSI C

environment, or improve gcc so that it provides one for all the languages and con�gurations

it supports.

Note: In earlier versions of g77, an automated workaround for this problem was at-

tempted. It worked for systems without `_strtoul', substituting the incomplete-yet-

su�cient version supplied with g77 for those systems. However, the automated workaround

failed mysteriously for systems that appeared to have conforming ANSI C environments,

and it was decided that, lacking resources to more fully investigate the problem, it was

better to not punish users of those systems either by requiring them to work around the

problem by hand or by always substituting an incomplete strtoul() implementation when

their systems had a complete, working one. Unfortunately, this meant inconveniencing users

of systems not having strtoul(), but they're using obsolete (and generally unsupported)

systems anyway.

15.2.1.5 Object File Di�erences

A comparison of object �les after building Stage 3 during a bootstrap build will result

in `gcc/f/zzz.o' being agged as di�erent from the Stage 2 version. That is because it

contains a string with an expansion of the __TIME__ macro, which expands to the current

time of day. It is nothing to worry about, since `gcc/f/zzz.c' doesn't contain any actual

code. It does allow you to override its use of __DATE__ and __TIME__ by de�ning macros

for the compilation|see the source code for details.

15.2.1.6 Cleanup Kills Stage Directories

It'd be helpful if g77's `Makefile.in' or `Make-lang.in' would create the various

`stagen' directories and their subdirectories, so developers and expert installers wouldn't

have to recon�gure after cleaning up.

15.2.1.7 Missing gperf?

If a build aborts trying to invoke gperf, that strongly suggests an improper method was

used to create the gcc source directory, such as the UNIX `cp -r' command instead of `cp

-pr', since this problem very likely indicates that the date-time-modi�ed information on

the gcc source �les is incorrect.

The proper solution is to recreate the gcc source directory from a gcc distribution known

to be provided by the FSF.

It is possible you might be able to temporarily work around the problem, however, by

trying these commands:

218 Using and Porting GNU Fortran

sh# cd gcc

sh# touch c-gperf.h

sh#

These commands update the date-time-modi�ed information for the �le produced by the

invocation of gperf in the current versions of gcc, so that make no longer believes it needs

to update it. This �le should already exist in a gcc distribution, but mistakes made when

copying the gcc directory can leave the modi�cation information set such that the gperf

input �les look more \recent" than the corresponding output �les.

If the above does not work, de�nitely start from scratch and avoid copying the gcc using

any method that does not reliably preserve date-time-modi�ed information, such as the

UNIX `cp -r' command (use `cp -pr' instead).

15.2.2 System-speci�c Problems

If your system is based on a Digital Alpha (AXP) architecture and employs a 64-bit

operating system (such as GNU/Linux), you might consider using egcs instead of versions

of g77 based on versions of gcc prior to 2.8. http://www.cygnus.com/egcs for information

on egcs, or obtain a copy from ftp://egcs.cygnus.com/pub/egcs.

If your system is Irix 6, to obtain a working version of gcc, http://reality.sgi.com/knobi/gcc-2.7.2.x-on-irix-6.2-6.3.

15.2.3 Cross-compiler Problems

g77 has been in alpha testing since September of 1992, and in public beta testing since

February of 1995. Alpha testing was done by a small number of people worldwide on a

fairly wide variety of machines, involving self-compilation in most or all cases. Beta testing

has been done primarily via self-compilation, but in more and more cases, cross-compilation

(and \criss-cross compilation", where a version of a compiler is built on one machine to run

on a second and generate code that runs on a third) has been tried and has succeeded, to

varying extents.

Generally, g77 can be ported to any con�guration to which gcc, f2c, and libf2c can

be ported and made to work together, aside from the known problems described in this

manual. If you want to port g77 to a particular con�guration, you should �rst make sure

gcc and libf2c can be ported to that con�guration before focusing on g77, because g77 is

so dependent on them.

Even for cases where gcc and libf2c work, you might run into problems with cross-

compilation on certain machines, for several reasons.

� There is one known bug (a design bug to be �xed in 0.6) that prevents con�guration of

g77 as a cross-compiler in some cases, though there are assumptions made during con-

�guration that probably make doing non-self-hosting builds a hassle, requiring manual

intervention.

� gccmight still have some trouble being con�gured for certain combinations of machines.

For example, it might not know how to handle oating-point constants.

� Improvements to the way libf2c is built could make building g77 as a cross-compiler

easier|for example, passing and using `$(LD)' and `$(AR)' in the appropriate ways.

Chapter 15: Installing GNU Fortran 219

� There are still some challenges putting together the right run-time libraries (needed by

libf2c) for a target system, depending on the systems involved in the con�guration.

(This is a general problem with cross-compilation, and with gcc in particular.)

15.3 Changing Settings Before Building

Here are some internal g77 settings that can be changed by editing source �les in `gcc/f/'

before building.

This information, and perhaps even these settings, represent stop-gap solutions to prob-

lems people doing various ports of g77 have encountered. As such, none of the following

information is expected to be pertinent in future versions of g77.

15.3.1 Larger File Unit Numbers

As distributed, whether as part of f2c or g77, libf2c accepts �le unit numbers only

in the range 0 through 99. For example, a statement such as `WRITE (UNIT=100)' causes a

run-time crash in libf2c, because the unit number, 100, is out of range.

If you know that Fortran programs at your installation require the use of unit numbers

higher than 99, you can change the value of the `MXUNIT' macro, which represents the

maximum unit number, to an appropriately higher value.

To do this, edit the �le `f/runtime/libI77/fio.h' in your g77 source tree, changing

the following line:

#define MXUNIT 100

Change the line so that the value of `MXUNIT' is de�ned to be at least one greater than

the maximum unit number used by the Fortran programs on your system.

(For example, a program that does `WRITE (UNIT=255)' would require `MXUNIT' set to at

least 256 to avoid crashing.)

Then build or rebuild g77 as appropriate.

Note: Changing this macro has no e�ect on other limits your system might place on

the number of �les open at the same time. That is, the macro might allow a program

to do `WRITE (UNIT=100)', but the library and operating system underlying libf2c might

disallow it if many other �les have already been opened (via OPEN or implicitly via READ,

WRITE, and so on). Information on how to increase these other limits should be found in

your system's documentation.

15.3.2 Always Flush Output

Some Fortran programs require output (writes) to be ushed to the operating system

(under UNIX, via the fflush() library call) so that errors, such as disk full, are immediately

agged via the relevant ERR= and IOSTAT= mechanism, instead of such errors being agged

later as subsequent writes occur, forcing the previously written data to disk, or when the

�le is closed.

Essentially, the di�erence can be viewed as synchronous error reporting (immediate

agging of errors during writes) versus asynchronous, or, more precisely, bu�ered error

reporting (detection of errors might be delayed).

220 Using and Porting GNU Fortran

libf2c supports agging write errors immediately when it is built with the `ALWAYS_FLUSH'

macro de�ned. This results in a libf2c that runs slower, sometimes quite a bit slower,

under certain circumstances|for example, accessing �les via the networked �le system

NFS|but the e�ect can be more reliable, robust �le I/O.

If you know that Fortran programs requiring this level of precision of error reporting are

to be compiled using the version of g77 you are building, you might wish to modify the g77

source tree so that the version of libf2c is built with the `ALWAYS_FLUSH' macro de�ned,

enabling this behavior.

To do this, �nd this line in `f/runtime/configure.in' in your g77 source tree:

dnl AC_DEFINE(ALWAYS_FLUSH)

Remove the leading `dnl ', so the line begins with `AC_DEFINE(', and run autoconf in

that �le's directory. (Or, if you don't have autoconf, you can modify `f2c.h.in' in the

same directory to include the line `#define ALWAYS_FLUSH' after `#define F2C_INCLUDE'.)

Then build or rebuild g77 as appropriate.

15.3.3 Maximum Stackable Size

g77, on most machines, puts many variables and arrays on the stack where possible, and

can be con�gured (by changing `FFECOM_sizeMAXSTACKITEM' in `gcc/f/com.c') to force

smaller-sized entities into static storage (saving on stack space) or permit larger-sized enti-

ties to be put on the stack (which can improve run-time performance, as it presents more

opportunities for the GBE to optimize the generated code).

Note: Putting more variables and arrays on the stack might cause problems due to

system-dependent limits on stack size. Also, the value of `FFECOM_sizeMAXSTACKITEM' has

no e�ect on automatic variables and arrays. See Section 18.1 [But-bugs], page 265, for more

information.

15.3.4 Floating-point Bit Patterns

The g77 build will crash if an attempt is made to build it as a cross-compiler for a

target when g77 cannot reliably determine the bit pattern of oating-point constants for

the target. Planned improvements for version 0.6 of g77 will give it the capabilities it needs

to not have to crash the build but rather generate correct code for the target. (Currently,

g77 would generate bad code under such circumstances if it didn't crash during the build,

e.g. when compiling a source �le that does something like `EQUIVALENCE (I,R)' and `DATA

R/9.43578/'.)

15.3.5 Initialization of Large Aggregate Areas

A warning message is issued when g77 sees code that provides initial values (e.g. via

DATA) to an aggregate area (COMMON or EQUIVALENCE, or even a large enough array or

CHARACTER variable) that is large enough to increase g77's compile time by roughly a factor

of 10.

This size currently is quite small, since g77 currently has a known bug requiring too much

memory and time to handle such cases. In `gcc/f/data.c', the macro `FFEDATA_sizeTOO_BIG_INIT_'

Chapter 15: Installing GNU Fortran 221

is de�ned to the minimum size for the warning to appear. The size is speci�ed in storage

units, which can be bytes, words, or whatever, on a case-by-case basis.

After changing this macro de�nition, you must (of course) rebuild and reinstall g77 for

the change to take e�ect.

Note that, as of version 0.5.18, improvements have reduced the scope of the problem

for sparse initialization of large arrays, especially those with large, contiguous uninitialized

areas. However, the warning is issued at a point prior to when g77 knows whether the

initialization is sparse, and delaying the warning could mean it is produced too late to be

helpful.

Therefore, the macro de�nition should not be adjusted to reect sparse cases. Instead,

adjust it to generate the warning when densely initialized arrays begin to cause responses

noticeably slower than linear performance would suggest.

15.3.6 Alpha Problems Fixed

g77 used to warn when it was used to compile Fortran code for a target con�guration that

is not basically a 32-bit machine (such as an Alpha, which is a 64-bit machine, especially if

it has a 64-bit operating system running on it). That was because g77 was known to not

work properly on such con�gurations.

As of version 0.5.20, g77 is believed to work well enough on such systems. So, the

warning is no longer needed or provided.

However, support for 64-bit systems, especially in areas such as cross-compilation and

handling of intrinsics, is still incomplete. The symptoms are believed to be compile-time di-

agnostics rather than the generation of bad code. It is hoped that version 0.6 will completely

support 64-bit systems.

15.4 Quick Start

This procedure con�gures, builds, and installs g77 \out of the box" and works on most

UNIX systems. Each command is identi�ed by a unique number, used in the explanatory

text that follows. For the most part, the output of each command is not shown, though

indications of the types of responses are given in a few cases.

To perform this procedure, the installer must be logged in as user root. Much of it

can be done while not logged in as root, and users experienced with UNIX administration

should be able to modify the procedure properly to do so.

Following traditional UNIX conventions, it is assumed that the source trees for g77 and

gcc will be placed in `/usr/src'. It also is assumed that the source distributions themselves

already reside in `/usr/FSF', a naming convention used by the author of g77 on his own

system:

/usr/FSF/gcc-2.7.2.3.tar.gz

/usr/FSF/g77-0.5.22.tar.gz

Users of the following systems should not blindly follow these quick-start instructions,

because of problems their systems have coping with straightforward installation of g77:

� SunOS4

222 Using and Porting GNU Fortran

Instead, see Section 15.5 [Complete Installation], page 225, for detailed information on

how to con�gure, build, and install g77 for your particular system. Also, see Chapter 18

[Known Causes of Trouble with GNU Fortran], page 265, for information on bugs and other

problems known to a�ict the installation process, and how to report newly discovered ones.

If your system is not on the above list, and is a UNIX system or one of its variants,

you should be able to follow the instructions below. If you vary any of the steps below,

you might run into trouble, including possibly breaking existing programs for other users

of your system. Before doing so, it is wise to review the explanations of some of the steps.

These explanations follow this list of steps.

sh[1]# cd /usr/src

sh[2]# gunzip -c < /usr/FSF/gcc-2.7.2.3.tar.gz | tar xf -

[Might say "Broken pipe"...that is normal on some systems.]

sh[3]# gunzip -c < /usr/FSF/g77-0.5.22.tar.gz | tar xf -

["Broken pipe" again possible.]

sh[4]# ln -s gcc-2.7.2.3 gcc

sh[5]# ln -s g77-0.5.22 g77

sh[6]# mv -i g77/* gcc

[No questions should be asked by mv here; or, you made a mistake.]

sh[7]# patch -p1 -E -V t -d gcc < gcc/f/gbe/2.7.2.3.diff

[Unless patch complains about rejected patches, this step worked.]

sh[8]# cd gcc

sh[9]# touch f77-install-ok

[Do not do the above if your system already has an f77

command, unless you've checked that overwriting it

is okay.]

sh[10]# touch f2c-install-ok

[Do not do the above if your system already has an f2c

command, unless you've checked that overwriting it

is okay. Else, touch f2c-exists-ok.]

sh[11]# ./configure --prefix=/usr

[Do not do the above if gcc is not installed in /usr/bin.

You might need a different --prefix=: : :, as

described below.]

sh[12]# make bootstrap

[This takes a long time, and is where most problems occur.]

sh[13]# make compare

[This verifies that the compiler is `sane'. Only

the file `f/zzz.o' (aka `tmp-foo1' and `tmp-foo2')

should be in the list of object files this command

prints as having different contents. If other files

are printed, you have likely found a g77 bug.]

sh[14]# rm -fr stage1

sh[15]# make -k install

[The actual installation.]

sh[16]# g77 -v

[Verify that g77 is installed, obtain version info.]

sh[17]#

Chapter 15: Installing GNU Fortran 223

See Section 15.5.11 [Updating Your Info Directory], page 235, for information on how

to update your system's top-level info directory to contain a reference to this manual, so

that users of g77 can easily �nd documentation instead of having to ask you for it.

Elaborations of many of the above steps follows:

Step 1: cd /usr/src

You can build g77 pretty much anyplace. By convention, this manual assumes

`/usr/src'. It might be helpful if other users on your system knew where to

look for the source code for the installed version of g77 and gcc in any case.

Step 3: gunzip -d < /usr/FSF/g77-0.5.22.tar.gz | tar xf -

It is not always necessary to obtain the latest version of g77 as a complete

`.tar.gz' �le if you have a complete, earlier distribution of g77. If appropriate,

you can unpack that earlier version of g77, and then apply the appropriate

patches to achieve the same result|a source tree containing version 0.5.22 of

g77.

Step 4: ln -s gcc-2.7.2.3 gcc

Step 5: ln -s g77-0.5.22 g77

These commands mainly help reduce typing, and help reduce visual clutter in

examples in this manual showing what to type to install g77.

See Section 15.5.1 [Unpacking], page 225, for information on using distributions

of g77 made by organizations other than the FSF.

Step 6: mv -i g77/* gcc

After doing this, you can, if you like, type `rm g77' and `rmdir g77-0.5.22' to

remove the empty directory and the symbol link to it. But, it might be helpful

to leave them around as quick reminders of which version(s) of g77 are installed

on your system.

See Section 15.5.1 [Unpacking], page 225, for information on the contents of the

`g77' directory (as merged into the `gcc' directory).

Step 7: patch -p1 : : :

If you are using GNU patch version 2.5 or later, this should produce a list of

�les patched. (Other versions of patch might not work properly.)

If messages about \fuzz", \o�set", or especially \reject �les" are printed, it

might mean you applied the wrong patch �le. If you believe this is the case,

it is best to restart the sequence after deleting (or at least renaming to unused

names) the top-level directories for g77 and gcc and their symbolic links.

After this command �nishes, the gcc directory might have old versions of several

�les as saved by patch. To remove these, after cd gcc, type rm -i *.~*~.

See Section 15.5.2 [Merging Distributions], page 226, for more information.

Note: gcc versions circa 2.7.2.2 and 2.7.2.3 are known to have slightly dif-

fering versions of the gcc/ChangeLog �le, depending on how they are ob-

tained. You can safely ignore diagnostics patch reports when patching this

particular �le, since it is purely a documentation �le for implementors. See

`gcc/f/gbe/2.7.2.3.diff' for more information.

224 Using and Porting GNU Fortran

Step 9: touch f77-install-ok

Don't do this if you don't want to overwrite an existing version of f77 (such

as a native compiler, or a script that invokes f2c). Otherwise, installation

will overwrite the f77 command and the f77 man pages with copies of the

corresponding g77 material.

See Section 15.5.3 [Installing f77], page 228, for more information.

Step 10: touch f2c-install-ok

Don't do this if you don't want to overwrite an existing installation of libf2c

(though, chances are, you do). Instead, touch f2c-exists-ok to allow the

installation to continue without any error messages about `/usr/lib/libf2c.a'

already existing.

See Section 15.5.4 [Installing f2c], page 228, for more information.

Step 11: ./configure --prefix=/usr

This is where you specify that the `g77' executable is to be installed in

`/usr/bin/', the `libf2c.a' library is to be installed in `/usr/lib/', and

so on.

You should ensure that any existing installation of the `gcc' executable is in

`/usr/bin/'. Otherwise, installing g77 so that it does not fully replace the

existing installation of gcc is likely to result in the inability to compile Fortran

programs.

See Section 15.5.6 [Where in the World Does Fortran (and GNU CC) Go?],

page 230, for more information on determining where to install g77. See Sec-

tion 15.5.7 [Con�guring gcc], page 231, for more information on the con�gura-

tion process triggered by invoking the `./configure' script.

Step 12: make bootstrap

See section \Installing GNU CC" in Using and Porting GNU CC , for informa-

tion on the kinds of diagnostics you should expect during this procedure.

See Section 15.5.8 [Building gcc], page 231, for complete g77-speci�c informa-

tion on this step.

Step 13: make compare

See Section 20.2 [Where to Port Bugs], page 295, for information on where to

report that you observed more than `f/zzz.o' having di�erent contents during

this phase.

See Section 20.3 [How to Report Bugs], page 296, for information on how to

report bugs like this.

Step 14: rm -fr stage1

You don't need to do this, but it frees up disk space.

Step 15: make -k install

If this doesn't seem to work, try:

make -k install install-libf77 install-f2c-all

See Section 15.5.10 [Installation of Binaries], page 234, for more information.

See Section 15.5.11 [Updating Your Info Directory], page 235, for information

on entering this manual into your system's list of texinfo manuals.

Chapter 15: Installing GNU Fortran 225

Step 16: g77 -v

If this command prints approximately 25 lines of output, including the GNU

Fortran Front End version number (which should be the same as the version

number for the version of g77 you just built and installed) and the version

numbers for the three parts of the libf2c library (libF77, libI77, libU77),

and those version numbers are all in agreement, then there is a high likelihood

that the installation has been successfully completed.

You might consider doing further testing. For example, log in as a non-

privileged user, then create a small Fortran program, such as:

PROGRAM SMTEST

DO 10 I=1, 10

PRINT *, 'Hello World #', I

10 CONTINUE

END

Compile, link, and run the above program, and, assuming you named the source

�le `smtest.f', the session should look like this:

sh# g77 -o smtest smtest.f

sh# ./smtest

Hello World # 1

Hello World # 2

Hello World # 3

Hello World # 4

Hello World # 5

Hello World # 6

Hello World # 7

Hello World # 8

Hello World # 9

Hello World # 10

sh#

After proper installation, you don't need to keep your gcc and g77 source and

build directories around anymore. Removing them can free up a lot of disk

space.

15.5 Complete Installation

Here is the complete g77-speci�c information on how to con�gure, build, and install g77.

15.5.1 Unpacking

The gcc source distribution is a stand-alone distribution. It is designed to be unpacked

(producing the gcc source tree) and built as is, assuming certain prerequisites are met

(including the availability of compatible UNIX programs such as make, cc, and so on).

However, before building gcc, you will want to unpack and merge the g77 distribution

in with it, so that you build a Fortran-capable version of gcc, which includes the g77

command, the necessary run-time libraries, and this manual.

226 Using and Porting GNU Fortran

Unlike gcc, the g77 source distribution is not a stand-alone distribution. It is designed

to be unpacked and, afterwards, immediately merged into an applicable gcc source tree.

That is, the g77 distribution augments a gcc distribution|without gcc, generally only the

documentation is immediately usable.

A sequence of commands typically used to unpack gcc and g77 is:

sh# cd /usr/src

sh# gunzip -c /usr/FSF/gcc-2.7.2.3.tar.gz | tar xf -

sh# gunzip -c /usr/FSF/g77-0.5.22.tar.gz | tar xf -

sh# ln -s gcc-2.7.2.3 gcc

sh# ln -s g77-0.5.22 g77

sh# mv -i g77/* gcc

Notes: The commands beginning with `gunzip: : :' might print `Broken pipe: : :' as they

complete. That is nothing to worry about, unless you actually hear a pipe breaking. The

ln commands are helpful in reducing typing and clutter in installation examples in this

manual. Hereafter, the top level of gcc source tree is referred to as `gcc', and the top level

of just the g77 source tree (prior to issuing the mv command, above) is referred to as `g77'.

There are three top-level names in a g77 distribution:

g77/COPYING.g77

g77/README.g77

g77/f

All three entries should be moved (or copied) into a gcc source tree (typically named

after its version number and as it appears in the FSF distributions|e.g. `gcc-2.7.2.3').

`g77/f' is the subdirectory containing all of the code, documentation, and other infor-

mation that is speci�c to g77. The other two �les exist to provide information on g77 to

someone encountering a gcc source tree with g77 already present, who has not yet read

these installation instructions and thus needs help understanding that the source tree they

are looking at does not come from a single FSF distribution. They also help people encoun-

tering an unmerged g77 source tree for the �rst time.

Note: Please use only gcc and g77 source trees as distributed by the FSF. Use of

modi�ed versions, such as the Pentium-speci�c-optimization port of gcc, is likely to result

in problems that appear to be in the g77 code but, in fact, are not. Do not use such

modi�ed versions unless you understand all the di�erences between them and the versions

the FSF distributes|in which case you should be able to modify the g77 (or gcc) source

trees appropriately so g77 and gcc can coexist as they do in the stock FSF distributions.

15.5.2 Merging Distributions

After merging the g77 source tree into the gcc source tree, the �nal merge step is done

by applying the pertinent patches the g77 distribution provides for the gcc source tree.

Read the �le `gcc/f/gbe/README', and apply the appropriate patch �le for the version

of the GNU CC compiler you have, if that exists. If the directory exists but the appropriate

�le does not exist, you are using either an old, unsupported version, or a release one that

is newer than the newest gcc version supported by the version of g77 you have.

As of version 0.5.18, g77 modi�es the version number of gcc via the pertinent patches.

This is done because the resulting version of gcc is deemed su�ciently di�erent from the

Chapter 15: Installing GNU Fortran 227

vanilla distribution to make it worthwhile to present, to the user, information signaling the

fact that there are some di�erences.

GNU version numbers make it easy to �gure out whether a particular version of a

distribution is newer or older than some other version of that distribution. The format

is, generally, major.minor.patch, with each �eld being a decimal number. (You can safely

ignore leading zeros; for example, 1.5.3 is the same as 1.5.03.) The major �eld only increases

with time. The other two �elds are reset to 0 when the �eld to their left is incremented;

otherwise, they, too, only increase with time. So, version 2.6.2 is newer than version 2.5.8,

and version 3.0 is newer than both. (Trailing `.0' �elds often are omitted in announcements

and in names for distributions and the directories they create.)

If your version of gcc is older than the oldest version supported by g77 (as casually

determined by listing the contents of `gcc/f/gbe/'), you should obtain a newer, supported

version of gcc. (You could instead obtain an older version of g77, or try and get your g77

to work with the old gcc, but neither approach is recommended, and you shouldn't bother

reporting any bugs you �nd if you take either approach, because they're probably already

�xed in the newer versions you're not using.)

If your version of gcc is newer than the newest version supported by g77, it is possible

that your g77 will work with it anyway. If the version number for gcc di�ers only in the

patch �eld, you might as well try applying the g77 patch that is for the newest version of

gcc having the same major and minor �elds, as this is likely to work.

So, for example, if a particular version of g77 has support for gcc versions 2.7.0 and

2.7.1, it is likely that `gcc-2.7.2' would work well with g77 by using the `2.7.1.diff'

patch �le provided with g77 (aside from some o�sets reported by patch, which usually are

harmless).

However, `gcc-2.8.0' would almost certainly not work with that version of g77 no

matter which patch �le was used, so a new version of g77 would be needed (and you should

wait for it rather than bothering the maintainers|see Chapter 9 [User-Visible Changes],

page 65).

This complexity is the result of gcc and g77 being separate distributions. By keeping

them separate, each product is able to be independently improved and distributed to its

user base more frequently.

However, g77 often requires changes to contemporary versions of gcc. Also, the GBE in-

terface de�ned by gcc typically undergoes some incompatible changes at least every time the

minor �eld of the version number is incremented, and such changes require corresponding

changes to the g77 front end (FFE).

It is hoped that the GBE interface, and the gcc and g77 products in general, will stabilize

su�ciently for the need for hand-patching to disappear.

If you are using GNU patch version 2.5 or later, this should produce a list of �les patched.

(Other versions of patch might not work properly.)

If messages about \fuzz", \o�set", or especially \reject �les" are printed, it might mean

you applied the wrong patch �le. If you believe this is the case, it is best to restart the

sequence after deleting (or at least renaming to unused names) the top-level directories for

g77 and gcc and their symbolic links. That is because patch might have partially patched

228 Using and Porting GNU Fortran

some gcc source �les, so reapplying the correct patch �le might result in the correct patches

being applied incorrectly (due to the way patch necessarily works).

After patch �nishes, the gcc directory might have old versions of several �les as saved

by patch. To remove these, after cd gcc, type rm -i *.~*~.

Note: gcc versions circa 2.7.2.2 and 2.7.2.3 are known to have slightly di�ering versions

of the gcc/ChangeLog �le, depending on how they are obtained. You can safely ignore diag-

nostics patch reports when patching this particular �le, since it is purely a documentation

�le for implementors. See `gcc/f/gbe/2.7.2.3.diff' for more information.

Note: g77's con�guration �le `gcc/f/config-lang.in' ensures that the source code

for the version of gcc being con�gured has at least one indication of being patched as

required speci�cally by g77. This con�guration-time checking should catch failure to apply

the correct patch and, if so caught, should abort the con�guration with an explanation.

Please do not try to disable the check, otherwise g77 might well appear to build and install

correctly, and even appear to compile correctly, but could easily produce broken code.

`LC_ALL=C TZ=UTC0 diff -rcp2N' is used to create the patch �les in `gcc/f/gbe/'.

15.5.3 Installing f77

You should decide whether you want installation of g77 to also install an f77 command.

On systems with a native f77, this is not normally desired, so g77 does not do this by

default.

If you want f77 installed, create the �le `f77-install-ok' (e.g. via the UNIX com-

mand `touch f77-install-ok') in the source or build top-level directory (the same

directory in which the g77 `f' directory resides, not the `f' directory itself), or edit

`gcc/f/Make-lang.in' and change the de�nition of the `F77_INSTALL_FLAG' macro appro-

priately.

Usually, this means that, after typing `cd gcc', you would type `touch f77-install-ok'.

When you enable installation of f77, either a link to or a direct copy of the g77 command

is made. Similarly, `f77.1' is installed as a man page.

(The uninstall target in the `gcc/Makefile' also tests this macro and �le, when in-

voked, to determine whether to delete the installed copies of f77 and `f77.1'.)

Note: No attempt is yet made to install a program (like a shell script) that provides

compatibility with any other f77 programs. Only the most rudimentary invocations of f77

will work the same way with g77.

15.5.4 Installing f2c

Currently, g77 does not include f2c itself in its distribution. However, it does include

a modi�ed version of the libf2c. This version is normally compatible with f2c, but has

been modi�ed to meet the needs of g77 in ways that might possibly be incompatible with

some versions or con�gurations of f2c.

Decide how installation of g77 should a�ect any existing installation of f2c on your

system.

Chapter 15: Installing GNU Fortran 229

If you do not have f2c on your system (e.g. no `/usr/bin/f2c', no `/usr/include/f2c.h',

and no `/usr/lib/libf2c.a', `/usr/lib/libF77.a', or `/usr/lib/libI77.a'), you don't

need to be concerned with this item.

If you do have f2c on your system, you need to decide how users of f2c will be a�ected

by your installing g77. Since g77 is currently designed to be object-code-compatible with

f2c (with very few, clear exceptions), users of f2c might want to combine f2c-compiled

object �les with g77-compiled object �les in a single executable.

To do this, users of f2c should use the same copies of `f2c.h' and `libf2c.a' that g77

uses (and that get built as part of g77).

If you do nothing here, the g77 installation process will not overwrite the `include/f2c.h'

and `lib/libf2c.a' �les with its own versions, and in fact will not even install `libf2c.a'

for use with the newly installed versions of gcc and g77 if it sees that `lib/libf2c.a'

exists|instead, it will print an explanatory message and skip this part of the installation.

To install g77's versions of `f2c.h' and `libf2c.a' in the appropriate places, create the

�le `f2c-install-ok' (e.g. via the UNIX command `touch f2c-install-ok') in the source

or build top-level directory (the same directory in which the g77 `f' directory resides, not

the `f' directory itself), or edit `gcc/f/Make-lang.in' and change the de�nition of the

`F2C_INSTALL_FLAG' macro appropriately.

Usually, this means that, after typing `cd gcc', you would type `touch f2c-install-ok'.

Make sure that when you enable the overwriting of `f2c.h' and `libf2c.a' as used by

f2c, you have a recent and properly con�gured version of `bin/f2c' so that it generates

code that is compatible with g77.

If you don't want installation of g77 to overwrite f2c's existing installation, but you

do want g77 installation to proceed with installation of its own versions of `f2c.h' and

`libf2c.a' in places where g77 will pick them up (even when linking f2c-compiled object

�les|which might lead to incompatibilities), create the �le `f2c-exists-ok' (e.g. via the

UNIX command `touch f2c-exists-ok') in the source or build top-level directory, or edit

`gcc/f/Make-lang.in' and change the de�nition of the `F2CLIBOK' macro appropriately.

15.5.5 Patching GNU Fortran

If you're using a SunOS4 system, you'll need to make the following change to `gcc/f/proj.h':

edit the line reading

#define FFEPROJ_STRTOUL 1 : : :

by replacing the `1' with `0'. Or, you can avoid editing the source by adding

CFLAGS='-DFFEPROJ_STRTOUL=0 -g -O'

to the command line for make when you invoke it. (`-g' is the default for `CFLAGS'.)

This causes a minimal version of strtoul() provided as part of the g77 distribution

to be compiled and linked into whatever g77 programs need it, since some systems (like

SunOS4 with only the bundled compiler and its runtime) do not provide this function in

their system libraries.

Similarly, a minimal version of bsearch() is available and can be enabled by editing a

line similar to the one for strtoul() above in `gcc/f/proj.h', if your system libraries lack

bsearch(). The method of overriding `X_CFLAGS' may also be used.

230 Using and Porting GNU Fortran

These are not problems with g77, which requires an ANSI C environment. You should

upgrade your system to one that provides a full ANSI C environment, or encourage the

maintainers of gcc to provide one to all gcc-based compilers in future gcc distributions.

See Section 15.2 [Problems Installing], page 216, for more information on why strtoul()

comes up missing and on approaches to dealing with this problem that have already been

tried.

15.5.6 Where in the World Does Fortran (and GNU CC) Go?

Before con�guring, you should make sure you know where you want the g77 and gcc

binaries to be installed after they're built, because this information is given to the con�gu-

ration tool and used during the build itself.

A g77 installation necessarily requires installation of a g77-aware version of gcc, so that

the gcc command recognizes Fortran source �les and knows how to compile them.

For this to work, the version of gcc that you will be building as part of g77 must be

installed as the \active" version of gcc on the system.

Sometimes people make the mistake of installing gcc as `/usr/local/bin/gcc', leaving

an older, non-Fortran-aware version in `/usr/bin/gcc'. (Or, the opposite happens.) This

can result in g77 being unable to compile Fortran source �les, because when it calls on gcc

to do the actual compilation, gcc complains that it does not recognize the language, or the

�le name su�x.

So, determine whether gcc already is installed on your system, and, if so, where it is

installed, and prepare to con�gure the new version of gcc you'll be building so that it

installs over the existing version of gcc.

You might want to back up your existing copy of `bin/gcc', and the entire `lib/' direc-

tory, before you perform the actual installation (as described in this manual).

Existing gcc installations typically are found in `/usr' or `/usr/local'. If you aren't

certain where the currently installed version of gcc and its related programs reside, look at

the output of this command:

gcc -v -o /tmp/delete-me -xc /dev/null -xnone

All sorts of interesting information on the locations of various gcc-related programs and

data �les should be visible in the output of the above command. (The output also is likely

to include a diagnostic from the linker, since there's no `main_()' function.) However, you

do have to sift through it yourself; gcc currently provides no easy way to ask it where it

is installed and where it looks for the various programs and data �les it calls on to do its

work.

Just building g77 should not overwrite any installed programs|but, usually, after you

build g77, you will want to install it, so backing up anything it might overwrite is a good

idea. (This is true for any package, not just g77, though in this case it is intentional that

g77 overwrites gcc if it is already installed|it is unusual that the installation process for

one distribution intentionally overwrites a program or �le installed by another distribution.)

Another reason to back up the existing version �rst, or make sure you can restore it

easily, is that it might be an older version on which other users have come to depend

for certain behaviors. However, even the new version of gcc you install will o�er users

Chapter 15: Installing GNU Fortran 231

the ability to specify an older version of the actual compilation programs if desired, and

these older versions need not include any g77 components. See section \Specifying Target

Machine and Compiler Version" in Using and Porting GNU CC , for information on the `-V'

option of gcc.

15.5.7 Con�guring GNU CC

g77 is con�gured automatically when you con�gure gcc. There are two parts of g77

that are con�gured in two di�erent ways|g77, which \camps on" to the gcc con�guration

mechanism, and libf2c, which uses a variation of the GNU autoconf con�guration system.

Generally, you shouldn't have to be concerned with either g77 or libf2c con�guration,

unless you're con�guring g77 as a cross-compiler. In this case, the libf2c con�guration,

and possibly the g77 and gcc con�gurations as well, might need special attention. (This

also might be the case if you're porting gcc to a whole new system|even if it is just a new

operating system on an existing, supported CPU.)

To con�gure the system, see section \Installing GNU CC" in Using and Porting GNU

CC , following the instructions for running `./configure'. Pay special attention to the

`--prefix=' option, which you almost certainly will need to specify.

(Note that gcc installation information is provided as a straight text �le in `gcc/INSTALL'.)

The information printed by the invocation of `./configure' should show that the `f'

directory (the Fortran language) has been con�gured. If it does not, there is a problem.

Note: Con�guring with the `--srcdir' argument is known to work with GNU make,

but it is not known to work with other variants of make. Irix5.2 and SunOS4.1 versions

of make de�nitely won't work outside the source directory at present. g77's portion of the

`configure' script issues a warning message about this when you con�gure for building

binaries outside the source directory.

15.5.8 Building GNU CC

Building g77 requires building enough of gcc that these instructions assume you're going

to build all of gcc, including g++, protoize, and so on. You can save a little time and disk

space by changes the `LANGUAGES' macro de�nition in gcc/Makefile.in or gcc/Makefile,

but if you do that, you're on your own. One change is almost certainly going to cause

failures: removing `c' or `f77' from the de�nition of the `LANGUAGES' macro.

After con�guring gcc, which con�gures g77 and libf2c automatically, you're ready to

start the actual build by invoking make.

Note: You must have run `./configure' before you run make, even if you're using

an already existing gcc development directory, because `./configure' does the work to

recognize that you've added g77 to the con�guration.

There are two general approaches to building GNU CC from scratch:

bootstrap This method uses minimal native system facilities to build a barebones, unop-

timized gcc, that is then used to compile (\bootstrap") the entire system.

straight This method assumes a more complete native system exists, and uses that just

once to build the entire system.

232 Using and Porting GNU Fortran

On all systems without a recent version of gcc already installed, the bootstrap method

must be used. In particular, g77 uses extensions to the C language o�ered, apparently, only

by gcc.

On most systems with a recent version of gcc already installed, the straight method can

be used. This is an advantage, because it takes less CPU time and disk space for the build.

However, it does require that the system have fairly recent versions of many GNU programs

and other programs, which are not enumerated here.

15.5.8.1 Bootstrap Build

A complete bootstrap build is done by issuing a command beginning with `make

bootstrap : : :', as described in section \Installing GNU CC" in Using and Porting GNU

CC . This is the most reliable form of build, but it does require the most disk space and

CPU time, since the complete system is built twice (in Stages 2 and 3), after an initial

build (during Stage 1) of a minimal gcc compiler using the native compiler and libraries.

You might have to, or want to, control the way a bootstrap build is done by entering

the make commands to build each stage one at a time, as described in the gcc manual. For

example, to save time or disk space, you might want to not bother doing the Stage 3 build,

in which case you are assuming that the gcc compiler you have built is basically sound

(because you are giving up the opportunity to compare a large number of object �les to

ensure they're identical).

To save some disk space during installation, after Stage 2 is built, you can type `rm -fr

stage1' to remove the binaries built during Stage 1.

Note: See Section 15.2.1.5 [Object File Di�erences], page 217, for information on ex-

pected di�erences in object �les produced during Stage 2 and Stage 3 of a bootstrap build.

These di�erences will be encountered as a result of using the `make compare' or similar

command sequence recommended by the GNU CC installation documentation.

Also, See section \Installing GNU CC" in Using and Porting GNU CC , for important

information on building gcc that is not described in this g77 manual. For example, expla-

nations of diagnostic messages and whether they're expected, or indicate trouble, are found

there.

15.5.8.2 Straight Build

If you have a recent version of gcc already installed on your system, and if you're

reasonably certain it produces code that is object-compatible with the version of gcc you

want to build as part of building g77, you can save time and disk space by doing a straight

build.

To build just the C and Fortran compilers and the necessary run-time libraries, issue the

following command:

make -k CC=gcc LANGUAGES=f77 all g77

(The `g77' target is necessary because the gcc build procedures apparently do not auto-

matically build command drivers for languages in subdirectories. It's the `all' target that

triggers building everything except, apparently, the g77 command itself.)

If you run into problems using this method, you have two options:

Chapter 15: Installing GNU Fortran 233

� Abandon this approach and do a bootstrap build.

� Try to make this approach work by diagnosing the problems you're running into and

retrying.

Especially if you do the latter, you might consider submitting any solutions as bug/�x

reports. See Chapter 18 [Known Causes of Trouble with GNU Fortran], page 265.

However, understand that many problems preventing a straight build from working are

not g77 problems, and, in such cases, are not likely to be addressed in future versions of

g77.

15.5.9 Pre-installation Checks

Before installing the system, which includes installing gcc, you might want to do some

minimum checking to ensure that some basic things work.

Here are some commands you can try, and output typically printed by them when they

work:

sh# cd /usr/src/gcc

sh# ./g77 --driver=./xgcc -B./ -v

g77 version 0.5.22

./xgcc -B./ -v -fnull-version -o /tmp/gfa18047 : : :

Reading specs from ./specs

gcc version 2.7.2.3.f.2

./cpp -lang-c -v -isystem ./include -undef : : :

GNU CPP version 2.7.2.3.f.2 (Linux/Alpha)

#include "..." search starts here:

#include <...> search starts here:

./include

/usr/local/include

/usr/alpha-unknown-linux/include

/usr/lib/gcc-lib/alpha-unknown-linux/2.7.2.3.f.2/include

/usr/include

End of search list.

./f771 /tmp/cca18048.i -fset-g77-defaults -quiet -dumpbase : : :

GNU F77 version 2.7.2.3.f.2 (Linux/Alpha) compiled : : :

GNU Fortran Front End version 0.5.22 compiled: : : :

as -nocpp -o /tmp/cca180481.o /tmp/cca18048.s

ld -G 8 -O1 -o /tmp/gfa18047 /usr/lib/crt0.o -L. : : :

__G77_LIBF77_VERSION__: 0.5.22

@(#)LIBF77 VERSION 19970404

__G77_LIBI77_VERSION__: 0.5.22

@(#) LIBI77 VERSION pjw,dmg-mods 19970816

__G77_LIBU77_VERSION__: 0.5.22

@(#) LIBU77 VERSION 19970609

sh# ./xgcc -B./ -v -o /tmp/delete-me -xc /dev/null -xnone

Reading specs from ./specs

gcc version 2.7.2.3.f.2

./cpp -lang-c -v -isystem ./include -undef : : :

GNU CPP version 2.7.2.3.f.2 (Linux/Alpha)

234 Using and Porting GNU Fortran

#include "..." search starts here:

#include <...> search starts here:

./include

/usr/local/include

/usr/alpha-unknown-linux/include

/usr/lib/gcc-lib/alpha-unknown-linux/2.7.2.3.f.2/include

/usr/include

End of search list.

./cc1 /tmp/cca18063.i -quiet -dumpbase null.c -version : : :

GNU C version 2.7.2.3.f.2 (Linux/Alpha) compiled : : :

as -nocpp -o /tmp/cca180631.o /tmp/cca18063.s

ld -G 8 -O1 -o /tmp/delete-me /usr/lib/crt0.o -L. : : :

/usr/lib/crt0.o: In function `__start':

crt0.S:110: undefined reference to `main'

/usr/lib/crt0.o(.lita+0x28): undefined reference to `main'

sh#

(Note that long lines have been truncated, and `: : :' used to indicate such truncations.)

The above two commands test whether g77 and gcc, respectively, are able to compile

empty (null) source �les, whether invocation of the C preprocessor works, whether libraries

can be linked, and so on.

If the output you get from either of the above two commands is noticeably di�erent,

especially if it is shorter or longer in ways that do not look consistent with the above

sample output, you probably should not install gcc and g77 until you have investigated

further.

For example, you could try compiling actual applications and seeing how that works.

(You might want to do that anyway, even if the above tests work.)

To compile using the not-yet-installed versions of gcc and g77, use the following com-

mands to invoke them.

To invoke g77, type:

/usr/src/gcc/g77 --driver=/usr/src/gcc/xgcc -B/usr/src/gcc/ : : :

To invoke gcc, type:

/usr/src/gcc/xgcc -B/usr/src/gcc/ : : :

15.5.10 Installation of Binaries

After con�guring, building, and testing g77 and gcc, when you are ready to install them

on your system, type:

make -k CC=gcc LANGUAGES=f77 install

As described in section \Installing GNU CC" in Using and Porting GNU CC , the values

for the `CC' and `LANGUAGES' macros should be the same as those you supplied for the build

itself.

So, the details of the above command might vary if you used a bootstrap build (where

you might be able to omit both de�nitions, or might have to supply the same de�nitions you

used when building the �nal stage) or if you deviated from the instructions for a straight

build.

Chapter 15: Installing GNU Fortran 235

If the above command does not install `libf2c.a' as expected, try this:

make -k : : : install install-libf77 install-f2c-all

We don't know why some non-GNU versions of make sometimes require this alternate

command, but they do. (Remember to supply the appropriate de�nitions for `CC' and

`LANGUAGES' where you see `: : :' in the above command.)

Note that using the `-k' option tells make to continue after some installation problems,

like not having makeinfo installed on your system. It might not be necessary for your

system.

15.5.11 Updating Your Info Directory

As part of installing g77, you should make sure users of info can easily access this man-

ual on-line. Do this by making sure a line such as the following exists in `/usr/info/dir',

or in whatever �le is the top-level �le in the info directory on your system (perhaps

`/usr/local/info/dir':

* g77: (g77). The GNU Fortran programming language.

If the menu in `dir' is organized into sections, g77 probably belongs in a section with a

name such as one of the following:

� Fortran Programming

� Writing Programs

� Programming Languages

� Languages Other Than C

� Scienti�c/Engineering Tools

� GNU Compilers

15.5.12 Missing bison?

If you cannot install bison, make sure you have started with a fresh distribution of

gcc, do not do `make maintainer-clean' (in other versions of gcc, this was called `make

realclean'), and, to ensure that bison is not invoked by make during the build, type these

commands:

sh# cd gcc

sh# touch bi-parser.c bi-parser.h c-parse.c c-parse.h cexp.c

sh# touch cp/parse.c cp/parse.h objc-parse.c

sh#

These commands update the date-time-modi�ed information for all the �les produced

by the various invocations of bison in the current versions of gcc, so that make no longer

believes it needs to update them. All of these �les should already exist in a gcc distribution,

but the application of patches to upgrade to a newer version can leave the modi�cation

information set such that the bison input �les look more \recent" than the corresponding

output �les.

Note: New versions of gcc might change the set of �les it generates by invoking bison|

if you cannot �gure out for yourself how to handle such a situation, try an older version of

gcc until you �nd someone who can (or until you obtain and install bison).

236 Using and Porting GNU Fortran

15.5.13 Missing makeinfo?

If you cannot install makeinfo, either use the -k option when invoking make to specify

any of the `install' or related targets, or specify `MAKEINFO=echo' on the make command

line.

If you fail to do one of these things, some �les, like `libf2c.a', might not be installed,

because the failed attempt by make to invoke makeinfo causes it to cancel any further

processing.

15.6 Distributing Binaries

If you are building g77 for distribution to others in binary form, �rst make sure you are

aware of your legal responsibilities (read the �le `gcc/COPYING' thoroughly).

Then, consider your target audience and decide where g77 should be installed.

For systems like GNU/Linux that have no native Fortran compiler (or where g77 could

be considered the native compiler for Fortran and gcc for C, etc.), you should de�nitely

con�gure g77 for installation in `/usr/bin' instead of `/usr/local/bin'. Specify the

`--prefix=/usr' option when running `./configure'. You might also want to set up

the distribution so the f77 command is a link to g77|just make an empty �le named

`f77-install-ok' in the source or build directory (the one in which the `f' directory re-

sides, not the `f' directory itself) when you specify one of the `install' or `uninstall'

targets in a make command.

For a system that might already have f2c installed, you de�nitely will want to make an-

other empty �le (in the same directory) named either `f2c-exists-ok' or `f2c-install-ok'.

Use the former if you don't want your distribution to overwrite f2c-related �les in existing

systems; use the latter if you want to improve the likelihood that users will be able to use

both f2c and g77 to compile code for a single program without encountering link-time or

run-time incompatibilities.

(Make sure you clearly document, in the \advertising" for your distribution, how instal-

lation of your distribution will a�ect existing installations of gcc, f2c, f77, `libf2c.a',

and so on. Similarly, you should clearly document any requirements you assume are met

by users of your distribution.)

For other systems with native f77 (and cc) compilers, con�gure g77 as you (or most of

your audience) would con�gure gcc for their installations. Typically this is for installation

in `/usr/local', and would not include a copy of g77 named f77, so users could still use

the native f77.

In any case, for g77 to work properly, you must ensure that the binaries you distribute

include:

`bin/g77' This is the command most users use to compile Fortran.

`bin/gcc' This is the command all users use to compile Fortran, either directly or indi-

rectly via the g77 command. The `bin/gcc' executable �le must have been built

from a gcc source tree into which a g77 source tree was merged and con�gured,

or it will not know how to compile Fortran programs.

Chapter 15: Installing GNU Fortran 237

`bin/f77' In installations with no non-GNU native Fortran compiler, this is the same as

`bin/g77'. Otherwise, it should be omitted from the distribution, so the one

on already on a particular system does not get overwritten.

`info/g77.info*'

This is the documentation for g77. If it is not included, users will have trouble

understanding diagnostics messages and other such things, and will send you a

lot of email asking questions.

Please edit this documentation (by editing `gcc/f/*.tex' and doing `make doc'

from the `/usr/src/gcc' directory) to reect any changes you've made to g77,

or at least to encourage users of your binary distribution to report bugs to you

�rst.

Also, whether you distribute binaries or install g77 on your own system, it

might be helpful for everyone to add a line listing this manual by name and

topic to the top-level info node in `/usr/info/dir'. That way, users can

�nd g77 documentation more easily. See Section 15.5.11 [Updating Your Info

Directory], page 235.

`man/man1/g77.1'

This is the short man page for g77. It is out of date, but you might as well

include it for people who really like man pages.

`man/man1/f77.1'

In installations where f77 is the same as g77, this is the same as `man/man1/g77.1'.

Otherwise, it should be omitted from the distribution, so the one already on a

particular system does not get overwritten.

`lib/gcc-lib/: : :/f771'

This is the actual Fortran compiler.

`lib/gcc-lib/: : :/libf2c.a'

This is the run-time library for g77-compiled programs.

Whether you want to include the slightly updated (and possibly improved) versions of

cc1, cc1plus, and whatever other binaries get rebuilt with the changes the GNU Fortran

distribution makes to the GNU back end, is up to you. These changes are highly unlikely to

break any compilers, and it is possible they'll �x back-end bugs that can be demonstrated

using front ends other than GNU Fortran's.

Please assure users that unless they have a speci�c need for their existing, older versions

of gcc command, they are unlikely to experience any problems by overwriting it with your

version|though they could certainly protect themselves by making backup copies �rst!

Otherwise, users might try and install your binaries in a \safe" place, �nd they cannot

compile Fortran programs with your distribution (because, perhaps, they're picking up

their old version of the gcc command, which does not recognize Fortran programs), and

assume that your binaries (or, more generally, GNU Fortran distributions in general) are

broken, at least for their system.

Finally, please ask for bug reports to go to you �rst, at least until you're sure your

distribution is widely used and has been well tested. This especially goes for those of you

making any changes to the g77 sources to port g77, e.g. to OS/2. fortran@gnu.org has

238 Using and Porting GNU Fortran

received a fair number of bug reports that turned out to be problems with other peoples'

ports and distributions, about which nothing could be done for the user. Once you are

quite certain a bug report does not involve your e�orts, you can forward it to us.

Chapter 16: Debugging and Interfacing 239

16 Debugging and Interfacing

GNU Fortran currently generates code that is object-compatible with the f2c converter.

Also, it avoids limitations in the current GBE, such as the inability to generate a procedure

with multiple entry points, by generating code that is structured di�erently (in terms of

procedure names, scopes, arguments, and so on) than might be expected.

As a result, writing code in other languages that calls on, is called by, or shares in-

memory data with g77-compiled code generally requires some understanding of the way

g77 compiles code for various constructs.

Similarly, using a debugger to debug g77-compiled code, even if that debugger supports

native Fortran debugging, generally requires this sort of information.

This section describes some of the basic information on how g77 compiles code for

constructs involving interfaces to other languages and to debuggers.

Caution: Much or all of this information pertains to only the current release of g77,

sometimes even to using certain compiler options with g77 (such as `-fno-f2c'). Do not

write code that depends on this information without clearly marking said code as non-

portable and subject to review for every new release of g77. This information is provided

primarily to make debugging of code generated by this particular release of g77 easier for

the user, and partly to make writing (generally nonportable) interface code easier. Both of

these activities require tracking changes in new version of g77 as they are installed, because

new versions can change the behaviors described in this section.

16.1 Main Program Unit (PROGRAM)

When g77 compiles a main program unit, it gives it the public procedure name `MAIN__'.

The libf2c library has the actual main() procedure as is typical of C-based environments,

and it is this procedure that performs some initial start-up activity and then calls `MAIN__'.

Generally, g77 and libf2c are designed so that you need not include a main program

unit written in Fortran in your program|it can be written in C or some other language.

Especially for I/O handling, this is the case, although g77 version 0.5.16 includes a bug �x

for libf2c that solved a problem with using the OPEN statement as the �rst Fortran I/O

activity in a program without a Fortran main program unit.

However, if you don't intend to use g77 (or f2c) to compile your main program

unit|that is, if you intend to compile a main() procedure using some other language|

you should carefully examine the code for main() in libf2c, found in the source �le

`gcc/f/runtime/libF77/main.c', to see what kinds of things might need to be done by

your main() in order to provide the Fortran environment your Fortran code is expecting.

For example, libf2c's main() sets up the information used by the IARGC and GETARG

intrinsics. Bypassing libf2c's main() without providing a substitute for this activity would

mean that invoking IARGC and GETARG would produce unde�ned results.

When debugging, one implication of the fact that main(), which is the place where the

debugged program \starts" from the debugger's point of view, is in libf2c is that you

won't be starting your Fortran program at a point you recognize as your Fortran code.

240 Using and Porting GNU Fortran

The standard way to get around this problem is to set a break point (a one-time, or

temporary, break point will do) at the entrance to `MAIN__', and then run the program. A

convenient way to do so is to add the gdb command

tbreak MAIN__

to the �le `.gdbinit' in the directory in which you're debugging (using gdb).

After doing this, the debugger will see the current execution point of the program as at

the beginning of the main program unit of your program.

Of course, if you really want to set a break point at some other place in your program

and just start the program running, without �rst breaking at `MAIN__', that should work

�ne.

16.2 Procedures (SUBROUTINE and FUNCTION)

Currently, g77 passes arguments via reference|speci�cally, by passing a pointer to the

location in memory of a variable, array, array element, a temporary location that holds the

result of evaluating an expression, or a temporary or permanent location that holds the

value of a constant.

Procedures that accept CHARACTER arguments are implemented by g77 so that each

CHARACTER argument has two actual arguments.

The �rst argument occupies the expected position in the argument list and has the

user-speci�ed name. This argument is a pointer to an array of characters, passed by the

caller.

The second argument is appended to the end of the user-speci�ed calling sequence and

is named `__g77_length_x', where x is the user-speci�ed name. This argument is of the

C type ftnlen (see `gcc/f/runtime/f2c.h.in' for information on that type) and is the

number of characters the caller has allocated in the array pointed to by the �rst argument.

A procedure will ignore the length argument if `X' is not declared CHARACTER*(*), be-

cause for other declarations, it knows the length. Not all callers necessarily \know" this,

however, which is why they all pass the extra argument.

The contents of the CHARACTER argument are speci�ed by the address passed in the �rst

argument (named after it). The procedure can read or write these contents as appropriate.

When more than one CHARACTER argument is present in the argument list, the length ar-

guments are appended in the order the original arguments appear. So `CALL FOO('HI','THERE')'

is implemented in C as `foo("hi","there",2,5);', ignoring the fact that g77 does not

provide the trailing null bytes on the constant strings (f2c does provide them, but they are

unnecessary in a Fortran environment, and you should not expect them to be there).

Note that the above information applies to CHARACTER variables and arrays only. It does

not apply to external CHARACTER functions or to intrinsic CHARACTER functions. That is, no

second length argument is passed to `FOO' in this case:

CHARACTER X

EXTERNAL X

CALL FOO(X)

Nor does `FOO' expect such an argument in this case:

Chapter 16: Debugging and Interfacing 241

SUBROUTINE FOO(X)

CHARACTER X

EXTERNAL X

Because of this implementation detail, if a program has a bug such that there is disagree-

ment as to whether an argument is a procedure, and the type of the argument is CHARACTER,

subtle symptoms might appear.

16.3 Functions (FUNCTION and RETURN)

g77 handles in a special way functions that return the following types:

� CHARACTER

� COMPLEX

� REAL(KIND=1)

For CHARACTER, g77 implements a subroutine (a C function returning void) with two

arguments prepended: `__g77_result', which the caller passes as a pointer to a char

array expected to hold the return value, and `__g77_length', which the caller passes as an

ftnlen value specifying the length of the return value as declared in the calling program.

For CHARACTER*(*), the called function uses `__g77_length' to determine the size of the

array that `__g77_result' points to; otherwise, it ignores that argument.

For COMPLEX, when `-ff2c' is in force, g77 implements a subroutine with one argument

prepended: `__g77_result', which the caller passes as a pointer to a variable of the type

of the function. The called function writes the return value into this variable instead of

returning it as a function value. When `-fno-f2c' is in force, g77 implements a COMPLEX

function as gcc's `__complex__ float' or `__complex__ double' function (or an emulation

thereof, when `-femulate-complex' is in e�ect), returning the result of the function in the

same way as gcc would.

For REAL(KIND=1), when `-ff2c' is in force, g77 implements a function that actu-

ally returns REAL(KIND=2) (typically C's double type). When `-fno-f2c' is in force,

REAL(KIND=1) functions return float.

16.4 Names

Fortran permits each implementation to decide how to represent names as far as how

they're seen in other contexts, such as debuggers and when interfacing to other languages,

and especially as far as how casing is handled.

External names|names of entities that are public, or \accessible", to all modules in a

program|normally have an underscore (`_') appended by g77, to generate code that is com-

patible with f2c. External names include names of Fortran things like common blocks, ex-

ternal procedures (subroutines and functions, but not including statement functions, which

are internal procedures), and entry point names.

However, use of the `-fno-underscoring' option disables this kind of transformation

of external names (though inhibiting the transformation certainly improves the chances

of colliding with incompatible externals written in other languages|but that might be

intentional.

242 Using and Porting GNU Fortran

When `-funderscoring' is in force, any name (external or local) that already has at

least one underscore in it is implemented by g77 by appending two underscores. (This

second underscore can be disabled via the `-fno-second-underscore' option.) External

names are changed this way for f2c compatibility. Local names are changed this way to

avoid collisions with external names that are di�erent in the source code|f2c does the same

thing, but there's no compatibility issue there except for user expectations while debugging.

For example:

Max_Cost = 0

Here, a user would, in the debugger, refer to this variable using the name `max_cost__' (or

`MAX_COST__' or `Max_Cost__', as described below). (We hope to improve g77 in this regard

in the future|don't write scripts depending on this behavior! Also, consider experimenting

with the `-fno-underscoring' option to try out debugging without having to massage

names by hand like this.)

g77 provides a number of command-line options that allow the user to control how case

mapping is handled for source �les. The default is the traditional UNIX model for Fortran

compilers|names are mapped to lower case. Other command-line options can be speci�ed

to map names to upper case, or to leave them exactly as written in the source �le.

For example:

Foo = 9.436

Here, it is normally the case that the variable assigned will be named `foo'. This would be

the name to enter when using a debugger to access the variable.

However, depending on the command-line options speci�ed, the name implemented by

g77 might instead be `FOO' or even `Foo', thus a�ecting how debugging is done.

Also:

Call Foo

This would normally call a procedure that, if it were in a separate C program, be de�ned

starting with the line:

void foo_()

However, g77 command-line options could be used to change the casing of names, result-

ing in the name `FOO_' or `Foo_' being given to the procedure instead of `foo_', and the

`-fno-underscoring' option could be used to inhibit the appending of the underscore to

the name.

16.5 Common Blocks (COMMON)

g77 names and lays out COMMON areas the same way f2c does, for compatibility with f2c.

Currently, g77 does not emit \true" debugging information for members of a COMMON

area, due to an apparent bug in the GBE.

(As of Version 0.5.19, g77 emits debugging information for such members in the form

of a constant string specifying the base name of the aggregate area and the o�set of the

member in bytes from the start of the area. Use the `-fdebug-kludge' option to enable

this behavior. In gdb, use `set language c' before printing the value of the member, then

Chapter 16: Debugging and Interfacing 243

`set language fortran' to restore the default language, since gdb doesn't provide a way

to print a readable version of a character string in Fortran language mode.

This kludge will be removed in a future version of g77 that, in conjunction with a con-

temporary version of gdb, properly supports Fortran-language debugging, including access

to members of COMMON areas.)

See Section 7.10 [Options for Code Generation Conventions], page 41, for information

on the `-fdebug-kludge' option.

Moreover, g77 currently implements a COMMON area such that its type is an array of the

C char data type.

So, when debugging, you must know the o�set into a COMMON area for a particular item

in that area, and you have to take into account the appropriate multiplier for the respective

sizes of the types (as declared in your code) for the items preceding the item in question as

compared to the size of the char type.

For example, using default implicit typing, the statement

COMMON I(15), R(20), T

results in a public 144-byte char array named `_BLNK__' with `I' placed at `_BLNK__[0]',

`R' at `_BLNK__[60]', and `T' at `_BLNK__[140]'. (This is assuming that the target machine

for the compilation has 4-byte INTEGER(KIND=1) and REAL(KIND=1) types.)

16.6 Local Equivalence Areas (EQUIVALENCE)

g77 treats storage-associated areas involving a COMMON block as explained in the section

on common blocks.

A local EQUIVALENCE area is a collection of variables and arrays connected to each other

in any way via EQUIVALENCE, none of which are listed in a COMMON statement.

Currently, g77 does not emit \true" debugging information for members in a local

EQUIVALENCE area, due to an apparent bug in the GBE.

(As of Version 0.5.19, g77 does emit debugging information for such members in the

form of a constant string specifying the base name of the aggregate area and the o�set of

the member in bytes from the start of the area. Use the `-fdebug-kludge' option to enable

this behavior. In gdb, use `set language c' before printing the value of the member, then

`set language fortran' to restore the default language, since gdb doesn't provide a way

to print a readable version of a character string in Fortran language mode.

This kludge will be removed in a future version of g77 that, in conjunction with a con-

temporary version of gdb, properly supports Fortran-language debugging, including access

to members of EQUIVALENCE areas.)

See Section 7.10 [Options for Code Generation Conventions], page 41, for information

on the `-fdebug-kludge' option.

Moreover, g77 implements a local EQUIVALENCE area such that its type is an array of

the C char data type.

The name g77 gives this array of char type is `__g77_equiv_x', where x is the name

of the item that is placed at the beginning (o�set 0) of this array. If more than one such

244 Using and Porting GNU Fortran

item is placed at the beginning, x is the name that sorts to the top in an alphabetical sort

of the list of such items.

When debugging, you must therefore access members of EQUIVALENCE areas by speci-

fying the appropriate `__g77_equiv_x' array section with the appropriate o�set. See the

explanation of debugging COMMON blocks for info applicable to debugging local EQUIVALENCE

areas.

(Note: g77 version 0.5.18 and earlier chose the name for x using a di�erent method

when more than one name was in the list of names of entities placed at the beginning of the

array. Though the documentation speci�ed that the �rst name listed in the EQUIVALENCE

statements was chosen for x, g77 in fact chose the name using a method that was so

complicated, it seemed easier to change it to an alphabetical sort than to describe the

previous method in the documentation.)

16.7 Complex Variables (COMPLEX)

As of 0.5.20, g77 defaults to handling COMPLEX types (and related intrinsics, constants,

functions, and so on) in a manner that makes direct debugging involving these types in

Fortran language mode di�cult.

Essentially, g77 implements these types using an internal construct similar to C's struct,

at least as seen by the gcc back end.

Currently, the back end, when outputting debugging info with the compiled code for the

assembler to digest, does not detect these struct types as being substitutes for Fortran

complex. As a result, the Fortran language modes of debuggers such as gdb see these types

as C struct types, which they might or might not support.

Until this is �xed, switch to C language mode to work with entities of COMPLEX type and

then switch back to Fortran language mode afterward. (In gdb, this is accomplished via

`set lang c' and either `set lang fortran' or `set lang auto'.)

Note: Compiling with the `-fno-emulate-complex' option avoids the debugging prob-

lem, but is known to cause other problems like compiler crashes and generation of incorrect

code, so it is not recommended.

16.8 Arrays (DIMENSION)

Fortran uses \column-major ordering" in its arrays. This di�ers from other languages,

such as C, which use \row-major ordering". The di�erence is that, with Fortran, array

elements adjacent to each other in memory di�er in the �rst subscript instead of the last;

`A(5,10,20)' immediately follows `A(4,10,20)', whereas with row-major ordering it would

follow `A(5,10,19)'.

This consideration a�ects not only interfacing with and debugging Fortran code, it can

greatly a�ect how code is designed and written, especially when code speed and size is a

concern.

Fortran also di�ers from C, a popular language for interfacing and to support directly

in debuggers, in the way arrays are treated. In C, arrays are single-dimensional and have

interesting relationships to pointers, neither of which is true for Fortran. As a result, dealing

with Fortran arrays from within an environment limited to C concepts can be challenging.

Chapter 16: Debugging and Interfacing 245

For example, accessing the array element `A(5,10,20)' is easy enough in Fortran (use

`A(5,10,20)'), but in C some di�cult machinations are needed. First, C would treat the

A array as a single-dimension array. Second, C does not understand low bounds for arrays

as does Fortran. Third, C assumes a low bound of zero (0), while Fortran defaults to a low

bound of one (1) and can supports an arbitrary low bound. Therefore, calculations must be

done to determine what the C equivalent of `A(5,10,20)' would be, and these calculations

require knowing the dimensions of `A'.

For `DIMENSION A(2:11,21,0:29)', the calculation of the o�set of `A(5,10,20)' would

be:

(5-2)

+ (10-1)*(11-2+1)

+ (20-0)*(11-2+1)*(21-1+1)

= 4293

So the C equivalent in this case would be `a[4293]'.

When using a debugger directly on Fortran code, the C equivalent might not work,

because some debuggers cannot understand the notion of low bounds other than zero.

However, unlike f2c, g77 does inform the GBE that a multi-dimensional array (like `A' in

the above example) is really multi-dimensional, rather than a single-dimensional array, so

at least the dimensionality of the array is preserved.

Debuggers that understand Fortran should have no trouble with non-zero low bounds,

but for non-Fortran debuggers, especially C debuggers, the above example might have a

C equivalent of `a[4305]'. This calculation is arrived at by eliminating the subtraction

of the lower bound in the �rst parenthesized expression on each line|that is, for `(5-2)'

substitute `(5)', for `(10-1)' substitute `(10)', and for `(20-0)' substitute `(20)'. Actually,

the implication of this can be that the expression `*(&a[2][1][0] + 4293)' works �ne, but

that `a[20][10][5]' produces the equivalent of `*(&a[0][0][0] + 4305)' because of the

missing lower bounds.

Come to think of it, perhaps the behavior is due to the debugger internally compensating

for the lower bounds by o�setting the base address of `a', leaving `&a' set lower, in this case,

than `&a[2][1][0]' (the address of its �rst element as identi�ed by subscripts equal to the

corresponding lower bounds).

You know, maybe nobody really needs to use arrays.

16.9 Adjustable Arrays (DIMENSION)

Adjustable and automatic arrays in Fortran require the implementation (in this case,

the g77 compiler) to \memorize" the expressions that dimension the arrays each time the

procedure is invoked. This is so that subsequent changes to variables used in those expres-

sions, made during execution of the procedure, do not have any e�ect on the dimensions of

those arrays.

For example:

REAL ARRAY(5)

DATA ARRAY/5*2/

CALL X(ARRAY, 5)

246 Using and Porting GNU Fortran

END

SUBROUTINE X(A, N)

DIMENSION A(N)

N = 20

PRINT *, N, A

END

Here, the implementation should, when running the program, print something like:

20 2. 2. 2. 2. 2.

Note that this shows that while the value of `N' was successfully changed, the size of the `A'

array remained at 5 elements.

To support this, g77 generates code that executes before any user code (and before the

internally generated computed GOTO to handle alternate entry points, as described below)

that evaluates each (nonconstant) expression in the list of subscripts for an array, and saves

the result of each such evaluation to be used when determining the size of the array (instead

of re-evaluating the expressions).

So, in the above example, when `X' is �rst invoked, code is executed that copies the

value of `N' to a temporary. And that same temporary serves as the actual high bound for

the single dimension of the `A' array (the low bound being the constant 1). Since the user

program cannot (legitimately) change the value of the temporary during execution of the

procedure, the size of the array remains constant during each invocation.

For alternate entry points, the code g77 generates takes into account the possibility that

a dummy adjustable array is not actually passed to the actual entry point being invoked

at that time. In that case, the public procedure implementing the entry point passes to

the master private procedure implementing all the code for the entry points a NULL pointer

where a pointer to that adjustable array would be expected. The g77-generated code doesn't

attempt to evaluate any of the expressions in the subscripts for an array if the pointer to that

array is NULL at run time in such cases. (Don't depend on this particular implementation

by writing code that purposely passes NULL pointers where the callee expects adjustable

arrays, even if you know the callee won't reference the arrays|nor should you pass NULL

pointers for any dummy arguments used in calculating the bounds of such arrays or leave

unde�ned any values used for that purpose in COMMON|because the way g77 implements

these things might change in the future!)

16.10 Alternate Entry Points (ENTRY)

The GBE does not understand the general concept of alternate entry points as Fortran

provides via the ENTRY statement. g77 gets around this by using an approach to compiling

procedures having at least one ENTRY statement that is almost identical to the approach

used by f2c. (An alternate approach could be used that would probably generate faster,

but larger, code that would also be a bit easier to debug.)

Information on how g77 implements ENTRY is provided for those trying to debug such

code. The choice of implementation seems unlikely to a�ect code (compiled in other lan-

guages) that interfaces to such code.

Chapter 16: Debugging and Interfacing 247

g77 compiles exactly one public procedure for the primary entry point of a procedure

plus each ENTRY point it speci�es, as usual. That is, in terms of the public interface, there

is no di�erence between

SUBROUTINE X

END

SUBROUTINE Y

END

and:

SUBROUTINE X

ENTRY Y

END

The di�erence between the above two cases lies in the code compiled for the `X' and `Y'

procedures themselves, plus the fact that, for the second case, an extra internal procedure

is compiled.

For every Fortran procedure with at least one ENTRY statement, g77 compiles an extra

procedure named `__g77_masterfun_x', where x is the name of the primary entry point

(which, in the above case, using the standard compiler options, would be `x_' in C).

This extra procedure is compiled as a private procedure|that is, a procedure not ac-

cessible by name to separately compiled modules. It contains all the code in the program

unit, including the code for the primary entry point plus for every entry point. (The code

for each public procedure is quite short, and explained later.)

The extra procedure has some other interesting characteristics.

The argument list for this procedure is invented by g77. It contains a single integer

argument named `__g77_which_entrypoint', passed by value (as in Fortran's `%VAL()'

intrinsic), specifying the entry point index|0 for the primary entry point, 1 for the �rst

entry point (the �rst ENTRY statement encountered), 2 for the second entry point, and so

on.

It also contains, for functions returning CHARACTER and (when `-ff2c' is in e�ect)

COMPLEX functions, and for functions returning di�erent types among the ENTRY statements

(e.g. `REAL FUNCTION R()' containing `ENTRY I()'), an argument named `__g77_result'

that is expected at run time to contain a pointer to where to store the result of the entry

point. For CHARACTER functions, this storage area is an array of the appropriate number

of characters; for COMPLEX functions, it is the appropriate area for the return type; for

multiple-return-type functions, it is a union of all the supported return types (which cannot

include CHARACTER, since combining CHARACTER and non-CHARACTER return types via ENTRY

in a single function is not supported by g77).

For CHARACTER functions, the `__g77_result' argument is followed by yet another argu-

ment named `__g77_length' that, at run time, speci�es the caller's expected length of the

returned value. Note that only CHARACTER*(*) functions and entry points actually make

use of this argument, even though it is always passed by all callers of public CHARACTER func-

tions (since the caller does not generally know whether such a function is CHARACTER*(*)

or whether there are any other callers that don't have that information).

The rest of the argument list is the union of all the arguments speci�ed for all the entry

points (in their usual forms, e.g. CHARACTER arguments have extra length arguments, all

appended at the end of this list). This is considered the \master list" of arguments.

248 Using and Porting GNU Fortran

The code for this procedure has, before the code for the �rst executable statement, code

much like that for the following Fortran statement:

GOTO (100000,100001,100002), __g77_which_entrypoint

100000 : : :code for primary entry point: : :

100001 : : :code immediately following first ENTRY statement: : :

100002 : : :code immediately following second ENTRY statement: : :

(Note that invalid Fortran statement labels and variable names are used in the above ex-

ample to highlight the fact that it represents code generated by the g77 internals, not code

to be written by the user.)

It is this code that, when the procedure is called, picks which entry point to start

executing.

Getting back to the public procedures (`x' and `Y' in the original example), those proce-

dures are fairly simple. Their interfaces are just like they would be if they were self-contained

procedures (without ENTRY), of course, since that is what the callers expect. Their code

consists of simply calling the private procedure, described above, with the appropriate extra

arguments (the entry point index, and perhaps a pointer to a multiple-type- return vari-

able, local to the public procedure, that contains all the supported returnable non-character

types). For arguments that are not listed for a given entry point that are listed for other en-

try points, and therefore that are in the \master list" for the private procedure, null pointers

(in C, the NULL macro) are passed. Also, for entry points that are part of a multiple-type-

returning function, code is compiled after the call of the private procedure to extract from

the multi-type union the appropriate result, depending on the type of the entry point in

question, returning that result to the original caller.

When debugging a procedure containing alternate entry points, you can either set a

break point on the public procedure itself (e.g. a break point on `X' or `Y') or on the private

procedure that contains most of the pertinent code (e.g. `__g77_masterfun_x'). If you do

the former, you should use the debugger's command to \step into" the called procedure

to get to the actual code; with the latter approach, the break point leaves you right at

the actual code, skipping over the public entry point and its call to the private procedure

(unless you have set a break point there as well, of course).

Further, the list of dummy arguments that is visible when the private procedure is active

is going to be the expanded version of the list for whichever particular entry point is active,

as explained above, and the way in which return values are handled might well be di�erent

from how they would be handled for an equivalent single-entry function.

16.11 Alternate Returns (SUBROUTINE and RETURN)

Subroutines with alternate returns (e.g. `SUBROUTINE X(*)' and `CALL X(*50)') are im-

plemented by g77 as functions returning the C int type. The actual alternate-return

arguments are omitted from the calling sequence. Instead, the caller uses the return value

to do a rough equivalent of the Fortran computed-GOTO statement, as in `GOTO (50), X()' in

the example above (where `X' is quietly declared as an INTEGER(KIND=1) function), and the

callee just returns whatever integer is speci�ed in the RETURN statement for the subroutine

For example, `RETURN 1' is implemented as `X = 1' followed by `RETURN' in C, and `RETURN'

by itself is `X = 0' and `RETURN').

Chapter 16: Debugging and Interfacing 249

16.12 Assigned Statement Labels (ASSIGN and GOTO)

For portability to machines where a pointer (such as to a label, which is how g77 im-

plements ASSIGN and its relatives, the assigned-GOTO and assigned-FORMAT-I/O statements)

is wider (bitwise) than an INTEGER(KIND=1), g77 uses a di�erent memory location to hold

the ASSIGNed value of a variable than it does the numerical value in that variable, unless

the variable is wide enough (can hold enough bits).

In particular, while g77 implements

I = 10

as, in C notation, `i = 10;', it implements

ASSIGN 10 TO I

as, in GNU's extended C notation (for the label syntax), `__g77_ASSIGN_I = &&L10;' (where

`L10' is just a massaging of the Fortran label `10' to make the syntax C-like; g77 doesn't

actually generate the name `L10' or any other name like that, since debuggers cannot access

labels anyway).

While this currently means that an ASSIGN statement does not overwrite the numeric con-

tents of its target variable, do not write any code depending on this feature. g77 has already

changed this implementation across versions and might do so in the future. This information

is provided only to make debugging Fortran programs compiled with the current version of

g77 somewhat easier. If there's no debugger-visible variable named `__g77_ASSIGN_I' in a

program unit that does `ASSIGN 10 TO I', that probably means g77 has decided it can store

the pointer to the label directly into `I' itself.

See Section 11.9.7 [Ugly Assigned Labels], page 181, for information on a command-line

option to force g77 to use the same storage for both normal and assigned-label uses of a

variable.

16.13 Run-time Library Errors

The libf2c library currently has the following table to relate error code numbers, re-

turned in IOSTAT= variables, to messages. This information should, in future versions of

this document, be expanded upon to include detailed descriptions of each message.

In line with good coding practices, any of the numbers in the list below should not be

directly written into Fortran code you write. Instead, make a separate INCLUDE �le that

de�nes PARAMETER names for them, and use those in your code, so you can more easily

change the actual numbers in the future.

The information below is culled from the de�nition of `F_err' in `f/runtime/libI77/err.c'

in the g77 source tree.

100: "error in format"

101: "illegal unit number"

102: "formatted io not allowed"

103: "unformatted io not allowed"

104: "direct io not allowed"

105: "sequential io not allowed"

106: "can't backspace file"

107: "null file name"

250 Using and Porting GNU Fortran

108: "can't stat file"

109: "unit not connected"

110: "off end of record"

111: "truncation failed in endfile"

112: "incomprehensible list input"

113: "out of free space"

114: "unit not connected"

115: "read unexpected character"

116: "bad logical input field"

117: "bad variable type"

118: "bad namelist name"

119: "variable not in namelist"

120: "no end record"

121: "variable count incorrect"

122: "subscript for scalar variable"

123: "invalid array section"

124: "substring out of bounds"

125: "subscript out of bounds"

126: "can't read file"

127: "can't write file"

128: "'new' file exists"

129: "can't append to file"

130: "non-positive record number"

131: "I/O started while already doing I/O"

Chapter 17: Collected Fortran Wisdom 251

17 Collected Fortran Wisdom

Most users of g77 can be divided into two camps:

� Those writing new Fortran code to be compiled by g77.

� Those using g77 to compile existing, \legacy" code.

Users writing new code generally understand most of the necessary aspects of Fortran

to write \mainstream" code, but often need help deciding how to handle problems, such as

the construction of libraries containing BLOCK DATA.

Users dealing with \legacy" code sometimes don't have much experience with Fortran,

but believe that the code they're compiling already works when compiled by other compilers

(and might not understand why, as is sometimes the case, it doesn't work when compiled

by g77).

The following information is designed to help users do a better job coping with existing,

\legacy" Fortran code, and with writing new code as well.

17.1 Advantages Over f2c

Without f2c, g77 would have taken much longer to do and probably not been as good

for quite a while. Sometimes people who notice how much g77 depends on, and documents

encouragement to use, f2c ask why g77 was created if f2c already existed.

This section gives some basic answers to these questions, though it is not intended to be

comprehensive.

17.1.1 Language Extensions

g77 o�ers several extensions to the Fortran language that f2c doesn't.

However, f2c o�ers a few that g77 doesn't, like fairly complete support for INTEGER*2.

It is expected that g77 will o�er some or all of these missing features at some time in the

future. (Version 0.5.18 of g77 o�ers some rudimentary support for some of these features.)

17.1.2 Compiler Options

g77 o�ers a whole bunch of compiler options that f2c doesn't.

However, f2c o�ers a few that g77 doesn't, like an option to generate code to check

array subscripts at run time. It is expected that g77 will o�er some or all of these missing

options at some time in the future.

17.1.3 Compiler Speed

Saving the steps of writing and then rereading C code is a big reason why g77 should

be able to compile code much faster than using f2c in conjunction with the equivalent

invocation of gcc.

However, due to g77's youth, lots of self-checking is still being performed. As a result,

this improvement is as yet unrealized (though the potential seems to be there for quite a

big speedup in the future). It is possible that, as of version 0.5.18, g77 is noticeably faster

compiling many Fortran source �les than using f2c in conjunction with gcc.

252 Using and Porting GNU Fortran

17.1.4 Program Speed

g77 has the potential to better optimize code than f2c, even when gcc is used to compile

the output of f2c, because f2c must necessarily translate Fortran into a somewhat lower-

level language (C) that cannot preserve all the information that is potentially useful for

optimization, while g77 can gather, preserve, and transmit that information directly to the

GBE.

For example, g77 implements ASSIGN and assigned GOTO using direct assignment of

pointers to labels and direct jumps to labels, whereas f2c maps the assigned labels to

integer values and then uses a C switch statement to encode the assigned GOTO statements.

However, as is typical, theory and reality don't quite match, at least not in all cases, so

it is still the case that f2c plus gcc can generate code that is faster than g77.

Version 0.5.18 of g77 o�ered default settings and options, via patches to the gcc back

end, that allow for better program speed, though some of these improvements also a�ected

the performance of programs translated by f2c and then compiled by g77's version of gcc.

Version 0.5.20 of g77 o�ers further performance improvements, at least one of which

(alias analysis) is not generally applicable to f2c (though f2c could presumably be changed

to also take advantage of this new capability of the gcc back end, assuming this is made

available in an upcoming release of gcc).

17.1.5 Ease of Debugging

Because g77 compiles directly to assembler code like gcc, instead of translating to an

intermediate language (C) as does f2c, support for debugging can be better for g77 than

f2c.

However, although g77 might be somewhat more \native" in terms of debugging support

than f2c plus gcc, there still are a lot of things \not quite right". Many of the important

ones should be resolved in the near future.

For example, g77 doesn't have to worry about reserved names like f2c does. Given

`FOR = WHILE', f2c must necessarily translate this to something other than `for = while;',

because C reserves those words.

However, g77 does still uses things like an extra level of indirection for ENTRY-laden

procedures|in this case, because the back end doesn't yet support multiple entry points.

Another example is that, given

COMMON A, B

EQUIVALENCE (B, C)

the g77 user should be able to access the variables directly, by name, without having to

traverse C-like structures and unions, while f2c is unlikely to ever o�er this ability (due to

limitations in the C language).

However, due to apparent bugs in the back end, g77 currently doesn't take advantage of

this facility at all|it doesn't emit any debugging information for COMMON and EQUIVALENCE

areas, other than information on the array of char it creates (and, in the case of local

EQUIVALENCE, names) for each such area.

Chapter 17: Collected Fortran Wisdom 253

Yet another example is arrays. g77 represents them to the debugger using the same

\dimensionality" as in the source code, while f2c must necessarily convert them all to one-

dimensional arrays to �t into the con�nes of the C language. However, the level of support

o�ered by debuggers for interactive Fortran-style access to arrays as compiled by g77 can

vary widely. In some cases, it can actually be an advantage that f2c converts everything

to widely supported C semantics.

In fairness, g77 could do many of the things f2c does to get things working at least

as well as f2c|for now, the developers prefer making g77 work the way they think it is

supposed to, and �nding help improving the other products (the back end of gcc; gdb; and

so on) to get things working properly.

17.1.6 Character and Hollerith Constants

To avoid the extensive hassle that would be needed to avoid this, f2c uses C character

constants to encode character and Hollerith constants. That means a constant like `'HELLO''

is translated to `"hello"' in C, which further means that an extra null byte is present at

the end of the constant. This null byte is superuous.

g77 does not generate such null bytes. This represents signi�cant savings of resources,

such as on systems where `/dev/null' or `/dev/zero' represent bottlenecks in the systems'

performance, because g77 simply asks for fewer zeros from the operating system than f2c.

17.2 Block Data and Libraries

To ensure that block data program units are linked, especially a concern when they are

put into libraries, give each one a name (as in `BLOCK DATA FOO') and make sure there is

an `EXTERNAL FOO' statement in every program unit that uses any common block initialized

by the corresponding BLOCK DATA. g77 currently compiles a BLOCK DATA as if it were a

SUBROUTINE, that is, it generates an actual procedure having the appropriate name. The

procedure does nothing but return immediately if it happens to be called. For `EXTERNAL

FOO', where `FOO' is not otherwise referenced in the same program unit, g77 assumes there

exists a `BLOCK DATA FOO' in the program and ensures that by generating a reference to it

so the linker will make sure it is present. (Speci�cally, g77 outputs in the data section a

static pointer to the external name `FOO'.)

The implementation g77 currently uses to make this work is one of the few things not

compatible with f2c as currently shipped. f2c currently does nothing with `EXTERNAL FOO'

except issue a warning that `FOO' is not otherwise referenced, and for `BLOCK DATA FOO', f2c

doesn't generate a dummy procedure with the name `FOO'. The upshot is that you shouldn't

mix f2c and g77 in this particular case. If you use f2c to compile `BLOCK DATA FOO', then any

g77-compiled program unit that says `EXTERNAL FOO' will result in an unresolved reference

when linked. If you do the opposite, then `FOO' might not be linked in under various

circumstances (such as when `FOO' is in a library, or you're using a \clever" linker|so

clever, it produces a broken program with little or no warning by omitting initializations of

global data because they are contained in unreferenced procedures).

The changes you make to your code to make g77 handle this situation, however, appear to

be a widely portable way to handle it. That is, many systems permit it (as they should, since

254 Using and Porting GNU Fortran

the FORTRAN 77 standard permits `EXTERNAL FOO' when `FOO' is a block data program

unit), and of the ones that might not link `BLOCK DATA FOO' under some circumstances, most

of them appear to do so once `EXTERNAL FOO' is present in the appropriate program units.

Here is the recommended approach to modifying a program containing a program unit

such as the following:

BLOCK DATA FOO

COMMON /VARS/ X, Y, Z

DATA X, Y, Z / 3., 4., 5. /

END

If the above program unit might be placed in a library module, then ensure that every pro-

gram unit in every program that references that particular COMMON area uses the EXTERNAL

statement to force the area to be initialized.

For example, change a program unit that starts with

INTEGER FUNCTION CURX()

COMMON /VARS/ X, Y, Z

CURX = X

END

so that it uses the EXTERNAL statement, as in:

INTEGER FUNCTION CURX()

COMMON /VARS/ X, Y, Z

EXTERNAL FOO

CURX = X

END

That way, `CURX' is compiled by g77 (and many other compilers) so that the linker knows it

must include `FOO', the BLOCK DATA program unit that sets the initial values for the variables

in `VAR', in the executable program.

17.3 Loops

The meaning of a DO loop in Fortran is precisely speci�ed in the Fortran standard: : :and

is quite di�erent from what many programmers might expect.

In particular, Fortran DO loops are implemented as if the number of trips through the

loop is calculated before the loop is entered.

The number of trips for a loop is calculated from the start, end, and increment values

speci�ed in a statement such as:

DO iter = start, end, increment

The trip count is evaluated using a fairly simple formula based on the three values following

the `=' in the statement, and it is that trip count that is e�ectively decremented during

each iteration of the loop. If, at the beginning of an iteration of the loop, the trip count is

zero or negative, the loop terminates. The per-loop-iteration modi�cations to iter are not

related to determining whether to terminate the loop.

There are two important things to remember about the trip count:

� It can be negative, in which case it is treated as if it was zero|meaning the loop is not

executed at all.

Chapter 17: Collected Fortran Wisdom 255

� The type used to calculate the trip count is the same type as iter, but the �nal calcu-

lation, and thus the type of the trip count itself, always is INTEGER(KIND=1).

These two items mean that there are loops that cannot be written in straightforward

fashion using the Fortran DO.

For example, on a system with the canonical 32-bit two's-complement implementation

of INTEGER(KIND=1), the following loop will not work:

DO I = -2000000000, 2000000000

Although the start and end values are well within the range of INTEGER(KIND=1), the

trip count is not. The expected trip count is 40000000001, which is outside the range of

INTEGER(KIND=1) on many systems.

Instead, the above loop should be constructed this way:

I = -2000000000

DO

IF (I .GT. 2000000000) EXIT

: : :

I = I + 1

END DO

The simple DO construct and the EXIT statement (used to leave the innermost loop) are F90

features that g77 supports.

Some Fortran compilers have buggy implementations of DO, in that they don't follow

the standard. They implement DO as a straightforward translation to what, in C, would

be a for statement. Instead of creating a temporary variable to hold the trip count as

calculated at run time, these compilers use the iteration variable iter to control whether

the loop continues at each iteration.

The bug in such an implementation shows up when the trip count is within the range

of the type of iter, but the magnitude of `ABS(end) + ABS(incr)' exceeds that range. For

example:

DO I = 2147483600, 2147483647

A loop started by the above statement will work as implemented by g77, but the use, by

some compilers, of a more C-like implementation akin to

for (i = 2147483600; i <= 2147483647; ++i)

produces a loop that does not terminate, because `i' can never be greater than 2147483647,

since incrementing it beyond that value overows `i', setting it to -2147483648. This is a

large, negative number that still is less than 2147483647.

Another example of unexpected behavior of DO involves using a nonintegral iteration

variable iter, that is, a REAL variable. Consider the following program:

DATA BEGIN, END, STEP /.1, .31, .007/

DO 10 R = BEGIN, END, STEP

IF (R .GT. END) PRINT *, R, ' .GT. ', END, '!!'

PRINT *,R

10 CONTINUE

PRINT *,'LAST = ',R

IF (R .LE. END) PRINT *, R, ' .LE. ', END, '!!'

END

256 Using and Porting GNU Fortran

A C-like view of DO would hold that the two \exclamatory" PRINT statements are never

executed. However, this is the output of running the above program as compiled by g77 on

a GNU/Linux ix86 system:

.100000001

.107000001

.114

.120999999

: : :

.289000005

.296000004

.303000003

LAST = .310000002

.310000002 .LE. .310000002!!

Note that one of the two checks in the program turned up an apparent violation of

the programmer's expectation|yet, the loop is correctly implemented by g77, in that it

has 30 iterations. This trip count of 30 is correct when evaluated using the oating-point

representations for the begin, end, and incr values (.1, .31, .007) on GNU/Linux ix86 are

used. On other systems, an apparently more accurate trip count of 31 might result, but,

nevertheless, g77 is faithfully following the Fortran standard, and the result is not what

the author of the sample program above apparently expected. (Such other systems might,

for di�erent values in the DATA statement, violate the other programmer's expectation, for

example.)

Due to this combination of imprecise representation of oating-point values and the

often-misunderstood interpretation of DO by standard-conforming compilers such as g77,

use of DO loops with REAL iteration variables is not recommended. Such use can be caught

by specifying `-Wsurprising'. See Section 7.5 [Warning Options], page 35, for more infor-

mation on this option.

17.4 Working Programs

Getting Fortran programs to work in the �rst place can be quite a challenge|even when

the programs already work on other systems, or when using other compilers.

g77 o�ers some facilities that might be useful for tracking down bugs in such programs.

17.4.1 Not My Type

A fruitful source of bugs in Fortran source code is use, or mis-use, of Fortran's implicit-

typing feature, whereby the type of a variable, array, or function is determined by the �rst

character of its name.

Simple cases of this include statements like `LOGX=9.227', without a statement such as

`REAL LOGX'. In this case, `LOGX' is implicitly given INTEGER(KIND=1) type, with the result

of the assignment being that it is given the value `9'.

More involved cases include a function that is de�ned starting with a statement like

`DOUBLE PRECISION FUNCTION IPS(: : :)'. Any caller of this function that does not also

declare `IPS' as type DOUBLE PRECISION (or, in GNU Fortran, REAL(KIND=2)) is likely to

Chapter 17: Collected Fortran Wisdom 257

assume it returns INTEGER, or some other type, leading to invalid results or even program

crashes.

The `-Wimplicit' option might catch failures to properly specify the types of variables,

arrays, and functions in the code.

However, in code that makes heavy use of Fortran's implicit-typing facility, this option

might produce so many warnings about cases that are working, it would be hard to �nd

the one or two that represent bugs. This is why so many experienced Fortran programmers

strongly recommend widespread use of the IMPLICIT NONE statement, despite it not being

standard FORTRAN 77, to completely turn o� implicit typing. (g77 supports IMPLICIT

NONE, as do almost all FORTRAN 77 compilers.)

Note that `-Wimplicit' catches only implicit typing of names. It does not catch implicit

typing of expressions such as `X**(2/3)'. Such expressions can be buggy as well|in fact,

`X**(2/3)' is equivalent to `X**0', due to the way Fortran expressions are given types and

then evaluated. (In this particular case, the programmer probably wanted `X**(2./3.)'.)

17.4.2 Variables Assumed To Be Zero

Many Fortran programs were developed on systems that provided automatic initializa-

tion of all, or some, variables and arrays to zero. As a result, many of these programs

depend, sometimes inadvertently, on this behavior, though to do so violates the Fortran

standards.

You can ask g77 for this behavior by specifying the `-finit-local-zero' option when

compiling Fortran code. (You might want to specify `-fno-automatic' as well, to avoid

code-size ination for non-optimized compilations.)

Note that a program that works better when compiled with the `-finit-local-zero'

option is almost certainly depending on a particular system's, or compiler's, tendency to

initialize some variables to zero. It might be worthwhile �nding such cases and �xing them,

using techniques such as compiling with the `-O -Wuninitialized' options using g77.

17.4.3 Variables Assumed To Be Saved

Many Fortran programs were developed on systems that saved the values of all, or some,

variables and arrays across procedure calls. As a result, many of these programs depend,

sometimes inadvertently, on being able to assign a value to a variable, perform a RETURN

to a calling procedure, and, upon subsequent invocation, reference the previously assigned

variable to obtain the value.

They expect this despite not using the SAVE statement to specify that the value in a

variable is expected to survive procedure returns and calls. Depending on variables and

arrays to retain values across procedure calls without using SAVE to require it violates the

Fortran standards.

You can ask g77 to assume SAVE is speci�ed for all relevant (local) variables and arrays

by using the `-fno-automatic' option.

Note that a program that works better when compiled with the `-fno-automatic' option

is almost certainly depending on not having to use the SAVE statement as required by

the Fortran standard. It might be worthwhile �nding such cases and �xing them, using

techniques such as compiling with the `-O -Wuninitialized' options using g77.

258 Using and Porting GNU Fortran

17.4.4 Unwanted Variables

The `-Wunused' option can �nd bugs involving implicit typing, sometimes more easily

than using `-Wimplicit' in code that makes heavy use of implicit typing. An unused

variable or array might indicate that the spelling for its declaration is di�erent from that

of its intended uses.

Other than cases involving typos, unused variables rarely indicate actual bugs in a pro-

gram. However, investigating such cases thoroughly has, on occasion, led to the discovery

of code that had not been completely written|where the programmer wrote declarations

as needed for the whole algorithm, wrote some or even most of the code for that algorithm,

then got distracted and forgot that the job was not complete.

17.4.5 Unused Arguments

As with unused variables, It is possible that unused arguments to a procedure might

indicate a bug. Compile with `-W -Wunused' option to catch cases of unused arguments.

Note that `-W' also enables warnings regarding overow of oating-point constants under

certain circumstances.

17.4.6 Surprising Interpretations of Code

The `-Wsuprising' option can help �nd bugs involving expression evaluation or in the

way DO loops with non-integral iteration variables are handled. Cases found by this option

might indicate a di�erence of interpretation between the author of the code involved, and

a standard-conforming compiler such as g77. Such a di�erence might produce actual bugs.

In any case, changing the code to explicitly do what the programmer might have expected

it to do, so g77 and other compilers are more likely to follow the programmer's expectations,

might be worthwhile, especially if such changes make the program work better.

17.4.7 Aliasing Assumed To Work

The `-falias-check', `-fargument-alias', `-fargument-noalias', and `-fno-argument-noalias-global'

options, introduced in version 0.5.20 and g77's version 2.7.2.2.f.2 of gcc, control the as-

sumptions regarding aliasing (overlapping) of writes and reads to main memory (core) made

by the gcc back end.

They are e�ective only when compiling with `-O' (specifying any level other than `-O0')

or with `-falias-check'.

The default for Fortran code is `-fargument-noalias-global'. (The default for C code

and code written in other C-based languages is `-fargument-alias'. These defaults apply

regardless of whether you use g77 or gcc to compile your code.)

Note that, on some systems, compiling with `-fforce-addr' in e�ect can produce more

optimal code when the default aliasing options are in e�ect (and when optimization is

enabled).

If your program is not working when compiled with optimization, it is possible it is

violating the Fortran standards (77 and 90) by relying on the ability to \safely" modify

Chapter 17: Collected Fortran Wisdom 259

variables and arrays that are aliased, via procedure calls, to other variables and arrays,

without using EQUIVALENCE to explicitly set up this kind of aliasing.

(The FORTRAN 77 standard's prohibition of this sort of overlap, generally referred

to therein as \storage assocation", appears in Sections 15.9.3.6. This prohibition allows

implementations, such as g77, to, for example, implement the passing of procedures and

even values in COMMON via copy operations into local, perhaps more e�ciently accessed

temporaries at entry to a procedure, and, where appropriate, via copy operations back out

to their original locations in memory at exit from that procedure, without having to take

into consideration the order in which the local copies are updated by the code, among other

things.)

To test this hypothesis, try compiling your program with the `-fargument-alias' option,

which causes the compiler to revert to assumptions essentially the same as made by versions

of g77 prior to 0.5.20.

If the program works using this option, that strongly suggests that the bug is in your

program. Finding and �xing the bug(s) should result in a program that is more standard-

conforming and that can be compiled by g77 in a way that results in a faster executable.

(You might want to try compiling with `-fargument-noalias', a kind of half-way

point, to see if the problem is limited to aliasing between dummy arguments and COMMON

variables|this option assumes that such aliasing is not done, while still allowing aliasing

among dummy arguments.)

An example of aliasing that is invalid according to the standards is shown in the following

program, which might not produce the expected results when executed:

I = 1

CALL FOO(I, I)

PRINT *, I

END

SUBROUTINE FOO(J, K)

J = J + K

K = J * K

PRINT *, J, K

END

The above program attempts to use the temporary aliasing of the `J' and `K' arguments

in `FOO' to e�ect a pathological behavior|the simultaneous changing of the values of both

`J' and `K' when either one of them is written.

The programmer likely expects the program to print these values:

2 4

4

However, since the program is not standard-conforming, an implementation's behavior

when running it is unde�ned, because subroutine `FOO' modi�es at least one of the argu-

ments, and they are aliased with each other. (Even if one of the assignment statements

was deleted, the program would still violate these rules. This kind of on-the-y aliasing

is permitted by the standard only when none of the aliased items are de�ned, or written,

while the aliasing is in e�ect.)

260 Using and Porting GNU Fortran

As a practical example, an optimizing compiler might schedule the `J =' part of the

second line of `FOO' after the reading of `J' and `K' for the `J * K' expression, resulting in

the following output:

2 2

2

Essentially, compilers are promised (by the standard and, therefore, by programmers

who write code they claim to be standard-conforming) that if they cannot detect aliasing

via static analysis of a single program unit's EQUIVALENCE and COMMON statements, no such

aliasing exists. In such cases, compilers are free to assume that an assignment to one variable

will not change the value of another variable, allowing it to avoid generating code to re-read

the value of the other variable, to re-schedule reads and writes, and so on, to produce a

faster executable.

The same promise holds true for arrays (as seen by the called procedure)|an element of

one dummy array cannot be aliased with, or overlap, any element of another dummy array

or be in a COMMON area known to the procedure.

(These restrictions apply only when the procedure de�nes, or writes to, one of the aliased

variables or arrays.)

Unfortunately, there is no way to �nd all possible cases of violations of the prohibitions

against aliasing in Fortran code. Static analysis is certainly imperfect, as is run-time anal-

ysis, since neither can catch all violations. (Static analysis can catch all likely violations,

and some that might never actually happen, while run-time analysis can catch only those

violations that actually happen during a particular run. Neither approach can cope with

programs mixing Fortran code with routines written in other languages, however.)

Currently, g77 provides neither static nor run-time facilities to detect any cases of this

problem, although other products might. Run-time facilities are more likely to be o�ered

by future versions of g77, though patches improving g77 so that it provides either form of

detection are welcome.

17.4.8 Output Assumed To Flush

For several versions prior to 0.5.20, g77 con�gured its version of the libf2c run-time

library so that one of its con�guration macros, `ALWAYS_FLUSH', was de�ned.

This was done as a result of a belief that many programs expected output to be ushed

to the operating system (under UNIX, via the fflush() library call) with the result that

errors, such as disk full, would be immediately agged via the relevant ERR= and IOSTAT=

mechanism.

Because of the adverse e�ects this approach had on the performance of many programs,

g77 no longer con�gures libf2c to always ush output.

If your program depends on this behavior, either insert the appropriate `CALL FLUSH'

statements, or modify the sources to the libf2c, rebuild and reinstall g77, and relink your

programs with the modi�ed library.

(Ideally, libf2c would o�er the choice at run-time, so that a compile-time option to g77

or f2c could result in generating the appropriate calls to ushing or non-ushing library

routines.)

Chapter 17: Collected Fortran Wisdom 261

See Section 15.3.2 [Always Flush Output], page 219, for information on how to mod-

ify the g77 source tree so that a version of libf2c can be built and installed with the

`ALWAYS_FLUSH' macro de�ned.

17.4.9 Large File Unit Numbers

If your program crashes at run time with a message including the text `illegal unit

number', that probably is a message from the run-time library, libf2c, used, and distributed

with, g77.

The message means that your program has attempted to use a �le unit number that is

out of the range accepted by libf2c. Normally, this range is 0 through 99, and the high

end of the range is controlled by a libf2c source-�le macro named `MXUNIT'.

If you can easily change your program to use unit numbers in the range 0 through 99,

you should do so.

Otherwise, see Section 15.3.1 [Larger File Unit Numbers], page 219, for information on

how to change `MXUNIT' in libf2c so you can build and install a new version of libf2c that

supports the larger unit numbers you need.

Note: While libf2c places a limit on the range of Fortran �le-unit numbers, the underly-

ing library and operating system might impose di�erent kinds of limits. For example, some

systems limit the number of �les simultaneously open by a running program. Information

on how to increase these limits should be found in your system's documentation.

17.5 Overly Convenient Command-line Options

These options should be used only as a quick-and-dirty way to determine how well your

program will run under di�erent compilation models without having to change the source.

Some are more problematic than others, depending on how portable and maintainable you

want the program to be (and, of course, whether you are allowed to change it at all is

crucial).

You should not continue to use these command-line options to compile a given program,

but rather should make changes to the source code:

-finit-local-zero

(This option speci�es that any uninitialized local variables and arrays have

default initialization to binary zeros.)

Many other compilers do this automatically, which means lots of Fortran code

developed with those compilers depends on it.

It is safer (and probably would produce a faster program) to �nd the variables

and arrays that need such initialization and provide it explicitly via DATA, so

that `-finit-local-zero' is not needed.

Consider using `-Wuninitialized' (which requires `-O') to �nd likely candi-

dates, but do not specify `-finit-local-zero' or `-fno-automatic', or this

technique won't work.

262 Using and Porting GNU Fortran

-fno-automatic

(This option speci�es that all local variables and arrays are to be treated as if

they were named in SAVE statements.)

Many other compilers do this automatically, which means lots of Fortran code

developed with those compilers depends on it.

The e�ect of this is that all non-automatic variables and arrays are made static,

that is, not placed on the stack or in heap storage. This might cause a buggy

program to appear to work better. If so, rather than relying on this command-

line option (and hoping all compilers provide the equivalent one), add SAVE

statements to some or all program unit sources, as appropriate. Consider us-

ing `-Wuninitialized' (which requires `-O') to �nd likely candidates, but do

not specify `-finit-local-zero' or `-fno-automatic', or this technique won't

work.

The default is `-fautomatic', which tells g77 to try and put variables and

arrays on the stack (or in fast registers) where possible and reasonable. This

tends to make programs faster.

Note: Automatic variables and arrays are not a�ected by this option. These are

variables and arrays that are necessarily automatic, either due to explicit state-

ments, or due to the way they are declared. Examples include local variables

and arrays not given the SAVE attribute in procedures declared RECURSIVE, and

local arrays declared with non-constant bounds (automatic arrays). Currently,

g77 supports only automatic arrays, not RECURSIVE procedures or other means

of explicitly specifying that variables or arrays are automatic.

-fugly Fix the source code so that `-fno-ugly' will work. Note that, for many

programs, it is di�cult to practically avoid using the features enabled via

`-fugly-init', and these features pose the lowest risk of writing nonportable

code, among the various \ugly" features.

-fgroup-intrinsics-hide

Change the source code to use EXTERNAL for any external procedure that might

be the name of an intrinsic. It is easy to �nd these using `-fgroup-intrinsics-disable'.

17.6 Faster Programs

Aside from the usual gcc options, such as `-O', `-ffast-math', and so on, consider trying

some of the following approaches to speed up your program (once you get it working).

17.6.1 Aligned Data

On some systems, such as those with Pentium Pro CPUs, programs that make heavy

use of REAL(KIND=2) (DOUBLE PRECISION) might run much slower than possible due to the

compiler not aligning these 64-bit values to 64-bit boundaries in memory. (The e�ect also

is present, though to a lesser extent, on the 586 (Pentium) architecture.)

The Intel x86 architecture generally ensures that these programs will work on all its

implementations, but particular implementations (such as Pentium Pro) perform better

Chapter 17: Collected Fortran Wisdom 263

with more strict alignment. (Such behavior isn't unique to the Intel x86 architecture.)

Other architectures might demand 64-bit alignment of 64-bit data.

There are a variety of approaches to use to address this problem:

� Order your COMMON and EQUIVALENCE areas such that the variables and arrays with the

widest alignment guidelines come �rst.

For example, on most systems, this would mean placing COMPLEX(KIND=2), REAL(KIND=2),

and INTEGER(KIND=2) entities �rst, followed by REAL(KIND=1), INTEGER(KIND=1), and

LOGICAL(KIND=1) entities, then INTEGER(KIND=6) entities, and �nally CHARACTER and

INTEGER(KIND=3) entities.

The reason to use such placement is it makes it more likely that your data will be aligned

properly, without requiring you to do detailed analysis of each aggregate (COMMON and

EQUIVALENCE) area.

Speci�cally, on systems where the above guidelines are appropriate, placing CHARACTER

entities before REAL(KIND=2) entities can work just as well, but only if the number of

bytes occupied by the CHARACTER entities is divisible by the recommended alignment

for REAL(KIND=2).

By ordering the placement of entities in aggregate areas according to the simple guide-

lines above, you avoid having to carefully count the number of bytes occupied by each

entity to determine whether the actual alignment of each subsequent entity meets the

alignment guidelines for the type of that entity.

If you don't ensure correct alignment of COMMON elements, the compiler may be forced

by some systems to violate the Fortran semantics by adding padding to get DOUBLE

PRECISION data properly aligned. If the unfortunate practice is employed of overlaying

di�erent types of data in the COMMON block, the di�erent variants of this block may

become misaligned with respect to each other. Even if your platform doesn't require

strict alignment, COMMON should be laid out as above for portability. (Unfortunately the

FORTRAN 77 standard didn't anticipate this possible requirement, which is compiler-

independent on a given platform.)

� Use the (x86-speci�c) `-malign-double' option when compiling programs for the Pen-

tium and Pentium Pro architectures (called 586 and 686 in the gcc con�guration sub-

system). The warning about this in the gcc manual isn't generally relevant to Fortran,

but using it will force COMMON to be padded if necessary to align DOUBLE PRECISION

data.

� Ensure that `crt0.o' or `crt1.o' on your system guarantees a 64-bit aligned stack

for main(). The recent one from GNU (glibc2) will do this on x86 systems, but

we don't know of any other x86 setups where it will be right. Read your system's

documentation to determine if it is appropriate to upgrade to a more recent version to

obtain the optimal alignment.

Progress is being made on making this work \out of the box" on future versions of g77,

gcc, and some of the relevant operating systems (such as GNU/Linux).

17.6.2 Prefer Automatic Uninitialized Variables

If you're using `-fno-automatic' already, you probably should change your code to allow

compilation with `-fautomatic' (the default), to allow the program to run faster.

264 Using and Porting GNU Fortran

Similarly, you should be able to use `-fno-init-local-zero' (the default) instead of

`-finit-local-zero'. This is because it is rare that every variable a�ected by these options

in a given program actually needs to be so a�ected.

For example, `-fno-automatic', which e�ectively SAVEs every local non-automatic vari-

able and array, a�ects even things like DO iteration variables, which rarely need to be SAVEd,

and this often reduces run-time performances. Similarly, `-fno-init-local-zero' forces

such variables to be initialized to zero|when SAVEd (such as when `-fno-automatic'), this

by itself generally a�ects only startup time for a program, but when not SAVEd, it can slow

down the procedure every time it is called.

See Section 17.5 [Overly Convenient Command-Line Options], page 261, for information

on the `-fno-automatic' and `-finit-local-zero' options and how to convert their use

into selective changes in your own code.

17.6.3 Avoid f2c Compatibility

If you aren't linking with any code compiled using f2c, try using the `-fno-f2c' option

when compiling all the code in your program. (Note that libf2c is not an example of code

that is compiled using f2c|it is compiled by a C compiler, typically gcc.)

17.6.4 Use Submodel Options

Using an appropriate `-m' option to generate speci�c code for your CPU may be worth-

while, though it may mean the executable won't run on other versions of the CPU that

don't support the same instruction set. See section \Hardware Models and Con�gurations"

in Using and Porting GNU CC .

For recent CPUs that don't have explicit support in the released version of gcc, it may

still be possible to get improvements. For instance, the ags recommended for 586/686

(Pentium(Pro)) chips for building the Linux kernel are:

-m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2

-fomit-frame-pointer

`-fomit-frame-pointer' will, however, inhibit debugging on x86 systems.

Chapter 18: Known Causes of Trouble with GNU Fortran 265

18 Known Causes of Trouble with GNU Fortran

This section describes known problems that a�ect users of GNU Fortran. Most of these

are not GNU Fortran bugs per se|if they were, we would �x them. But the result for a

user might be like the result of a bug.

Some of these problems are due to bugs in other software, some are missing features that

are too much work to add, and some are places where people's opinions di�er as to what is

best.

Information on bugs that show up when con�guring, porting, building, or installing g77

is not provided here. See Section 15.2 [Problems Installing], page 216.

To �nd out about major bugs discovered in the current release and possible workarounds

for them, retrieve ftp://alpha.gnu.org/g77.plan.

(Note that some of this portion of the manual is lifted directly from the gcc manual,

with minor modi�cations to tailor it to users of g77. Anytime a bug seems to have more to

do with the gcc portion of g77, See section \Known Causes of Trouble with GNU CC" in

Using and Porting GNU CC .)

18.1 Bugs Not In GNU Fortran

These are bugs to which the maintainers often have to reply, \but that isn't a bug in

g77: : :". Some of these already are �xed in new versions of other software; some still need

to be �xed; some are problems with how g77 is installed or is being used; some are the

result of bad hardware that causes software to misbehave in sometimes bizarre ways; some

just cannot be addressed at this time until more is known about the problem.

Please don't re-report these bugs to the g77 maintainers|if you must remind someone

how important it is to you that the problem be �xed, talk to the people responsible for the

other products identi�ed below, but preferably only after you've tried the latest versions

of those products. The g77 maintainers have their hands full working on just �xing and

improving g77, without serving as a clearinghouse for all bugs that happen to a�ect g77

users.

See Chapter 17 [Collected Fortran Wisdom], page 251, for information on behavior of

Fortran programs, and the programs that compile them, that might be thought to indicate

bugs.

18.1.1 Signal 11 and Friends

A whole variety of strange behaviors can occur when the software, or the way you

are using the software, stresses the hardware in a way that triggers hardware bugs. This

might seem hard to believe, but it happens frequently enough that there exist documents

explaining in detail what the various causes of the problems are, what typical symptoms

look like, and so on.

Generally these problems are referred to in this document as \signal 11" crashes, because

the Linux kernel, running on the most popular hardware (the Intel x86 line), often stresses

the hardware more than other popular operating systems. When hardware problems do

266 Using and Porting GNU Fortran

occur under GNU/Linux on x86 systems, these often manifest themselves as \signal 11"

problems, as illustrated by the following diagnostic:

sh# g77 myprog.f

gcc: Internal compiler error: program f771 got fatal signal 11

sh#

It is very important to remember that the above message is not the only one that

indicates a hardware problem, nor does it always indicate a hardware problem.

In particular, on systems other than those running the Linux kernel, the message might

appear somewhat or very di�erent, as it will if the error manifests itself while running a

program other than the g77 compiler. For example, it will appear somewhat di�erent when

running your program, when running Emacs, and so on.

How to cope with such problems is well beyond the scope of this manual.

However, users of Linux-based systems (such as GNU/Linux) should review http://www.bitwizard.nl/sig11,

a source of detailed information on diagnosing hardware problems, by recognizing their

common symptoms.

Users of other operating systems and hardware might �nd this reference useful as well.

If you know of similar material for another hardware/software combination, please let us

know so we can consider including a reference to it in future versions of this manual.

18.1.2 Cannot Link Fortran Programs

On some systems, perhaps just those with out-of-date (shared?) libraries, unresolved-

reference errors happen when linking g77-compiled programs (which should be done using

g77).

If this happens to you, try appending `-lc' to the command you use to link the program,

e.g. `g77 foo.f -lc'. g77 already speci�es `-lf2c -lm' when it calls the linker, but it cannot

also specify `-lc' because not all systems have a �le named `libc.a'.

It is unclear at this point whether there are legitimately installed systems where `-lf2c

-lm' is insu�cient to resolve code produced by g77.

If your program doesn't link due to unresolved references to names like `_main', make

sure you're using the g77 command to do the link, since this command ensures that the

necessary libraries are loaded by specifying `-lf2c -lm' when it invokes the gcc command

to do the actual link. (Use the `-v' option to discover more about what actually happens

when you use the g77 and gcc commands.)

Also, try specifying `-lc' as the last item on the g77 command line, in case that helps.

18.1.3 Large Common Blocks

On some older GNU/Linux systems, programs with common blocks larger than 16MB

cannot be linked without some kind of error message being produced.

This is a bug in older versions of ld, �xed in more recent versions of binutils, such as

version 2.6.

Chapter 18: Known Causes of Trouble with GNU Fortran 267

18.1.4 Debugger Problems

There are some known problems when using gdb on code compiled by g77. Inadequate

investigation as of the release of 0.5.16 results in not knowing which products are the

culprit, but `gdb-4.14' de�nitely crashes when, for example, an attempt is made to print

the contents of a COMPLEX(KIND=2) dummy array, on at least some GNU/Linux machines,

plus some others.

18.1.5 NeXTStep Problems

Developers of Fortran code on NeXTStep (all architectures) have to watch out for the

following problem when writing programs with large, statically allocated (i.e. non-stack

based) data structures (common blocks, saved arrays).

Due to the way the native loader (`/bin/ld') lays out data structures in virtual memory,

it is very easy to create an executable wherein the `__DATA' segment overlaps (has addresses

in common) with the `UNIX STACK' segment.

This leads to all sorts of trouble, from the executable simply not executing, to bus errors.

The NeXTStep command line tool ebadexec points to the problem as follows:

% /bin/ebadexec a.out

/bin/ebadexec: __LINKEDIT segment (truncated address = 0x3de000

rounded size = 0x2a000) of executable file: a.out overlaps with UNIX

STACK segment (truncated address = 0x400000 rounded size =

0x3c00000) of executable file: a.out

(In the above case, it is the `__LINKEDIT' segment that overlaps the stack segment.)

This can be cured by assigning the `__DATA' segment (virtual) addresses beyond the

stack segment. A conservative estimate for this is from address 6000000 (hexadecimal)

onwards|this has always worked for me [Toon Moene]:

% g77 -segaddr __DATA 6000000 test.f

% ebadexec a.out

ebadexec: file: a.out appears to be executable

%

Browsing through `gcc/f/Makefile.in', you will �nd that the f771 program itself also

has to be linked with these ags|it has large statically allocated data structures. (Version

0.5.18 reduces this somewhat, but probably not enough.)

(The above item was contributed by Toon Moene (toon@moene.indiv.nluug.nl).)

18.1.6 Stack Overow

g77 code might fail at runtime (probably with a \segmentation violation") due to over-

owing the stack. This happens most often on systems with an environment that provides

substantially more heap space (for use when arbitrarily allocating and freeing memory) than

stack space.

Often this can be cured by increasing or removing your shell's limit on stack usage, typi-

cally using limit stacksize (in csh and derivatives) or ulimit -s (in sh and derivatives).

Increasing the allowed stack size might, however, require changing some operating system

or system con�guration parameters.

268 Using and Porting GNU Fortran

You might be able to work around the problem by compiling with the `-fno-automatic'

option to reduce stack usage, probably at the expense of speed.

See Section 15.3.3 [Maximum Stackable Size], page 220, for information on patching g77

to use di�erent criteria for placing local non-automatic variables and arrays on the stack.

However, if your program uses large automatic arrays (for example, has declarations like

`REAL A(N)' where `A' is a local array and `N' is a dummy or COMMON variable that can have

a large value), neither use of `-fno-automatic', nor changing the cut-o� point for g77 for

using the stack, will solve the problem by changing the placement of these large arrays, as

they are necessarily automatic.

g77 currently provides no means to specify that automatic arrays are to be allocated on

the heap instead of the stack. So, other than increasing the stack size, your best bet is to

change your source code to avoid large automatic arrays. Methods for doing this currently

are outside the scope of this document.

(Note: If your system puts stack and heap space in the same memory area, such that

they are e�ectively combined, then a stack overow probably indicates a program that is

either simply too large for the system, or buggy.)

18.1.7 Nothing Happens

It is occasionally reported that a \simple" program, such as a \Hello, World!" program,

does nothing when it is run, even though the compiler reported no errors, despite the

program containing nothing other than a simple PRINT statement.

This most often happens because the program has been compiled and linked on a UNIX

system and named `test', though other names can lead to similarly unexpected run-time

behavior on various systems.

Essentially this problem boils down to giving your program a name that is already

known to the shell you are using to identify some other program, which the shell continues

to execute instead of your program when you invoke it via, for example:

sh# test

sh#

Under UNIX and many other system, a simple command name invokes a searching

mechanism that might well not choose the program located in the current working directory

if there is another alternative (such as the test command commonly installed on UNIX

systems).

The reliable way to invoke a program you just linked in the current directory under

UNIX is to specify it using an explicit pathname, as in:

sh# ./test

Hello, World!

sh#

Users who encounter this problem should take the time to read up on how their shell

searches for commands, how to set their search path, and so on. The relevant UNIX

commands to learn about include man, info (on GNU systems), setenv (or set and env),

which, and find.

Chapter 18: Known Causes of Trouble with GNU Fortran 269

18.1.8 Strange Behavior at Run Time

g77 code might fail at runtime with \segmentation violation", \bus error", or even

something as subtle as a procedure call overwriting a variable or array element that it is

not supposed to touch.

These can be symptoms of a wide variety of actual bugs that occurred earlier during the

program's run, but manifested themselves as visible problems some time later.

Overowing the bounds of an array|usually by writing beyond the end of it|is one of

two kinds of bug that often occurs in Fortran code.

The other kind of bug is a mismatch between the actual arguments passed to a procedure

and the dummy arguments as declared by that procedure.

Both of these kinds of bugs, and some others as well, can be di�cult to track down, be-

cause the bug can change its behavior, or even appear to not occur, when using a debugger.

That is, these bugs can be quite sensitive to data, including data representing the place-

ment of other data in memory (that is, pointers, such as the placement of stack frames in

memory).

Plans call for improving g77 so that it can o�er the ability to catch and report some of

these problems at compile, link, or run time, such as by generating code to detect references

to beyond the bounds of an array, or checking for agreement between calling and called

procedures.

In the meantime, �nding and �xing the programming bugs that lead to these behaviors

is, ultimately, the user's responsibility, as di�cult as that task can sometimes be.

One runtime problem that has been observed might have a simple solution. If a formatted

WRITE produces an endless stream of spaces, check that your program is linked against the

correct version of the C library. The con�guration process takes care to account for your

system's normal `libc' not being ANSI-standard, which will otherwise cause this behaviour.

If your system's default library is ANSI-standard and you subsequently link against a non-

ANSI one, there might be problems such as this one.

Speci�cally, on Solaris2 systems, avoid picking up the BSD library from `/usr/ucblib'.

18.1.9 Floating-point Errors

Some programs appear to produce inconsistent oating-point results compiled by g77

versus by other compilers.

Often the reason for this behavior is the fact that oating-point values are represented

on almost all Fortran systems by approximations, and these approximations are inexact

even for apparently simple values like 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9, 1.1, and so on.

Most Fortran systems, including all current ports of g77, use binary arithmetic to represent

these approximations.

Therefore, the exact value of any oating-point approximation as manipulated by g77-

compiled code is representable by adding some combination of the values 1.0, 0.5, 0.25,

0.125, and so on (just keep dividing by two) through the precision of the fraction (typically

around 23 bits for REAL(KIND=1), 52 for REAL(KIND=2)), then multiplying the sum by a

integral power of two (in Fortran, by `2**N') that typically is between -127 and +128 for

270 Using and Porting GNU Fortran

REAL(KIND=1) and -1023 and +1024 for REAL(KIND=2), then multiplying by -1 if the number

is negative.

So, a value like 0.2 is exactly represented in decimal|since it is a fraction, `2/10', with

a denomenator that is compatible with the base of the number system (base 10). However,

`2/10' cannot be represented by any �nite number of sums of any of 1.0, 0.5, 0.25, and so

on, so 0.2 cannot be exactly represented in binary notation.

(On the other hand, decimal notation can represent any binary number in a �nite number

of digits. Decimal notation cannot do so with ternary, or base-3, notation, which would

represent oating-point numbers as sums of any of `1/1', `1/3', `1/9', and so on. After all,

no �nite number of decimal digits can exactly represent `1/3'. Fortunately, few systems use

ternary notation.)

Moreover, di�erences in the way run-time I/O libraries convert between these approxi-

mations and the decimal representation often used by programmers and the programs they

write can result in apparent di�erences between results that do not actually exist, or exist

to such a small degree that they usually are not worth worrying about.

For example, consider the following program:

PRINT *, 0.2

END

When compiled by g77, the above program might output `0.20000003', while another

compiler might produce a executable that outputs `0.2'.

This particular di�erence is due to the fact that, currently, conversion of oating-point

values by the libf2c library, used by g77, handles only double-precision values.

Since `0.2' in the program is a single-precision value, it is converted to double precision

(still in binary notation) before being converted back to decimal. The conversion to binary

appends binary zero digits to the original value|which, again, is an inexact approximation

of 0.2|resulting in an approximation that is much less exact than is connoted by the use

of double precision.

(The appending of binary zero digits has essentially the same e�ect as taking a particular

decimal approximation of `1/3', such as `0.3333333', and appending decimal zeros to it,

producing `0.33333330000000000'. Treating the resulting decimal approximation as if it

really had 18 or so digits of valid precision would make it seem a very poor approximation

of `1/3'.)

As a result of converting the single-precision approximation to double precision by ap-

pending binary zeros, the conversion of the resulting double-precision value to decimal

produces what looks like an incorrect result, when in fact the result is inexact, and is prob-

ably no less inaccurate or imprecise an approximation of 0.2 than is produced by other

compilers that happen to output the converted value as \exactly" `0.2'. (Some compilers

behave in a way that can make them appear to retain more accuracy across a conversion

of a single-precision constant to double precision. See Section 18.5.4 [Context-Sensitive

Constants], page 286, to see why this practice is illusory and even dangerous.)

Note that a more exact approximation of the constant is computed when the program

is changed to specify a double-precision constant:

PRINT *, 0.2D0

END

Chapter 18: Known Causes of Trouble with GNU Fortran 271

Future versions of g77 and/or libf2c might convert single-precision values directly to

decimal, instead of converting them to double precision �rst. This would tend to result in

output that is more consistent with that produced by some other Fortran implementations.

18.2 Actual Bugs We Haven't Fixed Yet

This section identi�es bugs that g77 users might run into. This includes bugs that are

actually in the gcc back end (GBE) or in libf2c, because those sets of code are at least

somewhat under the control of (and necessarily intertwined with) g77, so it isn't worth

separating them out.

For information on bugs that might a�ict people who con�gure, port, build, and install

g77, Section 15.2 [Problems Installing], page 216.

� g77's version of gcc, and probably g77 itself, cannot be reliably used with the `-O2' op-

tion (or higher) on Digital Semiconductor Alpha AXP machines. The problem is most

immediately noticed in di�erences discovered by make compare following a bootstrap

build using `-O2'. It also manifests itself as a failure to compile `DATA' statements such

as `DATA R/7./' correctly; in this case, `R' might be initialized to `4.0'.

Until this bug is �xed, use only `-O1' or no optimization.

� Something about g77's straightforward handling of label references and de�nitions

sometimes prevents the GBE from unrolling loops. Until this is solved, try inserting

or removing CONTINUE statements as the terminal statement, using the END DO form

instead, and so on. (Probably improved, but not wholly �xed, in 0.5.21.)

� The g77 command itself should more faithfully process options the way the gcc com-

mand does. For example, gcc accepts abbreviated forms of long options, g77 generally

doesn't.

� Some confusion in diagnostics concerning failing INCLUDE statements from within

INCLUDE'd or #include'd �les.

� g77 assumes that INTEGER(KIND=1) constants range from `-2**31' to `2**31-1' (the

range for two's-complement 32-bit values), instead of determining their range from the

actual range of the type for the con�guration (and, someday, for the constant).

Further, it generally doesn't implement the handling of constants very well in that it

makes assumptions about the con�guration that it no longer makes regarding variables

(types).

Included with this item is the fact that g77 doesn't recognize that, on IEEE-754/854-

compliant systems, `0./0.' should produce a NaN and no warning instead of the value

`0.' and a warning. This is to be �xed in version 0.6, when g77 will use the gcc back

end's constant-handling mechanisms to replace its own.

� g77 uses way too much memory and CPU time to process large aggregate areas having

any initialized elements.

For example, `REAL A(1000000)' followed by `DATA A(1)/1/' takes up way too much

time and space, including the size of the generated assembler �le. This is to be mitigated

somewhat in version 0.6.

272 Using and Porting GNU Fortran

Version 0.5.18 improves cases like this|speci�cally, cases of sparse initialization that

leave large, contiguous areas uninitialized|signi�cantly. However, even with the im-

provements, these cases still require too much memory and CPU time.

(Version 0.5.18 also improves cases where the initial values are zero to a much greater

degree, so if the above example ends with `DATA A(1)/0/', the compile-time perfor-

mance will be about as good as it will ever get, aside from unrelated improvements to

the compiler.)

Note that g77 does display a warning message to notify the user before the compiler

appears to hang. See Section 15.3.5 [Initialization of Large Aggregate Areas], page 220,

for information on how to change the point at which g77 decides to issue this warning.

� g77 doesn't emit variable and array members of common blocks for use with a debugger

(the `-g' command-line option). The code is present to do this, but doesn't work with

at least one debug format|perhaps it works with others. And it turns out there's a

similar bug for local equivalence areas, so that has been disabled as well.

As of Version 0.5.19, a temporary kludge solution is provided whereby some rudimen-

tary information on a member is written as a string that is the member's value as a

character string.

See Section 7.10 [Options for Code Generation Conventions], page 41, for information

on the `-fdebug-kludge' option.

� When debugging, after starting up the debugger but before being able to see the source

code for the main program unit, the user must currently set a breakpoint at `MAIN__'

(or `MAIN___' or `MAIN_' if `MAIN__' doesn't exist) and run the program until it hits the

breakpoint. At that point, the main program unit is activated and about to execute

its �rst executable statement, but that's the state in which the debugger should start

up, as is the case for languages like C.

� Debugging g77-compiled code using debuggers other than gdb is likely not to work.

Getting g77 and gdb to work together is a known problem|getting g77 to work prop-

erly with other debuggers, for which source code often is unavailable to g77 developers,

seems like a much larger, unknown problem, and is a lower priority than making g77

and gdb work together properly.

On the other hand, information about problems other debuggers have with g77 output

might make it easier to properly �x g77, and perhaps even improve gdb, so it is de�nitely

welcome. Such information might even lead to all relevant products working together

properly sooner.

� g77 currently inserts needless padding for things like `COMMON A,IPAD' where `A' is

CHARACTER*1 and `IPAD' is INTEGER(KIND=1) on machines like x86, because the back

end insists that `IPAD' be aligned to a 4-byte boundary, but the processor has no such

requirement (though it's good for performance).

It is possible that this is not a real bug, and could be considered a performance feature,

but it might be important to provide the ability to Fortran code to specify minimum

padding for aggregate areas such as common blocks|and, certainly, there is the po-

tential, with the current setup, for interface di�erences in the way such areas are laid

out between g77 and other compilers.

Chapter 18: Known Causes of Trouble with GNU Fortran 273

� g77 doesn't work perfectly on 64-bit con�gurations such as the Alpha. This problem

is expected to be largely resolved as of version 0.5.20, and further addressed by 0.5.21.

Version 0.6 should solve most or all related problems (such as 64-bit machines other

than Digital Semiconductor (\DEC") Alphas).

One known bug that causes a compile-time crash occurs when compiling code such as

the following with optimization:

SUBROUTINE CRASH (TEMP)

INTEGER*2 HALF(2)

REAL TEMP

HALF(1) = NINT (TEMP)

END

It is expected that a future version of g77 will have a �x for this problem, almost

certainly by the time g77 supports the forthcoming version 2.8.0 of gcc.

� Maintainers of gcc report that the back end de�nitely has \broken" support for COMPLEX

types. Based on their input, it seems many of the problems a�ect only the more-general

facilities for gcc's __complex__ type, such as __complex__ int (where the real and

imaginary parts are integers) that GNU Fortran does not use.

Version 0.5.20 of g77 works around this problem by not using the back end's support for

COMPLEX. The new option `-fno-emulate-complex' avoids the work-around, reverting

to using the same \broken" mechanism as that used by versions of g77 prior to 0.5.20.

� There seem to be some problems with passing constants, and perhaps general ex-

pressions (other than simple variables/arrays), to procedures when compiling on some

systems (such as i386) with `-fPIC', as in when compiling for ELF targets. The symp-

tom is that the assembler complains about invalid opcodes. This bug is in the gcc back

end, and it apparently occurs only when compiling su�ciently complicated functions

without the `-O' option.

18.3 Missing Features

This section lists features we know are missing from g77, and which we want to add

someday. (There is no priority implied in the ordering below.)

18.3.1 Better Source Model

g77 needs to provide, as the default source-line model, a \pure visual" mode, where

the interpretation of a source program in this mode can be accurately determined by a

user looking at a traditionally displayed rendition of the program (assuming the user knows

whether the program is �xed or free form).

The design should assume the user cannot tell tabs from spaces and cannot see trailing

spaces on lines, but has canonical tab stops and, for �xed-form source, has the ability to

always know exactly where column 72 is (since the Fortran standard itself requires this for

�xed-form source).

This would change the default treatment of �xed-form source to not treat lines with tabs

as if they were in�nitely long|instead, they would end at column 72 just as if the tabs

were replaced by spaces in the canonical way.

274 Using and Porting GNU Fortran

As part of this, provide common alternate models (Digital, f2c, and so on) via command-

line options. This includes allowing arbitrarily long lines for free-form source as well as

�xed-form source and providing various limits and diagnostics as appropriate.

Also, g77 should o�er, perhaps even default to, warnings when characters beyond the

last valid column are anything other than spaces. This would mean code with \sequence

numbers" in columns 73 through 80 would be rejected, and there's a lot of that kind of code

around, but one of the most frequent bugs encountered by new users is accidentally writing

�xed-form source code into and beyond column 73. So, maybe the users of old code would

be able to more easily handle having to specify, say, a -Wno-col73to80 option.

18.3.2 Fortran 90 Support

g77 does not support many of the features that distinguish Fortran 90 (and, now, Fortran

95) from ANSI FORTRAN 77.

Some Fortran 90 features are supported, because they make sense to o�er even to die-

hard users of F77. For example, many of them codify various ways F77 has been extended

to meet users' needs during its tenure, so g77 might as well o�er them as the primary way

to meet those same needs, even if it o�ers compatibility with one or more of the ways those

needs were met by other F77 compilers in the industry.

Still, many important F90 features are not supported, because no attempt has been

made to research each and every feature and assess its viability in g77. In the meantime,

users who need those features must use Fortran 90 compilers anyway, and the best approach

to adding some F90 features to GNU Fortran might well be to fund a comprehensive project

to create GNU Fortran 95.

18.3.3 Intrinsics in PARAMETER Statements

g77 doesn't allow intrinsics in PARAMETER statements. This feature is considered to be

absolutely vital, even though it is not standard-conforming, and is scheduled for version

0.6.

Related to this, g77 doesn't allow non-integral exponentiation in PARAMETER statements,

such as `PARAMETER (R=2**.25)'. It is unlikely g77 will ever support this feature, as doing

it properly requires complete emulation of a target computer's oating-point facilities when

building g77 as a cross-compiler. But, if the gcc back end is enhanced to provide such a

facility, g77 will likely use that facility in implementing this feature soon afterwards.

18.3.4 SELECT CASE on CHARACTER Type

Character-type selector/cases for SELECT CASE currently are not supported.

18.3.5 RECURSIVE Keyword

g77 doesn't support the RECURSIVE keyword that F90 compilers do. Nor does it provide

any means for compiling procedures designed to do recursion.

All recursive code can be rewritten to not use recursion, but the result is not pretty.

Chapter 18: Known Causes of Trouble with GNU Fortran 275

18.3.6 Increasing Precision/Range

Some compilers, such as f2c, have an option (`-r8' or similar) that provides automatic

treatment of REAL entities such that they have twice the storage size, and a corresponding

increase in the range and precision, of what would normally be the REAL(KIND=1) (default

REAL) type. (This a�ects COMPLEX the same way.)

They also typically o�er another option (`-i8') to increase INTEGER entities so they are

twice as large (with roughly twice as much range).

(There are potential pitfalls in using these options.)

g77 does not yet o�er any option that performs these kinds of transformations. Part of

the problem is the lack of detailed speci�cations regarding exactly how these options a�ect

the interpretation of constants, intrinsics, and so on.

Until g77 addresses this need, programmers could improve the portability of their code

by modifying it to not require compile-time options to produce correct results. Some free

tools are available which may help, speci�cally in Toolpack (which one would expect to be

sound) and the `fortran' section of the Netlib repository.

Use of preprocessors can provide a fairly portable means to work around the lack of

widely portable methods in the Fortran language itself (though increasing acceptance of

Fortran 90 would alleviate this problem).

18.3.7 Popular Non-standard Types

g77 doesn't fully support INTEGER*2, LOGICAL*1, and similar. Version 0.6 will provide

full support for this very popular set of features. In the meantime, version 0.5.18 provides

rudimentary support for them.

18.3.8 Full Support for Compiler Types

g77 doesn't support INTEGER, REAL, and COMPLEX equivalents for all applicable back-

end-supported types (char, short int, int, long int, long long int, and long double).

This means providing intrinsic support, and maybe constant support (using F90 syntax)

as well, and, for most machines will result in automatic support of INTEGER*1, INTEGER*2,

INTEGER*8, maybe even REAL*16, and so on. This is scheduled for version 0.6.

18.3.9 Array Bounds Expressions

g77 doesn't support more general expressions to dimension arrays, such as array element

references, function references, etc.

For example, g77 currently does not accept the following:

SUBROUTINE X(M, N)

INTEGER N(10), M(N(2), N(1))

18.3.10 POINTER Statements

g77 doesn't support pointers or allocatable objects (other than automatic arrays). This

set of features is probably considered just behind intrinsics in PARAMETER statements on the

list of large, important things to add to g77.

276 Using and Porting GNU Fortran

In the meantime, consider using the INTEGER(KIND=7) declaration to specify that a

variable must be able to hold a pointer. This construct is not portable to other non-GNU

compilers, but it is portable to all machines GNU Fortran supports when g77 is used.

See Section 10.11 [Functions and Subroutines], page 91, for information on %VAL(),

%REF(), and %DESCR() constructs, which are useful for passing pointers to procedures writ-

ten in languages other than Fortran.

18.3.11 Sensible Non-standard Constructs

g77 rejects things other compilers accept, like `INTRINSIC SQRT,SQRT'. As time permits

in the future, some of these things that are easy for humans to read and write and unlikely

to be intended to mean something else will be accepted by g77 (though `-fpedantic' should

trigger warnings about such non-standard constructs).

Until g77 no longer gratuitously rejects sensible code, you might as well �x your code to

be more standard-conforming and portable.

The kind of case that is important to except from the recommendation to change your

code is one where following good coding rules would force you to write non-standard code

that nevertheless has a clear meaning.

For example, when writing an INCLUDE �le that de�nes a common block, it might be

appropriate to include a SAVE statement for the common block (such as `SAVE /CBLOCK/'),

so that variables de�ned in the common block retain their values even when all procedures

declaring the common block become inactive (return to their callers).

However, putting SAVE statements in an INCLUDE �le would prevent otherwise standard-

conforming code from also specifying the SAVE statement, by itself, to indicate that all local

variables and arrays are to have the SAVE attribute.

For this reason, g77 already has been changed to allow this combination, because al-

though the general problem of gratuitously rejecting unambiguous and \safe" constructs

still exists in g77, this particular construct was deemed useful enough that it was worth

�xing g77 for just this case.

So, while there is no need to change your code to avoid using this particular construct,

there might be other, equally appropriate but non-standard constructs, that you shouldn't

have to stop using just because g77 (or any other compiler) gratuitously rejects it.

Until the general problem is solved, if you have any such construct you believe is worth-

while using (e.g. not just an arbitrary, redundant speci�cation of an attribute), please

submit a bug report with an explanation, so we can consider �xing g77 just for cases like

yours.

18.3.12 FLUSH Statement

g77 could perhaps use a FLUSH statement that does what `CALL FLUSH' does, but that

supports `*' as the unit designator (same unit as for PRINT) and accepts ERR= and/or

IOSTAT= speci�ers.

Chapter 18: Known Causes of Trouble with GNU Fortran 277

18.3.13 Expressions in FORMAT Statements

g77 doesn't support `FORMAT(I<J>)' and the like. Supporting this requires a signi�cant

redesign or replacement of libf2c.

However, g77 does support this construct when the expression is constant (as of version

0.5.22). For example:

PARAMETER (IWIDTH = 12)

10 FORMAT (I<IWIDTH>)

Otherwise, at least for output (PRINT and WRITE), Fortran code making use of this feature

can be rewritten to avoid it by constructing the FORMAT string in a CHARACTER variable or

array, then using that variable or array in place of the FORMAT statement label to do the

original PRINT or WRITE.

Many uses of this feature on input can be rewritten this way as well, but not all can.

For example, this can be rewritten:

READ 20, I

20 FORMAT (I<J>)

However, this cannot, in general, be rewritten, especially when ERR= and END= constructs

are employed:

READ 30, J, I

30 FORMAT (I<J>)

18.3.14 Explicit Assembler Code

g77 needs to provide some way, a la gcc, for g77 code to specify explicit assembler code.

18.3.15 Q Edit Descriptor

The Q edit descriptor in FORMATs isn't supported. (This is meant to get the number of

characters remaining in an input record.) Supporting this requires a signi�cant redesign or

replacement of libf2c.

A workaround might be using internal I/O or the stream-based intrinsics. See Sec-

tion 10.11.9.104 [FGetC Intrinsic (subroutine)], page 125.

18.3.16 Old-style PARAMETER Statements

g77 doesn't accept `PARAMETER I=1'. Supporting this obsolete form of the PARAMETER

statement would not be particularly hard, as most of the parsing code is already in place

and working.

Until time/money is spent implementing it, you might as well �x your code to use the

standard form, `PARAMETER (I=1)' (possibly needing `INTEGER I' preceding the PARAMETER

statement as well, otherwise, in the obsolete form of PARAMETER, the type of the variable is

set from the type of the constant being assigned to it).

278 Using and Porting GNU Fortran

18.3.17 TYPE and ACCEPT I/O Statements

g77 doesn't support the I/O statements TYPE and ACCEPT. These are common extensions

that should be easy to support, but also are fairly easy to work around in user code.

Generally, any `TYPE fmt,list' I/O statement can be replaced by `PRINT fmt,list'.

And, any `ACCEPT fmt,list' statement can be replaced by `READ fmt,list'.

18.3.18 STRUCTURE, UNION, RECORD, MAP

g77 doesn't support STRUCTURE, UNION, RECORD, MAP. This set of extensions is quite a

bit lower on the list of large, important things to add to g77, partly because it requires a

great deal of work either upgrading or replacing libf2c.

18.3.19 OPEN, CLOSE, and INQUIRE Keywords

g77 doesn't have support for keywords such as DISP='DELETE' in the OPEN, CLOSE, and

INQUIRE statements. These extensions are easy to add to g77 itself, but require much more

work on libf2c.

18.3.20 ENCODE and DECODE

g77 doesn't support ENCODE or DECODE.

These statements are best replaced by READ and WRITE statements involving internal

�les (CHARACTER variables and arrays).

For example, replace a code fragment like

INTEGER*1 LINE(80)

: : :

DECODE (80, 9000, LINE) A, B, C

: : :

9000 FORMAT (1X, 3(F10.5))

with:

CHARACTER*80 LINE

: : :

READ (UNIT=LINE, FMT=9000) A, B, C

: : :

9000 FORMAT (1X, 3(F10.5))

Similarly, replace a code fragment like

INTEGER*1 LINE(80)

: : :

ENCODE (80, 9000, LINE) A, B, C

: : :

9000 FORMAT (1X, 'OUTPUT IS ', 3(F10.5))

with:

CHARACTER*80 LINE

: : :

WRITE (UNIT=LINE, FMT=9000) A, B, C

Chapter 18: Known Causes of Trouble with GNU Fortran 279

: : :

9000 FORMAT (1X, 'OUTPUT IS ', 3(F10.5))

It is entirely possible that ENCODE and DECODE will be supported by a future version of

g77.

18.3.21 Suppressing Space Padding of Source Lines

g77 should o�er VXT-Fortran-style suppression of virtual spaces at the end of a source

line if an appropriate command-line option is speci�ed.

This a�ects cases where a character constant is continued onto the next line in a �xed-

form source �le, as in the following example:

10 PRINT *,'HOW MANY

1 SPACES?'

g77, and many other compilers, virtually extend the continued line through column 72 with

spaces that become part of the character constant, but Digital Fortran normally didn't,

leaving only one space between `MANY' and `SPACES?' in the output of the above statement.

Fairly recently, at least one version of Digital Fortran was enhanced to provide the other

behavior when a command-line option is speci�ed, apparently due to demand from readers of

the USENET group `comp.lang.fortran' to o�er conformance to this widespread practice

in the industry. g77 should return the favor by o�ering conformance to Digital's approach

to handling the above example.

18.3.22 Fortran Preprocessor

g77 should o�er a preprocessor designed speci�cally for Fortran to replace `cpp -traditional'.

There are several out there worth evaluating, at least.

Such a preprocessor would recognize Hollerith constants, properly parse comments and

character constants, and so on. It might also recognize, process, and thus preprocess �les

included via the INCLUDE directive.

18.3.23 Bit Operations on Floating-point Data

g77 does not allow REAL and other non-integral types for arguments to intrinsics like

AND, OR, and SHIFT.

For example, this program is rejected by g77, because the intrinsic IAND does not accept

REAL arguments:

DATA A/7.54/, B/9.112/

PRINT *, IAND(A, B)

END

18.3.24 POSIX Standard

g77 should support the POSIX standard for Fortran.

280 Using and Porting GNU Fortran

18.3.25 Floating-point Exception Handling

The gcc backend and, consequently, g77, currently provides no control over whether

or not oating-point exceptions are trapped or ignored. (Ignoring them typically results

in NaN values being propagated in systems that conform to IEEE 754.) The behaviour is

inherited from the system-dependent startup code.

Most systems provide some C-callable mechanism to change this; this can be invoked

at startup using gcc's constructor attribute. For example, just compiling and linking

the following C code with your program will turn on exception trapping for the \common"

exceptions on an x86-based GNU system:

#include <fpu_control.h>

void __attribute__ ((constructor))

trapfpe () {

(void) __setfpucw (_FPU_DEFAULT &

~(_FPU_MASK_IM | _FPU_MASK_ZM | _FPU_MASK_OM));

}

18.3.26 Nonportable Conversions

g77 doesn't accept some particularly nonportable, silent data-type conversions such as

LOGICAL to REAL (as in `A=.FALSE.', where `A' is type REAL), that other compilers might

quietly accept.

Some of these conversions are accepted by g77 when the `-fugly' option is speci�ed.

Perhaps it should accept more or all of them.

18.3.27 Large Automatic Arrays

Currently, automatic arrays always are allocated on the stack. For situations where

the stack cannot be made large enough, g77 should o�er a compiler option that speci�es

allocation of automatic arrays in heap storage.

18.3.28 Support for Threads

Neither the code produced by g77 nor the libf2c library are thread-safe, nor does g77

have support for parallel processing (other than the instruction-level parallelism available

on some processors). A package such as PVM might help here.

18.3.29 Gracefully Handle Sensible Bad Code

g77 generally should continue processing for warnings and recoverable (user) errors when-

ever possible|that is, it shouldn't gratuitously make bad or useless code.

For example:

INTRINSIC ZABS

CALL FOO(ZABS)

END

When compiling the above with `-ff2c-intrinsics-disable', g77 should indeed com-

plain about passing ZABS, but it still should compile, instead of rejecting the entire CALL

Chapter 18: Known Causes of Trouble with GNU Fortran 281

statement. (Some of this is related to improving the compiler internals to improve how

statements are analyzed.)

18.3.30 Non-standard Conversions

`-Wconversion' and related should ag places where non-standard conversions are found.

Perhaps much of this would be part of `-Wugly*'.

18.3.31 Non-standard Intrinsics

g77 needs a new option, like `-Wintrinsics', to warn about use of non-standard intrin-

sics without explicit INTRINSIC statements for them. This would help �nd code that might

fail silently when ported to another compiler.

18.3.32 Modifying DO Variable

g77 should warn about modifying DO variables via EQUIVALENCE. (The internal informa-

tion gathered to produce this warning might also be useful in setting the internal \doiter"

ag for a variable or even array reference within a loop, since that might produce faster

code someday.)

For example, this code is invalid, so g77 should warn about the invalid assignment to

`NOTHER':

EQUIVALENCE (I, NOTHER)

DO I = 1, 100

IF (I.EQ. 10) NOTHER = 20

END DO

18.3.33 Better Pedantic Compilation

g77 needs to support `-fpedantic' more thoroughly, and use it only to generate warnings

instead of rejecting constructs outright. Have it warn: if a variable that dimensions an

array is not a dummy or placed explicitly in COMMON (F77 does not allow it to be placed in

COMMON via EQUIVALENCE); if speci�cation statements follow statement-function-de�nition

statements; about all sorts of syntactic extensions.

18.3.34 Warn About Implicit Conversions

g77 needs a `-Wpromotions' option to warn if source code appears to expect automatic,

silent, and somewhat dangerous compiler-assisted conversion of REAL(KIND=1) constants to

REAL(KIND=2) based on context.

For example, it would warn about cases like this:

DOUBLE PRECISION FOO

PARAMETER (TZPHI = 9.435784839284958)

FOO = TZPHI * 3D0

282 Using and Porting GNU Fortran

18.3.35 Invalid Use of Hollerith Constant

g77 should disallow statements like `RETURN 2HAB', which are invalid in both source forms

(unlike `RETURN (2HAB)', which probably still makes no sense but at least can be reliably

parsed). Fixed-form processing rejects it, but not free-form, except in a way that is a bit

di�cult to understand.

18.3.36 Dummy Array Without Dimensioning Dummy

g77 should complain when a list of dummy arguments containing an adjustable dummy

array does not also contain every variable listed in the dimension list of the adjustable array.

Currently, g77 does complain about a variable that dimensions an array but doesn't

appear in any dummy list or COMMON area, but this needs to be extended to catch cases

where it doesn't appear in every dummy list that also lists any arrays it dimensions.

For example, g77 should warn about the entry point `ALT' below, since it includes `ARRAY'

but not `ISIZE' in its list of arguments:

SUBROUTINE PRIMARY(ARRAY, ISIZE)

REAL ARRAY(ISIZE)

ENTRY ALT(ARRAY)

18.3.37 Invalid FORMAT Speci�ers

g77 should check FORMAT speci�ers for validity as it does FORMAT statements.

For example, a diagnostic would be produced for:

PRINT 'HI THERE!' !User meant PRINT *, 'HI THERE!'

18.3.38 Ambiguous Dialects

g77 needs a set of options such as `-Wugly*', `-Wautomatic', `-Wvxt', `-Wf90', and so on.

These would warn about places in the user's source where ambiguities are found, helpful in

resolving ambiguities in the program's dialect or dialects.

18.3.39 Unused Labels

g77 should warn about unused labels when `-Wunused' is in e�ect.

18.3.40 Informational Messages

g77 needs an option to suppress information messages (notes). `-w' does this but also

suppresses warnings. The default should be to suppress info messages.

Perhaps info messages should simply be eliminated.

Chapter 18: Known Causes of Trouble with GNU Fortran 283

18.3.41 Uninitialized Variables at Run Time

g77 needs an option to initialize everything (not otherwise explicitly initialized) to

\weird" (machine-dependent) values, e.g. NaNs, bad (non-NULL) pointers, and largest-

magnitude integers, would help track down references to some kinds of uninitialized vari-

ables at run time.

Note that use of the options `-O -Wuninitialized' can catch many such bugs at compile

time.

18.3.42 Bounds Checking at Run Time

g77 should o�er run-time bounds-checking of array/subscript references in a fashion

similar to f2c.

Note that g77 already warns about references to out-of-bounds elements of arrays when

it detects these at compile time.

18.3.43 Labels Visible to Debugger

g77 should output debugging information for statements labels, for use by debuggers

that know how to support them. Same with weirder things like construct names. It is not

yet known if any debug formats or debuggers support these.

18.4 Disappointments and Misunderstandings

These problems are perhaps regrettable, but we don't know any practical way around

them for now.

18.4.1 Mangling of Names in Source Code

The current external-interface design, which includes naming of external procedures,

COMMON blocks, and the library interface, has various usability problems, including things

like adding underscores where not really necessary (and preventing easier inter-language

operability) and yet not providing complete namespace freedom for user C code linked with

Fortran apps (due to the naming of functions in the library, among other things).

Project GNU should at least get all this \right" for systems it fully controls, such as

the Hurd, and provide defaults and options for compatibility with existing systems and

interoperability with popular existing compilers.

18.4.2 Multiple De�nitions of External Names

g77 doesn't allow a common block and an external procedure or BLOCK DATA to have the

same name. Some systems allow this, but g77 does not, to be compatible with f2c.

g77 could special-case the way it handles BLOCK DATA, since it is not compatible with

f2c in this particular area (necessarily, since g77 o�ers an important feature here), but

it is likely that such special-casing would be very annoying to people with programs that

use `EXTERNAL FOO', with no other mention of `FOO' in the same program unit, to refer to

284 Using and Porting GNU Fortran

external procedures, since the result would be that g77 would treat these references as

requests to force-load BLOCK DATA program units.

In that case, if g77 modi�ed names of BLOCK DATA so they could have the same names

as COMMON, users would �nd that their programs wouldn't link because the `FOO' procedure

didn't have its name translated the same way.

(Strictly speaking, g77 could emit a null-but-externally-satisfying de�nition of `FOO' with

its name transformed as if it had been a BLOCK DATA, but that probably invites more trouble

than it's worth.)

18.4.3 Limitation on Implicit Declarations

g77 disallows IMPLICIT CHARACTER*(*). This is not standard-conforming.

18.5 Certain Changes We Don't Want to Make

This section lists changes that people frequently request, but which we do not make

because we think GNU Fortran is better without them.

18.5.1 Backslash in Constants

In the opinion of many experienced Fortran users, `-fno-backslash' should be the

default, not `-fbackslash', as currently set by g77.

First of all, you can always specify `-fno-backslash' to turn o� this processing.

Despite not being within the spirit (though apparently within the letter) of the ANSI

FORTRAN 77 standard, g77 defaults to `-fbackslash' because that is what most UNIX

f77 commands default to, and apparently lots of code depends on this feature.

This is a particularly troubling issue. The use of a C construct in the midst of For-

tran code is bad enough, worse when it makes existing Fortran programs stop working (as

happens when programs written for non-UNIX systems are ported to UNIX systems with

compilers that provide the `-fbackslash' feature as the default|sometimes with no option

to turn it o�).

The author of GNU Fortran wished, for reasons of linguistic purity, to make `-fno-backslash'

the default for GNU Fortran and thus require users of UNIX f77 and f2c to specify

`-fbackslash' to get the UNIX behavior.

However, the realization that g77 is intended as a replacement for UNIX f77, caused

the author to choose to make g77 as compatible with f77 as feasible, which meant making

`-fbackslash' the default.

The primary focus on compatibility is at the source-code level, and the question became

\What will users expect a replacement for f77 to do, by default?" Although at least one

UNIX f77 does not provide `-fbackslash' as a default, it appears that the majority of

them do, which suggests that the majority of code that is compiled by UNIX f77 compilers

expects `-fbackslash' to be the default.

It is probably the case that more code exists that would not work with `-fbackslash'

in force than code that requires it be in force.

Chapter 18: Known Causes of Trouble with GNU Fortran 285

However, most of that code is not being compiled with f77, and when it is, new build

procedures (shell scripts, make�les, and so on) must be set up anyway so that they work

under UNIX. That makes a much more natural and safe opportunity for non-UNIX users

to adapt their build procedures for g77's default of `-fbackslash' than would exist for the

majority of UNIX f77 users who would have to modify existing, working build procedures

to explicitly specify `-fbackslash' if that was not the default.

One suggestion has been to con�gure the default for `-fbackslash' (and perhaps other

options as well) based on the con�guration of g77.

This is technically quite straightforward, but will be avoided even in cases where not

con�guring defaults to be dependent on a particular con�guration greatly inconveniences

some users of legacy code.

Many users appreciate the GNU compilers because they provide an environment that

is uniform across machines. These users would be inconvenienced if the compiler treated

things like the format of the source code di�erently on certain machines.

Occasionally users write programs intended only for a particular machine type. On these

occasions, the users would bene�t if the GNU Fortran compiler were to support by default

the same dialect as the other compilers on that machine. But such applications are rare.

And users writing a program to run on more than one type of machine cannot possibly

bene�t from this kind of compatibility. (This is consistent with the design goals for gcc.

To change them for g77, you must �rst change them for gcc. Do not ask the maintainers

of g77 to do this for you, or to disassociate g77 from the widely understood, if not widely

agreed-upon, goals for GNU compilers in general.)

This is why GNU Fortran does and will treat backslashes in the same fashion on all

types of machines (by default). See Section 10.1 [Direction of Language Development],

page 71, for more information on this overall philosophy guiding the development of the

GNU Fortran language.

Of course, users strongly concerned about portability should indicate explicitly in their

build procedures which options are expected by their source code, or write source code that

has as few such expectations as possible.

For example, avoid writing code that depends on backslash (`\') being interpreted either

way in particular, such as by starting a program unit with:

CHARACTER BACKSL

PARAMETER (BACKSL = '\\')

Then, use concatenation of `BACKSL' anyplace a backslash is desired. In this way, users can

write programs which have the same meaning in many Fortran dialects.

(However, this technique does not work for Hollerith constants|which is just as well,

since the only generally portable uses for Hollerith constants are in places where character

constants can and should be used instead, for readability.)

18.5.2 Initializing Before Specifying

g77 does not allow `DATA VAR/1/' to appear in the source code before `COMMON VAR',

`DIMENSION VAR(10)', `INTEGER VAR', and so on. In general, g77 requires initialization of

a variable or array to be speci�ed after all other speci�cations of attributes (type, size,

286 Using and Porting GNU Fortran

placement, and so on) of that variable or array are speci�ed (though con�rmation of data

type is permitted).

It is possible g77 will someday allow all of this, even though it is not allowed by the

FORTRAN 77 standard.

Then again, maybe it is better to have g77 always require placement of DATA so that it

can possibly immediately write constants to the output �le, thus saving time and space.

That is, `DATA A/1000000*1/' should perhaps always be immediately writable to canoni-

cal assembler, unless it's already known to be in a COMMON area following as-yet-uninitialized

stu�, and to do this it cannot be followed by `COMMON A'.

18.5.3 Context-Sensitive Intrinsicness

g77 treats procedure references to possible intrinsic names as always enabling their

intrinsic nature, regardless of whether the form of the reference is valid for that intrinsic.

For example, `CALL SQRT' is interpreted by g77 as an invalid reference to the SQRT in-

trinsic function, because the reference is a subroutine invocation.

First, g77 recognizes the statement `CALL SQRT' as a reference to a procedure named

`SQRT', not to a variable with that name (as it would for a statement such as `V = SQRT').

Next, g77 establishes that, in the program unit being compiled, SQRT is an intrinsic|not

a subroutine that happens to have the same name as an intrinsic (as would be the case if,

for example, `EXTERNAL SQRT' was present).

Finally, g77 recognizes that the form of the reference is invalid for that particular in-

trinsic. That is, it recognizes that it is invalid for an intrinsic function, such as SQRT, to be

invoked as a subroutine.

At that point, g77 issues a diagnostic.

Some users claim that it is \obvious" that `CALL SQRT' references an external subroutine

of their own, not an intrinsic function.

However, g77 knows about intrinsic subroutines, not just functions, and is able to support

both having the same names, for example.

As a result of this, g77 rejects calls to intrinsics that are not subroutines, and function

invocations of intrinsics that are not functions, just as it (and most compilers) rejects

invocations of intrinsics with the wrong number (or types) of arguments.

So, use the `EXTERNAL SQRT' statement in a program unit that calls a user-written sub-

routine named `SQRT'.

18.5.4 Context-Sensitive Constants

g77 does not use context to determine the types of constants or named constants

(PARAMETER), except for (non-standard) typeless constants such as `'123'O'.

For example, consider the following statement:

PRINT *, 9.435784839284958 * 2D0

g77 will interpret the (truncated) constant `9.435784839284958' as a REAL(KIND=1), not

REAL(KIND=2), constant, because the su�x D0 is not speci�ed.

Chapter 18: Known Causes of Trouble with GNU Fortran 287

As a result, the output of the above statement when compiled by g77 will appear to

have \less precision" than when compiled by other compilers.

In these and other cases, some compilers detect the fact that a single-precision constant

is used in a double-precision context and therefore interpret the single-precision constant as

if it was explicitly speci�ed as a double-precision constant. (This has the e�ect of append-

ing decimal, not binary, zeros to the fractional part of the number|producing di�erent

computational results.)

The reason this misfeature is dangerous is that a slight, apparently innocuous change to

the source code can change the computational results. Consider:

REAL ALMOST, CLOSE

DOUBLE PRECISION FIVE

PARAMETER (ALMOST = 5.000000000001)

FIVE = 5

CLOSE = 5.000000000001

PRINT *, 5.000000000001 - FIVE

PRINT *, ALMOST - FIVE

PRINT *, CLOSE - FIVE

END

Running the above program should result in the same value being printed three times. With

g77 as the compiler, it does.

However, compiled by many other compilers, running the above program would print

two or three distinct values, because in two or three of the statements, the constant

`5.000000000001', which on most systems is exactly equal to `5.' when interpreted as

a single-precision constant, is instead interpreted as a double-precision constant, preserving

the represented precision. However, this \clever" promotion of type does not extend to

variables or, in some compilers, to named constants.

Since programmers often are encouraged to replace manifest constants or permanently-

assigned variables with named constants (PARAMETER in Fortran), and might need to replace

some constants with variables having the same values for pertinent portions of code, it is

important that compilers treat code so modi�ed in the same way so that the results of such

programs are the same. g77 helps in this regard by treating constants just the same as

variables in terms of determining their types in a context-independent way.

Still, there is a lot of existing Fortran code that has been written to depend on the way

other compilers freely interpret constants' types based on context, so anything g77 can do

to help ag cases of this in such code could be very helpful.

18.5.5 Equivalence Versus Equality

Use of .EQ. and .NE. on LOGICAL operands is not supported, except via `-fugly', which

is not recommended except for legacy code (where the behavior expected by the code is

assumed).

Legacy code should be changed, as resources permit, to use .EQV. and .NEQV. instead,

as these are permitted by the various Fortran standards.

New code should never be written expecting .EQ. or .NE. to work if either of its operands

is LOGICAL.

288 Using and Porting GNU Fortran

The problem with supporting this \feature" is that there is unlikely to be consensus on

how it works, as illustrated by the following sample program:

LOGICAL L,M,N

DATA L,M,N /3*.FALSE./

IF (L.AND.M.EQ.N) PRINT *,'L.AND.M.EQ.N'

END

The issue raised by the above sample program is: what is the precedence of .EQ. (and

.NE.) when applied to LOGICAL operands?

Some programmers will argue that it is the same as the precedence for .EQ. when applied

to numeric (such as INTEGER) operands. By this interpretation, the subexpression `M.EQ.N'

must be evaluated �rst in the above program, resulting in a program that, when run, does

not execute the PRINT statement.

Other programmers will argue that the precedence is the same as the precedence for

.EQV., which is restricted by the standards to LOGICAL operands. By this interpretation, the

subexpression `L.AND.M' must be evaluated �rst, resulting in a program that does execute

the PRINT statement.

Assigning arbitrary semantic interpretations to syntactic expressions that might legiti-

mately have more than one \obvious" interpretation is generally unwise.

The creators of the various Fortran standards have done a good job in this case, requiring

a distinct set of operators (which have their own distinct precedence) to compare LOGICAL

operands. This requirement results in expression syntax with more certain precedence

(without requiring substantial context), making it easier for programmers to read existing

code. g77 will avoid muddying up elements of the Fortran language that were well-designed

in the �rst place.

(Ask C programmers about the precedence of expressions such as `(a) & (b)' and `(a)

- (b)'|they cannot even tell you, without knowing more context, whether the `&' and `-'

operators are in�x (binary) or unary!)

18.5.6 Order of Side E�ects

g77 does not necessarily produce code that, when run, performs side e�ects (such as

those performed by function invocations) in the same order as in some other compiler|or

even in the same order as another version, port, or invocation (using di�erent command-line

options) of g77.

It is never safe to depend on the order of evaluation of side e�ects. For example, an

expression like this may very well behave di�erently from one compiler to another:

J = IFUNC() - IFUNC()

There is no guarantee that `IFUNC' will be evaluated in any particular order. Either invo-

cation might happen �rst. If `IFUNC' returns 5 the �rst time it is invoked, and returns 12

the second time, `J' might end up with the value `7', or it might end up with `-7'.

Generally, in Fortran, procedures with side-e�ects intended to be visible to the caller are

best designed as subroutines, not functions. Examples of such side-e�ects include:

� The generation of random numbers that are intended to inuence return values.

� Performing I/O (other than internal I/O to local variables).

Chapter 18: Known Causes of Trouble with GNU Fortran 289

� Updating information in common blocks.

An example of a side-e�ect that is not intended to be visible to the caller is a function

that maintains a cache of recently calculated results, intended solely to speed repeated

invocations of the function with identical arguments. Such a function can be safely used

in expressions, because if the compiler optimizes away one or more calls to the function,

operation of the program is una�ected (aside from being speeded up).

18.6 Warning Messages and Error Messages

The GNU compiler can produce two kinds of diagnostics: errors and warnings. Each

kind has a di�erent purpose:

Errors report problems that make it impossible to compile your program. GNU Fortran

reports errors with the source �le name, line number, and column within the line where

the problem is apparent.

Warnings report other unusual conditions in your code that might indicate a problem,

although compilation can (and does) proceed. Warning messages also report the source

�le name, line number, and column information, but include the text `warning:' to

distinguish them from error messages.

Warnings might indicate danger points where you should check to make sure that your

program really does what you intend; or the use of obsolete features; or the use of nonstan-

dard features of GNU Fortran. Many warnings are issued only if you ask for them, with

one of the `-W' options (for instance, `-Wall' requests a variety of useful warnings).

Note: Currently, the text of the line and a pointer to the column is printed in most g77

diagnostics. Probably, as of version 0.6, g77 will no longer print the text of the source line,

instead printing the column number following the �le name and line number in a form that

GNU Emacs recognizes. This change is expected to speed up and reduce the memory usage

of the g77 compiler.

See Section 7.5 [Options to Request or Suppress Warnings], page 35, for more detail on

these and related command-line options.

290 Using and Porting GNU Fortran

Chapter 19: Open Questions 291

19 Open Questions

Please consider o�ering useful answers to these questions!

� How do system administrators and users manage multiple incompatible Fortran com-

pilers on their systems? How can g77 contribute to this, or at least avoiding intefering

with it?

Currently, g77 provides rudimentary ways to choose whether to overwrite portions of

other Fortran compilation systems (such as the f77 command and the libf2c library).

Is this su�cient? What happens when users choose not to overwrite these|does g77

work properly in all such installations, picking up its own versions, or does it pick up

the existing \alien" versions it didn't overwrite with its own, possibly leading to subtle

bugs?

� LOC() and other intrinsics are probably somewhat misclassi�ed. Is the a need for more

precise classi�cation of intrinsics, and if so, what are the appropriate groupings? Is

there a need to individually enable/disable/delete/hide intrinsics from the command

line?

292 Using and Porting GNU Fortran

Chapter 20: Reporting Bugs 293

20 Reporting Bugs

Your bug reports play an essential role in making GNU Fortran reliable.

When you encounter a problem, the �rst thing to do is to see if it is already known. See

Chapter 18 [Trouble], page 265. If it isn't known, then you should report the problem.

Reporting a bug might help you by bringing a solution to your problem, or it might

not. (If it does not, look in the service directory; see Chapter 21 [Service], page 303.) In

any case, the principal function of a bug report is to help the entire community by making

the next version of GNU Fortran work better. Bug reports are your contribution to the

maintenance of GNU Fortran.

Since the maintainers are very overloaded, we cannot respond to every bug report. How-

ever, if the bug has not been �xed, we are likely to send you a patch and ask you to tell us

whether it works.

In order for a bug report to serve its purpose, you must include the information that

makes for �xing the bug.

See Chapter 18 [Known Causes of Trouble with GNU Fortran], page 265, for information

on problems we already know about.

See Chapter 21 [How To Get Help with GNU Fortran], page 303, for information on

where to ask for help.

20.1 Have You Found a Bug?

If you are not sure whether you have found a bug, here are some guidelines:

� If the compiler gets a fatal signal, for any input whatever, that is a compiler bug.

Reliable compilers never crash|they just remain obsolete.

� If the compiler produces invalid assembly code, for any input whatever, that is a com-

piler bug, unless the compiler reports errors (not just warnings) which would ordinarily

prevent the assembler from being run.

� If the compiler produces valid assembly code that does not correctly execute the input

source code, that is a compiler bug.

However, you must double-check to make sure, because you might have run into an

incompatibility between GNU Fortran and traditional Fortran. These incompatibilities

might be considered bugs, but they are inescapable consequences of valuable features.

Or you might have a program whose behavior is unde�ned, which happened by chance

to give the desired results with another Fortran compiler. It is best to check the relevant

Fortran standard thoroughly if it is possible that the program indeed does something

unde�ned.

After you have localized the error to a single source line, it should be easy to check for

these things. If your program is correct and well de�ned, you have found a compiler

bug.

It might help if, in your submission, you identi�ed the speci�c language in the relevant

Fortran standard that speci�es the desired behavior, if it isn't likely to be obvious and

agreed-upon by all Fortran users.

294 Using and Porting GNU Fortran

� If the compiler produces an error message for valid input, that is a compiler bug.

� If the compiler does not produce an error message for invalid input, that is a compiler

bug. However, you should note that your idea of \invalid input" might be someone

else's idea of \an extension" or \support for traditional practice".

� If you are an experienced user of Fortran compilers, your suggestions for improvement

of GNU Fortran are welcome in any case.

Many, perhaps most, bug reports against g77 turn out to be bugs in the user's code.

While we �nd such bug reports educational, they sometimes take a considerable amount

of time to track down or at least respond to|time we could be spending making g77, not

some user's code, better.

Some steps you can take to verify that the bug is not certainly in the code you're

compiling with g77:

� Compile your code using the g77 options `-W -Wall -O'. These options enable many

useful warning; the `-O' option enables ow analysis that enables the uninitialized-

variable warning.

If you investigate the warnings and �nd evidence of possible bugs in your code, �x

them �rst and retry g77.

� Compile your code using the g77 options `-finit-local-zero', `-fno-automatic',

`-ffloat-store', and various combinations thereof.

If your code works with any of these combinations, that is not proof that the bug isn't

in g77|a g77 bug exposed by your code might simply be avoided, or have a di�erent,

more subtle e�ect, when di�erent options are used|but it can be a strong indicator

that your code is making unawarranted assumptions about the Fortran dialect and/or

underlying machine it is being compiled and run on.

See Section 17.5 [Overly Convenient Command-Line Options], page 261, for information

on the `-fno-automatic' and `-finit-local-zero' options and how to convert their

use into selective changes in your own code.

� Validate your code with ftnchek or a similar code-checking tool. ftncheck can be

found at ftp://ftp.netlib.org/fortran or ftp://ftp.dsm.fordham.edu.

Here are some sample `Makefile' rules using ftnchek \project" �les to do cross-�le

checking and sfmakedepend (from ftp://ahab.rutgers.edu/pub/perl/sfmakedepend)

to maintain dependencies automatically. These assume the use of GNU make.

Dummy suffix for ftnchek targets:

.SUFFIXES: .chek

.PHONY: chekall

How to compile .f files (for implicit rule):

FC = g77

Assume `include' directory:

FFLAGS = -Iinclude -g -O -Wall

Flags for ftnchek:

CHEK1 = -array=0 -include=includes -noarray

CHEK2 = -nonovice -usage=1 -notruncation

Chapter 20: Reporting Bugs 295

CHEKFLAGS = $(CHEK1) $(CHEK2)

Run ftnchek with all the .prj files except the one corresponding

to the target's root:

%.chek : %.f ; \

ftnchek $(filter-out $*.prj,$(PRJS)) $(CHEKFLAGS) \

-noextern -library $<

Derive a project file from a source file:

%.prj : %.f ; \

ftnchek $(CHEKFLAGS) -noextern -project -library $<

The list of objects is assumed to be in variable OBJS.

Sources corresponding to the objects:

SRCS = $(OBJS:%.o=%.f)

ftnchek project files:

PRJS = $(OBJS:%.o=%.prj)

Build the program

prog: $(OBJS) ; \

$(FC) -o $ $(OBJS)

chekall: $(PRJS) ; \

ftnchek $(CHEKFLAGS) $(PRJS)

prjs: $(PRJS)

For Emacs M-x find-tag:

TAGS: $(SRCS) ; \

etags $(SRCS)

Rebuild dependencies:

depend: ; \

sfmakedepend -I $(PLTLIBDIR) -I includes -a prj $(SRCS1)

� Try your code out using other Fortran compilers, such as f2c. If it does not work on at

least one other compiler (assuming the compiler supports the features the code needs),

that is a strong indicator of a bug in the code.

However, even if your code works on many compilers except g77, that does not mean

the bug is in g77. It might mean the bug is in your code, and that g77 simply exposes

it more readily than other compilers.

20.2 Where to Report Bugs

Send bug reports for GNU Fortran to fortran@gnu.org.

Often people think of posting bug reports to a newsgroup instead of mailing them. This

sometimes appears to work, but it has one problem which can be crucial: a newsgroup

posting does not contain a mail path back to the sender. Thus, if maintainers need more

296 Using and Porting GNU Fortran

information, they might be unable to reach you. For this reason, you should always send

bug reports by mail to the proper mailing list.

As a last resort, send bug reports on paper to:

GNU Compiler Bugs

Free Software Foundation

59 Temple Place - Suite 330

Boston, MA 02111-1307, USA

20.3 How to Report Bugs

The fundamental principle of reporting bugs usefully is this: report all the facts. If you

are not sure whether to state a fact or leave it out, state it!

Often people omit facts because they think they know what causes the problem and

they conclude that some details don't matter. Thus, you might assume that the name of

the variable you use in an example does not matter. Well, probably it doesn't, but one

cannot be sure. Perhaps the bug is a stray memory reference which happens to fetch from

the location where that name is stored in memory; perhaps, if the name were di�erent, the

contents of that location would fool the compiler into doing the right thing despite the bug.

Play it safe and give a speci�c, complete example. That is the easiest thing for you to do,

and the most helpful.

Keep in mind that the purpose of a bug report is to enable someone to �x the bug if it

is not known. It isn't very important what happens if the bug is already known. Therefore,

always write your bug reports on the assumption that the bug is not known.

Sometimes people give a few sketchy facts and ask, \Does this ring a bell?" This cannot

help us �x a bug, so it is rarely helpful. We respond by asking for enough details to enable us

to investigate. You might as well expedite matters by sending them to begin with. (Besides,

there are enough bells ringing around here as it is.)

Try to make your bug report self-contained. If we have to ask you for more information, it

is best if you include all the previous information in your response, as well as the information

that was missing.

Please report each bug in a separate message. This makes it easier for us to track which

bugs have been �xed and to forward your bugs reports to the appropriate maintainer.

Do not compress and encode any part of your bug report using programs such as

`uuencode'. If you do so it will slow down the processing of your bug. If you must submit

multiple large �les, use `shar', which allows us to read your message without having to run

any decompression programs.

(As a special exception for GNU Fortran bug-reporting, at least for now, if you are send-

ing more than a few lines of code, if your program's source �le format contains \interesting"

things like trailing spaces or strange characters, or if you need to include binary data �les,

it is acceptable to put all the �les together in a tar archive, and, whether you need to do

that, it is acceptable to then compress the single �le (tar archive or source �le) using gzip

and encode it via uuencode. Do not use any MIME stu�|the current maintainer can't

decode this. Using compress instead of gzip is acceptable, assuming you have licensed the

use of the patented algorithm in compress from Unisys.)

To enable someone to investigate the bug, you should include all these things:

Chapter 20: Reporting Bugs 297

� The version of GNU Fortran. You can get this by running g77 with the `-v' option.

(Ignore any error messages that might be displayed when the linker is run.)

Without this, we won't know whether there is any point in looking for the bug in the

current version of GNU Fortran.

� A complete input �le that will reproduce the bug. If the bug is in the compiler proper

(`f771') and you are using the C preprocessor, run your source �le through the C

preprocessor by doing `g77 -E source�le > out�le', then include the contents of out�le

in the bug report. (When you do this, use the same `-I', `-D' or `-U' options that you

used in actual compilation.)

A single statement is not enough of an example. In order to compile it, it must be

embedded in a complete �le of compiler input; and the bug might depend on the details

of how this is done.

Without a real example one can compile, all anyone can do about your bug report is

wish you luck. It would be futile to try to guess how to provoke the bug. For example,

bugs in register allocation and reloading frequently depend on every little detail of the

function they happen in.

� Note that you should include with your bug report any �les included by the source �le

(via the #include or INCLUDE directive) that you send, and any �les they include, and

so on.

It is not necessary to replace the #include and INCLUDE directives with the actual �les

in the version of the source �le that you send, but it might make submitting the bug

report easier in the end. However, be sure to reproduce the bug using the exact version

of the source material you submit, to avoid wild-goose chases.

� The command arguments you gave GNU Fortran to compile that example and observe

the bug. For example, did you use `-O'? To guarantee you won't omit something

important, list all the options.

If we were to try to guess the arguments, we would probably guess wrong and then we

would not encounter the bug.

� The type of machine you are using, and the operating system name and version number.

(Much of this information is printed by `g77 -v'|if you include that, send along any

additional info you have that you don't see clearly represented in that output.)

� The operands you gave to the configure command when you installed the compiler.

� A complete list of any modi�cations you have made to the compiler source. (We don't

promise to investigate the bug unless it happens in an unmodi�ed compiler. But if

you've made modi�cations and don't tell us, then you are sending us on a wild-goose

chase.)

Be precise about these changes. A description in English is not enough|send a context

di� for them.

Adding �les of your own (such as a machine description for a machine we don't support)

is a modi�cation of the compiler source.

� Details of any other deviations from the standard procedure for installing GNU Fortran.

� A description of what behavior you observe that you believe is incorrect. For example,

\The compiler gets a fatal signal," or, \The assembler instruction at line 208 in the

output is incorrect."

298 Using and Porting GNU Fortran

Of course, if the bug is that the compiler gets a fatal signal, then one can't miss it.

But if the bug is incorrect output, the maintainer might not notice unless it is glaringly

wrong. None of us has time to study all the assembler code from a 50-line Fortran

program just on the chance that one instruction might be wrong. We need you to do

this part!

Even if the problem you experience is a fatal signal, you should still say so explicitly.

Suppose something strange is going on, such as, your copy of the compiler is out of

synch, or you have encountered a bug in the C library on your system. (This has

happened!) Your copy might crash and the copy here would not. If you said to expect

a crash, then when the compiler here fails to crash, we would know that the bug was not

happening. If you don't say to expect a crash, then we would not know whether the bug

was happening. We would not be able to draw any conclusion from our observations.

If the problem is a diagnostic when building GNU Fortran with some other compiler,

say whether it is a warning or an error.

Often the observed symptom is incorrect output when your program is run. Sad to say,

this is not enough information unless the program is short and simple. None of us has

time to study a large program to �gure out how it would work if compiled correctly,

much less which line of it was compiled wrong. So you will have to do that. Tell us

which source line it is, and what incorrect result happens when that line is executed.

A person who understands the program can �nd this as easily as �nding a bug in the

program itself.

� If you send examples of assembler code output from GNU Fortran, please use `-g' when

you make them. The debugging information includes source line numbers which are

essential for correlating the output with the input.

� If you wish to mention something in the GNU Fortran source, refer to it by context,

not by line number.

The line numbers in the development sources don't match those in your sources. Your

line numbers would convey no convenient information to the maintainers.

� Additional information from a debugger might enable someone to �nd a problem on

a machine which he does not have available. However, you need to think when you

collect this information if you want it to have any chance of being useful.

For example, many people send just a backtrace, but that is never useful by itself.

A simple backtrace with arguments conveys little about GNU Fortran because the

compiler is largely data-driven; the same functions are called over and over for di�erent

RTL insns, doing di�erent things depending on the details of the insn.

Most of the arguments listed in the backtrace are useless because they are pointers to

RTL list structure. The numeric values of the pointers, which the debugger prints in

the backtrace, have no signi�cance whatever; all that matters is the contents of the

objects they point to (and most of the contents are other such pointers).

In addition, most compiler passes consist of one or more loops that scan the RTL insn

sequence. The most vital piece of information about such a loop|which insn it has

reached|is usually in a local variable, not in an argument.

What you need to provide in addition to a backtrace are the values of the local variables

for several stack frames up. When a local variable or an argument is an RTX, �rst

Chapter 20: Reporting Bugs 299

print its value and then use the GDB command pr to print the RTL expression that it

points to. (If GDB doesn't run on your machine, use your debugger to call the function

debug_rtx with the RTX as an argument.) In general, whenever a variable is a pointer,

its value is no use without the data it points to.

Here are some things that are not necessary:

� A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating which changes to

the input �le will make the bug go away and which changes will not a�ect it.

This is often time consuming and not very useful, because the way we will �nd the

bug is by running a single example under the debugger with breakpoints, not by pure

deduction from a series of examples. You might as well save your time for something

else.

Of course, if you can �nd a simpler example to report instead of the original one,

that is a convenience. Errors in the output will be easier to spot, running under the

debugger will take less time, etc. Most GNU Fortran bugs involve just one function,

so the most straightforward way to simplify an example is to delete all the function

de�nitions except the one where the bug occurs. Those earlier in the �le may be

replaced by external declarations if the crucial function depends on them. (Exception:

inline functions might a�ect compilation of functions de�ned later in the �le.)

However, simpli�cation is not vital; if you don't want to do this, report the bug anyway

and send the entire test case you used.

� In particular, some people insert conditionals `#ifdef BUG' around a statement which,

if removed, makes the bug not happen. These are just clutter; we won't pay any

attention to them anyway. Besides, you should send us preprocessor output, and that

can't have conditionals.

� A patch for the bug.

A patch for the bug is useful if it is a good one. But don't omit the necessary informa-

tion, such as the test case, on the assumption that a patch is all we need. We might

see problems with your patch and decide to �x the problem another way, or we might

not understand it at all.

Sometimes with a program as complicated as GNU Fortran it is very hard to construct

an example that will make the program follow a certain path through the code. If you

don't send the example, we won't be able to construct one, so we won't be able to

verify that the bug is �xed.

And if we can't understand what bug you are trying to �x, or why your patch should

be an improvement, we won't install it. A test case will help us to understand.

See Section 20.4 [Sending Patches], page 300, for guidelines on how to make it easy for

us to understand and install your patches.

� A guess about what the bug is or what it depends on.

Such guesses are usually wrong. Even the maintainer can't guess right about such

things without �rst using the debugger to �nd the facts.

300 Using and Porting GNU Fortran

� A core dump �le.

We have no way of examining a core dump for your type of machine unless we have

an identical system|and if we do have one, we should be able to reproduce the crash

ourselves.

20.4 Sending Patches for GNU Fortran

If you would like to write bug �xes or improvements for the GNU Fortran compiler, that

is very helpful. Send suggested �xes to the bug report mailing list, fortran@gnu.org.

Please follow these guidelines so we can study your patches e�ciently. If you don't follow

these guidelines, your information might still be useful, but using it will take extra work.

Maintaining GNU Fortran is a lot of work in the best of circumstances, and we can't keep

up unless you do your best to help.

� Send an explanation with your changes of what problem they �x or what improvement

they bring about. For a bug �x, just include a copy of the bug report, and explain why

the change �xes the bug.

(Referring to a bug report is not as good as including it, because then we will have to

look it up, and we have probably already deleted it if we've already �xed the bug.)

� Always include a proper bug report for the problem you think you have �xed. We need

to convince ourselves that the change is right before installing it. Even if it is right, we

might have trouble judging it if we don't have a way to reproduce the problem.

� Include all the comments that are appropriate to help people reading the source in the

future understand why this change was needed.

� Don't mix together changes made for di�erent reasons. Send them individually.

If you make two changes for separate reasons, then we might not want to install them

both. We might want to install just one. If you send them all jumbled together in a

single set of di�s, we have to do extra work to disentangle them|to �gure out which

parts of the change serve which purpose. If we don't have time for this, we might have

to ignore your changes entirely.

If you send each change as soon as you have written it, with its own explanation, then

the two changes never get tangled up, and we can consider each one properly without

any extra work to disentangle them.

Ideally, each change you send should be impossible to subdivide into parts that we

might want to consider separately, because each of its parts gets its motivation from

the other parts.

� Send each change as soon as that change is �nished. Sometimes people think they are

helping us by accumulating many changes to send them all together. As explained

above, this is absolutely the worst thing you could do.

Since you should send each change separately, you might as well send it right away.

That gives us the option of installing it immediately if it is important.

� Use `diff -c' to make your di�s. Di�s without context are hard for us to install

reliably. More than that, they make it hard for us to study the di�s to decide whether

we want to install them. Unidi� format is better than contextless di�s, but not as easy

to read as `-c' format.

Chapter 20: Reporting Bugs 301

If you have GNU diff, use `diff -cp', which shows the name of the function that each

change occurs in. (The maintainer of GNU Fortran currently uses `diff -rcp2N'.)

� Write the change log entries for your changes. We get lots of changes, and we don't

have time to do all the change log writing ourselves.

Read the `ChangeLog' �le to see what sorts of information to put in, and to learn the

style that we use. The purpose of the change log is to show people where to �nd what

was changed. So you need to be speci�c about what functions you changed; in large

functions, it's often helpful to indicate where within the function the change was.

On the other hand, once you have shown people where to �nd the change, you need

not explain its purpose. Thus, if you add a new function, all you need to say about it

is that it is new. If you feel that the purpose needs explaining, it probably does|but

the explanation will be much more useful if you put it in comments in the code.

If you would like your name to appear in the header line for who made the change,

send us the header line.

� When you write the �x, keep in mind that we can't install a change that would break

other systems.

People often suggest �xing a problem by changing machine-independent �les such as

`toplev.c' to do something special that a particular system needs. Sometimes it is

totally obvious that such changes would break GNU Fortran for almost all users. We

can't possibly make a change like that. At best it might tell us how to write another

patch that would solve the problem acceptably.

Sometimes people send �xes that might be an improvement in general|but it is hard

to be sure of this. It's hard to install such changes because we have to study them very

carefully. Of course, a good explanation of the reasoning by which you concluded the

change was correct can help convince us.

The safest changes are changes to the con�guration �les for a particular machine. These

are safe because they can't create new bugs on other machines.

Please help us keep up with the workload by designing the patch in a form that is good

to install.

302 Using and Porting GNU Fortran

Chapter 21: How To Get Help with GNU Fortran 303

21 How To Get Help with GNU Fortran

If you need help installing, using or changing GNU Fortran, there are two ways to �nd

it:

� Look in the service directory for someone who might help you for a fee. The service

directory is found in the �le named `SERVICE' in the GNU CC distribution.

� Send a message to fortran@gnu.org.

304 Using and Porting GNU Fortran

Chapter 22: Adding Options 305

22 Adding Options

To add a new command-line option to g77, �rst decide what kind of option you wish to

add. Search the g77 and gcc documentation for one or more options that is most closely

like the one you want to add (in terms of what kind of e�ect it has, and so on) to help

clarify its nature.

� Fortran options are options that apply only when compiling Fortran programs. They

are accepted by g77 and gcc, but they apply only when compiling Fortran programs.

� Compiler options are options that apply when compiling most any kind of program.

Fortran options are listed in the �le `gcc/f/lang-options.h', which is used during

the build of gcc to build a list of all options that are accepted by at least one language's

compiler. This list goes into the `lang_options' array in `gcc/toplev.c', which uses this

array to determine whether a particular option should be o�ered to the linked-in front end

for processing by calling `lang_option_decode', which, for g77, is in `gcc/f/com.c' and

just calls `ffe_decode_option'.

If the linked-in front end \rejects" a particular option passed to it, `toplev.c' just

ignores the option, because some language's compiler is willing to accept it.

This allows commands like `gcc -fno-asm foo.c bar.f' to work, even though Fortran

compilation does not currently support the `-fno-asm' option; even though the f771 ver-

sion of `lang_decode_option' rejects `-fno-asm', `toplev.c' doesn't produce a diagnostic

because some other language (C) does accept it.

This also means that commands like `g77 -fno-asm foo.f' yield no diagnostics, despite

the fact that no phase of the command was able to recognize and process `-fno-asm'|

perhaps a warning about this would be helpful if it were possible.

Code that processes Fortran options is found in `gcc/f/top.c', function `ffe_decode_option'.

This code needs to check positive and negative forms of each option.

The defaults for Fortran options are set in their global de�nitions, also found in

`gcc/f/top.c'. Many of these defaults are actually macros de�ned in `gcc/f/target.h',

since they might be machine-speci�c. However, since, in practice, GNU compilers should

behave the same way on all con�gurations (especially when it comes to language constructs),

the practice of setting defaults in `target.h' is likely to be deprecated and, ultimately,

stopped in future versions of g77.

Accessor macros for Fortran options, used by code in the g77 FFE, are de�ned in

`gcc/f/top.h'.

Compiler options are listed in `gcc/toplev.c' in the array `f_options'. An option not

listed in `lang_options' is looked up in `f_options' and handled from there.

The defaults for compiler options are set in the global de�nitions for the corresponding

variables, some of which are in `gcc/toplev.c'.

You can set di�erent defaults for Fortran-oriented or Fortran-reticent compiler options by

changing the way f771 handles the `-fset-g77-defaults' option, which is always provided

as the �rst option when called by g77 or gcc.

This code is in `ffe_decode_options' in `gcc/f/top.c'. Have it change just the vari-

ables that you want to default to a di�erent setting for Fortran compiles compared to

compiles of other languages.

306 Using and Porting GNU Fortran

The `-fset-g77-defaults' option is passed to f771 automatically because of the spec-

i�cation information kept in `gcc/f/lang-specs.h'. This �le tells the gcc command how

to recognize, in this case, Fortran source �les (those to be preprocessed, and those that

are not), and further, how to invoke the appropriate programs (including f771) to process

those source �les.

It is in `gcc/f/lang-specs.h' that `-fset-g77-defaults', `-fversion', and other op-

tions are passed, as appropriate, even when the user has not explicitly speci�ed them. Other

\internal" options such as `-quiet' also are passed via this mechanism.

Chapter 23: Projects 307

23 Projects

If you want to contribute to g77 by doing research, design, speci�cation, documentation,

coding, or testing, the following information should give you some ideas.

23.1 Improve E�ciency

Don't bother doing any performance analysis until most of the following items are taken

care of, because there's no question they represent serious space/time problems, although

some of them show up only given certain kinds of (popular) input.

� Improve `malloc' package and its uses to specify more info about memory pools and,

where feasible, use obstacks to implement them.

� Skip over uninitialized portions of aggregate areas (arrays, COMMON areas, EQUIVALENCE

areas) so zeros need not be output. This would reduce memory usage for large initialized

aggregate areas, even ones with only one initialized element.

As of version 0.5.18, a portion of this item has already been accomplished.

� Prescan the statement (in `sta.c') so that the nature of the statement is determined

as much as possible by looking entirely at its form, and not looking at any context

(previous statements, including types of symbols). This would allow ripping out of

the statement-con�rmation, symbol retraction/con�rmation, and diagnostic inhibition

mechanisms. Plus, it would result in much-improved diagnostics. For example, `CALL

some-intrinsic(: : :)', where the intrinsic is not a subroutine intrinsic, would result

actual error instead of the unimplemented-statement catch-all.

� Throughout g77, don't pass line/column pairs where a simple `ffewhere' type, which

points to the error as much as is desired by the con�guration, will do, and don't

pass `ffelexToken' types where a simple `ffewhere' type will do. Then, allow new

default con�guration of `ffewhere' such that the source line text is not preserved,

and leave it to things like Emacs' next-error function to point to them (now that

`next-error' supports column, or, perhaps, character-o�set, numbers). The change in

calling sequences should improve performance somewhat, as should not having to save

source lines. (Whether this whole item will improve performance is questionable, but

it should improve maintainability.)

� Handle `DATA (A(I),I=1,1000000)/1000000*2/' more e�ciently, especially as regards

the assembly output. Some of this might require improving the back end, but lots of

improvement in space/time required in g77 itself can be fairly easily obtained without

touching the back end. Maybe type-conversion, where necessary, can be speeded up as

well in cases like the one shown (converting the `2' into `2.').

� If analysis shows it to be worthwhile, optimize `lex.c'.

� Consider redesigning `lex.c' to not need any feedback during tokenization, by keeping

track of enough parse state on its own.

308 Using and Porting GNU Fortran

23.2 Better Optimization

Much of this work should be put o� until after g77 has all the features necessary for its

widespread acceptance as a useful F77 compiler. However, perhaps this work can be done

in parallel during the feature-adding work.

� Do the equivalent of the trick of putting `extern inline' in front of every function

de�nition in libf2c and #include'ing the resulting �le in f2c+gcc|that is, inline all

run-time-library functions that are at all worth inlining. (Some of this has already been

done, such as for integral exponentiation.)

� When doing `CHAR_VAR = CHAR_FUNC(: : :)', and it's clear that types line up and

`CHAR_VAR' is addressable or not a `VAR_DECL', make `CHAR_VAR', not a temporary,

be the receiver for `CHAR_FUNC'. (This is now done for COMPLEX variables.)

� Design and implement Fortran-speci�c optimizations that don't really belong in the

back end, or where the front end needs to give the back end more info than it currently

does.

� Design and implement a new run-time library interface, with the code going into libgcc

so no special linking is required to link Fortran programs using standard language fea-

tures. This library would speed up lots of things, from I/O (using precompiled formats,

doing just one, or, at most, very few, calls for arrays or array sections, and so on) to gen-

eral computing (array/section implementations of various intrinsics, implementation of

commonly performed loops that aren't likely to be optimally compiled otherwise, etc.).

Among the important things the library would do are:

� Be a one-stop-shop-type library, hence shareable and usable by all, in that what

are now library-build-time options in libf2c would be moved at least to the g77

compile phase, if not to �ner grains (such as choosing how list-directed I/O for-

matting is done by default at OPEN time, for preconnected units via options or

even statements in the main program unit, maybe even on a per-I/O basis with

appropriate pragma-like devices).

� Probably requiring the new library design, change interface to normally have COMPLEX

functions return their values in the way gcc would if they were declared __complex_

_ float, rather than using the mechanism currently used by CHARACTER functions

(whereby the functions are compiled as returning void and their �rst arg is a pointer to

where to store the result). (Don't append underscores to external names for COMPLEX

functions in some cases once g77 uses gcc rather than f2c calling conventions.)

� Do something useful with `doiter' references where possible. For example, `CALL

FOO(I)' cannot modify `I' if within a DO loop that uses `I' as the iteration variable,

and the back end might �nd that info useful in determining whether it needs to read

`I' back into a register after the call. (It normally has to do that, unless it knows `FOO'

never modi�es its passed-by-reference argument, which is rarely the case for Fortran-77

code.)

23.3 Simplify Porting

Making g77 easier to con�gure, port, build, and install, either as a single-system compiler

or as a cross-compiler, would be very useful.

Chapter 23: Projects 309

� A new library (replacing libf2c) should improve portability as well as produce

more optimal code. Further, g77 and the new library should conspire to simplify

naming of externals, such as by removing unnecessarily added underscores, and to

reduce/eliminate the possibility of naming conicts, while making debugger more

straightforward.

Also, it should make multi-language applications more feasible, such as by providing

Fortran intrinsics that get Fortran unit numbers given C FILE * descriptors.

� Possibly related to a new library, g77 should produce the equivalent of a gcc `main(argc,

argv)' function when it compiles a main program unit, instead of compiling something

that must be called by a library implementation of main().

This would do many useful things such as provide more exibility in terms of setting up

exception handling, not requiring programmers to start their debugging sessions with

breakpoint MAIN__ followed by run, and so on.

� The GBE needs to understand the di�erence between alignment requirements and de-

sires. For example, on Intel x86 machines, g77 currently imposes overly strict alignment

requirements, due to the back end, but it would be useful for Fortran and C program-

mers to be able to override these recommendations as long as they don't violate the

actual processor requirements.

23.4 More Extensions

These extensions are not the sort of things users ask for \by name", but they might

improve the usability of g77, and Fortran in general, in the long run. Some of these items

really pertain to improving g77 internals so that some popular extensions can be more easily

supported.

� Look through all the documentation on the GNU Fortran language, dialects, compiler,

missing features, bugs, and so on. Many mentions of incomplete or missing features

are sprinkled throughout. It is not worth repeating them here.

� Support arbitrary operands for concatenation, even in contexts where run-time alloca-

tion is required.

� Consider adding a NUMERIC type to designate typeless numeric constants, named and

unnamed. The idea is to provide a forward-looking, e�ective replacement for things like

the old-style PARAMETER statement when people really need typelessness in a maintain-

able, portable, clearly documented way. Maybe TYPELESS would include CHARACTER,

POINTER, and whatever else might come along. (This is not really a call for polymor-

phism per se, just an ability to express limited, syntactic polymorphism.)

� Support `OPEN(: : :,KEY=(: : :),: : :)'.

� Support arbitrary �le unit numbers, instead of limiting them to 0 through `MXUNIT-1'.

(This is a libf2c issue.)

� `OPEN(NOSPANBLOCKS,: : :)' is treated as `OPEN(UNIT=NOSPANBLOCKS,: : :)', so a later

UNIT= in the �rst example is invalid. Make sure this is what users of this feature would

expect.

� Currently g77 disallows `READ(1'10)' since it is an obnoxious syntax, but supporting

it might be pretty easy if needed. More details are needed, such as whether general

310 Using and Porting GNU Fortran

expressions separated by an apostrophe are supported, or maybe the record number

can be a general expression, and so on.

� Support STRUCTURE, UNION, MAP, and RECORD fully. Currently there is no support at all

for %FILL in STRUCTURE and related syntax, whereas the rest of the stu� has at least

some parsing support. This requires either major changes to libf2c or its replacement.

� F90 and g77 probably disagree about label scoping relative to INTERFACE and END

INTERFACE, and their contained procedure interface bodies (blocks?).

� ENTRY doesn't support F90 RESULT() yet, since that was added after S8.112.

� Empty-statement handling (10 ;;CONTINUE;;) probably isn't consistent with the �nal

form of the standard (it was vague at S8.112).

� It seems to be an \open" question whether a �le, immediately after being OPENed,is

positioned at the beginning, the end, or wherever|it might be nice to o�er an option

of opening to \unde�ned" status, requiring an explicit absolute-positioning operation

to be performed before any other (besides CLOSE) to assist in making applications port

to systems (some IBM?) that OPEN to the end of a �le or some such thing.

23.5 Machine Model

This items pertain to generalizing g77's view of the machine model to more fully accept

whatever the GBE provides it via its con�guration.

� Switch to using `REAL_VALUE_TYPE' to represent oating-point constants exclusively so

the target oat format need not be required. This means changing the way g77 handles

initialization of aggregate areas having more than one type, such as REAL and INTEGER,

because currently it initializes them as if they were arrays of char and uses the bit

patterns of the constants of the various types in them to determine what to stu� in

elements of the arrays.

� Rely more and more on back-end info and capabilities, especially in the area of constants

(where having the g77 front-end's IL just store the appropriate tree nodes containing

constants might be best).

� Suite of C and Fortran programs that a user/administrator can run on a machine to

help determine the con�guration for g77 before building and help determine if the

compiler works (especially with whatever libraries are installed) after building.

23.6 Internals Documentation

Better info on how g77 works and how to port it is needed. Much of this should be done

only after the redesign planned for 0.6 is complete.

23.7 Internals Improvements

Some more items that would make g77 more reliable and easier to maintain:

� Generally make expression handling focus more on critical syntax stu�, leaving seman-

tics to callers. For example, anything a caller can check, semantically, let it do so,

rather than having `expr.c' do it. (Exceptions might include things like diagnosing

Chapter 23: Projects 311

`FOO(I--K:)=BAR' where `FOO' is a PARAMETER|if it seems important to preserve the

left-to-right-in-source order of production of diagnostics.)

� Come up with better naming conventions for `-D' to establish requirements to achieve

desired implementation dialect via `proj.h'.

� Clean up used tokens and `ffewhere's in `ffeglobal_terminate_1'.

� Replace `sta.c' `outpooldisp' mechanism with `malloc_pool_use'.

� Check for `opANY' in more places in `com.c', `std.c', and `ste.c', and get rid of the

`opCONVERT(opANY)' kludge (after determining if there is indeed no real need for it).

� Utility to read and check `bad.def' messages and their references in the code, to make

sure calls are consistent with message templates.

� Search and �x `&ffe: : :' and similar so that `ffe: : :ptr: : :' macros are available instead

(a good argument for wishing this could have written all this stu� in C++, perhaps). On

the other hand, it's questionable whether this sort of improvement is really necessary,

given the availability of tools such as Emacs and Perl, which make �nding any address-

taking of structure members easy enough?

� Some modules truly export the member names of their structures (and the structures

themselves), maybe �x this, and �x other modules that just appear to as well (by

appending `_', though it'd be ugly and probably not worth the time).

� Implement C macros `RETURNS(value)' and `SETS(something,value)' in `proj.h' and

use them throughout g77 source code (especially in the de�nitions of access macros in

`.h' �les) so they can be tailored to catch code writing into a `RETURNS()' or reading

from a `SETS()'.

� Decorate throughout with const and other such stu�.

� All F90 notational derivations in the source code are still based on the S8.112 ver-

sion of the draft standard. Probably should update to the o�cial standard, or put

documentation of the rules as used in the code: : :uh: : :in the code.

� Some `ffebld_new' calls (those outside of `ffeexpr.c' or inside but invoked via paths

not involving `ffeexpr_lhs' or `ffeexpr_rhs') might be creating things in improper

pools, leading to such things staying around too long or (doubtful, but possible and

dangerous) not long enough.

� Some `ffebld_list_new' (or whatever) calls might not be matched by `ffebld_list_bottom'

(or whatever) calls, which might someday matter. (It de�nitely is not a problem just

yet.)

� Probably not doing clean things when we fail to EQUIVALENCE something due to

alignment/mismatch or other problems|they end up without `ffestorag' objects, so

maybe the backend (and other parts of the front end) can notice that and handle like

an `opANY' (do what it wants, just don't complain or crash). Most of this seems to

have been addressed by now, but a code review wouldn't hurt.

23.8 Better Diagnostics

These are things users might not ask about, or that need to be looked into, before

worrying about. Also here are items that involve reducing unnecessary diagnostic clutter.

312 Using and Porting GNU Fortran

� When FUNCTION and ENTRY point types disagree (CHARACTER lengths, type classes, and

so on), `ANY'-ize the o�ending ENTRY point and any new dummies it speci�es.

� Speed up and improve error handling for data when repeat-count is speci�ed. For

example, don't output 20 unnecessary messages after the �rst necessary one for:

INTEGER X(20)

CONTINUE

DATA (X(I), J= 1, 20) /20*5/

END

(The CONTINUE statement ensures the DATA statement is processed in the context of

executable, not speci�cation, statements.)

Chapter 24: Diagnostics 313

24 Diagnostics

Some diagnostics produced by g77 require su�cient explanation that the explanations

are given below, and the diagnostics themselves identify the appropriate explanation.

Identi�cation uses the GNU Info format|speci�cally, the info command that displays

the explanation is given within square brackets in the diagnostic. For example:

foo.f:5: Invalid statement [info -f g77 M FOOEY]

More details about the above diagnostic is found in the g77 Info documentation, menu

item `M', submenu item `FOOEY', which is displayed by typing the UNIX command `info -f

g77 M FOOEY'.

Other Info readers, such as EMACS, may be just as easily used to display the pertinent

node. In the above example, `g77' is the Info document name, `M' is the top-level menu

item to select, and, in that node (named `Diagnostics', the name of this chapter, which is

the very text you're reading now), `FOOEY' is the menu item to select.

In this printed version of the g77 manual, the above example points to a section, below,

entitled `FOOEY'|though, of course, as the above is just a sample, no such section exists.

24.1 CMPAMBIG

Ambiguous use of intrinsic intrinsic : : :

The type of the argument to the invocation of the intrinsic intrinsic is a COMPLEX type

other than COMPLEX(KIND=1). Typically, it is COMPLEX(KIND=2), also known as DOUBLE

COMPLEX.

The interpretation of this invocation depends on the particular dialect of Fortran for

which the code was written. Some dialects convert the real part of the argument to

REAL(KIND=1), thus losing precision; other dialects, and Fortran 90, do no such conver-

sion.

So, GNU Fortran rejects such invocations except under certain circumstances, to avoid

making an incorrect assumption that results in generating the wrong code.

To determine the dialect of the program unit, perhaps even whether that particular

invocation is properly coded, determine how the result of the intrinsic is used.

The result of intrinsic is expected (by the original programmer) to be REAL(KIND=1)

(the non-Fortran-90 interpretation) if:

� It is passed as an argument to a procedure that explicitly or implicitly declares that

argument REAL(KIND=1).

For example, a procedure with no DOUBLE PRECISION or IMPLICIT DOUBLE PRECISION

statement specifying the dummy argument corresponding to an actual argument of

`REAL(Z)', where `Z' is declared DOUBLE COMPLEX, strongly suggests that the program-

mer expected `REAL(Z)' to return REAL(KIND=1) instead of REAL(KIND=2).

� It is used in a context that would otherwise not include any REAL(KIND=2) but where

treating the intrinsic invocation as REAL(KIND=2) would result in unnecessary promo-

tions and (typically) more expensive operations on the wider type.

For example:

314 Using and Porting GNU Fortran

DOUBLE COMPLEX Z

: : :

R(1) = T * REAL(Z)

The above example suggests the programmer expected the real part of `Z' to be con-

verted to REAL(KIND=1) before being multiplied by `T' (presumed, along with `R' above,

to be type REAL(KIND=1)).

Otherwise, the conversion would have to be delayed until after the multiplication,

requiring not only an extra conversion (of `T' to REAL(KIND=2)), but a (typically) more

expensive multiplication (a double-precision multiplication instead of a single-precision

one).

The result of intrinsic is expected (by the original programmer) to be REAL(KIND=2)

(the Fortran 90 interpretation) if:

� It is passed as an argument to a procedure that explicitly or implicitly declares that

argument REAL(KIND=2).

For example, a procedure specifying a DOUBLE PRECISION dummy argument corre-

sponding to an actual argument of `REAL(Z)', where `Z' is declared DOUBLE COMPLEX,

strongly suggests that the programmer expected `REAL(Z)' to return REAL(KIND=2)

instead of REAL(KIND=1).

� It is used in an expression context that includes other REAL(KIND=2) operands, or is

assigned to a REAL(KIND=2) variable or array element.

For example:

DOUBLE COMPLEX Z

DOUBLE PRECISION R, T

: : :

R(1) = T * REAL(Z)

The above example suggests the programmer expected the real part of `Z' to not be

converted to REAL(KIND=1) by the REAL() intrinsic.

Otherwise, the conversion would have to be immediately followed by a conversion back

to REAL(KIND=2), losing the original, full precision of the real part of Z, before being

multiplied by `T'.

Once you have determined whether a particular invocation of intrinsic expects the For-

tran 90 interpretation, you can:

� Change it to `DBLE(expr)' (if intrinsic is `REAL') or `DIMAG(expr)' (if intrinsic is

`AIMAG') if it expected the Fortran 90 interpretation.

This assumes expr is COMPLEX(KIND=2)|if it is some other type, such as COMPLEX*32,

you should use the appropriate intrinsic, such as the one to convert to REAL*16 (perhaps

DBLEQ() in place of DBLE(), and QIMAG() in place of DIMAG()).

� Change it to `REAL(intrinsic(expr))', otherwise. This converts to REAL(KIND=1) in all

working Fortran compilers.

If you don't want to change the code, and you are certain that all ambiguous invocations

of intrinsic in the source �le have the same expectation regarding interpretation, you can:

� Compile with the g77 option `-ff90', to enable the Fortran 90 interpretation.

Chapter 24: Diagnostics 315

� Compile with the g77 options `-fno-f90 -fugly-complex', to enable the non-Fortran-

90 interpretations.

See Section 10.11.5 [REAL() and AIMAG() of Complex], page 96, for more information

on this issue.

Note: If the above suggestions don't produce enough evidence as to whether a particular

program expects the Fortran 90 interpretation of this ambiguous invocation of intrinsic,

there is one more thing you can try.

If you have access to most or all the compilers used on the program to create success-

fully tested and deployed executables, read the documentation for, and also test out, each

compiler to determine how it treats the intrinsic intrinsic in this case. (If all the compilers

don't agree on an interpretation, there might be lurking bugs in the deployed versions of

the program.)

The following sample program might help:

PROGRAM JCB003

C

C Written by James Craig Burley 1997-02-23.

C Contact via Internet email: burley@gnu.org

C

C Determine how compilers handle non-standard REAL

C and AIMAG on DOUBLE COMPLEX operands.

C

DOUBLE COMPLEX Z

REAL R

Z = (3.3D0, 4.4D0)

R = Z

CALL DUMDUM(Z, R)

R = REAL(Z) - R

IF (R .NE. 0.) PRINT *, 'REAL() is Fortran 90'

IF (R .EQ. 0.) PRINT *, 'REAL() is not Fortran 90'

R = 4.4D0

CALL DUMDUM(Z, R)

R = AIMAG(Z) - R

IF (R .NE. 0.) PRINT *, 'AIMAG() is Fortran 90'

IF (R .EQ. 0.) PRINT *, 'AIMAG() is not Fortran 90'

END

C

C Just to make sure compiler doesn't use naive flow

C analysis to optimize away careful work above,

C which might invalidate results....

C

SUBROUTINE DUMDUM(Z, R)

DOUBLE COMPLEX Z

REAL R

END

If the above program prints contradictory results on a particular compiler, run away!

316 Using and Porting GNU Fortran

24.2 EXPIMP

Intrinsic intrinsic referenced : : :

The intrinsic is explicitly declared in one program unit in the source �le and implicitly

used as an intrinsic in another program unit in the same source �le.

This diagnostic is designed to catch cases where a program might depend on using the

name intrinsic as an intrinsic in one program unit and as a global name (such as the name

of a subroutine or function) in another, but g77 recognizes the name as an intrinsic in both

cases.

After verifying that the program unit making implicit use of the intrinsic is indeed

written expecting the intrinsic, add an `INTRINSIC intrinsic' statement to that program

unit to prevent this warning.

This and related warnings are disabled by using the `-Wno-globals' option when com-

piling.

Note that this warning is not issued for standard intrinsics. Standard intrinsics include

those described in the FORTRAN 77 standard and, if `-ff90' is speci�ed, those described

in the Fortran 90 standard. Such intrinsics are not as likely to be confused with user

procedures as intrinsics provided as extensions to the standard by g77.

24.3 INTGLOB

Same name `intrinsic' given : : :

The name intrinsic is used for a global entity (a common block or a program unit) in

one program unit and implicitly used as an intrinsic in another program unit.

This diagnostic is designed to catch cases where a program intends to use a name entirely

as a global name, but g77 recognizes the name as an intrinsic in the program unit that

references the name, a situation that would likely produce incorrect code.

For example:

INTEGER FUNCTION TIME()

: : :

END

: : :

PROGRAM SAMP

INTEGER TIME

PRINT *, 'Time is ', TIME()

END

The above example de�nes a program unit named `TIME', but the reference to `TIME'

in the main program unit `SAMP' is normally treated by g77 as a reference to the intrinsic

TIME() (unless a command-line option that prevents such treatment has been speci�ed).

As a result, the program `SAMP' will not invoke the `TIME' function in the same source

�le.

Since g77 recognizes libU77 procedures as intrinsics, and since some existing code uses

the same names for its own procedures as used by some libU77 procedures, this situation

is expected to arise often enough to make this sort of warning worth issuing.

Chapter 24: Diagnostics 317

After verifying that the program unit making implicit use of the intrinsic is indeed

written expecting the intrinsic, add an `INTRINSIC intrinsic' statement to that program

unit to prevent this warning.

Or, if you believe the program unit is designed to invoke the program-de�ned procedure

instead of the intrinsic (as recognized by g77), add an `EXTERNAL intrinsic' statement to the

program unit that references the name to prevent this warning.

This and related warnings are disabled by using the `-Wno-globals' option when com-

piling.

Note that this warning is not issued for standard intrinsics. Standard intrinsics include

those described in the FORTRAN 77 standard and, if `-ff90' is speci�ed, those described

in the Fortran 90 standard. Such intrinsics are not as likely to be confused with user

procedures as intrinsics provided as extensions to the standard by g77.

24.4 LEX

Unrecognized character : : :

Invalid first character : : :

Line too long : : :

Non-numeric character : : :

Continuation indicator : : :

Label at : : : invalid with continuation line indicator : : :

Character constant : : :

Continuation line : : :

Statement at : : : begins with invalid token

Although the diagnostics identify speci�c problems, they can be produced when general

problems such as the following occur:

� The source �le contains something other than Fortran code.

If the code in the �le does not look like many of the examples elsewhere in this docu-

ment, it might not be Fortran code. (Note that Fortran code often is written in lower

case letters, while the examples in this document use upper case letters, for stylistic

reasons.)

For example, if the �le contains lots of strange-looking characters, it might be APL

source code; if it contains lots of parentheses, it might be Lisp source code; if it contains

lots of bugs, it might be C++ source code.

� The source �le contains free-form Fortran code, but `-ffree-form' was not speci�ed

on the command line to compile it.

Free form is a newer form for Fortran code. The older, classic form is called �xed form.

Fixed-form code is visually fairly distinctive, because numerical labels and comments

are all that appear in the �rst �ve columns of a line, the sixth column is reserved to de-

note continuation lines, and actual statements start at or beyond column 7. Spaces gen-

erally are not signi�cant, so if you see statements such as `REALX,Y' and `DO10I=1,100',

you are looking at �xed-form code. Comment lines are indicated by the letter `C' or the

symbol `*' in column 1. (Some code uses `!' or `/*' to begin in-line comments, which

many compilers support.)

318 Using and Porting GNU Fortran

Free-form code is distinguished from �xed-form source primarily by the fact that state-

ments may start anywhere. (If lots of statements start in columns 1 through 6, that's

a strong indicator of free-form source.) Consecutive keywords must be separated by

spaces, so `REALX,Y' is not valid, while `REAL X,Y' is. There are no comment lines

per se, but `!' starts a comment anywhere in a line (other than within a character or

hollerith constant).

See Section 11.1 [Source Form], page 169, for more information.

� The source �le is in �xed form and has been edited without sensitivity to the column

requirements.

Statements in �xed-form code must be entirely contained within columns 7 through

72 on a given line. Starting them \early" is more likely to result in diagnostics than

�nishing them \late", though both kinds of errors are often caught at compile time.

For example, if the following code fragment is edited by following the commented

instructions literally, the result, shown afterward, would produce a diagnostic when

compiled:

C On XYZZY systems, remove "C" on next line:

C CALL XYZZY_RESET

The result of editing the above line might be:

C On XYZZY systems, remove "C" on next line:

CALL XYZZY_RESET

However, that leaves the �rst `C' in the `CALL' statement in column 6, making it a

comment line, which is not really what the author intended, and which is likely to

result in one of the above-listed diagnostics.

Replacing the `C' in column 1 with a space is the proper change to make, to ensure the

`CALL' keyword starts in or after column 7.

Another common mistake like this is to forget that �xed-form source lines are signi�cant

through only column 72, and that, normally, any text beyond column 72 is ignored or

is diagnosed at compile time.

See Section 11.1 [Source Form], page 169, for more information.

� The source �le requires preprocessing, and the preprocessing is not being speci�ed at

compile time.

A source �le containing lines beginning with #define, #include, #if, and so on is

likely one that requires preprocessing.

If the �le's su�x is `.f' or `.for', the �le will normally be compiled without prepro-

cessing by g77.

Change the �le's su�x from `.f' to `.F' (or, on systems with case-insensitive �le names,

to `.fpp') or from `.for' to `.fpp'. g77 compiles �les with such names with prepro-

cessing.

Or, learn how to use gcc's `-x' option to specify the language `f77-cpp-input' for

Fortran �les that require preprocessing. See Section 7.2 [gcc], page 27.

� The source �le is preprocessed, and the results of preprocessing result in syntactic errors

that are not necessarily obvious to someone examining the source �le itself.

Chapter 24: Diagnostics 319

Examples of errors resulting from preprocessor macro expansion include exceeding the

line-length limit, improperly starting, terminating, or incorporating the apostrophe or

double-quote in a character constant, improperly forming a hollerith constant, and so

on.

See Section 7.2 [Options Controlling the Kind of Output], page 27, for suggestions

about how to use, and not use, preprocessing for Fortran code.

24.5 GLOBALS

Global name name defined at : : : already defined: : :

Global name name at : : : has different type: : :

Too many arguments passed to name at : : :

Too few arguments passed to name at : : :

Argument #n of name is : : :

These messages all identify disagreements about the global procedure named name

among di�erent program units (usually including name itself).

These disagreements, if not diagnosed, could result in a compiler crash if the compiler

attempted to inline a reference to name within a calling program unit that disagreed with

the name program unit regarding whether the procedure is a subroutine or function, the

type of the return value of the procedure (if it is a function), the number of arguments the

procedure accepts, or the type of each argument.

Such disagreements should be �xed in the Fortran code itself. However, if that is not

immediately practical, and the code has been working for some time, it is possible it will

work when compiled by g77 with the `-fno-globals' option.

The `-fno-globals' option disables these diagnostics, and also disables all inlining of

references to global procedures to avoid compiler crashes. The diagnostics are actually

produced, but as warnings, unless the `-Wno-globals' option also is speci�ed.

After using `-fno-globals' to work around these problems, it is wise to stop using

that option and address them by �xing the Fortran code, because such problems, while

they might not actually result in bugs on some systems, indicate that the code is not as

portable as it could be. In particular, the code might appear to work on a particular system,

but have bugs that a�ect the reliability of the data without exhibiting any other outward

manifestations of the bugs.

320 Using and Porting GNU Fortran

Index 321

Index

#

#de�ne . 27

#if . 27

#include . 27

#include directive . 297

$

$. 171

%

%DESCR() construct . 92

%LOC() construct . 88

%REF() construct . 91

%VAL() construct . 91

*

*n notation . 83, 184

-

--driver option . 23, 25

-falias-check option . 45, 258

-fargument-alias option 45, 258

-fargument-noalias option 45, 258

-fbadu77-intrinsics-delete option 33

-fbadu77-intrinsics-disable option 33

-fbadu77-intrinsics-enable option 33

-fbadu77-intrinsics-hide option 33

-fcaller-saves option . 39

-fcase-initcap option . 33

-fcase-lower option . 33

-fcase-preserve option . 33

-fcase-strict-lower option . 33

-fcase-strict-upper option . 33

-fcase-upper option . 33

-fdebug-kludge option . 43

-fdelayed-branch option . 39

-fdollar-ok option . 30

-fexpensive-optimizations option 39

-�2c-intrinsics-delete option . 33

-�2c-intrinsics-disable option 33

-�2c-intrinsics-enable option 33

-�2c-intrinsics-hide option . 33

-�2c-library option . 42

-�66 option . 29

-�77 option . 29

-�90 option . 29

-�90-intrinsics-delete option . 33

-�90-intrinsics-disable option 33

-�90-intrinsics-enable option 34

-�90-intrinsics-hide option . 33

-�ast-math option . 39

-�xed-line-length-n option . 34

-�oat-store option . 39

-�orce-addr option . 39

-�orce-mem option . 39

-�ree-form option . 29

-fgnu-intrinsics-delete option 34

-fgnu-intrinsics-disable option 34

-fgnu-intrinsics-enable option 34

-fgnu-intrinsics-hide option . 34

-fgroup-intrinsics-hide option 262

-�nit-local-zero option . 41, 261

-�ntrin-case-any option . 32

-�ntrin-case-initcap option . 32

-�ntrin-case-lower option . 32

-�ntrin-case-upper option . 32

-fmatch-case-any option . 32

-fmatch-case-initcap option . 32

-fmatch-case-lower option . 32

-fmatch-case-upper option . 32

-fmil-intrinsics-delete option 34

-fmil-intrinsics-disable option 34

-fmil-intrinsics-enable option 34

-fmil-intrinsics-hide option . 34

-fno-argument-noalias-global option 45, 258

-fno-automatic option . 41, 261

-fno-backslash option . 30

-fno-common option . 46

-fno-emulate-complex option 44

-fno-f2c option . 41, 264

-fno-f77 option . 29

-fno-�xed-form option . 29

-fno-globals option . 45

-fno-ident option . 43

-fno-inline option . 39

-fno-move-all-movables option 39

-fno-reduce-all-givs option . 39

-fno-rerun-loop-opt option . 40

-fno-second-underscore . 211

-fno-second-underscore option 43, 241

-fno-silent option . 28

-fno-ugly option . 29

-fno-ugly-args option . 30

322 Using and Porting GNU Fortran

-fno-ugly-init option . 31

-fno-underscoring option 42, 241

-fonetrip option . 31

-fpack-struct option . 46

-fpcc-struct-return option . 46

-fpedantic option . 35

-fPIC option. 273

-freg-struct-return option . 46

-frerun-cse-after-loop option 39

-fschedule-insns option . 39

-fschedule-insns2 option . 39

-fset-g77-defaults option . 28

-fshort-double option . 46

-fsource-case-lower option . 32

-fsource-case-preserve option 32

-fsource-case-upper option . 32

-fstrength-reduce option . 39

-fsymbol-case-any option . 33

-fsymbol-case-initcap option 32

-fsymbol-case-lower option . 33

-fsymbol-case-upper option . 32

-fsyntax-only option . 35

-ftypeless-boz option . 32

-fugly option . 28, 262

-fugly-assign option . 30

-fugly-assumed option . 30

-fugly-comma option . 31

-fugly-complex option . 31

-fugly-logint option . 31

-funix-intrinsics-delete option 34

-funix-intrinsics-disable option 34

-funix-intrinsics-enable option 34

-funix-intrinsics-hide option . 34

-funroll-all-loops option . 39

-funroll-loops option . 39

-fversion option . 28

-fvxt option . 30

-fvxt-intrinsics-delete option 34

-fvxt-intrinsics-disable option 34

-fvxt-intrinsics-enable option 34

-fvxt-intrinsics-hide option . 34

-fzeros option . 43

-g option . 38

-I- option . 40

-i8 . 275

-Idir option . 40

-malign-double option . 38, 263

-Nl option . 183

-Nx option . 183

-O2 . 47, 271

-pedantic option . 35

-pedantic-errors option. 35

-r8 . 275

-u option . 35

-v option . 23

-w option . 35

-W option . 37

-Waggregate-return option . 38

-Wall option . 36

-Wcomment option . 38

-Wconversion option . 38

-Werror option . 37

-Wformat option . 38

-Wid-clash-len option . 38

-Wimplicit option . 35

-Wlarger-than-len option . 38

-Wno-globals option . 35

-Wparentheses option . 38

-Wredundant-decls option . 38

-Wshadow option . 38

-Wsurprising option . 36

-Wswitch option . 38

-Wtraditional option . 38

-Wuninitialized option . 35

-Wunused option . 35

.

.EQV., with integer operands 287

.F �lename su�x . 27

.fpp �lename su�x . 27

.gdbinit . 239

.r �lename su�x . 27

/

/WARNINGS=DECLARATIONS switch 35

`

\in�nite spaces" printed . 269

strtoul . 217

5

586/686 CPUs . 264

6

64-bit systems . 221

Index 323

A

Abort intrinsic . 98

Abs intrinsic. 98

ACCEPT statement . 278

Access intrinsic . 99

AChar intrinsic . 99

ACos intrinsic . 100

ACosD intrinsic . 187

adding options . 305

adjustable arrays . 245

AdjustL intrinsic . 100

AdjustR intrinsic . 100

aggregate initialization . 220

AImag intrinsic . 100

AIMAG intrinsic . 96

AIMax0 intrinsic . 187

AIMin0 intrinsic . 187

AInt intrinsic . 100

AJMax0 intrinsic . 187

AJMin0 intrinsic . 187

Alarm intrinsic . 101

aliasing . 258

aligned data . 262

aligned stack . 262

All intrinsic . 101

all warnings . 36

Allocated intrinsic . 101

ALog intrinsic . 101

ALog10 intrinsic . 102

Alpha . 271

Alpha, Digital . 218

Alpha, support . 221, 272

alternate entry points. 246

alternate returns . 248

ALWAYS FLUSH. 219, 260

AMax0 intrinsic . 102

AMax1 intrinsic . 102

AMin0 intrinsic . 102

AMin1 intrinsic . 103

AMod intrinsic . 103

ampersand continuation line 170

And intrinsic . 103

AND intrinsic . 279

ANInt intrinsic . 103

ANSI FORTRAN 77 standard 71

ANSI FORTRAN 77 support 73

anti-aliasing . 258

Any intrinsic . 104

arguments, null . 180

arguments, omitting . 180

arguments, unused . 37, 258

array bounds, adjustable. 275

array elements, in adjustable array bounds 275

array ordering . 244

arrays . 244

arrays, adjustable . 245

arrays, assumed-size . 179

arrays, automatic 245, 262, 268, 280

arrays, dimensioning . 245

as command . 20

ASin intrinsic . 104

ASinD intrinsic . 187

assembler . 20

assembly code . 20

assembly code, invalid . 293

ASSIGN statement . 181, 249

assigned labels . 181

assigned statement labels . 249

Associated intrinsic . 104

association, storage . 258

assumed-size arrays . 179

ATan intrinsic . 104

ATan2 intrinsic . 104

ATan2D intrinsic . 187

ATanD intrinsic . 187

automatic arrays 245, 262, 268, 280

AXP . 218

B

back end, gcc . 21

backslash . 30, 284

backtrace for bug reports . 298

badu77 intrinsics . 33

badu77 intrinsics group . 186

basic concepts . 19

beginners . 17

BesJ0 intrinsic . 105

BesJ1 intrinsic . 105

BesJN intrinsic . 105

BesY0 intrinsic . 105

BesY1 intrinsic . 106

BesYN intrinsic . 106

binaries, distributing . 236

bison . 235

bit patterns . 220

Bit Size intrinsic . 106

BITest intrinsic . 187

BJTest intrinsic . 188

blanks (spaces) . 78

block data . 283

324 Using and Porting GNU Fortran

block data and libraries . 253

BLOCK DATA statement 253, 283

bootstrap build . 232

BTest intrinsic . 106

bug criteria . 293

bug report mailing lists . 295

bugs . 293

bugs, �nding . 19

bugs, known . 265

build, bootstrap . 232

build, straight . 232

building g77 . 231

building gcc . 216

building gcc . 231

bus error . 267, 269

but-bugs . 265

C

C library . 269

C preprocessor . 27

C routines calling Fortran . 239

C, linking with . 211

C++ . 212

C++, linking with . 211

CAbs intrinsic . 107

calling C routines. 239

card image . 34

carriage returns . 169

case sensitivity . 171

cc1 program . 20

cc1plus program . 20

CCos intrinsic . 107

CDAbs intrinsic . 188

CDCos intrinsic . 188

CDExp intrinsic . 188

CDLog intrinsic . 188

CDSin intrinsic . 189

CDSqRt intrinsic . 189

Ceiling intrinsic . 107

CExp intrinsic . 107

cfortran.h . 211

changes, user-visible . 65

Char intrinsic . 108

character constants 30, 175, 180, 253

character set . 30

CHARACTER*(*) . 309

CHARACTER, null . 87

characters . 77

characters, comment . 176

characters, continuation . 176

ChDir intrinsic . 108, 189

ChMod intrinsic . 109, 189

CLog intrinsic . 109

CLOSE statement . 278

Cmplx intrinsic . 109

CMPLX intrinsic . 97

code generation conventions 41

code generation, improving 308

code generator . 21

code, assembly . 20

code, displaying main source 272

code, distributing . 236

code, in-line . 20

code, legacy . 251

code, machine . 19

code, modifying . 28, 226

code, source 19, 78, 169, 171, 225

code, stack variables . 220

code, user . 266

code, writing . 251

column-major ordering . 244

columns 73 through 80 . 274

command options . 25

commands, as . 20

commands, f77 . 228

commands, g77 . 20, 23

commands, gcc . 19, 23

commands, gdb . 19

commands, ld . 19

commas, trailing . 180

comment character . 176

comments, trailing . 76

common blocks 38, 242, 272, 283

common blocks, large . 266

COMMON statement . 242, 283

COMMON, layout . 263

comparing logical expressions 287

compatibility, f2c 28, 29, 41, 253, 264

compatibility, f77 . 29

compatibility, FORTRAN 66 29, 31

compatibility, FORTRAN 77 73

compatibility, Fortran 90 . 176

compilation status . 28

compilation, in-line . 39

compilation, pedantic . 176

compiler bugs, reporting . 296

compiler limits . 183

compiler memory usage . 271

compiler speed . 271

compilers . 19

Index 325

compiling programs . 23

Complex intrinsic. 110

COMPLEX intrinsics . 34

COMPLEX statement . 244

COMPLEX support . 273

complex values . 179

complex variables. 244

COMPLEX(KIND=1) type 184

COMPLEX(KIND=2) type 184

components of g77 . 19

concatenation . 309

concepts, basic . 19

conformance, IEEE . 39

Conjg intrinsic . 110

constants . 86, 185

constants, character 175, 180, 253

constants, context-sensitive 286

constants, Hollerith 178, 180, 253

constants, integer . 271

constants, octal. 175

constants, pre�x-radix . 32

constants, types . 32

construct names . 89

context-sensitive constants . 286

context-sensitive intrinsics . 286

continuation character . 176

continuation line, ampersand 170

continuation lines, number of 79

contributors . 9

conversions, nonportable . 280

core dump . 293

Cos intrinsic . 110

CosD intrinsic . 190

CosH intrinsic . 111

Count intrinsic . 111

cpp preprocessor . 27

cpp program . 20, 27, 40, 297

CPU Time intrinsic . 111

Cray pointers. 275

creating patch �les . 228

credits . 9

cross-compiler, building . 220

cross-compiler, problems . 218

CShift intrinsic . 111

CSin intrinsic . 111

CSqRt intrinsic . 112

CTime intrinsic . 112

D

DAbs intrinsic . 113

DACos intrinsic . 113

DACosD intrinsic . 190

DASin intrinsic . 113

DASinD intrinsic . 190

DATA statement . 41, 271

data types . 183

data, aligned . 262

data, overwritten . 269

DATan intrinsic . 113

DATan2 intrinsic . 114

DATan2D intrinsic . 190

DATanD intrinsic . 190

Date intrinsic . 190

Date and Time intrinsic . 114

DbesJ0 intrinsic . 114

DbesJ1 intrinsic . 114

DbesJN intrinsic . 114

DbesY0 intrinsic . 115

DbesY1 intrinsic . 115

DbesYN intrinsic . 115

Dble intrinsic . 115

DbleQ intrinsic . 191

DCmplx intrinsic . 191

DConjg intrinsic . 191

DCos intrinsic . 116

DCosD intrinsic . 192

DCosH intrinsic . 116

DDiM intrinsic . 116

debug line . 171

debug_rtx . 298

debugger . 19, 272

debugging . 239, 242, 272

debugging information options 38

debugging main source code 272

DEC Alpha . 218

DECODE statement . 278

deleted intrinsics . 185

DErF intrinsic . 117

DErFC intrinsic . 117

DExp intrinsic . 117

DFloat intrinsic . 192

DFlotI intrinsic . 192

DFlotJ intrinsic . 192

diagnostics . 313

diagnostics, incorrect . 19

dialect options . 29

di�erences between object �les 217

Digital Alpha. 218

Digital Fortran features . 34

Digits intrinsic . 117

326 Using and Porting GNU Fortran

DiM intrinsic . 117

DImag intrinsic . 192

DIMENSION statement 244, 245, 275

DIMENSION X(1) . 179

dimensioning arrays . 245

DInt intrinsic . 118

direction of language development 71

directive, #include . 297

directive, INCLUDE . 40, 297

directory options . 40

directory search paths for inclusion 40

directory, updating info . 235

disabled intrinsics . 185

disk full . 219, 260

displaying main source code 272

disposition of �les . 278

distensions . 178

distributions, unpacking . 225

distributions, why separate 227

DLog intrinsic . 118

DLog10 intrinsic . 118

DMax1 intrinsic . 118

DMin1 intrinsic . 119

DMod intrinsic . 119

DNInt intrinsic . 119

DNRM2 . 47

DO loops, one-trip . 31

DO statement . 37, 254

DO WHILE . 89

documentation . 235

dollar sign . 30, 171

Dot Product intrinsic . 119

DOUBLE COMPLEX . 89

DOUBLE COMPLEX type 185

DOUBLE PRECISION type 184

double quotes . 175

DProd intrinsic . 119

DReal intrinsic . 192

driver, gcc command as . 20

DSign intrinsic . 120

DSin intrinsic . 120

DSinD intrinsic . 193

DSinH intrinsic . 120

DSqRt intrinsic . 120

DTan intrinsic . 121

DTanD intrinsic . 193

DTanH intrinsic . 121

Dtime intrinsic . 121, 193

dummies, unused . 37

E

e�ecting IMPLICIT NONE . 35

e�ciency . 307

ELF support . 273

empty CHARACTER strings 87

enabled intrinsics . 186

ENCODE statement . 278

END DO . 89

entry points . 246

ENTRY statement . 246

environment variables. 46

EOShift intrinsic . 121

Epsilon intrinsic . 122

equivalence areas . 38, 243, 272

EQUIVALENCE statement 243

ErF intrinsic . 122

ErFC intrinsic . 122

error messages . 249, 289

error messages, incorrect . 19

error values . 249

errors, linker . 266

ETime intrinsic . 122, 123

exceptions, oating point . 280

exclamation points . 176

executable �le . 20

Exit intrinsic . 123

Exp intrinsic . 123

Exponent intrinsic . 123

extended-source option . 34

extensions, �le name . 27

extensions, more . 309

extensions, VXT . 175

external names . 283

extra warnings. 37

F

f2c . 275

f2c compatibility . 28, 29, 41

f2c compatibility . 239

f2c compatibility . 253, 264

f2c intrinsics . 33

f2c intrinsics group. 186

F2C_INSTALL_FLAG . 229

F2CLIBOK . 229

f77 command . 228

f77 compatibility . 29

f77 support . 284

F77_INSTALL_FLAG . 228

f771 program . 20

f771, linking error for . 217

Index 327

f90 intrinsics group. 186

fatal signal . 293

Fdate intrinsic . 123, 124

features, language . 71

features, ugly . 28, 29, 178

FFE . 21

FFECOM_sizeMAXSTACKITEM 220

�ush() . 219, 260

FGet intrinsic . 124, 194

FGetC intrinsic . 125, 194

�le format not recognized . 20

�le name extension . 27

�le name su�x . 27

�le type . 27

�le, source . 19

�les, executable . 20

�les, source . 78, 169

�xed form . 29, 78, 169

�xed-form line length . 34

Float intrinsic . 125

FloatI intrinsic . 194

oating point exceptions . 280

oating-point bit patterns . 220

oating-point errors . 269

FloatJ intrinsic . 194

Floor intrinsic . 125

Flush intrinsic . 125

ushing output . 219, 260

FNum intrinsic . 126

FORMAT statement . 277

FORTRAN 66 . 29, 31

FORTRAN 77 compatibility 73

Fortran 90 compatibility . 176

Fortran 90 features . 29, 30

Fortran 90 intrinsics . 34

Fortran 90 support . 274

Fortran preprocessor . 27

FPE handling . 280

FPut intrinsic . 126, 195

FPutC intrinsic . 126, 195

Fraction intrinsic . 126

free form . 29, 78, 169

front end, g77 . 21

FSeek intrinsic . 127

FSF, funding the . 13

FStat intrinsic . 127, 128

FTell intrinsic . 128, 129

function references, in adjustable array bounds

. 275

FUNCTION statement 240, 241

functions . 241

functions, mistyped . 256

funding improvements . 13

funding the FSF . 13

G

g77 command . 20, 23

g77 front end . 21

g77 options, --driver. 23, 25

g77 options, -v . 23

g77 version number . 226

g77, components of . 19

g77, installation of. 234

GBE . 21, 216

gcc back end . 21

gcc command . 19, 23

gcc command as driver . 20

gcc not recognizing Fortran source 20

gcc version numbering . 226

gcc versions supported by g77 226

gcc will not compile Fortran programs 230

gcc, building . 216

gcc, installation of. 234

gdb command . 19

gdb support . 267

generic intrinsics . 93

GError intrinsic . 129

GetArg intrinsic . 129

GETARG() intrinsic . 239

GetCWD intrinsic . 130

GetEnv intrinsic . 130

GetGId intrinsic . 130

GetLog intrinsic . 131

GetPId intrinsic . 131

getting started. 17

GetUId intrinsic . 131

global names, warning . 35, 45

GMTime intrinsic . 131

GNU Back End (GBE) . 21

GNU C required . 216

GNU Fortran command options 25

GNU Fortran Front End (FFE) 21

gnu intrinsics group. 186

GNU version numbering . 226

GOTO statement . 249

gperf . 217

groups of intrinsics . 185, 186

H

hardware errors . 265

328 Using and Porting GNU Fortran

hidden intrinsics . 185

Hollerith constants 30, 178, 180, 253

HostNm intrinsic . 132

Huge intrinsic . 132

I

I/O, errors . 249

I/O, ushing . 219, 260

IAbs intrinsic . 132

IAChar intrinsic . 133

IAnd intrinsic . 133

IArgC intrinsic . 133

IARGC() intrinsic . 239

IBClr intrinsic . 134

IBits intrinsic . 134

IBSet intrinsic . 134

IChar intrinsic. 134

IDate intrinsic . 135, 195

IDiM intrinsic . 135

IDInt intrinsic . 136

IDNInt intrinsic . 136

IEEE conformance . 39

IEOr intrinsic . 136

IErrNo intrinsic . 136

IFix intrinsic . 137

IIAbs intrinsic . 196

IIAnd intrinsic . 196

IIBClr intrinsic . 196

IIBits intrinsic . 196

IIBSet intrinsic . 196

IIDiM intrinsic . 196

IIDInt intrinsic . 196

IIDNnt intrinsic . 196

IIEOr intrinsic . 196

IIFix intrinsic . 196

IInt intrinsic . 197

IIOr intrinsic . 197

IIQint intrinsic . 197

IIQNnt intrinsic . 197

IIShftC intrinsic . 197

IISign intrinsic . 197

illegal unit number . 219, 261

Imag intrinsic . 137

imaginary part . 179

imaginary part of complex . 244

ImagPart intrinsic . 137

IMax0 intrinsic . 197

IMax1 intrinsic . 197

IMin0 intrinsic . 197

IMin1 intrinsic . 197

IMod intrinsic . 198

IMPLICIT CHARACTER*(*) statement 284

implicit declaration, warning 35

IMPLICIT NONE, similar e�ect 35

implicit typing . 256

improvements, funding . 13

in-line code . 20

in-line compilation . 39

INCLUDE . 80

INCLUDE directive . 40, 297

included �les . 297

inclusion, directory search paths for 40

inconsistent oating-point results 269

incorrect diagnostics . 19

incorrect error messages . 19

incorrect use of language . 19

increasing maximum unit number 219, 261

increasing precision . 275

increasing range . 275

Index intrinsic . 138

info, updating directory . 235

INInt intrinsic . 198

initialization . 271

initialization of local variables 41

initialization, runtime . 212

initialization, statement placement 285

INot intrinsic . 198

INQUIRE statement . 278

installation of binaries . 234

installation problems . 216

installation trouble . 265

installing GNU Fortran . 213

installing, checking before . 233

Int intrinsic . 138

Int2 intrinsic . 138

Int8 intrinsic . 139

integer constants . 271

INTEGER(KIND=1) type . 184

INTEGER(KIND=2) type . 184

INTEGER(KIND=3) type . 184

INTEGER(KIND=6) type . 184

INTEGER*2 support . 275

interfacing . 239

intrinsics, Abort . 98

intrinsics, Abs . 98

intrinsics, Access . 99

intrinsics, AChar . 99

intrinsics, ACos . 100

intrinsics, ACosD . 187

intrinsics, AdjustL . 100

Index 329

intrinsics, AdjustR . 100

intrinsics, AImag . 100

intrinsics, AIMAG . 96

intrinsics, AIMax0 . 187

intrinsics, AIMin0 . 187

intrinsics, AInt . 100

intrinsics, AJMax0 . 187

intrinsics, AJMin0 . 187

intrinsics, Alarm. 101

intrinsics, All . 101

intrinsics, Allocated . 101

intrinsics, ALog . 101

intrinsics, ALog10 . 102

intrinsics, AMax0. 102

intrinsics, AMax1. 102

intrinsics, AMin0 . 102

intrinsics, AMin1 . 103

intrinsics, AMod. 103

intrinsics, And. 103

intrinsics, AND . 279

intrinsics, ANInt . 103

intrinsics, Any . 104

intrinsics, ASin . 104

intrinsics, ASinD . 187

intrinsics, Associated . 104

intrinsics, ATan . 104

intrinsics, ATan2 . 104

intrinsics, ATan2D . 187

intrinsics, ATanD . 187

intrinsics, badu77 . 33

intrinsics, BesJ0 . 105

intrinsics, BesJ1 . 105

intrinsics, BesJN . 105

intrinsics, BesY0 . 105

intrinsics, BesY1 . 106

intrinsics, BesYN . 106

intrinsics, Bit Size . 106

intrinsics, BITest . 187

intrinsics, BJTest . 188

intrinsics, BTest . 106

intrinsics, CAbs . 107

intrinsics, CCos . 107

intrinsics, CDAbs . 188

intrinsics, CDCos . 188

intrinsics, CDExp . 188

intrinsics, CDLog . 188

intrinsics, CDSin . 189

intrinsics, CDSqRt . 189

intrinsics, Ceiling . 107

intrinsics, CExp . 107

intrinsics, Char . 108

intrinsics, ChDir . 108, 189

intrinsics, ChMod . 109, 189

intrinsics, CLog . 109

intrinsics, Cmplx . 109

intrinsics, CMPLX. 97

intrinsics, Complex . 110

intrinsics, COMPLEX . 34

intrinsics, Conjg . 110

intrinsics, context-sensitive 286

intrinsics, Cos . 110

intrinsics, CosD . 190

intrinsics, CosH . 111

intrinsics, Count . 111

intrinsics, CPU Time . 111

intrinsics, CShift . 111

intrinsics, CSin . 111

intrinsics, CSqRt . 112

intrinsics, CTime . 112

intrinsics, DAbs . 113

intrinsics, DACos . 113

intrinsics, DACosD . 190

intrinsics, DASin . 113

intrinsics, DASinD. 190

intrinsics, DATan . 113

intrinsics, DATan2 . 114

intrinsics, DATan2D . 190

intrinsics, DATanD . 190

intrinsics, Date . 190

intrinsics, Date and Time . 114

intrinsics, DbesJ0. 114

intrinsics, DbesJ1. 114

intrinsics, DbesJN . 114

intrinsics, DbesY0 . 115

intrinsics, DbesY1 . 115

intrinsics, DbesYN . 115

intrinsics, Dble . 115

intrinsics, DbleQ . 191

intrinsics, DCmplx . 191

intrinsics, DConjg . 191

intrinsics, DCos . 116

intrinsics, DCosD . 192

intrinsics, DCosH . 116

intrinsics, DDiM . 116

intrinsics, deleted . 185

intrinsics, DErF . 117

intrinsics, DErFC . 117

intrinsics, DExp . 117

intrinsics, DFloat . 192

intrinsics, DFlotI . 192

330 Using and Porting GNU Fortran

intrinsics, DFlotJ . 192

intrinsics, Digits . 117

intrinsics, DiM . 117

intrinsics, DImag . 192

intrinsics, DInt . 118

intrinsics, disabled . 185

intrinsics, DLog . 118

intrinsics, DLog10 . 118

intrinsics, DMax1 . 118

intrinsics, DMin1 . 119

intrinsics, DMod . 119

intrinsics, DNInt . 119

intrinsics, Dot Product . 119

intrinsics, DProd . 119

intrinsics, DReal . 192

intrinsics, DSign . 120

intrinsics, DSin . 120

intrinsics, DSinD . 193

intrinsics, DSinH . 120

intrinsics, DSqRt . 120

intrinsics, DTan . 121

intrinsics, DTanD . 193

intrinsics, DTanH . 121

intrinsics, Dtime . 121, 193

intrinsics, enabled . 186

intrinsics, EOShift . 121

intrinsics, Epsilon . 122

intrinsics, ErF . 122

intrinsics, ErFC . 122

intrinsics, ETime . 122, 123

intrinsics, Exit . 123

intrinsics, Exp . 123

intrinsics, Exponent . 123

intrinsics, f2c . 33

intrinsics, Fdate . 123, 124

intrinsics, FGet . 124, 194

intrinsics, FGetC . 125, 194

intrinsics, Float . 125

intrinsics, FloatI . 194

intrinsics, FloatJ . 194

intrinsics, Floor . 125

intrinsics, Flush . 125

intrinsics, FNum . 126

intrinsics, Fortran 90 . 34

intrinsics, FPut . 126, 195

intrinsics, FPutC . 126, 195

intrinsics, Fraction . 126

intrinsics, FSeek . 127

intrinsics, FStat . 127, 128

intrinsics, FTell . 128, 129

intrinsics, generic . 93

intrinsics, GError . 129

intrinsics, GetArg . 129

intrinsics, GETARG() . 239

intrinsics, GetCWD . 130

intrinsics, GetEnv . 130

intrinsics, GetGId . 130

intrinsics, GetLog . 131

intrinsics, GetPId . 131

intrinsics, GetUId . 131

intrinsics, GMTime . 131

intrinsics, groups . 185

intrinsics, groups of . 186

intrinsics, hidden . 185

intrinsics, HostNm . 132

intrinsics, Huge . 132

intrinsics, IAbs . 132

intrinsics, IAChar . 133

intrinsics, IAnd . 133

intrinsics, IArgC . 133

intrinsics, IARGC() . 239

intrinsics, IBClr . 134

intrinsics, IBits . 134

intrinsics, IBSet . 134

intrinsics, IChar . 134

intrinsics, IDate . 135, 195

intrinsics, IDiM . 135

intrinsics, IDInt . 136

intrinsics, IDNInt . 136

intrinsics, IEOr . 136

intrinsics, IErrNo . 136

intrinsics, IFix . 137

intrinsics, IIAbs . 196

intrinsics, IIAnd . 196

intrinsics, IIBClr . 196

intrinsics, IIBits . 196

intrinsics, IIBSet . 196

intrinsics, IIDiM . 196

intrinsics, IIDInt . 196

intrinsics, IIDNnt . 196

intrinsics, IIEOr . 196

intrinsics, IIFix . 196

intrinsics, IInt . 197

intrinsics, IIOr . 197

intrinsics, IIQint . 197

intrinsics, IIQNnt. 197

intrinsics, IIShftC . 197

intrinsics, IISign . 197

intrinsics, Imag . 137

intrinsics, ImagPart . 137

Index 331

intrinsics, IMax0 . 197

intrinsics, IMax1 . 197

intrinsics, IMin0 . 197

intrinsics, IMin1 . 197

intrinsics, IMod . 198

intrinsics, Index . 138

intrinsics, INInt . 198

intrinsics, INot . 198

intrinsics, Int . 138

intrinsics, Int2 . 138

intrinsics, Int8 . 139

intrinsics, IOr . 139

intrinsics, IRand . 139

intrinsics, IsaTty . 140

intrinsics, IShft . 140

intrinsics, IShftC . 140

intrinsics, ISign . 141

intrinsics, ITime . 141

intrinsics, IZExt . 198

intrinsics, JIAbs . 198

intrinsics, JIAnd . 198

intrinsics, JIBClr . 198

intrinsics, JIBits . 198

intrinsics, JIBSet . 198

intrinsics, JIDiM . 198

intrinsics, JIDInt . 199

intrinsics, JIDNnt . 199

intrinsics, JIEOr . 199

intrinsics, JIFix . 199

intrinsics, JInt . 199

intrinsics, JIOr . 199

intrinsics, JIQint . 199

intrinsics, JIQNnt . 199

intrinsics, JIShft . 199

intrinsics, JIShftC . 199

intrinsics, JISign . 200

intrinsics, JMax0 . 200

intrinsics, JMax1 . 200

intrinsics, JMin0 . 200

intrinsics, JMin1 . 200

intrinsics, JMod . 200

intrinsics, JNInt . 200

intrinsics, JNot . 200

intrinsics, JZExt . 200

intrinsics, Kill . 141, 201

intrinsics, Kind . 141

intrinsics, LBound . 141

intrinsics, Len . 142

intrinsics, Len Trim . 142

intrinsics, LGe . 142

intrinsics, LGt . 143

intrinsics, Link . 143, 201

intrinsics, LLe . 144

intrinsics, LLt . 144

intrinsics, LnBlnk . 144

intrinsics, Loc . 145

intrinsics, Log . 145

intrinsics, Log10 . 145

intrinsics, Logical . 145

intrinsics, Long . 146

intrinsics, LShift . 146

intrinsics, LStat . 146, 147

intrinsics, LTime . 148

intrinsics, MatMul . 148

intrinsics, Max . 149

intrinsics, Max0 . 149

intrinsics, Max1 . 149

intrinsics, MaxExponent . 149

intrinsics, MaxLoc . 149

intrinsics, MaxVal . 149

intrinsics, MClock . 150

intrinsics, MClock8 . 150

intrinsics, Merge . 150

intrinsics, MIL-STD 1753 . 34

intrinsics, Min . 150

intrinsics, Min0 . 151

intrinsics, Min1 . 151

intrinsics, MinExponent . 151

intrinsics, MinLoc . 151

intrinsics, MinVal. 151

intrinsics, Mod . 151

intrinsics, Modulo . 152

intrinsics, MvBits . 152

intrinsics, Nearest . 152

intrinsics, NInt . 152

intrinsics, Not . 153

intrinsics, Or . 153

intrinsics, OR . 279

intrinsics, others . 187

intrinsics, Pack . 153

intrinsics, PError . 153

intrinsics, Precision . 153

intrinsics, Present . 153

intrinsics, Product . 154

intrinsics, QAbs . 201

intrinsics, QACos . 201

intrinsics, QACosD . 201

intrinsics, QASin . 202

intrinsics, QASinD . 202

intrinsics, QATan . 202

332 Using and Porting GNU Fortran

intrinsics, QATan2. 202

intrinsics, QATan2D . 202

intrinsics, QATanD . 202

intrinsics, QCos . 202

intrinsics, QCosD . 202

intrinsics, QCosH . 202

intrinsics, QDiM . 202

intrinsics, QExp . 203

intrinsics, QExt . 203

intrinsics, QExtD . 203

intrinsics, QFloat . 203

intrinsics, QInt . 203

intrinsics, QLog . 203

intrinsics, QLog10 . 203

intrinsics, QMax1 . 203

intrinsics, QMin1 . 203

intrinsics, QMod . 203

intrinsics, QNInt . 204

intrinsics, QSin . 204

intrinsics, QSinD . 204

intrinsics, QSinH . 204

intrinsics, QSqRt . 204

intrinsics, QTan . 204

intrinsics, QTanD . 204

intrinsics, QTanH . 204

intrinsics, Radix . 154

intrinsics, Rand . 154

intrinsics, Random Number 154

intrinsics, Random Seed . 154

intrinsics, Range . 154

intrinsics, Real . 154

intrinsics, REAL . 96

intrinsics, RealPart . 155

intrinsics, Rename . 155, 204

intrinsics, Repeat . 156

intrinsics, Reshape . 156

intrinsics, RRSpacing . 156

intrinsics, RShift . 156

intrinsics, Scale . 156

intrinsics, Scan . 157

intrinsics, Secnds . 205

intrinsics, Second . 157

intrinsics, Selected Int Kind 157

intrinsics, Selected Real Kind 157

intrinsics, Set Exponent . 157

intrinsics, Shape . 158

intrinsics, SHIFT . 279

intrinsics, Short . 158

intrinsics, Sign . 158

intrinsics, Signal . 158, 205

intrinsics, Sin . 159

intrinsics, SinD . 206

intrinsics, SinH . 159

intrinsics, Sleep . 160

intrinsics, Sngl . 160

intrinsics, SnglQ . 206

intrinsics, Spacing . 160

intrinsics, Spread . 160

intrinsics, SqRt . 160

intrinsics, SRand . 161

intrinsics, Stat . 161, 162

intrinsics, Sum . 162

intrinsics, SymLnk . 162, 206

intrinsics, System . 163, 207

intrinsics, System Clock . 163

intrinsics, table of . 98

intrinsics, Tan . 164

intrinsics, TanD . 207

intrinsics, TanH . 164

intrinsics, Time . 164, 207

intrinsics, Time8 . 164

intrinsics, Tiny . 165

intrinsics, Transfer . 165

intrinsics, Transpose . 165

intrinsics, Trim . 165

intrinsics, TtyNam . 165

intrinsics, UBound . 166

intrinsics, UMask . 166, 208

intrinsics, UNIX . 34

intrinsics, Unlink . 166, 208

intrinsics, Unpack . 166

intrinsics, Verify . 167

intrinsics, VXT . 34

intrinsics, XOr . 167

intrinsics, ZAbs. 167

intrinsics, ZCos . 167

intrinsics, ZExp . 167

intrinsics, ZExt . 208

intrinsics, ZLog . 168

intrinsics, ZSin . 168

intrinsics, ZSqRt . 168

invalid assembly code . 293

invalid input . 294

IOr intrinsic . 139

IOSTAT= . 249

IRand intrinsic . 139

Irix 6 . 218

IsaTty intrinsic . 140

IShft intrinsic . 140

IShftC intrinsic . 140

Index 333

ISign intrinsic . 141

ITime intrinsic . 141

ix86 . 47

IZExt intrinsic . 198

J

JCB002 program . 93

JCB003 program . 315

JIAbs intrinsic . 198

JIAnd intrinsic . 198

JIBClr intrinsic. 198

JIBits intrinsic . 198

JIBSet intrinsic . 198

JIDiM intrinsic . 198

JIDInt intrinsic . 199

JIDNnt intrinsic . 199

JIEOr intrinsic . 199

JIFix intrinsic . 199

JInt intrinsic . 199

JIOr intrinsic . 199

JIQint intrinsic . 199

JIQNnt intrinsic . 199

JIShft intrinsic . 199

JIShftC intrinsic . 199

JISign intrinsic . 200

JMax0 intrinsic . 200

JMax1 intrinsic . 200

JMin0 intrinsic . 200

JMin1 intrinsic . 200

JMod intrinsic . 200

JNInt intrinsic . 200

JNot intrinsic . 200

JZExt intrinsic . 200

K

keywords, RECURSIVE . 274

Kill intrinsic . 141, 201

Kind intrinsic . 141

KIND= notation . 84

known causes of trouble . 265

L

lack of recursion . 274

language dialect options . 29

language f77 not recognized 230

language features . 71

language, incorrect use of . 19

LANGUAGES . 231

large aggregate areas . 271

large common blocks . 266

large initialization . 220

layout of common blocks . 263

LBound intrinsic . 141

ld can't �nd main . 266

ld can't �nd strtoul . 217

ld can't �nd strange names 266

ld command . 19

ld error for f771 . 217

ld error for user code . 266

ld errors . 266

legacy code . 251

Len intrinsic . 142

Len Trim intrinsic . 142

length of source lines . 34

letters, lowercase . 171

letters, uppercase . 171

LGe intrinsic . 142

LGt intrinsic . 143

libc, non-ANSI or non-default 269

libf2c library . 20

libraries . 19

libraries, containing BLOCK DATA 253

libraries, libf2c . 20

limits on continuation lines . 79

limits, compiler . 183

line length . 34

lines . 78

lines, continuation . 79

lines, long . 170

lines, short . 170

Link intrinsic . 143, 201

linker errors . 266

linking . 19

linking against non-standard library 269

linking error for f771 . 217

linking error for user code . 266

linking with C . 211

LLe intrinsic . 144

LLt intrinsic . 144

LnBlnk intrinsic . 144

Loc intrinsic . 145

local equivalence areas 243, 272

Log intrinsic . 145

Log10 intrinsic . 145

logical expressions, comparing 287

Logical intrinsic . 145

LOGICAL(KIND=1) type . 184

LOGICAL(KIND=2) type . 184

LOGICAL(KIND=3) type . 184

LOGICAL(KIND=6) type . 184

334 Using and Porting GNU Fortran

LOGICAL*1 support . 275

Long intrinsic . 146

long source lines . 170

loops, speeding up . 39

loops, unrolling . 39

lowercase letters . 171

LShift intrinsic . 146

LStat intrinsic . 146, 147

LTime intrinsic . 148

M

machine code . 19

macro options . 28

main program unit, debugging 239

main() . 239

MAIN () . 239

make clean . 217

make compare . 217

Make�le example . 294

makeinfo . 236

MAP statement . 278

MatMul intrinsic . 148

Max intrinsic . 149

Max0 intrinsic . 149

Max1 intrinsic . 149

MaxExponent intrinsic . 149

maximum number of dimensions 183

maximum rank . 183

maximum stackable size . 220

maximum unit number 219, 261

MaxLoc intrinsic . 149

MaxVal intrinsic . 149

MClock intrinsic . 150

MClock8 intrinsic . 150

memory usage, of compiler. 271

memory utilization . 220

Merge intrinsic . 150

merging distributions . 226

messages, run-time . 249

messages, warning . 35

messages, warning and error 289

mil intrinsics group. 186

MIL-STD 1753 . 34, 89, 97

Min intrinsic . 150

Min0 intrinsic . 151

Min1 intrinsic . 151

MinExponent intrinsic . 151

MinLoc intrinsic . 151

MinVal intrinsic . 151

missing bison . 235

missing debug features . 38

missing gperf . 217

missing makeinfo . 236

mistakes . 19

mistyped functions . 256

mistyped variables . 256

Mod intrinsic . 151

modifying g77 . 28

modifying g77 . 226

Modulo intrinsic . 152

MvBits intrinsic . 152

MXUNIT . 219, 261

N

name space . 283

NAMELIST statement . 88

naming conicts . 283

naming issues . 283

naming programs `test' . 268

NaN values . 280

native compiler . 228

Nearest intrinsic . 152

negative forms of options . 25

Netlib . 211, 275

network �le system . 219, 260

new users. 17

newbies . 17

NeXTStep problems . 267

NFS . 219, 260

NInt intrinsic . 152

nonportable conversions . 280

Not intrinsic . 153

nothing happens . 268

null arguments . 180

null byte, trailing . 253

null CHARACTER strings . 87

number of continuation lines 79

number of dimensions, maximum 183

number of trips . 254

O

object �le, di�erences . 217

octal constants . 175

omitting arguments . 180

one-trip DO loops . 31

OPEN statement . 278

optimization, better . 308

optimizations, Pentium. 226, 262, 264

optimize options . 38

options to control warnings . 35

Index 335

options, --driver . 23, 25

options, -falias-check . 45, 258

options, -fargument-alias 45, 258

options, -fargument-noalias. 45, 258

options, -fbadu77-intrinsics-delete 33

options, -fbadu77-intrinsics-disable 33

options, -fbadu77-intrinsics-enable 33

options, -fbadu77-intrinsics-hide. 33

options, -fcaller-saves . 39

options, -fcase-initcap . 33

options, -fcase-lower . 33

options, -fcase-preserve . 33

options, -fcase-strict-lower . 33

options, -fcase-strict-upper . 33

options, -fcase-upper . 33

options, -fdebug-kludge . 43

options, -fdelayed-branch . 39

options, -fdollar-ok . 30

options, -fexpensive-optimizations 39

options, -�2c-intrinsics-delete 33

options, -�2c-intrinsics-disable 33

options, -�2c-intrinsics-enable 33

options, -�2c-intrinsics-hide . 33

options, -�2c-library . 42

options, -�66 . 29

options, -�77 . 29

options, -�90 . 29

options, -�90-intrinsics-delete 33

options, -�90-intrinsics-disable 33

options, -�90-intrinsics-enable 34

options, -�90-intrinsics-hide . 33

options, -�ast-math . 39

options, -�xed-line-length-n 34

options, -�oat-store . 39

options, -�orce-addr . 39

options, -�orce-mem . 39

options, -�ree-form . 29

options, -fgnu-intrinsics-delete 34

options, -fgnu-intrinsics-disable 34

options, -fgnu-intrinsics-enable 34

options, -fgnu-intrinsics-hide 34

options, -fgroup-intrinsics-hide 262

options, -�nit-local-zero 41, 261

options, -�ntrin-case-any . 32

options, -�ntrin-case-initcap 32

options, -�ntrin-case-lower . 32

options, -�ntrin-case-upper. 32

options, -fmatch-case-any . 32

options, -fmatch-case-initcap 32

options, -fmatch-case-lower . 32

options, -fmatch-case-upper . 32

options, -fmil-intrinsics-delete 34

options, -fmil-intrinsics-disable 34

options, -fmil-intrinsics-enable 34

options, -fmil-intrinsics-hide. 34

options, -fno-argument-noalias-global 45, 258

options, -fno-automatic 41, 261

options, -fno-backslash . 30

options, -fno-common . 46

options, -fno-emulate-complex 44

options, -fno-f2c . 41, 264

options, -fno-f77 . 29

options, -fno-�xed-form . 29

options, -fno-globals . 45

options, -fno-ident . 43

options, -fno-inline . 39

options, -fno-move-all-movables 39

options, -fno-reduce-all-givs . 39

options, -fno-rerun-loop-opt . 40

options, -fno-second-underscore 43

options, -fno-silent . 28

options, -fno-ugly . 29

options, -fno-ugly-args . 30

options, -fno-ugly-init . 31

options, -fno-underscoring 42, 241

options, -fonetrip . 31

options, -fpack-struct . 46

options, -fpcc-struct-return . 46

options, -fpedantic . 35

options, -fPIC . 273

options, -freg-struct-return . 46

options, -frerun-cse-after-loop 39

options, -fschedule-insns . 39

options, -fschedule-insns2 . 39

options, -fset-g77-defaults . 28

options, -fshort-double . 46

options, -fsource-case-lower . 32

options, -fsource-case-preserve 32

options, -fsource-case-upper . 32

options, -fstrength-reduce . 39

options, -fsymbol-case-any . 33

options, -fsymbol-case-initcap 32

options, -fsymbol-case-lower. 33

options, -fsymbol-case-upper 32

options, -fsyntax-only . 35

options, -ftypeless-boz . 32

options, -fugly . 28, 262

options, -fugly-assign . 30

options, -fugly-assumed . 30

options, -fugly-comma . 31

336 Using and Porting GNU Fortran

options, -fugly-complex . 31

options, -fugly-logint . 31

options, -funix-intrinsics-delete 34

options, -funix-intrinsics-disable 34

options, -funix-intrinsics-enable 34

options, -funix-intrinsics-hide 34

options, -funroll-all-loops . 39

options, -funroll-loops. 39

options, -fversion . 28

options, -fvxt . 30

options, -fvxt-intrinsics-delete 34

options, -fvxt-intrinsics-disable 34

options, -fvxt-intrinsics-enable 34

options, -fvxt-intrinsics-hide 34

options, -fzeros . 43

options, -g . 38

options, -I- . 40

options, -Idir . 40

options, -malign-double 38, 263

options, -Nl . 183

options, -Nx . 183

options, -pedantic . 35

options, -pedantic-errors . 35

options, -v . 23

options, -w . 35

options, -W . 37

options, -Waggregate-return 38

options, -Wall . 36

options, -Wcomment . 38

options, -Wconversion . 38

options, -Werror . 37

options, -Wformat . 38

options, -Wid-clash-len . 38

options, -Wimplicit . 35

options, -Wlarger-than-len . 38

options, -Wno-globals . 35

options, -Wparentheses . 38

options, -Wredundant-decls . 38

options, -Wshadow . 38

options, -Wsurprising . 36

options, -Wswitch . 38

options, -Wtraditional . 38

options, -Wuninitialized . 35

options, -Wunused . 35

options, adding . 305

options, code generation . 41

options, debugging . 38

options, dialect . 29

options, directory search . 40

options, GNU Fortran command 25

options, macro . 28

options, negative forms . 25

options, optimization . 38

options, overall . 27

options, overly convenient . 261

options, preprocessor . 40

options, shorthand . 28

Or intrinsic . 153

OR intrinsic . 279

order of evaluation, side e�ects 288

ordering, array . 244

other intrinsics . 187

output, ushing . 219, 260

overall options . 27

overow . 37

overlapping arguments . 258

overlays . 258

overly convenient options . 261

overwritten data . 269

P

Pack intrinsic . 153

packages . 225

padding . 272

parallel processing . 280

PARAMETER statement 274, 277

parameters, unused . 37

patch �les . 216

patch �les, creating . 228

pedantic compilation . 176

Pentium optimizations 226, 262, 264

PError intrinsic . 153

placing initialization statements 285

POINTER statement . 275

pointers . 85, 181

porting, simplify . 308

pre-installation checks . 233

Precision intrinsic . 153

precision, increasing . 275

pre�x-radix constants . 32

preprocessor . 20, 27, 297

preprocessor options . 40

prerequisites . 213

Present intrinsic . 153

printing compilation status . 28

printing main source . 272

printing version information 20, 28

problems installing . 216

procedures . 240

Product intrinsic . 154

Index 337

PROGRAM statement . 239

programs named `test' . 268

programs, cc1 . 20

programs, cc1plus . 20

programs, compiling . 23

programs, cpp . 20, 27, 40, 297

programs, f771 . 20

programs, ratfor . 27

programs, speeding up . 262

projects . 307

Q

Q edit descriptor . 277

QAbs intrinsic . 201

QACos intrinsic . 201

QACosD intrinsic . 201

QASin intrinsic . 202

QASinD intrinsic . 202

QATan intrinsic . 202

QATan2 intrinsic . 202

QATan2D intrinsic . 202

QATanD intrinsic . 202

QCos intrinsic . 202

QCosD intrinsic . 202

QCosH intrinsic . 202

QDiM intrinsic . 202

QExp intrinsic . 203

QExt intrinsic . 203

QExtD intrinsic . 203

QFloat intrinsic . 203

QInt intrinsic . 203

QLog intrinsic . 203

QLog10 intrinsic . 203

QMax1 intrinsic . 203

QMin1 intrinsic . 203

QMod intrinsic . 203

QNInt intrinsic . 204

QSin intrinsic . 204

QSinD intrinsic . 204

QSinH intrinsic . 204

QSqRt intrinsic . 204

QTan intrinsic . 204

QTanD intrinsic . 204

QTanH intrinsic . 204

questionable instructions . 19

quick start . 221

R

Radix intrinsic . 154

Rand intrinsic . 154

Random Number intrinsic . 154

Random Seed intrinsic . 154

Range intrinsic . 154

range, increasing . 275

rank, maximum . 183

Ratfor preprocessor . 27

reads and writes, scheduling 258

Real intrinsic . 154

REAL intrinsic . 96

real part . 179

REAL(KIND=1) type . 184

REAL(KIND=2) type . 184

REAL*16 support . 275

RealPart intrinsic . 155

recent versions . 47, 65

RECORD statement . 278

recursion, lack of . 274

RECURSIVE keyword . 274

reference works . 71

Rename intrinsic . 155, 204

Repeat intrinsic . 156

reporting bugs . 293

reporting compilation status 28

requirements, GNU C . 216

Reshape intrinsic . 156

results, inconsistent . 269

RETURN statement . 241, 248

return type of functions . 241

rounding errors . 269

row-major ordering . 244

RRSpacing intrinsic . 156

RShift intrinsic . 156

run-time library . 20

run-time options . 41

runtime initialization . 212

S

SAVE statement . 41

saved variables . 257

Scale intrinsic . 156

Scan intrinsic . 157

scheduling of reads and writes 258

scope . 77, 168

search path . 40

searching for included �les . 40

Secnds intrinsic . 205

Second intrinsic . 157

segmentation violation 220, 267, 269

Selected Int Kind intrinsic . 157

Selected Real Kind intrinsic 157

338 Using and Porting GNU Fortran

semicolons . 77

separate distributions . 227

sequence numbers . 274

Set Exponent intrinsic . 157

SGI . 218

Shape intrinsic . 158

SHIFT intrinsic . 279

Short intrinsic . 158

short source lines . 170

shorthand options . 28

side e�ects, order of evaluation 288

Sign intrinsic . 158

signal 11 . 265

Signal intrinsic . 158, 205

signature of procedures . 240

simplify porting . 308

Sin intrinsic . 159

SinD intrinsic . 206

SinH intrinsic . 159

Sleep intrinsic . 160

slow compiler . 220

Sngl intrinsic . 160

SnglQ intrinsic . 206

Solaris . 269

source code 19, 78, 169, 171, 225

source �le . 19

source �le form . 29

source �le format 34, 78, 169, 171

source form . 78, 169

source lines, long . 170

source lines, short . 170

source tree . 225

space-padding . 170

spaces . 170

spaces, endless printing of . 269

Spacing intrinsic . 160

speed, compiler . 220

speed, of compiler . 271

speeding up loops. 39

speeding up programs . 262

Spread intrinsic . 160

SqRt intrinsic . 160

SRand intrinsic . 161

stack allocation . 220

stack overow . 267

stack, 387 coprocessor . 47

stack, aligned . 262

stage directories . 217

standard support . 73

standard, ANSI FORTRAN 77 71

startup code . 212

Stat intrinsic . 161, 162

statement labels, assigned . 249

statements, ACCEPT . 278

statements, ASSIGN . 181, 249

statements, BLOCK DATA 253, 283

statements, CLOSE . 278

statements, COMMON 242, 283

statements, COMPLEX . 244

statements, DATA . 41, 271

statements, DECODE . 278

statements, DIMENSION 244, 245, 275

statements, DO . 37, 254

statements, ENCODE . 278

statements, ENTRY . 246

statements, EQUIVALENCE 243

statements, FORMAT . 277

statements, FUNCTION 240, 241

statements, GOTO . 249

statements, IMPLICIT CHARACTER*(*) 284

statements, INQUIRE . 278

statements, MAP . 278

statements, NAMELIST . 88

statements, OPEN . 278

statements, PARAMETER 274, 277

statements, POINTER . 275

statements, PROGRAM . 239

statements, RECORD . 278

statements, RETURN 241, 248

statements, SAVE . 41

statements, separated by semicolon 77

statements, STRUCTURE . 278

statements, SUBROUTINE 240, 248

statements, TYPE . 278

statements, UNION . 278

static variables . 257

status, compilation . 28

storage association . 258

straight build . 232

strings, empty . 87

strtoul . 217

STRUCTURE statement . 278

structures . 272

submodels . 264

SUBROUTINE statement. 240, 248

subroutines . 248

su�xes, �le name . 27

Sum intrinsic . 162

SunOS4 . 217, 221

support for ANSI FORTRAN 77 73

Index 339

support for gcc versions . 226

support, Alpha . 272

support, COMPLEX . 273

support, ELF . 273

support, f77 . 284

support, Fortran 90 . 274

support, gdb. 267

suppressing warnings . 35

symbol names . 30, 241

symbol names, transforming 42, 43

symbol names, underscores 42, 43

symbolic names . 168

SymLnk intrinsic . 162, 206

synchronous write errors 219, 260

syntax checking . 35

System intrinsic . 163, 207

System Clock intrinsic . 163

T

tab characters . 169

table of intrinsics . 98

Tan intrinsic . 164

TanD intrinsic . 207

TanH intrinsic . 164

`test' programs . 268

texinfo . 235

textbooks . 71

threads . 280

Time intrinsic . 164, 207

Time8 intrinsic . 164

Tiny intrinsic . 165

Toolpack . 275

trailing commas . 180

trailing comments . 76

trailing null byte . 253

Transfer intrinsic . 165

transformation of symbol names 241

transforming symbol names 42, 43

translation of user programs 19

Transpose intrinsic . 165

Trim intrinsic . 165

trips, number of . 254

truncation . 170

TtyNam intrinsic . 165

TYPE statement . 278

types, COMPLEX(KIND=1) 184

types, COMPLEX(KIND=2) 184

types, constants . 32, 86, 185

types, DOUBLE COMPLEX 185

types, DOUBLE PRECISION 184

types, �le . 27

types, Fortran/C . 211

types, INTEGER(KIND=1) 184

types, INTEGER(KIND=2) 184

types, INTEGER(KIND=3) 184

types, INTEGER(KIND=6) 184

types, LOGICAL(KIND=1) 184

types, LOGICAL(KIND=2) 184

types, LOGICAL(KIND=3) 184

types, LOGICAL(KIND=6) 184

types, of data . 183

types, REAL(KIND=1) . 184

types, REAL(KIND=2) . 184

U

UBound intrinsic . 166

ugly features . 28, 29, 178

UMask intrinsic. 166, 208

unde�ned behavior . 293

unde�ned function value . 293

unde�ned reference (main) 266

unde�ned reference (strtoul) 217

underscores. 42, 43, 168, 283

uninitialized variables 36, 41, 257

UNION statement . 278

unit numbers . 219, 261

UNIX f77 . 29

UNIX intrinsics . 34

Unlink intrinsic . 166, 208

Unpack intrinsic . 166

unpacking distributions . 225

unrecognized �le format . 20

unresolved reference (various) 266

unrolling loops . 39

unsupported warnings . 38

unused arguments. 37, 258

unused dummies . 37

unused parameters . 37

unused variables . 35

updating info directory . 235

uppercase letters . 171

user-visible changes . 65

V

variables assumed to be zero 257

variables retaining values across calls 257

variables, initialization of . 41

variables, mistyped . 256

variables, uninitialized . 36, 41

variables, unused . 35

340 Using and Porting GNU Fortran

Verify intrinsic . 167

version information, printing 20, 28

version numbering . 226

versions of gcc . 226

versions, recent . 47, 65

VXT extensions . 175

VXT features . 30

VXT intrinsics . 34

W

warning messages . 35

warnings . 19

warnings vs errors . 289

warnings, all . 36

warnings, extra . 37

warnings, global names . 35, 45

warnings, implicit declaration 35

warnings, unsupported . 38

why separate distributions . 227

wisdom . 251

writes, ushing . 219, 260

writing code . 251

X

XOr intrinsic . 167

Z

ZAbs intrinsic . 167

ZCos intrinsic . 167

zero byte, trailing . 253

zero-initialized variables . 257

zero-length CHARACTER . 87

ZExp intrinsic . 167

ZExt intrinsic . 208

ZLog intrinsic . 168

ZSin intrinsic . 168

ZSqRt intrinsic . 168

zzz.c . 217

zzz.o . 217

i

Short Contents

GNU GENERAL PUBLIC LICENSE . 1

Contributors to GNU Fortran . 9

1 Funding Free Software . 11

2 Funding GNU Fortran . 13

3 Protect Your Freedom|Fight \Look And Feel". 15

4 Getting Started . 17

5 What is GNU Fortran? . 19

6 Compile Fortran, C, or Other Programs 23

7 GNU Fortran Command Options 25

8 News About GNU Fortran . 47

9 User-visible Changes . 65

10 The GNU Fortran Language . 71

11 Other Dialects . 169

12 The GNU Fortran Compiler . 183

13 Other Compilers . 209

14 Other Languages . 211

15 Installing GNU Fortran . 213

16 Debugging and Interfacing . 239

17 Collected Fortran Wisdom . 251

18 Known Causes of Trouble with GNU Fortran 265

19 Open Questions . 291

20 Reporting Bugs . 293

21 How To Get Help with GNU Fortran 303

22 Adding Options. 305

23 Projects . 307

24 Diagnostics . 313

Index . 321

ii Using and Porting GNU Fortran

iii

Table of Contents

GNU GENERAL PUBLIC LICENSE 1

Preamble . 1

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION . 2

How to Apply These Terms to Your New Programs 6

Contributors to GNU Fortran 9

1 Funding Free Software . 11

2 Funding GNU Fortran . 13

3 Protect Your Freedom|Fight \Look And

Feel". 15

4 Getting Started. 17

5 What is GNU Fortran? 19

6 Compile Fortran, C, or Other Programs 23

7 GNU Fortran Command Options 25

7.1 Option Summary . 25

7.2 Options Controlling the Kind of Output 27

7.3 Shorthand Options . 28

7.4 Options Controlling Fortran Dialect . 29

7.5 Options to Request or Suppress Warnings 35

7.6 Options for Debugging Your Program or GNU Fortran 38

7.7 Options That Control Optimization . 38

7.8 Options Controlling the Preprocessor . 40

7.9 Options for Directory Search . 40

7.10 Options for Code Generation Conventions 41

7.11 Environment Variables A�ecting GNU Fortran 46

8 News About GNU Fortran 47

9 User-visible Changes . 65

iv Using and Porting GNU Fortran

10 The GNU Fortran Language 71

10.1 Direction of Language Development . 71

10.2 ANSI FORTRAN 77 Standard Support 73

10.2.1 No Passing External Assumed-length 73

10.2.2 No Passing Dummy Assumed-length 73

10.2.3 No Pathological Implied-DO 73

10.2.4 No Useless Implied-DO . 74

10.3 Conformance . 74

10.4 Notation Used in This Chapter . 75

10.5 Fortran Terms and Concepts . 76

10.5.1 Syntactic Items . 76

10.5.2 Statements, Comments, and Lines 76

10.5.3 Scope of Symbolic Names and Statement Labels

. 77

10.6 Characters, Lines, and Execution Sequence 77

10.6.1 GNU Fortran Character Set 77

10.6.2 Lines . 78

10.6.3 Continuation Line . 79

10.6.4 Statements . 79

10.6.5 Statement Labels . 79

10.6.6 Order of Statements and Lines 80

10.6.7 Including Source Text . 80

10.7 Data Types and Constants . 81

10.7.1 Data Types . 82

10.7.1.1 Double Notation . 82

10.7.1.2 Star Notation . 83

10.7.1.3 Kind Notation . 84

10.7.2 Constants . 86

10.7.3 Integer Type . 87

10.7.4 Character Type . 87

10.8 Expressions . 87

10.8.1 The %LOC() Construct . 88

10.9 Speci�cation Statements . 88

10.9.1 NAMELIST Statement . 88

10.9.2 DOUBLE COMPLEX Statement . 89

10.10 Control Statements . 89

10.10.1 DO WHILE . 89

10.10.2 END DO . 89

10.10.3 Construct Names . 89

10.10.4 The CYCLE and EXIT Statements 90

10.11 Functions and Subroutines . 91

10.11.1 The %VAL() Construct . 91

10.11.2 The %REF() Construct . 91

10.11.3 The %DESCR() Construct . 92

10.11.4 Generics and Speci�cs . 93

10.11.5 REAL() and AIMAG() of Complex 96

10.11.6 CMPLX() of DOUBLE PRECISION 97

10.11.7 MIL-STD 1753 Support . 97

v

10.11.8 f77/f2c Intrinsics . 97

10.11.9 Table of Intrinsic Functions 98

10.11.9.1 Abort Intrinsic . 98

10.11.9.2 Abs Intrinsic . 98

10.11.9.3 Access Intrinsic . 99

10.11.9.4 AChar Intrinsic . 99

10.11.9.5 ACos Intrinsic . 100

10.11.9.6 AdjustL Intrinsic 100

10.11.9.7 AdjustR Intrinsic 100

10.11.9.8 AImag Intrinsic . 100

10.11.9.9 AInt Intrinsic . 100

10.11.9.10 Alarm Intrinsic 101

10.11.9.11 All Intrinsic . 101

10.11.9.12 Allocated Intrinsic 101

10.11.9.13 ALog Intrinsic . 101

10.11.9.14 ALog10 Intrinsic 102

10.11.9.15 AMax0 Intrinsic 102

10.11.9.16 AMax1 Intrinsic 102

10.11.9.17 AMin0 Intrinsic 102

10.11.9.18 AMin1 Intrinsic 103

10.11.9.19 AMod Intrinsic 103

10.11.9.20 And Intrinsic . 103

10.11.9.21 ANInt Intrinsic 103

10.11.9.22 Any Intrinsic . 104

10.11.9.23 ASin Intrinsic . 104

10.11.9.24 Associated Intrinsic 104

10.11.9.25 ATan Intrinsic . 104

10.11.9.26 ATan2 Intrinsic 104

10.11.9.27 BesJ0 Intrinsic 105

10.11.9.28 BesJ1 Intrinsic 105

10.11.9.29 BesJN Intrinsic 105

10.11.9.30 BesY0 Intrinsic 105

10.11.9.31 BesY1 Intrinsic 106

10.11.9.32 BesYN Intrinsic 106

10.11.9.33 Bit_Size Intrinsic 106

10.11.9.34 BTest Intrinsic 106

10.11.9.35 CAbs Intrinsic . 107

10.11.9.36 CCos Intrinsic . 107

10.11.9.37 Ceiling Intrinsic 107

10.11.9.38 CExp Intrinsic . 107

10.11.9.39 Char Intrinsic . 108

10.11.9.40 ChDir Intrinsic (subroutine) 108

10.11.9.41 ChMod Intrinsic (subroutine) 109

10.11.9.42 CLog Intrinsic . 109

10.11.9.43 Cmplx Intrinsic 109

10.11.9.44 Complex Intrinsic 110

10.11.9.45 Conjg Intrinsic 110

10.11.9.46 Cos Intrinsic . 110

vi Using and Porting GNU Fortran

10.11.9.47 CosH Intrinsic . 111

10.11.9.48 Count Intrinsic 111

10.11.9.49 CPU_Time Intrinsic 111

10.11.9.50 CShift Intrinsic 111

10.11.9.51 CSin Intrinsic . 111

10.11.9.52 CSqRt Intrinsic 112

10.11.9.53 CTime Intrinsic (subroutine) 112

10.11.9.54 CTime Intrinsic (function) 112

10.11.9.55 DAbs Intrinsic . 113

10.11.9.56 DACos Intrinsic 113

10.11.9.57 DASin Intrinsic 113

10.11.9.58 DATan Intrinsic 113

10.11.9.59 DATan2 Intrinsic 114

10.11.9.60 Date_and_Time Intrinsic 114

10.11.9.61 DbesJ0 Intrinsic 114

10.11.9.62 DbesJ1 Intrinsic 114

10.11.9.63 DbesJN Intrinsic 114

10.11.9.64 DbesY0 Intrinsic 115

10.11.9.65 DbesY1 Intrinsic 115

10.11.9.66 DbesYN Intrinsic 115

10.11.9.67 Dble Intrinsic . 115

10.11.9.68 DCos Intrinsic . 116

10.11.9.69 DCosH Intrinsic 116

10.11.9.70 DDiM Intrinsic 116

10.11.9.71 DErF Intrinsic . 117

10.11.9.72 DErFC Intrinsic 117

10.11.9.73 DExp Intrinsic . 117

10.11.9.74 Digits Intrinsic 117

10.11.9.75 DiM Intrinsic . 117

10.11.9.76 DInt Intrinsic . 118

10.11.9.77 DLog Intrinsic . 118

10.11.9.78 DLog10 Intrinsic 118

10.11.9.79 DMax1 Intrinsic 118

10.11.9.80 DMin1 Intrinsic. 119

10.11.9.81 DMod Intrinsic 119

10.11.9.82 DNInt Intrinsic 119

10.11.9.83 Dot_Product Intrinsic 119

10.11.9.84 DProd Intrinsic 119

10.11.9.85 DSign Intrinsic 120

10.11.9.86 DSin Intrinsic . 120

10.11.9.87 DSinH Intrinsic 120

10.11.9.88 DSqRt Intrinsic 120

10.11.9.89 DTan Intrinsic . 121

10.11.9.90 DTanH Intrinsic 121

10.11.9.91 Dtime Intrinsic (subroutine) 121

10.11.9.92 EOShift Intrinsic 121

10.11.9.93 Epsilon Intrinsic 122

10.11.9.94 ErF Intrinsic . 122

vii

10.11.9.95 ErFC Intrinsic . 122

10.11.9.96 ETime Intrinsic (subroutine) 122

10.11.9.97 ETime Intrinsic (function) 123

10.11.9.98 Exit Intrinsic . 123

10.11.9.99 Exp Intrinsic . 123

10.11.9.100 Exponent Intrinsic 123

10.11.9.101 Fdate Intrinsic (subroutine) 123

10.11.9.102 Fdate Intrinsic (function) 124

10.11.9.103 FGet Intrinsic (subroutine) 124

10.11.9.104 FGetC Intrinsic (subroutine) 125

10.11.9.105 Float Intrinsic 125

10.11.9.106 Floor Intrinsic 125

10.11.9.107 Flush Intrinsic 125

10.11.9.108 FNum Intrinsic 126

10.11.9.109 FPut Intrinsic (subroutine) 126

10.11.9.110 FPutC Intrinsic (subroutine) 126

10.11.9.111 Fraction Intrinsic 126

10.11.9.112 FSeek Intrinsic 127

10.11.9.113 FStat Intrinsic (subroutine) 127

10.11.9.114 FStat Intrinsic (function) 128

10.11.9.115 FTell Intrinsic (subroutine) 128

10.11.9.116 FTell Intrinsic (function) 129

10.11.9.117 GError Intrinsic 129

10.11.9.118 GetArg Intrinsic 129

10.11.9.119 GetCWD Intrinsic (subroutine) . . . 130

10.11.9.120 GetCWD Intrinsic (function) 130

10.11.9.121 GetEnv Intrinsic 130

10.11.9.122 GetGId Intrinsic 130

10.11.9.123 GetLog Intrinsic 131

10.11.9.124 GetPId Intrinsic 131

10.11.9.125 GetUId Intrinsic 131

10.11.9.126 GMTime Intrinsic 131

10.11.9.127 HostNm Intrinsic (subroutine) 132

10.11.9.128 HostNm Intrinsic (function) 132

10.11.9.129 Huge Intrinsic 132

10.11.9.130 IAbs Intrinsic 132

10.11.9.131 IAChar Intrinsic 133

10.11.9.132 IAnd Intrinsic 133

10.11.9.133 IArgC Intrinsic 133

10.11.9.134 IBClr Intrinsic 134

10.11.9.135 IBits Intrinsic 134

10.11.9.136 IBSet Intrinsic 134

10.11.9.137 IChar Intrinsic 134

10.11.9.138 IDate Intrinsic (UNIX) 135

10.11.9.139 IDiM Intrinsic 135

10.11.9.140 IDInt Intrinsic 136

10.11.9.141 IDNInt Intrinsic 136

10.11.9.142 IEOr Intrinsic 136

viii Using and Porting GNU Fortran

10.11.9.143 IErrNo Intrinsic 136

10.11.9.144 IFix Intrinsic . 137

10.11.9.145 Imag Intrinsic 137

10.11.9.146 ImagPart Intrinsic 137

10.11.9.147 Index Intrinsic 138

10.11.9.148 Int Intrinsic . 138

10.11.9.149 Int2 Intrinsic . 138

10.11.9.150 Int8 Intrinsic . 139

10.11.9.151 IOr Intrinsic . 139

10.11.9.152 IRand Intrinsic 139

10.11.9.153 IsaTty Intrinsic 140

10.11.9.154 IShft Intrinsic 140

10.11.9.155 IShftC Intrinsic 140

10.11.9.156 ISign Intrinsic 141

10.11.9.157 ITime Intrinsic 141

10.11.9.158 Kill Intrinsic (subroutine) 141

10.11.9.159 Kind Intrinsic 141

10.11.9.160 LBound Intrinsic 141

10.11.9.161 Len Intrinsic . 142

10.11.9.162 Len_Trim Intrinsic 142

10.11.9.163 LGe Intrinsic . 142

10.11.9.164 LGt Intrinsic . 143

10.11.9.165 Link Intrinsic (subroutine) 143

10.11.9.166 LLe Intrinsic . 144

10.11.9.167 LLt Intrinsic . 144

10.11.9.168 LnBlnk Intrinsic 144

10.11.9.169 Loc Intrinsic . 145

10.11.9.170 Log Intrinsic . 145

10.11.9.171 Log10 Intrinsic 145

10.11.9.172 Logical Intrinsic 145

10.11.9.173 Long Intrinsic 146

10.11.9.174 LShift Intrinsic 146

10.11.9.175 LStat Intrinsic (subroutine) 146

10.11.9.176 LStat Intrinsic (function) 147

10.11.9.177 LTime Intrinsic 148

10.11.9.178 MatMul Intrinsic 148

10.11.9.179 Max Intrinsic . 149

10.11.9.180 Max0 Intrinsic 149

10.11.9.181 Max1 Intrinsic 149

10.11.9.182 MaxExponent Intrinsic 149

10.11.9.183 MaxLoc Intrinsic 149

10.11.9.184 MaxVal Intrinsic 149

10.11.9.185 MClock Intrinsic 150

10.11.9.186 MClock8 Intrinsic 150

10.11.9.187 Merge Intrinsic 150

10.11.9.188 Min Intrinsic . 150

10.11.9.189 Min0 Intrinsic 151

10.11.9.190 Min1 Intrinsic 151

ix

10.11.9.191 MinExponent Intrinsic 151

10.11.9.192 MinLoc Intrinsic 151

10.11.9.193 MinVal Intrinsic 151

10.11.9.194 Mod Intrinsic . 151

10.11.9.195 Modulo Intrinsic 152

10.11.9.196 MvBits Intrinsic 152

10.11.9.197 Nearest Intrinsic 152

10.11.9.198 NInt Intrinsic . 152

10.11.9.199 Not Intrinsic . 153

10.11.9.200 Or Intrinsic . 153

10.11.9.201 Pack Intrinsic 153

10.11.9.202 PError Intrinsic 153

10.11.9.203 Precision Intrinsic 153

10.11.9.204 Present Intrinsic 153

10.11.9.205 Product Intrinsic 154

10.11.9.206 Radix Intrinsic 154

10.11.9.207 Rand Intrinsic 154

10.11.9.208 Random_Number Intrinsic 154

10.11.9.209 Random_Seed Intrinsic 154

10.11.9.210 Range Intrinsic 154

10.11.9.211 Real Intrinsic . 154

10.11.9.212 RealPart Intrinsic 155

10.11.9.213 Rename Intrinsic (subroutine) 155

10.11.9.214 Repeat Intrinsic 156

10.11.9.215 Reshape Intrinsic 156

10.11.9.216 RRSpacing Intrinsic 156

10.11.9.217 RShift Intrinsic 156

10.11.9.218 Scale Intrinsic 156

10.11.9.219 Scan Intrinsic 157

10.11.9.220 Second Intrinsic (function) 157

10.11.9.221 Second Intrinsic (subroutine) 157

10.11.9.222 Selected_Int_Kind Intrinsic 157

10.11.9.223 Selected_Real_Kind Intrinsic 157

10.11.9.224 Set_Exponent Intrinsic 157

10.11.9.225 Shape Intrinsic 158

10.11.9.226 Short Intrinsic 158

10.11.9.227 Sign Intrinsic . 158

10.11.9.228 Signal Intrinsic (subroutine) 158

10.11.9.229 Sin Intrinsic . 159

10.11.9.230 SinH Intrinsic 159

10.11.9.231 Sleep Intrinsic 160

10.11.9.232 Sngl Intrinsic . 160

10.11.9.233 Spacing Intrinsic 160

10.11.9.234 Spread Intrinsic 160

10.11.9.235 SqRt Intrinsic 160

10.11.9.236 SRand Intrinsic 161

10.11.9.237 Stat Intrinsic (subroutine) 161

10.11.9.238 Stat Intrinsic (function) 162

x Using and Porting GNU Fortran

10.11.9.239 Sum Intrinsic . 162

10.11.9.240 SymLnk Intrinsic (subroutine) 162

10.11.9.241 System Intrinsic (subroutine) 163

10.11.9.242 System_Clock Intrinsic 163

10.11.9.243 Tan Intrinsic . 164

10.11.9.244 TanH Intrinsic 164

10.11.9.245 Time Intrinsic (UNIX) 164

10.11.9.246 Time8 Intrinsic 164

10.11.9.247 Tiny Intrinsic 165

10.11.9.248 Transfer Intrinsic 165

10.11.9.249 Transpose Intrinsic 165

10.11.9.250 Trim Intrinsic 165

10.11.9.251 TtyNam Intrinsic (subroutine) 165

10.11.9.252 TtyNam Intrinsic (function) 165

10.11.9.253 UBound Intrinsic 166

10.11.9.254 UMask Intrinsic (subroutine) 166

10.11.9.255 Unlink Intrinsic (subroutine). 166

10.11.9.256 Unpack Intrinsic 166

10.11.9.257 Verify Intrinsic 167

10.11.9.258 XOr Intrinsic . 167

10.11.9.259 ZAbs Intrinsic 167

10.11.9.260 ZCos Intrinsic 167

10.11.9.261 ZExp Intrinsic 167

10.11.9.262 ZLog Intrinsic 168

10.11.9.263 ZSin Intrinsic . 168

10.11.9.264 ZSqRt Intrinsic 168

10.12 Scope and Classes of Symbolic Names 168

10.12.1 Underscores in Symbol Names 168

11 Other Dialects. 169

11.1 Source Form . 169

11.1.1 Carriage Returns . 169

11.1.2 Tabs . 169

11.1.3 Short Lines . 170

11.1.4 Long Lines . 170

11.1.5 Ampersand Continuation Line 170

11.2 Trailing Comment . 170

11.3 Debug Line . 171

11.4 Dollar Signs in Symbol Names . 171

11.5 Case Sensitivity . 171

11.6 VXT Fortran . 175

11.6.1 Meaning of Double Quote . 175

11.6.2 Meaning of Exclamation Point in Column 6 . . . 176

11.7 Fortran 90 . 176

11.8 Pedantic Compilation . 176

11.9 Distensions . 178

11.9.1 Implicit Argument Conversion 178

11.9.2 Ugly Assumed-Size Arrays 179

xi

11.9.3 Ugly Complex Part Extraction 179

11.9.4 Ugly Null Arguments . 180

11.9.5 Ugly Conversion of Initializers 180

11.9.6 Ugly Integer Conversions . 181

11.9.7 Ugly Assigned Labels . 181

12 The GNU Fortran Compiler 183

12.1 Compiler Limits . 183

12.2 Compiler Types . 183

12.3 Compiler Constants . 185

12.4 Compiler Intrinsics . 185

12.4.1 Intrinsic Groups . 185

12.4.2 Other Intrinsics . 187

12.4.2.1 ACosD Intrinsic . 187

12.4.2.2 AIMax0 Intrinsic 187

12.4.2.3 AIMin0 Intrinsic . 187

12.4.2.4 AJMax0 Intrinsic 187

12.4.2.5 AJMin0 Intrinsic . 187

12.4.2.6 ASinD Intrinsic . 187

12.4.2.7 ATan2D Intrinsic 187

12.4.2.8 ATanD Intrinsic . 187

12.4.2.9 BITest Intrinsic . 187

12.4.2.10 BJTest Intrinsic 188

12.4.2.11 CDAbs Intrinsic 188

12.4.2.12 CDCos Intrinsic 188

12.4.2.13 CDExp Intrinsic 188

12.4.2.14 CDLog Intrinsic 188

12.4.2.15 CDSin Intrinsic . 189

12.4.2.16 CDSqRt Intrinsic 189

12.4.2.17 ChDir Intrinsic (function) 189

12.4.2.18 ChMod Intrinsic (function) 189

12.4.2.19 CosD Intrinsic . 190

12.4.2.20 DACosD Intrinsic 190

12.4.2.21 DASinD Intrinsic 190

12.4.2.22 DATan2D Intrinsic 190

12.4.2.23 DATanD Intrinsic 190

12.4.2.24 Date Intrinsic. 190

12.4.2.25 DbleQ Intrinsic . 191

12.4.2.26 DCmplx Intrinsic 191

12.4.2.27 DConjg Intrinsic 191

12.4.2.28 DCosD Intrinsic 192

12.4.2.29 DFloat Intrinsic 192

12.4.2.30 DFlotI Intrinsic . 192

12.4.2.31 DFlotJ Intrinsic 192

12.4.2.32 DImag Intrinsic . 192

12.4.2.33 DReal Intrinsic . 192

12.4.2.34 DSinD Intrinsic . 193

12.4.2.35 DTanD Intrinsic 193

xii Using and Porting GNU Fortran

12.4.2.36 Dtime Intrinsic (function) 193

12.4.2.37 FGet Intrinsic (function) 194

12.4.2.38 FGetC Intrinsic (function) 194

12.4.2.39 FloatI Intrinsic . 194

12.4.2.40 FloatJ Intrinsic . 194

12.4.2.41 FPut Intrinsic (function) 195

12.4.2.42 FPutC Intrinsic (function) 195

12.4.2.43 IDate Intrinsic (VXT) 195

12.4.2.44 IIAbs Intrinsic . 196

12.4.2.45 IIAnd Intrinsic . 196

12.4.2.46 IIBClr Intrinsic . 196

12.4.2.47 IIBits Intrinsic . 196

12.4.2.48 IIBSet Intrinsic . 196

12.4.2.49 IIDiM Intrinsic . 196

12.4.2.50 IIDInt Intrinsic . 196

12.4.2.51 IIDNnt Intrinsic 196

12.4.2.52 IIEOr Intrinsic . 196

12.4.2.53 IIFix Intrinsic . 196

12.4.2.54 IInt Intrinsic . 197

12.4.2.55 IIOr Intrinsic . 197

12.4.2.56 IIQint Intrinsic . 197

12.4.2.57 IIQNnt Intrinsic 197

12.4.2.58 IIShftC Intrinsic 197

12.4.2.59 IISign Intrinsic . 197

12.4.2.60 IMax0 Intrinsic . 197

12.4.2.61 IMax1 Intrinsic . 197

12.4.2.62 IMin0 Intrinsic . 197

12.4.2.63 IMin1 Intrinsic . 197

12.4.2.64 IMod Intrinsic . 198

12.4.2.65 INInt Intrinsic . 198

12.4.2.66 INot Intrinsic . 198

12.4.2.67 IZExt Intrinsic. 198

12.4.2.68 JIAbs Intrinsic. 198

12.4.2.69 JIAnd Intrinsic . 198

12.4.2.70 JIBClr Intrinsic . 198

12.4.2.71 JIBits Intrinsic . 198

12.4.2.72 JIBSet Intrinsic . 198

12.4.2.73 JIDiM Intrinsic . 198

12.4.2.74 JIDInt Intrinsic . 199

12.4.2.75 JIDNnt Intrinsic 199

12.4.2.76 JIEOr Intrinsic . 199

12.4.2.77 JIFix Intrinsic . 199

12.4.2.78 JInt Intrinsic . 199

12.4.2.79 JIOr Intrinsic . 199

12.4.2.80 JIQint Intrinsic . 199

12.4.2.81 JIQNnt Intrinsic 199

12.4.2.82 JIShft Intrinsic . 199

12.4.2.83 JIShftC Intrinsic 199

xiii

12.4.2.84 JISign Intrinsic . 200

12.4.2.85 JMax0 Intrinsic . 200

12.4.2.86 JMax1 Intrinsic . 200

12.4.2.87 JMin0 Intrinsic . 200

12.4.2.88 JMin1 Intrinsic . 200

12.4.2.89 JMod Intrinsic . 200

12.4.2.90 JNInt Intrinsic . 200

12.4.2.91 JNot Intrinsic . 200

12.4.2.92 JZExt Intrinsic . 200

12.4.2.93 Kill Intrinsic (function) 201

12.4.2.94 Link Intrinsic (function) 201

12.4.2.95 QAbs Intrinsic . 201

12.4.2.96 QACos Intrinsic 201

12.4.2.97 QACosD Intrinsic 201

12.4.2.98 QASin Intrinsic . 202

12.4.2.99 QASinD Intrinsic 202

12.4.2.100 QATan Intrinsic 202

12.4.2.101 QATan2 Intrinsic 202

12.4.2.102 QATan2D Intrinsic 202

12.4.2.103 QATanD Intrinsic 202

12.4.2.104 QCos Intrinsic . 202

12.4.2.105 QCosD Intrinsic 202

12.4.2.106 QCosH Intrinsic 202

12.4.2.107 QDiM Intrinsic 202

12.4.2.108 QExp Intrinsic. 203

12.4.2.109 QExt Intrinsic . 203

12.4.2.110 QExtD Intrinsic 203

12.4.2.111 QFloat Intrinsic 203

12.4.2.112 QInt Intrinsic . 203

12.4.2.113 QLog Intrinsic . 203

12.4.2.114 QLog10 Intrinsic 203

12.4.2.115 QMax1 Intrinsic 203

12.4.2.116 QMin1 Intrinsic 203

12.4.2.117 QMod Intrinsic 203

12.4.2.118 QNInt Intrinsic 204

12.4.2.119 QSin Intrinsic . 204

12.4.2.120 QSinD Intrinsic 204

12.4.2.121 QSinH Intrinsic 204

12.4.2.122 QSqRt Intrinsic 204

12.4.2.123 QTan Intrinsic . 204

12.4.2.124 QTanD Intrinsic 204

12.4.2.125 QTanH Intrinsic 204

12.4.2.126 Rename Intrinsic (function) 204

12.4.2.127 Secnds Intrinsic 205

12.4.2.128 Signal Intrinsic (function) 205

12.4.2.129 SinD Intrinsic . 206

12.4.2.130 SnglQ Intrinsic 206

12.4.2.131 SymLnk Intrinsic (function) 206

xiv Using and Porting GNU Fortran

12.4.2.132 System Intrinsic (function) 207

12.4.2.133 TanD Intrinsic . 207

12.4.2.134 Time Intrinsic (VXT) 207

12.4.2.135 UMask Intrinsic (function) 208

12.4.2.136 Unlink Intrinsic (function) 208

12.4.2.137 ZExt Intrinsic . 208

13 Other Compilers. 209

13.1 Dropping f2c Compatibility . 209

13.2 Compilers Other Than f2c . 210

14 Other Languages . 211

14.1 Tools and advice for interoperating with C and C++ . . . 211

14.1.1 C Interfacing Tools . 211

14.1.2 Accessing Type Information in C 211

14.1.3 Generating Skeletons and Prototypes with f2c

. 211

14.1.4 C++ Considerations . 212

14.1.5 Startup Code . 212

15 Installing GNU Fortran 213

15.1 Prerequisites . 213

15.2 Problems Installing . 216

15.2.1 General Problems . 216

15.2.1.1 GNU C Required 216

15.2.1.2 Patching GNU CC Necessary 216

15.2.1.3 Building GNU CC Necessary 216

15.2.1.4 Missing strtoul. 217

15.2.1.5 Object File Di�erences 217

15.2.1.6 Cleanup Kills Stage Directories 217

15.2.1.7 Missing gperf? . 217

15.2.2 System-speci�c Problems . 218

15.2.3 Cross-compiler Problems . 218

15.3 Changing Settings Before Building . 219

15.3.1 Larger File Unit Numbers . 219

15.3.2 Always Flush Output . 219

15.3.3 Maximum Stackable Size . 220

15.3.4 Floating-point Bit Patterns 220

15.3.5 Initialization of Large Aggregate Areas 220

15.3.6 Alpha Problems Fixed . 221

15.4 Quick Start . 221

15.5 Complete Installation. 225

15.5.1 Unpacking . 225

15.5.2 Merging Distributions . 226

15.5.3 Installing f77 . 228

15.5.4 Installing f2c . 228

15.5.5 Patching GNU Fortran . 229

xv

15.5.6 Where in the World Does Fortran (and GNU CC)

Go?. 230

15.5.7 Con�guring GNU CC . 231

15.5.8 Building GNU CC . 231

15.5.8.1 Bootstrap Build . 232

15.5.8.2 Straight Build . 232

15.5.9 Pre-installation Checks. 233

15.5.10 Installation of Binaries . 234

15.5.11 Updating Your Info Directory 235

15.5.12 Missing bison? . 235

15.5.13 Missing makeinfo? . 236

15.6 Distributing Binaries . 236

16 Debugging and Interfacing 239

16.1 Main Program Unit (PROGRAM). 239

16.2 Procedures (SUBROUTINE and FUNCTION) 240

16.3 Functions (FUNCTION and RETURN) 241

16.4 Names . 241

16.5 Common Blocks (COMMON) . 242

16.6 Local Equivalence Areas (EQUIVALENCE) 243

16.7 Complex Variables (COMPLEX) . 244

16.8 Arrays (DIMENSION) . 244

16.9 Adjustable Arrays (DIMENSION) . 245

16.10 Alternate Entry Points (ENTRY) . 246

16.11 Alternate Returns (SUBROUTINE and RETURN) 248

16.12 Assigned Statement Labels (ASSIGN and GOTO) 249

16.13 Run-time Library Errors . 249

17 Collected Fortran Wisdom 251

17.1 Advantages Over f2c . 251

17.1.1 Language Extensions . 251

17.1.2 Compiler Options . 251

17.1.3 Compiler Speed . 251

17.1.4 Program Speed . 252

17.1.5 Ease of Debugging . 252

17.1.6 Character and Hollerith Constants 253

17.2 Block Data and Libraries . 253

17.3 Loops . 254

17.4 Working Programs . 256

17.4.1 Not My Type . 256

17.4.2 Variables Assumed To Be Zero 257

17.4.3 Variables Assumed To Be Saved 257

17.4.4 Unwanted Variables . 258

17.4.5 Unused Arguments . 258

17.4.6 Surprising Interpretations of Code 258

17.4.7 Aliasing Assumed To Work 258

17.4.8 Output Assumed To Flush 260

17.4.9 Large File Unit Numbers . 261

xvi Using and Porting GNU Fortran

17.5 Overly Convenient Command-line Options 261

17.6 Faster Programs . 262

17.6.1 Aligned Data . 262

17.6.2 Prefer Automatic Uninitialized Variables 263

17.6.3 Avoid f2c Compatibility . 264

17.6.4 Use Submodel Options . 264

18 Known Causes of Trouble with GNU Fortran

. 265

18.1 Bugs Not In GNU Fortran . 265

18.1.1 Signal 11 and Friends . 265

18.1.2 Cannot Link Fortran Programs 266

18.1.3 Large Common Blocks . 266

18.1.4 Debugger Problems . 267

18.1.5 NeXTStep Problems . 267

18.1.6 Stack Overow . 267

18.1.7 Nothing Happens . 268

18.1.8 Strange Behavior at Run Time 269

18.1.9 Floating-point Errors . 269

18.2 Actual Bugs We Haven't Fixed Yet . 271

18.3 Missing Features . 273

18.3.1 Better Source Model . 273

18.3.2 Fortran 90 Support . 274

18.3.3 Intrinsics in PARAMETER Statements 274

18.3.4 SELECT CASE on CHARACTER Type 274

18.3.5 RECURSIVE Keyword . 274

18.3.6 Increasing Precision/Range 275

18.3.7 Popular Non-standard Types 275

18.3.8 Full Support for Compiler Types 275

18.3.9 Array Bounds Expressions 275

18.3.10 POINTER Statements . 275

18.3.11 Sensible Non-standard Constructs 276

18.3.12 FLUSH Statement . 276

18.3.13 Expressions in FORMAT Statements 277

18.3.14 Explicit Assembler Code . 277

18.3.15 Q Edit Descriptor . 277

18.3.16 Old-style PARAMETER Statements 277

18.3.17 TYPE and ACCEPT I/O Statements 278

18.3.18 STRUCTURE, UNION, RECORD, MAP. 278

18.3.19 OPEN, CLOSE, and INQUIRE Keywords 278

18.3.20 ENCODE and DECODE . 278

18.3.21 Suppressing Space Padding of Source Lines . . . 279

18.3.22 Fortran Preprocessor . 279

18.3.23 Bit Operations on Floating-point Data 279

18.3.24 POSIX Standard . 279

18.3.25 Floating-point Exception Handling 280

18.3.26 Nonportable Conversions . 280

18.3.27 Large Automatic Arrays . 280

xvii

18.3.28 Support for Threads . 280

18.3.29 Gracefully Handle Sensible Bad Code 280

18.3.30 Non-standard Conversions 281

18.3.31 Non-standard Intrinsics . 281

18.3.32 Modifying DO Variable . 281

18.3.33 Better Pedantic Compilation 281

18.3.34 Warn About Implicit Conversions 281

18.3.35 Invalid Use of Hollerith Constant 282

18.3.36 Dummy Array Without Dimensioning Dummy

. 282

18.3.37 Invalid FORMAT Speci�ers 282

18.3.38 Ambiguous Dialects . 282

18.3.39 Unused Labels . 282

18.3.40 Informational Messages . 282

18.3.41 Uninitialized Variables at Run Time 283

18.3.42 Bounds Checking at Run Time 283

18.3.43 Labels Visible to Debugger 283

18.4 Disappointments and Misunderstandings 283

18.4.1 Mangling of Names in Source Code 283

18.4.2 Multiple De�nitions of External Names 283

18.4.3 Limitation on Implicit Declarations 284

18.5 Certain Changes We Don't Want to Make 284

18.5.1 Backslash in Constants. 284

18.5.2 Initializing Before Specifying 285

18.5.3 Context-Sensitive Intrinsicness 286

18.5.4 Context-Sensitive Constants 286

18.5.5 Equivalence Versus Equality 287

18.5.6 Order of Side E�ects . 288

18.6 Warning Messages and Error Messages 289

19 Open Questions . 291

20 Reporting Bugs . 293

20.1 Have You Found a Bug? . 293

20.2 Where to Report Bugs . 295

20.3 How to Report Bugs . 296

20.4 Sending Patches for GNU Fortran . 300

21 How To Get Help with GNU Fortran 303

22 Adding Options . 305

xviii Using and Porting GNU Fortran

23 Projects . 307

23.1 Improve E�ciency . 307

23.2 Better Optimization . 308

23.3 Simplify Porting . 308

23.4 More Extensions . 309

23.5 Machine Model . 310

23.6 Internals Documentation . 310

23.7 Internals Improvements . 310

23.8 Better Diagnostics . 311

24 Diagnostics. 313

24.1 CMPAMBIG . 313

24.2 EXPIMP . 316

24.3 INTGLOB . 316

24.4 LEX . 317

24.5 GLOBALS . 319

Index . 321

