The Regina Rexx Interpreter

Anders Christensen

<Anders.Christensen@idi.ntnu.no>
Norwegian Institute of Technology
University of Trondheim

April 29, 1998

Originally converted to Word by Ataman
Additions and corrections by Mark Hessling <M.Hessling@qut.edu.au>

Copyright (C) 1992-1998 Anders Christensen <Anders.Christensen@idi.ntnu.no>

Trademarks

Unix isaregistered trademark of UNIX System Laboratories, Inc.
MS-DOS, Windows NT and Windows 95 are registered trademarks of Microsoft Corporation.
IBM and VM/CM S are registered trademarks of International Business Machines Corporation

Amigawas aregistered trademark of Commodore-Amiga Inc.

Table of Contents

oY geTo I Toa o] a T (o T = L=To 1o = USSR 1
1. PUrp0oSe Of thiS HOCUMENTeiiiiiiieieit ettt ettt b e bt b e s b e s bt sae e s ae e sae e s st e sne e e nneeanesane e 1
2. IMPLEIMENEALION ...ttt ettt ettt e ab e et e e e e et e e abees b e eabeeabeenb e et e enbeenbe e besbeesaeesbnenreeas 1
3 POMS OF REGINAL. ...ttt b e ae e e b e e bt e st e bt e ab e et e eab e et e enbe e be e be e besbeesaeesneennnea 1
4. Executing RexX programs With REJINGLc.eiiiiiiiiiei ettt an e 2

A1 SIWITCRIES. ...ttt ettt e et e et e et e e s st e e e mte e et e e e aee e enbeeeabe e e beeeeneeeanbeeebeeenneeennteeenreas 2
4.2 EXTEINEI REXX PrOGIAIMSeeiveiitie it steestee st sttesteesteesaeesaeesseeaseesse e saeesaeesaeesaeesaeeeaeeeseeasneasbeeneesnnesanesnnesnneenns 2

REXX LANQUAGE CONSIIUCTS ...oiiiiiiiiiiiiiiie ettt ettt e e e e e e e et e e s e e e e e e et e e e e e e e s bbee eennrre e e e e e 4

B B = T T o] RSSO 4
Example: Binary transferring fillESooe i 4

A N[I = USSR 5
EXample: TraCing COMIMEIESoitiiiiiitieteet ettt ettt e et ettt b e bt e b e e bt e b e e b e e sbeenbeenneenbeenneenanas 5
Example: Trailing COMMENTS.........ooiiiiiiiiie ettt b e bt b e b et e e ne e b e e nneennees 5

G I @0 1 400 F= o =TSRSS 6
S o 0001 o (T SO RTRSRURROPIN 6
Example: MUItiplE @SSIQNMENLoiiiiiiiieeie ettt ettt e st e seesteesbeesseesseesseesseesneesneas 6
Example: Emulating @ default VAIUEooiiiiiiececeee ettt sneas 7
Example: SPACE CONSIAEIALIONSeiiiiiiiieeie ettt ettt ste et e e e sbe e teesseesseesseesseesseesseesseesseesseesseas 7

1 (o o) TSR 7
4.1 ThE ADDRESS INSITUCHION.eivviiiieiiieiie e sieseeseesteste e ssteseesstesseessaesseessteesaeestesnaeenseaneesnsesnseanseansennes 9
Example: Examples of the ADDRESSINSIIUCLIONcveivieiieieeieeieeieesieesieesseeseeseeesseesseesseesseesseesseessens 9
Example: The VALUE SUDKEYWOI Tcueiiiiie ettt sttt st st sttt 10

N =Y AN R Tt (g Tox o) o SRR 10
EXample; BeWare aSSIGNIMENES.........iiiiiie e eie e see e see e steseesseesseessaessaessteeseeaseessseenseansesnseensesneeenes 11

4.3 THE CALL INSIUCLION ...ttt ettt ettt ettt ettt e st e be e st e sbeesbeesbeesbeesbeesseesaeesneenneenneas 11
Example: SUbroutings and trace SEHINGSoove e e e 12
EXample: LabelS are@ lITEralS.......uoiiiiie ettt st ettt ettt e 12

4.4 The DO/END INSEFUCTIONevtiiiiieiieeie et eie ettt ettt ettt et e sbe et e beesbeesbeesseesseesseesbeesseesseesneenseesseas 13
EXample: EVAlUALION OFAENccviiiiie et e et s e e e et e st e e s te e ste e e saaeesneeesnteesseeesneeesnrenns 13
Example: Loop convergence For the reasons just explained, the instruction:cccccveeviiiiieeiiieens 14
Example: Difference between UNTIL and WHILEcc.ovooiiieie et 14

4.5 THE DROP INSIIUCLIONeitiiitieiieeieeie ettt ettt ettt b e st e st e s b e sbeesbeesbeesbeesaeesbeesbeesaeesneenneenneas 15
Example: Dropping compound VariableS............couii i see et e e raee e 16
Example: Tail-substitution iN DROPcccuii et e e te e et e e sree s e e s te e e nreeennaeesneeens 16

4.6 THE EXIT INSIIUCHION ...etiiiteeitieiteeie ettt ettt ettt ettt sb et e b e sbeesbeesbeenbeesbeesbeesbeesneesneenneenneas 17
4.7 The IF/THEN/EL SE INSITUCLIONeoiiiiiiecieee ettt sttt ettt e b et e sneesneenneenneas 17
Example: DangliNg ELSE.........oooii ettt s e st e et e et e e et e e saeesnaeesneeesnteeensesennneenneenans 17

4.8 The INTERPRET INSLIUCHION ...ttt ettt ettt sae e st saeesbeesae et e sbeesneesneenneesneas 18
Example: Self-modifying Program...........ooeo et e e et e s e st e e nne e nnneennneenns 18

4.9 The ITERATE INSIIUCTION ...c..viiiiieiieeeeeie ettt ettt ettt sttt sbeesbeesb e e sbeesbeesbeesaeesneenneenneas 19
4,10 TRE LEAVE INSIIUCTION ..ottt ettt ettt ettt ettt sbe e b e b e nbe e st e e nbeenneesneenneenneas 20
Example: Iterating @ SIMPIE DOIENDccueveieiieciie et s e ee et e se e s te e et e e neeesseeesnteeenseeenneeenneeenns 20
4,11 TRENOP INSITUCLIONeeiiiiieeeieee ettt ettt ettt sttt b e s b e sb e sbeesbeesbe e sbeesbeesaeesaeesneenneenneas 20
4,12 The NUMERIC INSITUCLIONeeieieiiieciie et e sieestee e steeesaeeste e e aeeesaeeessseesnseesnsesessaeessseesnsessnsenesseeesnseesns 20
Example: Smulating relative accuracy with abSolUtE 8CCUraCYccevveereriiiiieiie e 21
4,13 The OPTIONS INSEIUCLIONeeeeeieciieeeieeeeeeeseeesteeesteeesseeeseeeeeeeesseeessseessseessesesseeessseesnsessnsenesseeesnsensns 22
Example: Drawback of OPTIONS........couiiiiieie ettt sttt b e st e ee s 22
I o A S S o 4 o o SRS 22
4.15 The PROCEDURE INSITUCIONeoiuvieiiieciieesieesteessteeesteesteeeteeesaeeessseesnseesnseeesnaeessseesnsessnsesessenssnseesns 24
Example: Dynamic execution of PROCEDUREcoccoiiiiiiiiii e e 24
Example: INCIrECE EXPOSINGeeiueeiiieiiie ittt sttt sttt et e ane b b ebe e neenbe e e e 25
Example: Order Of EXPOSINGcouveiuieiie ittt sttt sttt st sbe et e e be e b ebe e abeebeeane et enreeane e 25
Example: Global VAriahlES...........ooiiii e e 25
L = I 1 o o o O STRSUSR 26
4,07 ThE PUSH INSIFUCLIONeeiieiieceiee ettt sttt s e st e e s e e sseeesnteeenseeeneeesneeesnseeeseeesneeesnteesns 26

4.18 The QUEUE INSIIUCLION ...ceutiiiiiieseieesiee ettt stee st et e st e e ssteesaeeeseeesnseesnseesnseeeneeesnseesnseeeseeennseenns 26

4,19 TRE RETURN INSITUCHIONceiiiiiiitieeieee e e ettt e e e e e ettt e e e e e e et aeeeeeseeesaasssseeeeeeeessssssseeeeeeeannsrreneess 27
Example: MUItiple @ntry POINESooiiiiie e e 27

4.20 The SELECT/WHEN/OTHERWISE INSIIUCLION.uoiiitiiiiiiieciee ettt eteeeeaeeeeeeeereeeveeeaneeans 28
Examples WEtING SIMTCH @S T ...t 29

4,21 The SIGNAL INSEIUCLIONviiiiiiectiee ettt ettt ete e et e et e e et e e eteeeeteeeeaeeeesseeenbeeeseeessseessseesseeeaseeessseesns 29
Example: Transferring control t0 iNSId@ @ 100Doiveiiiiiiiiiiie e e 29
Example: Naming CONGitiON TraScoiueeiiiiie ittt s 30
Example: Named condition trapsin TRLLcoiiiiiiiie i 30

4.22 TRE TRACE INSETUCHION ..uvvviiiieeieiiiiiieeee e e e eeciteee e e e e e e e eatreeeeeeeeeesassaeeeeeeeessasssseeeaessesassssseeeseeeeannnsreneess 31

oI O o< = (0] £ TR TP PP UUPPPTUOPPPT 32
5.1 ATTNMELIC OPEIEIONS. ... eeiueeitie ettt ettt eeee e te e te et et e tessteeseeesteesseesseesseesbeesseeseeseebeenseenseenseenseenseens 32

5.2 ASSIGNMENE OPEIAEOISeivveieieiiieetieete et etesstestesaesaeasaeassessseesseasseasseasseeseesseesseeseesseesseesseenseesseesseessenns 33

5.3 COMPAratiVE OPEIALONS.uveivveieieitieeieeteetestestesaesaessaeassessseaseeesseasseaseesseesseesseeseenseesseesseenseessessseessenns 33

5.4 CONCALENLION OPEIBIOISevveivieieieeieeeieeeteeeeestestestessteaeessaeaseeasteasseasseesseesseasseesseenseessesnseenseenseessesssenns 33

RN oo [or= [@] 1= = (o] £ T 33

6. Implementati on-SPeCifiC INFOIMELIONccuiiiieiceeee e s sneeseaesnaeenes 34
6.1 Environmentsin REGINA 0.05hc.oiiiiiiiiie et 34

6.2 List of All ENVIronmMeENt NaMESIN USEuveiiiiiiiec ittt ettt e et e e e etae e e e saaaeeeeabaeesensaeeesnnreeeean 34
REXX BUIT-IN FUNCEIONS L.ttt ettt e e et e e e ettt e e et e e e e et e e e s e e e e se bt e e seneeseebaneeseaanns 35
T == I T) (014007 1o o TR 35
I I 0T 1= 01 0 P 35

1.2 PreciSion and NOIMAIZAIONeeeiiiiiee ettt e et e e e et e e e e eta e e e eeabaeeeeabeeeeebeeeesansreeean 35

1.3 Standard ParameELEr NAIMESeeeiiiiiieiiiriee ettt e e ettt e e ettt e e e e eba e e e e ebaeeeessbseeeessbaeeeesseeeeabreeesanreeeeas 36

LA EITON MIBSSA0ES. ... e tuteeeutee ettt ettt e et e ettt ettt e s it e e s at e e ekt e e ae e e aas e e e an e e e ae e e ae e e s as e e eabeeeneeeambeeaabeeebeeeanneesnbeanbnean 36

1.5 POSSIDIE SyStem DEPENTENCIES.......c.veeiieieeieeieeteet ettt ettt et e sbeesbeesseesaeesseesseesseesneesneesneesneeenes 37

1.6 BIaNKS VS, SPBCES.....ecueiiueiiieieiie et et et et et et e bt e bt e beeteeseebe e be e teebeebe e beesbeesseenbeenbeeabeenreenneenreenrennes 38

2. REXX Standard BUilt-iN FUNCLIONScoiiuiiiiiiiiie ettt ee ettt e eara e e s earee e e eataeessnraeseesseeesensreeesnsreeeens 38
3. Implementation specific documentation fOr REJINAccueeiiii e 62
3.1 DeviationsS from the SLANAAITcooiiiriiiiiiiie et et e e et e e e earee e e ebreeeeeabaeeeenrees 63

3.2 Interpreter Internal DebugQing FUNCLIONScooiuiriiieccie e 63

3.3 REXX UNIX INtEfate FUNCHIONScccviiee ittt cettee et e et e e tre e e s etaae e e earaeesensraeesensseeseanreeesennnens 64
OTo] aTo 11 A Lo T3 1R 66
L. What @€ CONAITIONScoiuveieiicieie ettt e ettt e et e e e et e e e et ee e eebbeeeseabree e e sbseeeeaabseeeaabaeesasbeeessnsbesessnreessnnrns 66
1.1 What DO WeE NEEA CoNAItIONSFOI?.....veiiiiciiiee ittt ettt et e e e etbr e e e eeareeeeebbeeeesbreeesanraeeean 66

02 = 1 01T T | S USPSPRI 66

2. The Mythical Standard CONMItIONccuieiiiriiie e e e e e e e st e e e rraeesnaeesnneesnreeenees 67
2.1 Information Regarding Conditions (data StTUCLUIES)eeevveeiieeiiieeseeesteeeee e e e e e 67

2.2 HOW t0 Set UP @ CONAILION TTAD .veeiveriiieeiiiesieesiteeesee e st e e s e e eteeesseeesseeesseeeneeensaeesseeeenseeenenesneeesnsessnses 68

2.3 HOW O RAISE A CONAIION.......uiiiiiiiiie ittt et e e et e e et e e e eaa e e e esabaeeeearaeesansreeesanteeeeenrens 69

24 How to Trigger @ CONGitiON TraD ...veeiceeeiieecieeeieeesee e st e e s tee et e e e sseeesaeeeneeesseeesseeeenseeeneeesneeesnsessnses 70

2.5 Trapping by MethOd SIGNALooceeeeeecee ettt e e e e ee e s e e saeeenneeesneeesneeennnes 70

2.6 Trapping bY MEtNOO CALL ..ottt et et e e e s e e st e e eneeeneeenneeesneeennnes 71

2.7 The Current Trapped CONUITIONoociieiiieciie e e e e e s e s eeeerneeesseeesseeesseeenseeesseeesnseesnses 72

T a1 2 5= I O] o [(1] 72
I A I S N I 7 Qo1 1 [(1) 1 72

I I o SN o N I oo T [o o 73

R I SY = o @] =010 [1] 1S 73

I I o SN o N T oo (o [o] 73

B35 TheNOVALUE CONAITION.......cc ottt ettt e e e e e e e e e e s eesanassseeeeeeeessssanneeseeeann 74

3.6 ThE NOTREADY CONAITIONcutiieiiieeie it e e ettt e e e e e et e e e e e e e e aaar e e e e e e eessssssseeeeeeesssrsaneeeeeeeans 74

4, FUrther NOtES ON CONTITIONSuvveiiieeiiieiitreiee e e e e eeitre e e e e e e e e sbbreeeeeeeeesssssaereaessaasasssssseeaeeeesssssssseeessesansssrreneess 75
4.1 Conditions under Language LEVE] 3.50........cccuuiiiiiiiiiiieiieeieee ettt 75

4.2 Pitfallswhen Using CONAitioN TraPScouiiiiiiiiiieieete ettt ettt s e be bbb sneenneenneas 75

4.3 The Correctness Of thiS DESCIIPLIONeiiiiiiiiiite ettt ettt e b sbeesaeeneeas 75

5. CONAITIONS TN REGINA ...ttt ettt b e bt e b e bt e bt e b e e ebe e ss e e e he e ebeesaeesheesaeesmeesnneennenbeenee 76
5.1 HOW t0 RAISEThE HALT CONTITION.......cciiiitiiiiiee e e e ettt et e e e e e et e e e e e e eeeaaarereeseseeensssaeeeeeeeens 76

5.2 EXtended BUIT-IN TUNCLIONSovviiiiiie ittt ettt e e e e e et r e e e e e eeeabaraeeeeeeeeennsssseeeeeesenns 76

5.3 EXtra Condition iN REJINA.........eiiiiiii ittt ettt et b e e bt e b e e ne e b e e neenneenneens 77

5.4 Various Other EXiStiNG EXIENSIONScc.uiiiiiiiiiieiie ittt sttt e et e e e nesneeneeneeneeneens 77
6. POSSIDI@ FULUNE EXIENSIONS.......oiiiiiiiici bbb 77
SEream INPUL QNG OUETPUL ..eueeeiiiiiiiiiiiie ittt ettt ettt e ettt et e e e e e aaeaaaaaaaaaaaaaaaaeaaaaaaaaaaeeeteeeeeeeeeees 79
1. Background and HistOriCal REMEIKScouiiiiiiiiiieieeeee et 79
2. REXX'S NOUON Of @ STEAIML.u it et ettt e ettt e e et ettt e e e e ett e e e e eata e e e eeetan s e eeeetbaeeeeennnnes 79
3. SNOIt CrasSN-COUISE.uuuiii et e et ettt et e e e e et ettt ee et bbb e e e e ememmnnnnes 80
4. NAIMING SEEAIMIS. ...t e ettt ettt oo oo et ettt ettt bbb e st e e e e ettt et e bbb b e e e e e eeeeeeees bnnnmmmmmmmnne s 80
Example: Secifying fill@ NAMESoiii e s 81
Example: Internal file NANIESoooiiiiii e e e 81
Example: UNiX temporary fillESoieo e 82
Example: Filesin different dir@CIOrieSsoo it 82
5. Persistent and TranSIENt SIIEAIMIS it ittt ettt e e e et e e e e ata e e e et tba e e e eeataaaaeerba e aaeennnss 82
Example: DEtermining StrEAM EYPE.......ciuiiie e iiesieseeseesieesieeseesreesreesaesseesreessaesseessaesneesseessnesseesseennes 83
SR @] o= a1 g o Jr= TR 1 £ Y= L 4 83
EXample: NOE ClOSING fIlES....cuiiiie e s e e st e s naeenteeneeenes 84
A (01T T =] 1 (=T 4 PR 84
8. Character-wise and LINE-WISE /0.coiuiiiiiiiiiiiie et e e e e e ettt s s e e e e e e e e eeeessbbt s aaeeeeeeeeeeessees 85
Example: Character-wise handling Of EOLcoceiiiiieiie et 85
Lo I R {=T= o o =T To VLY 1 1] o PSP 86
Example: Counting lines, words, and CharaClerS..........oooeiieiieiieiie e s 86
10. Determining the CUrreNt POSITIONuuuiiiiie et e e e e e e e e e eeeaees e s s e e e e e eeeeesesesnnnnnns 87
Example: Retrieving CUrFeNt POSITIONciuiiieiie ettt sttt sree e snee e s e sneesneeeneesneeenes 87
Example: Improved ftell fUNCHIONoiii et 87
11. POSItIONING WIthiN @ FIlB......eieiieiiiiiei e e et en e e e e e e e e e eeeaeanan s < T 8
Example: Repositioning in @MPty fillEScui i 89
Example: Relative repOSITIONINGoiveieeiieiie e st e e sreesaeesneesseesneesneesneesneesneesnes 89
Example: Destroying lINECOUNLocciiiiiieciie et e e et e e e e s e e st e e e raeesaeeesnteesseeenneenneeenns 89
12. Errors: Discovery, Handling, and RECOVELY.........cciiiiiiie et e e e e et e e et eeeeaaanas 90
Example: General NOTREADY condition handlercocuveiiieiiie e 20
13. Common Differences and Problems with Stream.l/Q.............uuuiiiiiiiiiii e 91
13.1 Where Implementations are Allowed to Diffel............cooi i 91
13.2 Where Implementations might Differ anYWay...........coieiiiiiiii i 91
13.3 LINES() and CHARS() @re INACCUIALE.........uuiieeieiiie e e et e e e s e e et e e e e e s s e e e et s e e e e et e e e e eaansaeaene 92
(e T o F= T L= == o [aTo o o] o SRS 92
13.4 The Last LiNe OF @ SIrEAIML.......ciiiiiiiiiiiiie ettt ettt e e e e e e e e e et e e ettt e e e eeeeeeeeeeennnes 93
13.5 Other Parts Of the 1/O SYSRIML.......u i e e e e e et e e e e eaa e e e e eraaaees 93
13.6 Implementation-Specific INFOrMAtioN...........oiiiiii e e e 94
13.7 Stream 1/O iN REQGINA 0.07@....ciieueii et e e et s e e e et e e e e e e s s e e e et e e eeeasaeeeeeernaaaaees 94
13.8 Functionality to be Implemented Later..........cooeviiiiiii e e e e e e e e e e eaa e eeees 96
13.9 Stream /O iN AREXX L.LB ... i e ettt e e e e e e e e et et et et b e e e e e e e eeeeanaae 96
13.10 Main Differences from Standard REXX.......couuiiiiiiiii e 99
13.11 Stream /O iN BREXX L.0B .. .cciiiiiiieiie et e e e et s e e e e et s s e e e e et e e e ee et e e e e e nraaeaae 100
13.12 Problems with Binary and TeXt MOAES........ccoiiiiiiiiiiiiii e 103
Example: Differing @nd-0f-liNES ..o 103
=T = o] =S 105
1. WhY HaVe EXIENSIONSottt r e e e e et ettt et ittt e e e e e e e e e eeeseeeesnnae 105..
2. Extensions and Standard REXXot e e e e e e e e e areaan 105
3. SpecCifying EXIENSIONS IN REGINA.uuuiiiiieiii et e e e e e e e et bbb e e e eeeeas 105
4. THE TrOUDIE BEOINS ittt e e e e e e e e et e et e bt bbb e e e e e e e e e e e e eennennes 106
5. The Format 0f the OPTIONS CIAUSE.......uu it e e e et s e e e et e e e eanen e s 106
Example: EXensions Changing PArSiNGooeeeeeererrerreeieeseeeeese st esseeseeseesseesseesseesseesseesseesseesseas 106
6. Why You Should Seriously Consider Not USiNg EXIENSIONS.iiiiiiiiiiiiiiiiiiiiie e 107
7. The FUNAAMENTAl EXIENSIONS. .. .c.uti ettt e et e ettt e e e e s e e e e et e e e e e et e e e e e et e e e e eettn e e aeeean s aeeeeatnnseeeensnnnnns 107
S T = o B =T 1S [L 108
LS TS T= 0 0] v= 1o F= 1o PR 108
OS] = o F= T o RPN 108

L LIRS =11 TP 110

1. Background @N0 NESLONYcoieeiiiiie ettt sttt st s st e et e s aeesanesaeesane e e 110

2. General functionality Of the SEACKiiiiiiii et 110

2.1 BaASIC FUNCHONGIITYttt ettt ettt b e e bt e b e e b e e b e e nbeenneennas 110

Example: Using the stack to transfer parametersS.o 111

2.2 LIFO and FIFO StACK OPEIaLiONS.eiuvieuriiirierieteeteeie et ettt sbe b et e bt e sbeesbeesbeesseesseesseesseesaeesaes 112

2.3 Using multiple bUFfErs in the SLACKcciiiiiiiiiee e 112

A oL (o T o101 = PSSP 113

Example: Process all StringSin the StACK ..o 113

Example: HOW t0 @mMpty the SLACKoiiiiiii s 113

2.5 Creating NEW SEACKS.coiieieitiie ettt ettt s et e et e e bt e e s st e e sabeesabeeaneeesaneesabeeanneeeneaena 114

Example: Counting the number of DUFFEI'Soo i 114

3. Theinterface between REXX and the SLACKccviiiiiiiiiicie sttt sneeneas 115

4, Strategies for iMpPIEMENTING SLACKSiuiiiiiieiie ettt et esteesseesseessaesseessensneesnes 115

Example: Commands takes input from the SLACKceiiiiiiiie i 115
Example: “EXECING” COMMANGSoiieiiiiiiiiieeeeee e ettt e e e e e e e e e e et e e e e e e e e e e eeeeestetanaaaaaaeeees

5. Specific implementations Of STACKS.........iiiiiiiiii ittt ettt nseenean 116

5.1 Implementation of the stack iN REGINA0.05Ncuiiiiiiiiiiiie e 116

Interfacing REXX t0 OtNEr PrOGIaMS ..ooviiiiiiiiiiiice e et e e e e e e e e e e e e eaeaa e s s e s e anraeneeees 120

1. Overview Of FUNCHIONS TN SAAo e st e st e st e e steesaeesreeaseesseeaseeaseessseensesnsesnsesnsennsenns 120

L.l Include FIlES and LiBIariES ...ccuuiiueiiieiii sttt ettt et beenseenean 120

1.2 PreproCeSSOr SYMDIOIS.ciiiiiiiiie ittt sttt sttt ettt e e teesbeenseesseenbeense e beenbeebeenseenseenean 120

1.3 Allocating and De-allOCAING SPACEeiviiiiiiiiii ittt sttt et eteebeesbeeseeseenseesean 121

1.4 Data StructureS @nd GALATYPESc.viieeiie ettt ettt et e te b e e beebeenneenean 121

2. The Subcommand HandIer INEEITACEeiieiiiiiieci ettt ettt seenteeeean 123

2.1 What isa SubCOMMAaNd HBNAIENooiiiiiiiiiieeeeeee et s s e e s e sneenaes 123

2.2 The RexxRegister SUDCOMEXE() FUNCLIONoiviiiiiiieiecie et 124

2.3 The RexxRegisterSUbCOmMDIT() FUNCLIONc.viiiiiiiiicie e 125

2.4 The RexxDeregisterSUbCOmM() FUNCLION..........cuiiiiee e s e et e e e sareesnee e 125

2.5 The RexxQuerySUbCOM() FUNCLION..........ooiiieiiee et s e sre e s ae e e s e e e sneeesnneeeneeenns 126

3. The External FUNCtion Handler INLEIACEouviiiiiiiii ettt n 126

3.1 What isan External FUNCEION HBNAIENcoiiiiiiiiiiiecie et 126

3.2 The RexxRegisterFunctionEXE() FUNCLIONeviiiie e s e e 127

3.3 The RexxRegisterFunctionDII() fUNCLIONc.eoiiiie e 128

3.4 The RexxDeregisterFunction() fUNCLION.........c.cooiiie e 129

3.5 The RexxQueryFUNCtioN() TUNCLIONccuiiiiee e e s e e e e e e e e enea e 129

4, EXECULING REXX COUE ... ceiiitieeieiee it it s it st e e st e st e stte e sate e s e e esaeesseeessseeanseaenseeeanseesnseeenseeenneeesnsenansenenes 130

4.1 The REXXSEA() FUNCHIONeceiieiiee ettt s e st e e e e s e e s st e e snneeenneeennnennneeennee s 130

5. Variahl@ POOI INEITACE.o iteiiiii ittt sttt et e st e et e enbeenteenseenneenee s 132

L RSV 0o o [T dlo 1= R SSSSPRS 132

5.2 The SHVBLOCK SHUCIUIE.cueiiiiiiiiiiieeie sttt ettt ettt ettt et sbeesbe e b e beesbeesbeesseesneesaeenaes 133

5.3 ReginaNotes for the Variabl@ P00ceviiiiiiec e 136

5.4 The RexxVariabl€P00l () FUNCLIONccueiiiie e e e e e e e s e snneeeneeenns 136

6. The System EXit Handler INTEITACE.........ooiiii bbb 137

6.1 The System EXit HANAIENoieiiiiiiieece ettt bbb bbbt et sae e s nas 137

6.2 List Of System EXit HANAIEISccueiieiiiic bbb s 138

IMPIEMENTALION LiMITS oottt bbbttt e ettt ettt ettt et e eeeeeeeeeebbbbbbbbbbbbbnees 144

Y Y E 0 R 144

2. What LIMiItST0 ChOOSE?.......eeiiieieitiie it e eee st e st ste e s et e st e e ssaeessaeeesaeesseeessseesnneeeseeensseesnseesnnnnennenennenens 144

B = 11T = I £ SSSS 144

/@ Fo = (@] 0= o] L= () I 0] £ SRRSO 145

5. What the Standard GOES NOL SAYeiieiiiiiiiiii ittt b ettt b e b e e beebe e beenneennean 145
6. What an Implementation iS AllOWEd 10 “IgNOLEY.......... i
0 I 1 £ T T =T = PP 146

1= 1 1A o 148

Bibliography

Introduction to Regina

This chapter provides an introductionto Regina, a freeware Rexx Interpreter distributed under the GNU General Library
License.

1. Purpose of this document

The purpose of this document is to provide an overview of the Rexx language and the Regina implementation of the
Rexx language. It isnot intended as a definitive reference to Rexx; you should really have a copy of the Rexx
“bible”; The Rexx Language, by Mike Cowlishaw [TRL2].

2. Implementation

The Regina Rexx Interpreter is implemented as a library suitable for linking into third-party applications. Access to
Regina from third-party applications is via the Regina API, which is consistent with the IBM’'s REXX SAA API.
This API is implemented on most other Rexx interpreters.

The library containingRegina is available either as a static library or as a dynamically loadable library. The only
functional difference between the two libraries is that the ability to dynamicallyRe=xl external function packages
via the built-in function,RxFuncAdd, is only available with the dynamically loadable library.

The Regina distribution also includes a front end to the Regina library, to enable the execution of Rexx programs
directly from the command line. Tremmand line referred to here relates to the a Unix shell, an OS/2 or DOS
command window or a Windows NT/95 command prompt.

3. Ports of Regina

Regina has been ported to most Unix operating systems, DOS, 0S/2 and Windows NT/95. The following table
provides implementation details of each of the ports of Regina.

Operating System Dynamic Static Library Dynamic Static

Library Executable Executable

HP-UX libregina.sl libregina.a regina rexx

AlX libregina_dlo.a libregina.a regina rexx

Other Unix libregina.so libregina.a regina rexx

32-bit DOS (DJGPP) N/A libregna.a N/A rexx.exe

(UsesDPMI memory

manager)

32-bit DOS (EM X) N/A regina.a N/A rexx.exe

(Uses VCPI memory

manager)

OS2 (EMX) N/A regina.a N/A rexx.exe

Windows NT/95 regina.dll rexx.lib regina.exe rexx.exe

(regina.lib)

4. Executing Rexx programs with Regina

Rexx programs are generally executed by Regina for the command line in the following manner:

regina [switches] [program] [program parameters)

where
regina is the name of the Regina executable (see table above)
switches are optional switches. See the section below for an explanation of the switches
currently supported by Regina
program the name of the Rexx program to be executed. See the section Exter nal Rexx

Programs below, for details on how Reginainterprets this argument. If no
program nameis specified, Regina waits for Rexx commands to be typed in and
will execute those commands when the appropriate end-of-file character (*D on
Unix and ~Z on DOS, OS/2 and Windows NT/95) is typed.

program parameters any optional parameters to be passed to the Rexx program.

Rexx programs to be executed by Regina can take advantage of afeature of Unix shell programs called magic
numbers. By having thefirst line of a Rexx program consist of the special sequence of #! followed by the full file
name of the Regina executable, you can invoke this program simply by typing the name of the Rexx program on the
command line followed by any parameters you wish to pass to theRexx program. The file name must also have the
appropriate execute bit set for thisto work. Asan example suppose your Rexx program, myprog, contained:

#!/usr/ |l ocal / bin/regi na
Par se Version ver
Say ver

When executing this program from the command line by typing mypr og, the Unix shell program would execute the
program / usr/ | ocal / bi n/ r egi naand passthe remainder of the linesin the file to this program via stdin.

The specia processing done by Regina to find the file namein REGINA_MACROS and the file extension searching
isnot able to be carried out when using the magic number method of invocation.

4.1 Switches

The following switches allow the user to control how Regina executes the supplied Rexx program. Switches are recognised
aleading hyphen character; * -’, followed immediately by a single alphabetic character. Some switches allow for optional
parameters. These, too must follow the switch without any intervening spaces. All switches and their optional param
case-sensitive.

-t[trace parameter] Turn on the specified tracing level. The optiotrakte parameter indicates the tracing\e
to be used. See the TRACE command later in this document for an explanation of eal
trace level.

4.2 External Rexx programs

Regina searches faRexx programs, using a combination of tREGINA_M ACROS environment variable and the
addition of filename extensions. This rule applies to both external function calls apdodr@am specified on the
command line.

Assume you have a call to an external function, and it is coded as follows:
Call nyextfunc argl, arg2
First, Regina looks for a file calleagnyextfuncin the current directory. If it can't find that file, it looks in each

directory specified in thREGINA_MACROS environment variable for a file calledyextfunc. If the file is not
found,Regina then attempts to find a file calledyextfunc.rexxin the current directory, then in each directory in

REGINA_MACROS. Regina continues, next by appending .rex to the supplied external function name, and lastly
by appending .cmd.

Only if afile does not exist in either the current directory, or any directory in REGINA_MACROS, either with the
supplied filename or with that filename appended with .rexx, .rex or .cmd does Regina complain that the external
function is unknown.

Rexx Language Constructs

In this chapter, the concept and syntax of REXX clauses are explained. At the end of the chapter thereis a section describing
how Regina differs from standard REXX are described in the first part of the chapter.

1. Definitions

A program in the REXX language consists of clauses, which are divided into four groups: null clauses, commands,

assignments, and instructions. The three latter groups (commands, assignments, and instructions) are collectively referred to ¢
statements. This does not match the terminology in [TRL2], where “instruction” is equivalent to what is known here as
“statement”, and “keyword instruction” is equivalent to what is known here as “instrictitowever, | find the terminolog
used here simpler and less confusing.

Incidentally, the terminology used here matches [DANEY].

A clauseis defined as al non-clause-delimiters (i.e. blanks and tokens) up to and including a clause delimiter. A token
delimiter can be;

e Anend-of-linge, unlessit lies within acomment. An end-of-line within a constant string is considered a syntax error { 6} .
* A semicolon character that is not within a comment or constant string.

* A colon character, provided that the sequence of tokens leading up to it consists of a single symbol and whitespace. If a
sequence of two symbol tokensis followed by a colon, then thisimpliesSYNTAX condition { 13}.

Some systems have the ability to store atext file having alast line unterminated by an end-of-line character sequence. In
general, this applies to systems that use an explicit end-of-line character sequence to denote end-of-lines, e.g. Unix and MS-
DOS systems. Under these systems, if the last line is unterminated, it will strictly speaking not be a clause, since a clause mus
include its terminating clause delimiter. However, some interpreters are likely to regard the end-of-file as a clause delimiter
too. The functionality of | NTERPRET gives some weight to thisinterpretation. But other systems may ignore that last,
unterminated line, or maybe issue a syntax error. (However, thereisno SYNTAX condition number adequately covering this
situation.

Example: Binary transferring files

Suppose a REXX program is stored on an MS-DOS machine. Then, an end-of-line sequence is marked in the file as the two
characters carriage return and newline. If thisfileis transferred to a Unix system, then only newline marks the end-of-line. Fc
thisto work, the file must be transferred as atext file. If it is (incorrectly) transferred as abinary file, the result is that on the
Unix system, each line seems to contain atrailing carriage return character. In an editor, it might look like this:

say ‘hello world'*M
say ‘that’s it'"M

Thiswill probably raise SYNTAXcondition { 13}.

2. Null clauses

Null clauses are clauses that consist of only whitespace, or comments, or both; in addition to the terminating clause delimiter.
These clauses are ignored when interpreting the code, except for one situation: null clauses containing at least one comment i
traced when appropriate. Null clauses not containing any comments are ignored in every respect.

Example: Tracing comments

Thetracing of comments may be a major problem, depending on the context. There are basically two strategies for large
comments: either box multiple lines as a single comment, or make the text on each line an independent comment, as shown
below:

trace all

/*
This is a single, large comment, which spans nultiple |ines.
Such comments are often used at the start of a subroutine or
simlar, in order to describe both the interface to and the
functionality of the function.

*/

/* This is also a large comment, but it is witten as nultiple */
/* comments, each on its own line. Thus, this is several clauses */
/* while the comment above is a single coment. */

During tracing, the first of these will be displayed as one large comment, and during interactive tracing, it will only pause onc
The second will be displayed as multiple lines, and will make several pauses during interactive tracing. An interpreter may
solve this situation in several ways, the main objective must be to display the comments nicely the to programmer debugging
the code. Preferably, the code is shown in afashion that resembles how it is entered in thefile.

If alabel is multiple defined, the first definition is used and the rest are ignored. Multiple defined labelsisnot an SYNTAX
condition.

A null clauseis not a statement. In some situations, like after the THEN subclause, only a statement come. If anull clauseis
provided, then it isignored, and the next statement is used instead.

Consider the following code:
parse pull foo

if foo=2 then
say ‘foo is not 2’
else
/* do nothing */
say ‘that "sit’

Thiswill not work the way indentation indicates, since the comment in this example is not a statement. Thus, the ELSEread
beyond the comment, and connects to the SAY instruction which becomes the ELSE part. (That what probably not what the
programmer intended.) This code will say that’s it , only when foo isdifferent from 2. A separate instruction, NOPhe
been provided in order to fill the need that was inadequately attempted filled by the comment in the code fragment above.

Example: Trailing comments

The effect that comments are not statements can be exploited when documenting the program, and simultaneously making the
program faster. Consider the following two loops:

sum= 0
do i=1to 10
/[* suml1l 2 3 ... 8 9 10 */
sum = sum + i
end
sum= 0
do i=1to 10
sum = sum + i /[* sum1l 2 3 ... 8 9 10 */
end

In thefirst loop, there are two clauses, while the second loop contains only one clause, because the comment is appended to a
already existing clause. During execution, the interpreter has to spend time ignoring the null clause in the first loop, while the
second loop avoids this problem (assuming tracing is unenabled). Thus, the second loop is faster; although only insignificant
faster for small loops. Of course, the comment could have been taken out of the loop, which would be equally fast to the seco
version above.

3. Commands

3.1 Assignments

Assignments are clauses where the first token is a symbol and the second token is the equal sign (=). This definition opensfo
some curious effects, consider the following clauses:

a ==
Thisis not acommand, but an assignment of the expression = b to the variable a. Of course, the expressionisilleg
(=b) and will trigger a SYNTAX condition for syntax error { 35} . TRL 2 defines the operator == as consisting of two
tokens. Thus, in the first of these examples, the second token is =, the third token isalso =, while the fourth token is
b.

3 =5
Thisis an assignment of the value 5 to the symbol 3, but since thisis not a variable symbol, thisis an illegal
assignment, and will trigger the SYNTAX condition for syntax error { 31}.

“hello " = foo

Thisis not an invalid assignment, since the first token in the clause is not a symbol. Instead, this becomes a comman

arg =(foo) bar
9 T)hefourth statement is avalid assignment, which will space-concatenate the two variable symbols f oo and bar , ar
assign the result to the variable symbol ar g. It is specifically not an ARGinstruction, even though it might look like
one. If you need an ARG instruction which template starts with an absolute indirect positional pattern, use the PARS
UPPER ARGinstruction instead, or prepend adot in front of the template.

An assignment can assign a value to asimple variable, a stem variable or a compound variable. When assigning to a stem

variable, all possible variable symbols having that stem are assigned the value. Note specifically that thisis not like setting a
default, it is a one time multiple assignment.

Example: Multiple assignment

The difference between REXX's multiple assignment and a default value can be seen from the following code:

foo. = ‘bar’
foo.1l = ‘baz’

drop foo.1
say foo.1 /* says “FOO.1" */

Here, the SAYinstruction writes out FOO.1, not bar . During the DRORnstruction, the variable FOO.1 regainsits original
uninitialized value FOO.1, not the value of its stem variable FOO., i.e. bar , because stem assignments does not set up a
default.

Example: Emulating a default value

If you want to set the compound variable to the value of its stem variable, if the stem isinitialized, then you may use the
following code:

if (symbol(‘foo.’)) then
foo.1 = foo.
else
drop foo.1

In this example, the FOO.1 variableis set to the value of its stem if the stem currently is assigned avalue. Elsg, the FOO.1
variableis dropped.

However, thisis probably not exactly the same, since the internal storage of the computer is likely to store variables like FOO
and FOO.3 only implicitly (after al, it can not explicitly store every compound having FOO. as stem). After the assignment
the value of FOO. to FOO.1, the FOO.1 compound variableislikely to be explicitly stored in the interpreter.

Thereis no way you can discover the difference, but the effects are often that more memory is used, and some functionality tt
dumps all variables may dump FOO.1 but not FOO.2 (which isinconsistent). See section RexxVariablePool.

Example: Space considerations

Even more strange are the effects of the following short example:

foo. = ‘bar’
drop foo.1

Although apparently very simple, thereis no way that an interpreter can release all memory referringto FOO.1. After al,
FOO.1 hasadifferent value than FOO.2, FOO.3, etc., so the interpreter must store information that tellsit that FOO.1 has
the uninitialized value.

These considerations may seem like nit-picking, but they will matter if you drop lots of compound variables for a stem which
has previously received a value. Some programming idioms do this, so be aware. If you can do without assigning to the stem
variable, then it is possible for the interpreter to regain all memory used for that stem’s compound variables.

4. Instructions

In this section, all instructions in standaREXX are described.
Extensions are listed later in this chapter.

First some notes on the terminology. What is called an instruction in this document is equivalent t6 af ‘iauses. That i
each instruction can consist of one or more clauses. For instance, the SAY instruction is always a single instruction, but the |
instruction is a multi-clause instruction. Consider the following script, where each clause has been boxed:

if a=b then
say ‘hello’
else

say ‘bye’

Further, the THENor ELSE parts of thisinstruction might consist of a DGENDpair, in which casethe IF instruction might
consists of an virtually unlimited number of clauses.

Then, some notes on the syntax diagrams used in the following descriptions of the instructions. The rules applying to these
diagrams can belisted as:

e Anything writtenin courier font in the syntax diagrams indicates that it should occur as-isin the REXX program.
Whenever something iswritten in italic font, it means that the term should be substituted for another value, expression, ¢
terms.

* Anything contained within matching pairs of square brackets ([...]) are optional, and may be left out.

e Whenever apair or curly bracesis used, it contains two or more subclauses that are separated by the vertical bar (|). It
means that the curly braces will be substituted for one of the subclausesit contains.

e Whenever the ellipsis (...) isused, it indicates that the immediately following subclauses may be repeated zero or more
times. The scope of the ellipsisislimited to the contents of a set of square brackets or curly braces, if it occurs there.

* Whenever the vertical bar | isused in any of the syntax diagrams, it means that either the term to the left, or theterm to
the right can be used, but not both, and at least one of the must be used. This “biseassuniative (can be used in
sequence), and it has lower priority than the square brackets (the scope of the vertical bar located within a pair of square
brackets or curly bracesis limited to the text within those square brackets or curly braces.

* Whenever asemicolon (;) isused in the syntax diagram, it indicates that a clause separator must be present at the point. |
may either be a semicolon character, or an end-of-line.

* Whenever the syntax diagram is spread out over more lines, it means that any of the lines can be used, but that the
individua lines are mutually exclusive. Consider the syntax:

SAY = synbol
string

Thisis equivalent to the syntax:
SAY [synbol | string]
Because in the first of these two syntaxes, the SAY part may be continued at either line.

* Sometimesthe syntax of an instruction is so complex that parts of the syntax has been extracted, and is shown below in it
expanded state. The following is an example of how thislooks:

SAY sonet hing TO soneone

sonething : = H
HELLO
BYE

someone : = THE BGSS

YOUR NEI GHBOR

Y ou can generally identify these situations by the fact that they comes a bit below the real syntax diagram, and that
they contains a colon character after the name of the term to be expanded.

In the syntax diagrams, some generic names have been used for the various parts, in order to indicate common attributes for tl
term. For instance, whenever aterm in the syntax diagramsiscalled expr, it meansthat any valid REXX expression may oc
instead of that term. The most common such names are;

condition

Indicates that the subclause can be any of the names of the conditions, e.g. SYNTAX, NOVALUE, HALT, etc.

expr
Indicates that the subclause can be any valid REXX expression, and will in general be evaluated as normal during
execution.

statement
Indicates that extra clauses may be inserted into the instruction, and that exactly one of them must be a true statemen

string
Indicates that the subclause is a constant string, i.e. either enclosed by single quotes ('...") or double quotes ("

symbol
Indicates that the subclause is a single symbol. In general, whesyaevst is used as the name for a subclause, it
means that the symbol will not automatically be expanded to the value of the symbol. But instead, some operz
performed on the name of the symbol.

template
Indicates that the subclause is a parsing template. The exact syntax of this is explain in a chapter on tracing, t
written later.

In addition to this, variants may also exists. These variants will have an extra letter or number appended to the name «
subclause, and is used for differing between two or more subclauses having the same “type” in one syntax diagram. Ir
of other names for the subclauses, these are explained in the description of the instruction.

4.1 The ADDRESS Instruction

ADDRESS [environnent [comand] | ;
[[VALUE] expression] ;

The ADDRESS instruction controls where commands to external environment are sent. Krbdatbnment andcommand ar
specified, the given command will be executed in the given environment. The effect is the same as issuing an express
executed as a command (see secfiommands), except that the environment in which it is to be executed can be explici
specified in theADDRESS clause. In this case, the special varigR@&will be set as usual, and tERROR or FAI LURE
conditions might be raised, as for normal commands.

The environment term must be a symbol or a literal string. If it is a symbol, its “name” is used, i.e. it is not tail substitutec
swapped for a variable value. Ttmmmand andexpression terms can be anREXX expression.

REXX maintains a list of environments, the size of this list is at least two. If you select a new environment, it will be pu
front of this list, possibly squeezing the backend environment out of the list. Note ¢biahibnd is specified, the contents
the environment stack is not changed. If you czoihmand, environment will always be put in the front of the list of
environments.

What happens if you specify an environment that is already in the list, is not completely defined. Strictly speaking,you
end up with both entries in the list pointing to the same environment, but some implementations will probably handle t
reordering the list, leaving the selected environment in the front.

If you do not specify any subkeywords or parameted®BRESS, the effect is to swap the two first entries in the list of
environments. Consequently, executhiigDRESS multiple times will toggle between two environments.

The second syntax form ADDRESS is a special case of the first form witbmmand omitted. If the first token afteADDRE

is VALUE, then the rest of the clause is taken to be an expression, naming the environment which is to be made the cu
environment. Usin/ALUE makes it possible to circumvent the restriction that the name of the new environment must b
symbol or literal string. However, you can not combine M&hUE andcommand in a single clause.

Example: Examples of the ADDRESS instruction
You can omit the/ALUE keyword if the expression followirADDRESS starts with a token which is neither a symbol or a

literal string. Confused? Let's look at some examples:

9

ADDRESS COMVAND

ADDRESS SYSTEM ‘copy’ fromfile tofile
ADDRESS system

ADDRESS VALUE newenv

ADDRESS

ADDRESS (oldenv)

Thefirst of these sets the environment COMMANE the current environment. The second performs the command copy inth
environment SYSTEMusing the values of the symbolsfromfile and tofile as parameters. Note that thiswill not set
SYSTEMs current environment. The third example sets SYSTEMas current environment (it will be automatically converted
upper case). The fourth example sets as the current environment the contents of the symbol newenv, pushing SYSTEMlowr
onelevel in the stack. Thefifth clause swap the two uppermost entries on the stack; and SYSTEMends up at thetop. Thelas
example sets the current environment to whatever is the value of the symbol oldenv .

Example: The VALUE subkeyword

Let uslook abit closer at the last example. Note the differences between the two clauses:
ADDRESS OLDENV

ADDRESS (OLDENV)

Thefirst of these setsthe current default environment to OLDENVYwhile the second sets it to the value of the symbol OLDEN
Actudly, in the latter, the subkeyword VALUEhas been omitted, which islegal since the parameter starts with a special
character.

If you are still confused, Don’t Panic; the syntaYABDRESS is somewhat bizarre, and you should not put too much effort
learning all aspects of it. Just make sure that you understand how to use it in simple situations. Chances are that you
have use for its more complicated variants for quite some time.

Then, what names are legal as environments? Well, that is implementation-specific, but some names seems to be in
use. The nam€OVMAND is sometimes used to refer to an environment that sends the command to the operating syster
Likewise, the name of the operating system is often used foilQM& UNI X, etc.). You have to consult the implements
specific documentation for more information about this. Actually, there is not really any restrictions on what constgutes
environment name (even the nullstring is legal). Some interpreters will allow you to select anything as current environr
and if it is an illegal name, the interpreter will complain only when the environment is actually tried used. Other
implementations may not allow you to select an invalid environment name at all.

Nor does the definition d®REXX say anything about which environment is preselected when you invoke the interpreter,
although TRL defines that one environment is automatically preselected when startiiREXXascript. Note that there do

not exist anyNONE environment in standarBEXX, i.e. an environment that ignores commands. But some interpreters
implement theTRACE setting ??? which accomplish this.

The list of environments will be saved across subroutine calls; so the effectAIRESS clauses in the subroutine will
cease upon return from the subroutine.

4.2 The ARGInstruction
ARG [tenplate] ;

The ARGinstruction will parse the argument strings at the current procedural level into the template. Parsing will be pel
in upper case mode. This clause is equivalent to:

10

PARSE UPPER ARG [tenplate] ;

For more information, see the PARSE instruction. Note that thisis the only situation where a multistring template is relevant.
Example: Beware assignments

The similarity between ARGand PARSE UPPER ARGhas one exception. Suppose the PARSE UPPER ARGhas an absol ut
positional pattern as the first element in the template, like:

parse upper arg =(foo) bar

Thisis not equivaent to an ARGinstruction, because ARGinstruction would become an assignment. A simple trick to avoid
this problem isjust to prepend a placeholder period (.) to the pattern, thus the equal sign (=) is no longer the second token ir
the new ARG nstruction. Also, unless the absolute positional pattern isindirect, the equal sign can be removed without
changing the meaning of the statement.

4.3 The CALL Instruction

CALL = routine [paraneter]
[, [paraneter | ... 1 ;

{ ON| OFF } condition [NAME [abel] ;

The CALL instruction invokes a subroutine, named by routine, which can be internal, built-in, or external; and the three
repositories of functions are searched in that order. are searched for routine in that order. The token routine must be either a
literal string or asymbol (which istaken literally). However, if routineisaliteral string, the pool of internal subroutinesis n
searched. Note that some interpreters may have additional repositories of labelsto search.

Ina CALL instruction, each parameter is evaluated, strictly in order from left to right, and passed as an argument to the
subroutine. A parameter might be left out (i.e. an empty argument), which is not the same as passing the nullstring as
argument.

Users often confuse a parameter which is the nullstring with leaving out the parameter. However, thisis two very different
situations. Consider the following calls to the built-in function TRANSLATE() :

say translate(‘abcDEF’) /* says ABCDEF */
say translate(‘fabcDEF’,”") /* says abcDEF */

say translate(‘abcDEF’,,”") /*says‘ '*/

The TRANSLATE() function is able to differ between receiving the nullstring (i.e. a defined string having zero length), from
the situation where a parameter was not specified (i.e. the undefined string). Since TRANSLATE() is one of the few functior
where the parameters’ default values are very different from the nullstring, the distinction becomes very visible.

For theCALL instruction, watch out for interference with line continuation. If there are trailing commas, it might be
interpreted as line continuation. If@ALL instruction use line continuation between two parameters, two commas are
one to separate the parameters, and one to denote line continuation.

A number of settings are stored across internal subroutine calls. An internal subroutine will inherit the values in effect \
the call is made, and the settings are restored on exit from the subroutine. These settings are:

« Conditions traps, see chapteonditions.

e Current trapped condition, see sectiomnsS.

* NUMERI Csettings, see sectidfumeric.

« ADDRESS environments, see sectiéwaldress.

* TRACE mode, see sectiditace and chapter [not yet written].
« The elapse time clock, see secfiome.

11

Also, the OPTI ONS settings may or may not be restored, depending on the implementation. Further, a number of other thing
may be saved acrossinternal subroutines. The effect on variables are controlled by the PROCEDURE instruction in the
subroutine itself. The state of all DO-loops will be preserved during subroutine calls.

Example: Subroutines and trace settings

Subroutines can not be used to set various settings like trace settings, NUMERI C settings, etc. Thus, the following code will n
work as intended:

say digits() /* says 9, nmaybe */

call inc_digits
say digits() /* still says 9 */
exit
inc_digits:
nuneric digits digits() + 1
return

The programmer probably wanted to call aroutine which incremented the precision of arithmetic operations. However, since
the setting of NUVERI C DI G TSis saved across subroutine calls, the new value setini nc_di gi t s islost at return from
that routine. Thus, in order to work correctly, the NUMERI Cinstruction must be located in the main routine itself.

Built-in subroutines will have no effect on the settings, except for explicitly defined side effects. Nor will external subroutine
change the settings. For all practical purposes, an external subroutine is conceptually eguivalent to reinvoking the interpreter i
atotally separated process.

If the name of the subroutine is specified by aliteral string, then the name will be used as-is; it will not be converted to upper
case. Thisisimportant because a routine which contains lower case letters can only be invoked by using aliteral string as the
routine name in the CALL instruction.

Example: Labels are literals

Labels are literal, which means that they are neither tail-substituted nor substituted for the value of the variable. Further, this
also means that the setting of NUVERI C DI G TS has no influence on the section of |abels, even when the labels are numeric
symbols. Consider the following code:

call 654.32
exit
654. 321:
say here
return
654. 32:
say there
return

In this example, the second of the two subroutines are always chosen, independent of the setting of NUMERI C DI G TS.
Assuming that NUMERI C DI G TS are set to 5, then the number 654.321 is converted to 654.32, but that does not affect
labels. Nor would a statement CALL 6. 5432E2 call the second label, even though the numeric value of that symbol is equa
to that of one of the labels.

The called subroutines may or may not return data to the caller. In the calling routine, the special variable RESULT will be s
to the return value or dropped, depending on whether any data was returned or not. Thus, the CALL instruction is equivalent
calling the routine as a function, and assigning the return valueto RESULT, except when the routine does not return data.

In REXX, recursive routines are allowed. A minimum number of 100 nested internal and external subroutine invocations, anc
support for aminimum of 10 parameters for each call are required by REXX. See chapter Limits for more information
concerning implementation limits.

12

When the token following CALL is either ON or OFF, the CALL instruction is not used for calling a subroutine, but for setting
up condition traps. In this case, the third token of the clause must be the name of a condition, which setup isto be changed.

If the second token was ON, then there can be either three or five tokens. If the five token version is used, then the fourth toke
must be NAME and the fifth token istaken to be the symbolic name of alabel, which is the condition handler. This name can k
either a constant string, or a symbol, which istaken literally. When OFF is used, the named condition trap is turned off.

Note that the ON and OFF forms of the CALL instruction were introduced in TRL2. Thus, they are not likely to be present or
older interpreters. More information about conditions and condition traps are given in achapter Conditions.

4.4 The DOEND Instruction

DO [repetitor] [conditional] ;
[clauses]
END [synbol] ;

repetitor : = synbol = expri [TO exprt]
[BY exprb] [FOR exprf]
exprr
FOREVER
condi tional : = VWH LE exprw
UNTI L expru

The DO'END instruction is the instruction used for looping and grouping several statements into one block. Thisisamulti-
clause instruction.

The most simple case is when thereisno repetitor or conditional, in which case it works like BEG NENDin Pascal or { ...} i
C. l.e. it groups zero or more REXX clauses into one conceptua statement.

The repetitor subclause controls the control variable of the loop, or the number of repetitions. The exprr subclause may speci
a certain number of repetitions, or you may use FOREVERto go on looping forever.

If you specify the control variablesymbol, it must be avariable symbol, and it will get theinitial value expri at the start of the
loop. At the start of each iteration, including the first, it will be checked whether it has reached the value specified by exprt. ¢
the end of each iteration the value exprb is added to the control variable. The loop will terminate after at most exprf iteration:
Note that all these expressions are evaluated only once, before the loop is entered for the first iteration.

Y ou may also specify UNTI L or VWHI LE, which take a boolean expression. WHI LE is checked before each iteration,
immediately after the maximum number of iteration has been performed. UNTI L is checked after each iteration, immediately
before the control variable isincremented. It is not possible to specify both UNTI L and WHI LE in the same DOinstruction.

The FOREVER keyword is only needed when there is no conditional, and the repetitor would also be empty if FOREVER was
not specified. Actualy, you could rewrite thisasDO WHI LE 1. Thetwo forms are equivalent, except for tracing output.

The subclauses TO, BY, and FOR may come in any order, and their expressions are evaluated in the order in which they occur
However, the initial assignment must always come first. Their order may affect your program if these expressions have any si

effects. However, thisis seldom a problem, sinceit is quite intuitive. Note that the counting of iterations, if the FOR subclau
has been specified, is never affected by the setting of NUMERI C DI G TS.

Example: Evaluation order

What may prove aredl trap, isthat although the value to which the control variable is set is evaluated before any other
expressionsin the repetitor, it is assigned to the control variable after al expressionsin the repetitor have been evaluated.

The following code illustrates this problem:

13

ctrl =1

do ctrl=f(2) by f(3) to f(5)
call func(6)

end

call func(7)

exit

f:
say ‘ctrl="ctrl ‘arg="arg(1)
return arg(1)

This code produces the following output:

ctrl=1 arg=2
ctrl=1 arg=3
ctrl=1 arg=5
ctrl=2 arg=6
ctrl=5 arg=6
ctrl=8 arg=7

Make sure you understand why the program produces this output. Failure to understand this may give you a surprise later,
when you happen to write a complex DGinstruction, and do not get the expected resuilt.

If the TOexpression is omitted, thereis no checking for an upper bound of the expression. If the BY subclause is omitted, the
the default increment of 1is used. If the FORsubclause is omitted, then there is no checking for a maximum number of
iterations.

Example: Loop convergence For the reasons just explained, the instruction:

do ctrl=1
nop /* and other statements */
end

will start with CTRLbeing 1, and then iterate through 2, 3, 4, ..., and never terminate except by LEAVE RETURNSIGNAL,
EXIT.

Although similar constructs in other languages typically provokes an overflow at some point, something “strange”thapy
REXX. Whenever the value of ctrl becomestoo large, the incrementation of that variable produces aresult that isidentical
totheold value of ctrl . For NUMERIC DIGITS set to 9, this happenswhen ctrl becomes 1.00000000E+9. When adding

to this number, the result is still 1.00000000E+9. Thus, the loop “converges” at that value.

If the value oNUMERI C DI G TSis 1, then it will “converge” at 10, or 1E+1 which is the “correct” way of writing that

number undeNUMERI C DI G TS 1. You can in general disregard loop “convergence”, because it will only occur in ve
rare situations.

Example: Difference between UNTI L and WHI LE

One frequent misunderstanding is that il LE andUNTI L subclauses of tHeO'END instruction are equivalent, excer
VHI LE is checked before the first iteration, whiT1 L is first checked before the second iteration.

This may be so in other languages, buREEXX. Because of the order in which the parts of the loop are performed, there
other differences. Consider the following code:

count = 1

do i=1 while count \=5
count = count + 1

end

say i count

count = 1

14

do i=1 until count=5
count = count + 1

end

say i count

After thefirst loop, the numbers 6 and 5, while in the second loop, the numbers 5 and 5 are written out. The reason isthat a
WHI LE clause is checked after the control variable of the loop has been incremented, but an UNTI L expression is checked
before the incrementation.

A loop can be terminated in several ways. A RETURNor EXI T instruction terminates all active loopsin the procedure levels

terminated. Further, a SI GNAL instruction transferring control (i.e. neither a SI GNAL ONnor SI GNAL OFF) terminates al

loops at the current procedural level. This applies even to “impl&iGNAL instructions, i.e. when triggering a condition
handler by the method & GNAL. A LEAVE instruction terminates one or more loops. Last but not least, a loop can

terminate itself, when it has reached its specified stop conditions.

Note that theSl GNAL instruction terminates also non-repetitive loops (or ratB&END pairs), thus after asl GNAL
instruction, you must not execute BND instruction without having executed its correspondd@first (and after thesSI GN
instruction). However, as long as you stay away frontEMias, it is all right according to TRL to execute code within a loop
without having properly activated the loop itself.

Note that on exit from a loop, the value of the control variable has been incremented once after the last iteration,af the
the loop was terminated by thél LE expression, by exceeding the number of max iterations, or if the control variable
exceeded the stop value. However, the control variable has the value of the last iteration if the loop was terminated by
UNTI L expression, or by an instruction inside the loop (EEAVE, SI GNAL, etc.).

The following algorithm inREXX code shows the execution db@instruction, assuming thaxpri, exprt, exprb, exprf,
exprw, expru, andsymbol have been taken from the syntax diagrarb@f

@xpri = expri
@xprt = exprt
@xprb = exprb
@xprf = exprf
@ters =0

synbol = @xpri

start_of _| oop:
if symbol > @xtrt then signal after | oop
if @ters > @xprf then signal after_| oop
if exprwthen signal after_Iloop
i nstructions
end_of _| oop:
if \expru then signal after_| oop
synmbol = synbol + @xprb
signal start_of | oop

after | oop:

Some notes are in order for this algorithm. First, it usesSI@NAL instruction, which is defined to terminate all active
This aspect of th8l GNAL instruction has been ignored for the purpose of illustratingXBeand consequently, the code
shown above is not suitable for nested loops. Further, the order of the first four statements should be identical tmthe o
the corresponding subclauses in thpetitor. The code has also ignored that iNél LE and theUNTI L subclauses can nbt
used in the samBOinstruction. And in addition, all variables starting with the at si@), @re assumed to be internal
variables, private to this particular loop. Withimstructions, a LEAVE instruction is equivalent tei gnal after | oop,
while al TERATE instruction is equivalent tei gnal end_of _| oop.

4.5 The DROP Instruction
DROP synbol [symbol ...] ;

15

The DROP instruction makes the named variables uninitialized, i.e. the same state that they had at the startup of the program.
Thelist of variable names are processed strictly from left to right and dropped in that order. Consequently, if one of the
variablesto be dropped is used in atail of another, then the order might be significant. E.g. the following two DROP
instructions are not equivalent:

bar =‘a’
drop bar foo.bar /* drops ‘BAR’ and ‘FOO.BAR’ */
bar =&’

drop foo.bar bar /* drops ‘FOO.a’ and ‘BAR’

The variable terms can be either a variable symbol or a symbol enclosed in parentheses. The former form isfirst tail-
substituted, and then taken as the literal name of the symbol to be dropped. The result names the variable to drop. In the latter
form, the value of the variable symbol inside the parenthesesiis retrieved and taken as a space separated list of symbols. Each
these symbols istail-substituted (if relevant); and the result is taken as the literal name of a variable to be dropped. However,
this process is not recursive, so that the list of names referred to indirectly can not itself contain parentheses. Note that the
second form was introduced in TRL2, mainly in order to make INTERPRETunnecessary.

In general, things contained in parentheses can be any valid REXX expression, but this does not apply to the DROPPARSE
and PROCEDURIstructions.

Example: Dropping compound variables

Note a potential problem for compound variables: when a stem variable is set, it will not set a default value, rather it will assit

“all possible variables” in that stem collection at once. So dropping a compound variable in a stem collection for which
stem variable has been set, will set that compound variable to the original uninitialized value; not the value of the sterr
variable. See sectiokssign for further notes on assignments. To illustrate consider the code:

foo. = ‘default’
drop baz bar foo.bar
say foo.bar foo.baz /* says ‘FOO.BAR default’ */

In this example, the SAYinstruction writes out the value of the two compound variables FOO.BARand FOO.BAZ When
performing tail-substitution for these, the interpreter finds that both BARand BAZ are uninitialized. Further, FOO.BARhas
also been made uninitialized, while FOO.BAZhas the value assigned to it in the assignment to the stem variable.

Example: Tail-substitution in DROP

For instance, suppose that the variable FOOhas the value bar . After being dropped, FOOwill have its uninitialized value,
whichisthe same asits name: FOO If the variable to be dropped is a stem variable, then both the stem variable and all
compound variables of that stem become uninitialized.

bar =123
drop foo.bar /* drops ‘FO0.123" */

Technically, it should be noted that some operations involving dropping of compound variables can be very space consuming
Even though the standard does not operate with the term “default value” for the value assigned to a stem variable, tha
way in which it is most likely to be implemented. When a stem is assigned a value, and some of its compound variable
dropped afterwards, then the interpreter must use memory to store references to the variables dropped. This might se
counterintuitive at first, since dropping ought to release memory, not allocate more.

There is a parallel betwedROP and PROCEDURE EXPOSE However, there is one important difference, although
PROCEDURE EXPOSE will expose the name of a variable enclosed in parentheses before starting to expose the symbc
variable refers to, this is not so fDROP. If DROP had mimicked the behavior BROCEDURE EXPOSE in this matter, then
the whole purpose of indirect specifying of variableBROP would have been defeated.

Dropping a variable which does not have a value is not an error. There is no upper limit on the number of variablés th
dropped in on®ROP clause, other than restrictions on the clause length. If an exposed variable is dropped, the vai

16

caller is dropped, but the variable remains exposed. If it reassigned avalue, the value is assigned to a variable in the caller
routine.

4.6 The EXI T Instruction
EXIT [expr] ;

Terminates the REXX program, and optionally returns the expression expr to the caller. If specified, expr can be any string.
some systems, there are restrictions on the range of valid values for the expr. Often the return expression must be an integer,
even anon-negative integer. Thisisnot really arestriction on the REXX language itself, but a restriction in the environment
in which the interpreter operates, check the system dependent documentation for more information.

If expr is omitted, nothing will be returned to the caller. Under some circumstances that is not legal, and might be handled as

an error or adefault value might be used. The EXI T instruction behaves differently in a “program” than in an external
subroutine. In a “program”, it returns control to the caller e.g. the operating system command interpreter. While for an
external routine, it returns control to the calliREEXX script, independent of the level of nesting inside the external routine
being terminated.

RETURN EXIT
At the main level of the program Exits program Exits program
At an internal subroutine level of the program Exits subroutine, and retlxiss program
caller
At the main level of an external subroutine Exits the external subrouBimés the external subrot

At a subroutine level within an external subrouixits the subroutine, returrirExits the external subrot
calling routine within externa
subroutine script

Actions of RETURN and EXI T Instructions

If terminating an external routine (i.e. returning to the calliR§XX script) any legaREXX string value is allowed as a 't
value. Also, no return value can be returned, and in both cases, this information is successfully transmitted backnip the
routine. In the case of a function call (as opposed to a subroutine call), returning no value walidigeX condition {44}
The table above describes the actions taken bigXh@ and RETURN instruction in various situations.

4.7 The | F/THENELSE Instruction

IF expr [;] THEN [;] statenent
[ELSE [;] statenent |

This is a normal if-construct. First the boolean expreseign is evaluated, and its value must be either 1 (everything e
is a syntax error which rais&YNTAX condition number {34}). Then, the statement following eit&{EN or ELSE is
executed, depending on whetlezpr wasl or 0, respectively.

Note that there must come a statement aftdEN andELSE. It is not allowed to put just a null-clause (i.e. a comment or a
label) there. If you want thEHEN or ELSE part to be empty, use tiNOP instruction. Also note that you can not directly
more than one statement affBHEN or EL SE; you have to package them ib®END pair to make them a single, concey
statement.

After THEN, afterELSE, and beford HEN, you might put one or more clause delimiters (newlines or semicolons), but

not required. Also, th&L SE part is not required either, in which case no code is execuezgrifs false (evaluates @). Nc
that there must also be a statement separator bEfBE, since the that statement must be terminated. This also applies t
statement afteELSE. However, sincetatement includes a trailing clause delimiter itself, this is not explicitly shown in the
syntax diagram.

Example: Dangling ELSE

17

Note the case of the “danglin@L SE. If an ELSE part can correctly be thought of as belonging to more tharh BAEHEN
instruction pair, it will be parsed as belonging to the closest (i.e. innermBstjstruction:

parse pull foo bar
if foo then
i f bar then
say ‘foo and bar are true’
else
say ‘one or both are false’

In this code, the ELSEinstruction is nested to the innermost IF , i.e. to IF BAR THEN .

4.8 The | NTERPRET Instruction
INTERPRET expr ;

The INTERPRETInstruction is used to dynamically build and execute REXX instructions during run-time. First, it evaluates
the expression expr, and then parses and interprets the result as a (possibly empty) list of REXX instructions to be executed.
For instance:

foo = ‘hello, world’
interpret ‘say “foo’!”

executes the statement SAY “hello, world!” after having evaluated the expression following INTERPRET This

example shows several important aspects of INTERPRET Firstly, it's very easy to get confused by the levels of quotes, anc
bit of caution should be taken to nest the quotes correctly. Secondly, thd M&ERPRET does not exactly improve
readability.

Also, | NTERPRET will probably increase execution time considerably if put inside loops, since the interpreter may |
reparse the source code for each iteration. Many optimRE¥X interpreters (and in particuldEXX compilers) has little
no support fot NTERPRET. Since virtually anything can happen inside it, it is hard to optimize, and it often invalidates
assumptions in other parts of the script, forcing it to ignore other possible optimizations. Thus, you shoultNaZ&¥eRE
when speed is at a premium.

There are some restrictions on which statements can be insiddT&RPRET statement. Firstly, labels cannot occur there.
TRL states that they are not allowed, but you may find that in some implementations labels occurring there will not affe
label symbol table of the program being run. Consider the statement:

interpret ‘signal there; there: say hallo’
there:

This statement transfers control to the label THERE N the program, never to the THERHabel inside the expression of the
INTERPRETInstruction. Equivalently, any SIGNAL to alabel THEREe sawhere in the program never transfers control to th
label inside the INTERPRETInstruction. However, labels are strictly speaking not allowed inside INTERPRETStrings.

Example: Self-modifying Program

Thereisanideafor a self-modifying program in REXX which isbasically like this:

string = "“
do i=1 to sourceline()

string = string *;’ sourceline(i)
end

string = transform(string)
interpret string
exit

transform: procedure
parse arg string

18

/* do sone transformation on the argument */
return string

Unfortunately, there are several reasons why this program will not work in REXX, and it may be instructive to investigate wt
Firstly, it usesthe label TRANSFORM which is not allowed in the argument to | NTERPRET. The interpret will thusrefer to t
TRANSFORMroutine of the “outermost” invocation, not the one “in” thTERPRET string.

Secondly, the program does not take line continuations into mind. Wors8QWRCEL | NE() built-in function refers to th
data of the main program, even inside the code executed bWIHERPRET instruction. Thirdly, the program will never
as it will nest itself up till an implementation-dependent limit for the maximum number of neBIBERPRET instructions.

In order to make this idea work better, temporary files should be used.

On the other hand, loops and other multi-clause instructions) likkand SELECT occur inside ah NTERPRET expression,
but only if the whole instruction is there; you can not start a structured instruction insiddT&RPRET instruction and en
outside, or vice-versa. However, the instrucmGNAL is allowed even if the label is not in the interpreted string. Also, the
instructionsl TERATE andLEAVE are allowed in aih NTERPRET, even when they refer to a loop that is external to the
interpreted string.

Most of the time] NTERPRET is not needed, although it can yield compact and interesting code. If you do not strictly ne
| NTERPRET, you should consider not using it, for reasons of compatibility, speed, and readability. Many of the traditio
of | NTERPRET have been replaced by other mechanisms in order to decrease the neceBBIBRPRET; e.g. indirect
specification of variables IBXPOSE and DROP, the improvedvVALUE() built-in function, and indirect specification of
patterns in templates.

Only semicolon;() is allowed as a clause delimiter in the string interpreted byNIFERPRET instruction. The colon of lab
can not be used, since labels are not allowed. Nor does specific end-of-line character sequences have any defined m
there. However, most interpreters probably allow the end-of-line character sequence of the host operating systenvas ¢
clause delimiters. It is interesting to note that in the context of IEERPRET instruction, an implicit, trailing clause
delimiter is always appended to the string to be interpreted.

49 The | TERATE Instruction
| TERATE [symbol] ;

Thel TERATE instruction will iterate the innermost, active loop in which tHEERATE instruction is located. I§ymbol is
specified, it will iterate the innermost, active loop haveymbol as control variable. The simpIXYEND statement without
repetitor andconditional is not affected by TERATE. All active multiclause structure®Q, SELECT, and| F) within the lo
being iterated are terminated.

The effect of alh TERATE is to immediately transfer control to ti#\D statement of the affected loop, so that the next |
iteration of the loop can be started. It only affects loops on the current procedural level. All actions normally assthciate
the end of an iteration is performed.

Note thatsymbol must be specified literally; i.e. tail substitution is not performed for compound variables. So if the contr
variable in theDOinstruction isFOO. BAR, thensymbol must usd=Q0. BARif it is to refer to the control variable, no matter
the value of th&AR variable.

Also note that TERATE (andLEAVE) are means of transferring control in the program, and therefore they are related to
SI GNAL, but they do have the effect of automatically terminating all active loops on the current procedural level, which
SI GNAL has.

Two types of errors can occur. Eittsgmbol does not refer to any loop active at the current procedural level;sgmbbl is

not specified) there does not exist any active loops at the current procedural level. Both errors are repaeEaas
condition {28}.

19

410 The LEAVE Instruction
LEAVE [synbol] ;

This statement terminates the innermost, active loop. If symbol is specified, it terminates the innermost, active loop having
symbol as control variable. Asfor scope, syntax, errors, and functionality, it isidentical to | TERATE, except that LEAVE
terminates the loop, while | TERATE lets the loop start on the next iteration normal iteration. No actions normally associated
with the normal end of an iteration of aloop is performed for a LEAVE instruction.

Example: Iterating a simple DO/END

In order to circumvent this, asimple DOQ'END can be rewritten asthis:

if foo then do until 1
say ‘This is a simple DO/END group’
say ‘but it can be terminated by’
leave
say ‘iterate or leave’

end

This shows how ITERATE has been used to terminate what for al practical purposesisasimple DGENDgroup. Either
ITERATE or LEAVECcan be used for this purpose, although LEAVEis perhaps marginally faster.

4.11 The NOP Instruction
NOP ;

The NOPinstruction is the “no operation” statement; it does nothing. Actually, that is not totally true, sink@rRHastructi
is a “real” statement (and a placeholder), as opposed to null clauses. I've only seen this used in two circumstances.

« After anyTHEN or ELSE keyword, where a statement is required, when the programmer wants anTetiptyr EL SE
part. By the way, this is the intended us&NGP. Note that you can not use a null clause there (label, comment, gr en
lines), since these are not parsed as “independent” statements.

* | have seen it used as “trace-bait”. That is, when you start interactive trace, the statement immediatelyT&tteEhe
instruction will be executed before you receive interactive control. If you don’t want that to happen (or may#ethe
instruction was the last in the program), you need to add an extra dummy statement. However, in this contex, lak
comments can be used, too.

4.12 The NUMERI ClInstruction

NUMERIC = DIGA TS [expr] ;
FORM[SCIENTIFIC | ENG NEERING | [VALUE] expr] ;
FUzz [expr 1 ;

REXX has an unusual form of arithmetic. Most programming languages use integer and floating point arithmetic, whe
numbers are coded as bits in the computers native memory words. HdREX&ruses floating point arithmetic of arbitr:
precision, that operates on strings representing the numbers. Although much slower, this approach gives lots of intere
functionality. Unless number-crunching is your task, the extra time spent by the interpreter is generally quite acceptak
often almost unnoticeable.

The NUMERI Cstatement is used to control most aspects of arithmetic operations. It has three distindDf@InsS, FORM
andFUZZ; which to choose is given by the second token in the instruction:

DATS
Is used to set the number of significant digits in arithmetic operations. The initial value is 9, which is also the d
value ifexpr is not specified. Large values for G TS tend to slow down some arithmetic operations considerably
specified gxpr must be a positive integer.

20

FUzz
Isused in numeric comparisons, and itsinitial and default value is 0. Normally, two numbers must have identical
numeric values for a number of their most significant digitsin order to be considered equal. How many digit are
considered isdetermined by DI G TS. If DI G TSis 4, then 12345 and 12346 are equal, but not 12345 and 12356.
However, when FUZZ is non-zero, then only the DI G TS minus FUZZ most significant digits are checked. E.g. if
Dl A TSis4 and FUZZ are 2, then 1234 and 1245 are equal, but not 1234 and 1345.

The value for FUZZ must be a non-negative integer, and less than the value of DI G TS. FUZZ is seldom used, but i
useful when you want to make comparisons less influenced by inaccuracies. Note that using with values of FUZZ th
iscloseto DI G TS may give highly surprising results.

FORM
I's used to set the form in which exponential numbers are written. It can be set to either SCI ENTI FI Cor
ENG NEERI NG The former uses a mantissain the range 1.000... to 9.999..., and an exponent which can be any
integer; while the latter uses amantissain the range 1.000... to0 999.999..., and an exponent which is dividable by 3.
Theinitial and default settingis SCI ENTI FI C. Following the subkeyword FORMmay be the subkeywords
SCI ENTI FI Cand ENG NEERI NG or the subkeyword VALUE. In the latter case, the rest of the statement is
considered an expression, which will evaluate to either SCI ENTI FI Cor ENA NEERI NG However, if the first tok
of the expression following VALUE is neither a symbol nor literal string, then the VALUE subkeyword can be omitte

The setting of FORMnever affects the decision about whether to choose exponential form or normal floating point form; it onl
affects the appearance of the exponential form once that form has been selected.

Many things can be said about the usefulness of FUZZ. My impression isthat it is seldom used in REXX programs. One
problemisthat it only addresses relative inaccuracy: i.e. that the smaller value must be within a certain range, that is
determined by a percentage of the larger value. Often one needs absolute inaccuracy, e.g. two measurements are equal if their
difference are less than a certain absolute threshold.

Example: Simulating relative accuracy with absolute accuracy

As explained above, REXX arithmetic has only relative accuracy, in order to obtain absolute accuracy, one can use the
following trick:

nurreric fuzz 3
if a=b then

say ‘relative accuracy’
if abs(a-b)<=500 then

say ‘absolute accuracy’

Inthefirst IF instruction, if Ais 100,000, then the range of valuesfor B which makes the expression true is 99,500—1(
i.e. an inaccuracy of about +-500. If A has the value 10,000,000, then B must be within the range 9,950,000—10,049,99!
an inaccuracy of about +-50,000.

However, in the second IF instruction, assuming A is 100,000, the expression becomes true for values of B in the range
99,500—100,500. Assuming thatis 10,000,000, the expression becomes true for valugsahe range 9,999,500—
10,000,500.

The effect is largely to force an absolute accuracy for the second example, no matter what the AaloéB afe. This
transformation has taken place since an arithmetic subtraction is not affectedNtyMERI C FUZZ, only numeric
comparison operations. Thus, the effedNOVERI C FUZZ on the implicit subtraction in the operatienin the firstl F has
been removed by making the subtraction explicit.

Note that there are some minor differences in how numbers are rounded, but this can be fixed by transforming the exg
into something more complex.

To retrieve the values set fNUMERI C, you can use the built-in functio G TS() , FORM) , andFUZZ() . These value
are saved across subroutine calls and restored upon return.

21

4.13 The OPTI ONS Instruction
OPTI ONS expr ;

The OPTI ONS instruction is used to set various interpreter-specific options. Itstypical uses areto select certain REXX dialec
enable optimizations (e.g. time versus memory considerations), etc. No standard dictates what may follow the OPTI ONS
keyword, except that it should be avalid REXX expression, which is evaluated. Currently, no specific options are required by
any standard.

The contents of expr is supposed to be word based, and it is the intention that more than one option can be specified in one
OPTI ONSiinstruction. REXX interpreters are specifically instructed to ignore OPTI ONS words which they do not recognize
That way, a program can use run-time options for one interpreter, without making other interpreterstrip when they see those
options. An example of OPTI ONmay be:

OPTI ONS 4. 00 NATI VE_FLOAT

The instruction might instruct the interpreter to start enforcing language level 4.00, and to use native floating point numbersii
stead of the REXX arbitrary precision arithmetic. On the other hand, it might also be completely ignored by the interpreter.

It is uncertain whether modes selected by OPTI ONS will be saved across subroutine calls. Refer to implementation-specific
documentation for information about this.

Example: Drawback of OPTI ONS

Unfortunately, the processing of the OPTI ONS instruction has a drawback. Since an interpreter is instructed to ignore option-
settings that it does not understand, it may ignore options which are essential for further processing of the program. Continuir
might cause afatal error later, although the behavior that would most precisely point out the problem is a complaint about the
non-supported OPTI ON setting. Consider:

options ‘cms_bifs’
pos = find(haystack, needle)

If this code fragment is run on an interpreter that does not support the cms_bifs option setting, then the OPTIONS
instruction may still seem to have been executed correctly. However, the second clause will generally crash, since the FIND(
function is still not available. Even though the real problemisin the first line, the error message is reported for the second lini

4.14 The PARSE Instruction

PARSE [UPPER] type[tenplate];
t ype = { ARG | LINEIN | PULL | SOURCE | VERSION }
VALUE [expr] WITH
VAR synbol

The PARSEnstruction takes one or more source strings, and then parses them using the template for directions. The process
parsing is one where parts of a source string are extracted and stored in variables. Exactly which parts, is determined by the
patterns. A complete description of parsing is given in chapter [not yet written].

Which strings are to be the source of the parsing is defined by the type subclause, which can be any of:

ARG
The data to use as the source during the parsing is the argument strings given at the invocation of this procedure leve
Note that thisis the only case where the source may consist of multiple strings.

LI NEI N.
Makes the PARSEnstruction read aline from the standard input stream, asif the LINEIN() built-in function had
been called. It uses the contents of that line (after stripping off end-of-line characters, if necessary) as the source for
the parsing. This may raise the NOTREAD¥ondition if problems occurred during the read.

PULL.

22

Retrieves as the source string for the parsing the topmost line from the stack. If the stack is empty, the default action
for reading an empty stack istaken. That is, it will read awhole line from the standard input stream, strip off any enc
of-line characters (if necessary), and use that string as the source.

SOURCE.

VALUE

The source string for the parsing is a string containing information about how thisinvocation of the REXX interpret
was started. This information will not change during the execution of a REXX script. The format of the string is:

system i nvocation filenane

Here, the first space-separated word (system) is a single word describing the platform on which the system is running
Often, this isthe name of the operating system. The second word describes how the script was invoked. TRL2 sugge
that invocation could be COMVAND, FUNCTI ON, or SUBROUTI NE, but notes that this may be specific to VM/CMS.

Everything after the second word isimplementation-dependent. It isindicated that it should refer to the name of the
REXX script, but the format is not specified. In practice, the format will differ because the format of file names diffe
between various operating systems. Also, the part after the second word might contain other types of information.
Refer to the implementation-specific notes for exact information.

expr WTH.
Thisform will evaluate expr and use the result of that evaluation as the source string to be parsed. The token W TH

may not occur inside expr, sinceit is areserved subkeyword in this context.

VAR synbol .

This form uses the current value of the named variable symbol (after tail-substitution) as the source string to be pars
The variable may be any variable symbol. If the variable is uninitialized, then a NOTREADY condition will be raised

VERSI ON.

This format resembles SOURCE, but it contains information about the version of REXX that the interpreter supports.
The string contains five words, and has the following format:

| anguage | evel date nonth year

Where language is the name of the language supported by the REXX interpreter. This may seem like overkill, since
the language is REXX, but there may be various different dialects of REXX. The word can be just about anything,
except for two restrictions, the first four letters should be REXX (in upper case), and the word should not contain any
periods. [TRL2] indicates that the remainder of the word (after the fourth character) can be used to identify the
implementation.

The second word is the REXX language level supported by the interpreter. Note that thisis not the same as the versit
of the interpreter, although several implementations makes this mistake. Strictly speaking, neither [TRL1] nor
[TRL2] define the format of thisword, but a numeric format is strongly suggested.

The last three words (date, month, and year) makes up the date part of the string. Thisis the release date of the
interpreter, in the default format of the DATE() built-in function.

Much confusion seems to be related to the second word of PARSE VERSI ON It describes the language level, which is not th
same as the version number of the interpreter. In fact, most interpreters have a version numbering which is independent of the
REXX language level. Unfortunately, several interpreters makes the mistake of using thisfield asfor their own version
number. Thisis very unfortunate for two reasons; first, it isincorrect, and second, it makesit difficult to determine which
REXX language level the interpreter is supposed to support.

Chances are that you can find the interpreter version number in PARSE SOURCE or the first word of PARSE VERSI ON

The format of the REXX language level is not rigidly defined, but TRL 1 corresponds to the language level 3.50, while TRL2
corresponds to the language level 4.00. Both implicitly indicate the that language level description isanumber, and states tha

an implementation less than a certain number “may be assumed to indicate a subset” of that language level. However

not be taken to literally, since language level 3.50 has at least two features which are missing in language level 4.00 (the Sce
trace setting, and the PROCEDURE instruction that is not forced to be the first instruction in a subroutine). [TRH:PRICE] give
avery good overview over the varying functionality of different language levels of REXX up to level 4.00.

23

With the release of the ANSI REXX Standard [ANSI] in 1996, the REXX language 1S now rigidly defined. The language le
of ANSI REXXis5.00. Regina is attempting to keep pace with the ANSI Standard. It includes some features of language
level 5.00 such as date and time conversionsin the DATE() and TIME() BIFs plus the new BIFs COUNTSTR() and
CHANGESTR(). Regina does not supply multiple-level error messages as defined in the ANSI Standard, so does not comp
to language level 5.00, but currently is a hybrid between 4.00 and 5.00. Thus PARSE VERSION will return 4.50 :-)

Note that even though the information of the PARSE SOURCE is constant throughout the execution of a REXX script, thisis
not necessarily correct for the PARSE VERSI ON If your interpreter supports multiple language levels (e.g. through the
OPTI ONS instruction), then it will have to change the contents of the PARSE VERSI ONstring in order to comply with
different language levels. To some extent, this may also apply to PARSE SOURCE, since it may have to comply with several
implementati on-specific standards.

After the source string has been selected by the type subclause in the PARSE instruction, this string is parsed into the templatt
The functionality of templatesis common for the PARSE, ARGand PULL instructions, and is further explained in chapter [na
yet written].

4.15 The PROCEDURE Instruction

PROCCEDURE [EXPOCSE [varref [varref ... 111 ;
varref = { synbol | (synbol) }

The PROCEDURE instruction is used by REXX subroutinesin order to control how variables are shared among routines. The
simplest useiswithout any parameters; then all future references to variablesin that subroutine refer to local variables. If ther
is no PROCEDURE instruction in a subroutine, then all variable references in that subroutine refer to variablesin the calling
routine’s name space.

If the EXPOSE subkeyword is specified too, then any references to the variables in the list folEXHOFE refer to local
variables, but to variables in the name space of the calling routine.

Example: Dynamic execution of PROCEDURE

The definition opens for some strange effects, consider the following code:
call testing
testing:
say foo

procedure expose bar
say foo

Here, the first reference #00is to the variablé&-QOin the caller routine’s name space, while the second referee@0

to a local variable in the called routine’s name space. This is difficult to parse statically, since the names to expese (ar

when to expose them) is determined dynamically during run-time. Note that this BROGEDURE is allowed in [TRL1]}
not in [TRL2].

Several restrictions have been imposed®BAOCEDURE in [TRL2] in order to simplify the execution ®#ROCEDURE (and in
particular, to ease the implementation of optimizing interpreters and compilers).

* The first restriction, to which alREXX interpreters adhere as far as | know, is that each invocation of a subroutine (i
not the main program) may execlRBOCEDURE at most once. Both TRL1 and TRL2 contain this restriction. Howeve

more than on®ROCEDURE instruction may exist “in” each routine, as long as at most one is executed at each il
of the subroutine.

* The second restriction is that tlRRROCEDURE instruction must be the first statement in the subroutine. This restrictior
was introduced betwe&EXX language level 3.50 and 4.00, but several level 4.00 interpreters may not enforce it, s

there is no breakage when allowing it.

There are several important consequences of this second restriction:

24

(1) itimplicitly includes the first restriction listed above, since only one instruction can be the first; (2) it prohibits selecting
one of several possible PROCEDURE instructions; (3) it prohibits using the same variable name twice; first as an exposed and
then asalocal variable, asindicated in the example above; (4) it prohibits the customary use of PROCEDURE and

| NTERPRET, where the latter is used to create alevel of indirectness for the PROCEDURE instruction. This particular use ca
be exemplified by:

testing:
interpret ‘procedure expose’ bar

where BARholds alist of variable names which are to be exposed. However, in order to make this functionality available
without having to resort to INTERPRET, which is generally considered “bad” programming style, new functionality ha
added to PROCEDURetween language levels 3.50 and 4.00. If one of the variablesin the list of variablesis enclosed in
parentheses, that means indirection. Then, the variables exposed are: (1) the variable enclosed in parentheses; (2) the value of
that variableis read, and its contentsis taken to be a space-separated list of variable names; and (3) all there variable names a
exposed strictly in order from left to right.

Example: Indirect exposing

Consider the following example:

testing:
procedure expose foo (bar) baz

Assuming that the variable BARholds the value one two , then variables exposed are the following: FOQ BAR ONE TWQ
BAZ, in that order. In particular, note that the variable FOOis exposed immediately before the variables which it names are
exposed.

Example: Order of exposing

Then there is another fine point about exposing, the variables are hidden immediately after the EXPOSEsubkeyword, so they
are not initialy available when the variable list is processed. Consider the following code:

testing:
procedure expose bar foo.bar foo.baz baz

which exposes variables in the order specified. If the variable BARholds the value 123, then FOO.123 is exposed as the
second item, since BARis visible after having already been exposed as the first item. On the other hand, the third item will
aways expose the variable FOO.BAZ no matter what the value of BAZisin the caller, since the BAZ variableisvisible only
after it has been used in the third item. Therefore, the order in which variables are exposed isimportant. So, if acompound
variableis used inside parentheses in an PROCEDURIistruction, then any simple symbols needed for tail substitution must
previously to have been explicitly exposed. Compare this to the DROHnstruction.

What exactly is exposing? Well, the best description isto say that it makes all future uses (within that procedural level) to a
particular variable name refer to the variable in the calling routine rather than in the local subroutine. The implication of thisi
that even if it isdropped or it has never been set, an exposed variable will still refer to the variable in the calling routine.
Another important thing isthat it is the tail-substituted variable name that is exposed. So if you expose FOO.BAR and BAR
has the value 123, then only FOO.123 is exposed, and continuesto be so, even if BARlater changesitsvalueto e.g. 234.

Example: Global variables

A praoblem lurking on new REXX users, isthe fact that exposing a variable only exposesit to the calling routine. Therefore, i
isincorrect to speak of global variables, since the variable might be local to the calling routine. To illustrate, consider the
following code:

foo = ‘bar’
call sub1

25

call sub2
exit

subl: procedure expose foo
say foo /* first says ‘bar’, then ‘FOQO’ */
return

sub2: procedure
say foo /* says ‘FOQ’ */
call subl
return

Here, the first subroutine call in the “main” program writes bat , since the variablEeQOin SUBL refers to thd-OOvarid

in the main program’s (i.e. its caller routine’s) name space. During the second call from the main prfsgB2mwyrites out
FQOQ, since the variable is not exposed. Howe8eB2 callsSUBL, which exposeBQ0, but that subroutine also writes out
FOO. The reason for this is th&XPOSE works on the run-time nesting of routines, not on the typographical structure of tl
code. So th®ROCEDURE in SUB1 (on its second invocation) expo$&30to SUB2, not to the main program as typography
might falsely indicate.

The often confusing consequence of the run-time binding of variable names is that an exposed v&tiilean be boun

to different global variables, depending on from where it was called. This differs from most compiled languages, whicl
their variables independently of from where a subroutine is called. In turn, the consequence of thREX¥hgas severe
problems storing a persistent, static variable which is needed by one subroutine only. A subroutine needing such a val
a count variable which is incremented each time the subroutine is called), must either use an operating system comm:
subroutines calling that subroutine (and their calling routines, etc.) must expose the variable. The first of these getutior
inelegant and non-standard, while the second is at best troublesome and at worst seriously limits the maximum practic
aREXX program. There are hopes that &l UE() built-in function will fix this in future standards ®REXX.

Another important drawback witRROCEDURE is that it only works for internal subroutines; for external subroutines it eitt
do not work, oiPROCEDURE may not even be allowed on the main level of the external subroutine. However, in internal
subroutines inside the external subroutiffROCEDURE is allowed, and works like usual.

4.16 The PULL Instruction
PULL [tenplate] ;

This statement takes a line from the top of the stack and parse it into the variablesempiage. It will also translate the
contents of the line to uppercase.

This statement is equivalent RARSE UPPER PULL [t enpl at e] with the same exception as explained for ARG
instruction. See chapter [not yet written] for a description of parsing and cHataiek for a discussion of the stack.

4.17 The PUSH Instruction
PUSH [expr] ;

The PUSH instruction will add a string to the stack. The string added will either be the result ekgheor the nullstring if
expr is not specified.

The string will be added to the top of the stack (LIFO), i.e. it will be the first line normally extracted from the stack. For
thorough discussion of the stack and the methods of manipulating it, see cBiagiefor a discussion of the stack.

4.18 The QUEUE Instruction
QUEUE [expr] ;
The QUEUE instruction is identical to th®USH instruction, except for the position in the stack where the new line is ir

While thePUSH puts the line on the “top” of the stack, tRRIEUE instruction inserts it at the bottom of the stack (FIFO;
the bottom of the topmost buffer, if buffers are used.

26

For further information, refer to documentation for the PUSH instruction, and see chapter Stack for general information abot
the stack.

4.19 The RETURN Instruction
RETURN [expr] ;

The RETURNinstruction is used to terminate the current procedure level, and return control to alevel above. When RETURN
executed inside one or more nesting construct, i.e. DO, | F, WHEN, or OTHERW SE, then the nesting constructs (in the
procedural levels being terminated) are terminated too.

Optionally, an expression can be specified as an argument to the RETURN instruction, and the string resulting from eval uating
this expression will be the return value from the procedure level terminated to the caller procedure level. Only asingle value

can be returned. When RETURN is executed with no argument, no return value is returned to the caller, and thena SYNTAX

condition {44} israised if the subroutine was invoked as a function.

Example: Multiple entry points

A routine can have multiple exit points, i.e. a procedure can be terminated by any of several RETURN instructions. A routine
can also have multiple entry points, i.e. several routine entry points can be terminated by the same RETURN instruction.
However, thisis rarer than having multiple exit points, because it is generally perceived that it creates less structured and
readable code. Consider the following code:

call foo

call bar

call baz

exit

foo:
if datatype(name, 'w’) then

drop name

signal baz

bar:
name = ‘foo’

baz:

if symbol(‘name’)=="VAR’ then

say ‘NAME currently has the value’ name
else

say ‘NAME is currently an unset variable’
return

Although thisis hardly avery practical example, it shows how the main bulk of aroutine can be used together with three
different entry points. The main part of theroutineisthe IF statement having two SAY statements. It can be invoked by calli
FOQBAR or BAZ

There are several restrictions to this approach. For instance, the PROCEDUR&atement becomes cumbersome, but not
impossible, to use.

Also note that when a routine has multiple exit points, it may choose to return areturn value only at some of those exit points
When aroutine islocated at the very end of a sourcefile, thereisan implicit RETURNRNstruction after the last explicit clause
However, according to good programming practice, you should avoid taking advantage of this feature, because it can create
problems later if you append new routines to the source file and forget to change theimplied RETURNo an explicit one.

If the current procedure level isthe main level of either the program or an external subroutine, thena RETURNNstruction is

equivalent to an EXIT instruction, i.e. it will terminate the REXX program or the external routine. Thetablein the Exit
section shows the actions of both the RETURNind EXIT instructions depending on the context in which they occur.

27

The SAY Instruction
SAY [expr] ;

Evaluates the expression expr, and prints the resulting string on the standard output stream. If expr is not specified, the
nullstring is used instead. After the string has been written, an implementation-specific action is taken in order to produce an
end-of-line.

The SAY instruction is roughly equivalent to

call lineout , expr

The differences are that there is no way of determining whether the printing was successfully completed if SAY is used, and t
specia variable RESULT is never set when executing a SAY instruction. Besides, the effect of omitting expr isdifferent. In
SAA API, the RXSI GSAY subfunction of the RXSI Oexit handler isableto trap a SAY instruction, but not acall to the

LI NEQUT() built-in function. Further, the NOTREADY condition is never raised for a SAY instruction.

4.20 The SELECT/MHEN/OTHERW SE Instruction

SELECT ; whenpart [whenpart ...] [OTHERW SE [;]
[statenent ...]] END ;

whenpart . WHEN expr [;] THEN [;] statenent

Thisinstruction is used for general purpose, nested | F structures. Although it has certain similaritieswith CASE in Pascal ar
swi t chin C, itisin some respects very different from these. An example of the general use of the SELECT instruction is:

sel ect
when exprl then statenentl
when expr2 then do
st at enent 2a
st at enent 2b
end
when expr3 then statenment3
ot herw se
ostatenent 1
ost at enent 2
end

When the SELECT instruction is executed, the next statement after the SELECT statement must be a WHEN statement. The
expression immediately following the WHEN token is evaluated, and must result in avalid boolean value. If itistrue (i.e. 1), 1
statement following the THEN token matching the WHEN is executed, and afterwards, control istransferred to the instruction
following the END token matching the SELECT instruction. Thisis not completely true, since an instruction may transfer
control elsewhere, and thus implicitly terminate the SELECT instruction; e.g. LEAVE, EXI T, | TERATE, SI GNAL, or RETU
or a condition trapped by method SI GNAL.

If the expression of the first WHEN is not true (i.e. * 0), then the next statement must be either another WHEN or an OTHERW
statement. In the former case, the process explained above isiterated. In the latter case, the clauses following the OTHERW £
up to the END statement are interpreted.

Itis considered a SYNTAX condition, { 7} if no OTHERW SE statement when none of the WHEN-expressions eval uates to true
In genera this can only be detected during runtime. However, if one of the WHENSs is selected, the absence of an OTHERW SE
not considered an error.

By the nature of the SELECT instruction, the WHENS are tested in the sequence they occur in the source. If more than one WH
have an expression that evaluates to true, the first one encountered is selected.

If the programmer wants to associate more than one statement with a WHEN statement, a DO’ END pair must be used to enclo:
the statements, to make them one statement conceptually. However, zero, one, or more statements may be put after the

28

OTHERW SE without having to enclose them in a DO'END pair. The clause delimiter is optional after OTHERW SE, and befc
and after THEN.

Example: Writing SWTCHas | F

Although CASE in Pascal and swi t ch in C arein general table-driven (they check an integer constant and jumps directly to
the correct case, based on the value of the constant), SELECT in REXX isnot so. It is ajust a shorthand notation for nested
| Finstructions. Thusa SW TCHinstruction can aways be written as set of nested | F statements; but for very large SW TCH
statements, the corresponding nested | F structure may be too deeply nested for the interpreter to handle.

The following code shows how the SW TCH statement shown above can be written asanested | F structure:

if exprl then statenentl
else if expr2 then do
st at enent 2a
st at ement 2b
end else if expr3 then statenment3
el se
ostatenent 1
ost at enment 2
end

4.21 The SI GNAL Instruction

SIGNAL = { string | synmbol } ;
[VALUE] expr ;
{ ON| OFF } condition [NAME
{ string | synmbol }] ;

The SI GNAL instruction is used for two purposes. (a) to transfer control to anamed label in the program, and (b) to set up a
named condition trap.

The first form in the syntax definition transfers control to the named label, which must exist somewhere in the program; if it
does not exist, a SYNTAX condition { 16} israised. If the label is multiple defined, the first definition is used. The parameter
can be either asymbol (which istaken literally) or astring. If it is astring, then be sure that the case of the string matches the
case of the label whereit is defined. In practice, labels are in upper case, so the string should contain only uppercase letters to
and no space characters.

The second form of the syntax is used if the second token of the instruction is VALUE. Then, the rest of the instruction is take
asageneral REXX expression, which result after evaluation istaken to be the name of the label to transfer control to. This
formisreally just a specia case of the first form, where the programmer is allowed to specify the label as an expression. Note
that if the start of expr issuch that it can not be misinterpreted asthefirst form (i.e. the first token of expr is neither a string
nor a symbol), then the VALUE subkeyword can be omitted.

Example: Transferring control to inside a loop

When the control of execution istransferred by a SI GNAL instruction, all active loops at the current procedural level are
terminated, i.e. they can not continued later, although they can of course be reentered from the normal start. The consequence
of thisisthat the following codeisillegal:

do forever
signal there
t here:
nop
end

29

The fact that the jump is atogether within the loop does not prevent the loop from being terminated. Thus, after the jump to ti
loop, the END instruction is attempted executed, which will result in a SYNTAX condition {10} . However, if control is
transferred out of the loop after the label, but before the END, then it would be legdl, i.e. the following islegal:

do forever
signal there
t her e:
nop
signal after
end

after:

Thisislegal, simply because the END instruction is never seen during this script. Although both TRL1 and TRL2 allow this
construct, it will probably be disallowed in ANSI.

Just asloops are terminated by a SI GNAL instruction, SELECT and | F instructions are also terminated. Thus, it isillegal to
jump to alocation within a block of statements contained in a WHEN, OTHERW SE, or | F instruction, unless the control is
transferred out of the block before the execution reaches the end of the block.

Whenever execution is transferred during a SI GNAL instruction, the specia variable SI GL is set to the line number of the lir
containing the SI GNAL instruction, before the control istransferred. If thisinstruction extends over several lines, it refersto
thefirst of this. Note that even blanks are part of a clause, so if the instruction starts with aline continuation, the real line of
theinstruction is different from that line where the instruction keyword is |ocated.

The third form of syntax is used when the second token in the instruction is either ON or OFF. In both cases must the third
token in the instruction be then name of a condition (as a constant string or a symbol, which istaken literally), and the setup ¢
that condition trap is changed. If the second token is OFF, then the trap of the named condition is disabled.

If the second token is ON, then the trap of the named condition is enabled. Further, in this situation two more tokens may be
alowed in the instruction: the first must be NAME and the second must be the name of alabel (either as a constant string or a
symbol, which is taken literally). If the five token form is used, then the label of the condition handler is set to the named labe
else the name of the condition handler is set to the default, which isidentical to the name of the condition itself.

Note that the NAVE subclause of the SI GNAL instruction was a new construct in TRL2, and is not a part of TRL1. Thus, olde
interpreters may not support it.

Example: Naming condition traps

Note that the default value for the condition handler (if the NAME subclause is not specified) is the name of the condition, nc
the condition handler from the previous time the condition was enabled. Thus, after the following code, the name of the
condition handler for the condition SYNTAXis SYNTAX, not FOOBAR:

signal on syntax nane foobar
signal on syntax

Example: Named condition traps in TRL1

A common problem when trying to port REXX code from a TRL2 interpreter to a TRL1 interpreter, is that explicitly named
condition traps are not supported. There exist ways to circumvent this, like:

syntax_name = ‘SYNTAX_HANDLER’

signal on syntax

if 1 + 2 then /* will generate SYNTAX condition */
nop

syntax:

oldsigl = sigl

signal value translate(syntax_name)

30

synt ax_handl er:
say ‘condition at line’ oldsigl ‘is being handled...’
exit

Here, a “global” variable is used to store the nhame of the real condition handler, in the absence of a field for this in the
interpreter. This works fine, but there are some problems: the vaGxNEAX_NAME must be exposed to everywhere, in
order to be available at all times. It would be far better if this value could be stored somewhere from which it cowdd be |
from any part of the script, no matter the current state of the call-stack. This can be fixed with progra@h©Bké¢ V unce
VM/CMS andput env under Unix.

Another problem is that this destroys the possibility of setting up the condition handler with the default handler name.
However, to circumvent this, add a nBEFAULT _SYNTAX HANDLERIabel which becomes the new name for the old
SYNTAX label.

Further information about conditions and condition traps are given in ch@piaditions.

4.22 The TRACE Instruction

TRACE [nunber | setting | [VALUE] expr] ;
setting=A| S| C| E|] F|] I | L] N|J] O] R| S

The TRACE instruction is used to set a tracing mode. Depending on the current mode, various levels of debugging info
is displayed for the programmer. Also interactive tracing is allowed, where the user can re-execute clauses, change v
variables, or in general, execlREXX code interactively between the statements oREEEX script.

If setting is not specified, then the default valNés assumed. If the second token aftBACE is VALUE, then the remainin
parts of the clause is interpreted as an expression, which value is used as the trace setting. Else, if the seconlgeio&en i
string of a symbol, then it is taken as the trace setting; and a symbol is taken literally. In all other circumstances, whate
follows the tokermRACE is taken to be an expression, which value is the trace setting.

If a parameter is given to thERACE instruction, and the second token in the instruction is\ft UE, then there must only
one token aftef RACE, and it must be either a constant string or a symbol (which is taken literally). The value of this tok
can be either a whole number or a trace setting.

If is it a whole number and the number is positive, then the number specifies how many of interactive pauses to skip.
assumes interactive tracing; if interactive tracing is not enabledTRACE instruction is ignored. If the parameteris a v
negative number, then tracing is turned off temporarily for a number of clauses determined by the absoluteurahge. of

If the second token is a symbol of string, but not a whole number, then it is taken to be one of the settings below. It me
optionally be preceded by one or more question ngrkharacters. Of the rest of the token, only the first letter matter,; this
letter is translated to upper case, and must be one of the following:

[Al

(All) Traces all clauses before execution.
[d

(Commands) Traces all command clauses before execution.
[El

(Errors) Traces any command that would raiseERROR condition (whether enabled or not) after execution. Both
the command clause and the return value is traced.

[F]
(Failures) Trances any command that would raise-hlel URE condition (whether enabled or not) after execution.
Both the command clause and the return value is traced.

[1]
(Intermediate) Traces not only all clauses, but also traces all evaluation of expressions; even intermediate res
is the most detailed level of tracing.

31

[L]

(Labels) Traces the name of any label clause executed; whether the label was jumped to or not.

[N
(Normal or Negative) Thisisthe same asthe Fai | ur e setting.
[a
(Off) Turns off all tracing.
[R
(Results) Traces al clauses and the results of evaluating expressions. However, intermediate expressions are not
traced.
[S]

(Scan) Traces all clauses from the current position in the script, until the end of the file, in sequence. However, it dot
not execute any of the clauses. When the end of the program is reached, the interpreter exits.

The Er r or s and Fai | ur es settings are not influenced by whether the ERROR or FAI LURE conditions are enabled or not.
These TRACE settings will trace the command and return value after the command have been executed, but before the
respective condition is raised.

The levels of tracing might be set up graphically, asin the figure below. An arrow indicates that the setting pointed toisa
superset of the setting pointed from.

/—> Failures —> Errors —> Commands

off \

\—> lLabels > All —> Results —> Intermediate
Hierarchy of TRACE settings

According to thisfigure, Intermediate isasuperset of Result , which isasuperset of All . Further, All isasuperset c
both Commandsand Labels . Commandsis asuperset of Errors , which isasuperset of Failures . Both Failure anc
Labels are supersets of Off . Actually, Commands strictly speaking not a superset of Errors , since Errors traces after
the command, while Commandraces before the command.

Scan isnot part of this diagram, since it provides a completely different tracing functionality. Notethat Scan is part of TRL
but was removed in TRL2. It is not likely to be part of newer REXX interpreters.

5. Operators

An operator represents an operation to be carried out between two terms, such as division. There are 5 types of operatorsin tr
Rexx Language: Arithmetic, Assignment, Compar ative, Concatenation, and Logical Operators. Each is described in further
details below.

5.1 Arithmetic Operators

Arithmetic operators can be applied to numeric constants and Rexx variables that evaluate to valid Rexx numbers. The
following operators are listed in descreasing order of precedence:

- Unary prefix. Same as 0 - number.

+ Unary prefix. Same as 0 + number.

*x Power

* Multiply

/ Divide

% Integer divide. Divide and return the integer part of the division.

I Remainder divide. Divide and return the remainder of the division.

32

+ Add
- Subtract.

5.2 Assignment Operators

Assignment operators are a means to change the value of avariable. Rexx only has one assignment operator.

= Assign the value on the right side of the “=" to the variable on the left.

5.3 Comparative Operators

The Rexx comparative operators compare two terms and return the logical vidhe result of the comparison is true, ®r
the result of the comparison is false. The non-strict comparative operators will ignore leading or trailing blanks for strin
comparisons, and leading zeros for numeric comparisons. Numeric comparisons are made if both terms to be compa
valid Rexx numbers, otherwise string comparison is done. String comparisons are case sesitive, and the shorter of th
strings is padded with blanks.

The following lists the non-strict comparative operators.

= Equal

= "= Not equal

> Greater than.

< Less than.

>= Greater than or equal.

<= Less than or equal

<>, >< Greater than or less than. Same as Not equal.

The following lists the strict comparative operators. For two strings to be considered equal when using the strict equal
comparative operator, both strings must be the same length.

== Strictly equal

\==, A== Strictly not equal.

>> Strictly greater than.

<< Strictly less than.

>>= Striclty greater than or equal.
<<= Strictly less than or equal.

5.4 Concatenation Operators

The concatenation operators combine two strings to form one, by appending the seond string to the right side of the fil
Rexx concatenation operators are:

(blank) Concatenation of strings with one space between them.
(abuttal) Concatenation of strings with no intervening space.
I Concatenation of strings with no intervening soace.

Examples:
a = abc;b = ‘def’
Sayab -> results in ‘abc def’
Sayal|b -> results in ‘abcdef’
Say a'xyz’ -> results in ‘abcxyz’

5.5 Logical Operators

Logica operators work with the Rexx strings 1 and O, usually as aresult of acomparative operator. These operators also onl
result in logical TRUE; 1 or logical FALSE; 0.

& And Returns 1 if both terms are 1.

33

| Inclusive or Returns 1 if either termis 1.
&& Exclusive or Returns 1 if either termis 1 but NOT both terms.
\ Logica not Reverses the result; 0 becomes 1 and 1 becomes 0.

6. Implementation-Specific Information

6.1 Environments in Regina 0.05h

Ext ernal environnments nane stack
Ext ernal environnents nanes
OPTI ONS settings

Are saved across subroutines, just like other pieces of information, like conditions settings, NUMERI C settings, etc.
See chapter Options for more information about OPTI ONS settings.

Ret urn val ue
To the program that called Regina islimited to being an integer, when thisis required by the operating systems. Al
current implementations are for operating systems that require this.

Default return val ue
From a REXX program is O under most systems, specifically Unix, 0S/2, MS-DOS. Here, VM S deviates, sinceit u
1 asthe default return value. Using 0 under VMS tends to make VM S issue awarning saying that no error occurred

Transferring control into a | oop
Worksfinein Regina, aslong as no END, THEN, ELSE, WHEN, or OTHERW SE instructions are executed afterward
unless the normal entrypoint for the construct has been executed after the transfer of control.

PARSE SOURCE i nf ornation

PARSE VERSI ON i nf ormati on

Last line of source code
Isimplicitly taken to be terminated by an end-of-line sequence in Regina, even if such a sequence is not present in t
source code of the REXX script. This applies only to source code. Also, the end-of-string in | NTERPRET stringsis
taken to be implicitly terminated by an end-of-line character sequence.

Movi ng code MS-DOS to Uni x
Issimplified by Regina, since it will accept the MS-DOS type end of line sequences as valid. |.e. any Ctrl-M in fron
of a Ctrl-Jin the source fileisignored on Unix systems by Regina. This applies only to source code.

Label s in | NTERPRET
Ishandles by Regina in the following way: A label can occur inside an | NTERPRET string, but it isignored, and ce
never be jumped to in a SI GNAL or CALL instruction.

6.2 List of All Environment Names in Use

Regina supports the following environments:

ENVIRONMENT
OS2ENVIRONEMNT
SYSTEM

PATH

COMMAND

REXX Built-in Functions

This chapter describesthe REXX library of built-in functions. It is divided into three parts:

* Firstageneral introduction to built-in functions, pointing out concepts, pitfalls, parameter conventions, peculiarities, an
possible system dependencies.

* Thenthereisthe reference section, which describesin detail each function in the built-in library.

* Attheend, thereis documentation that describes where and how Regina differs from standard REXX, asdescribed in tl
two other sections. It also lists Regind's extensions to the built-in library.

It is recommended that you read the first part on first on first reading of this documentation, and that you use the geco
as reference. The third part is only relevant if you are going tofsgina.

1. General Information

This section is an introduction to the built-in functions. It describes common behavior, parameter conventions, concepts and |
possible system-dependent parts.

1.1 The Syntax Format

In the description of the built-in functions, the syntax of each oneislisted. For each of the syntax diagrams, the parts written i
italic font names the parameters. Terms enclosed in [square brackets] denote optional elements. And the cour i er fontis
used to denote that something should be written asis, and it is also used to mark output from the computer.

Note that in standard REXX it is not really allowed to let the last possible parameter be empty if all commas are included,
although some implementations allow it. In the following calls:

say D2X(61)
say D2X(61, 1)
say D2X(61,)

The two first return the string consisting of a single character A, while the last should return error. If the last argument of a
function call is omitted, you can not safely include the immediately preceding comma.

1.2 Precision and Normalization

The built-in library usesits own internal precision for whole numbers, which may be the range from -999999999 to
+999999999. That is probably far more than you will ever need in the built-in functions. For most functions, neither
parameters nor return values will be effected by any setting of NUMERI C. In the few cases where this does not hold, itis
explicitly stated in the description of the function.

In general, only parameters that are required to be whole numbers are used in the internal precision, while numbers not
required to be whole numbers are normalized according to the setting of NUMERI Cbefore use. But of course, if a parameter
anumeric expression, that expression will be calculated and normalized under the settings of NUMERI Cheforeitisgivento
function as a parameter.

35

1.3 Standard Parameter Names

In the descriptions of the built-in functions, several generic names are used for parameters, to indicate something about the ty
and use of that parameter, e.g. valid range. To avoid repeating the same information for the majority of the functions, some
common “rules” for the standard parameter names are stated here. These rules implicitly apply for the rest of this chay

Note that the following list does not try to classify any geneEaXX “datatypes”, but provides a binding between the sub-
datatypes of strings and the methodology used when naming parameters.

* Length is a non-negative whole number within the internal precision of the built-in functions. Whether it denotds a |
in characters or in words, depends on the context.

e Sring can be any normal character string, including the nullstring. There are no further requirements for this paran
Sometimes a string is called a “packed string” to explicitly show that it usually contains more than the normal print
characters.

« Optionis used in some of the functions to choose a particular action, ©§TH() to set the format in which the de
returned. Everything except the first character will be ignored, and case does not matter. note that the string shoul
consequently not have any leading space.

e Sartis a positive whole number, and denotes a start position in e.g. a string. Whether it refers to characters or wo
depends on the context. The first position is always numieradless explicitly stated otherwise in the documentz
Note that when return values denotes positions, the nuénisegenerally used to denote a nonexistent position.

« Padchar must be a string, exactly one character long. That character is used for padding.

* Sreamid is a string that identifies REXX stream. The actual contents and format of such a string is implementation
dependent.

¢ Number is any validREXX number, and will be normalized according to the settingSUERI C before it is used by t
function.

If you see one of these names having a number appended, that is only to separate several parameters of the same ty
stringl, string2 etc. They still follow the rules listed above. There are several parameters in the built-in functions that dc
easily fall into the categories above. These are given other names, and their type and functionality will be described to
with the functions in which they occur.

1.4 Error Messages

There are several errors that might occur in the built-in functions. Just one error message is only relevant for aihthe b
functions, that is number 40ncorrect call to routine). In fact, an implementation d2EXX can choose to use that for any
problem it encounters in the built-in functions.

Depending on the implementation, other error messages might be used as well. Error message niuinvaBd 2¢le
number) might be used for any case where a parameter should have been a whole number, or where a whole number
range. Itis implied that this error message can be used in these situations, and it is not explicitly mentioned iptioe des
of the functions.

Other general error messages that might be used in the built-in functions are error numBexat ddttimetic conversion) fc
any parameter that should have been a VREKX number. The error message 16v@lid binary or hexadecimal string)
might occur in any of the conversion routines that converts from binary or hexadecimal BBBX&) (X2B(), X2C(),
X2D()). And of course the more general error messages like error mesddgehbng resour ces exhausted) can occur.

Generally, it is taken as granted that these error messages might occur for any relevant built-in function, and thig will r
restated for each function. When other error messages than these are relevant, it will be mentioned in the text.

In REXX, it is in general not an error to specify a start position that is larger than the length of the string, or a length th:
refers to parts of a string that is beyond the end of that string. The meaning of such instances will depend on thedconte
are described for each function.

36

1.5 Possible System Dependencies

Some of the functions in the built-in library are more or less system or implementation dependent. The functionality of these
may vary, so you should use defensive programming and be prepared for any side-effects that they might have. These functic
include:

* ADDRESS() isdependent on your operating system and the implementation of REXX, since thereis not standard for
naming environments.

« ARE) atthemain level (not in subroutines and functions) is dependent on how your implementation handles and parses
the parametersit got from the operating system.

e BITAND(), BI TOR() and BI TXOR() are dependent on the character set of your machine. Seemingly identical
parameterswill in general return very different results on ASCII and EBCDIC machines. Results will be identical if the
parameter was given to these functions as a binary or hexadecimal literal.

o C2X(),C2D(),D2C() and X2C() will be effected by the character set of your computer since they convert to or from
characters. Notethat if C2X() and C2D() get their first parameter as a binary or hexadecimal literal, the result will be
unaffected by the machine type. Also note that the functions B2X() , X2B(), X2D() and D2X() are not effected by the
character set, since they do not use character representation.

e CHARI N(), CHAROUT(), CHARS(), LI NEI N(), LI NEQUT(), LI NES() and STREAM) arethe interface to thefil
system. They might have system dependent peculiaritiesin several ways. Firstly, the naming of streamsis very dependen
on the operating system. Secondly, the operation of stream is very dependent on both the operating system and the
implementation. Y ou can safely assume very little about how streams behave, so carefully read the documentation for yo
particular implementation.

« CONDI TI ON() isdependent on the condition system, which in turn depends on such implementation dependent things ¢
file I/0O and execution of commands. Although the general operation of this function will be fairly equal among systems,
the details may differ.

o DATATYPE() and TRANSLATE() know how to recognize upper and lower case letters, and how to transform letters to
upper case. If your REXX implementation supports national character sets, the operation of these two functions will
depend on the language chosen.

o DATE() hasthe options Mont h, Weekday and Nor mal , which produce the name of the day or month in text.
Depending on how your implementation handles national character sets, the result from these functions might use the
correct spelling of the currently chosen language.

« DELWORD(), SUBWORDY) , WORD() , WORDI NDEX() , WORDLENGTH(), WORDPOS() and WORDS() requires the

concept of a “word”, which is defined as a non-blank characters separated by blanks. However, the interpretation

ablank character depends upon the implementation.

* ERRORTEXT() might have dightly different wordings, depending on the implementation, but the meaning and
numbering should be the same. However, note that some implementations may have additional error messages, and some
might not follow the standard numbering.

« QUEUED() refers to the system specific concept of a “stack”, which is exterRat XK. The result of this function
therefore be dependent on how the stack is implemented on your system.

« RANDOM) will differ from machine to machine, since the algorithm is implementation dependent. If you set the se:
can safely assume that the same interpreter under the same operating system and on the same hardware platforn
return a reproducible sequence. But if you change to another interpreter, another machine or even just anothier ve

the operating system, the same seed might not give the same pseudo-random sequence.

37

e SOURCELI NE() has been changed between REXX language level 3.50 and 4.00. In 4.00 it can return O if the REXX
implementation finds it necessary, and any request for a particular line may get a nullstring as result. Before assuming th:
this function will return anything useful, consult the documentation.

« TI ME() will differ somewhat on different machines, sinceit is dependent on the underlying operating system to produce
the timing information. In particular, the granularity and accuracy of this information may vary.

e VALUE() will be dependent on implementation and operating system if it is called with its third parameter specified.
Consult the implementation specific documentation for more information about how each implementation handles this
situation.

e XRANGE() will return astring, which contents will be dependent on the character set used by your computer. Y ou can
safely make very few assumptions about the visual representation, the length, or the character order of the string returned
by this function.

Asyou can see, even REXX interpreters that are within the standard can differ quite alot in the built-in library. Although the
points listed above seldom are any problem, you should never assume anything about them before you have read the
implementation specific documentation. Failure to do so will give you surprises sooner or later.

And, by the way, many implementations (probably the mgjority) do not follow the standard completely. So, in fact, you shoul
never assume anything at all. Sorry ...

1.6 Blanks vs. Spaces

Note that the description differs between “blanks” and the <space> character. A blank is any character that might be u
“whitespace” to separate text into groups of characters. The <space> character is only one of several possible blanks.
text says “blank” it means any one from a set of characters that are used to separate visual characters into words. Wh
text says <space>, it means one particular blank, that which is generally bound to the spacebar on a normal computer

All implementation can be trusted to treat the <space> character as blank. Additional characters that might be interpre
blanks are <tab> (horizontal tabulator), <ff> (formfeed), <vt> (vertical tabulator), <nl> (newline) and <cr> (carriage ret
The interpretation of what is blank will vary between machines, operating systems and interpreters. If you are using su
national character sets, it will even depend on the language selected. So be sure to check the documentation before y
anything about blank characters.

Some implementations use only one blank character, and perceives the set of blank characters as equivalent to the <
character. This will depend on the implementation, the character set, the customs of the operating system and various
reasons.

2. REXX Standard Built-in Functions

Below follows an in depth description of all the functions in the library of built-in functions. Note that only the stRftdard
functions is included. The extended functions available in some implementations are not described here.

ABBREV(/ ong, short[, | engt h])

Returnsl if the stringshort is strictly equal to the initial first part of the stringng, and returng®) otherwise. The mininm
length whichshort must have, can be specifiedlasgth. If length is unspecified, no minimum restrictions for the length of
short applies, and thus the nullstring is an abbreviation of any string.

Note that this function is case sensitive, and that leading and trailing spaces are not stripped off before the two strings
compared.

ABBREV(‘Foobar’, ‘Foo’) -> 1
ABBREV(‘Foobar’, ‘Foo’, 4) -> 0 /*Too short */

38

ABBREV(‘Foobar’, ‘foo’) -> 0 /*Different case */

ABS(nunber)

Returns the absolute value of the number, which can be any valid REXX number. Note that the result will be normalized
according to the current setting of NUMERIC

ABS(-42) —> 42
ABS(100) -> 100

ADDRESS()

Returns the current default environment to which commands are sent. The value is set with the ADDRESS$lause, for more
information, see documentation on that clause.

ADDRESS() —> UNIX /* Maybe */

ARG([ar gnol , opt i on]])

Returns information about the arguments of the current procedure level. For subroutines and functions it will refer to the
arguments with which they were called. For the “main” program it will refer to the arguments used wikEEXKeanterpre
was called.

Note that under some operating systeRISXX scripts are run by starting tHREXX interpreter as a program, giving it the
name of the script to be executed as parameter. TheRENXX interpreter might process the command line and “eat” some
all of the arguments and options. Therefore, the result of this function at the main level is implementation dependent.
parts of the command line which are not available toREXX script might for instance be the options and arguments
meaningful only to the interpreter itself.

Also note that how the interpreter on the main level divides the parameter line into individual arguments, is implement:
dependent. The standard seems to define that the main procedure level can only get one parameter string, but don’t

For more information on how the interpreter processes arguments when called from the operating system, see the
documentation on how to runREXX script.

When called without any parameteAR&() will return the number of comma-delimited arguments. Unspecified (omitted’
arguments at the end of the call are not counted. Note the difference between using comma and using space to separ
Only comma-separated arguments will be interpreteRB} X as different arguments. Space-separated strings are irgerp
as different parts of the same argument.

Argno must be a positive whole number. If oalgno is specified, the argument specified will be returned. The first angum
is numbered 1. l&rgno refers to an unspecified argument (either omittedrgno is greater than the number of argumer
nullstring is returned.

If option is also specified, the return value will beor 0, depending on the value oftion and on whether the numbered
parameter was specified or not. Option can be:

[a

(Omitted) Return4 if the numbered argument was omitted or unspecified. Other®iseseturned.
[El

(Existing) Returndl if the numbered argument was specified, Bratherwise.
If called as:

CALL FUNCTION ‘This’ ‘is’, ‘a’,, ‘test’,,

39

AR) —> 4 [*Last parameter omitted */
ARG(1) - ‘This is’

ARG(2) — ‘a’

ARG(3) — o

ARG(9) —> ” [*Ninth parameter nonexisting */
ARG(2,'E") —>
ARG(2,0) —>
ARG(3,E) —>
ARG(9,0") —>

[*Third parameter omitted */

~RrOok

B2X(bi nstri ng)

Takes a parameter which isinterpreted as a binary string, and returns a hexadecimal string which represent the same
information. Binstring can only contain the binary digits 0 and 1. To increase readability, blanks may be included in binstri
to group the digitsinto groups. Each such group must have a multiple of four binary digits, except from the first group. If the
number of binary digitsin the first group is not a multiple of four, that group is padded at the left with up to three leading
zeros, to make it a multiple of four. Blanks can only occur between binary digits, not as leading or trailing characters.

Each group of four binary digitsis trandated into on hexadecimal digit in the output string. There will be no extrablanksin
the result, and the upper six hexadecimal digits are in upper case.

B2X(*0010 01011100 0011) —> ‘26C3’
B2X('10 0101 11111111’) —> ‘26FF
B2X(*0100100 0011’) —> 243’

Bl TAND(stringl],[string2][, padchar]])

Returns the result from bytewise applying the operator AND to the charactersin the two strings stringl and string2. Note the
thisis not the logical AND operation, but the bitwise AND operation. String2 defaults to a nullstring. The two strings are left
justified; the first characters in both strings will be AND’ed, then the second characters and so forth.

The behavior of this function when the two strings do not have equal length is definedoagdhar character. If it is
undefined, the remaining part of the longer string is appended to the result after all characters in the shorter strarg hav
processed. lpadchar is defined, each char in the remaining part of the longer string is logically AND’ed witpatthehar (i
rather, the shorter string is padded on the right length, upatghar).

When using this function on character strings, e.g. to uppercase or lowercase a string, the result will be dependent on
character set used. To lowercase a string in EBCDICBUSA&ND() with apadchar value ofbf’x . To dothesamein
ASCII, use BITOR() with a padchar value of '20'x

BITAND('123456'%, ‘3456'X) - 101456

BITAND(‘foobar’,, ‘df'x) — ‘FOOBAR'’ /*For ASCII*/
BITAND('123456'x, ‘3456'%, ‘f0'x) —> 101450’

BI TOR(stringl[,[string2][, padchar]])

Works like BITAND() , except that the logical function OR is used instead of AND. For more information see BITAND() .

BITOR('123456'x, ‘3456'X) — ‘367656’
BITOR('FOOBAR’,, '20'x) —> ‘foobar’ /*For ASCII */
BITOR('123456'x, ‘3456', ‘f0'X) — ‘3676F6'X

Bl TXOR(stringl],[string2][, padchar]])

Works like BITAND() , except that the logical function XOR (exclusive OR) is used instead of AND. For more information ¢
BITAND() .

BITXOR('123456'x, ‘3456°X) — 266256’
40

BITXOR(‘FooBar’,, ‘20'x) — ‘fOObAR’ /*For ASCII */
BITXOR('123456%, ‘3456'x, ‘fO'’x) —> ‘2662A6'X

C2D(stringl, ! ength])

Returns an whole number, which is the decimal representation of the packed string string, interpreted as a binary number. If
length (which must be a non-negative whole number) is specified, it denotes the number of charactersin string to be converte
and string is interpreted as a two’s complement representation of a binary number, consisting of the length rightmost
characters irstring. If length is not specifiedstring is interpreted as an unsigned number.

If length is larger than the length aring, string is sign-extended on the left. I.e. if the most significant bit of the leftmost
char ofstring is setstring is padded withiff’x ~ chars at the left side. If the bit isnot set, ‘00’x chars are used for padding

If length istoo short, only the length rightmost charactersin string are considered. Note that thiswill not only in general
change the value of the number, but it might even change the sign.

Note that this function is very dependent on the character set that your computer is using.
If it is not possible to express the final result as awhole number under the current settings of NUMERIC DIGITS, an error i¢

reported. The number to be returned will not be stored in the internal representation of the built-in library, so size restrictions
on whole numbers that generally applies for built-in functions, do not apply in this case.

C2D(‘fo0") —> ‘6713199 /*For ASCIl machines */
C2D('103'x) — 259’

C2D('103'%x,1) - ‘3’

C2D('103%,2) — ‘259’

C2D('0103'%,3) — ‘259’

C2D('ffff'x,2) - -1

C2D(ffff'x) — ‘65535’

C2D('ffff'x,3) - ‘65535’

C2D('fff9'x,2) — ‘-6’

C2D('ff80'x,2) — 128’

C2X(string)

Returns a string of hexadecimal digits that represents the character string string. Converting is done bytewise, the six highest
hexadecimal digits are in uppercase, and there are no blank characters in the result Leading zeros are not stripped off in the
result. Note that the behavior of this function is dependent on the character set that your computer is running (e.g. ASCII or
EBCDIC).

C2X(‘ffffx) —> ‘FFFF
C2X(‘Abc) —> ‘416263 /[*For ASCIl Machines */
C2X("1234') > 1234

C2X('011 0011 1101'b) —> ‘033D’

CENTER(string, length [, padchar])
CENTRE(string, length [, padchar])

This function has two names, to support both American and British spelling. It will center string in a string total of length
length characters. If length (which must be a non-negative whole number) is greater than the length of string, string is padde
with padchar or <space> if padchar is unspecified. If length is smaller than the length of string character will be removed.

If possible, both ends of string receives (or loses) the same number of characters. If an odd number of characters are to be adc
(or removed), one character more is added to (or removed from) the right end than the left end of string.

CENTER(‘Foobar’,10) - ‘* Foobar
CENTER(‘Foobar’,11) —> * Foobar ’
CENTRE(‘Foobar’,3) —> ‘oob’
CENTER(‘Foobar’,4) —> ‘ooba’

41

CENTER(‘Foobar’,10,*") —> “**Foobar**’
CHANGESTR(need! e, hayst ack, newneed! e)

This function was introduced with the REXX ANSI Standard. Its purposeisto replace all occurrences of needle in the string
haystack with newneedle. The function returns the changed string.

If haystack does not contain needle, then the original haystack is returned.

CHANGESTR('a’,'fred’,’c") -> ‘fred’
CHANGESTR(",”,’x’) >
CHANGESTR(‘a’,’abcdef’,’x") -> ‘xbcdef’
CHANGESTR('0’,'0",’1") >
CHANGESTR(‘a’,'def",’xyz") -> ‘def’
CHANGESTR(‘a’,”,'x’) >
CHANGESTR(",'def’,'xyz") -> ‘def’
CHANGESTR(‘abc’,’abcdef’,’xyz’) -> ‘xyzdef’

CHANGESTR(‘abcdefg’,’abcdef’,’xyz’) -> ‘abcdef’
CHANGESTR(‘abc’,’abcdefabcedabed’,’z’) -> ‘zdefzedzd’

CHARI N([streami d|[,[start][,/ength]])

Thisfunction will in general read characters from a stream, and return a string containing the charactersread. The streamid
parameter names a particular stream to read from. If it is unspecified, the default input stream is used.

The start parameter specifies a character in the stream, on which to start reading. Before anything is read, the current read
position is set to that character, and it will be the first character read. If start is unspecified, no repositioning will be done.
Independent of any conventions of the operating system, the first character in a stream is always numbered 1. Note that
transient streams do not allow repositioning, and an error isreported if the start parameter is specified for atransient stream.

The length parameter specifies the number of charactersto read. If the reading did work, the return string will be of length
length. There are no other ways to how many characters were read than checking the length of the return value. After the reac
the current read position is moved forward as many characters aswasread. If length is unspecified, it defaultsto 1. If length
0, nothing is read, but the file might still be repositioned if start was specified.

Note that this function read the stream raw. Some operating systems use specia charactersto differ between separate linesin
text files. On these systems these specia characters will be returned aswell. Therefore, never assume that this function will
behave identical for text streams on different systems.

What happens when an error occurs or the End-Of-File (EOF) is seen during reading, is implementation dependent. The
implementation may choose to set the NOTREADYondition (does not exist in REXX language level 3.50). For more
information, see chapter on Stream Input and Output.

(Assuming that the file/'t np/ f i | €” contains the firstline: This is the first [ine"):

CHARI N() —> ‘F *Maybe */
CHARIN(,,6) —> ‘Foobar’ /*Maybe */
CHARIN('/tmpffile’,,6) —> ‘This 1’
CHARIN('/tmpffile’,4,6) —> ‘sist’

CHARQUT([stream d|[,[string] [, start]])

In genera this function will write string to a streamid. If streamid is not specified the default output stream will be used.

If start is specified, the current write position will be set to the startth character in streamid, before any writing is done. Note
that the current write position ca not be set for transient streams, and attempts to do so will report an error. Independent of any

conventions that the operating system might have, the first character in the stream isnumbered 1. If start is not specified, the
current write position will not be changed before writing.

42

If string is omitted, nothing is written, and the effect is to set the current write position if start is specified. If neither string n
start is specified, the implementation can really do whatever it likes, and many implementations use this operation to close th
file, or flush any changes. Check implementation specific documentation for more information.

The return value is the number of charactersin string that was not successfully written, so O denotes a successful write. Note
that in many REXX implementations there is no need to open a stream; it will be implicitly opened when itisfirst usedin a
read or write operation.

(Assuming thefile referred to by out dat a was empty, it will contain the string FoobWbw afterwards. Note that there might
will not be an End-Of-Line marker after this string, it depends on the implementation.)

CHAROUT(, ‘Foobar’) - {0}
CHAROUT (outdata, ‘Foobar’) —> ‘0
CHAROUT (outdata, ‘Wow’, 5) —> ‘0

CHARS([stream d])

Returns the number of characters|eft in the named streamid, or the default input stream if streamid is unspecified. For
transient streams thiswill always be either 1 if more characters are available, or 0 if the End-Of-File condition has been met.
For persistent streams the number of remaining bytesin the file will be possible to calculate and the true number of remaining
bytes will be returned.

However, on some systems, it is difficult to calculate the number of charactersleft in a persistent stream; the requirementsto
CHARS() has therefore been relaxed, so it can return 1 instead of any number other than 0. If it returns 1, you can therefore
not assume anything more than that thereis at least one more character left in the input stream.

CHARS() —> ‘' /* more data on def. input stream */
CHARS() —> ‘0" /* EOF for def. input stream */
CHARS(‘outdata’) —> ‘94’ [* maybe */

COVPARE(st ringl, string2[, padchar])
This function will compare stringl to string2, and return awhole number which will be O if they are equal, otherwise the
position of the first character at which the two strings differ is returned. The comparison is case-sensitive, and leading and

trailing space do matter.

If the strings are of unequal length, the shorter string will be padded at the right hand end with the padchar character to the
length of the longer string before the comparison. If a padchar is not specified, <space> is used.

COMPARE(‘FooBar’, ‘Foobar’) > ‘4
COMPARE(‘Foobar’, ‘Foobar’) - ‘o
COMPARE(‘Foobarrr’, ‘Fooba’) — ‘6’

COMPARE(‘Foobarrr’, ‘Fooba’, 'r) —> ‘0’

CONDI TI ON([opt i on])

Returns information about the current trapped condition. A condition becomes the current trapped condition when a conditior
handler is called (by CALL or SIGNAL) to handle the condition. The parameter option specifies what sort of information to
return:

[d
(Condition) The name of the current trapped condition is return, thiswill be one of the condition named legal to
SIGNAL ON, like SYNTAXHALT, NOVALUENOTREADYERRORY FAILURE.

[Dl
(Description) A text describing the reason for the condition. What to put into this variable is implementation and
system dependent.

(1]

(Instruction) Returns either CALL or SI GNAL, depending on which method was current when the condition was
trapped.

[S]
(State) The current state of the current trapped condition. This can be one of ON, OFF or DELAY. Note that this optit
reflect the current state, which may change, not the state at the time when the condition was trapped.

For more information on conditions, consult the chapter Conditions. Note that condition may in several ways be dependent ¢
the implementation and system, so read system and implementation dependent information too.

COPI ES(st ring, copi es)

Returns a string with copies concatenated copies of string. Copies must be a non-negative whole number. No extra space is
added between the copies.

COPIES(‘Fo0’, 3) —> ‘FooF00F00’
COPIES(**, 16) > RET——
COPIES('Bar , 2) —> ‘Bar Bar
COPIES(", 10000) —> o

COUNTSTR(need! e, hayst ack)

This function was introduced with the REXX ANSI Standard. It returns a count of the number of occurrences of needlein
haystack that do not overlap.

COUNTSTR(",) -> 0
COUNTSTR('a’, ‘abcdef’) -> 1
COUNTSTR(0, 0) -> 1
COUNTSTR('a’, ‘def) -> 0
COUNTSTR(a’,) -> 0
COUNTSTR(", ‘def’) -> 0
COUNTSTR(‘abc’, ‘abcdef’) -> 1
COUNTSTR(‘abcdefg’, ‘abcdef’ -> 0

COUNTSTR(‘abc’, ‘abcdefabccdabed’) -> 3

DATATYPE(st ring[, option])

With only one parameter, this function identifies the “datatypestrohg. The value returned will beNUM if string is a vali
REXX number. Otherwise,CHAR' is returned. Note that the interpretation of whetkging is a valid number will deper
the current setting dlUVERI C.

If option is specified too, it will check #tring is of a particular datatype, and return eith&f 6r “0” depending on whether
string is or is not, respectively, of the specified datatype. The possible vahmsnfare:

[A]
(Alphanumeric) Consisting of only alphabetic characters (in upper, lower or mixed case) and decimal digits.
[Bl
(Binary) Consisting of only the two binary digltsand1. Note that blanks are not allowed withstring, as would
have allowed been within a binary string.
[L]
(Lower) Consisting of only alphabetic characters in lower case.
[M

(Mixed) Consisting of only alphabetic characters, but the case does not matter (i.e. upper, lower or mixed.)

44

[N
(Numeric) If string isavalid REXX number, i.e. DATATYPE(st r i ng) would return NUM

[S]
(Symbolic) Consists of charactersthat arelegal in REXX symbols. Note that thistest will pass several stringsthat a
not legal symbols. The charactersincludes plus, minus and the decimal point.

[y
(Upper) Consists of only upper case alphabetic characters.

[W
(Whole) If string isavalid REXX whole number under the current setting of NUMERI C. Notethat 13. O isawhole
number since the decimal part is zero, while 13E+1 is not awhole number, since it must be interpreted as 130
plus/minus 5.

[X]

(Hexadecimal) Consists of only hexadecimal digits, i.e. the decimal digits 0-9 and the alphabetic characters A-F in
either case (or mixed.) Note that blanks are not allowed within string, asit would have been within a hexadecimal
string.

If you want to check whether a string is suitable as a variable name, you should consider using the SYMBOL () function
instead, since the Synbol i ¢ option only verifies which characters string contains, not the order. Y ou should & so take care t
watch out for lower case aphabetic characters, which are allowed in the tail of a compound symbol, but not in asimple or ste
symbol or in the head of compound symbol.

Also note that the behavior of the options A, L, Mand U might depend on the setting of language, if you are using an interpret
that supports national character sets.

DATATYPE(- 1.35E-5) > NUM’
DATATYPE(‘1E999999999) —> ‘CHAR'
DATATYPE(‘1E9999999999") —> ‘CHAR’
DATATYPE(! @#8#$(&*%) —> ‘CHAR’
DATATYPE(‘FooBar’, ‘A)) >
DATATYPE(‘Foo Bar’, ‘A’) -
DATATYPE('010010111101’, ‘B’) -
DATATYPE('0100 1011 1101’, ‘B >
DATATYPE(‘foobar’, 'L’) >
DATATYPE(‘FooBar’, ‘M’) >
DATATYPE(-34E3*, 'N) >
DATATYPE('A_SYMBOLI?!", ‘S)) -
DATATYPE('1.23.39E+4.5', ‘S) >
DATATYPE('Foo bar’, 'S’) >
DATATYPE(FOOBAR’, ‘U") >
DATATYPE('123deadbeef’, X)) >

DATE([option_out [,date [,option_in]]])

This function returns information relating to the current date. If the option_out character is specified, it will set the format of
the return string. The default value for option_out is “N’.

Possible options are:

[B]
(Base) The number of complete days from Janu&B001 until yesterday inclusive, as a whole number. This func
uses the Gregorian calendar extended backwards. Therefore Date(‘B’) // 7 will equal the day of the week whel
corresponds to Monday and 6 Sunday.

[d
(Century) The number of days in this century from Janudr@D until today, inclusive. The return value will be a
positive integer.

45

[D

[E]

(M

[N

§e

[S]

(U

[w

(Days) The number of daysin this year from January 1% until today, inclusive. The return value will be a positive
integer.

(European) The date in European format, igd/ nmi yy”. If any of the numbers is single digit, it will have a
leading zero.

(Month) The unabbreviated name of the current month, in English.

(Normal) Return the date with the name of the month abbreviated to three letters, with only the first letter in uf
case. The format will bedd Mmm yyyy”, whereMmmis the month abbreviation (in English) addl is the day of
the month, without leading zeros.

(Ordered) Returns the date in the ordered format, whickiyg i dd”.

(Standard) Returns the date according the format specified by International Standards Organization Recomm
ISO/R 2014-1971 (E). The format will bgyyynmdd”, and each part is padded with leading zero where apptopr

(USA) Returns the date in the format that is normally used in USA,m&. 8d/ yy”, and each part is padded with
leading zero where appropriate.

(Weekday) Returns the English unabbreviated name of the current weekday for today. The first letter of the re
upper case, the rest is in lower case.

Note that the C’ option is present irREXX language level 3.50, but was removed in level 4.00. The B2wption should
used instead. When porting code that use @eoption to an interpreter that only have thB"option, you will can use the
conversion that January 1900 is day 693595 in the Gregorian calendar.

Note that none of the formats in whi€ATE() return its answer are effected by the settingsSWERI C. Also note that if
there are more than one callBATE() (andTI ME()) in a single clause dREXX code, all of them will use the same basis
data for calculating the date (and time).

If the REXX interpreter contains national support, some of these options may return different output for the names of n
and weekdays.

Assuming that today is January) 6992:

DATE(B) — 727203’
DATE(C) — ‘33609’
DATE(D) - ‘6’
DATE(E) — ‘06/01/92’
DATE(M) — ‘January’
DATE(N) —> ‘6 Jan 1992’
DATE('O) — ‘92/01/06’
DATE('S) — 19920106’
DATE(V) — ‘01/06/92’
DATE(W) — ‘Monday’

If the date option is specified, the function provides for date conversions. The optional option_in specifies the format in whic
dateis supplied. The possible valuesfor option_in are: BDEOUNS.
The default value for option_inis N.

DATE('O’, ‘13 Feb 1923’) — ‘23/02/13
DATE('O’, ‘'06/01/50’, *U") -> ‘50/06/01’

46

If the date supplied does not include a century in its format, then the result is chosen to make the
year within 50 years past or 49 years future of the current year.

The date conversion capability of the DATE BIF was introduced with the ANSI standard.

DELSTR(string, start[,length])

Returns string, after the substring of length length starting at position start has been removed. The default value for length is
therest of the string. Start must be a positive whole number, while length must be a non-negative whole number. It isnot an
error if start or length (or a combination of them) refersto more charactersthan string holds

DELSTR(‘Foobar’, 3) —> ‘Foo’
DELSTR(‘Foobar’, 3,2) —> ‘Foor’
DELSTR(‘Foobar’, 3,4) —> ‘Foo’
DELSTR(‘Foobar’, 7) - ‘Foobar’

DELWORD(st ri ng, start[, | ength])
Removeslength words and all blanks between them, from string, starting at word number start. The default value for length i
the rest of the string. All consecutive spaces immediately after the last deleted word, but no spaces before the first deleted wc

isremoved. Nothing is removed if length is zero.

Thevalid range of start is the positive whole numbers; the first word in string is numbered 1. The valid range of length is the
non-negative integers. It isnot an error if start or length (or a combination of them) refers to more words than string holds.

DELWORD(‘This is a test’, 3) —> ‘Thisis '

DELWORD(‘This is a test’, 2, 1) —> ‘This a test’

DELWORD(‘This is a test’, 2, 5) —> ‘This’

DELWORD(‘This is a test’, 1, 3) —> ‘test’ /*No leading space*/
DIl d TS()

Returns the current precision of arithmetic operations. Thisvalueis set using the NUMERIGtatement. For more information
refer to the documentation on NUMERIC

DIGITS() —> ‘O /*Maybe */

D2C(i nt eger[, | engt h])

Returns a (packed) string, that isthe character representation of integer, which must be awhole number, and is governed by
the settings of NUMERICnot of the internal precision of the built-in functions. If length is specified the string returned will k
length bytes long, with sign extension. If length (which must be a non-negative whole number) is not large enough to hold th
result, an error is reported.

If length is not specified, integer will be interpreted as an unsigned number, and the result will have no leading <nul>
characters. If integer is negative, it will be interpreted as a two’s complement,langth must be specified.

D2C(0) _> (3
D2C(127) —> ‘TFX
D2C(128) —> ‘80'x

D2C(128,3) —> ‘000080'X
D2C(-128) —> ‘80
D2C(-10, 3) —> ‘fffff5'x

D2X(i nteger[, | engt h])

47

Returns a hexadecimal number that is the hexadecimal representation of integer. Integer must be awhole number under the
current settings of NUVERI C, it is not effected by the precision of the built-in functions.

If length is not specified, then integer must be non-negative, and the result will be stripped of any leading zeros.

If length is specified, then the resulting string will have that length. If necessary, it will be sign-extended on the left side to
make it the right length. If length is not large enough to hold integer, an error is reported.

D2X(0) - 0
D2X(127) - TF
D2X(128) —> ‘80’

D2X(128,5) —> ‘00080
D2X(-128) —> ‘80X
D2X(-10,5) —> ‘ffff5'x

ERRORTEXT(er r no)

Returns the REXX error message associated with error number errno.

If the error message is not defined, a nullstring is returned.

The error messagesin REXX might be slightly different between the various implementations. The standard saysthat errno
must be in the range 0-99, but in some implementations it might be within aless restricted range which gives room for syster

specific messages. Y ou should in general not assume that the wordings and ordering of the error messages are constant
between implementations and systems.

ERRORTEXT(20) —> ‘Symbol expected’
ERRORTEXT(30) —> ‘Name or string too long’
ERRORTEXT(40) —> ‘Incorrect call to routine’

FORM()

Returns the current “form”, in which numbers are presented when exponential form is used. This might be either
SCI ENTI FI C(the default) oENG NEERI NG This value is set through tidUVMERI C FORMclause. For more informatio
see the documentation BUVERI C.

FORM) —> ‘SCIENTIFIC’ /* Maybe */

FORMAT(number[, [beforel[,[after][,[exppl[,[expt]l]1]11])

Thisfunction is used to control the format of numbers, and you may request the size and format in which the number is
written. The parameter number is the number to be formatted, and it must be avalid REXX number. note that before any
conversion or formatting is done, this number will be normalized according to the current setting of NUMERIC

The before and after parameters determines how many characters that are used before and after the decimal point, respectivel
Note that before does not specify the number of digitsin the integer part, it specifies the size of the field in which the integer
part of the number iswritten. Remember to allocate space in thisfield for aminustoo, if that isrelevant. If thefield is not lon
enough to hold the integer part (including aminusif relevant), an error is reported.

The after parameter will dictate the size of the field in which the fractional part of the number iswritten. The decimal point
itself is not a part of that field, but the decimal point will be omitted if the field holding the fractional part is empty. If there a
less digits in the number than the size of the field, it is padded with zeros at the right. If there is more digitsthen it is possible
to fit into the field, the number will be rounded (not truncated) to fit the field.

Before must at least be large enough to hold the integer part of number. Thereforeit can never belessthan 1, and never less
than 2 for negative numbers. The integer field will have no leading zeros, except a single zero digit if the integer part of
number is empty.

The parameter expp the size of the field in which the exponent iswritten. Thisisthe size of the numeric part of the exponent,
so the E” and the sign comes in addition, i.e. the real length if the exponent is two morextpaspecifies. lexpp is zero,
signalizes that exponential form should not be udexpp must be a non-negative whole numbeexp is positive, but not
large enough to hold the exponent, an error is reported.

Expt is the trigger value that decides when to switch from simple to exponential form. Normally, the default precision
(NUMVERI C DI G TS) is used, but iExpt is set, it will override that. Note that épt is set to zero, exponential form will
always be used. Howevergifpt tries to force exponential form, simple form will still be useekfp is zero. Negative value
for expt will give an error. Exponential form is used if more digits thexpt is needed in the integer part, or more than twice
expt digits are needed in the fractional part.

Note that theafter number will mean different things in exponential and simple formaftdr is set to e.g3, then in simple
form it will force the precision to 0.001, no matter the magnitude of the number. If in exponential form, it will force the
number to 4 digits precision.

FORMAT(12. 34, 3, 4) —> 12.3400°
FORMAT(12.34,3,3,0) —> ' 1.234E+001’
FORMAT(12.34,3,1) —> 12.3400’
FORMAT(12.34,3,0) - 123
FORMAT(12.34,3,4) > 12
FORMAT(12.34,,,,0) —> '1.234E+1
FORMAT(12.34,,,0) > 1234
FORMAT(12.34,,,0,0) > 1234

FUZZ()

Returns the current number of digits which are ignored when comparing numbers, during operations like = and >. The defau
valuefor thisis 0. Thisvalueis set using the NUMERIC FUZZstatement, for more information see that.

FUZZ() —> ‘0" *Maybe ¥/

I NSERT(stringl, stringZ[, position[,!|ength[,padchar]]])

Returns the result of inserting stringl into a copy of string2. If position is specified, it marks the character in string2 which
stringl it to be inserted after. Position must be a non-negative whole number, and it defaultsto 0, which meansthat string2 i
put in front of the first character in stringl.

If length is specified, stringl istruncated or padded on the right side to make it exactly length characterslong beforeitis
inserted. If padding occurs, then padchar is used, or <space> if padchar is undefined.

INSERT((first’, ‘'SECOND") —> ‘SECONDfirst’
INSERT((first’, ‘SECOND’, 3) —> ‘fiSECONDrst’
INSERT((first’, ‘SECOND’, 3, 10) — ‘fiSECOND rst’
INSERT((first’, ‘'SECOND’, 3, 10, *") — ‘fISECOND****rst’
INSERT((first’, ‘SECOND’, 3, 4) —> ‘fiSECOrst’
INSERT((first’, ‘'SECOND’, 8) —> ‘first SECOND’

LASTPOS(need! e, hayst ack[, start])

Searches the string haystack for the string needle, and returns the position in haystack of the first character in the substring
that matched needle. The search is started from the right side, so if needle occurs several times, the last occurrenceis reporte

If start is specified, the search starts at character number start in haystack. Note that the standard only states that the search
starts at the startth character. It is not stated whether a match can partly be to the right of the start position, so some
implementations may differ on that point.

LASTPOS(‘be’, To be or not to be’) —> 17
LASTPOS(‘to’, to be or not to be’, 10) —> 3
LASTPOS('is’, to be or not to be’) —> 0

LASTPOS(‘to’, to be or not to be’, 0) —> 0

LEFT(string, | engt h[, padchar])

Returns the length leftmost charactersin string. If length (which must be a non-negative whole number) is greater than the
length of string, the result is padded on the right with <space> (or padchar if that is specified) to make it the correct length.

LEFT(‘Foo bar’, 5) —> ‘Foo b’
LEFT(‘Foo bar’, 3) —> ‘Foo’
LEFT(‘Foo bar’, 10) - ‘Foo bar
LEFT(‘Foo bar’, 10, *") —> ‘Foo bar***

LENGTH(st ri ng)

Returns the number of charactersin string.

LENGTH(") >
LENGTH(*Foo’) > 3
LENGTH(‘*Foo bar’) > 7
LENGTH(foo bar) —> ‘10’

LINEIN([streamid|[,[!ine][, count]])

Returns aline read from afile. When only streamid is specified, the reading starts at the current read position and continuest
the first End-Of-Line (EOL) mark. Afterwards, the current read position is set to the character after the EOL mark which
terminated the read-operation. If the operating system uses special characters for EOL marks, these are not returned by as a
part of the string read..

The default value for streamid is default input stream. The format and range of the string streamid are implementation
dependent.

The line parameter (which must be a positive whole number) might be specified to set the current position in the file to the
beginning of line number line before the read operation starts. If line is unspecified, the current position will not be changed
before the read operation. Note that line isonly valid for persistent steams. For transient streams, an error isreported if linei
specified. Thefirst line in the stream is numbered 1.

Count specifies the number of linesto read. However, it can only take the values0 and 1. Whenitis 1 (which is the default),
will read one line. When it is O it will not read any lines, and a nullstring is returned. This has the effect of setting the current
read position of the fileif line was specified.

What happens when the functions finds a End-Of-File (EOF) condition is to some extent implementation dependent. The
implementation may interpret the EOF as an implicit End-Of-Line (EOL) mark is hone such was explicitly present. The
implementation may also choose to raise the NOTREAD ¥ondition flag (this condition is new from REXX language level
4.00).

Whether or not stream must be explicitly opened before aread operation can be performed, isimplementation dependent. In
many implementations, aread or write operation will implicitly open the stream if not already open.

Assuming that the file /tmpl/file contains the three linesFirst line”, Second line” and “Third line”:

LINEIN('/tmpf/file’, 1) — ‘First line’

LINEIN('/tmpf/file’) —> ‘Second line’
LINEIN('/tmpf/file’, 1, 0) —> ” [* But sets read position */
LINEIN("/tmpffile”) — ‘First line’

LINEIN() — ‘Hi, there!” /* maybe */

LINEQUT([streamidl[,[string]l[,line]])

50

Returns the number of lines remaining after having positioned the stream streamid to the start of line line and written out
string asaline of text. If streamid is omitted, the default output stream is used. If line (which must be a positive whole numb
is omitted, the stream will not be repositioned before the write. If string is omitted, nothing is written to the stream. If string
specified, a system-specific action istaken after it has been written to stream, to mark anew line.

The format and contents of the first parameter will depend upon the implementation and how it names streams. Consult
implementati on-specific documentation for more information.

If string is specified, but not line, the effect is to write string to the stream, starting at the current write position. If lineis
specified, but not string, the effect is only to position the stream at the new position. Note that the line parameter is only lega
the stream is persistent; you can not position the current write position for transient streams.

If neither line nor string is specified, the standard requires that the current write position is set the end of the stream, and
implementation specific side-effects may occur. In practice, this means that an implementation can use this situation to do
things like closing the stream, or flushing the output. Consult the implementation specific documentation for more informatio

Also note that the return value of this functions may be of little or no value, If just ahalf lineiswritten, 1 may still be returne
and there are no way of finding out how much (if any) of string was written. If string is not specified, the return value will
awaysbe0, evenif LI NEQUT() was not able to correctly position the stream.

If it isimpossible to correctly write string to the stream, the NOTREADY flag will be raised. It is not defined whether or not th
NOTREADY flag israised when L1 NEQUT() isused for positioning, and thisis not possible.

Note that if you write string to aline in the middle of the stream (i.e. line isless than the total number of linesin the stream),
then the behavior is system and implementation specific. Some systems will truncate the stream after the newly written line,
other will only truncate if the newly written line has a different length than the old line which it replaced, and yet other systen
will overwrite and never truncate.

In general, consult your system and implementation specific documentation for more information about this function. Y ou ca
safely assume very little about how it behaves.

LINEOUTY(, ‘First line") > ‘1
LINEOUT (‘/tmp/file’, ‘'Second line’, 2) —> ‘1’
LINEOUT (‘/tmp/file’, ‘“Third line’) —> ‘1’

LINEOUT (‘/tmp/file’, ‘Fourth line’, 4) —> ‘o

LI NES([st reamni d])

Returns the number of complete lines remaining in the named file stream. A complete lineis not really as complete as the

name might indicate; a complete lineis zero or more characters, followed by an End-Of-Line (EOL) marker. So, if you have
read half a line already, you still have a “complete” line left. Note that it is not defined what to do with a half-finiskaed li
the end of a file. Some interpreters might interpret the End-Of-File as an implicit EOL mark too, while others might not

The format and contents of the streameamid is system and implementation dependent. If omitted, the default input
will be used.

The standard says that if it is impossible (or maybe just difficult) to accurately count the remaining lines in a_$tisn,
can return0 for no more lines, and for more lines. This probably applies for all transient streams, as the interpreter
reposition in these files, and can therefore not count the number of remaining lines. It can also apply for persidtém file:
operation of counting the lines left in the file is very time-consuming.

As a result, defensive programming indicates that you can safely only assume that this function will retuénhcgignaon-
zero result. If you want to use the non-zero result to more than just an indicator on whether more lines are available, y
check that it is larger than one. If so, you can safely assume that it hold the number of available lines left.

As with all the functions operating on streams, you can safely assume very little about this function, so consult thea sys
implementation specific documentation.

51

LI NES() —> ‘1" *Maybe */
LINES() —> ‘0’ /*Maybe*/
LINES(/tmpffile’) —> 2" [*Maybe */
LINES(/tmpffile’) —> ‘1’ /*Maybe */

MAX(number 1[, nunber 2] . . .)

Takes any positive number of parameters, and will return the parameter that had the highest numerical value. The parameters
may be any valid REXX number. The number that is returned, is normalized according to the current settings of NUMERIC:
the result need not be strictly equal to any of the parameters.

Actualy, the standard says that the value returned is the first number in the parameter list which is equal to the result of addir
a positive number or zero to any of the other parameters. Note that this definition opens for “strange” results if yau are
enough to play around with the settingd\bfVERI C FUZZ

MAX(1, 2, 3, 5, 4) > 5
MAX(6) > @
MAX(-4, .001E3, 4) >
MAX(L, 2, 05.0, 4) > 5

M N(nunber|[, nunber] .. .)

Like MAX(), except that the lowest numerical value isreturned. For more information, see MAX().

MAX(5, 4, 3, 1, 2) >
MAX(6) > @
MAX(-4, .001E3, 4) >
MAX(L, 2, 05.0E-1,4) -> ‘050’

OVERLAY(stringl, string2[,[start][,[/ength][, padchar]]])

Returns a copy of string2, totally or partialy overwritten by stringl. If these are the only arguments, the overwriting starts at
the first character in string2.

If start is specified, thefirst character in stringl overwrites character number start in string2. Sart must be a positive whole
number, and defaultsto 1, i.e. the first character of stringl. If the start position isto the right of the end of string2, then
string? is padded at the right hand end to make it start- 1 characterslong, before stringl is added.

If length is specified, then string2 will be stripped or padded at the right hand end to match the specified length. For padding
(of both strings) padchar will be used, or <space> if padchar is unspecified. Length must be non-negative, and defaults to the
length of stringl.

OVERLAY('NEW', ‘old-value’) —> ‘NEW-value’
OVERLAY('NEW’, ‘old-value’, 3) —> ‘oldNEWIue’
OVERLAY('NEW', ‘old-value’, 3, 5) —> ‘oldNEW ¢’
OVERLAY('NEW', ‘old-value’, 3, 5), *) —> ‘oldNEW**e’
OVERLAY('NEW', ‘old-value’, 3, 2) —> ‘oldNEalue’
OVERLAY('NEW’, ‘old-value’, 8) —> ‘old-valuNEW’
OVERLAY('NEW', ‘old-value’, 10) —> ‘old-value NEW’
OVERLAY('NEW', ‘old-value’, 8,, ‘*) —> ‘old-value*NEW’
OVERLAY('NEW', ‘old-value’, 8, 5, *) —> ‘old-value*NEW**'

POS(needl! e, hayst ack[, start])

Seeks for an occurrence of the string needle in the string haystack. If needle is not found, then O isreturned
in haystack of the first character in the part that matched is returned, which will be a positive whole number. If start (which
must be a positive whole number) is specified, the search for needle will start at position start in haystack.

52

. Else, the positic

POS(‘be’, ‘to be or not to be’) —> 3
POS(‘to’, ‘to be or not to be’, 10) —> 17

POS('is’, ‘to be or not to be’) —> 0

POS('to’, ‘to be or not to be’, 18) —> 0

QUEUED)

Returns the number of lines currently in the external data queue (the “stack”). Note that the stack is a concept externa
REXX, this function may depend on the implementation and system Consult the system specific documentation for mc
information.

QUEUELY) —> ‘0’ /* Maybe */
QUEUED() - ‘42" [* Maybe */
RANDOM nax)

RANDOM([i n] [, [max] [, seed]])

Returns a pseudo-random whole number. If called with only the first parameter, the first format will be used, and the number
returned will bein the range 0 to the value of the first parameter, inclusive. Then the parameter max must be a non-negative
whole humber, not greater than 100000.

If called with more than one parameter, or with one parameter, which is not the first, the second format will be used. Then
and max must be whole numbers, and max can not be less than min, and the difference max- min can not be more than 10000
If one or both of them is unspecified, the default for minis 0, and the default for max is 999. Note that both min and max are
alowed to be negative, aslong astheir difference iswithin the requirements mentioned.

If seed is specified, you may control which numbers the pseudo-random algorithm will generate. If you do not specify it, it wi
be set to some “random” value at the first calRANDOM) (typically a function of the time). When specifyisagd, it will
effect the result of the current callRANDOM) .

The standard does not require that a specific method is to be used for generating the pseudo-random numbers, so the
reproducibility can only be guaranteed as long as you use the same implementation on the same machine, using the <
operating system. If any of these change, a géeethmay produce a different sequence of pseudo-random numbers.

Note that depending on the implementation, some numbers might have a slightly increased chance of turning up than
the REXX implementation uses a 32 bit pseudo-random generator provided by the operating system and returns the re
after integer dividing it by the difference wfn andmax, low numbers are favored if the 2*32 is not a multiple of that
difference. Supposing that the calR&NDOM 100000) and the pseudo-random generator generates any 32 bit nurhber
equal chance, the change of getting a number in the rangé2®6 is about 0.000010000076, while the changes of getting
number in the range 6729700000 is about 0.000009999843.

A much worse problem with pseudo-random numbers are that they sometimes do not tend to be random at all. Under
operating system (name withheld to protect the guilty), the system’s pseudo-random routine returned numbers where
binary digit alternated between 0 and 1. On that machHR&DOM 1) would return the series 0, 1, 0, 1, 0, 1, 0, 1 etc.,
is hardly random at all. You should therefore never trust the pseudo-random routine to give you random numbers.

Note that due to the special syntax, there is a big difference betweerRASIDGM 10) andRANDOM 10,). The former
will give a pseudo-random number in the rangd 0, while the latter will give a pseudo-random number in the rang®4.0

Also note that it is not clear whether the standard allowsto be equal tonax, so to program compatible, make sure tinat
is always larger thamin.

RANDOM) —> ‘123" /*Between 0 and 999 */

RANDOM(10) —> ‘5" [*Between 0 and 10 */

RANDOM(, 10) > ‘3 [*Between 0 and 10 */

RANDOM(20, 30) > ‘27 [*Between 20 and 30 */

RANDOM(,, 12345) —> ‘765’ /*Between 0 and 999, and sets seed */

53

REVERSE(st ri ng)

Returns a string of the same length as string, but having the order of the characters reversed.

REVERSE(‘FooBar’) —> ‘raBooF’
REVERSE(FooBar) —> ‘raB ooF
REVERSE('3.14159") —> '95141.3

Rl GHT(string, | engt h[, padchar])

Returns the length rightmost charactersin string. If length (which must be a non-negative whole number) is greater than the
length of string the result is padded on the | eft with the necessary number of padcharsto makeit aslong as length specifies.
Padchar defaults to <space>.

RIGHT(‘Foo bar’, 5) —> ‘0 bar’
RIGHT(‘Foo bar’, 3) —> ‘bar’
RIGHT(‘Foo bar’, 10) —> * Foo bar’
RIGHT(‘Foo bar’, 10, ‘*") —> “***E00 bar’

SI GN(nunber)

Returnseither -1 , 0 or 1, depending on whether number is negative, zero, or positive, respectively. Number must be avalid
REXX number, and are normalized according to the current settings of NUMERIhefore comparison.

SIGN(-12) >
SIGN(42) > 1
SIGN(-0.00000012) —> ‘-1’
SIGN(0.000) >
SIGN(-0.0) -

SOURCELI NE([/ i neno])

If lineno (which must be a positive whole number) is specified, this function will return a string containing a copy of the RE:
script source code on that line. If lineno is greater than the number of linesin the REXX script source code, an error is
reported.

If lineno is unspecified, the number of linesin the REXX script source code is returned.

Note that from REXX language level 3.50 to 4.00, the requirements of this function were relaxed to simplify execution when
the source code is not available (compiled or pre-parsed REXX). An implementation might make two simplifications: to retur
0 if called without parameter. If so, any call to SOURCELINE() with a parameter will generate an error. The other
simplification isto return anullstring for any call to SOURCELINE() with alegal parameter.

Note that the code executed by the INTERPRETclause can not be retrieved by SOURCELINE().

SOURCELINE() - ‘42" [*Maybe */
SOURCELINE(1) —> ‘*This Rexx script will ... */’
SOURCELINE(23) —> ‘var = 12" [*Maybe */’

SPACE(stringl,[/ength][, padchar]])

With only one parameter string is returned, stripped of any trailing or leading blanks, and any consecutive blanksinside strir
translated to a single <space> character (or padchar if specified).

Length must be a non-negative whole number. If specified, consecutive blanks within string is replaced by exactly length
instances of <space> (or padchar if specified). However, padchar will only be used in the output string, in the input string,

54

blanks will still be the “magic” characters. As a consequence, if there exigladolyars in string, they will remain untouch
and will not affect the spacing.

SPACE(' Foo bar) —> ‘Foo bar’
SPACE(' Foo bar‘, 2) —> ‘Foo bar’
SPACE(' Foo bar’,, *) —> ‘Foo*bar’
SPACE(‘Foo bar’, 3, *-) - ‘Foo—-bar’
SPACE(‘Foo bar’,, ‘0’) —> ‘Fooobar’

STREAM st ream d[, option[, comrmand]])

This function was added to REXX in language level 4.00. It provides a general mechanism for doing operations on streams.
However, very littleis specified about how the internal of this function should work, so you should consult the implementatic
specific documentation for more information.

The streamid identifies a stream. The actual contents and format of this string is implementation dependent.

The option selects one of several operations which STREAM() isto perform. The possible operations are:

[d
(Command) If this option is selected, athird parameter must be present, command, which isthe command to be
performed on the stream. The contents of command is implementation dependent. For Regina, the valid commands
follow. Commands consist of one or more space separated words.

)
(Description) Returns a description of the state of streamid. The return value isimplementation dependent.

[S]

(Status) Returns a state which describes the state of streamid. The standard requires that it is one of the following:
ERRORNOTREADYREADYand UNKNOWNRIhe meaning of these are described in the chapter; Stream Input and
Output.

Note that the options Description and Status really have the same function, but that Status ingenera is
implementation independent, while Description isimplementation dependent.

The command specifies the command to be performed on streamid. The possible operations are;

[READ|
Open for read access. The file pointer will be positioned at the start of the file, and only read operations are allowed.
This command is Regina-specific; use OPEN READInits place.

[WRI TE]
Open for write access and position the current write position at the end of thefile. An error isreturned if it was not
possible to get appropriate access. This command is Regina-specific; use OPEN WRI TE in its place.

[APPEND|
Open for append access and position the current write position at the end of the file. An error isreturned if it was no
possible to get appropriate access. This command is Regina-specific; uss OPEN WRI TE APPENDIn its place.

[UPDATE]
Open for append access and position the current write position at the end of the file. An error isreturned if it was no
possible to get appropriate access. This command is Regina-specific; use OPEN BOTHin its place.

[CREATE]
Open for write access and position the current write position at the start of the file. An error isreturned if it was not
possible to get appropriate access. This command is Regina-specific; uses OPEN WRI TE REPLACEIn its place.

[CLOSE]
Close the stream, flushing any pending writes. An error isreturned if it was not possible to get appropriate access.

[FLUSH
Flush any pending write to the stream. An error is returned if it was not possible to get appropriate access.

[STATUS]
Returns status information about the stream in human readable form that Regina stores about the stream.

[FSTAT]

Returns status information from the operating system about the stream.
[RESET]

55

Resets the stream after an error. Onl
[READABLE]

y streams that are resettable can be reset.

Returns 1 if the stream is readable by the user or 0 otherwise.

[WRI TABLE]

Returns 1 if the stream is writeable by the user or O otherwise.

[EXECUTABLE]
Returns 1 if the stream is executable

[QUERY]

by the user or 0 otherwise.

Returns information about the named stream. If the named stream does not exists, then the empty string is returned.
This command is further broken down into the following sub-commands:

DATETI ME

EXI STS
HANDLE

POSI TI ON READ
POSI TI ON WRI TE
POSI TI ON CHAR

POSI TI ON LI NE
PCSI TI ON SYS

SI ZE
STREAMTYPE

TI MESTAMP

[OPEN]

returns the date and time of last modification of the stream in Rexx US Date
format; MM-DD-YY HH:MM:SS.

returns the fully-qualified file name of the specified stream.

returnsthe internal file handle of the stream. Thiswill only return avalid value
if the stream was opened explicitly or implicitly by Regina.

returns the current read position of the open stream. Thisisexpressed in
characters, so returns the same value as POSITION CHAR.

returns the current write position of the open stream. Thisis expressed in
characters.

returns the current read position of the open stream. Thisisexpressed in
characters.

returns the current read position of the open stream. Thisis expressed in lines.
returns the current read position of the open stream as the operating re portsit.
Thisis expressed in characters.

returns the size, expressed in characters, of the persistent stream.

returns the type of the stream. One of TRANSIENT, PERSISTENT or
UNKNOWN isreturned.

returns the date and time of last modifcation of the stream. The format of the
string returned isYYYY-MM-DD HH:MM:SS.

Opens the stream in the optional mode specified. If no optional mode is specified, the default is OPEN BOTH

READ

VRI TE

BOTH

V\RI TE APPEND

VRI TE REPLACE

BOTH APPEND

BOTH REPLACE

STRIP(string[,[option][, char]])

Thefile pointer will be positioned at the start of the file, and only read operatiot
are allowed.

Open for write access and position the current write pointer at the end of the file
On platforms where it is not possible to open afile for write without also alowi
reads, the read pointer will be positioned at the start of thefile. An error is
returned if it was not possible to get appropriate access.

Open for read and write access. Position the current read pointer at the start of tl
file, and the current write pointer at the end of thefile. Anerror isreturned if it
was not possible to get appropriate access.

Open for write access and position the write pointer at the end of the file. On
platforms where it is not possible to open afile for write without also alowing
reads, the read pointer will be positioned at the start of thefile.

Open for write access and position the current write position at the start of the
file. On platformswhereit isnot possible to open afile for write without also
allowing reads, the read pointer will be positioned at the start of the file. This
operation will clear the contents of the file. An error isreturned if it was not
possible to get appropriate access.

Open for read and write access. Position the current read position at the start of
the file, and the current write position at the end of the file. An error is returnec
if it was not possible to get appropriate access.

Open for read and write access. Position both the current read and write pointer
at the start of thefile. An error isreturned if it was not possible to get approprie
access.

56

Returns string after possibly stripping it of any number of leading and/or trailing characters. The default action isto strip off
both leading and trailing blanks. If char (which must be a string containing exactly one character) is specified, that character
will be stripped off instead of blanks. Inter-word blanks (or charsif defined, that are not leading of trailing) are untouched.

If option is specified, it will define what to strip. The possible values for option are:

[L]
(Leading) Only strip off leading blanks, or charsif specified.

[T]
(Trailing) Only strip off trailing blanks, or charsif specified.

[Bl
(Both) Combine the effect of L and T, that is, strip off both leading and trailing blanks, or charsif it is specified. Th
isthe default action.

STRIP(* Foo bar) —> ‘Foo bar’
STRIP(* Foo bar ‘, ‘L") —> ‘Foo bar
STRIP(* Foo bar ‘, ‘") - ‘Foo bar
STRIP(* Foo bar‘, ‘Both’) —> ‘Foo bar’
STRIP('0.1234500',, ‘0") — 12345’
STRIP('0.1234500 ‘,, ‘0") - 1234500’

SUBSTR(string, start[,[length][, padchar]])

Returns the substring of string that starts at start, and has the length Iength. Length defaults to the rest of the string. Start mu
be a positive whole, whilelength can be any non-negative whole number.

Itisnot an error for start to be larger than the length of string. If length is specified and the sum of length and start minus 1
greater that the length of string, then the result will be padded with padchars to the specified length. The default value for
padchar isthe <space> character.

SUBSTR(‘Foo bar’, 3) —> ‘0 bar’
SUBSTR(‘Foo bar’, 3, 3) - ‘ob’
SUBSTR(‘Foo bar’, 4, 6) — ‘bar
SUBSTR(‘Foo bar’, 4, 6, *) —> ‘ bar**'

SUBSTR('Foo bar’, 9, 4, *) —> kR

SUBWORD(st ri ng, start[, | ength])

Returns the part of string that starts at blank delimited word start (which must be a positive whole number). If length (which
must be a non-negative whole number) is specified, that number of words are returned. The default value for length istheres
of the string.

It is not an error to specify length to refer to more words than string contains, or for start and length together to specify more
words than string holds. The result string will be stripped of any leading and trailing blanks, but inter-word blanks will be
preserved asis.

SUBWORD(‘To be or not to be’, 4) —> ‘not to be’

SUBWORD(‘To be or not to be’, 4, 2) —> ‘not to’

SUBWORD(‘To be or not to be’, 4, 5) —> ‘not to be’

SUBWORD(‘To be or not to be’, 1, 3) —> ‘To be or’
SYMBOL(nane)

Checksif the string nameis avalid symbol (a positive number or a possible variable name), and returns a three letter string
indicating the result of that check. If nameisasymbol, and names a currently set variable, VARIsreturned, if nameisalege

57

symbol name, but has not a been given avalue (or is a constant symbol, which can not be used as avariable name), LI Tis
returned to signify that it isaliteral. Else, if nameisnot alegal symbol name the string BAD is returned.

Watch out for the effect of “double expansioName is interpreted as an expression evaluating naming the symbol to be
checked, so you might have to quote the parameter.

SYMBOL(‘Foobar’) - VAR’ [* Maybe */
SYMBOL(‘Foo bar’) —> ‘BAD’
SYMBOL(‘Foo.Foo bar) —> VAR’ [* Maybe */
SYMBOL('3.14") — ‘LIT
SYMBOL('.Foo->bar’) - ‘BAD’

TIME([option_out [,tinme [option_in]]])

Returns a string containing information about the time. To get the time in a particular format, an option_out can be specifiec
The default option_out is Normal . The meaning of the possible options are:

[(d
(Civil) Returns the time in civil format. The return value might t® nXX’, where XX are eithermamor pm The
hh part will be stripped of any leading zeros, and will be in the rande inclusive.

[El
(Elapsed) Returns the time elapsed in seconds since the internal stopwatch was started. The result will not h:
leading zeros or blanks. The output will be a floating point number with six digits after the decimal point.

[H

(Hours) Returns the number of complete hours that have passed since last midnight in thehforfine output wi
have no leading zeros, and will be in the rang23.

[L]
(Long) Returns the exact time, down to the microsecond. This is called the long format. The output might be
“hh: mm ss. nimmmmi. Be aware that most computers do not have a clock of that accuracy, so the actual
you can expect, will be about a few milliseconds. fihemmandss parts will be identical to what is returned b
optionsH, MandS respectively, except that each part will have leading zeros as indicated by the format.

[M
(Minutes) Returns the number of complete minutes since midnight, in a format having no leading zeros, and w
the range 059.

[N

(Normal) The output format isth: nm ss”, and is padded with zeros if needed. Tite nmandss will contain t
hours, minutes and seconds, respectively. Each part will be padded with leading zeros to make it double-digit.

[R
(Reset) Returns the value of the internal stopwatch just like thpgion, and using the same format. In addition, it
will reset the stopwatch to zero after its contents has been read.

[S]
(Seconds) Returns the number of complete seconds since midnight, in a format having no leading spaces, an
in the range 0-59.
Note that the time is never rounded, only truncated. As shown in the examples below, the seconds do not get roundec
even though the decimal part implies that they are closgttihan to58. The same applies for the minutes, which are
to 33 than t032, but is truncated t82.

None of the formats will have leading or trailing spaces.

Assuming that the time is exactly 14:32:58.987654, the following will be true:

58

TIME('C) — ‘2:32pm’

TIME(E) — ‘0.01200’ /* Maybe */
TIME(H) —> 14’

TIME(L) —> 14:32:58.987654"
TIME('M) —> ‘32’

TIME('N) —> 14:32:58'

TIME(R) — ‘0.430221" /* Maybe */
TIME('S) —> ‘58’

If the time option is specified, the function provides for time conversions. The optional option_in specifies the format in whi
timeissupplied. The possible valuesfor option_in are: CHLMNS.
The default value for option_inis N.

TIME('C’, '11:27:21") —> 11:27am’
TIME('N’, '11:27am’, ‘C’) -> 11:27:00°

The time conversion capability of the TIME BIF was introduced with the ANSI standard.

TRACE([setting])

Returns the current value of the trace setting. If the string setting is specified, it will be used as the new setting for tracing, af
the old value have be recorded for the return value. Note that the setting is not an option, but may be any of the trace settings
that can be specified to the clause TRACE except that the numeric variant is not allowed with TRACE(). In practice, this car
be aword, of which only the first |etter counts, optionally preceded by a question mark.

TRACE() —> ‘C’ [*Maybe */
TRACE(N) —> ‘C
TRACE(?) —-> N’

TRANSLATE(string[,[tablein][,[tabl eout][, padchar]l]])

Performs atrangation on the charactersin string. Asaspecial case, if neither tablein nor tableout is specified, it will tranda
string from lower case to upper case. Note that this operation may depend on the language chosen, if your interpreter support:
national character sets.

Two trandation tables might be specified as the strings tablein and tableout. If one or both of the tables are specified, each
character in string that existsin tablein istrandated to the character in tableout that occupies the same position as the
character did in tablein. The tablein defaults to the whole character set (all 256) in numeric sequence, while tableout default:
to an empty set. Characters not in tablein are left unchanged.

If tableout islarger than tablein, the extraentries areignored. If it issmaller than tablein it is padded with padchar to the
correct length. Padchar defaults to <space>.

If a character occurs more than oncein tablein, only the first occurrence will matter.

TRANSLATE(‘FooBar’) —> ‘FOOBAR’
TRANSLATE(‘FooBar’, ‘ABFORabfor’, ‘abforABFOR?) —> ‘fOObAR’
TRANSLATE(‘FooBar’, ‘abfor’) —> ‘F B’
TRANSLATE(‘FooBar, ‘abfor’,, ‘#’) —> ‘FHHBHH

TRUNC(nunber|, | engt h])

Returns number truncated to the number of decimals specified by length. Length defaultsto O, that is return an whole numbe
with no decimal part.

The decimal point will only be present if the is a non-empty decimal part, i.e. length isnon-zero. The number will aways be
returned in simple form, never exponential form, no matter what the current settings of NUMERIC might be. If length specif

59

more decimals than number has, extra zeros are appended. If length specifies less decimals than number has, the number is
truncated. Note that number is never rounded, except for the rounding that might take place during normalization.

TRUNC(12. 34) > a4
TRUNC(12.99) > 1
TRUNC(12.34,4) —> ‘12.3400’
TRUNC(12.3456, 2) —> '12.34’

VALUE(synbol [, [val u€], [pool1])

This function expects as first parameter string symbol, which names an existing variable. The result returned from the functic
isthe value of that variable. If symbol does not name an existing variable, the default value is returned, and the NOVALUE
condition is not raised. If symbol is not avalid symbol name, and this function is used to access an normal REXX variable, a
error occurs. Be aware of the “double-expansion” effect, and quote the first parameter if necessary.

If the optional second parameter is specified, the variable will be set to that value, after the old value has been extract

The optional parametgiool might be specified to select a particular pool of variables to searsynibol. The contents and
format ofpool is implementation dependent. The default is to search in the variables at the current proceduraREY in
Which pools that are available is implementation dependent, but typically one can set variables in application program:
the operating system.

Note that ifVALUE() is used to access variable in pools outsiddRBEX interpreter, the requirements to format (a valid
symbol) will not in general hold. There may be other requirements instead, depending on the implementation and the
Depending on the validity of the name, the value, or whether the variable can be set or re¢atlUsg) function can give
error messages when accessing variables in pools other than the normal. Consult the implementation and system spe
documentation for more information.

If it is used to access compound variables inside the interpreter the tail part of this function can take any expression, €
expression that are not normally legalREXX scripts source code.

By using this function, it is possible to perform an extra level of interpretation of a variable.

VALUE(‘FOO") - ‘bar’

VALUE(‘FOO’, ‘new’) - ‘bar’

VALUE(‘FOO") - ‘new’

VALUE(‘USER’, ‘root’, ‘SYSTEM’) - ‘guest’ /* If SYSTEMexists */
VALUE(‘USER’,, ‘SYSTEM) - ‘root’

VERI FY(string, ref[,[option][,start]])

With only the first two parameters, it will return the position of the first character in string that is not also a character in the
string ref. If all charactersin string arealsoin ref, it will return O.

If option is specified, it can be one of:

[N
(Nomatch) The result will be the position of the first character in string that does exist in ref, or zero if all existin r
Thisis the default option.

(M
(Match) Reverses the search, and returns the position of the first character in string that existsin ref. If none existsi
ref, zero is returned.

If start (which must be a positive whole number) is specified, the search will start at that positionin string. The default value
for startis 1.

VERIFY (‘foobar’, ‘barfo’) —> ‘2

60

VERIFY (‘foobar’, ‘barfo’, ‘M) —> ‘2

VERIFY((‘foobar’, ‘fob’, ‘N’) - ‘5’
VERIFY((‘foobar’, ‘barf’, ‘N’, 3) —> 3’
VERIFY((‘foobar’, ‘barf’, ‘N’, 4) - ‘0’

WORD(st ri ng, wor dno)

Returns the blank delimited word number wordno from the string string. If wordno (which must be a positive whole number)
refers to anon-existing word, then anullstring is returned. The result will be stripped of any blanks.

WORD(‘To be or not to be’, 3) —> ‘or’
WORD('To be or not to be’, 4) —> ‘not’
WORD('To be or not to be’, 8) —> Y

WORDI NDEX(st ri ng, wor dno)

Returns the character position of the first character of blank delimited word number wordnoin string, which isinterpreted as
string of blank delimited words. 1f number (which must be a positive whole number) refers to aword that does not exist in
string, then O is returned.

WORDINDEX(‘To be or not to be’, 3) —> T
WORDINDEX('To be or not to be’, 4) —> 10°
WORDINDEX('To be or not to be’, 8) —> ‘o

WORDLENGTH(st ri ng, wor dno)

Returns the number of charactersin blank delimited word number number in string. If number (which must be a positive wh
number) refers to an non-existent word, then 0O is returned. Trailing or leading blanks do not count when calculating the
length.

WORDLENGTH('To be or not to be’, 3) —> ‘2’
WORDLENGTH('To be or not to be’, 4) —> ‘3
WORDLENGTH('To be or not to be’, 0) —> ‘0

WORDPCOS(phr ase, string[, start])

Returns the word number in string which indicates at which phrase begins, provided that phrase is a subphrase of string. If r
0 isreturned to indicate that the phrase was not found. A phrase differs from a substring in one significant way; a phraseisa
set of words, separated by any number of blanks.

For instance,is a”is a subphrase of Thi s i s a phrase”. Notice the different amount of whitespace betweaesi'“
and ‘a”.

If start is specified, it sets the word #tring at which the search starts. The default valuesfant is 1.

WORDPOS(‘or not, ‘to be or notto be’) —> ‘3
WORDPOS('not to’, ‘to be or notto be’) —> ‘4
WORDPOS('to be’, ‘to be or not to be’) - ‘1’
WORDPOS(‘to be’, ‘to be or not to be’, 3) —> ‘6’

WORDS(st ri ng)

Returns the number of blank delimited words in the string.

WORDS(‘'To be or notto be’) —> ‘6’
WORDS(‘Hello world’) —> ‘2’
WORDS(") —> ‘0

XRANGE([start] [, end])

Returns a string that consists of all the charactersfrom start through end, inclusive. The default value for character startis

‘00'x , whilethe default value for character end is‘ff'’x . Without any parameters, the whole character set in “alphabeti
order isreturned. Note that the actual representation of the output from XRANGE() depends on the character set used by you
computer.

If the value of start islarger than the value of end, the output will wrap around from ‘ff’x ~ to‘00’x . If start or end isnot .
string containing exactly one character, an error is reported.

XRANGE(A', ') —> ‘ABCDEFGHIJ
XRANGE(‘FC'x) —> ‘FCFDFEFF’X
XRANGE(, ‘05'x) —> ‘000102030405’
XRANGE('FD’x, ‘04'x) —> ‘FDFEFF0001020304°Xx

X2B(hexstring)

Trandate hexstring to abinary string. Each hexadecimal digitsin hexstring will be translated to four binary digitsin the resu
There will be no blanksin the result.

X2C(hexstring)

Returns the (packed) string representation of hexstring. The hexstring will be converted bytewise, and blanks may optionally
be inserted into the hexstring between pairs or hexadecimal digits, to divide the number into groups and improve readability.
All groups must have an even number of hexadecimal digits, except the first group. If the first group has an odd number of
hexadecimal digits, it is padded with an extra leading zero before conversion.

XZC(H) _> (3
X2C('466f6f 426172") —> ‘FooBar’
X2C(‘46 6f 6f) —> ‘Foo’

X2D(hexstring], | ength])

Returns awhole number that is the decimal representation of hexstring. If length is specified, then hexstring isinterpreted as
two’s complement hexadecimal number consisting ohtimber rightmost hexadecimal numerals liiexstring. If hexstring
shorter thamumber, it is padded to the left with <NUL> characters (that@Q'x).

If length is not specified, hexstring will always be interpreted as an unsigned number. Else, it isinterpreted as an signed
number, and the leftmost bit in hexstring decides the sign.

X2D('03 24") > 792
X2D('0310) > 784
X2D('ffff") > 65535
X2D(ffff,5) —> ‘65535’
X2D(ffff, 4) —> -1
X2D(ff80,3) —> 128

X2D('12345',3) —> ‘837’

3. Implementation specific documentation for Regina

62

3.1 Deviations from the Standard

For those built-in functions where the last parameter can be omitted, Regina allows the last commato be specified, ever
when the last parameter itself has been omitted.

The error messages are dlightly redefined in two ways. Firstly, some of the have a dlightly more definite text, and second
some hew error messages have been defined.

The environments available are described in chapter [not yet written].

Parameter calling

Stream I/O

Conditions

National character sets

Blanks

Stacks have the following extra functionality: DROPBUF() , DESBUF() and MAKEBUF() and BUFTYPE() .
Random()

Sourceline

Time

Character sets

3.2 Interpreter Internal Debugging Functions

ALLCCATED([opt i on])

Returns the amount of dynamic storage allocated, measured in bytes. Thisisthe memory alocated by the mal | oc() call, a
does not concern stack space or static variables.

As parameter it may take an option, which is one of the single characters:

[A

[C]

[L]

[S]

Thisisthe default value if you do not specify an option. It will return a string that is the number of bytes of dynamic
memory currently allocated by the interpreter.

Returns a number that is the number of bytes of dynamic memory that is currently in use (i.e. not leaked).
Returns the number of bytes of dynamic memory that is supposed to have been |eaked.

Returns a string that is nicely formatted and contains al the other three options, with labels. The format of this string
is:

“Mermory: Al l ocat ed=XXX, Current=YYY, Leaked=ZZZ.

This function will only be available if the interpreter was compiled withtRACEMEMpreprocessor macro defined.

63

DUVPTREE()

Prints out the internal parse tree for the REXX program currently being executed. This output is not very interesting unless y
have good knowledge of the interpreter’s internal structures.

DUVPVARS()

This routine dumps a list of all the variables currently defined. It also gives a lot of information which is rather tingtere
for most users.

LI STLEAKED()

List out all memory that has leaked from the interpreter. As a return value, the total memory that has been listed is rett
There are several option to this function:

[N

Do not list anything, just calculate the memory.
[Al

List all memory allocations currently in use, not only that which has been marked as leaked.
[L]

Only list the memory that has been marked as leaked. This is the default option.
TRACEBACK()

Prints out a traceback. This is the same routine which is called when the interpreter encounters an error. Nice for debt
but not really useful for any other purposes.

3.3 REXX UNIX Interface Functions

CHDI R(st ring)

Setstring as current working directory.

A separate function is needed for this task in the current implementation. But when commands are implemented using
pipes/sockets instead of the C functiyrst en{), this will not be needed. Then tiREXX interpreter and its subprocesses
have different current directories.

GETENV(envi r onnent var)

Returns the named UNIX environment variable. If this variable is not defined, a nullstring is returned. It is not passible
this function to determine whether the variable was unset, or just set to the nullstring.

This function is now obsolete, instead you should use:

VALUE(environmentvar, ,'SYSTEM’)

UNI XERROR(er r or no)

This function returns the string associated with the errno error number that errorno specifies. When some UNIX interface
function returns an error, it really is areference to an error message which can be obtained through UNIXERROR

Thisfunctionisjust aninterfacetothe st rerror () function cal in UNIX, and the actual error messages might differ with
the operating system.

Thisfunction is now obsolete, instead you should use:

ERRORTEXT(100 + errorno)

65

Conditions

In this chapter, the REXX concept of “conditions” is described. Conditions allow the programmer to handle abnormal
control flow, and enable him to assign special pieceRBKXX code to be executed in case of certain incidences.

* Inthe first section the concept of conditions is explained.
* Then, there is a description of how a standard conditioREXX would work, if it existed.

« Inthe third section, all the existing conditions REXX are presented, and the differences compared to the standard
condition described in the previous section are listed.

* The fourth sections contains a collections of random notes on the conditiéREEXIX.

* The last section describes differences, extensions and peculiaritegima on the of subject conditions, and the lists
specific behavior.

1. What are Conditions

In this section, the concept of “conditions” are explained: What they are, how they work, and what they mean in progre

1.1 What Do We Need Conditions for?

1.2 Terminology

First, let's look at the terminology used in this chapter. If you don’t get a thorough understanding of these terms, you w
probably not understand much of what is said in the rest of this chapter.

[I'ncident:]
A situation, external or internal to the interpreter, which it is required to respond to in certain pre-defined mann
The interpreter recognizes incidents of several different types. The incident will often have a character of
“suddenness”, and will also be independent of the normal control flow.

[Event:]
Data Structure describing one incident, used as a descriptor to the incident itself.

[Condition:]
Names thdREXX concept that is equivalent to the incident.

[Rai se a Condition:]
The action of transforming the information about an incident into an event. This is done after the interpreter se
the condition. Also includes deciding whether to ignore or produce an event.

[Handl e a Condition:]
The act of executing some pre-defined actions as a response to the event generated when a condition was ra

[(Condition) Trap:]
Data Structure containing information about how to handle a condition.

[(Trap) State:]
Part of the condition trap.

[(Condition) Handl er:]
66

Part of the condition trap, which points to a piece of REXX code which isto be used to handle the condition.

[(Trap) Method:]
Part of the condition trap, which defined how the condition handler isto be invoked to handle the condition.

[Trigger a Trap:]
The action of invoking a condition handler by the method specified by the trap method, in order to handle a conditiol

[Trap a Condition:]
Short of trigger atrap for a particular condition.

[Current Trapped Condition:]
The condition currently being handled. Thisis the same as the most recent trapped condition on this or higher
procedure level.

[(Pendi ng) Event Queue:]
Data Structure storing zero or more eventsin aspecific order. There are only one event queue. The event queue
contains events of al condition types, which have been raised, but not yet handled.

[Def aul t - Action:]
The pre-defined default way of handling a condition, taken if the trap state for the condition raised is OFF.

[Del ay- Acti on:]
The pre-defined default action taken when a condition israised, and the trap stateis DELAY.

2. The Mythical Standard Condition

REXX Language Level 4.00 has six different conditions. However, each of theseis a special case of a mythical, non-existing,
standard condition. In order to better understand the real conditions, we start by explaining how a standard condition work.

In the examples below, we will call our non-existing standard condition MyTH. Note that these examples will not be executak
on any REXX implementation.

2.1 Information Regarding Conditions (data structures)

There are mainly five conceptual data structuresinvolved in conditions.

[Event queue.]
There is one interpreter-wide queue of pending conditions. Raising a condition isidentical to adding information
about the condition to this queue (FIFO). The order of the queue is the same order in which the conditions are to be
handled.

Every entry in the queue of pending conditions contains some information about the event: the line number of the
REXX script when the condition was raised, a descriptive text and the condition type.

[Def aul t- Action.]
To each, there exists information about the default-action to take if this condition is raised but thetrap isin state OF
This is called the “default-action”. The standard default-action is to ignore the condition, while some conditions
abort the execution.

[Del ay- Action.]
Each condition will also have delay-action, which tells what to do if the condition is raised when condition trap isin

state DELAY. The standard delay-action isto queue the condition in the queue of pending conditions, while some
conditions may ignoreit.

[Condition traps.]

67

For each condition there is atrap which contains three pieces of status information: the state; the handler; and the
method. The state can be ON, OFF or DELAY.

The handler names the REXX label in the start of the REXX code to handle the event. The method can be either
S| GNAL or CALL, and denotes the method in which the condition is to be handled. If the stateis OFF, then neither
handler nor method is defined.

[Current Trapped Condition.]
Thisisthe most recently handled condition, and is set whenever atrap istriggered. It contains information about
method, which condition, and a context-dependent description. In fact, the information in the current trapped
condition is the same information that was originally put into the pending event queue.

Note that the event queue is a data structure connected to the interpreter itself. Y ou operate on the same event queue,
independent of subroutines, even external ones. On the other hand, the condition traps and the current trapped condition are
data structures connected to each single routine. When a new routineis called, it will get its own condition traps and a current
trapped condition. For internal routines, theinitial values will be the same values as those of the caller. For external routines,
the values are the defaullts.

Theinitial value for the event queueisto be empty. The default-action and the delay-action are static information, and will
aways retain their values during execution. The initial values for the condition traps are that they are al in state OFF. The
initial value for the current trapped condition is that all information is set to the nullstring to signalize that no condition is
currently being trapped.

2.2 How to Set up a Condition Trap

How do you set the information in a condition trap? You do it with a SI GNAL or CALL clause, with the ON or OFF
subkeyword. Remember that a condition trap contain three pieces of information? Here are the rules for how to set them:

* To set thetrap method, use either SI GNAL or CALL as keyword.

e Toset stateto ON or OFF, use the appropriate subkeyword in the clause. Note that there is no clause or function in REX:
capable of setting the state of atrap to DELAY.

* To set the condition handler, append the teMAVE hand! er” to the command. Note that this term is only legal
are setting the state @\; you can not specify a handler when setting the stafko

The trap is said to be “enabled” when the state is efiheor DELAY, and “disabled” when the state@F. Note that neith
the event queue, nor the current trapped condition can be set explidREX) clauses. They can only be set as a result o
incidents, when raising and trapping conditions.

It sounds very theoretical, doesn'’t it? Look at the following examples, which sets thdTrep

/* 1 */ SIGNAL ON MYTH NAME TRAP_IT
/* 2 */ SIGNAL OFF MYTH

/* 3 */ CALL ON MYTH NAME MYTH_TRAP
/* 4 */ CALL ON MYTH

/* 5 */ CALL OFF MYTH

Line 1 sets state tON, method taSI GNAL and handler ta'RAP_I T. Line 2 sets state #OFF, handler and method becomes
undefined. Line 3 sets state@I, method taCALL, and handler tdWyTH_TRAP. Line 4 sets state ON, method taCALL ar
handler toMYTH (the default). Line 5 sets state@F, handler and method become undefined.

Why should method and handler become undefined when the trap itO6Rd-or two reasons: firstly, these values are no
used when the trap is in staBEF; and secondly, when you set the trap to Stitethey are redefined. So it really does not
matter what they are in sta@-F.

What happens to this information when you call a subroutine? All information about traps are inherited by the subrouti
provided that it is an internal routine. External routines do not inherit any information about traps, but use the default v

68

Note that the inheritance is done by copying, so any changes done in the subroutine (internal or external), will only have effe
until the routine returns.

2.3 How to Raise a Condition

How do you raise a condition? Well, there are really no explicit way in REXX to do that. The conditions are raised when an
incident occurs. What sort of situations that is, depends on the context. There are in general three types of incidents, classifie
by the origin of the event:

* Internal origin. Theincident is only dependent on the behavior of the REXX script. The SYNTAX condition is of thistyp

« External origin. The REXX script and the interpreter has really no control over when thisincident. It happens completely
independent of the control of the REXX script or interpreter. The HALT condition is of thistype.

* Mixed origin. Theincident is of external origin, but the situation that created the incident, was an action by the REXX
script or the interpreter. The ERROR condition is of thistype: the incident is a command returning error, but it can only
occur when the interpreter is executing commands.

For conditions trapped by method CALL, standard REXX requires an implementation to at least check for incidents and raise
condition at clause boundaries. (But it is allowed to do so el sewhere too; although the actua triggering must only be performe
at clause boundaries.) Consequently, you must be prepared that in some implementations, conditions trappable by method

CALL might only be raised (and the trap triggered) at clause boundaries, even if they are currently trapped by method SI G\/

The six standard conditions will be raised as result of various situations, read the section describing each one of them for mor
information.

+ + + + / \ + +
|Incident] |Condition| /Trap \ Off |Default |
| occurs | —> |is raised | —> \ State / —-> | action |

+ + + + \ / + +
/
/On |Delay
/ |
/ Y%
+ +/ / \ — +
| Queue | Yes /DelayAction\ No |Ignore|
|an event] <—- \is queue? / —-> | event|
+ + \ / -+
I
%
f———\
/Method is\
\ CALL? /
—
/ \
/No Yes\
/ \ / \
/ \ / \
+ + + + \ Decision /
| Set state | | Set state | \ /
| OFF | | DELAY |
+ + + + + +
| Trigger | | | | I
| trap | | Return | | Action |
+ + + + + +

Thetriggering of a condition

When an incident occurs and the condition is raised, the interpreter will check the state of the condition trap for that particula
condition at the current procedure level.

69

* If thetrap state is OFF, the default-action of the condition is taken immediately. The “standard” default-action is
the condition.

« |f thetrap stateis DELAY, the action will depend on the delay-action of that condition. The standard delay-action isto
ignore, then nothing further is done. If the delay-action is to queue, the interpreter continues as if the state was ON.

« |f the state of the trap is ON, an event is generated which describes the incident, and it is queued in the pending event
queue. The further action will depend on the method of trapping.

* If themethod is CALL, the state of the trap will be set to DELAY. Then the normal execution isresumed. Theideaistha
the interpreter will check the event queue later (at a clause boundary), and trigger the appropriate trap, if it finds any
eventsin the event queue.

* Else, if method of trapping is SI GNAL, then the action taken is this: First set the trap to state OFF, then terminate clause
the interpreter was executing at this procedure level. Then it explicitly trigger the condition trap.

This process has be shown in the figure above. It shows how an incident makes the interpreter raise a condition, and that the
state of the condition trap determines what to do next. The possible outcomes of this process are: to take the default-action; to
ignoreif delay-action is not to queue; to just queue and the continue execution; or to queue and trigger the trap.

2.4 How to Trigger a Condition Trap

What are the situations where a condition trap might be triggered? It depends on the method currently set in the condition
trap.

If the method is SI GNAL, then the interpreter will explicitly trigger the relevant trap when it has raised the condition after
having sensed the incident. Note that only the particular trap in question will be triggered in this case; other traps will not be
triggered, even if the pending event queue is non-empty.

In addition, the interpreter will at each clause boundary check for any pending events in the event queue. If the queue is hon-
empty, the interpreter will not immediately execute the next normal statement, but it will handle the condition(s) first. This
procedureis repeated until there are no more events queued. Only then will the interpreter advance to execute the next norma
Statement.

Note that the REXX standard does not require the pending events to be handled in any particular order, although the model
shown in this documentation it will be in the order in which the conditions were raised. Consequently, if one clause generate:
several events that raise conditions before or at the next clause boundary, and these conditions are trapped by method CALL.
Then, the order on which the various traps are triggered is implementations-dependent. But the order in which the different
instances of the same condition is handled, is the same as the order of the condition indicator queue.

2.5 Trapping by Method SI GNAL

Assume that a condition is being trapped by method SI GNAL, that the state is ON and the handler is MYTH_TRAP. The
following REXX clause will setup the trap correctly:

SI GNAL ON MYTH NAME MYTH_TRAP

Now, suppose the MYTHincident occurs. The interpreter will senseit, queue an event, set the trap stateto OFF and then
explicitly trigger the trap, since the method is SI GNAL. What happens when the trap is triggered?

* It collectsthe first event from the queue of pending events. The information is removed from the queue.
e The current trapped condition is set to the information removed from the pending event queue.

e Then, theinterpreter simulatesa SI GNAL clause to the label named by trap handler of the trap for the condition in
question.

70

* Asall SI GNAL clauses, thiswill have the side-effects of setting the SI GL special variable, and terminating all active loo
at the current procedure level.

That's it for methodSI GNAL. If you want to continue trapping conditidTH, you have to execute a n&vGNAL ON
MYTH clause to set the state of the trafohd But no matter how quick you reset the trap, you will always have a short
where it is in stat®FF. This means that you can not in general use the me8h@NAL if you really want to be sure that
don’t loose anyWTH events, unless you have some control over WiveiiH condition may arise.

Also note that since the statement being executed is terminated; all active loops on the current procedure level are ter
and the only indication where the error occurred is the line number (the line may contain several clauses), then itis in
impossible to pick up the normal execution after a condition trapp&ll B}AL. Therefore, this method is best suited for a
“graceful death” type of traps. If the trap is triggered, you want to terminate what you were doing, and pick up the exec
an earlier stage, e.g. the previous procedure level.

2.6 Trapping by Method CALL
Assume that the conditioMYTH s being trapped by meth&ALL, that the state i©N and the handler isTH _HANDLER

The followingREXX clause will setup the trap correctly:

CALL ON MYTH NAME MYTH HANDLER

Now, suppose that thdvyTH incident occurs. When the interpreter senses that, it will rais&MfigH condition. Since the tra
state iSON and the trap method GALL, it will create an event and queue it in the pending event queue and set the tr
DELAY. Then it continues the normal execution. The trap is not triggered before the interpreter encounters the next cle
boundary. What happens then?

« Atthe every clause boundaries, the interpreter check for any pending events in the event queue. If one is found, i
handled. This action is done repeatedly, until the event queue is empty.

e It will simulate a normal function call to the label named by the trap handler. As witiCahi clause, this will set the
special variabl&l GL to the line of from which the call was made. This is done prior to the call. Note that this is the
current line at the time when the condition was raised, not when it was triggered. All other actions normally perfor
when calling a subroutine are done. Note that the arguments to the subroutine are set to empty.

* However, just before execution of the routine starts, it will remove the first event in the pending event queue, the
information is instead put into the current trapped condition. Note that the current trapped condition is information
saved across subroutine calls. It isafedr the condition handler is called, and will be local to the condition handle
functions called by the condition handler). To the “caller” (i.e. the procedure level active when the trap was triggere
will seem as if the current trapped condition was never changed.

* Then the condition handler finishes execution, and returns by executirREIHdRN clause. Any expression given as
argument tdRETURN will be ignored, i.e. the special variadBRESULT will not be set upon return from a condition
handler.

« Atthe return from the condition handler, the current trapped condition and the setup of all traps are restored, as w
normal return from subroutine. As a special case, the state of the trap just triggered, will not be put HaEkAmM et
but is set to statéN.

« Afterwards (and before the next normal clause), the interpreter will again check for more events in the event queu
will not continue on théREXX script before the queue is empty.

During the triggering of a trap by meth@ALL at a clause boundary, the state of the trap is not normally changed, it will
continue to b®ELAY, as was set when the condition was raised. It will continue to be inDER®&Y until return from the
condition handler, at which the state of the trap in the caller will be chang@N.tif, during the execution of the condition
trap, the state of the condition being trapped is set, that change will only last until the return from the condition handler

71

Since new conditions are generally delayed when an condition handler is executing, new conditions are queued up for
execution. If the trap stateis changed to QN, the pending event queue will be processed as named at the next clause boundary
the state is changed to OFF, the default action of the conditions will be taken at the next clause boundary.

2.7 The Current Trapped Condition

The interpreter maintains a data structure called the current trapped condition. It contains information relating the most recent
condition trapped on this or higher procedure level. The current trapped condition is normally inherited by subroutines and
functions, and restored after return from these.

* When trapped by method SI GNAL the current trapped condition of the current procedure level is set to information
describing the condition trapped.

e When trapped by method CALL, the current trapped condition at the procedure level which the trap occurred at, is not
changed. Instead, the current trapped condition in the condition handler is set to information describing the condition.

The information stored in the current trapped condition can be retrieved by the built-in function CONDI TI ON() . The syntax
format of thisfunction is:

CONDI TI ON(opt i on)

where option is an option string of which only the first character matters. Thevalid optionsare: Condi ti on nare,
Description,lnstructionand St at e. Thesewill return: the name of the current trapped condition; the descriptive
text; the method; and the current state of the condition, respectively. The default optionis| nstructi on. Seethe
documentation on the built-in functions. See also the description of each condition below.

Note that the St at e option do not return the state at the time when the condition was raised or the trap was triggered. It

returns the current state of the trap, and may change during execution. The other information in the current trapped condition
may only change when a new condition is trapped at return from subroutines.

3. The Real Conditions

We have now described how the standard condition and condition trap worksin REXX. Let’s look at the six conditions de
which do exist. Note that hone of these behaves exactly as the standard condition.

3.1 The SYNTAX condition

The SYNTAX condition is of internal origin, and is raised when any syntax or runtime error is discovered by the REXX

interpreter. It might be any of the situations that would normally lead to the abortion of the program and the report of a RE>

error message, except error message humber 4 (Program interrupted), which is handled by the HALT condition.

There are several differences between this condition and the standard condition:

e |tisnot possibleto trap this condition with the method CALL, only method SI GNAL. The reason for thisis partly that
method CALL tries to continue execution until next boundary before triggering the trap. That might not be possible with
syntax or runtime errors.

* When this condition is trapped, the special variable RCis set to the REXX error number of the syntax or runtime error th
caused the condition. Thisis done just before the setting of the special variable SI GL.

« Thedefault action of this condition if the trap stateis OFF, isto abort the program with a traceback and error message.

* Thereisnot delay-action for condition SYNTAX, since it can not be trapped by method CALL, and consequently never ce
get into state DELAY.

72

The descriptive text returned by CONDI T1 ON() when called with the Descr i pt i on option for condition SYNTAX; is
implementation dependent, and may aso be a nullstring. Consult the implementation-specific documentation for more
information.

3.2 The HALT condition

The HALT condition of external origin, which israised as aresult of an action from the user, normally a combination of keys
which triesto abort the program. Which combination of keyswill vary between operating systems. Some systems might also
simulate this event by other means than key combinations. Consult system for more information.

The differences between HALT and the standard condition are:

e Thedefault-action for the HALT condition isto abort execution, as though a REXX runtime error number 4 (Program
interrupted) had been reported. But note that SYNTAX will never beraised if HALT is not trapped.

* Thedelay-action of this condition is to ignore, not queue.

The standard allows the interpreter to limit the search for situations that would set the HALT condition, to clause boundaries.
Asaresult, the response time from pressing the key combination to actually raising the condition or triggering the trap may
vary, even if HALT istrapped by method SI GNAL. If a clause for some reason has blocked execution, and never finish, you
may not be able to break the program.

The descriptive text returned by CONDI T1 ON() when called with the Descr i pt i on option for condition HALT, is
implementation dependent, and may also be anullstring. In general, it will describe the way in which the interpreter was
attempted halted, in particular if there are more than one way to do raisea HALT condition. Consult the implementation
documentation for more information.

3.3 The ERROR condition

The ERROR s a condition of mixed origin, it is raised when a command returns a return value which indicates error during
execution. Often, commands return a numeric value, and a particular value is considered to mean success. Then, other values
might raise the ERROR condition.

Differences between ERROR and the standard condition:
e Thedelay action of ERRORis to ighore, not to queue.

e The specia variable RCis always set before this condition is raised. So even if it istrapped by method SI GNAL, you can
rely on RC to be set to the return value of the command.

Unfortunately, there is no universal standard on return values. As stated, they are often numeric, but some operating system u
non-numeric return values. For those which do use humeric values, there are no standard telling which values and ranges are
considered errors and which are considered success. In fact, the interpretation of the value might differ between commands
within the same operating system.

Therefore, it is up to the REXX implementation to define which values and ranges that are considered errors. Y ou must expe
that thisinformation can differ between implementations as well as between different environments within one
implementation.

The descriptive text returned by CONDI T1 ON() when called with the Descr i pt i on option for condition ERROR, isthe
command which caused the error. Note that thisis the command as the environment saw it, not asit was entered inthe REX
script source code.

3.4 The FAI LURE condition

The FAI LURE is a condition of mixed origin, it is raised when a command returns a return value which indicates failure
during execution, abnormal termination, or when it was impossible to execute acommand. It isasubset of the ERROR

73

condition, and if it isin state OFF, then the ERROR condition will be raised instead. But note that an implementation is free t(
consider all return codes from commands as ERRORs, and none as FAI LURES. In that case, the only situation where a
FAI LURE would occur, iswhen it isimpossible to execute a command.

Differences between FAI LURE and the standard condition:
* Thedelay action of FAI LURE isto ignore, not to queue.

e The specia variable RCis always set before this condition is raised. So even if it istrapped by method SI GNAL, you can
rely on RCto be set to the return value of the command, or the return code that signalize that the command was impossib
to execute.

Asfor ERROR thereis no standard the defines which return values are failures and which are errors. Consult the system and
implementation independent documentation for more information.

The descriptive text returned by CONDI T1 ON() when called with the Descr i pt i on option for condition FAI LURE, isthe
command which caused the error. Note that this is the command as the environment saw it, not asit was entered inthe REX
script source code.

3.5 The NOVALUE condition

The NOVAL UE condition is of internal origin. It israised in some circumstances if the value of an unset symbol (which is not
constant symbol) is requested. Normally, this would return the default value of the symbol. It is considered bad programming
practice not to initialize variables, and setting the NOVAL UE condition is one method of finding the parts of your program the
uses this programming practice.

Note however, there are only three instances where this condition may be raised: that is when the value of an unset (non-
constant) symbol is used requested: in an expression; after the VAR subkeyword in a PARSE clause; and as an indirect referer
in either atemplate, a DROP or a PROCEDURE clause. In particular, this condition is not raised if the VALUE() or SYMBOL
built-in functions refer to an unset symbol.

Differences between NOVAL UE and the standard condition are:

e It may only be trapped by method SI GNAL, never method CALL. This requirement might seem somewhat strange, but th
ideaisthat since an implementation is only forced to check for conditions trapped by method CALL at clause boundaries
incidences that may occur at any point within clauses (like NOVALUE) can only be trapped by method SI GNAL. (Howev
condition NOTREADY can occur within a clause, and may be trapped by method CALL so this does not seem to be absolL
consistent.)

* Thereisnot delay-action for condition NOVALUE, sinceit can not be trapped by method CALL, and consequently never
can get into state DELAY.

The descriptive text returned by calling CONDI TI ON() withthe Descri pti on option, isthe derived (i.e. tail has be
substituted if possible) name of the variable that caused the condition to be raised.

3.6 The NOTREADY condition

The condition NOTREADY is a condition of mixed origin. It israised as aresult of problems with stream 1/0. Exactly what
causesit, may vary between implementations, but some of the more probable causes are: waiting for more I/O on transient
streams; access to streams not allowed; 1/0 operation would block if attempted; etc. See the chapter; Stream Input and Outj
for more information.

Differences between NOTREADY and the standard condition are:
* It will beignored rather than queued if condition trap isin state DELAY.
e Thiscondition differs from the rest in that it can be raised during execution of a clause, but can still be trapped by methot

CALL.
74

The descriptive text returned by CONDI T1 ON() when called with the Descr i pt i on option for condition NOTREADY, istt
name of the stream which caused the problem. Thisis probably the same string that you used as the first parameter to the
functions that operates on stream 1/O. For the default streams (default input and output stream), the string returned by

CONDI T1 ON() will be nullstrings.

Note that if the NOTREADY trap isin state DELAY, then al 1/0O for fileswhich has tried to raise NOTREADY within the currel
clause will be simulated asif operation had succeeded.

4. Further Notes on Conditions

4.1 Conditions under Language Level 3.50

The concept of conditions was very much expanded from REXX language level 3.50 to level 4.00. Many of the central featur:
in conditions are new in level 4.00, these include:

e The CALL method is new, previously only the SI GNAL method was available, which made it rather difficult to resume
execution after a problem. As a part of this, the DELAY state has been added too.

e The condition NOTREADY has been added, to allow better control over problems involving stream 1/0.

e Thebuilt-in function CONDI TI ON() has been added, to allow extraction of information about the current trapped
condition.

4.2 Pitfalls when Using Condition Traps

There are several pitfalls when using conditions:

e Remember that some information are saved across the functions. Both the current trapped condition and the settings of tk
traps. Consequently, you can not set atrap in aprocedure level from alower level. (I.e. calling a subroutine to set atrap
will not work.)

e Remember that SI GL is set when trapped by method CALL. This means that whenever a condition might be trapped by
CALL, the SI GL will be set to anew value. Consequently, never trust the contents of the SI GL variable for more than or
clause at atime. Thisisvery frustrating, but at least it will not happen often. When it do happen, though, you will probab
have a hard time debugging it.

* Alsoremember that if you use the PROCEDURE clause in a condition handler called by method CALL, remember to
EXPOSE the special variables SI GL if you want to use it inside the condition handler. Else it will be shadowed by the
PROCEDURE.

4.3 The Correctness of this Description

In this description of conditionsin REXX, | have gone further in the description of how conditions work, their internal data
structures, the order in which things are executed etc., than the standard does. | have tried to interpret the set of distinct
statements that is the documentation on condition, and design a complete and consistent system describing how such conditio
work. | have donethisto try to clarify an area of REXX which at first glance is very difficult and sometimes non-intuitive.

| hope that the liberties | have taken have helped describe conditionsin REXX. | do not feel that the adding of details that |
have done in any way change how conditions work, but at least | owe the reader to list which concepts that are genuine REX
and which have been filled in by me to make the picture more complete. These are not a part of the standard REXX.

« REXXdoes not have anything called a standard condition. There just “are” a set of conditions having different attri

and values. Sometimes there are default values to some of the attributes, but still the are no default condition.

75

* The terms “event” and “incident” are not used. Instead the term “condition” is somewhat overloaded to mean seve
things, depending on the situation. | have found it advantageous to use different terms for each of these concepts.

+ StandardREXX does not have condition queue, although a structure of such a kind is needed to handled the queui
pending conditions when the trap stat®ELAY.

* The values default-action and delay-action are really non-existing in the StaRBE?d documentation. | made then
to make the system more easy to explain.

* The two-step process of first raising the flag, and then (possibly at a later stage) triggering the trap, is noREEéRy a
concept. OriginallyREXX seems to allow implementations to select certain places of the interpreter where events
sought for. All standard conditions that can be called by me@#td , can be implemented by checking only at clause
boundaries.

« Consequently, REXX implementation can choose to trigger the trap immediately after a condition are raised (since
conditions are only raised immediately before the trap would trigger anyway). This is also the common way used il
language level 3.50, when only meth®ldGNAL was implemented.

« Unfortunately, the introduction of the stddELAY forces the interpreter to keep a queue of pending conditions, so the
nothing to gain on insisting that raising should happen immediately before triggering. And the picture is even more
muddied when th&lOTREADY condition is introduced. Since it explicitly allows raising of condition to be done dt
clause, even though the triggering of the trap must happen (if mett@il is) at the end of the clause.

| really hope that these changes has made the concept of conditions easier to understand, not harder. Please feel free
me for any of these which you don't think is representativé&RfexXX.

5. Conditions in Regina

Here comes documentation that are specific foRbgina implementation oREXX.

5.1 How to Raise the HALT condition

The implementation connect théAL T condition to an external event, which might be the pressing of certain key com
The common conventions of the operating system will dictate what that combination of keystrokes is.

Below is a list, which describes how to invoke an event that will raiselAh& condition under various the operating sy:
which Regina runs under.

* Under various variants of tHénix operating system, tHeALT event it connected to the signal “interrup8I (G NT).
Often this signal is bound to special keystrokes. Depending on your version of Unix, this might be <ctrl>-<c> (mo:s
BSD-variants) or the key (mostly System V). It is also possible to send this signal from the command line, i
general using the prograki | | (1) ; or from program, in general using the callgnal (3) . Refer to your Unix
documentation for more information.

* UnderVAX/VMS, the key sequence <ctrl>-<c> is used to rais¢HNeT condition in the interpreter.

5.2 Extended built-in functions

Regina has a few extra built-in functions that are added to support the debugging of the interpreter. Under some
circumstances, these might also be useful when debufdiXX scripts. Note that these functions are not a part of standat
REXX and should never be used when portability is required. The functions are:

RAI SE_COND(condi ti on)

76

is used to explicitly raise a condition during execution of a REXX script. The interpreter will accept the execution of
this function as an event, just asif the event had occurred. Returns the nullstring.

COND_I NFQ([condi tion])
isafunction that will return information about the current settings of the condition indicator for condition, including
the state of the flag, and the contents of the pending queue. If called without a parameter, it will return a <space>-
separated list of those conditions which have non-empty pending condition queue.

TRAP_I NFQO([condi tion])
isafunctionsthat returns the status information about atrigger at the current procedure level. The information
returned will be the state, the method and the condition handler. If called without a parameter, a <space>-separated
list of condition enabled (state ON or DELAY) at the current procedure level, is returned.

These functions are described in detail elsewhere. Note that these functions will only be available if the interpreter was
compiled with the certain preprocessor flag set. If the code was included in the compilation, the availability of these function

will still be dependent on the selection of extensions with the clause OPTI ONS, where the extension DBG_FUNCS should be
chosen. See chapter on extensions for more information.

5.3 Extra Condition in Regina

Regina has some other extra conditions. These conditions are:

» A condition DEBUG that is very similar to the condition HALT. The condition israised as aresult of an event of externa
origin, generally a special combination of keystrokes is pressed.

* The default-action of this condition isto set the trace mode to Nor mal and interactive. Consequently, the user will
generally get into interactive tracing at the next clause boundary. Thisway, the user may be able to stop the program
during execution, and perform debugging.

* Thedelay-action of this condition isto ignoreit.

e On Unix machines, thisisthe signal QUI T (SI GQUI T), which is normally bound the <ctrl>-\ key. Just like condition
HALT, thismight also be simulated from the command line, or from other programs. Consult the Unix documentation for
more information. On VAX/VMS machines, this event is normally bound to the <ctrl>-<y> key.

* Thisextended condition will only be available if the extension COND_DEBUG has been chosen.

Whether or not the conditions listed here are available, may also depend on whether particular preprocessor flag was set durir
compilation. For more information, see the chapter on extensions.

5.4 Various Other Existing Extensions

Hereisalist of other current extensionsin Regina. See chapter on extensions for more information.

* Regina alowsthe condition NOVAL UE to be trapped by method CALL, which is not allowed according to the standard.

« Thisextension will only be available if the extension CALL_ON_NOVAL UE has been chosen, and the code was compiled
with certain preprocessor flags set.

* If NOVALUE is being trapped by method CALL, the current clause will be completed as if NOVALUE was not trapped at €
returning the default value for an unset symbol as variable value.

6. Possible Future extensions

77

Hereisalist of possible future extensions to REXX which has not been implemented into Regina. Some of these exist it
other implementations of REXX, and some of them are just suggestions or ideas thrown around by various people.

Another extension could have been included, but have been left out so far. It isthe delay-action, which in standard REX
can be either to ignore or to queue. Thereis at least one other action that make sense: to replace. That is, when atrapisir
state DELAY, and a hew condition has been raised, the pending queue is emptied, before the new condition is queued. Th
way, the new condition will effectively replace any conditions aready in the queue.

If there are several new conditions raised while the condition handler is executing (and the trap stateis DELAY), only th
very last of them is remembered.

It should be possible to set the state for atrap to DELAY, so that any new instances of the condition is handles by the dele
action. As a special case, the SYNTAX condition trap might not be set in state DELAY

78

Stream Input and Output

And the streams thereof shall be turned into pitch
Isaiah 33:21

For every one that asketh receivedth;

and he that seeketh findth;

and to him that knocketh it shall be opened.
Matthew 7:8

This chapter treats the topic of input from and output to streams using the built-in functions. An overview of the other parts of
the input/output (1/0) system is also given but not discussed in detail. At the end of the chapter there are sections containing
implementation-specific information for this topic.

1. Background and Historical Remarks

Stream 1/O is a problem area for languages like REXX. They try to maintain compatibility for all platforms (i.e. to be non-
system-specific), but the basic 1/0 capabilities differ between systems, so the simplest way to achieve compatibility isto inclt
only aminimal, common subset of the functionality of all platforms. With respect to the functionality of the interface to their
surrounding environment, non-system-specific script languages like REXX are inherently inferior to system specific script
languages which are hardwired to particular operating systems and can benefit from all their features.

Although REXX formally has its own /O constructs, it is common for some platforms that most or al of the I/O is performec

as operating system commands rather than in REXX. Thisis how it was originally done under VM/CMS, which was one of t
earliest implementations and which did not support REXX’s I/O constructs. There, tHeXECI Oprogram and the stack (amo
other methods) are used to transfer data to and fr&BXaX program.

Later, the built-in functions for stream 1/O gained territory, but lots of implementations still rely on special purposasrog
for doing 1/0. The general recommendatiorREXX programmers is to use the built-in functions instead of special purpo:
programs whenever possible; that is the only way to make compatible programs.

2. REXX's Notion of a Stream

REXX regards a stream as a sequence of characters, conceptually equivalent to what a user might type at the keyboard. Note

that a stream is not generally equivalent to afile. [MCGH:DICT] defines a file as “a collection of related records treated as
unit,” while [OX:CDICT] defines it as “Information held on backing store [...] in order (a) to enable it to persist beyond tl
time of execution of a single job and/or (b) to overcome space limitations in main memory.” A stream is defined by
[OX:CDICT] as “a flow of data characterized by relative long duration and constant rate.”

Thus, a file has a flavor of persistency, while a stream has a flavor of sequence and momentarily. For a stream, data r
may already have been lost, and the data not yet read may not be currently defined; for instance the input typed at a k
the output of a program. Even though much of REeXX literature use these two terms interchangeably (and after all, ther
some overlap), you should bear in mind that there is a difference between them.

In this documentation, the term “file” means “a collection of persistent data on secondary storage, to which random ac
multiple retrieval are allowed.” The term “stream” means a sequential flow of data from a file or from a sequential devi
terminal, tape, or the output of a program. The term stream is also used in itR&Xet meaning: a handle to/from whic
flow of data can be written/read.

79

3. Short Crash-Course

REXX 1/0O isvery simple, and this short crash course is probably all you need in afirst-time reading of this chapter. But note
that that, we need to jump abit ahead in this section.

Toread aline from a stream, use the LI NEI N() built-in function, which returns the data read. To write a stream, use the
LI NEQUT() built-in function, and supply the data to be written as the second parameter. For both operations, give the name
the stream as the first parameter. Some small examples:

contents = linein(‘myfile.txt’)
call lineout ‘yourfile.txt’, ‘Data to be written’

Thefirst of these reads aline from the stream myfile.txt , while the second writes aline to the stream yourfile.txt
Both these calls operate on lines and they use a system specific end-of-line marker as a delimiter between lines. The marker it
tagged on at the end of any data written out, and stripped off any data read.

Opening astream in REXX is generally done automatically, so you can generally ignore that in your programs. Another usef
method is repositioning to a particular line:

call linein ‘myfile.txt’, 12, 0
call lineout ‘yourfile.txt’,, 13

Where the first of these sets the current read position to the start of line 12 of the stream; the second sets the current write
position to the start of line 13. Note that the second parameter is empty, that means no datais to be written. Also note that the
current read and write positions are two independent entities; setting one does not affect the other.

The built-in functions CHARIN() and CHAROUT ()are similar to the ones just described, except that they are character-
oriented, i.e. the end-of-line delimiter is not treated as a special character.

Examples of use are:

say charin(‘myfile.txt’, 10)
call charout ‘logfile’, ‘some data’

Here, the first example reads 10 characters, starting at the current input position, while the second writes the eleven character:
of “some data” to the file, without an end-of-file marker afterwards.

It is possible to reposition character-wise too, some examples are:

call charin ‘myfile’,, 8
call charout ‘foofile,, 10

These two clauses repositions the current read and write positions of the named files to the 8" and 10" characters, respectivel

4. Naming Streams

Unlike most programming languages, REXX does not use file handles; the name of the stream isaso in general the handle
(although some implementations add an extralevel of indirection). Y ou must supply the nameto all 1/0O functions operating ¢
astream. However, internaly, the REXX interpreter islikely to use the native file pointers of the operating system, in order t(
improve speed. The name specified can generally be the name of an operating system file, a device name, or a special stream
name supported by your implementation.

The format of the stream name is very dependent upon your operating system. For portability concerns, you should try not to
specify it asaliteral string in each 1/O call, but set a variable to the stream name, and use that variable when calling I/0O

80

functions. This reduces the number of places you need to make changes if you need to port the program to another system.
Unfortunately, this approach increases the need for PROCEDURE EXPOSE, since the variable containing the files name must
be available to al routines using file 1/O for that particular file, and al their non-common ancestors.

Example: Specifying file names

The following code illustrates a portability problem related to the naming of streams. The variable f i | enane isset to the
name of the stream operated on in the function call.

filename = ‘/tmp/MyFile. Txt’

say * first line is’ linein(filename)
say ‘second line is’ linein(filename)
say ‘ third line is’ linein(filename)

Suppose this script, which looks like it iswritten for Unix, is moved to a VM S machine. Then, the stream name might be
something like SYS$TEMP:MYFILE.TXT, but you only need to change the script at one particular point: the assignment to
the variable filename ; as opposed to three places if the stream name is hard-coded in each of the three callsto LINEIN()

If the stream name is omitted from the built-in I/O functions, a default stream is used: input functions use the default input
stream, while output functions use the default output stream. These are implicit references to the default input and output
streams, but unfortunately, there is no standard way to explicitly refer to these two streams. And consequently, thereis no
standard way to refer to the default input or output stream in the built-in function STREAM().

However, most implementations allow you to access the default streams explicitly through a name, maybe the nullstring or
something like stdin and stdout . However, you must refer to the implementation-specific documentation for informatiol
about this.

Also note that standard REXX does not support the concept of a default error stream. On operating systems supporting this, it
can probably be accessed through a special name; see system-specific information. The same applies for other specia streams
Sometimes the term “default input stream” is called “standard input stream,” “default input devices,” *
“stdin.”

standard inptit,” c

The use of stream names instead of stream descriptors or handles is deeply rootB&EXKXphilosophy: Data structures a
text strings carrying information, rather than opaque data blocks in internal, binary format. This opens for some intrigui
possibilities. Under some operating systems, a file can be referred to by many names. For instance, under Unix, a fil¢
referred to a§ oobar, ./ f oobar and. / ./ f oobar . All which name the same file, althoughREXX interpreter may be
likely to interpret them as three different streams, because the names themselves differ. On the other hand, nothing p
interpreter from discovering that these are names for the same stream, and treat them as equivalent (except concerns
processing time). Under Unix, the problem is not just confined to the ugeioffile names, hard-links and soft-links can
produce similar effects, too.

Example: Internal file handles

Suppose you start reading from a stream, which is connected to a filefaadledou read the first line df 0o, then you iss
a command, in order to renameo tobar . Then, you try to read the next line frdnmo. TheREXX program for doing th
under Unix looks something like:

signal on notready
linel = linein(‘foo’)

‘mv foo bar’

line2 = linein(‘foo’)

Theoretically, thefilefoo does not exist during the second call, so the second read should raise the NOTREAD ¥ondition.
However, aREXX interpreter islikely to have opened the stream already, so it is performing the reading on the file descriptor
of the open file. It is probably not going to check whether the file exists before each 1/0 operation (that would require alot of
extra checking). Under most operating systems, renaming afile will not invalidate existing file descriptors. Consequently, thi
interpreter is likely to continue to read from the original foo file, even though its has changed.

81

Example: Unix temporary files

On some systems, you can delete afile, and still read from and write to the stream connected to that file. Thistechniqueis
shown in the following Unix specific code:

tmpfile = ‘/tmp/myfile’

call lineout tmpfile,

call lineout tmpfile,, 1

‘rm’ tmpfile

call lineout tmpfile, ‘This is the first line’

Under Unix, this technique is often used to create temporary files; you are guaranteed that the file will be deleted on closing, |
matter how your program terminates. Unix deletes a file whenever there are no more references to it. Whether the reference i
from the file system or from an open descriptor in auser processisirrelevant. After the rm command, the only referenceto t
fileisfrom the REXX interpreter. Whenever it terminates, the file is deleted—-since there are no more references to it.

Example: Files in different directories

Here is yet another example of how using the filename directly in the stream 1/O functions may give strange effects. S
you are using a system that has hierarchical directories, and you have a f@+ldr() which sets a current directory;
consider the following code:

call chdir “../dirl’
call lineout ‘foobar’, ‘written to foobar while in dirl’
call chdir “../dir2’
call lineout ‘foobar’, ‘written to foobar while in dir2’

Since thefile isimplicitly opened while you arein the directory dirl , thefile foobar refersto afilelocated there. Howev
after changing the directory to dir2 , it may seem logical that the second call to LINEOUT() operateson afilein dir2 , bu
that may not be the case. Considering that these clauses may come a great number of lines apart, that REXX has no standard
way of closing files, and that REXX only have onefile table (i.e. open files are not local to subroutines); this may open for a

significant astonishment in complex REXX scripts.

Whether an implementation treats ././foo and ./foo asdifferent streamsis system-dependent; that appliesto the effects
renaming or deleting the file while reading or writing, too. See your interpreter’s system-specific documentation.

Most of the effects shown in the examples above are due to insufficient isolation between the filename of the operatin
and the file handle in th®EXX program. Whenever a file can be explicitly opened and bound to a file handle, you s
that in order to decrease the possibilities for strange side effects.

Interpreters that allow this method generally haveOREN() function that takes the name of the files to open as a parame
and returns a string that uniquely identifies that open file within the current context; e.g. an index into a table esopen fi
Later, this index can be used instead of the filename.

Some implementations allow only this indirect naming scheme, while others may allow a mix between direct and indire
naming. The latter is likely to create some problems, since some strings are likely to be both valid direct and indsect fi

5. Persistent and Transient Streams

REXX knows two different types of streams: persistent and transient. They differ conceptually in the way they carebe «
which is dictated by the way they are stored. But there is no difference in the data you can read from or write tobtbhem
can used for character- or line-wise data), and both are read and written using the same functions.

[Persi stent streans]

82

(often referred to just as “files”) are conceptually stored on permanent storage in the computer (e.g. a disk), ac
of characters. Random access to and repeated retrieval of any part of the stream are allowed for persistent streams.
Typical example of persistent streams are normal operating system files.

[Transi ent streans]
aretypically not available for random access or repeated retrieval, either because it is not stored permanently, but res
as a sequence of datathat is generated on the fly; or because they are available from a sequential storage (e.g.
magnetic tape) where random accessis difficult or impossible. Typical examples of transient streams are devices like
keyboards, printers, communication interfaces, pipelines, etc.

REXX does not alow any repositioning on transient streams; such operations are not conceptually meaningful; atransient
stream must be treated sequentially. It is possible to treat a persistent stream as a transient stream, but not vice versa. Thus,
some implementations may allow you to open a persistent stream as transient. This may be useful for files to which you have
only append access, i.e. writes can only be performed at the end of file. Whether you can open a stream in a particular mode,
change the mode of a stream aready open depends on your implementation.

Example: Determining stream type

Unfortunately, there is no standard way to determine whether a given fileis persistent or transient. Y ou may try to reposition
for thefile, and you can assume that thefileis persistent if the repositioning succeeded, like in the following code:

streantype: procedure
signal on notready

call linein arg(l), 1, O
return ‘persistent’ /*unless file is empty */
notready:

return ‘transient’

Although theideain this code is correct, there are unfortunately afew problems. First, the NOTREAD¥ondition can be raise
by other things than trying to reposition atransient stream; e.g. by any repositioning of the current read position in an empty
file, if you have write access only, etc. Second, your implementation may not have NOTREAD)or it may not use it for this
situation.

The best method isto use a STREAM() function, if oneis available. Unfortunately, that is not very compatible, since no
standard stream commands are defined.

6. Opening a Stream

In most programming languages, opening afileis the process of binding afile (given by afile name) to an internal handle.
REXX isahit special, since conceptually, it does not use stream handles, just stream names. Therefore, the stream nameis
itself also the stream handle, and the process of opening streams becomes apparently redundant. However, note that a numbe
of implementations allow explicit opening, and some even requireit.

REXX may open streams “on demand” when they are used for the first time. However, this behavior is not defined in
which says the act of opening the stream is not a p&EXX [TRL2]. This might be interpreted as open-on-demand or th:
some system-specific program must be executed to open a stream.

Although an open-on-demand feature is very practical, there are situations where you need to open streams in paaticu
Thus, most systems have facilities for explicitly opening a file. 3RE¥X interpreters may require you to perform some
implementation-specific operation before accessing streams, but most are likely to just open them the first time they al
to in an 1/O operation.

There are two main approaches to explicit opening of streams. The first uses a non-standard built-in function normally

OPEN() , which generally takes the name of the file to open as the first parameter, and often the mode as the secend |
The second approach is similar, but uses the standard built-in furTiRBAM) with a Comrand option.

83

Example: Not closing files

Since there are no open or close operation, a REXX interpreter never knows when to close a stream, unless explicitly told so.
can never predict when a particular stream isto be used next, so it has to keep the current read and write positions in case the
stream isto be used again. Therefore, you should always close the streams when you are finished using them. Failure to do s
will fill the interpreter with data about unneeded streams, and more serious, it may fill the file table of your process or system
Asarule, any REXX script that uses more than a couple of streams, should close every stream after use, in order to minimize
the number of simultaneously open streams. Thus, the following code might eventually crash for some REXX interpreters:

do i=1 to 300
call lineout “file.’||i, ‘this is file number’ i
end

A REXX interpreter might try to defend itself against this sort of open-many-close-none programming, using of various
programming techniques; this may lead to other strange effects. However, the main responsibility for avoiding thisiswith yc
the REXX script programmer.

Note that if a stream is aready open for reading, and you start writing to it, your implementation may have to reopenit in ord
to open for both reading and writing. There are mainly two strategies for handling this. Either the old file is closed, and then
reopened in the new mode, which may |eave you with read and write access to another file. Or anew file handle is opened fol
the new mode, which may leave you with read and write access to two different files.

These are real-world problems which are not treated by theideal description of TRL. A good implementation should detect
these situations and raise NOTREADY

7. Closing a Stream

As aready mentioned, REXX does not have an explicit way of opening a stream. Nor does it have an explicit way of closing
stream. There is one semi-standard method: If you call LINEOUT() , but omit both the data to be written and the new current
write position, then the implementation is defined to set the current write position to the end-of-file. Furthermore, it is allowe

by TRL to do something “magic” in addition. It is not explicitly defined what this magic is, but TRL suggests that it may
closing the stream, flushing the stream, or committing changes done previously to the stream.

In SAA, the definition is strengthened to state that the “magic” is closing, provided that the environment supports that
operation.

A similar operating can be performed by calll@gAROUT() with neither data nor a new position. However, in this case, k
TRL and SAA leave it totally up to the implementation whether or not the file is to be closed. One can wonder whether
changes fok.] NEQUT() in SAA with respect to TRL should also have been dor@@H&ROUT() , but that this was forgotte

TRL2 does not indicate thati NEI N() or CHARI N() can be used to close a string. Thus, the closest one gets to a stanc
way of closing input files is to call e.gl NEQUT() ; although it is conceptually suspect to call an output routine for an inp
file. The historical reasons for this omission are perhaps that flushing output files is vital , while the concept ofglushing
irrelevant for input files; flushing is an important part of closing a file, and that explains why closing is only indicated fo
output files.

Thus, the statement:

call lineout ‘myfile.txt’

might be used to close the stream myfile.txt in some implementations. However, it is not guaranteed to close the stream,

so you cannot depend on this for scripts of maximum portability, but it's better than nothing. However, note that itlit clo
stream, then also the current read position is affected. If it merely flushes the stream, then only the current write position is

likely to be affected.

8. Character-wise and Line-wise |I/O

Basically, the built-in REXX library offerstwo strategies of reading and writing streams: line-wise and character-wise. When
reading line-wise, the underlying storage method of the stream must contain information which describes where each line star
and ends.

Some file systems store this information as one or more special characters; while others structure the file in a number of
records; each containing asingle line. Thisintroduces a slightly subtle point; even though astream f 00 returns the same da
when read by L1 NEI N() on two different machines; the data read from f oo may differ between the same two machines whe
the stream isread by CHARI N() , and vice versa. Thisis so because the end-of-line markers can vary between the two
operating systems.

Example: Character-wise handling of EOL

Suppose atext file contains the following three lines (ASCII character set is assumed):

first
second
third

and you first read it line-wise and then character-wise. Assume the following program:

file = ‘DATAFILE’
foo="
do i=1 while chars(file)>0
foo = foo || c2x(charin(file))'’
end
say foo

When thefileisread line-wise, the output isidentical on all machines, i.e. the three lines shown above. However, the
character-wise reading will be dependent on your operating system and its file system, thus, the output might e.g. be any of:

66 69 72 73 74 73 65 6F 63 6E 64 74 68 69 72 64 66 69 72 73 74 OA

66 69 72 73 74 OA
73 65 6F 63 6E 64 OA
74 68 69 72 64 OA

66 69 72 73 74 OD OA
73 65 6F 63 6E 64 0D OA
74 68 69 72 64 0D OA

If the machine uses records to store the lines, the first one may be the result; here, only the datain the lines of thefileis
returned. Note that the boxesin the output are put around the data generated by the actual line contents. What is outside the
boxes is generated by the end-of-line character sequences.

The second output lineis typical for Unix machines. They use the newline ASCII character as line separator, and that charact
isread immediately after each line. The last lineistypical for MS-DOS, where the line separator character sequenceisa
carriage return following by anewline (ASCII ‘OD’x and ‘0A’X).

For maximum portability, the line-wise built-in functions (LINEIN() , LINEOUT() and LINES()) should only be used fo
line-wise streams. And the character-wise built-in functions (CHARIN() , CHAROUT()and CHARS()) should only be used
character-wise data. Y ou should in general be very careful when mixing character- and line-wise datain a single stream,; it
does work, but may easily lead to portability problems.

The difference between character- and line-wise streams are roughly equivalent to the difference between binary and text
streams, but the two concepts are not totally equivalent. In abinary file, the dataread is the actual data stored in the file, whil¢
in atext file, the character sequences used for denoting end-of-line and end-of-file markers may be trandated to actions or
other characters during reading.

85

The end-of-file marker may be differently implemented on different systems. On some systems, this marker isonly implicitly
present at the end-of-file—-which is calculated from the file size (e.g. Unix). Other systems may put a character signify
of-file at the end (or even in the middle) of thefile (e.g. <Ctrl-Z> for MS-DOS). These concepts vary between operating
systems, interpreters should handle each concept according to the customs of the operating system. Check the implementatio
specific documentation for further information. In any caseg, if the interpreter treats a particular character as end-of-file, then it
only gives specia treatment to this character during line-wise operations. During character-wise operations, no characters hav
special meanings.

9. Reading and Writing

Four built-in functions provide line- and character-oriented stream reading and writing capabilities: CHARI N() , CHAROUT(
LI NEI N(), LI NEOQUT() .

[CHARI N()]
isabuilt-in function that takes up to three parameters, which are all optional: the name of the stream to read from, th

start point, and the number of characters to read. The stream name defaults to the default input stream, the start point
defaultsto the current read position, the number of charactersto read defaults to one character. Leave out the second
parameter in order to avoid al repositioning. During execution, data is read from the stream specified, and returned ¢
the return value.

LI NEI N
[is(az l]aui [t-in function that takes three parameters too, and they are equivalent to the parameters of CHARI N() .
However, if the second parameter is specified, it refer to aline position, rather than a character position; it refersto tl
character position of the first character of that line. Further, the third parameter can only be 0 or 1, and refers to th
number of linesto read; i.e. you cannot read more than one line in each call. Theline read is returned by the functiol
or the nullstring if no reading was reguested.

[LI NEQUT()]
isabuilt-in function that takes three parameters too, the first is the name of the stream to write to, and defaults to the

default output stream. The second parameter is the data to be written to the file, and if not specified, no writing occul
Thethird parameter is aline-oriented position in thefile; if the third parameter is specified, the current positionis
repositioned at before the data (if any) iswritten. If datais written, an end-of-line character sequence is appended to
the output stream.

[CHARQUT()] _ _ _ _ S _
isabuilt-in function that is used to write charactersto afile. Itisidentical to LI NEQUT() , except that the third

parameter refers to a character position, instead of aline position. The second differenceis that an end-of-line
character sequence is not appended at the end of the data written.

Example: Counting lines, words, and characters

The following REXX program emulates the core functionality of the wc program under Unix. It counts the number of lines,
words, and charactersin afile given as the first argument.

file = arg(l)
parse value 0 0 O with Iines wrds chars
do while lines(file)>0

line = linein(file)
lines =lines + 1
words = words + words(line)

chars chars + length(line)

end
say ‘lines="lines ‘words="words ‘chars="chars

There are some problems. For instance, the end-of-line characters are not counted, and alast improperly terminated line is noi
counted either.

86

10. Determining the Current Position

Standard REXX does not have any seek call that returns the current position in a stream. Instead, it provides two calls that
returns the amount of data remaining on a stream. These two built-in functionsare LI NES() and CHARS() .

e TheLl NES() built-in function returns the number of complete lines left on the stream given asitsfirst parameter. The

term “complete lines” does not really matter much, since an implementation can assume the end-of-file to implicitl

an end-of-line.
e The CHARS() built-in function returns the number of character left in the stream given asitsfirst parameter.

Thisisone of the concepts where REXX 1/0 does not map very well to C I/O and vice versa. While REXX reports the amour
of data from the current read position to the end of stream, C reports the amount of data from the start of the file to the curren
position. Further, the REXX method only works for input streams, while the C method works for both input and output files.
On the other hand, C has no basic constructs for counting remaining or reposition at lines of afile.

Example: Retrieving current position

So, how does one find the current position in afile, when only alowed to do normal repositioning? The trick is to reposition
twice, as shown in the code below.

ftell: procedure
parse arg fil ename
now = chars(fil enane)
call charin filename, 0, 1
total = chars(fil enane)
call charin filenane, 0, total-now
return total -now

Unfortunately, there are many potential problems with this code. First, it only works for input files, since thereis no equivale
to CHARS() for output files. Second, if the file is empty, none of the repositioning work, sinceit isillegal to reposition at or
after end-of-file for input files—-and the end-of-file is the first position of the file. Third, if the current read pokitierfib
isat theend of file (e.g. al characters have been read) it will not work for similar reasons as for the second case. And fourth,
only works for persistent files, since transient files do not alow repositioning.

Example: Improved ftel | function

Animproved version of the code for thef t el | routine (given above), which tries to handle these problemsis:

ftell: procedure
parse arg fil ename
si gnal on notready name not_persi st
now = chars(fil enane)
signal on notready name is_enpty
call charin filename, 0, 1
total = chars()
if now>0 then
call charin filename, 0, total-nowtl
else if total >0 then
call charin filenane, 1, tota
el se
nop /* enpty file, should have rai sed NOTREADY */
return total - nowt+l

not_presist: say filename ‘is not persistent’; return 0

87

is_empty: say filename ‘is empty’; return O

The same method can be used for line-oriented 1/O too, in order to return the current line number of an input file. However, a
potential problem in that caseis that the routine leaves the stream repositioned at the start of the current line, even if it was
initially positioned to the middle of aline. In addition, the line-oriented version of this ftell routine may prove to befairly
inefficient, since the interpreter may have to scan the whole file twice for end-of-line character sequences.

11. Positioning Within a File

REXX supports two strategies for reading and writing streams: character-wise, and line-wise, this section describes how a
program can reposition the current positions for each these strategies. Note that positioning is only allowed for persistent
streams.

For each open file, thereis a current read position or a current write position, depending on whether the file is opened for
reading or writing. If thefileis opened for reading and writing simultaneously, it has both a current read position and a currer
write position, and the two are independent and in general different. A position within afile isthe sequence number of the by
or line that will be read or written in the next such operation.

Note that REXX starts numbering at one, not zero. Therefore, the first character and the first line of a stream are both
numbered one. This differs from several other programming languages, which starts numbering at zero.

Just after a stream has been opened, the initial values of the current read position is the first character in the stream, while the
current write position is the end-of-file, i.e. the position just after the last character in the stream. Then, reading will return the
first character (or line) in the stream, and writing will append a new character (or line) to the stream.

These initial values for the current read and write positions are the default values. Depending on your REXX implementatiol
other mechanisms for explicitly opening streams (e.g. through the STREAMY() built-in function) may be provided, and may s
other initial values for these positions. See the implementation-specific documentation for further information.

When setting the current read position, it must be set to the position of an existing character in the stream; i.e. a positive value
not greater than the total number of charactersin the stream. In particular, it isillegal to set the current read position to the
position immediately after the last character in the stream; although thisislegal in many other programming languages and
operating systems, where it is known as “seeking to the end-of-file”.

When setting the current write position, it too must be set to the position of an existing character in the stream. Jraaddi
unlike the current read position, the current write position may also be set to the position immediately following the las
character in the stream. This is known as “positioning at the end-of-file”, and it is the initial value for the currewisitidte p
when a stream is opened. Note that you are not allowed to reposition the current write position further out beyond the
file—-which would create a “hole” in the stream—-even though this is allowed in many other languages and operating
systems.

Depending on your operating system &IXX interpreter, repositioning to after the end-of-file may be allowed as an
extension, although it is illegal according to TRL2. You should avoid this technique if you wish to write portable progra

REXX only keeps one current read position and one current write position for each stream. So both line-wise and char
wise reading as well as positioning of the current read position will operate on the same current read position, anid sim
the current write position.

When repositioning line-wise, the current write position is set to the first character of the line positioned at. However, if
positioning character-wise so that the current read position is in the middle of a line in the file, a subsequebt bl t&
will read from (and including) the current position until the next end-of-line marker. ThiusEl N() might under some
circumstances return only the last part of a line. Similarly, if the current write position has been positioned in the aniddls
existing line by character-wise positioning, andNEQOUT() is called, then the line written out becomes the last part of the
line stored in the stream.

88

Note that if you want to reposition the current write position using aline count, the stream may have to be open for read, too.
Thisis because the interpreter may have to read the contents of the stream in order to find where the lines start and end.
Depending on your operating system, this may even apply if you reposition using character count.

Example: Repositioning in empty files

Since the current read position must be at an existing character in the stream, it isimpossible to reposition in or read from an
empty stream. Consider the following code:

filename = ‘/tmp/testing’
call lineout filename,, 1 /* assuming truncation */
call linein filename, 1, 0

One might believe that thiswould set the current read and write positions to the start of the stream. However, assume that the
LINEOUT() call truncatesthefile, sothat it is zero byteslong. Then, thelast call can never belegal, since thereis no byteir
thefile at which it is possible to position the current read position. Therefore, a NOTREADYondition is probably raised.

Example: Relative repositioning

It israther difficult to reposition a current read or write position relative to the current position. The only way to do this withi
the definition of the standard isto keep a counter which tells you the current position. That is, if you want to move the current
read position five lines backwards, you must do it like this:

filename = ‘/tmp/data’
linenum=0;
say linein(filename,10); linenum = 10
do while random(100)>3
say linein(filename); linenum = linenum+1
end
call linein(filename,linenum-5,0); linenum = linenum-5

Here, the variable linenum is updated for each time the current read position is altered. This may not seem to difficult, and i
isnot in most cases. However, it is nearly impossible to do thisin the general case, since you must keep an account of both lir
numbers and character numbers. Setting one may invalidate the other: consider the situation where you want to reposition the
current read position to the 10™ character before the 100" line in the stream. Except from mixing line-wise and character-wis
I/0 (which can have strange effects), this is nearly impossible. When repositioning character-wise, the line number count is
invalidated, and vice versa.

The “only” proper way of handling this is to allow one or more (non-stand8f&EAM) built-in function operations that
returns the current character and line count of the stream in the interpreter.

Example: Destroying linecount

This example shows how overwriting text to the middle of a file can destroy the line count. In the following code, we a¢
that the filef oobar exists, and contains ten lines which afe t st |i ne”, second |ine,etc.uptotenth |ine”.
Then consider the following code:

filename = ‘foobar’

say linein(filename, 5) /* says fifth line’ */

say linein(filename) /* says ‘sixth line’ */

say linein(filename) /* says ‘seventh line’ */

call lineout filename, ‘This is a very long line’, 5

say linein(filename, 5) /* says ‘This is a very long line’ */
say linein(filename) /* says ‘venth line’ */

say linein(filename) /* says ‘eight line’ */

89

Asyou can see from the output of this example, the call to LI NEQUT() insertsalong line and overwrites the fifth and sixth
lines completely, and the seventh line partially. Afterwards, the sixth line is the remaining part of the old seventh line, and the
new seventh line isthe old eighth line, etc.

12. Errors: Discovery, Handling, and Recovery

TRL2 contains two important improvements over TRL1 in the area of handling errorsin stream I/O: the NOTREADY conditic
and the STREAM) built-in function. The NOTREADY condition is raised whenever a stream /O operation did not succeed.
The STREAM) function is used to retrieve status information about a particular stream or to execute a particular operation fc
astream.

Y ou can discover that an error occurred during an 1/O operation in one of the following ways: a) it may trigger a SYNTAX
condition; b) it may trigger a NOTREADY condition; or ¢) it may just not return that data it was supposed to. Thereisno clea
border between which situations should trigger SYNTAX and which should trigger NOTREADY. Errorsin parametersto the I/
functions, like a negative start position, is clearly a SYNTAX condition, while reading off the end-of-file is equally clearly a
NOTREADY condition. In between lay more uncertain situations like trying to position the current write position after the end
of-file, or trying to read a non-existent file, or using an illegal file name.

Some situations are likely to be differently handled in various implementations, but you can assume that they are handled as
either SYNTAX or NOTREADY. Defensive, portable programming requires you to check for both. Unfortunately, NOTREADY
not allowed in TRL1, so you have to avoid that condition if you want maximum compatibility. And due to the very lax
restrictions on implementations, you should always perform very strict verification on all data returned from any file I/O built
in function.

If neither are trapped, SYNTAX will terminate the program while NOTREADY will be ignored, so the implementor’s decision

about which of these to use may even depend on the severity of the problem (i.e. if the problem is smefly KigKgna

be a little too strict). Personally, | thifRYNTAX should be raised in this context only if the value of a parameter is outside

valid range for all contexts in which the function might be called.

Example: General NOTREADY condition handler

Under TRL2 the “correct” way to handMOTREADY conditions and errors from I/O operations is unfortunately very eompg

It is shown in this example, in order to demonstrate the procedure:

myfile = ‘MYFILE.DAT’
signal on syntax name syn_handler
call on notready name IO_handler
do i=1 to 10 until res=0

res = lineout(myfile, ‘line #)

if (res=0) then

say ‘Call to LINEOUT() didn"t manage to write out data’

end
exit

I0_handler:
syn_handler:
file = condition(‘D’)
say condition(‘C’) ‘raised for file’ file ‘at line’ sigl’’
say ‘ ‘ sourceline(sigl)
say * State='stream(file,’S’) ‘reason:’ stream(file,’'D’)
call lineout(condition(‘D")) /* try to close */
if condition(‘C")=="SYNTAX’ then
exit 1
else
return

90

Note the double checking in this example: first the condition handler is set up to trap any NOTREADY conditions, and then th
return code from LI NEQOUT() is checked for each call.

Asyou can see, thereis not really that much information that you can retrieve about what went wrong. Some systems may ha
additional sources from which you can get information, e.g. special commands for the STREAM) built-in function, but these
are non-standard and should be avoided when writing compatible programs.

13. Common Differences and Problems with Stream 1/O

This section describes some of the common traps and pitfalls of REXX 1/O.

13.1 Where Implementations are Allowed to Differ

TRL israther relaxed in its specifications of what an interpreter must implement of the I/O system. It recognizes that operatin
systems differ, and that some details must be left to the implementor to decide, if REXX isto be effectively implemented. Tt
parts of the 1/0 subsystem of REXX where implementations are allowed to differ, are:

e Thefunctions LI NES() and CHARS() are not required to return the number of lines or charactersleft in astream. TRL
saysthat if it isimpossible or difficult to calculate the numbers, these functions may return 1 unlessit is absolutely certa
that there are no more data left. This leads to some rather kludgy programming techniques.

* Implementations are allowed to ignore closing streams, since TRL does not specify away to do this. Often, the closing of
streams is implemented as a command, which only makes it more incompatible.

* Check the implementation-specific documentation before using the function LI NEQUT(f i |) for closing files.

* Thedifference in the action of closing and flushing afile, can make a REXX script that works under one implementatior
crash under another, so thisfeatureis of very limited value if you are trying to write portable programs.

TRL says that because the operating system environments will differ alot, and an efficient and useful interpreter is the most
important goal, implementations are allowed to deviate from the standard in any respect necessary in the domain of 1/0

[TRL2]. Thus, you should never assume anything about the 1/0O system, as the “rules” listed in TRL are only advisory.

13.2 Where Implementations might Differ anyway

In the section above, some areas where the standard allows implementations to differ are listed. In an ideal world} tha
be the only traps that you should need to look out for, but unfortunately, the world is not ideal. There are several @reas
the requirements set up by the standard is quite high, and where implementations are likely to differ from the standard

These areas are:

* Repositioning at (for the current write position) or beyond the end-of-file may be allowed. On some systems, to prc
that would require a lot of checking, so some systems will probably skip that check. At least for some operating sy

the act of repositioning after end-of-file is a useful feature.

« Under Unix, it can be used for creating a dynamically sized random access file; do not bother about how much sp:
allocated for the file, just position to the correct “sloth” and write the data there. If the data file is sparse, holescmig
in the file; that is parts of the file which has not been written, and which is all zeros (and which are therefore not st

disk.

* Some implementations will use the same position for both the current read position and the current write position 1
overcome these implementations. Whenever you are doing a read, and the previous operation was a write (or vic

is may prove useful to reposition the current read (or write) position.

e There might be a maximum linesize for ydREXX interpreter. At least the 50Kb limit on string length may apply.
91

* Handling the situation where another program writes data to a file which is used by the REXX interpreter for reading.

13.3 LI NES() and CHARS() are Inaccurate

Because of the large differences between various operating systems, REXX allows some fuzz in the implementation of the

LI NES() and CHARS() built-in functions. Sometimes, it is difficult to calculate the number of lines or charactersin a
stream; generally because the storage format of the file often requires alinear search through the whole stream to determine
that number. Thus, REXX allows an implementation to return the value 1 for any situation where the real number is difficult
or impossible to determine. Effectively, an implementation can restrict the domain of return values for these two functions on
1 and O from these two functions.

Many operating systems store lines using a special end-of-line character sequence. For these systems, it is very time-consumi
to count the number of linesin afile, asthe file must be scanned for such character sequences. Thus, it is very tempting for ar
implementor to return the value 1 for any situation where there are more than zero lines | eft.

A similar situation arises for the number of characters left, although it is more common to know this number, thusit is
generally abetter chance of CHARS() returning the true number of charactersleft than LI NES() returning the true number
lines | eft.

However, you can befairly sure that if an implementation returns a number greater than 1, then that number is the real numb
of lines (or characters) left in the stream. And simultaneously, if the number returned is 0, then thereis no lines (or character
left to beread in the stream. But if the number is 1, then you will never know until you have tried.

Example: File reading idiom

This example shows acommon idiom for reading all contents of afileinto REXX variables using the LI NES() and
LI NEI N() built-in functions.

i =1
signal on notready
Ileft = lines(file)
do while Ileft>0
do i=i toi+lleft
line.i = linein(file)
end
Ileft = lines(file)
end
not r eady:
lines.0 =i-1

Here, the two nested loops iterates over all the data to be read. The innermost loop reads all data currently available, while the
outermost loop checks for more available data. Implementations having a LI NES() that return only 0 and 1 will generaly
iterate the outermost loop many times; while implementations that returns the “true” numberlfiiES() generally only
iterates the outermost loop once.

There is only one place in this code thatNEI N() is called. Thd variable is incremented at only one place, and the
variableL|l NES. 0 is set in one clause, too. Some redundancy can be removed by setihy) ltfieexpression to:

do while word(value(lleft’ lines(file)) lleft,2)>0
Thetwo assignmentsto the LLEFT variable must be removed. This may look more complicated, but it decreases the number

clauseshaving acall to LINES() from two till one. However, it isless certain that this second solution is more efficient, sinc
using VALUE() built-in function can be inefficient over “normal” variable references.

92

13.4 The Last Line of a Stream

How to handle the last linein a stream is sometimes a problem. If you use a system that stores end-of-lines as specia characte
sequences, and the last part of the data of a stream is an unterminated line, then what is returned when you try to read that par
of data?

There are three possible solutions: First, it may interpret the end-of-file itself as an implicit end-of-line, in this case, the partia
part of the lineis returned, asif it was properly terminated. Second, it may raise the NOTREADY condition, since the end-of-f
was encountered during reading. Third, if thereis any chance of additional data being appended, it may wait until such data
are available. The second and third approaches are suitable for persistent and transient files, respectively.

Thefirst approach is sometimes encountered. It has some problems though. If the end of a stream contains the data
ABC<NL>XYZ, then it might return the string XYZ asthe last line of the stream. However, suppose the last line was an empty
ling, then the last part of the stream would be: ABC<NL>. Few would argue that there is any line in this stream after the line
ABC. Thus, the decision whether the end-of-fileis an implicit end-of-line depends on whether the would-be last line has zero
length or not.

An pragmatic solution is to let the end-of-file only be an implicit end-of-fileif the characters immediately in front of it are no
an explicit end-of-line character sequence.

However, TRL gives some indications that an end-of-file is not an implicit end-of-line. It saysthat LI NES() returnsthe
number of complete linesleft, and that L1 NEI N() returns acomplete line. On the other hand, the end-of-line sequenceis nc
rigidly defined by TRL, so an implementor is almost free to define end-of-linein just about any terms that are comfortable.
Thus, the last line of a stream may be a source of problem if it is not explicitly terminated by an end-of-line.

13.5 Other Parts of the I/O System

This section lists some of the other parts of REXX and the environments around REXX that may be considered a part of the |
system.

[Stack.]
The stack be used to communicate with external environments. At the REXX side, the interface to the stack isthe

instructions PUSH, PULL, PARSE PULL, and QUEUE; and the built-in function QUEUED() . These can be used to
communicate with external programs by storing data to be transferred on the stack.

[The STREAM') built-in function.]
Thisfunction is used to control various aspects about the files manipulated with the other standard 1/0O functions. Thi
standard says very little about this function, and leavesit up to the implementor to specify the rest. Operations like
opening, closing, truncating, and changing modes

[The SAY instruction.]
The SAY instruction can be used to write data to the default output stream. If you use redirection, you can indirectly
useit to write datato afile.

[The ADDRESS instruction.]
The ADDRESS instruction and commands can be used to operate on files, depending on the power of your host
environments and operating system.

[The VALUE() built-in function.]
The function VALUE() , when used with three parameters, can be used to communicate with external host
environments and the operating system. However, this depends on the implementation of your interpreter.

[SAA API .]
The SAA API provides several operations that can be used to communicate between processes. In general, SAA API
alows you to perform the operations listed above from abinary program written in alanguage other than REXX.

And of course, I/O is performed whenever a REXX program or external function is started.

93

13.6 Implementation-Specific Information

This section describes some implementations of stream I/O in REXX. Unfortunately, this has become a very large section,
reflecting the fact that stream 1/O is an area of many system-specific solutions.

In addition, the variations within thistopic are rather large. Regina implements a set of functions that are very close to that
TRL2. The other extreme are ARexx and BRexx, which contain a set of functions which is very close to the standard I/O
library of the C programming language.

13.7 Stream 1/O in Regina 0.07a

Regina implements stream 1/0O in afashion that closely resembles how it is described in TRL2. The following list givesthe
relevant system-specific information.

[Nanes for standard streans.]

[1npli

Regina uses<st dout > and <st di n> as names for the standard output and input streams. Note that the angle
brackets are part of the names. Y ou may also access the standard error stream (on systems supporting this stream)
under the name <st der r >. In addition, the nullstring is taken to be equivalent to an empty first parameter in the
I/O-related built-in functions.

cit opening.]
Regina implicitly opens any file whenever it isfirst used.

If the first operation isaread, it will be opened in read-only mode. If the first operation isawrite, it is opened in rea
write mode. In this case if the read-write opening does not succeed, the fileis opened in write-only mode. If the file
exists, the opening is non-destructive, i.e. that the file is not truncated or overwritten when opened, elseit is created i
opened in read-write mode.

If you name afile currently open in read-only mode in awrite operation, Regina closesthefile, and reopensit in
read-write mode. The only exception iswhen you call LI NEQUT() with both second and third arguments unspecifi¢
which always closes afile, both for reading and writing. Similarly, if the file was opened in write-only mode, and y«
useitin aread operation, Regina closes and reopens in read-write mode.

Thisimplicit reopening is enabled by default. Y ou can turn it off by unsetting the extension Expl i ci t Open.

[Separate current positions.]

The environment in which Regina operates (ANSI C and POSI X) does not allow separate read and write positions,
but only supplies one position for both operations. Regina handles this by maintaining the two positions internally,
and move the “real” current position back and forth depending on whether a read or write operation is next.

[Swappi ng out file descriptors.]

[Expl i

In order to defend itself against “open-many-close-none” programrRiegina tries to “swap out” files that have
been unused for some time. Assume that your operating systemRiggiitsa to 100 simultaneously open files; \

your try to open your 161file, Regina closes the least recently used stream, and recycles its descriptor for the r

file. You can enable or disable this recycling with 8veapFi | ePt r extension.

During this recyclingRegina only closes the file in the operating system, but retains all vital information about t
file itself. If you re-access the file lat&ggina reopens it, and positions the current read and write positions at th
correct (i.e. previous) positions. This introduces some uncertainties into stream processing. Renaming a file &
only if it gets swapped out. Since the swap operation is something the users do not see, it can cause some stt

effects.

Regina will not allow a transient stream to be swapped out, since they often are connected to some sort of act
partner in the other end, and closing the file might kill the partner or make it impossible to reestablish the stree

only persistent files are swapped out. Thus, you can still fill the file talikegina.
cit opening and cl osing.]

Regina allows streams to be explicitly opened or closed through the use of the built-in fUBICREAM) . The
exact syntax of this function is described in sectimaam. Old versions oRegina supported two non-standard

94

in functions OPEN() and CLOSE() for these operations. These functions are still supported for compatibility reaso
but might be removed in future releases. Their availability is controlled by the OpenBi f and Cl oseBi f extensior

[Truncation after witing lines.]
If you reposition line-wise the current write position to the middle of afile, Regina truncates the file at the new
position. This happens whether datais written during the L1 NEQUT(') or not. If not, the file might contain half a
line, some lines might disappear, and the linecount would in general be disrupted. The availability of this behavior i:
controlled by Li neQut Tr unc, which isturned on by default.

Unfortunately, the operation of truncating afileis not part of POSIX, and it might not exist on al systems, so on son
rare systems, thistruncating will not occur. In order to be able to truncate afile, your machine must have the
ftruncat e() systemcal in C. If you don’t have this, the truncating functionality is not available.

[Caching info on lines left.]
WhenRegina executes the built-in functionl NES() for a persistent stream, it caches the number of lines left as
attribute to the stream. In subsequent callsItdlEl N() , this number is updated, so that subsequent calls to
LI NES() can retrieve the cached number instead of having to re-scan the rest of the stream, provided the
is still valid. Some operations will invalidate the count: repositioning the current read position; reading using th
character oriented I/O, i.€HARI N() ; and any write operation by the same interpreter on the stream. Ideally, ar
write operation should invalidate the count, but that might require a large overhead before any operation, in or
check whether the file has been written to by other programs.

This functionality can be controlled by the extension calladheLi neNo, which is turned on by default. Note
if you turn that off, you can experience a serious decrease in performance.

The following extra built-in functions relating to stream 1/O are defineRBégina. They are provided for extra support and
compatibility with other systems. Their support may be discontinued in later versions, and they are likely to be moved
library of extra support.

CLOSE(stream d)

Closes the stream nameddbseamid. This stream must have been opened by implicit open or BYREN function call

earlier. The function returns if there was any file to close, afdf the file was not opened. Note that the return value doe
not indicate whether the closing was successful. You can use the extensionGharmed®i f with the OPTI ONS instructia

to select or remove this function. This function is now obsolete, instead you should use:

STREAM(streamid, ‘Command’, ‘CLOSE")

CLOSE(myfile) 1 if stream was open
CLOSE('NOSUCHFILE) 0 if stream didn't exist

OPEN(st ream d, access)

Opens the stream namseileamid with the accesaccess. If access is not specified, the acceRwill be usedaccess may be
the following characters. Only the first character of ébeess is needed.

[R
(Read) Open for read access. The file pointer will be positioned at the start of the file, and only read operation
allowed.

[w

(Write) Open for write access and position the current write position at the end of the file. An error is returned
was not possible to get appropriate access.

The return value from this function is eith&ror 0, depending on whether the named stream is in opened state after the
operation has been performed.

95

Note that if you open the fileg bobar” and “. / f oobar ” they will point to the same physical file, bRegina interprets
them as two different streams, and will open a internal file descriptor for each one. If you try to open an alreadympen
using the same name, it will have no effect.

You can use the extensi@penBi f with the OPTI ONS instruction to control the availability of this function. This funitio
now obsolete, but is still kept for compatibility with other interpreters and older versi®egofa. Instead, withRegina yc
should use:

STREAM(streamid, ‘C’, ‘READ’|'WRITE’|'APPEND’|'UPDATE")

OPEN(myfile, ‘write’) 1 maybe, if successful

OPEN(passwd, ‘Write") 0 maybe, if no write access

OPEN('DATA’, ‘READ’) 0 maybe, if successful
The return value from this function is eith&ror 0, depending on whether the named stream is in opened state after the
operation has been performed.

13.8 Functionality to be Implemented Later

This section lists the functionality not yetRegina, but which is intended to be added later. Most of these are fixes to
problems, compatibility modes, etc.

[Indirect nam ng of streans.]
Currently, streams are named directly, which is a convenient. However, there are a few problems: for instanc
difficult to write to a file which name isst dout >, simply because that is a reserved name. To fix this, an indire
naming scheme will be provided through tBEREAM) < built-in function. The functionality will resemble the
OPEN() built-in function ofARexx.

[Consistence in fil ehandl e swappi ng.]
When a file handle is currently swapped out in order to avoid filling the system file table, very little checking of
consistency is currently performed. At least, vital information about the file should be retained, such as the ino
file system for Unix machines retrieval by thet at () call. When the file is swapped in again, this information
must be checked against the file which is reopened. If there is a mistNGIEREADY should be raised. Similarly,
when reopening a file because of a new access mode is requested, the same checking should be performed.

[Files with holes.]
Regina will be changed to allow it to generate files with holes for system where this is relevant. Although stanc
REXX does not allow this, it is a very common programming idiom for certain systems, and should be alloiwed
however, be controllable through a extension cefiedr seFi | es.

13.9 Stream I/O in ARexx 1.15

ARexx differs considerably from standaREXX with respect to stream I/O. In fact, hone of the standard stream functione
of REXX is available inARexx. Instead, a completely distinct set of functions are used. The differences are so big, that
useless to descri#Rexx stream 1/O in terms of standaREXX stream 1/O, and everything said so far in this chapter is
irrelevant forARexx. Therefore, we explain th&Rexx functionality from scratch.

All'in all, the ARexx file 1/0 interface resembles the functions of the Standard C I/O library, probably bédaeeis
written in C, and theARexx 1/O functions are “just” interfaces to the underlying C functions. You may want to check up
documentation for the ANSI C I/O library as described in [ANSIC], [KR], and [PJPlauger].

ARexx uses a two level naming scheme for streams. The file names are bound to a stream name@Ri(hbuilt-in
function. In all other 1/O functions, only the stream name is used.

OPEN(nane, fil enane[, node])

You use theéOPEN() built-in function to open a stream connected to a file cdlledame in AmigaDOS. In subsequent I/O
calls, you refer to the stream laa@me. These two names can be different.

96

The name parameter cannot already be in use by another stream. If so, the OPEN() function fails. Note that the name
parameter is case-sensitive. The filename parameter is not strictly case-sensitive: the case used when creating anew fileis
preserved, but when referring to an existing file, the name is case-insensitive. Thisis the usua behavior of AmigaDOS.

If any of the other 1/0O operations uses a stream name that has not been properly opened using OPEN() , that operation fails,
because ARexx has no auto-open-on-demand feature.

The optional parameter mode can be any of Read, Wi t e, or Append. The mode Read opens an existing file and sets the
current position to the start of the file. The mode Append isidentical to Read, but sets the current positions to the end-of -fil
Themode W i t e createsanew file, i.e. if afilewith that name already exists, it is deleted and anew fileis created. Thus,

with Wi t e you always start with an empty file. Note that the terms “read,” “write,” and “append” are only remotely
connected to the mode in which the file is opened. Both reading and writing are allowed for all of these three modes; 1
names only reflect the typical operations of these modes.

The result fronOPEN() is a boolean value, which Isif a file by the specifiedame was successfully opened during the
OPEN() call, and0 otherwise.

The number of simultaneously open files is no problem because AmigaDOS allocates files handles dynamically, and t
limited by the available memory. One system managed 2000 simultaneously open files during a test.

OPEN('infile’, ‘work:DataFile’) 1 if successful
OPEN(‘'work’, ‘RAM:FooBar’, ‘Read’) 0 if didn’t exist
OPEN(‘output’, “TmpFile’, ‘W’) 1 (re)creates file

CLOSE(hane)

You use theCLOSE() built-in function to close a stream. The paramei@ne must match the first parameter in a call to
OPEN() earlier in the same program, and must refer to an open stream. The return value is a boolean value that refle
whether there was a file to close (but not whether it was successfully closed).

CLOSE('infile’) 1 if stream was previously open
CLOSE('outfile’) 0 if stream wasn'’t previously open

V\RI TELN(nane, stri ng)

TheWRI TELN() function writes the contents dfring as a line to the streamame. The name parameter must match the
value of the first parameter in an earlier call@BEN() , and must refer to an open stream. The data written is all the
characters irstring immediately followed by the newline character (ASCII <Ctrl-J> for AmigaDOS).

The return value is the number of characters written, including the terminating newline. Thus, a return \alodicétes
that nothing was written, while a value which is one more than the number of charactragnndicates that all data was
successfully written to the stream.

When writing a line to the middle of a stream, the old contents is written over, but the stream is not truncated; these is
to truncate a stream with th&Rexx built-in functions. This overwriting can leave partial lines in the stream.

WRITELN('tmp’, ‘Hello, world!") 14 if successful
WRITELN(‘'work’, ‘Hi there’) 0 nothing was written
WRITELN('tmp’, ‘Hi there’) 5 partially successful

V\RI TECH(nane, stri ng)

TheWRI TECH() function is identical taARI TELN() , except that the terminating newline character is not added to the d
written out. ThusWRI TELN() is suitable for line-wise output, whil&RI TECH() is useful for character-wise output.

WRITECH(‘tmp’, ‘Hello, world!) 13 if successful
WRITECH(‘work’, ‘Hi there’) 0 nothing was written
97

WRITECH(‘tmp’, ‘Hi there’) 5 partially successful

READLN(nane)

The READLN() function reads a line of data from the stream referred twalye. The parametename must match the first
parameter of an earlier call @PEN(), i.e. it must be an open stream.

The return value is a string of characters which corresponds to the characters in the stream from and including the cur
position forward to the first subsequent newline character found. If no newline character is found, the end-of-file g imp
interpreted as a newline and the end-of-file state is set. However, the data returned to the user never contains the terr
end-of-line.

To differ between the situation where the last line of the stream was implicitly terminated by the end-of-file and where
explicitly terminated by an end-of-line character sequence, udgdg) built-in function. TheEOF() returnsl in the
former case an@ in the latter case.

There is a limit inARexx on the length of lines that you can read in one calREADLN() . If the length of the line in the
stream is more than 1000 characters, then only the first 1000 characters are returned. The rest of the line can be read
additionalREADLN() andREADCH() calls. Note that whenev&EADLN() returns a string of exactly 1000 characters

no terminating end-of-line was found, and a new calREADLN() must be executed in order to read the rest of the line.

READLN(‘tmp’) Hello world! maybe
READLN(‘work’) maybe, if unsuccessful

READCH(narne[, | engt h])

The READCH() built-in function reads characters from the stream named by the paramgterwhich must correspond to
the first parameter in a previous call@EN() . The number of characters read is giveridmgth, which must be a non-
negative integer. The default valuelefigth is 1.

The value returned is the data read, which has the length correspondind éngtiieparameter if no errors occurred.

There is a limit inARexx for the length of strings that can be read in one calREADCH() . The limit is 65535 bytes, an
limitation in the maximum size of aARexx string.

READCH(‘'tmp’,3) Hel maybe
READCH(‘tmp’) I maybe
READCH('tmp’,6) o worl maybe

ECF(nane)

The EOF() built-in function tests to see whether the end-of-file has been seen on the stream speudiiag hich must
an open stream, i.e. the first parameter in a previous c@PEN() .

The return value id if the stream is in end-of-file mode, i.e. if a read operation (efREXDLN() or READCH()) has seen
the end-of-file during its operation. However, reading the last character of the stream does not put the stream in end-o
mode; you must try to read at least one character past the last character. If the stream is not in end-of-file mode, the r¢
value is0.

Whenever the stream is in end-of-file mode, it stays there until a cBEEK() is made. No read or write operation can
remove the end-of-file mode, orfEEK() (and closing followed by reopening).

EOF(‘tmp’) 0O maybe
EOF(‘work’) 1 maybe

SEEK(nane, of fset[, npde])
98

The SEEK() built-in function repositions the current position of the file specified by the parameter name, which must
correspond to an open file, i.e. to the first parameter of aprevious call to OPEN() . The current position in thefile is set to the
byte referred to by the parameter offset. Note that offset is zero-based, so the first byte in the fileis numbered 0. The value
returned is the current position in the file after the seek operation has been carried through, using Begi nni ng mode.

If the current position is attempted set past the end-of-file or before the beginning of the file, then the current position is not
moved, and the old current position isreturned. Note that it islegal to position at the end-of-file, i.e. the position immediately
after the last character of the file. If a file contains 12 characters, the valid range for the resulting new curreris f@sition
12.

The last parameter, mode, can take any of the following values:

Begi nni ng, Cur r ent, or End. It specify the base of the seeking, i.e. whether it isrelative to the first byte, the end-of-file
position, or the old current position. For instance: for a 20 byte file with current position 3, then offset 7 for base Begi nni n
is equivalent to offset —13 for baBad and offset 4 foCur r ent . Note that only the first character of th@de parameter
required, the rest of that parameter is ignored.

SEEK(‘tmp’, 12, ‘B) 12 if successful
SEEK(‘tmp’, -4, ‘Begin’) 12 if previously at 12
SEEK(‘tmp’, -10, ‘E’) 20 iflengthis 30

SEEK(‘tmp’, 5) 17 if previously at 12
SEEK(‘tmp’, 5, ‘Celcius’) 17 only first character in mode matters
SEEK(‘tmp’, 0, ‘B") 0 always to start of file

13.10 Main Differences from Standard REXX

Now, as the functionality has been explained, let me point out the main conceptual differences from RiaKdattiey ar

[Current position.]
ARexx does not differ between a current read and write position, but uses a common current position for both
and writing. Further, this current position (which it is called in this documentation) can be set to any byte withi
file, and to the end-of-file position. Note that the current position is zero-based.

[I'ndirect nam ng.]
The stream I/O operations WRexx do not get a parameter which is the name of the file. Ins#&dxx uses an
indirect naming scheme. TH&PEN() built-in function binds &REXX stream name for a file to a named file in the
AmigaDOS operating system; and later, only REEXX stream name is used in other stream I/O functions ope
on that file.

[Speci al stream nanes.]
There are two special file namesARexx: STDOUT andSTDI N, which refer to the standard input file and star
output file. With respect to the indirect naming scheme, these are not file names, but names for open streams
can be used in stream /O operations other BEN() . For some reason, is it possible to cl83&I N but not
STDOUT.

[NOTREADY not supported.]
ARexx has noNOTREADY condition. Instead, you must detect errors by cali@§() and checking the return cod
from each 1/O operations.

[her things mssing.]
In ARexx, all files must be explicitly opened. There is no way to reposition line-wise, except for reading lines a
keeping a count yourself.

Of course ARexx also has a lot of functionality which is not part of standaEKXX, like relative repositioning, explicit

opening, an end-of-file indicator, etc. But this functionality is descriptive above in the descriptions of extended built-in
functions, and it is of less interest here.

99

When an ARexx script has opened afilein Wi t e mode, other ARexx scripts are not allowed to access that file. However, i
thefileis opened in Read or Append mode, then other ARexx scripts can open the file too, and the same state of the conter
of thefileis seen by al scripts.

Notethat it is difficult to translate between using standard REXX stream 1/0 and ARexx stream 1/O. In particular, the main
problem (other than missing functionality in one of the systems) is the processing of end-of-lines. In standard REXX, the enc
of-file is detected by checking whether there is more data | eft, while in ARexx one checks whether the end-of-file has been
read. The following is a common standard REXX idiom:

while lines(*file’)>0 /* for each line available */
say linein(‘file’) /* process it */
end

In ARexx this becomes:

tmp = readIn(*file’) /* attempt to read first line */
do until eof(‘file”) /* if EOF was not seen */

say tmp [* process line */

tmp = readIn(*file’) /* attempt to read next line */
end

It is hard to mechanically translate between them,
because of the lack of an EOF() built-in function in standard REXX, and the lack of a LINES() built-in function in ARexx

Note that in the ARexx example, an improperly terminated last line is not read as an independent line, since READLN()
searches for an end-of-line character sequence. Thus, in the last invocation tmp is set to the last unterminated line, but EOK
returns true too. To make this different, make the UNTIL subterm of the DOloop check for the expression EOF('file’) ¢
TMP<>*,

The limit of 1000 characters for READLN() means that a generic line reading routinein ARexx must be similar to this:

readline: procedure

parse arg filename

line="

do until length(tmpline)<1000
tmpline = readIn(filename)
line = line || tmpline

end

return line

Thisroutine calls READLN() until it returns aline that is shorter than 1000 characters. Note that end-of-file checking is
ignored, since READLN() returns an empty string a the end-of-stream.

13.11 Stream I/O in BRexx 1.0b

BRexx contains a set of 1/0 which shows very close relations with the C programming language /O library. In fact, you
should consider consulting the C library documentation for in-depth documentation on this functionality.

BRexx contains atwo-level naming scheme: in REXX, streams are referred to by a stream handle, which is an integer; in the
operating system files are referred to by afile name, which isanormal string. The function OPEN() isused to bind afile
name to a stream handle. However, BRexx /O functions generally have the ability to get areference either as afile name an
astream handle, and open thefile if appropriate. However, if the name of afileis an integer which can be interpreted as afile
descriptor number, it isinterpreted as a descriptor rather than a name. Whenever you use BRexx and want to program robus
code, aways use OPEN() and the descriptor.

If afileis opened by specifying the namein al/O operation other than OPEN(), and the nameis an integer and only one or
two higher than the highest current file descriptor, strange things may happen.

100

Five special streams are defined, having the pseudo file names: <STDI N>, <STDOUT>, <STDERR>, <STDAUX>, and
<STDPRN>; and are assigned pre-defined stream handles from 0 to 4, respectively. These refer to the default input, default
output, and default error output, default auxiliary output, and printer output. The two last generaly refer to the COML: and
LPT1: devicesunder MS-DOS. Either upper or lower case letter can be used when referring to these four special names.

However, note that if any of these five special files are closed, they can not be reopened again. The reopened file will be just i
normal file, having the name e.g. <STDOUT>.

Thereis afew things you should watch out for with the special files. 1/0 involving the <STDAUX> and <STDPRN> can caus
the Abort, Retry, | gnore messageto beshown oncefor each character that was attempted read or written. It can be
boring and tediousto answer Ror | if thetext string islong. If Aisanswered, BRexx terminates.

Y ou should never write data to file descriptor O (<STDI N>), apparently, it will only disappear. Likewise, never read data to f
descriptors 1 and 2 (<STDOUT> and <STDERR>), the former seems to terminate the program while the latter apparently just
returns the nullstring. Also be careful with reading from file descriptors 3 and 4, since your program may hang if no datais
available.

OPEN(fi | e, node)

The OPEN() built-in function opens afile named by file, in mode mode, and returns an integer which is the number of the
stream handle assigned to thefile. In general, the stream handle is a non-negative integer, where 0 to 4 are pre-defined for tt
default streams. If an error occurred during the open operation, the value - 1 isreturned.

The mode parameter specifies the mode in which the file is opened. It consists of two parts: the access mode, and the file moc
The access mode part consists of one single character, which can be r for read, wfor write, and a for append. In addition, the
character can be appended to open afile in both read and write mode. The file mode part can also have of one additional
character which canbe t for text filesand b for binary files. Thet modeis default.

The following combinations of + and access mode are possible:

r isnon-destructive open for reading; wis destructive open for write-only mode; a is non-destructive open for in append-only
mode, i.e. only write operations are allowed, and all write operations must be performed at the end-of-file; r + is non-
destructive open for reading and writing; w+ is destructive open for reading and writing; and a+ is hon-destructive openin
append update, i.e. reading is allowed anywhere, but writing is alowed only at end-of-file. Destructive mode means that the f
istruncated to zero length when opened.

In addition, the b and t characters can be appended in order to open the file in binary or text mode.

These modes are the same as under C, although the t mode character is strictly not in ANSI C. Also notethat r, w, and a ar
mutually exclusive, but one of them must always be present. The mode + is optional, but if present, it must always come
immediately after r, w, or a. Thet and b modes are optional and mutually exclusive; the defaultist . If present, t or b mus
be the last character in the mode string.

open(‘myfile’,;'w’) 7 perhaps
open(‘no.such.file’,’r’) -1 if non-existent
open(‘c:tmp’, ‘r+b”) 6 perhaps

If two file descriptors are opened to the same file, only the most recently of them works. However, if the most recently
descriptor is closed, the least recently starts working again. There may be other strange effects too, so try avoid feope
that is already open.

CLOSE(fi [€)

The CLOSE() built-in function closes a file that is already open. The paranifigégecan be either a stream handle returned
from OPEN() or a file name which has been opened (but for which you do not known the correct stream handle).

The return value of this function seems to be the nullstring in all cases.

101

close(6) if open
close(7) if not open
close(‘foobar’) perhaps

EOF(file)

The EOF() built-in function checks the end-of-file state for the stream giveiildywhich can be either a stream descri
a file name. The value returnedisf the end-of-file status is set for the stream, @riflit is cleared. In addition, the value
is returned if an error occurred, for instance if the file is not open.

The end-of-file indicator is set whenever an attempt was made to read at least one character past the last charaeter of
Note that reading the last character itself will not set the end-of-file condition.

eof(foo) 0 if not at eof
eof(‘8") 1 ifateof
eof('no.such.file’) -1 iffile isn’t open

READ([file]l[,/ength])

The READ() built-in function reads data from the file referred to byfilkeparameter, which can be either a file name or a
stream descriptor. If it is a file name, and that file is not currently open, Bfiaxx opens the file in modet . The default
value of the first parameter is the default input stream. The data is read from and including the current position.

If the length parameter is not specified, a whole line is read, i.e. reading forwards to and including the first end-of-line
sequence. However, the end-of-line sequence itself is not returned |eligtieparameter is specified, it must be a non-
negative integer, and specified the number of characters to read.

The data returned is the data read, except tHahgth is not specified, the terminating end-of-line sequence is stripped off
the last line of a file contains a string unterminated by the end-of-string character sequence, then the end-of-filéyis imp
interpreted as an end-of-line. However, in this case the end-of-file state is entered, since the end-of-stream was found
looking for an end-of-line.

read(‘foo’) one line reads a complete line

read(‘foo’,5) anoth reads parts of a line
read(6) er line using a file descriptor
read() hello there perhaps, reads line from default input stream

WRI TE([filel[,[string][, dunmy]])

TheWRI TE() built-in function writes a string of data to the stream specified b¥illa@arameter, or by default the default
output stream. If specifiefiJe can be either a file name or a stream descriptor. If it is a file name, and that file is not alre
open, it is opened using mode.

The data written is specified by thiing parameter.

The return value is an integer, which is the number of bytes written during the operation. If the file is opened in tet mc
ASCII newline characters are translated into ASCRLF character sequences. However, the number returned is not@ffec
by this translation; it remains independent of any text of binary mode. Unfortunately, errors while writing is seldom tra,
so the number returned is generally the number of character that was supposed to be written, independent of whether
actually written or not.

If a third parameter is specified, the data is written as a line, i.e. including the end-of-line sequence. Else, théteatais w
is, without any end-of-line sequence. Note that \BRexx, the third parameter is considered present if at least the camm:
front of it—-the second comma—-is present. This is a bit inconsistent with the standard operationSRs¥thebuilt-in
function. The value of the third parameter is always ignored, only its presence is considered.

102

If the second parameter is omitted, only an end-of-line action is written, independent of whether the third parameter is present
or not.

write(‘bar’,’data’) 4 writes four bytes
write(‘bar’,'data’,'nl’) 4+?? write a line
write(‘bar’,’data’,) 4+?? same as previous

SEEK(file[,[of fset][,originl])

The SEEK() built-in function moves the current position to a location in the file referred fddoyrhe parametefile can b
either a file name (which must already be open) or a stream descriptor. This function does not implicitly open fileg that
currently open.

The parameteoffset determines the location of the stream and must be an integer. It defaults to zero. Note that the
of bytes within the stream is zero-based.

The third parameter can be anyTd®F, CUR, or EOF, in order to set the reference point in which to reconoffet location.
The three strings refer to top-of-file, current position, and end-of-file, and either upper or lower case can be usedltThe
value is ??7.

The return value of this function is the absolute position of the position in the file after the seek operation has been pe!

The SEEK() function provides a very important additional feature. Whenever a file opened for both reading and writing
been used in a read operation and is to be used in a write operation next (or vice versa), therseE&(l)tanust be
performed between the two 1/O calls. In other words, after a read only a seeking and reading may occur; after a write,
seeking and writing may occur; and after a seek, reading, writing, and seeking may occur.

13.12 Problems with Binary and Text Modes

Under the MS-DOS operating system, the end-of-line character sequert@esisLF>, while in C, the end-of-line seque
only<LF>. This opens for some very strange effects.

When an MS-DOS file is opened for read in text mod&Bgxx, all <CR><LF> character sequences in file data are
translated to<LF> when transferred into the C program. FurthBRexx, which is a C program, interpretd_F> as an end-
of-line character sequence. However, if the file is opened in binary mode, then the first translatigCRenh F> in the fil

to <LF> into the C program is not performed. Consequently, if a file that really is a text file is opened as a binary file ar
line-wise, all lines would appear to have a traild@R> character.

Similarly, <LF> written by the C program is translated4@R><LF> in the file. This is always done when the file is of.

in text mode. When the file is opened in binary mode, all data is transferred without any alterations. Thus, when writing
to a file which is opened for write in binary mode, the lines appear to havebhly, not<CR><LF>. If later opened as a t
file, this is not recognized as an end-of-line sequence.

Example: Differing end-of-lines

Here is an example of how an incorrect choice of file type can corrupt data. ABRexe running under MS-DOS, using
<CR><LF> as a end-of-line sequence in text files, but the system calls translating ¢his*an the file I/O interface.
Consider the following code.

file = open(‘testfile.dat’, ‘wt’) /* text mode */
call write file, ‘45464748, ‘dummy’ /*i.e. ‘abcd’ */
call write file, ‘65666768, ‘dummy’ /*i.e. ‘ABCD’ */

call close file

file = open(‘testfile.dat’, ‘rb’) /* binary mode */

say c2x(read(file)) [* says ‘454647480D’ */
say c2x(read(file)) [* says ‘656667680D’ */
call close file

103

Here, two lines of four characters each are written to the file, while when reading, two lines of five characters areread. The
reason is simply that the writing was in text mode, so the end-of-line character sequence was <CR><LF>; while the reading
was in binary mode, so the end-of-line character sequence was just <LF>. Thus, the <CR> preceding the <LF> istaken to be
part of the line during the read.

To avoid this, be very careful about using the correct mode when opening files. Failure to do so will amost certainly give
strange effects.

104

Extensions

This chapter describes how extensions to Regina are implemented. The whole contents of this chapter is specific for Regine

1. Why Have Extensions

Why do we need extensions? Well, there are a number of reasons, although not all of these are very good reasons:
* Adaptations to new environments may require new functionality in order to easily interface to the operating system.
» Extending the language with more power, to facilitate programming.

* Sometimes, alot of time can be saved if certain assumptions are met, so an extension might be implemented to allow
programmers to take shortcuts.

* When aprogram is ported from one platform to another, parts of the code may depend of non-standard features not
available on the platform being ported to. In this situation, the availability of extensions that implement the feature may
of great help to the programmer.

e Theimplementor had some good idea during devel opment.

Extensions arise from holes in the functionality. Whether they will survive or not depends on how they are perceived by
programmers; if perceived as useful, they will probably be used and thus supported in more interpreters.

2. Extensions and Standard REXX

In standard REXX, the OPTI ONS instruction provides a “hook” for extensions. It takes any type of parameters, and ii
them in a system-dependent manner.

The format and legal values of the parameters for the OPTI ONS instruction is clearly implementation dependent [TRL2, p62

3. Specifying Extensions in Regina

In Regina there are three level of extensions. Each independent extension has its own name. Exactly what an independent
extension is, will depend on the viewer, but a classification has been done, and is listed at the end of this chapter.

At the lowest level are these “atomic” extensions. Then there are some “meta-extensions”. These are collections of o
extensions which belongs together in some manner. If you need the extension for creating “buffers” on the stack, it wc
logical to use the extension to remove buffers from the stack too. Therefore, all the individual extensions for operation:
handle buffers in the stack can be named by such a “meta-extensions”. At the end of this chapter, there is a list ¢&all t

extensions, and which extensions they include.

At the top is “standards”. These are sets of extensions that makes the interpreter behave in a fashion compatible with

standard. Note that “standard” is used very liberally, since it may refer to other implementatRia¥XfHowever, this

description of how the extensions are structured is only followed to some extent. Where practical, the structure has be

deviated.

105

4. The Trouble Begins

Thereis one very big problem with extensions. If you want to be able to turn them on and off during execution, then your
program hasto be a bit careful.

More and more REXX interpreters (including Regina seem to do a parsing when the interpreter is started. The “old” evay !
to postpone the parsing of each clause until it was actually executed. Thisleadsto the problem mentioned.

Suppose you want to use an extension that allows a slightly different syntax, for the sake of the argument, let us assume that

you alow an expression after the SELECT keyword. Also assume that this extension isonly alowed in extended more, not in
“standard mode”. However, sinB&gina parses the source code only once (typically at the starts of the program), t

is a catch-22: the extension can only be turned on after parsing the program, but it is needed before parsing. This alsc
to a lot of otheREXX interpreters, and aREXX compilers and preprocessors.

If the extension is not turned on during parsing, it will generate a syntax error, but the parsing is all done befordate fir:
is executed. Consequently, this extension can not be turned on during execution, it has to be set before the parsing st

Therefore, there are two alternative ways to invoke a set of extensions.

* It can be invoked by using the option to the interpreter. The word following the option is the extension or stan
invoke. Multiple- e options can be specified.

» It can be invoked by setting the environment varidg#XEXTS, which must be a string of the same format as the
parameters to th@PTI ONS clause.

5. The Format of the OPTI ONS clause

The format of theOPTI ONS clause is very simple, it is followed by &REXX string expression, which is interpreted as
of space separated words. The words are treated strictly in order from left to right, and each word can change zero or
extension settings.

Each extension has a name. If the word being treated matches that name, that extension will be turned on. However, |
being treated matches the name of an extension but has theN@efixen that extension is turned off. If the word does not
match any extensions, then it is simply ignored, without creating any errors or raising any conditions.

Example: Extensions changing parsing

An example of the same is tPPER instruction. In the following piece of code the same clause is interpreted in two
completely different ways:

options ‘NOUPPER’

doi=1to2
if i=2 then options ‘UPPER’
upper foo bar

end

In thefirst iteration of the loop, the clause starting with the token UPPERwill be a command, issuing the string resulting fror
evaluating the expression upper foo bar . However, in the second iteration of the loop, the same clause isinterpreted as ¢
UPPERnNstruction. Since these two statements has very different syntax, it seemsimpossible to handle both in the same

program. Regina tries to handle this by “allowing” both syntaxes when parsing the source code, and selecting the right
when interpreting the statement in question.

106

Regina’s frequent usage of extensions may slow down execution. To illustrate how this can happen, corSRriM(the
extra built-in function. As this is an extension, it might be dynamically included and excluded from the scope of current
defined function. Thus, if the function is used in a loop, it might be in the scope during the first iteration, but wonthe se
Thus,Regina can not cache anything relating to this function, since the cached information may be outdated later. As
consequencd&egina must look up the function in the table of functions for each invocation. To avoid this, you can set tl
extensionCACHEEXT, which tellsRegina to cache info whenever possible, without regards to whether this may rend
later executions dDPTI ONS.

6. Why You Should Seriously Consider Not Using
Extensions

7. The Fundamental Extensions

Here is a description of all “atomic” extensionsRagina:

[BUFTYPE_BI F]
Allows calling the built-in functiorBUFTYPE() , which will write out all the contents of the stack, indicating the
buffers, if there are any. The idea is taken from VM/CMS, and its command rldféity PE.

[CACHEEXT]
Tells Regina that information should be cached whenever possible, even when this will render future execi
OPTI ONS instruction useless. Thus, if you use e.g.@R&N() extra built-in function, and you s€@ACHEEXT, the
you may experience that t@PEN() function does not disappear from the current scope when you set the
NOOPEN_BI F extension.

Whether or not a removal of an extension really do happen is unspecifiedSABBEEXT has been called at least
once. Effectively, info cached during the period wBACHEEXT was in effect might not be “uncached”. The
advantage oEACHEEXT is efficiency when you do not need to do a lot of toggling of some extension.

[CLCSE protect_BIF]
Allows theCLOSE() extra built-in function, which allows the program to explicitly close a stream.

[DESBUFpr ot ect _BI F]
Allows calling the built-in functiorDESBUF() , to remove all contents and all buffers from the stack. This functio
an idea taken from the program by the same name under VM/CMS.

[DROPBUFpr ot ect _BI F]
Allows calling the built-in functiorDROPBUF() , to removed one of more buffers from the stack. This function is
idea take from the program by the same name under VM/CMS.

[FI ND_BI F]
Allows calling theFI ND() extra built-in function, which is a compatibility function with VM/CMS. This functi
really equivalent t¢*?OS() , but the parameters are somewhat reversed, and sonid fiNig{) more intuitive.
Besides, this extension helps porting.

[FLUSHSTACK]
Tells the interpreter that whenever a command clause instructs the interpreter to flush the commands output ¢
stack, and simultaneously take the input from the stack, then the interpreter will not buffer the output but flush
the real stack before the command has terminated. That way, the command may read its own output. The de
setting forRegina is not to flush, i.eNOFLUSHSTACK, which tells interpreter to temporary buffer all output lines,
and flush them to the stack when the command has finished.

[LI NEOUTTRUNC]

107

This options tells the interpreter that whenever the LI NEQUT() built-in function is executed for a persistent file, thi
filewill be truncated after the newly written line, if necessary. Thisisthe default setting of Regina, unless your
system does not have thef t r uncat e() system call. The complement option is NOLI NEOUTTRUNC

[MAKEBUF_BI F]
Allows calling the built-in function MAKEBUF() , to create a buffer on the stack. This function is an idea taken from
program by the same name under VM/CMS.

[OPEN_BI F]
Adds the extra built-in function OPEN() , which isused for explicitly opening streams.

[PRUNE_TRACE]
Makes deeply nested routines be displayed at one line. Instead of indenting the trace output at avery long line
(possibly wrapping over several lines on the screen). It displays[. . .] at the start of the line, indicating that parts o
the white space of the line has been removed.

8. Meta-extensions

[BUFFERS]
Combination of BUFTYPE_BI F, DESBUF_BI F, DROPBUF_BI F and MAKEBUF_BI F.

[FILEIQ
Introduces some commonly used extra features for handling files. Thisisacombination of OPEN_BI F() and
CLCSE_BI F(), which alow the programmer to explicitly open and closefiles.

9. Semi-standards

[CVE]
A set of extensions that stems from the VM/CM S operating system. Basically, thisincludes the most common
extensions in the VM/CMS version of REXX, in addition of some functions that perform task normally done with
commands under VM/CMS.

[VVE]

A set of interface functions to the VM S operating system. Basically, this makes the REXX programming under VM
as powerful as programming directly in DCL.

[UNI X]

A set of interface functionality to the Unix operating system. Basically, this includes some functions that are normal
called as commands when programming Unix shell scripts. Although it is possible to call these as commandsin
Regina, there are considerable speed improvements in implementing them as built-in functions.

10. Standards

[ALL]
[ANSI |
[DEFAULT]

[NONE]

108

[SAA]

[TRL1]
REXX Language level 3.50, as described in [TRL1].

[TRL2]
REXX Language level 4.00, as described in [TRL2].

Also, for those of these standards that have a accepted REXX language level number, that number can be used, provided that
matches character by character (i.e. not by numeric value). Thus, you can use 3. 50 asasynonym for TRL1, and 4. 00 asa
synonym for TRL2.

Option ALL ANSI DEF NONE SAA TRL1 TRL2
BUFTYPE_BI F yes » yes no ” no no
CLOSE BI F yes » yes no ” no no
CACHEEXT no no no no no no no
DESBUF_BI F yes ” yes no 7? no no
DROPBUF_BI F yes ” yes no 7? no no
FIND_BI F yes ? yes no ? no no
FLUSHSTACK yes 7 no no ? no no
LI NEQUTTRUNC yes 7 yes no 7? no no
MAKEBUF_BI F yes ? yes no ? no no
OPEN_BI F yes 7 yes no 7 no no
PRUNE_TRACE yes no yes no no no no
UPPER_CLAUSE yes » yes no ” no no

Note that the standard and default interpreter isa REXX language level 4.00 interpreter. All other functionality is extensions.
In fact, the features in 4.00 that does not exist in 3.50 are “inverse” extensions, i.e. the extension is to removertakhfunc
only in 4.00.

109

The Stack

In this chapter, the stack and operations manipulating the stack are discussed. Snce the stack is external to the REXX
language, there are large differences between implementations with respect to the stack. These differences are attempted
described in the latter part of this chapter.

Another goal of this chapter is to try to describe both the “real” standards and some of the most commonly used de fa
standards related to stack operation. Where something is not a part of any defined standard, this is clearly labeled. Als
liberties have been taken in order to create a coherent vocabulary on a field where very little standardization has taker

1. Background and history

In the various definitions of REXX, there are numerous references to the “stack” (often called the “external data que
the “queue”). It is a structure capable of storing information, but it is not a part &EXeX language itself. Rather, itis a
part of the external environment supportinRBXX implementation.

Originally, the references to the stack was introducedREXX because of the strong binding betw&&XX and IBM
mainframes in the early history BEEXX [BMARKS]. Most (all?) of the operating systems for these machines support
and many of their script programming idioms involve the stack. Therefore, it was quite natural to introduce an inteeface
stack intoREXX, and consequently today many of the programming paradigiREXK involve a stack.

Unfortunately, this introduced an element of incompatibility iRE&XX, as the stack is not in general supported for other
operating systems. ConsequenEXX implementors often must implement a stack as well of theREXEX interpreter.
Since no authoritative definition of the stack exists, considerable differences between various implementations. Ironic
although the stack was introduced to help communication between separate programs, the interpreter-specific implem
of stacks may actually be a hindrance against compatibility between different interpreters.

The stack may have “seemed like a good idea at the time”, but in hindsight, it was probably a bad move, sinéeEXade
more dependent on the host operating system and its interfaces.

2. General functionality of the stack

This section describes the functionality generally available in implementations of stacks. The basic functionality descri
will be complemented with information on specific implementations later. Unless explicitly labeled otherwise, this
functionality is available in all standards treated in this documentation.

2.1 Basic functionality

Below is listed the general functionality of the stack, in order of decreasing compatibility. I.e. the functionality $isied fir
more likely to be a part of all implementations than the ones listed at the end of the list.

e The stack is a data structure, which strings can either be inserted into or extracted from. The strings in the stack a
in a linear order. Extraction and insertion works at a granularity of a complete string, i.e. it is not possible to insert
extract parts of string.

* The stack has two ends: a top and a bottom. New strings can be inserted into the stack in both ends, but strings ¢
be extracted from the top of the stack.

110

* Thereexistsaway of counting the number of strings currently stored in the stack.

A stack is often compared with the pile of plates you often find in cantinas. It allows you to either add new plates at the top of
the pile or take old plates from the top. When a plate is taken from the pile, it will be the most recently plate (that is still

present) added to the pile. Stack operating in REXX work the same way, although there also allow “plates” to be added to
bottom of the pile.

* There might be an implementation-specific limit on the length and number of strings stored in the stack. Ideally, the
maximum length will be fairly large, at least 2** 16, although some implementations are likely to enforce shorter limits.

Similarly, there might be alimit on the number of strings that can be simultaneously stored in the stack. Idedlly, there
should be no such limit.

e ltisnatural that there are limits imposed on the amount of memory occupied by the stringsin the stack. Some
implementations are likely to reserve afixed (but perhaps configurable) amount of memory for this purpose while others
can dynamically re-size the stack aslong as enough memory is available.

* Someimplementations might restrict the set of characters allowed in strings in the stack, although ideally, all characters
should be allowed, even characters normally used for end-of-line or end-of-string.

This documentation use the term “string”, while “line” is in common use elsewhere. The term is used because thetstrin
stack are not inherently interpreted as lines (having an implied end-of-line), only as a string.

Note that the stack itself isnot a part of REXX, only the parts which interface to the stack.
Example: Using the stack to transfer parameters

Thisisacommon REXX idiom used in several situations for special parameter passing. The following code illustrates its use

do i=1to 10 [* for each paraneter string */
queue string.1 /* put the string on the stack */
end
call subrout 10 [* call the subroutine */
exit
subrout: procedure /* the definition of the subroutine */
do j=1 to arg(1l) /* for each paraneter passed */
parse pull line.j /* retrieve the parameter */
end

/*do sonething with the parameters*/

return
In this example, ten parameter strings are transferred to the subroutine SUBROUT. The parameters are stored in the stack, anc
only the number of parameters are transferred as a “real” argument.

There are several advantages: first, one avoids problems related to exposing variable names. Since the data is stored
stack, there is no need to refer to the variable names and bind the variables in the subroutine to variables in thiaealler
In [TRL1], indirect references to variablesRROCEDURE EXPOSE s illegal, and this method circumvent the problem.

Two other ways around this problem is to U8 ERPRET for the PROCEDURE EXPQOSE instruction in order to dynamic
determine which variables to expose; or to useA#eUE() built-in function (with its two first parameters). The former is
incompatible with TRL2, while the latter is incompatible with TRL1. Using the stack can solve the problem in a fashior
compatible with both standards. Anyway, if the called routine is an external routine, then exposing does not work} so t
stack to transfer values may be the only solution.

Another advantage of this idiom; TRL only requires implementations to support 10 parameters for subroutines. Althou

are no reasons why an implementation should set a limit for the number of parameters a routine can get, you should u
another mechanism than arguments when the number of strings is greater than 10. Using the stack fixes this.

111

2.2 LIFO and FIFO stack operations

As aready mentioned, the stack isalinear list of strings. Obviously, thislist has two ends. Strings can only be extracted fron
one end, while strings can be added to both ends.

If aset of new strings are added to the same end as they are later extracted from, the strings will be extracted in the reversed
order with respect to the order in which they were added. This is called stacking “LIFO”, which means “last-in-first-out”
meaning that the last string stacked, will be the first string extracted, i.e. reversal of the order.

Similarly, when a set of strings are stacked in the end opposite to the end which they are later extracted from, they wil
extracted in the same order in which they were stacked. This is referred to as “FIFO” stacking, meaning “first-in-first-ol

The FIFO method of stacking is also sometimes referred to as “queueing”, while the LIFO method is sometimes referr
“stacking” or “pushing”.

2.3 Using multiple buffers in the stack

The concept of buffers and everything directly related to buffers lay without the domain of standard REXX. Thus, this sectio
describes a de facto standard.

Some implementations support “buffers”, which are a means of focusing on a part of the stack. When creating a new |
old contents of the stack is somewhat insulated from the effects of stack operations. When the buffer is removed, the ¢
old buffer i restored, to some extent: Whenever a string is read from the stack, and the topmost buffer on the stack is ¢
then that buffer will be destroyed. Consequently, if this situation has arisen, dropping buffers will not restore thihatate
stack before the buffer was created.

The functionality of buffers, and their effect on other stack operations may differ considerably between implementation

Whenever a queuing operations is performed (e.g. b@tB&JE instruction), then the new string is inserted into the bot
the topmost buffer, not the bottom of the stack. This is the same if the stack has no buffers, but else, the outcomi of
operation can be very different.

With IBM mainframe operating systems like CMS, buffers can be inserted on the top of the stack. To perform buffer
operations, operating system commands are used. It may be instructional to list the buffer operations of CMS:

[DESBUF]
Removes all strings and buffers from the stack, and leaves the stack clean and empty. It is often used instead
repeated calls tBROPBUF. It always returns the value zero.

DROPBUF
[Re]moves zero or more buffers from the stack. It takes one parameter which can be omitted, and which must t
integer position if specified, and is the assigned number of the bottom-most buffer to be removed, i.e. that buf
all buffers above it (and of course, all the strings in these buffers) are to be removed. If the parameter is rot sj
only the topmost buffer is removed. The return valued is always zero, unless an error occurred.

[MAKEBUF]
Makes a new buffer on the stack, starting at the current top of the stack. The return code (as stored in the spe
variableRC) is the number of buffers currently on the stack after the new buffer has been added. Obviousl|
be a positive integer. This program takes no parameters.

One might regard a buffer as a sort of bookmark, which is inserted into the stack, so that a suBSSIRBIF command
remove the stack down to a particular such bookmark.

When such a mark is located on the top of the stack, @&Md & instruction is executed, the buffer mark is implicitly des
when thePULL instruction reads the string below the buffer mark. This is to say that a buffer can be destroyed by eithe
DESBUF command, &ROPBUF command, or a read from the stack (by eitherRbkeL or PARSE PULL instructions).

2.4 The zeroth buffer

112

Normally, data pushed on the stack is added to the top of the stack. When a stack contains only one buffer, the stringsin that
buffer are the strings stored above that buffer-mark. The strings below it are not part of the first buffer; instead, they are said
belong to the zeroth buffer.

Thus, al strings from the bottom of the stack, up till the first buffer mark (or the top of the stack if no buffers exist) is said to
the strings in the zeroth buffer. However, note that the zeroth buffer is only defined implicitly. Thus, it can not really be
removed by calling DROP; only the strings in the zeroth buffer are removed. Afterwards, the zeroth buffer will still contain all
strings at the bottom of the stack, up till the first buffer mark (if existing).

Example: Process all strings in the stack

Thisisacommon REXX idiom, where aloop iterates over all the strings currently in the stack, but otherwise leave the stack
untouched. Supposing the routine PROCESS() exists, and do to processing with its parameter and return the processed string

doi=1to 5 [* just to fill the stack */
push ‘line #' i

end

do queued() [* foreach line in the stack */
parse pull line [* fetch the line */

queue process(line) /* put back the processed line */
end

Here, it isimportant to use QUEUEO put the strings back into the stack, not PUSH else the loop will iterate the correct numk
of times, but only operate on the same data string. It is also important that the stack does not contain any buffers. Since QUE

will insert into the bottom of the topmost buffer, the loop would iterate the correct number of times, but only on a part of the
stack. Thus, the topmost part of the strings in the stack would be processed multiple times.

Example: How to empty the stack

The following short example shows how you can most easily empty the stack:

doi=1to5 [* Just to fill the stack */
push ‘line #' i
end
do queued() /* For each line in the stack */
pull /* Remove the line from the stack */
end

Thisistrivialy simple, but there are several interesting and subtle notes to make about this example. First, if the number of
stringsin the stack islikely to change, due to some external process, then the DOclause should perhaps better be written as:

doi=1to5 [* Just to file the stack */
push ‘line #' i
end

do while queued()>0 /* While the stack is not empty */
pull /* Remove a line from the stack */
end

Thiswill in general mean more work for the interpreter, asit is now required to check the number of stringsin the stack for
each iteration, while for the previous code fragment, the number of strings is only checked once. Ancther point is that this
might not remove all buffers from the stack. Suppose the zeroth buffer is empty, i.e. there exists an buffer which was put on tl
stack when the stack was empty. This buffer isremoved in any of the following situations: calling DESBUF-calling DROPB
(sometimes), or reading a string below the buffer mark. Since there are no strings below the buffer mark, pulling a string fromn
the stack would make the interpreter read from the keyboard, and hang the interpreter.

Thus, the only “safe” way to remove the string and buffers from the stack, without side effects, iBESBAF or DROPBL
On the other hand, if you only want to make sure that there are no strings in the buffer, the method described here is 1

113

suitable, sinceit is far more compatible (although possibly not so efficient). But anyway, buffers are not a compatible constrt
so it does not matter so much.

2.5 Creating new stacks

The description of multiple stack operations in this section, is not part of standard REXX. Thus, this section describes a de
facto standard and you may find that few implementations support these operations.

Just as the operations described above let the REXX programmer use multiple buffers within one stack, there exists another s
of operations which let the programmer create multiple stacks. Thereis really nothing fancy about this, except that a comman
will swap the stack the interpreter correctly uses with another stack.

To theinterpreter thisis really equivalent to a situation where a command empties the current stack, and sets up a new stack.
When one stack is empty, and the REXX program tries to read from the stack, the request will not “overflow” to the pr
stack (as requests to an empty buffer “overflows” to the previous buffer). Thus, the use of multiple stacks has even les
impact onREXX interpreters than multiple buffers.

Here, it is instructive to list the commands operating multiple stacks that exists. This list has been taken from the MVS
environment, according to [REXXSAA].

[DELSTACK]
Is used to remove the most currently stack, and make the most recent of the saved stacks the current stack. V
are no saved stacks, the current stack is emptied.

[NEWSTACK]
Creates a new stack, which becomes the current stack. The old current stack is put on the top of the list of sa
stacks, and can be retrieved as the current stack by a subsBELERACK.

[QBUF]

Counts the number of buffers in the current stack, and returns that number as the return RIL¥EX Arogram
starting this command can retrieve this value as the special vaRgble

[QELEM

Counts the number of strings (i.e. elements) in the current stack, and returns that value as the return value of
command. This value can be retrievedREXX as the special variabRC. This operation is equivalent to the
QUEUED() built-in function inREXX; it has been probably included for the benefit of other script languages tha
have less functionality thalREXX.

[QSTACK]

Counts the number of stacks (including the current stack) and returns the value as the return value from the c
This number can be retrieved REXX as the special variabRC.

One can regard multiple buffers and stacks as two ways of insulating the stack; where multiple stacks are a deeper ar
insulating method than buffers. Note that each stack can contain multiple buffers, while a buffer can not contain any st
The term “hard buffers” has been used about multiple stacks, as opposed to normal buffers, which are sometimes call
buffers”.

Also note that neither multiple stacks nor buffers are part of stariRaXiX, so you might come across implementations
support only multiple stacks, only buffers, or even none of them.

Example: Counting the number of buffers

In order to count the number of buffers on the stack, the following method can b&egeth(syntax has been used for buf
handling). This method is equivalent to tRBUF command described above.

buf fers = makebuf () - 1
cal | dropbuf

114

Thiswill store the number of buffersin the stack in the variable buf f er s. However, just as for the other examples using
buffers, this example also suffers from the fact that buffer handling is fairly non-standard. Thus, you will have to adapt the co
to whatever system you want to use.

3. The interface between REXX and the stack

Asdefined in TRL, the interface to the stack consists of the PARSE PULL, PULL, PUSH, and QUEUE instructions; and the
QUEUED() built-in function.

There exists a binary interface to the stack in SAA, see the chapter on the SAA API interface. Thisinterface consists of the
RXMBQexit handler and the QUENAME value of the RXSHV_PRI Vrequest of the RexxVar i abl ePool () function of the
variable pool interface.

4. Strategies for implementing stacks

Asmentioned, stacks are rarely a part of the operating system. Therefore, under most operating systems, REXX interpreters
have to implement their own stacks. There are severa strategies for doing this, some which are listed below.

[In the operating system]
This is of course “the right way” to do it. However, it requires that the definition of the operating system is suct
stacks are supported. Currently, only IBM mainframe-based systems support stack, together with afew other system
that have included stacks as a consequence of making REXX amain scripting language (Amiga and OS/2 come to
mind).

[As a device driver.]
Thisisreally just avariation of making the stack a part of the operating system. However, in some systems, drivers
can be added very easily to the system. Drivers are often filesystem-based, in which case driver-based stack operatio
must operate on afile or pseudo-file. But for some systems, adding a driver requires much more profound changes,
reconfiguration, and often system privileges. In all cases, drivers are likely to be very system specific.

[As a daenon.]
A “daemon” is background process that does some housekeeping service, e.g. handling mail from remote sys
Implementing a stack as a daemon is only slightly simpler than using a driver, but the main idea is the same f
approaches.

[In the interpreter.]
Using this approach, the stack is built into the interpreter as a sort of extension. This is often the simplest way
require very little coordination with other programs during run-time. The main problem is that the stack becorr
private to the interpreter, so two interpreters can not use the same stack; not even if they are two invocations
same interpreter.

These items are listed in the order of how closely they are coupled to the operating system: the first items are very clo
while the last items are loosely coupled. The more closely coupled the implementation of a stack is coupled to the ope
system, the better is the chance that several interpreters on the same system can communicate in a compatible way,
stack.

There is room for several hybrid solutions, based on the four fundamental approaches. For instance, a built-in stagk ce
as a daemon.

Example: Commands takes input from the stack

In the example above, the routine that is called takes its arguments from the stack. Similarly, commands to an extern:
environment can get their arguments in the same way. Here is an example of how to do it:

115

queue ‘anonymous’ /* the username */

queue ‘user@node’ /* the password */
queue ‘dir’ /* first command */
queue ‘exit’ /* second command */

address command ‘FTP flipper.pvv.unit.no’

Although thisis very convenient in some situations, there is also considerabl e disadvantages with this method: Thereis no re:
interactive communication between the interpreter and the command; i.e. all input meant for the command must be set up
before the command itself isinvoked. Consequently, if one of the input lines to the command provokes an error, there is very
little error handling facility. Commonly, such an error might start a cascade of errors, as the remaining input lines are likely tc
beinvalid, or even be interpreted in a context different from what they were intended.

Aswith al commands involving the stack, it isimportant to push or queue the correct order.

Using this technique, a program can “fool” a command to do almost anything, by storing the correct input on the stack
However, there is a big disadvantage: Since the stack is implementation-dependent, it is not certain that a command v
its input from the stack. For some systems, this is the default, while for other systems, this is only possible through sor
explicit action. Some systems might not even allow commands to take their input from the stack at all.

Example: “Execing” commands

Many script programming languages can only execute commands while still running, or at most start a new command
immediately after the termination (likethe exec() system call in Unix). However, the stack can be used on some systemst
set up the system to execute one or more commands after the current script terminates. Here is an example:

push ‘Is’ [* finally execute ‘Is’ */
push ‘who’ /* then execute ‘who’ */
push ‘pwd’ [* first execute ‘pwd’ */
exit 0

Supposing that the system reads its commands from the stack if the stack is not empty, then this script will terminate after
having set up the stack so that the three commands pwd, who and Is will be run in that sequence. Note the order, if QUEUE
had been used, the order would be the opposite, which is perhaps more intuitive (assuming the topmost buffer is empty).

Aswith the example above, thistoo is only relevant for some systems, thusis not very compatible, and you should be careful
when using it. It also suffers from the lack of interactivity, error handling, and the importance of the order in which the string:
are pushed or queued. For all practical reasons, thisisjust a specia case.

Using the stack to “leave behind” command names and input only works for systems where command interpreters anc
commands reads their input from the stack. This is in general true for IBM mainframe systems, but very few other syst

5. Specific implementations of stacks

Below is listed implementation-specific documentation, with respect to stacks, for some interpreters.

5.1 Implementation of the stack in Regina 0.05h

In Regina, the stack is implemented as an integral, private part of the interpreter. The advantage of this is that stack o
are very fast. On the other hand, it means that two interpreters running on the same machine does not use the same <
Further, it means that a program can not on its own initiative communicate with the stack; such piping must be set up |
interpreter at the invocation time of the program.

Whenever thd&REXX programmer wants to execute a command and let that command either flush the output to the stac
read its input from the stack, this has to be arranged by the interpreter its&&gina this is normally done by prependi
appending certain terms to the command to be executed.

116

Consider the following command clauses for Regina:

‘Is >LIFO’
‘who >FIFO’
‘LIFO> wc’

ﬂpsl
‘LIFO> sort >FIFO’

For all these commands, the “piping” terms are stripped off the command string before the command is sent to the cor
interpreter of the operating system. Thus, the command interpreter only sees the commands Is , who, wc, and sort . The

terms stripped off, are used as indicators of how the input and output is to be coupled with the stack. Note that it is important

not to confuse the redirection of output to the stack and input from the stack in Regina with the redirection of the Unix shell
The two can be mixed in command lines, but are still two different concepts.

The first command will executethe Is command, and redirect the output from it to the stack in a LIFO fashion. The second
executes the command who and redirects the output to the stack to, but in a FIFO fashion. The third command executesthe v
but lets the standard input of that command come from the stack. Actually, it isirrelevant whether FIFO> or LIFO> isusec
for input; the strings are read from the top of the stack in both cases. The fourth command isaplain ps command without a
redirection to or from the stack. The last command executes the sort program and letsit read itsinput from the stack, and
redirect the output to the stack.

Regina allows a command to take both an input and an output “redirection” to a stack, as showed in the last example
However, it also guarantees that the output is not available in the stack before the command has terminated. The outy
the command is stored in a temporary stack, and flushed to the ordinary stack after the command is terminated. Thus,
command will not start to read its own output.

Note that this temporary buffering of command output is the default behavior, which might be set up to something diffe
your site.

In addition, you can change it through tBEBTI ONS instruction, by using eithdfL USHSTACK or BUFFERSTACK as
“parameters”.

FurthermoreRegina supports the standard TRREXX stack interface functionality, liIkBARSE PULL, PULL, QUEUE,
PUSH, the QUEUED() built-in function, and the SAA API stack interface. In addition, there are a few extra built-in fu
which are supposed to provide compatibility with otR&XX implementations. These are:

Again, note the difference betweRegina’s redirection and Unix redirection. IRegina, only the termd.| FO> andFI FO
(when first in the command string), and the termld FOand>FI FO(when last in the command string), will be interprt

as redirection directives. These terms will be stripped off the command string. All other redirection directives will be le
untouched. If you should happen to need to redirect output from a Unix command to Ehd-@er LI FO, then you can
append a space at the end. That will m&egina ignore the redirection term and the space is ignored by Unix.

Note that this particular form of redirection of command input and output will most probably disappear in future versior
Regina, where it will probably be replaced by an extendBBRESS instruction.

BUFTYPE()

This function is used for displaying the contents of the stack. It will display both the string and notify where the buffers
displayed. It is meant for debugging, especially interactive, when you need to obtain information about the contents of
stack. It always returns the nullstring, and takes no parameters.

Here is an example of the output from callBdFTYPE (note that the second and fourth buffers are empty):

==> Lines: 4

==> Buffer: 3

“fourth line pushed, in third buffer”
==> Buffer: 2

==> Buffer: 1

“third line pushed, in first buffer”
117

==> Buffer: 0O

“second line pushed, in ‘zeroth’ buffer”
“first line pushed, in ‘zeroth’ buffer”
==> End of Stack

BUFTYPE()

DESBUF()

This function removes al buffers on the stack, it isreally just away of clearing the whole stack for buffers aswell as strings.
Functionally, it is equivalent to executing DROPBURvith a parameter of 0. (Actually, thisisalie, snce DROPBUJFs not ab
to take zero as a parameter. Rather, it is equivalent to executing DROPBUMith 1 as parameter and then executing DROPB
without a parameter, but thisis a subtle point.) It will return the number of buffersleft on the stack after the function has beer
executed. This should be O in all cases.

DESBUF()

DROPBUF([number])

This function will remove zero or more buffers from the stack. Called without a parameter, it will remove the topmost buffer
from the stack, provided that there were at least one buffer in the stack. If there were no buffersin the stack, it will remove all
stringsin the stack, i.e. remove the zeroth buffer.

If the parameter number was specified, and the stack contains a buffer with an assigned number equal to number, then that
buffer itself, and all strings and buffers above it on the stack will be removed; but no strings or buffers below the numbered
buffer will be touched. If number refersto a buffer that does not exist in the stack; no strings or buffersin the stack is touched

Asan extraextension, in Regina the DROPBUF()built-in function can be given a non-positive integer as parameter. If the
name is negative then it will convert that number to its absolute value, and remove that many buffers, counted from the top.
Thisisfunctionally equivalent to repeating DROPBUF()without parameters for so many times as the absol ute value of the
negative number specifies. Note that using -0 as parameter is equivalent to removing al strings and buffersin the stack, sinc
-0 isequivalent to normal 0. The number is converted during evaluation of parameters prior to the call to the DROPBUF()
routine, so the sing islost.

The value returned from this function is the number of buffersleft on the stack after the buffers to be deleted have been
removed. Obvioudly, thiswill be anon-negative integer. This too, deviates from the behavior of the DROPBUEommand un
CMS, where zero is always returned.

DROPBUF(3) 2 removebuffer 3and 4
DROPBUF(4) 0 no bufferson the stack
DROPBUK() 4 if there where 5 buffers

MAKEBUF()

Creates a new buffer on the stack, at the current top of the stack. Each new buffer will be assigned a number; the first buffer

being assigned the number 1. A new buffer will be assigned a number which is one higher than the currently highest number
any buffer on the stack. In practice, this means that the buffers are numbered, with the bottom-most having the number 1 anc
the topmost having a number which value isidentical to the number of buffers currently in the stack.

The value returned from this function is the number assigned to the newly created buffer. The assigned number will be one

more than the number of buffers already in the stack, so the numbers will be “recycled”. Thus, the assigned numbers \
necessarily be in sequence.

MAKEBUF() 1 if no buffers existed

MAKEBUF() 6 if 5 buffers existed

118

Interfacing Rexx to other programs

This chapter describes an interface between a REXX interpreter and another program, typically writtenin C or another higt
level, compiled language. It isintended for application programmers who are implementing REXX support in their progran
It describes the interface known as the REXX SAA API.

1. Overview of functions in SAA

The functionality of the interface is divided into some main areas:

e Subcommand handlers
which trap and handle acommand to an external environment.
» External function handlers
extend the REXX language with external functions
* Interpreting
REXX scripts, either from adisk file, or from memory.
e Variableinterface
which makes it possible to access the variables in the interpreter, and allows operations like setting, fetching
and dropping variables.
e System exits
which are used to hook into certain key pointsin the interpreter while it executes a script.

In the following sections each of these areas are described in detail, and a number of brief but complete examples are
given at the end of the chapter.

The description is of ahighly technical nature, since it is assumed that the reader will be an application programmer
seeking information about the interface. Therefore, much of the content is given as prototypes and C style datatype
definitions. Although this format is cryptic for non-C programmers, it will convey exact, compact, and complete
information to the intended readers. Also, the problems with

ambiguity and incompleteness that often accompany a descriptive prose text are avoided.

1.1 Include Files and Libraries

All the C code that uses the REXX application interface, must include a special header file that contains the necessary
definitions. Thisfileis called rexxsaa.h. Where you will find thisfile,
will depend on you system and which compiler you use.

Also, the interface part between the application and the REXX interpreter may be implemented as alibrary, which you
link with the application using the functions described in this chapter. The name of

thislibrary, and its location might differ from system to system. Under Unix, this library can beimplemented as a
static (libregina.a) or dynamic library (libregina.[solsl]). Under other platforms Reginais aso be implemented asa
static or dynamic library.

1.2 Preprocessor Symbols

Including a header file ought to be enough; unfortunately, that is not so. Each of the domains of functionality listed
above are defined in separate sections’ in the rexxsaa.h header file. In order for
these to be made available, certain preprocessor symbols have to be set. For instance, you have to include the following
definition:

#define INCL_RXSHV

119

in order to make available the definitions and datatypes concerning the variable pool interface. The various definitions
that can be set are:

* INCL_RXSUBCOM
Must be defined in order to get the prototypes, datatypes and symbols needed for the subcommand interface
of the API.
¢ INCL_RXFUNC
Must be defined in order to get the prototypes, datatypes and symbols needed for the external function
interface of the API.
o INCL_RXSYSEXIT
Must be defined in order to get the prototypes, datatypes, and symbols needed for the system exit functions
e INCL_RXSHV
Must be set in order to get the prototypes, symbols and datatype definitions necessary to use the REXX
variable pool.

1.3 Allocating and De-allocating Space

For several of the functions described in this chapter, the application calling them must allocate or de-allocate
dynamic memory. Depending on the operating system, compiler and REXX interpreter,
the method for these allocations and de-allocations might vary. Regina uses malloc() and free() in all these situations.

1.4 Data structures and data types

In this section, some data structures and datatypes relevant to the application interfaceto REXX are defined and
described. The datatypes defined are:

e RXSTRING
Holds aREXX string.

e RXSYSEXIT
Holds a definition of a system exit handler. Used when starting a REXX script with RexxStart(), and when
defining the system exit handlers.

The datatypes used in the SAA API are defined in rexxsaa.h. They are:

typedef char CHAR ;

typedef short SHORT ;

typedef long LONG ;

typedef char *PSZ ;

typedef CHAR *PCHAR ;

typedef SHORT *PSHORT ;
typedef LONG *PLONG ;

typedef unsigned char UCHAR ;
typedef unsigned short USHORT ;
typedef unsigned long ULONG ;
typedef USHORT *PUSHORT ;
typedef char *PCH ;

typedef unsigned char * PUCHAR ;
typedef ULONG APIRET;

typedef APIRET (APIENTRY *PFN)();

One other item needs mentioning; APIENTRY. Thisvalueisused to specify the linkage type on OS/2 and Win32
platforms. It isassumed that this value #defined by inclusion of compiler-specific header filesinrexxsaa.h. Under
Unix, thisis #defined to nothing.

1.4.1 The RXSTRING structure

120

The SAA API interface uses Rexx string which are stored in the structure RXSTRING. Thereis also a datatype
PRXSTRING, which isapointer to RXSTRING. Their definitions are:

typedef struct {
unsigned char *strptr ; /* Pointer to string contents */
unsigned long strlength ; /* Length of string */

} RXSTRING ;

typedef RXSTRING *PRXSTRING ;

The strptr field is a pointer to an array of characters making up the contents of the Rexx string’, whilestrlength holds
the number of charactersin that array.

Unfortunately, there are some inconsistencies in naming of various special kinds of strings. In REXX (TRL), a*‘null
string” isastring that has zero length. On the other hand, the SAA API operates with two kinds of specia strings:

null strings and zero length strings. The latter is a string with zero length (equals null stringsin REXX), while the
former isasort of undefined or empty string, which denotes a string without avalue. The null strings of SAA APl are
used to denote unspecified values (e.g. a parameter left out in a subroutine call). In this chapter, when the terms null
strings and zero length strings are italicized, they refer to the SAA API style meaning.

A number of macros are defined, which simplifies operations on RXSTRINGs for the programmer. In the list below,
all parameters called x are of type RXSTRING.

« MAKERXSTRING(x,content,length)]
The parameter content must be a pointer to char, while length isinteger. The x parameter will be set to the
contents and length supplied. The only operations are assignments; no new space is allocated and the
contents of the string is not copied.

* RXNULLSTRING(x)]
Returnstrue only if x isa null string.
i.e. x.strptris NULL.

* RXSTRLEN(X)]
Returns the length of the string x as an unsigned long. Zero is returned both when x isanull string or a zero
length string.

* RXSTRPTR(X)]
Returns a pointer to the first character in the string x, or NULL if x isanull string. If x isa zero length
string, and non-NULL pointer is returned.

* RXVALIDSTRING(X)]
Returnstrue only if x is neither a null string nor a zero length string
i.e. X must have non-empty contents.

* RXZEROLENSTRING(X)]
Returnstrue only if x isa zero length string.
i.e. x.strptrisnon-NULL, and x.strlength is zero.

These definitions are most likely to be defined as preprocessor macros, so you should never call them with parameters
having any side effects. Also note that at least MAKERXSTRING() islikely to be implemented as two statements, and
might not work properly if following

e.g. an if statement. Check the actual definitionsin the rexxsaa.h header file before using them in afancy context.

One definition of these might be (don’t rely on this to be the case with your implementation):

#define MAKERXSTRING(x,c,l) ((x).strptr=(c),(X).strlength=(1))
#define RXNULLSTRING(x) (!(x).strptr)

#define RXSTRLEN(X) ((x).strptr ? (x).strlength : OUL)
#define RXSTRPTR(X) ((x).strptr)

#define RXVALIDSTRING(X) ((X).strptr & & (X).strlength)
#define RXZEROLENSTRING(x) ((X).strptr && !(x).strlength)

Note that these definitions of strings differ from the normal definition in C programs; where a string is an array of
characters, and its length isimplicitly given by aterminating ASCII NUL character. Inthe RXSTRING definition, a
string can contain any character, including an ASCII NUL, and the length is explicitly given.

121

1.4.2 TheRXSYSEXIT structure

This structure is used for defining which system exit handlers are to handle which system exits. The two relevant
datatypes are defined as:

typedef struct {
unsigned char *sysexit_name;
short sysexit_code ;

} RXSYSEXIT ;

typedef RXSY SEXIT *PRXSY SEXIT ;

In this structure, sysexit_name isapointer to the ASCII NUL terminated string containing the name of a previously
registered (and currently active) system exit handler. The sysexit_code field is main function code of a system exit.

The system exits are divided into main functions and sub-functions. An exit is defined to handle amain function, and
must thus handle al the sub-functions for that main function. All the functions and sub-functions are listed in the
description of the EXIT structure.

2. The Subcommand Handler Interface

This sections describes the subcommand handler interface, which enables the application to trap commandsin a
REXX script being executed and handle this commands itself.

2.1 What is a Subcommand Handler

A subcommand handler is apiece of code, that is called to handle acommand to an external environment in REXX. It
must be either a subroutine in the application that started the interpreter, or a subroutine in adynamic link library. In
any case, when the interpreter needs to execute a command to an external environment, it will call the subcommand
handler, passing the command as a parameter.

Typically, an application will set up a subcommand handler before starting a REXX script. That way, it can trap and
handle any command being executed during the course of the script.

Each subcommand handler handles one environment, which is referred to by a name. It seems to be undefined whether
upper and lower case letters differ in the environment name, so you should assume they differ. Also, there might be an
upper limit for the length of an environment name, and some letters may beillegal as part of an environment name.

Regina allows any letter in the environment name, except ASCII NUL; and sets no upper limit for the length of an
environment name. However, for compatibility reasons, you should avoid uncommon |etters and keep the length of the
name fairly short.

The prototype of a subcommand handler functioniis:

APIRET APIENTRY handler(
PRXSTRING command,
PUSHORT flags,
PRXSTRING returnstring

);

After registration, this function is called whenever the application is to handle a subcommand for a given
environment. The value of the parameters are;

[command]

122

The command string that isto be executed. Thisistheresulting string after the command
expression has been evaluated in the REXX interpreter. It can not be empty, athough it can be a
zero-length-string.

[flags]
Points to an unsigned shortwhich isto receive the status of the completion of the handler. This
can be one of the following: RXSUBCOM_OK, RXSUBCOM_ERROR, or
RXSUBCOM_FAILURE. The contents will be used to determine whether to raise any condition at
return of the subcommand. Do not confuse it with the return value.

[returnstring]
Pointsto a RXSTRING which isto receive the return value from the subcommand. Passing the
return value as a string makes it possible to return non-numeric return codes. As a special case, you
might set returnstring.strptr to NULL, instead of specifying areturn string of the ASCI|
representation of zero.

Notethat it is not possible to return nothing in a subcommand, since thisisinterpreted as zero. Nor isit possible to
return a numeric return code as such; you must convert it to ASCI| representation before you return.

The returnstring string will provide a 256 byte array which the programmer might use if the return datais not longer
that that. If that spaceis not sufficient, the handler can provide another areaiitself. In that case, the handler should not
de-allocate the default area, and the new area should be allocated in a standard fashion.

2.2 The RexxRegisterSubcomExe() function

Thisfunction is used to register a subcommand handler with the interface. The subcommand handler must be a
procedure located within the code of the application. After registration, the REXX interpreter can execute
subcommands by calling the subcommand handler with parameters describing the subcommand.

The prototype for RexxRegisterSubcomExe() is:

APIRET APIENTRY RexxRegisterSubcomExe(
PSZ EnvName,
PFN EntryPoint,
PUCHAR UserArea

)
All the parameters are input, and their significance are:

[EnvName]
Pointsto an ASCII NUL terminated character string which defines the name of the environment to
be registered. Thisis the same name as the REXX interpreter uses with the ADDRESS clausein
order to select an external environment.

[EntryPoint]
Points to the entrypoint of the subcommand handler routine for the environment to be registered. See
the section on Subcommand Handlers for more information. There is an upper limit for the length
of this name.

[UserArea
Pointer to an 8 byte area of information that is to be associated with this environment. This pointer
can be NULL if no such areais necessary.

The areas pointed to by EnvName and UserArea are copied to a private areain the interface, so the programmer
may de-allocate or reuse the area used for these parameters after the call has returned.

The RexxRegisterSubcom() returns an unsigned long, which carries status information describing the outcome of
the operation. The status will be one of the RXSUBCOM va ues:

[RXSUBCOM_OK]

The subcommand handler was successfully registered.
[RXSUBCOM_DUP|

123

The subcommand handler was successfully registered. There already existed another subcommand
handler which was registered with RexxRegisterSubcomDII(), but this will be shadowed by the
newly registered handler.

[RXSUBCOM_NOTREG]
Dueto some error, the handler was not registered. Probably because a handler for EnvName was
aready defined at a previous call to RexxRegisterSubcomExe().

[RXSUBCOM_NOEMEM]
The handler was not registered, due to lack of memory.

[RXSUBCOM_BADTY PE]
Indicates that the handler was not registered, due to one or more of the parameters having invalid
values.

2.3 The RexxRegisterSubcomDII() function

Thisfunction is used to set up aroutine that islocated in amodule in a dynamic link library, as a subcommand
handler. Some operating systems don’t have dynamic linking, and thus cannot make use of this facility. The prototype
of thisfunctioniis:

APIRET APIENTRY RexxRegisterSubcomDII(
PSZ EnvName,
PSZ ModuleName,
PFN EntryPoint,
PUCHAR UserArea,
ULONG DropAuth

)

Thisfunction is not yet supported by Regina.

2.4 The RexxDeregisterSubcom() function

Thisfunction is used to remove a particular environment from the list of registered environments. The prototype of the
functioniis:

APIRET APIENTRY RexxDeregisterSubcom(
PSZ EnvName,
PSZ ModuleName

)

Both parameters are input values:

[EnvName]
Pointer to ASCII NUL terminated string, which represents the name of the environment to be
removed.

[ModuleName]
Also an ASCII NUL terminated string, which points to the name of the module containing the
subcommand handler of the environment to be deleted.

Thelist of defined environments is searched, and if an environment matching the one named by the first parameter are
found, it is deleted.

The returned value from RexxDeregisterSubcom() can be one of:

[RXSUBCOM_OK]

The subcommand handler was successfully deleted.
[RXSUBCOM_NOTREG]

The subcommand handler was not found.

124

[RXSUBCOM_BADTY PE]
One or more of the parameters had illegal values, and the operation was not carried through.

Most systems that do have dynamic linking have no method for reclaiming the space used by dynamically linked
routines. So, even if you were able to load adll, there are no guarantees that you will be able to unload it.

2.5 The RexxQuerySubcom() function

This function retrieves information about a previously registered subcommand handler. The prototype of the function
is:

APIRET APIENTRY RexxQuerySubcom(
PSZ EnvName,
PSZ ModuleName,
PUSHORT Flag,
PUCHAR UserWord

)
The significance of the parameters are;

[EnvName]
Pointer to an ASCII NUL terminated character string, which names the subcommand handler about
which information isto be returned.

[ModuleName]
Pointer to an ASCII NUL terminated character string, which names a dynamic link library. Only the
named library will be searched for the subcommand handler named by EnvName. This parameter
must be NULL if al subcommand handlers are to be searched.

[Flag]
Pointer to a short which isto receive the value RXSUBCOM_OK or RXSUBCOM_NOTREG. In
fact, thisis the same as the return value from the function.

[UserWord]
Pointer to an area of 8 bytes. The userarea of the subcommand handler is copied to the area pointed
to by UserWord. This parameter might be NULL if the data of the userareais not needed.

The returned value from RexxQuerySubcom() can be one of:

[RXSUBCOM_OK]
The subcommand handler was found, and the required information has been returned in the Flag
and UserWord variables.

[RXSUBCOM_NOTREG]
The subcommand handler was not found. The Flag variable will aso be set to this value, and the
UserWord variable is not changed.

[RXSUBCOM_BADTY PE]
One or more of the parameters had illegal values, and the operation was not carried through.

3. The External Function Handler Interface

This sections describes the external function handler interface, which extends the language by enabling external
functions to be written in alanguage other than REXX.

3.1 What is an External Function Handler

An external function handler is apiece of code, that is called to handle external functions and subroutine callsin
REXX. It must be either a subroutine in the application that started the interpreter, or a subroutine in a dynamic link
library. In any case, when the interpreter needs to execute afunction registered as an externa function, it will call the
external function handler, passing the function name as a parameter.

125

All external functions written in alanguage other than REXX must be registered with the interpreter before starting a
REXX script.

An external function handler can handle one or more functions. The handler can determine the function actually
called by examiining one of the parameters passed to the handler and act accordingly.

The prototype of a subcommand handler functioniis:

APIRET APIENTRY handler(
PSZ name,
ULONG argc,
PRXSTRING argv,
PSZ queuename,
PRXSTRING returnstring

)

After afunction is registered with this function defined as the handler, this function is called whenever the application
callsthe function. The value of the parameters are:

[name]
The function called.
[arge]
The number of parameters passed to the function. Argv will contain argc RXSTRINGs.
[queuename]
The name of the currently define data queue.
[returnstring]
Pointsto a RXSTRING which isto receive the return value from the function. Passing the return
value as astring makesit possible to return non-numeric return codes. As a special case, you might
set returnstring.strptr to NULL, instead of specifying areturn string of the ASCI| representation of
zero.

The returnstring string will provide a 256 byte array which the programmer might use if the return datais not longer
that that. If that spaceis not sufficient, the handler can provide another areaiitself. In that case, the handler should not
de-allocate the default area, and the new area should be allocated in a standard fashion. if the external function does
not return avalue, it should set returnstring to an empty RXSTRING. Thiswill enable the interpreter to raise error
44; Function did not return data, if the external functionis called asafunction. If the external function isinvoked via
a CALL command, the interpreter drops the specia variable RESULT.

The handler returns zero if the function completed successfully. When the handler returns a non-zero value, the

interpreter will raise error 40; Invalid call to routine.

3.2 The RexxRegisterFunctionExe() function

Thisfunction is used to register an external function handler with the interface. The external function handler must be
aprocedure located within the code of the application. After registration, the REXX interpreter can execute external
functions asif they were built-ins.

The prototype for RexxRegisterFunctionExe() is:
APIRET APIENTRY RexxRegisterFunctionExe(

PSZ FuncName,
PFN EntryPoint

)

All the parameters are input, and their significance are:

[FuncName]

126

Points to an ASCII NUL terminated character string which defines the name of the external function
to beregistered. Thisis the same name asthe REXX interpreter uses with afunction call or via the
CALL command.

[EntryPoint]
Points to the entrypoint of the external function handler routine for the function to be registered. See
the section on External Function Handlers for more information.

The area pointed to by FuncName is copied to a private areain the interface, so the programmer may de-allocate or
reuse the area used for this parameter after the call has returned.

The RexxRegisterFunctionExe() returns an unsigned long, which carries status information describing the
outcome of the operation. The status will be one of the RXFUNC values:

[RXFUNC_OK]
The handler was successfully registered.

[RXFUNC_DUPR|
The handler was successfully registered. There already existed another external function handler
which was registered with RexxRegisterFunctionExe(), but this will be shadowed by the newly
registered handler.

[RXFUNC_NOEMEM]
The handler was not registered, due to lack of memory.

3.3 The RexxRegisterFunctionDII() function

Thisfunction is used to set up an external function handler that islocated in amodule in adynamic link library. Some
operating systems don’'t have dynamic linking, and thus cannot make use of this facility. The prototype of this function
is:

APIRET APIENTRY RexxRegisterFunctionDII(
PSZ ExternalName,
PSZ LibraryName,
PSZ InternalName

)
All the parameters are input, and their significance are:

[ExternalName]
Points to an ASCII NUL terminated character string which defines the name of the external function
to beregistered. Thisis the same name asthe REXX interpreter uses with afunction call or via the
CALL command.

[LibraryName]
Pointsto an ASCII NUL terminated character string which defines the name of the dynamic library.
This string may require a directory specification.

[InternalName]
Pointsto an ASCII NUL terminated character string which defines the name of the entrypoint within
the dynamic library. On systems where the case of function namesin dynamic librariesis relevant,
this name must be specified in the same case as the function name within the dynamic library.

The areas pointed to by all parameters are copied to a private areain the interface, so the programmer may de-allocate
or reuse the area used for these parameters after the call has returned.

The RexxRegisterFunctionDII() returns an unsigned long, which carries status information describing the outcome
of the operation. The status will be one of the RXFUNC values:

[RXFUNC_OK]

The handler was successfully registered.
[RXFUNC_DUP]

127

The handler was successfully registered. There already existed another external function handler
which was registered with RexxRegisterFunctionDII(), but this will be shadowed by the newly
registered handler.

[RXFUNC_NOEMEM]
The handler was not registered, due to lack of memory.

3.4 The RexxDeregisterFunction() function

Thisfunction is used to remove a particular external function handler from the list of registered external function
handlers. The prototype of the functioniis:

APIRET APIENTRY RexxDeregisterFunction(
PSZ FuncName

)
The parameter is an input values:

[FuncName]
Points to an ASCII NUL terminated character string which defines the name of the external function
to beregistered. Thisis the same name asthe REXX interpreter uses with afunction call or via the
CALL command.

Thelist of defined function handlersis searched, and if an environment matching the one named by the parameter are
found, itisdeleted. Thiscall isused to de-register function handlers registered with either
RexxRegisterFunctionExe() or RexxRegisterFunctionDII().

The returned value from RexxDeregisterFunction() can be one of:

[RXFUNC_OK]

The handler was successfully deleted.
[RXFUNC_NOTREQG]

The handler was not found.

Most systems that do have dynamic linking have no method for reclaiming the space used by dynamically linked
routines. So, even if you were able to load adll, there are no guarantees that you will be able to unload it.

3.5 The RexxQueryFunction() function

This function retrieves the status of an external function handler. The prototype of the function is:

APIRET APIENTRY RexxQueryFunction(
PSZ FuncName

)
The significance of the parametersis:

[FuncName]
Points to an ASCII NUL terminated character string which defines the name of the external function
to beregistered. Thisis the same name asthe REXX interpreter uses with afunction call or via the
CALL command.

The returned value from RexxQueryFunction() can be one of:

[RXFUNC_OK]

The external function handler was found.
[RXFUNC_NOTREG]

The handler was not found.

128

4. Executing REXX Code

This sections describes the RexxStart() function, which allows the application to startup the interpreter and make it
interpret pieces of REXX code.

4.1 The RexxStart() function

Thisfunction is used to invoke the REXX interpreter in order to execute a piece of REXX code, which may be located
on disk, as a pre-tokenized macro, or as ASCI| source code in memory.

APIRET APIENTRY RexxStart(
LONG ArgCount,
PRXSTRING ArgList,

PSZ ProgramName,
PRXSTRING Instore,
PSZ EnvName,

LONG CalType,
PRXSY SEXIT Exits,
PUSHORT ReturnCode,
PRXSTRING Result

);

Of these parameters, ReturnCode and Result are output-only, while Instore is both input and output. The rest of the
parameters are input-only. The significance of the parameters are:

[ArgCount]
The number of parameter strings given to the procedure. Thisis the number of defined REXX-
strings pointed to by the ArgList parameter.

[ArgList]
Pointer to an array of REXX-strings, constituting the parametersto thiscall to REXX. The size of
thisarray is given by the parameter ArgCount. If ArgCount is greater than one, the first and last
parameters are ArgList[0] and ArgList[ArgCount-1]. If ArgCountisO, thevalueof ArgListis
irrelevant.

If the strptr of one of the elementsin the array pointed to by ArgList isNULL, that means that this
parameter is empty (i.e. unspecified, as opposed to a string of zero size).

[ProgName]
An ASCII NUL terminated string, specifying the name of the REXX script to be executed. The value
of Instore will determine whether this value isinterpreted as the name of a (on-disk) script, or apre-
tokenized macro. If it refersto afilename, the syntax of the contents of this parameter depends on
the operating system.

[Instore]
Parameter used for storing tokenized REXX scripts. This parameter might either be NULL, elseit
will be apointer to two RXSTRING structures, the first holding the ASCII version of a REXX
program, the other holding the tokenized version of that program. See below for more information
about how to use Instore.

[EnvName]
Pointer to ASCI1 NUL terminated string naming the environment which isto be the initial current
environment when the script is started. If this parameter is set to NULL, thefiletypeis used asthe
initial environment name. What the filetype is, may depend on your operating system, but in general
it is everything after the last period ‘.’ in the filename.

[CallType]
A value describing whether tHeEXX interpreter is to be invoked in command, function or
subroutine mode. Actually, this has little significance. The main difference is that in command

129

mode, only one parameter string can be passed, and in function mode, avalue must be returned. In
addition, the mode chosen will affect the output of the PARSE SOURCE instruction in REXX.

Three symbolic values of integral type are defined, which can be used for this parameter:
RXCOMMAND, RXFUNCTION and RXSUBROUTINE.

[SysExists]
A pointer to an array of exit handlersto be used. If no exit handlers are to be defined, NULL may be
specified. Each element in the array defines one exit handler, and the element immediately
following the last definition must have a sysexit_code set to RXENDLST.

[ReturnCode]
Pointer to a SHORT integer where the return code is stored, provided that the returned valueis
numeric, and within the range -(2**15) to 2**15-1. | don’t know what happensto ReturnCode if
either of these conditionsis not satisfied. It probably becomes undefined, which meansthat it is
totally useless since the program has to inspect the return string in order to determine whether
ReturnCode isvalid.

[Result]
Points to a REXX string into which the result string iswritten. The caller may or may not let the
strptr field be supplied. If supplied (i.e. itisnon-NULL), that areawill be used, else anew areawill
be alocated. If the supplied areais used, its size is supposed to be given by the strlength field. If the
sizeif not sufficient, anew areawill be allocated, by some system dependent channel (i.e. malloc()),
and the caller must seeto that it is properly de-allocated (using free()).

Note that the ArgCount parameter need not be the same as the ARG() built-in function would return. Differences will
occur if the last entriesin ArgList are null strings.

The Instore parameter needs some special attention. It is used to directly or indirectly specify where to fetch the code
to execute. The following algorithmis used to determine what to execute:

If Instore is NULL, then ProgName names the filename of an on-disk REXX script which it to be read and
executed.

Else, if Instore is not NULL, the script is somewhere in memory, and no reading from disk is performed. If
both Instore[0].strptr and Instore[1].strptr are NULL, then the script to execute is a pre-loaded macro which
must have been loaded with acall to either RexxAddMacro() or RexxLoadMacroSpace(); and
ProgName is the name of the macro to execute.

Else, if Instore[1].strptrisnon-NULL, then Instore[1] contains the pre-tokenized image of a REXX script,
and it is used for the execution.

Else, if Instore[0].strptris non-NULL, then Instore[0]} containsthe ASCII image of a REXX script, just as
if the script had been read directly from the disk (i.e. including linefeeds and such). Thisimage is passed to
the interpreter, which tokenizes it, and stores the tokenized script in the Instore[1] string, and then proceeds
to execute that script. Upon return, the Instore[1] will be set, and can later be used to re-execute the script
within the same process, without the overhead of tokenizing.

The user is responsible for de-all ocating any storage used by Instore[1]. Note that after tokenizing, the source
code in Instore[0] is strictly speaking not needed anymore. It will only be consulted if the user callsthe
SOURCELINE() built-in function. It is not an error to use SOURCELINE() if the source is not present, but
nullstrings and zero will be returned.

Regina does not currently return any tokenized datain Instore[1] that can be used in alater call to RexxStart,
outside of the current process. What Reginareturnsin Instore[1], is an index into an in-memory tokenized
version of the source code. Once the process that parsed the source has stopped, the tokenized codeislost.

Thevalid return values from RexxStart() are:

[Negative]
indicates that a syntax error occurred during interpretation. In general, you can expect the error
value to have the same absol ute value as the REXX syntax error (but opposite signs, of course).

[Zer]
130

indicates that the interpreter finished executing the script without errors.

[Positive]
indicates probably that some problem occurred, that made it impossible to execute the script, e.g. a
bad parameter value. However, | can't find any references in the documentation which states which
valuesit is supposed to return.

During the course of an execution of RexxStart(), subcommand handlers and exit handlers might be called. These
may call any function in the application interface, including another invocation of
RexxStart().

Often, the application programmer is interested in providing support simplifying the specification of filenames, like an
environment variable search path or adefault file type. The REXX interface does support a default file type: .CMD,
but the user may not set this to anything else. Therefore, it is generally up to the application programmer to handle
search paths, and also default file types (unless .CMD is OK).

If theinitial environment name (EvnName) is NULL, then theinitial environment during interpretation will be set
equal to the file type of the script to execute. If the script does not have afile
type, it is probably set to some interpreter specific value.

5. Variable Pool Interface

This section describes the variable pool part of the application interface, which allows the application programmer to
set, retrieve and drop variablesin the REXX interpreter from the application program. It also allows access to other
information.

The C preprocessor symbol INCL_RXSHV must be defined if the definitions for the variable pool interface are to be
made available when rexxsaa.h isincluded.

5.1 Symbolic or Direct

First, let us define two terms, symbolic variable name and direct variable name, which are used in connection with the
variable pool.

A symbolic variable name is the name of avariable, but it needs normalization and tail substitution before it names the
real variable. The name foo.bar is asymbolic variable name, and it is transformed by normalization, to FOO.BAR,
and then by tail substitution to FOO.42 (assuming that the current value of BAR is42).

Normalization is the process of uppercasing all characters in the symbolic name; and tail substitution is the process of
substituting each distinct simple symbol in the tail for its value.

On the other hand, a direct variable refers directly to the name of the variable. In asense, it isa symbolic variable that
has already been normalized and tail substituted. For instance, foo.bar isnot avalid direct variable name, since lower
case |etters are not allowed in the variable stem. The direct variable FOO.42 is the same as the variable above. For
simple variables, the only difference between direct and symbolic variable namesis that lower case letters are allowed
in symbolic names

Note that the two direct variable names FOO.bar and FOO.BAR refer to different variables, since upper and lower
case letters differ in the tail. In fact, the tail of a compound direct variable may contain any character, including ASCII
NUL. The stem part of avariable, and all simple variables can not contain any lower case |etters.

Asaremark, what would the direct variable FOO. refer to: the stem FOO. or the compound variable having stem

FOO. and anullstring astail? Well, | suppose the former, sinceit is the more useful. Thus, the latter isinaccessible as
adirect variable.

5.2 The SHVBLOCK structure

131

All requests to manipulate the REXX variable pool are controlled by a structure which is called SHYBLOCK, having
the definition:

typedef struct shvnode {
struct shvnode *shvnext ; /* ptr to next in blk in chain */
RXSTRING shvname; /* name of variable */
RXSTRING shvvaue; /* value of variable */

ULONG shvnamelen; /* length of shvname.strptr */
ULONG shvvaluelen ; /* length of shvvalue.strptr */
UCHAR shvcode; /* operation code */
UCHAR shvret; /* return code */

} SHVBLOCK ;

typedef SHVYBLOCK *PSHVBLOCK ;

Thefields shvnext and shvcode are purely input, while shvret is purely output. The rest of the fields might be input
or output, depending on the requested operation, and the value of the fields. The significance of each field is:

[shvnext]
One call to RexxVariablePool() may sequentially process many requests. The shvnext field links
onerequest to the next in line. The last request must have set shvnext to NULL. The requests are
handled individually and thus, calling RexxVariablePool() with several requests is equivalent to
making one call to RexxVariablePool() for each request.

[shvname]
Contains the name of the variable to operate on, asa RXSTRING. Thisfield isonly relevant for
some requests, and its use may differ.

[shvvalueg]
Contains the value of the variable to operate on asa RXSTRING. Like shvname, this might not be
relevant for al types of requests.

[shvnamelen]
The length of the array that shvname.strptr pointsto. This field holds the maximum possible
number of charactersin shvname.strptr. While shvname.strlength holds the number of
charactersthat are actualy in use (i.e. defined).

[shvvauelen]
The length of the array that shvvalue.strptr pointsto. Relatesto shvvalue, like shvnamelen
relatesto shvname.

[shvcode]
The code of operation; decides what type of request to perform. A list of all the available requestsis
given below.

[shvret]
A return code describing the outcome of the request. This codeisa bit specia. The lower seven bits
are flags which are set depending on whether some condition is met or not. Values above 127 are not
used in thisfield.

There is a difference between shvnamelen and shvname.strlength. The former isthe total length of the array of
characters pointed to by shvname.strptr (if set). While the latter is the number of these charactersthat are actually in
use. When a SHVBLOCK is used to return data from RexxVariablePool(), and a pre-allocated string space has been
supplied, both these will be used; shvname.strlength will be set to the length of the data returned, while
shvnamelen is never changed, only read to find the maximum number of charactersthat shvhame can hold.

Even though shvnamelen is not really needed when shvname is used for input, it iswise to set it to its proper value
(or at least set it to the same as shvname.strlength). The same applies for shvvalue and shvvaluelen.

The field shvcode can take one of the following symbolic values:

[RXSHV_DROPV]
The variable named by the direct variable name shvname is dropped (i.e. becomes undefined). The
fields shvvalue and shvvaluelen do not matter.

[RXSHV_EXIT]

132

Thisis used to set the return value for an external function or exit handler.

[RXSHV_FETCH]
The value of the variable named by the direct variable name shvhame isretrieved and stored in
shvvalue. If shvvalue.strptr is NULL, the interpreter will allocate sufficient space to store the
value (but it is the responsibility of the application programmer to rel ease that space). Else, the
value will be stored in the area allocated for shvvalue, and shvvaluelen istaken to be the
maximum size of that area.

[RXSHV_NEXTV]
This code is used to retrieve the names and values of al variables at the current procedure level; i.e.
excluding variables shadowed by PROCEDURE. The name and value of each variable are
retrieved
simultaneously into shvname and shvvalue, respectively.
Successive requests for RXSHV_NEXTV will traverse the interpreter’ sinternal data structure for
storing variables, and return anew pair of variable name and value for each request. Each variable
that isvisible in the current scope, is returned once and only once, but the order is non-deterministic.
When all available variablesin the REXX interpreter have aready been retrieved, subsequent
RXSHV_NEXTV requests will set the flag RXSHV_LVAR in the shvret field. There are afew
restrictions. The traversal will be reset whenever the interpreter resumes execution, so an
incompl ete traversal can not be continued in alater external function, exit handler, or subcommand
handler. Also, any set, fetch or drop operation will reset the traversal. These restrictions have been
added to ensure that the variable pool is static throughout one traversal.

[RXSHV_PRIV]
Retrieves some piece of information from the interpreter, other than a variable value, based on the
value of the shvname field. The valueisstored in shvvalue asfor anormal fetch. A list of
possible names is shown below.

[RXSHV_SET]
The variable named by the direct variable name shvname is set to the value given by shvvalue.

[RXSHV_SYFET]
Like RXSHV_FETCH, except that shvname is a symbolic variable name.

[RXSHV_SYDRQ]
Like RXSHV_DROPV, except that shvname isasymbolic variable name.

[RXSHV_SYSET]
Like RXSHV_SET, except that shvname isasymboalic variable name.

Onetype of request that needs some specia attention isthe RXSHV_PRIV, which retrieves akind of meta-variable.
Depending on the value of shvname, it returnsavaluein shvvalue describing some aspect of the interpreter. For
RXSHV_PRIV the possible valuesfor shvname are;

[PARM]
Returns the ASCII representation of the number of parametersto the currently active REXX
procedure. This may not be the same value as the built-in function ARG() returns, but is the
number ArgCountin RexxStart(). Thetwo might differ if aroutine was called with trailing
omitted parameters.

[PARM.N]
The n must be a positive integer; and the value returned will be the n’th parameter at the current
procedurelevel. This isnot completely equivalent to the information that the built-in function
ARG() returns. For parameterswhere ARG() would return the state omitted, the returned value is
anull string, while for parameters where ARG() would return the state existing, the return value
will be the parameter string (which may be a zero length string.

[QUENAME]
The name of the currently active external data queue. This feature has not yet been implemented in
Regina, which always return default.

[SOURCE]
Returns the same string that isused in the PARSE SOURCE clause in REXX, at the current
procedure level of interpretation.

[VERSION]
Returns the same string that isused in the PARSE VERSION clausein REXX.

The value returned by a variable pool request is a bit uncommon. A return value is computed for each request, and
stored in the shvret field. Thisisaone-byte field, of which the most significant bit is never set. A symbolic value

133

RXSHV_OK is defined as the value zero, and the shvret field will be equal to this name if noneif the flagslisted
below isset. The symbolic value for these flags are:

[RXSHV_BADF]
The shvcode of this request contained a bad function code.
[RXSHV_BADN]
The shvname field contained a string that is not valid in this context. What exactly isavalid value
depends on whether the operation is a private, a symbolic variable, or direct variable operation.
[RXSHV_LVAR]
Set if and only if the request was RXSHV_NETXYV, and all available variables have already been
retrieved by earlier requests.
[RXSHV_MEMFL]
There was not enough memory to complete this request.
[RXSHV_NEWV]
Set if and only if the referenced variable did not previously have avalue. It can be returned for any
set, fetch or drop operation.
[RXSHV_TRUNC]
Set if the retrieved value was truncated when it was copied into either the shvname or shvvalue
fields. See below.

These flags are directly suitable for logical OR, without shifting, e.g. to check for truncation and no variables |eft, you
can do something like:

if (reg->shvret & (RXSHV_TRUNC | RXSHV_LVAR))
printf("Truncation or no varsleft\n") ;

RXSHV_TRUNC can only occur when the interface is storing aretrieved value in a SHVBLOCK, and the pre-
allocated spaceis present, but not sufficiently large. As described for RXSHV_FETCH, the

interpreter will allocate enough space if shvvalue.strptr is NULL, and then RXSHV_TRUNC will never be set. Else
the space supplied by shvvalue.strptr isused, and shvvaluelen istaken asthe maximum length of shvvalue, and
truncation will occur if the supplied space istoo small.

Some implementations will consider SHV_MEMFL to be so severe as to skip the rest of the operationsin achain of
requests. In order to write compatible software, you should never assume that requests
following in achain after arequest that returned SHVY_MEMFL have been performed.

RXSHV_BADN isreturned if the supplied shvname contains avalue that is not legal in this context. For the
symbolic set, fetch and drop operations, that means a symbol that is alegal variable name; both upper and lower case
letters are allowed. For the direct set, fetch and drop operations, that means a variable name after normalization and
tail substitution is not alegal variable name. For RXSHV_PRIV, it must be one of the values listed above.

Thereisasmall subtlety in the above description. TRL states that when a REXX assignment assigns a value to a stem
variable, al possible variables having that stem are assigned a new value (independent of whether they had an explicit
value before). So, strictly speaking, if astem is set, then a RXSHV_NETV sequence should return an (almost) infinite
sequence of compound variables for that stem. Of course, that is completely useless, so you can assume that only
compound variables of that stem given an explicit value after the stem was assigned a value will be returned by
RXSHV_NEXTV. However, because of that subtlety, the variables returned by RXSHV_NEXTV for compound
variables might not be representative for the state of the variables.

e.g. what would a sequence of RXSHV_NEXT requests return after the following REXX code ?:

foo. ="bar’

drop foo.bar
The second statement here, might not change the returned values! After the first statement, only the stem foo. would
probably have been returned, and so also if al variables were fetched after the second statement.

5.3 Regina Notes for the Variable Pool

134

Dueto the subtleties described at the end of the previous subsection, some notes on how Regina handles
RXSHV_NEXTYV requests for compound variables are in order. The following rules applies:

¢ Both the stem variable FOO. and the compound variable having FOO. as stem and anullstring astail, are
returned with the name of FOO.. In this situation, a sequence of RXSHV_NEXTV requests may seem to return
values for the same variable twice. Thisisunfortunate, but it seemsto bethe only way. In any case, you'll have to
perform the RXSHV_SYFET in order to determine which iswhich.

« |If astem variable has not been assigned a value, its compound variables are only returned if they have been
assigned an explicit value. i.e. compound variables for that stem that have either never been assigned avalue, or
have been dropped, will not be reported by RXSHV_NEXTV. Thereis nothing strange about this.

* If astem variable has been assigned a value, then its compound variables will be reported in two cases: Firstly,
the compound variables having explicitly been assigned a value afterwards. Secondly, the compound variables
which have been dropped afterwards, which are reported to have their initial value, and the flag
RXSHV_NEWYV issetin shvret.

It may sound a bit stupid that unset variables are listed when the request isto list all variables which have been set, but
that is about the best | can do, if | am to stay within the standard definition and return a complete and exact status of
the variable pool.

If the return code from RexxVariablePool() islessthan 128, Regina is guaranteed to have tried to process all
requestsin the chain. If thereturn codeis above 127, some requests may not have been

processed. Actually, the number 127 (or 128) isabit inconvenient, sinceit will be an problem for later expansion of
the standard. A much better approach would be to have a preprocessor symbol (say,

RXSHV_FATAL, and if the return code from the RexxVariablePool() function was larger than that, it would be a
direct error code, and not a composite error code built from the shvret fields of the requests. The RXSHV_FATAL
would then have to be the addition of all the atomic composite error codes.

(Warning: author mounting the soapbox.)
The right way to fix this, isto let the function RexxVariablePool() set another flag in shvret (eg. named
RXSHV_STEM) during RXSHV_NEXTYV if and only if the valuereturned is a stem variable. That way, the
application programmer would be able to differ between stem variables and compound variable with a null
string tail.

To handle the other problem with compound variables and RXSHV_NEXTV, | would have liked to return a
null string in shvvalue if and only if the variable is a compound variable having its initia value, and the
stem of that compound variable has been assigned a value. Then, the value of the compound variableis equal
to its name, and is available in the shvname field.

I'd also like to see that the shvret value contained other information concerning the variables, e.g. whether
the variable was exposed at the current procedure level. Of course, Regina does not contain any of these
extra, non-standard features.

(Author isdismounting the soapbox.)

When Regina is returning variableswith RXSHV_NEXTYV, the variables are returned in the order in which they
occur in the open hashtable in the interpreter. i.e. the order in which variables belonging to different bins are returned
is consistent, but the order in which variables hashed to the same bin are returned, is non-deterministic. Note that all
compound variables belonging to the same stem are returned in one sequence.

5.4 The RexxVariablePool() function

Thisfunction is used to process a sequence of variable requests, and process them sequentially. The prototype of this
functioniis:

APIRET APIENTRY ULONG RexxV ariablePool(
SHVBLOCK *Reguest

)

135

Its only parameter is a pointer to a SHVBLOCK structure, which may be the first of the linked list. The function
performs the operation specified in each block. If an error should occur, the current request is terminated, and the
function moves on to the next request in the chain.

Theresult valueis abit peculiar. If the returned valueisless than 128, it is calculated by logically OR’ing the returned
shvret field of al the requestsin the chain. That way, you can easily check whether any of the requests was e.g.
skipped because of lack of memory. To determine which request, you have to iterate through the list.

If the result value is higher than 127, it signifies an error. If any of these values are set, you can not assume that any of
the requests have been processed. The following symbolic name gives its meaning.

[RXSHV_NOAVL]
Means that the interface is not available for thisrequest. This might occur if the interface was not
able to start the interpreter, or if an operation requested a variable when the interpreter is not
currently executing any script (i.e. idle and waiting for ascript to execute).

6. The System Exit Handler Interface

The exit handlers provide a mechanism for governing important aspects of the REXX interpreter from the application:
It can trap situations like the interpreter writing out text, and then handle them itself, e.g. by displaying the text in a
specia window. Y ou can regard system exits as a sort of hooks.

6.1 The System Exit Handler

Just like the subcommand handler, the system exit handler is aroutine supplied by the application, and is called by the
interpreter when certain situations occur. These situations are described in detail later. For the examples below, we
will use the output from SAY as an example.

If asystem exit handler is enabled for the SAY instruction, it will be called with a parameter describing the text that is
to be written out. The system exit handler can choose to handle the situation (e.g. by writing the text itself), or it can
ignoreit and let the interpreter perform the output. The return code from the system exit tells the interpreter whether a
system exit handled the situation or not.

A system exit handler must be a routine defined according to the prototype:
LONG APIENTRY my_exit_handler(
LONG ExitNumber,
LONG Subfunction,
PEXIT ParmBlock

)

In this prototype, the type PEXIT is a pointer to a parameter block containing all the parameters necessary to handle
the situation. The actual definition of this parameter block will vary, and is described in detail in the list of each
system exit.

The exits are defined in atwo-level hierarchy. The ExitNumber defines the main function for a system exit, while the
Subfunction defines the subfunction within that main function. e.g. for SAY, the main function will be RXSIO (the
system exit for standard 1/0O) and the subfunction will be RXSIOSAY. The RXSIO main function has other sub-
functions for handling trace output, interactive trace input, and PULL input from standard input.

The value returned from the system exit handler must be one of the following symbolic values:
[RXEXIT_HANDLED]
Signals that the system exit handler took care of the situation, and that the interpreter should not
proceed to do the default action. For the SAY instruction, this means that the interpreter will not
print out anything.
[RXEXIT_NOT_HANDLED]

136

Signals that the system exit handler did not take care of the situation, and the interpreter will
proceed to perform the default action. For the SAY instruction, this means that it must print out the
argument to SAY.

[RXEXIT_RAISE_ERROR]
Signals that the interpreter’ s default action for this situation should not be performed, but instead a
SYNTAX condition should be raised. Don't get confused by the name, it is not the ERROR
condition, but the SYNTAX condition israised, using the syntax error Failurein system service
(normally numbered 48).

In addition to returning information as the numeric return value, information may also be returned by setting variables
in the parameter block. For instance, if the system exit is to handle interactive trace input, that is how it will supply
the interpreter with the input string.

It isagood and disciplined practiceto let your exit handlers start by verifying the ExitNumber and Subfunction
codes, and immediately return RXEXIT_NOT_HANDLED if it does not recognize both of them. That way, your
application will be upwards compatible with future interpreters which might have more sub-functions for any given
main function.

6.2 List of System Exit Handlers

6.2.1 RXFNC — The External Function Exit Handler

The RXFNC system exit handler provides hooks for external functions. It has only one subfunction; RXFNCCAL,
which allows an application program to intervene and handle any external function or subroutine.

Do not confuse this exit handler with the external function routines which alow you to define new REXX, semi-built-
in functions. The exit handler is called for al invocations of external routines, and can be called for function names
which you were unaware of.

The parameter ParmBlock for RXFNCCAL is defined as:

typedef struct {
typedef struct {
unsigned int rxfferr:1;
unsigned int rxffnfndl ;
unsigned int rxffsub: 1;
} rxfnc_flags;
unsigned char *rxfnc_address;
unsigned short rxfnc_addresd| ;
unsigned char *rxfnc_que;
unsigned short rxfnc_quel ;
unsigned short rxfnc_argc;
RXSTRING *rxfnc_argv ;
RXSTRING rxfnc_retc;
} RXFNCCAL_PARM ;

The significance of each variableis:

[rxfnc_flags.rxfferr]
Isan output parameter that is set on return in order to inform the interpreter that the function or
subroutine was incorrectly called, and thusthe SYNTAX condition should be raised.

[rxfnc_flags.rxffnfnd]
Isan output parameter that tells the interpreter that the function was not found. Note the
inconsistency: it isonly effective if tthe exit handler returns RXEXIT_HANDLED, which looks like
alogic contradiction to setting the not-found flag.

[rxfnc_flags.rxffsub)
Isan input parameter that tells the exit handler whether it was called for afunction or subroutine
call. If set, the call being handled is a subroutine call and returning avalueis optional; elseit was
called for afunction, and must return avaluein rxfnc_retc if RXEXIT_HANDLED isto be
returned.

137

[rxfnc_name]
Isapointer to the name of the function or subroutine to be handled, stored as a character array. This
isan input parameter, and itslength is given by the rxfnc_namel parameter.
[rxfnc_namel]
Holds the length of rxfnc_name. Note that the |ast character isthe letter ell, not the number one.
[rxfnc_que]
Points to a character array holding the name of the currently active queue. Thisis an input
parameter. The length of this name is given by the rxfnc_quel field.
[rxfnc_quel]
Holds the length of rxfnc_que. Note that the last character isthe letter ell, not the number one.
[rxfnc_argc]
Isthe number of arguments passed to the function or subroutine. It definesthe size of the array
pointed to by the rxfnc_argv field.
[rxfnc_argv]
Points to an array holding the parameters for the routines. The size of thisarray is given by the
rxfnc_argc field. If rxfnc_argc is zero, the value of rxfnc_argv is undefined.
[rxfnc_retc]
Holds an RXSTRING structure suitable for storing the return value of the handler. Itisthe
responsibility of ht ehandler to allocate space for the contents of this string (i.e. the array pointed to
by the rxfnc_retc.strptr).

6.2.2 RXCMD — The Subcommand Exit Handler

The main function code for this exit handler is given by the symbolic name RXCMD. It is called whenever the
interpreter is about to call a subcommand, i.e. acommand to an external environment. It has only one subfunction:
RXCMDHST.

The ParmBlock parameter for this subfunction has the following definition:

typedef struct {
typedef struct {
unsigned int rxfcfail:1;
unsigned int rxfcerr:1;
} rxemd_flags;
unsigned char *rxcmd_address ;
unsigned short rxemd_address! ;
unsigned char *rxemd_dll ;
unsigned short rxemd_dll_len;
RXSTRING rxemd _command ;
RXSTRING rxcmd retc ;
} RXCMDHST_PARM ;

The significance of each variableis:

[rxemd_flags.rxfcfail]
If thisflag is set, the interpreter will raisea FAILURE condition at the return of the exit handler.

[rxemd_flags.rxfcerr]
Like the previous, but the ERROR condition is raised instead.

[rxemd_address]
Points to a character array containing the name of the environment to which the command normally
would be sent.

[rxemd_addressl]
Holds the length of rxemd_address. Note that the last character isthe letter ell, not the number
one.

[rxemd_diIl]
Defines the name for the DLL which is to handle the command. I’'m not sure what this entry is used
for. It isnot currently in use for Regina.

[rxemd_dll_len]
Holds the length of rxemd_dll. If thislengthis set to zero, the subcommand handler for this
environment isnot aDLL, but an EXE handler.

138

[rxemd_command]
Holds the command string to be executed, including command name and parameters.

[rxemd_retc]
Set by the exit handler to the string which isto be considered the return code from the command. It
is assigned to the special variable RC at return from the exit handler. The user is responsible for
allocating space for this variable. | have no clear ideawhat happensif rxcmd_retc.strptr is set to
NULL; it might set RC to zero, to the null string, or even dropit.

It seems that this exit handler is capable of raising both the ERROR and the FAILURE conditions simultaneously. |
don’t know whether that is legal, or whether only the FAILURE condition israised, since the ERROR condition is a
sort of subset of FAILURE.

Note that the return fields of the parameter block are only relevant if the value RXEXIT_HANDLED was returned.
This appliesto the rxemd_flags and rxemd_retc fields of the structure.

6.2.3 RXMSQ — The External Data Queue Exit Handler

The external data queue exit handler is used as a hook for operations manipulating the external data queue (or the
stack). Unfortunately, the stack is aborderline case of what is relevant to the REXX SAA API. Operations like
putting something on, retrieving a string from, obtaining the size, etc. of the stack is not part of the SAA API.
However, some of this functionality is seemingly here; but not all. For instance for the RXMSQPLL subfunction,
SAA APl iscalled by the interpreter before the interpreter calls whatever system-specific call is available for
retrieving a string from the stack.

Thus the SAA API can be used by an application to provide the interpreter with afake stack, but it is not a suitable
means for the application itself to manipulate the real stack.

The RXMSG exit has four subfunctions:

[RXMSQPLL]
Thisis called before alineis retrieved from the stack and the application may itself provide the
interpreter with an alternative line. On entry, the third parameter points to a structure having the
following definition:

typedef struct {
RXSTRING rxmsq_retc;
} RXMSQPLL_PARM;

The rxmsq_retc field holds the string to be retrieved from the stack. Notethat it is an output
parameter, so its value on entry is undefined.

[RXMSQPSH]
Thisis called before the interpreter puts aline on the stack, and it may grab the lineitself, and thus
prevent the interpreter from putting the line on the stack. Note that this exit handles both pushing
and queuing. Thethird parameter is:

typedef struct {
struct {
unsigned rxfmlifo: 1;
} rxmsq_flags;
RXSTRING rxmsg_value;
} RXMSQPSH_PARM;

Here the field rxmsq_value holds the string to be put on the stack. Whether the string isto be
pushed or queued is determined by the boolean value rxmsq_flags.rxmilfifo, which is TRUE if the
string is to be pushed.
All values are input values. What happensif you change them is not defined inthe SAA API.
Some implementations may let you modify the contents of rxmsq_value and return
RXEXIT_NOT_HANDLED and the string push by the interpreter contains the modified string.
However, you should not rely on thissinceit is highly incompatible. Y ou may not de-allocate
rxmsq_value.

[RXMSQSIZ]

139

thisis called before the interpreter tries to determine the size of the stack, and it may present an
alternative size to the interpreter. Thethird parameter is:

typedef struct {
ULONG rxmsq_size;
} RXMSQSIZ_PARM;

The field rxmsq_size can be set to the number the application wants the QUEUED() function to
return. Note that this parameter is undefined on entry, so it cannot be used to retrieve the number of
lines on the stack.

[RXSQNAM]
Thisis called before the interpreter triesto retrieve the name of the current stack, and it may present
the interpreter with an alternative name. Note that this functionality ispart of SAA but not TRL; it
supports the Get option of the RXQUEUE() built-in function. Note that there are no other exits
supporting the other options of RXQUEUE(). Thethird parameter for thisexit is:

typedef struct {
RXSTRING rxmsg_name;
} RXMSQNAM_PARM;

Aswith RXSQMSIZ, the field rxmsq_name can be set to the name which the application wants to
return to the interpreter as the name of the current stack. Note that thisis an output-only parameter;
its value on input is undefined, and in particular is not the name of the real stack.

Note that thisareais troublesome. In TRL, external data queues are not defined as part of the language, whilein SAA
itis. Thus, TRL-compliant interpreters are likely to implement stacks in various ways that may not be compatible
with the SAA.

6.2.4 RXSIO — The Standard I/O Exit Handler

The main code for this exit handler has the symbolic value RXSIO. There are four sub-functions:

[RXSIODTR]
Called whenever the interpreter needs to read aline from the user during interactive tracing. Note
the difference between this subfunction and RXSIOTRD.

[RXSIOSAY]
Called whenever the interpreter tries to write something to standard output ina SAY instruction,
even a SAY instruction without a parameter.

[RXSIOTRC]
Called whenever the interpreter tries to write out debugging information, e.g. during tracing, as a
trace back, or as a syntax error message.

[RXSIOTRD]
Called whenever the interpreter need to read from the standard input stream during a PULL or
PARSE PULL instruction. Notethat it will not be called if thereis sufficient data on the stack to
satisfy the operation.

Note that these function are only called for the exact situations that are listed above. e.g. the RXSIOSAY isnot called
during a call to the REXX built-in function LINEOUT () that writes to the default output stream. TRL saysthat SAY is
identical to calling LINEOUT() for the standard output stream, but SAA API still manages to see the difference
between stem variables and compound variables with a*‘ zero-length-string’’ tail. Please bear with thisinconsistency.

Depending on the subfunction, the ParmBlock parameter will have four only slightly different definitions. It iskind
of frustrating that the ParmBlock takes so many different datatypes, but it can
be handled easily using unions, see alater section. The definitions are:

typedef struct {
RXSTRING rxsiodtr_retc; /* theinteractive trace input */
} RXSIODTR_PARM ;

typedef struct {
140

RXSTRING rxsio_string; /* the SAY lineto write out */
} RXSIOSAY_PARM ;

typedef struct {
RXSTRING rxsio_string; /* the debug line to write out */
} RXSIOTRC_PARM ;

typedef struct {
RXSTRING rxsiotrd_retc; /* thelinetoreadin*/
} RXSIOTRD_PARM ;

In al of these, the RXSTRING structure either holds the value to be written out (for RXSIOSAY and RXSIOTRC),
or the value to be used instead of reading standard input stream (for RXSIOTRD and RXSIODTR). Note that the
values set by RXSIOTRD and RXSIODTR areignored if the exit handler does not return the value
RXEXIT_HANDLED.

Any end-of-line marker are stripped off the stringsin this context. If the exit handler writes out the string during
RXSIOSAY or RXSIOTRC, it must supply any end-of-line action itself. Similarly, the interpreter does not expect a
end-of-line marker in the data returned from RXSIODTR and RXSIOTRD.

The space used to store the return data for the RXSIODTR and RXSIOTRD sub-functions, must be provided by the
exit handler itself, and the space is not de-allocated by the interpreter. The space can be reused by the application at
any later time. The space allocated to hold the data given by the RXSIOSAY and RXSIOTRC sub-functions, will be
allocated by the interpreter, and must neither be de-allocated by the exit handler, nor used after the exit handler has
terminated.

6.2.5 RXHLT — The Halt Condition Exit Handler

Note: Becausethe RXHLT exit handler is called after every REXX instruction, enabling this exit slows REXX
program execution.

The main code for this exit handler has the symbolic value RXHLT. There are two sub-functions:
[RXHLTTST]
Called whenever the interpreter polls externally raised HALT conditions; ie after every REXX
instruction.

The definition of the ParmBlock is:

typedef struct {
unsigned rxfhhlt : 1;
} RXHLTTST_PARM ;

The rxfhhlt parameter is set to the state of the HALT condition in the interpreter; either TRUE or
FALSE.

[RXHLTCLR]

Called to acknowledge processing of the HALT condition when the interpreter has recognized and
raised aHALT condition.

6.2.6 RXTRC — The Trace Status Exit Handler

6.2.7 RXINI — The Initialization Exit Handler

RXTER and this exit handler are a bit different from the others. RXINI provides the application programmer with a
method of getting control before the execution of the script starts. Its main purpose is to enable manipulation of the
variable pool in order to set up certain variables before the script starts, or set the trace mode.

It has only one subfunction, RXINIEXT, called once during each call to RexxStart(): just before the first REXX
statement is interpreted. Variable manipulations performed during this exit will have effect when the script starts.

141

Asthere is no information to be communicated during this exit, the value of ParmBlock is undefined. It makes no
difference whether you return RXEXIT_HANDLED or RXEXIT_NOT_HANDLED, sincethereis no situation to
handle.

6.2.8 RXTER — The Termination Exit Handler

This exit resembles RXINI. Its sole subfunction is RXTEREXT, which is called once, just after the last statement of
the REXX script has been interpreted. The state of all variables are intact during this call; so it can be used to retrieve
thevalues of the variables at the exit of ascript. (In fact, that is the whole purpose of this exit handler.)

Like RXINI, there is no information to be communicated during the exit, so ParamBlock isundefined in this call.

And aso like RXINI, it is more of a hook than an exit handler, so it does not matter whether you return
RXEXIT_HANDLED or RXEXIT_NOT_HANDLED.

142

Implementation Limits

This chapter lists the implementation limits required by the REXX standard. All implementations are supposed to support at
least these limits.

1. Why Use Limits?

Why use implementation limits at all? Often, a program (ab)uses a feature in alanguage to an extent that the implementor did
not foresee. Suppose an implementor decides that variable names can not be longer than 64 bytes. Sooner or later, a
programmer gets the idea of using very long variable names to encode special information in the name; maybe as the output ¢
amachine generated program. The result will be a program that works only for some interpreters or only for some problems.

By introducing implementation limits, REXX tells the implementors to what extent aimplementation is required to support
certain features, and simultaneoudly it tells the programmers how much functionality they can assume is present.

Note that these limited are required minimums for what an implementation must allow. An interpreter is not supposed to
enforce these limits unless there is a good reason to.

2. What Limits to Choose?

A limit must not be perceived as an absolute limit, the implementor is free to increase the limit. To some extent, the
implementor may also decrease the limit, in which case this must be properly documented as a non-standard feature. Also, the
reason for this should be noted in the documentation.

Many interpreters are likely to have “memory” as an implementation limit, meaning that they will allow any size as long
there is enough memory left. Actually, this is equivalent to no limit, since running out of memory is an error with limit
enforcing interpreters as well. Some interpreters let the user set the limits, often controlled throOBhItRIS instruction

For computers, limit choices are likely to be powers of two, like 256, 1024, 8192, etc. HoweR&Xé&anguage takes ¢h
side of the user, and defines the limits in units which looks as more “sensible” to computer non-experts: most of the lin
REXX are numbers like 250, 500, 1000, etc.

3. Required Limits

These are the implementation minimums definedRERXX:

[Binary strings]
Must be able to hold at least 50 characters after packing. That means that the unpacked size might be at leas
characters, plus embedded white space.

[El apse tine clock]
Must be able to run for at least 10**10-1 seconds, which is approximately 31.6 years. In general, this is really
overkill, since virtually no program will run for a such a period. Actually, few computers will be operationaltfor s
period.

[Hexadeci mal strings]

143

Must be able to hold at least 50 characters after packing. This means that the unpacked size might be at least 100
characters, plus embedded white space.

[Literal strings]
Must be ableto hold at least 100 characters. Note that a double occurrence of the quote character (the same charactel
used to delimit the string) in aliteral string counts as a single character. In particular, it does not count as two, nor
doesit start anew string.

[Nesting of coments]
Must be possibleto in at least 10 levels. What happens then is not really defined. Maybe one of the syntax errorsis
issued, but none is obvious for this use. Another, more dangerous way of handling this situation would be to ignore
new start-of-comments designators when on level 10. This could, under certain circumstances, lead to running of coc
that is actually commented out. However, most interpreter are likely to support nesting of commentsto an arbitrary
level.

[The Nunber of Paraneters]
In calls must be supported up to at least 10 parameters. M ost implementations support somewhat more than that, but
quite a few enforce some sort of upper limit. For the built-in function, this may be a problem only for M N() and
MAX() .

[Significant digits]
Must be supported to at least 9 decimal digits. Also, if an implementation supports floating point numbers, it should
alow exponents up to 9 decimal digits. An implementation is allowed to operate with different limits for the number
of significant digits and the numbers of digitsin exponents.

[Subroutine | evel s]
May be nested to atotal of 100 levels, which counts both internal and external functions, but probably not built-in
functions. Y ou may actually trip in thislimit if you are using recursive solution for large problems. Also, some tail-
recursive approaches may crash in this limit.

[Synbol (nane) | ength]
Can be at least 50 characters. Thisis the name of the symbol, not the length of the valueif it names avariable. Nor i
it the name of the variable after tail substitution. In other words, it is the symbol asit occurs in the source code. Note

that this applies not only to simple symbols, but also compound symbols and constant symbols. Consequently, you ¢
not write numbers of more than 50 digits in the source code, even if NUMERI C DI G TSis set high.

[Vari abl e nane | engt h]
Of at least 50 characters. Thisisthe name of avariable (which may or may not be set) after tail substitution.

4. Older (Obsolete) Limits

First edition of TRL1 contained some additional limits, which have been relaxed in the second edition in order to make
implementation possible for alarge set of computers. These limits are:

[CA ock granularity]
Was defined to be at least of amillisecond.

Far from all computers provide this granularity, so the requirement have been relaxed. The current requirement isa
granularity of at least one second, although a millisecond granularity is advised.

5. What the Standard does not Say

An implementation might enforce a certain limit even though oneis not specified in the standard. This section tries to list mos
of the places where this might be the case:

144

[The stack]
(Also called: the externa data queue) is not formally defined as a concept of the language itself, but a concept to
which the REXX language has an interface. Severa limits might apply to the stack, in particular the maximum lengt!
of alinein the stack and the maximum number of lines the stack can hold at once.

There might also be also be other limits related to the stack, like a maximum number of buffers or a maximum numkt
of different stack. These concepts are not referred to by REXX, but the programmer ought to be aware of them.

Files
[%\/Iay have several limits not specified by the definition of REXX, e.g. the number of files simultaneously open, the
maximum size of afile, and the length and syntax of file names. Some of these limits are enforced by the operating
system rather than an implementation. The programmer should be particularly aware of the maximum number of
simultaneously open files, since REXX does not have a standard construct for closing files.

[Expressi on nesti ng]
Can in some interpreters only be performed to a certain level. No explicit minimum limit has been put forth, so take
care in complex expressions, in particular machine generated expressions.

[Envi ronment nane | engt h]
May have some restrictions, depending on your operating system. There is not defined any limit, but there exists an
error message for use with too long environment names.

[A ause | engt h]
May have an upper limit. There is defined an error message “Clause too long” which is supposed to be issued
clause exceeds a particular implementation dependent size. Note that a “clause” does not mean a “line” in this
a line can contain multiple clauses.

[Source line |ength]
Might have an upper limit. This is not the same as a “clause” (see above). Typically, the source line limit will b
larger than the clause limit. The source line limit ought to be as large as the string limit.

[Stack operations]
Might be limited by several limits; first there is the number of strings in the stack, then there is the maximum le
of each string, and at last there might be restrictions on the character set allowed in strings in the stack. Typic:
stack will be able to hold any character. It will either have “memory” as the limit for the number of string and th
length of each string, or it might have a fixed amount of memory set aside for stack strings. Some implementz
also set a maximum length of stack strings, often 2*8 or 2*16.

6. What an Implementation is Allowed to “Ignore”

In order to make the REXX language implementable on as many machines as possible, the REXX standard allow
implementation to ignore certain features. The existence of these features are recommended, but not required. These features
are:

[Fl oati ng poi nt nunbers]
Are not required; integers will suffice. If floating points are not supported, numbers can have not fractional or

exponential part. And the normal division will not be available, i.e. the operatowill not be present. Use integ
division instead.

[File operations]
Are defined iInREXX, but an implementation seems to be allowed to differ in just about any file operation featu!

7. Limits in Regina

145

Regina tries not to enforce any limits. Wherever possible, “memory” is the limit, at the cost of some CPU whenever int
data structures must be expanded if their initial size were too small. Notedgata will only increase the internal area
decrease them afterwards. The rationale is that if you happen to need a large internal area once, you may need it late
same program too.

In particular,Regina has the following limits:

Binary strings source line size

Clock granularity 0.001-1 second (note 3)
Elapse time clock until ca. 2038 (note 1)
Hexadecimal strings source line size
Literal string length source line size
Nesting of comments memory

Parameters memory

Significant digits memory (note 2)
Subroutine levels memory

Symbol length source line size
Variable name length memory (note 2)
Notes:

1) Regina uses the Unix-derived cdli me() for the elapse time (and time in general). This is a function which returns tt
number of seconds since Januatyl@70. According to the ANSI C standard, in whiglegina is written, this is a number
which will at least hold the number 2**31-1. Therefore, these machines will be able to work until about 20B&garaiw
satisfy the requirement of the elapse time clock until 2006. By then, computers will hopefully be 64 bit.

Unfortunately, the i me() C function call only returns whole secondsRagina is forced to use other (less standardized)
calls to get a finer granularity. However, most of what is said abiome () applies for these too.

2) The actual upper limit for these are the maximum length of a string, which is at least 2**32. So for all practical purpc
the limit is “memory”.

3) The clock granularity is a bit of a problem to define. All systems can be trusted to have a granularity of about 1 secc
Except from that, it's very difficult to say anything more specific for certain. Most systems allows alternative waysto re
the time, giving a more accurate result. Wherever these alternatives are av&impie will try to use them. If everything
else failsRegina will use 1 second granularity.

For most machines, the granularity are in the range of a few milliseconds. Some typical examples are: 20 ms for Sun3

Decstations 3100, and 10 ms for SGI Indigo. Since this is a hardware restriction, this is the best measure anyone can
these machines.

146

Definitions

In order to make the definitions more readable, but still have arigid definition of the terms, some extra comments have been
added to some of the definitions. These comments are enclosed in square brackets.

Argument is an expression supplied to a function or subroutine, and it provides data on which the call can work on.

Assignment is a clause in which second token is the equal sign. [Note that the statememts=b” and “3=4" are an (inval
assignment, not an expression. The type of the first token is irrelevant; if the second token is the equal sign, therighe ¢
assumed to be an assignment.]

Blanks are characters whicjlyphs are empty space, either vertically or horizontally. A blank is rtoken (but may
sometimes be embedded in tokens), but adiskas separators. [Exactly which characters are considered blanks will differ
between operating systems and implementations, but the <space> character is always a blank. The <tab> character i
often considered a blank. Other characters considered blank might be the end-of-line <eol>), vertical tab (<vt>), and f
(<ff>). See specific documentation for each interpreter for more information.]

Buffer

Caller routine

Character is a piece of information about a mapping from a storage unit (normally a byte)ghyghaOften used as “the
meaning of the glyph mapped to a particular storage unit”. [The glyph “A” is the same in EBCDIC and ASCII, but the
character “A” (i.e. the mapping from glyph to storage unit) differs.]

Character string is an finite, ordered, and possibly empty sathaf acters.

Clauseis a non-empty collection tdkens in a REXX script. The tokens making up a clause are all the consecutive token:
delimited by two consecutivabause delimiters. [Clauses are further divided intwll clauses, instructions, assignments, and
commands.]

Clause ddlimiter is a non-empty sequence of elements of a subtekent, normally the linefeed and the semicolon. Als
start and end of REXX script are considered clause delimiters. Also colon is a clause separator, but it is only valid aftel
label.

Command

Compound variableis avariable which name has at least one”‘character that isn’'t positioned at the end of the name.

Current environment is a particularenvironment to whichcommands is routed if no explicit environment is specified fo
routing.

Current procedurelevel is theprocedure level in effect at a certain point during execution.
Daemon

Decimal digit

Devicedriver

Digit is a single _character having a numeric value associate with its glyph.

Empty string

147

Environment is ainterface to which REXX can route commands and afterwards retrieve status information like return value
Evaluation is the process applied to an expression in order to derive a character string.

Exposingisthe binding of a variable in the current procedure level to the variable having the same namein the caller routii
This binding will be in effect for aslong as the current procedure level is active.

Exponential formisaway of writing particularly large or small numbersin afashion that makes them more readable. The
number is divided into a mantissa and an exponent of base 10.

Expression is a non-empty sequence of tokens, for which there exists syntactic restrictions on which tokens can be members,
and the order in which the tokens can occur. [Typically, an expression may consist of literal strings or symbols, connected by
concatenation and operators.]

External data queue see “stack”.

External subroutineis ascript of REXX code, which is executed as a responsesttautine or function call that is neithe
internal nor built-in.

FIFO
Glyph is an atomic element of text, having a meaning and an appearance; like a letter, a digit, a punctuation mark, etc
Hex is used as a general abbreviation for téexadecimal when used in compound words like hex digit and hex string.

Hexadecimal digit is adigit in the number system having a base of 16. The first ten digits are identical widbcth&l dig
(0-9), while for the last six digits, the first six letters of the Latin alphabet (A-F) are used.

Hexadecimal string is acharacter string that consists only of theexadecimal digits, and with optionalvhitespace to divide
the hexadecimal digits into groups. Leading or trailing whitespace is illegal. All groups except the first must consist of
number of digits. If the first group have an odd number of digits, an extra leading zero is implied under some circumste

Instruction is aclause that is recognized by the fact that the fit@ten is a speciakeyword, and that the clause is not an
assignment or label. Instructions typically are well-defin®EXX language components, such as loops and function calls.

Interactivetrace is atrace mode, where thmterpreter halts execution between eaghuse, and offer the user the possil
to specify arbitranREXX statements to be executed before the execution continues.

L abel
LIFO
Literal name is a name which will always be interpreted as a constant, i.e. that no variable substitution will take place.

Literal string is atoken in a REXX script, that basically is surrounded by quotation marks, in order to makaracter stri
containing the sameharacters as the literal string.

Keyword is a element from finite set of symbols.
Main level
Main program

Name space s a collection of namedriables. In general, the expression is used when referring to the set of variables
available to theprogram at some point during interpretation.

Nullstring is acharacter string having the length zero, i.e. an empty character string. [Note the difference from the u
string.]

Operating system
148

Parameters
Parsing
Procedure level

Program is acollection of REXX code, which may be zero or more scripts, or other repositories of REXX code. However, a
program must contain aall the code to be executed.

Queue see “external data queue” or “stack”.

Routineis a unit during run-time, which is a procedural level. Certain settings are saved amrosss. Oneroutine (the
callerroutine) can be temporarily suspended while anottoettine is executed (the calledutine). With such nesting, the
calledroutine must be terminated before execution of the catiatine can be resumed. Normally, tRALL instruction or a
function call is used to do this. Note that the main level BEXX script is also aoutine.

Script is a single file containindREXX code.

Space separ ated

Stack

Statement is aclause having in general some action, i.e. a clause other thaulalause. [Assignments, commands and
instructions are statements.]

Stem collection
Stem variable
Strictly order

Subkeyword is akeyword, but the prefix “sub” stresses the fact thaiabol is a keyword only in certain contexts [e.g. i
a particular instruction).

Subroutineis aroutine which has been invoked from anotfEXX routine; i.e. it can not be the “main” program ofRE>
script.

Symbol

Symbol table
Tail substitution
Term

Token

Token separator
Uninitialized
Variable name
Variable symbol

Whitespace One or several consecutibiank characters.

149

hex literal

norm. hex string

bin {digit,string,literal}
norm. bin string
packed char string

Character strings is the only type of data available in Rexx, but to some extent there are ‘subtypes’ of character string:
character strings which contents has certain format. These special formats is discussed below.

150

Bibliography

[KIESEL]
Peter C. Kiesel, REXX - Advanced Techniques for Programmers. McGraw-Hill, 1993, ISBN 0-07-034600-3
[CALLAWAY]

Merill Callaway, The ARexx Cookbook. 511-A Girard Blvd. SE, Albuquerque, NM 87106: Whitestone, 1992, ISBN
9632773-0-8

[TRL2]

M. F. Cowlishaw, The REXX Language- Second Edition. Englewood Cliffs: Prentice-Hall, 1990, ISBN 0-13-78065
5

[TRL1]

M. F. Cowlishaw, The REXX Language - First Edition. Englewood Cliffs: Prentice-Hall, 1985, ISBN 0-13-780735-
[SYMPOS3]

Proceedings of the REXX Symposium for Ddevel opers andUusers. Stanford: Stanford Linear Accelerator Center, 19!
[TRH:PRICE]

Stephen G. Price, SAA Portability, chapter 37, pp 477-498. In Goldberg ans Smith 111 [TRH], 1992

[TRH]
Gabriel Goldberg and Smith I11, Philip H., The REXX Handbook. McGraw-Hill, 1992, ISBN 0-07-023682-8
[DANEY]
Charles Daney, Programming in REXX. McGraw-Hill, 1992, ISBN 0-07-015305-1
[BMARKS]
Brian Marks, Advanced REXX programming. McGraw-Hill, 1992
[ZAMARA]
Chris Zamara and Nick Sullivan, Using ARexx on the Amiga. Abacus, 1991, ISBN 1-55755-114-6
[REXXSAA]
W. David Ashley, SAA Procedure Language REXX Reference. 5 Timberline Dr., Trophy Club, Tx 76262: Pedagogit
Software, 1991
[MCGH:DICT]
Syhil P. Parker, McGrw-Hill Dictionary of Computers. McGraw-Hill, 1984, ISBN 0-07-045415-9
[PIPLAUGER]
P. J. Plauger, The Standard C Library. Englewood Cliffs: Prentice Hall, 1992, ISBN 0-13-131509-9
[KR]
Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language - Second Edition. Englewood Cliffs:
Prentice Hall, 1988, ISBN 0-13-110362-8
[ANSIC]

151

Programming languages - C. , Technical Report ISO/IEC 9899:1990, | SO, Case postale 56, CH-1211 Geneve 20,
Switzerland, 1990

[OX:CDICT]

Edward L. Glaser and I. C. Pyleand Valerie lllingsworth, Oxford Reference Dictionary of Computing - Third
Edition. Oxford University Press, 1990, ISBN 0-19-286131-X

[ANSI]
Programming languages - REXX., ANSI X3.274-1996, 11 West 42nd Street, New Y ork, New Y ork 10036

152

