
OBJECT CLASSES, META CLASSES AND

METHOD RESOLUTION IN

OBJECT REXX

Rony G. Flatscher

Department of Management and Information Systems

Vienna University of Economics and Business Administration

„7th International Rexx Symposium“, Austin/Texas, May 13th-15th, 1996

ABSTRACT

Object Rexx allows for defining Classes in a wide variety of ways. There are single

and multiple inheritance available as well as the possibility to define one’s own

metaclasses to be used in the process of defining class hierarchies.

Definition of classes is possible via hardcoded „directives“ or at runtime, fully

dynamically! In addition one can define methods, which are not attached to a specific

class, either hardcoded via directives or dynamically at runtime. These „floating“ methods

can be attached to individual objects and if so, define their own object scope.

Classes and methods offer interesting properties which are worthwile to get explored,

including the ability of Object Rexx to define classes capable of interacting with SOM- or

DSOM-objects.

Object Classes, Meta Classes and Method Resolution in Object Rexx, page 1-23 (rgf)

1 CLASSIFICATION TREE, INSTANTIATION AND INHERITANCE

Derived from classification trees in biology software technology adopted the idea of

organizing „chunks of code“ in form of a tree. Code and the data to go with it get

encapsulated and are called classes, which get inserted at the appropriate place in the

classification tree.

In a true object oriented environment every class inherits all parent classes up to the

root, which is usually called the class „Object“. The class „Object“, being the root of the

classification tree, of course has no superclass. The Object Rexx classification tree is

shown in figure 1.

Object ... The Class class
 Alarm .. The Class class
 Array .. The Class class
 Class .. The Class class

 Directory The Class class
 DSOMServerProxy The Class class
 Envelope The Class class
 List ... The Class class
 Message The Class class
 Method The Class class
 Monitor The Class class
 M_SOMProxy The M_SOMProxy class
 Queue .. The Class class
 Relation The Class class
 Bag The Class class
 RX_QUEUE The Class class
 sender The Class class
 server The Class class
 SOMProxy The M_SOMProxy class
 Stem ... The Class class
 Stream The Class class
 Stream_Supplier The Class class
 String The Class class
 Supplier The Class class
 Table .. The Class class
 Set The Class class

Figure 1: Object Rexx' classification tree

A class may be instantiated which means that an individual „object“ is created which

uses the „infrastructure“ laid out in the class (code and data), i.e. it is able to store data in

„object variables“ and use the functions (called „methods“) defined in the class for

Object Classes, Meta Classes and Method Resolution in Object Rexx, page 2-23 (final)

manipulating the object variables. Each object is uniquely identified and insulated from all

other objects, so it becomes even possible to instantiate several, individual objects from

the same class.

Methods are invoked by sending objects messages which carry the name of the

desired methods. The object invokes the appropriate method defined with the class it

belongs to. If a method cannot be found within the class the object was instantiated from,

then the search for an appropriate method proceeds sequentially thru those classes which

are on the route to the root (these classes are called „superclasses“). The first superclass

to contain the searched method is then used to carry out the message. Methods defined in

superclasses are therefore said to be „inherited“ by all subclasses.

If the classes are laid out „well“ an extraordinary amount of reusage can be achieved

by grouping tightly coupled functionality into separate classes. If the need of enhancing

the functionality of a class arises this may be done by subclassing it and adding new

methods and/or intercepting methods which are implemented in the superclass. Methods

of a subclass may invoke any method in its superclass(es) by sending the appropriate

message, possibly giving a class-selector to determine which class should be used as the

starting point for the method resolution.

Subclasses are sometimes referred to as „specialisations“ of their own superclass.

By the same token a superclass may be called as a „generalisation“ of all of its

subclasses.

Figure 2 demonstrates a little Object Rexx program which defines the class „Test“

with a single method named „HI“ which in turn gets activated if an instance (object) of this

class receives the message „HI“. The class „Test“ is a subclass of the root class „Object“

and therefore inherits all of its methods. One of the methods defined with class „Object“ is

called „DEFAULTNAME“ and returns a human readable string describing the type of the

object. Because of this an instance of class „Test“ understands the message

„DEFAULTNAME“ sent to it by forwarding it to its superclass, where it is defined. Figure 3

shows the output.

Object Classes, Meta Classes and Method Resolution in Object Rexx, page 3-23 (rgf)

/* test.cmd */

anObject = .Test ~ new /* create an instance (object) */

/* send it messages & display result */

SAY anObject ~ hi /* send it "HI" */

SAY anObject ~ defaultname /* send it "DEFAULTNAME"*/

/* ----------------- class with methods --------------- */

:: CLASS Test SUBCLASS Object

:: METHOD hi

 RETURN "hiii there, here we are !"

Figure 2: Defining a class, use inherited method from superclass "Object" too

hiii there, here we are !
a TEST

Figure 3: Defining a class, use inherited method from superclass "Object" too (output)

Methods defined for instances of a class are called „instance methods“, their object

variables are called „instance object variables“.

2 METACLASSES AND INHERITANCE

So far we have been able to define a sort of blueprint for the object variables and

methods for instances of any class in the Object Rexx classification tree.

2.1 Class Objects

As in Smalltalk Object Rexx adds the ability to interact with the classes themselves,

by making them accessible as plain objects called „class objects“. For every

class-definition Object Rexx will create exactly one instance of the class „Class“ by

default, hence the name „class objects“. In addition it is possible to define „class methods“

and „class object variables“ for every class object.

Thruout this paper and the Object Rexx documentation the term „object“ is used for

instances of any class. The term „class object“ is used for instances of the Object Rexx

Object Classes, Meta Classes and Method Resolution in Object Rexx, page 4-23 (final)

class „Class“ only, which get automatically created by the runtime system as noted

above.

Any object may get access to its „class object“ by sending itself the message „CLASS“

which is defined with the Object Rexx class „Object“. This way all objects instantiated

from a certain class will get access to that very same class object! Another way to get

access to a specific class object is via an environment symbol which is created by merely

prepending the class name with a dot. E.g. „.array“ will return the class object for the

class „Array“.

Once a reference is established to a class object any messages sent to it get

resolved in the usual way. That is to say, if a class object does not contain a method for a

message sent to it, the class objects of its superclasses will get searched for up to the root

of the classifcation tree, i.e. the object class for the class „Object“. The interesting point

here is that the class object of class „Object“ is an instance of the Object Rexx class

„Class“ itself, hence method resolution will continue into the class methods of the class

„Class“!

With other words there exists a second hierarchy tree specifically for the resolution of

class methods (methods of class objects) ending in the Object Rexx class „Class“.

(Because „Class“ is a subclass of „Object“ one more method resolution will be

undertaken, ultimately ending in the class object for „Object“; so one may conclude a

circular relationship between the class objects for „Object“ and „Class“.)

The program in figure 4 exploits the concept of class object variables and class

methods. The class object variable „myBabies“ is an instance of class „Set“ used to store

all instances of class „someTest“ within the class object. The class method „addToSet“

adds the object it gets to „myBabies“, the attribute class method „myBabies“ allows for

setting and retrieving the class variable object itself. The instance method „INIT“ gets

called whenever a „NEW“ message is sent for creating an object. The „someTest“ instance

„INIT“ method will establish access to its class object (via sending itself the „CLASS“

message) and send the class object the message „addToSet“ using itself as the

Object Classes, Meta Classes and Method Resolution in Object Rexx, page 5-23 (rgf)

argument. Finally in the initialisation part of that program three instances of „someTest“

are created by using cascading messages (with two twiddles) and then retrieving the class

object variable „myBabies“ and sending it the „Set“-message „ITEMS“ to return the

number of items presently in the set.

/* SomeTest.CMD */

.SomeTest ~~ new ~~ new ~~ new /* create 3 instances */
SAY .SomeTest ~ myBabies ~ items /* shows "3" */

/* ----------------- class with methods --------------- */
:: CLASS SomeTest

/* -------- class methods -------- */
:: METHOD init CLASS /* class method */

 EXPOSE myBabies /* class object variable */

 myBabies = .set ~ new /* create a "Set"-object*/

:: METHOD addToSet CLASS /* class method */

 EXPOSE myBabies
 USE ARG aBaby /* get instance */

 myBabies ~ put(aBaby) /* put instance into set*/

:: METHOD myBabies CLASS ATTRIBUTE /* class method */

/* -------- instance method ------ */
:: METHOD init /* called via NEW */
 myClassObject = self ~ class /* get class object */
 myClassObject ~ addToSet(self) /* save object */

Figure 4: Using class methods and class object variable

2.2 Metaclasses

The class „Class“ is special in another way too: its instance methods are at the

same time its own class methods! This perceived circularity is necessary in order to close

in on the class object for the class „Class“ itself.

As class objects are instances of the class „Class“ all instance methods of class

„Class“ are available via inheritance. Therefore all classes have the instance methods of

class „Class“ available as „class methods“. Of course this is true for the class „Class“

itself.

Object Classes, Meta Classes and Method Resolution in Object Rexx, page 6-23 (final)

A class whose instance methods are its own class methods is called a metaclass.

Therefore the Object Rexx class „Class“ is a metaclass. Any subclass of a metaclass is a

metaclass itself. Instances of metaclasses may be called generically „metaclass objects“

(so the term „class objects“ and „metaclass objects“ could be intermixed) . By contrast,

non-metaclasses are called „object classes“.

In Object Rexx there is a second metaclass defined (besides the class „Class“): the

„M_SOMProxy“ class. This metaclass is used for creating objects representing

(D)SOM-objects from the predefined class „SOMProxy“, thereby allowing for sending

messages to (D)SOM-objects. Because Object Rexx’ class „Class“ is part of the picture

via the classification tree’s root „Object“ it becomes possible to subclass (D)SOM-classes

in terms of Object Rexx and use them as Rexx classes from then on.

Additionally, by subclassing class „Class“ it becomes possible to define one’s own

metaclasses. Added class methods and class object variables are only available from

within the metaclass object of that metaclass. On the other hand the added instance

methods become part of the class methods of all classes which use this newly created

metaclass for their own creation. This may be done by using the „METACLASS“ attribute in

the ::CLASS-directive for those classes. In case a class omits the „METACLASS“ attribute,

by default the metaclass of its parent class is used.

The rightmost column in figure 1 displays the metaclasses for the classes of the

Object Rexx classification tree.

2.3 Multiple Inheritance

In contrast to Smalltalk Object Rexx allows for defining classes which have more

than one class as their superclass. In object oriented terms this feature is called „multiple

inheritance“. This way it becomes possible to combine different classes to form the basis

for a new class.

Object Classes, Meta Classes and Method Resolution in Object Rexx, page 7-23 (rgf)

Methods are resolved by searching first the superclass and its ancestors and if this

fails (the method was not found), the classes (and their ancestors) given on the

„INHERIT“-attribute are used as starting points for extending the search in the given order.

Sending the „SUPERCLASSES“-method of the class „Class“ to the class object will show

this order for all immediate superclasses.

Figure 5 shows three classes, named „RelTablelike“, „RelBijective“ and

„RelDirlike“.

„RelTablelike“ is a specialized form of the Object Rexx supplied class „Relation“,

which allows among other things to get an item for a given index, or to determine which

index refers to a certain item (which was not possible with the Object Rexx „Table“ class).

The only restriction defined in „RelTablelike“ deals with the method of putting a new

item into the relation (there are two methods defined for this behavior in class „Relation“,

namely „PUT“ and „[]=“), thereby assuring the table-property that there exists one item

only with a specific index. To make sure that an index does not contain more than one

item, by default the index is deleted, before the original „PUT“-method of class „Relation“

adds the item to the relation itself.

/* multi_inh.cmd */

aClassObject = .RelTablelike ~ subclass("<Table & Directory Like>")
SAY aClassObject /* show Defaultname */

aClassObject ~ inherit(.RelDirlike) /* additional inheritance */
anObject = aClassObject ~ new /* create instance */
SAY anObject /* show Defaultname */

anObject ~ Tyrol = "some country in Austria" /* add an item */
SAY anObject ~ Tyrol /* display entry*/

:: CLASS RelTablelike SUBCLASS Relation PUBLIC

:: METHOD "[]=" /* override */
 FORWARD MESSAGE ("PUT") /* let PUT do the work */

:: METHOD "PUT" /* override */
 USE ARG item , index
 self ~ remove(index) /* remove index & associated item */
 FORWARD CLASS (super) /* now do the PUT ! */

Object Classes, Meta Classes and Method Resolution in Object Rexx, page 8-23 (final)

:: CLASS RelBijective SUBCLASS Relation PUBLIC

:: METHOD "[]=" /* override */
 FORWARD MESSAGE ("PUT") /* let PUT do the work */

:: METHOD PUT /* override */
 USE ARG item , index
 self ~ remove(index) /* remove index */
 /* remove item (with another index): */
 self ~ removeitem(item , self ~ index(item))
 FORWARD CLASS (super) /* let super do the PUT ! */

/* .directory-like, because of enhancing with SETENTRY, ENTRY, HASENTRY */
:: CLASS RelDirlike MIXINCLASS Relation PUBLIC

:: METHOD ENTRY /* returns the item associated with index */
 USE ARG index
 RETURN self ~ at(TRANSLATE(index)) /* use uppercase */

:: METHOD SETENTRY /* "name" is used as index */
 USE ARG name, value
 self ~ PUT(value, TRANSLATE(name)) /* uppercase it */

:: METHOD UNKNOWN /* define an unknown method */
 USE ARG messageName, messageArgs

 IF RIGHT(messageName, 1) = "=" THEN /* setentry method */
 DO /* remove trailing "=" from message name */
 index = LEFT(messageName, LENGTH(messageName) - 1)
 FORWARD MESSAGE ("SETENTRY") ARRAY (index, messageArgs[1])
 END
 ELSE /* entry method */
 FORWARD MESSAGE ("ENTRY") ARRAY (messageName)

Figure 5: An example for multiple inheritance

„RelBijective“ is another variant of a relation which makes sure that an index has

just one entry (making it tablelike) and that an item occurs just once in the entire

collection.

„RelDirlike“ is a class which implements the three methods directories possess in

order to allow for conveniently using strings as indices: „ENTRY“, „SETENTRY“ and

„UNKNOWN“. The logic is simple: any message not understood (not found in the class or its

ancestors) is intercepted via the „UNKNOWN“-method. The message name is uppercased

and interpreted as a string index. If this message contains a trailing equal sign („=“) it is

assumed that the programmer wants to add an item associated with an uppercased string

(the name of the method), otherwise it is assumed that the programmers want to retrieve

Object Classes, Meta Classes and Method Resolution in Object Rexx, page 9-23 (rgf)

the item associated with the uppercased string (the name of the method). In the former

case the „SETENTRY“-method is run; in the latter the „ENTRY“-method, exactly the way the

Object Rexx class „Directory“ behaves.

The program creates a new class („<Table & Directory Like>“) at runtime by

subclassing „RelTablelike“. This is done by sending the method „SUBCLASS“ to the class

object. The next step is to add multiple inheritance to that freshly created class object by

issuing an „INHERIT“ message denominating the additional superclass „RelDirlike“ as

an argument. From this moment on methods are looked up not only in class

„RelTablelike“, but in „RelDirlike“ too. This new class now behaves like a table and

like a directory, yet all methods of the class „Relation“ are available too, notably the

ability to query an index for an existing item. Figure 6 shows the output of our example in

figure 5.

The <Table & Directory Like> class
a <Table & Directory Like>
some country in Austria

Figure 6: An example for multiple inheritance (output)

To create class „<Table & Directory Like>“ via a directive would look like:

::CLASS "<Table & Directory Like>" SUBCLASS RelTablelike INHERIT RelDirlike

Should the programmer wish to add the directorylike functionality of „RelDirlike“ to

the „RelBijective“ class all that is necessary is sending the „INHERIT“ message or

using the „INHERIT“ attribute in the class directive.

Note that the class directive for „RelDirlike“ uses „MIXINCLASS“ rather than

„SUBCLASS“ to determine that its parent class is the class „Relation“. By using

„MIXINCLASS“ the programmer indicates to the runtime system that this class may be

used as an additional superclass for classes which descend from the same „baseclass“.

The baseclass in turn is defined to be the first class in the superclass ancestors which was

not created with the „MIXINCLASS“-attribute but with the „SUBCLASS“-attribute instead.

Object Classes, Meta Classes and Method Resolution in Object Rexx, page 10-23 (final)

Therefore only classes descending from the Object Rexx Class „Relation“ may utilize the

class „RelDirlike“ as an additional superclass for multiple inheritance.

3 CREATING CLASSES

There are two ways to create Object Rexx classes:

- statically via directive statements or

- dynamically via messages to class objects.

Figure 5 demonstrates both possibilities, creating classes via directives

(„RelTablelike“, „RelBijective“ and „RelDirlike“) and dynamically („<Table &

Directory Like>“). In essence the methods defined with the Object Rexx class „Class“

are used for the purpose of creating classes on the fly.

As a matter of fact, once the runtime system of Object Rexx has been initialized,

Object Rexx itself uses messages of the „Class“ class to turn e.g. class directives of

parsed Object Rexx programs into full fledged class objects. While initialising Object Rexx

creates an instance for the class „Class“ which gets used for creating all other Rexx

supplied class objects, thereby creating the classification tree.

Classes are built from class directives right after the interpreter has successfully

parsed an Object Rexx program source and after all the „::REQUIRES“-directives (if any)

have been resolved (recursively if necessary).

The parent class objects of the new classes to be built are used for creating new

class objects by sending the „SUBCLASS“ (or „MIXINCLASS“) message to the superclass

class object.

 During the creation process the new class object gets the (class) method „INIT“

sent. Note, that at this particular point multiple inheritance is not setup yet, hence class

method resolutions within the class method „INIT“ will only go up to its immediate

superclass. This is of interest only, if the programmer was to override the superclass’ class

Object Classes, Meta Classes and Method Resolution in Object Rexx, page 11-23 (rgf)

method „INIT“ with an own class method. If he/she wishes to do so it is recommended to

forward the class method „INIT“ up to the superclass so it is able to do its part of

initialisation. Once the class was setup successfully (upon returning from the class method

„INIT“) multiple inheritance - if defined for that class - is incorporated via „INHERIT“

messages by the runtime system and thereafter available for method resolution.

4 DEFINING AND ASSIGNING METHODS

As has been seen in the figures (e.g. figure 5) methods may be defined statically in

the source of an Object Rexx program by means of the „::METHOD“ directive.

4.1 Defining Methods Dynamically

To define a method dynamically it is necessary to create an instance of the Object

Rexx class „Method“ by sending the message „NEW“ to the method class object giving the

name of the method and the Rexx source code as arguments. The initialisation process

will parse the source code and if successful will return a method object.

4.2 Assigning Methods

If methods are defined statically via directives those preceeding the very first class

directive are collected by Object Rexx and put into a directory accessible via the

environment symbol „.methods“ by that Object Rexx program. Because such methods are

not assigned to a class, they may be regarded as „floating“ methods.

/* def_meth.cmd */

Object1 = .Test ~ new

/* add floating method to object: */
Object1 ~ setmethod("method1", .methods ~ entry(method1))
Object1 ~ method1 /* separate object scope*/
SAY
/* add method to class object: */
RexxCode = "EXPOSE variable ;" ,
 "IF \ VAR('variable') THEN ;" ,
 " variable = 'value from RexxCode' ;" ,

 "SAY 'RexxCode:' variable ;" ,
 "SAY 'self:' self 'super:' super "

Object Classes, Meta Classes and Method Resolution in Object Rexx, page 12-23 (final)

.Test ~ define("method2", RexxCode) /* add method to class */
Object2 = .Test ~ new /* new object gets it */
Object2 ~ method2 /* .Test object scope */
SAY

/* defining a floating method: */
:: METHOD method1

 EXPOSE variable

 IF \ VAR('variable') THEN
 variable = 'value from method1'

 SAY 'METHOD1:' variable
 SAY 'self:' self 'super:' super

:: CLASS Test

:: METHOD init

 EXPOSE variable
 variable = 'value from .Test'

 SAY 'class Test, method INIT, variable set to:' variable
 SAY 'self:' self 'super:' super
 SAY
:: METHOD setmethod /* allow for using SETMETHOD */
 FORWARD CLASS (super)

Figure 7: Assigning methods with SETMETHOD and DEFINE

All method directives following a class directive are assigned to the immediately

preceeding class directive, thereby forming the methods a class will gain.

In addition there are many ways to add methods to a class object (cf. the methods

„DEFINE“, „MIXINCLASS“ and „SUBCLASS“ of the Object Rexx class „Class“) and even to

individual objects (cf. the method „SETMETHOD“ of class „Object“ and „ENHANCED“ of class

„Class“).

Figure 7 shows a program which adds the floating method „METHOD1“ to the object

„Object1“ only. Because producing one-off-objects (objects which possess methods which

are not defined with the appropriate class object) might be dangerous in some situations

the „SETMETHOD“ method of class „Object“ is defined to be private. A private method can

only be invoked by sending it to itself, therefore a public „SETMETHOD“ method was defined

for class „.Test“ which forwards this message to its own superclass, effectively resending

itself the message but taking care that a superclass method (from class „Object“ in this

case) is chosen.

Object Classes, Meta Classes and Method Resolution in Object Rexx, page 13-23 (rgf)

class Test, method INIT, variable set to: value from .Test
self: a TEST super: The Object class

METHOD1: value from method1
self: a TEST super: The TEST class

class Test, method INIT, variable set to: value from .Test
self: a TEST super: The Object class

RexxCode: value from .Test
self: a TEST super: The Object class

Figure 8: Object scope of methods assigned with SETMETHOD and DEFINE (output)

5 OBJECT SCOPES

If looking at the output in figure 8 it becomes clear that the object scope (Flatscher,

1996) is different for method „METHOD1“ and method „METHOD2“. This can be seen by

looking at the different value of the pseudo variable „super“ which points to the class

object (towards the root of the class tree) in which method resolution proceeds by default.

Another clue is watching the value of the object variable „variable“ which is different too,

because the object variables reside in different object scopes .

Adding methods to instances (with SETMETHOD or ENHANCED) always causes these

methods to execute within their own, separated object scope together with the object

variables they define; the pseudo variable „super“ points to the class object of the

instance rather than to the class object’s superclass which would be the class object for

class „Object“ in this particular example.

Adding methods to class objects (with DEFINE, SUBCLASS or MIXINCLASS)

incorporates these methods and the object variables these methods may define into the

object scope of the class object itself. Instances created thereafter will have these added

methods available at the class’ object scope! As an example see „METHOD2“ which gets

defined at runtime for the class object of the class „Test“ and is available for object

„Object2“ in figure 7 and 8, which got instantiated right after adding that new instance

method. Looking at the value of the pseudo variable „super“ reveals that the next class

Object Classes, Meta Classes and Method Resolution in Object Rexx, page 14-23 (final)

object to look up messages would be the one representing the class „Object“, because

this is „Test“’s superclass.

6 INTERFACING WITH SOM

As Object Rexx is fully SOM enabled it is a simple task to utilize SOM or DSOM for

that matter. One merely needs to define one Object Rexx class using the attribute

„EXTERNAL“ indicating that access to SOM is desired and which class to use. At this

moment the SOM environment becomes accessible and may be used e.g. to query the

SOM interface repository which contains all SOM classes, their methods, arguments and

return values. It is easy to determine which part of the interface definitions one wants to

inspect.

/* querying the SOM interface repository with Object REXX */

aRepository = .somClassMgrObject ~ _get_somInterfaceRepository

SAY "repository:" pp(aRepository) "of class:" pp(aRepository ~ class)
SAY

aContainer = aRepository ~ contents("InterFaceDef", .true)
SAY "aContainer:" pp(aContainer) "items" pp(aContainer ~ items)

i = 0
length = LENGTH(aContainer ~ items)
DO anItem OVER aContainer /* loop over array */
 i = i + 1
 SAY RIGHT(i, length) "id:" LEFT(pp(anItem ~ _get_id), 35),
 "name:" pp(anItem ~ _get_name)
 anItem ~ somFree /* free SOM object in hand */
END

aRepository ~ somFree /* free the repository SOM object */

:: ROUTINE pp; RETURN "[" || arg(1) || "]"

/* --------------- class to get access to SOM ---------- */
::CLASS Test PUBLIC EXTERNAL 'SOM SOMObject'

Figure 9: Accessing the SOM interface repository and querying it

Object Rexx uses and supplies the class definitions found in the program

„DLFClass.CMD“ for dealing with SOM datatypes. This file may be found in Object Rexx’

home directory.

Object Classes, Meta Classes and Method Resolution in Object Rexx, page 15-23 (rgf)

The program in figure 9 gets access to the SOM environment by defining the class

„Test“ for representing the SOM class object „SOMObject“. Classes which represent other

classes are called „proxies“. A proxy object forwards messages it does not understand to

the object it represents. Figure 10 shows part of the possible results of querying the

installed SOM-repository.

repository: [a Repository] of class: [The SOMProxy class]

aContainer: [an Array] items [374]
 1 id: [::SOMObject] name: [SOMObject]
 2 id: [::Sockets] name: [Sockets]
 3 id: [::AnyNetSockets] name: [AnyNetSockets]
 4 id: [::Contained] name: [Contained]
 5 id: [::AttributeDef] name: [AttributeDef]
 6 id: [::BOA] name: [BOA]
 7 id: [::SOMEEvent] name: [SOMEEvent]
 8 id: [::SOMEClientEvent] name: [SOMEClientEvent]
 9 id: [::Context] name: [Context]
 10 id: [::ConstantDef] name: [ConstantDef]
 11 id: [::Container] name: [Container]
 12 id: [::SOMPEncoderDecoderAbstract] name: [SOMPEncoderDecoderAbstract]
 13 id: [::SOMPAttrEncoderDecoder] name: [SOMPAttrEncoderDecoder]
 14 id: [::SOMEEMan] name: [SOMEEMan]
 15 id: [::SOMEEMRegisterData] name: [SOMEEMRegisterData]
 16 id: [::ExceptionDef] name: [ExceptionDef]
 17 id: [::SOMPMediaInterfaceAbstract] name: [SOMPMediaInterfaceAbstract]
 18 id: [::SOMPFileMediaAbstract] name: [SOMPFileMediaAbstract]
 19 id: [::SOMPAsciiMediaInterface] name: [SOMPAsciiMediaInterface]
 20 id: [::SOMPBinaryFileMedia] name: [SOMPBinaryFileMedia]
 21 id: [::SOMPIOGroupMgrAbstract] name: [SOMPIOGroupMgrAbstract]
 22 id: [::SOMPAscii] name: [SOMPAscii]
 23 id: [::SOMPBinary] name: [SOMPBinary]
 24 id: [::ImplementationDef] name: [ImplementationDef]
 25 id: [::ImplRepository] name: [ImplRepository]
 26 id: [::InterfaceDef] name: [InterfaceDef]
 27 id: [::SOMPKeyedSet] name: [SOMPKeyedSet]
 28 id: [::SOMPIOGroup] name: [SOMPIOGroup]
 29 id: [::IPXSockets] name: [IPXSockets]
 30 id: [::dictKeyCharPjw] name: [dictKeyCharPjw]
 31 id: [::SOMRLinearizable] name: [SOMRLinearizable]
 32 id: [::somf_MCollectible] name: [somf_MCollectible]
 33 id: [::somf_MLinkable] name: [somf_MLinkable]
 ------------------------------ cut ------------------------------------

Figure 10: Accessing the SOM interface repository and querying it (output)

Object Classes, Meta Classes and Method Resolution in Object Rexx, page 16-23 (final)

7 INTERFACING WITH THE WORKPLACE SHELL

Because OS/2’s Workplace Shell is a user interface framework built with SOM, it

becomes possible for Object Rexx programs to interact with WPS-objects by sending them

the appropriate WPS-messages. As with SOM classes it is possible to specialise the

behavior of WPS-classes by subclassing them and adding/overriding the desired methods.

This way other WPS objects and WPS aware programs may start to utilize WPS-objects

which in fact were created by Object Rexx and have Rexx code running in them! The

Object Rexx developer even supplied a DLL to make interaction with the WPS even

simpler, by allowing direct reference via Object Rexx without the need to define the

„EXTERNAL“ attribute on class directives.

Figure 11 shows an example Rick McGuire once posted in the internet newsgroup

„comp.lang.rexx“ which implements a password protected WPS-folder in Object Rexx!

This is done by specialising the WPS-folder object class with features (behaviors)

described in terms of Object Rexx.

The logic is fairly simple:

- class „VXPWPrompts“ handles input/output thru an OS/2 window (used later on for

setting the password) with the help of VX-Rexx in this example,

- class „WPLockFolder“ subclasses the WPS-folder class object and merely „catches“

those WPS-messages (starting with the string „wp“) directed to the WPS-folder which

it is interested in; the two most important messages are of course the creation of a

password protected folder („INIT“) and opening („wpOpen“) of such folders; note that

„WPLockFolder“ uses multiple inheritance to gain access to the functionality

(behavior) the „VXPWPrompts“ class defines.

- class „SMPPWChange“ is used to place an icon in the password protected folder, which

- if opened (double-clicked) by the user - causes the password change dialog

(associated via multiple inheritance with the „WPLockFolder“ object) to be displayed

by sending the appropriate message to the password protected folder object.

Object Classes, Meta Classes and Method Resolution in Object Rexx, page 17-23 (rgf)

/* */

call RXFuncAdd "VRLoadFuncs", "VROBJ", "VRLoadFuncs"
call VRLoadFuncs
environment['WPLOCKFOLDER'] = .WPLockFolder

::CLASS VXPWPrompts mixinclass object

::METHOD init

 expose buttons. default esc
 self~init:super /* let super class initialize. */
 self~initButtons

::METHOD initButtons

 expose buttons. default esc
 default = 1 /* Set up some default values for */
 esc = 2 /* the VX-REXX windows.... */
 buttons.0 = 2
 buttons.default = 'Ok'
 buttons.esc = 'Cancel'

::METHOD displayPrompt

 expose buttons. default esc
 use arg prompt, title
 /* Display Password prompt */
 rc = VRPrompt('', prompt, 'ENTERPW', title, 'BUTTONS.', default, esc)
 if rc = esc then /* cancel requested? */
 return .nil /* Yup, indicate no PW entered */
 else
 return enterPw /* Return entered PW. */

::METHOD displayError

 expose buttons. default esc
 use arg title
 /* Display error message for */
 /*incorrect PW */
 return VRMessage('', 'Incorrect Password Entered !!', title, 'E', 'BUTTONS.', default, esc)

/* ** */
::CLASS WPLockFolder subclass WPFolder INHERIT VXPWPrompts

::METHOD wpclsQueryTitle CLASS

 return 'LockFolder'

::METHOD init

 expose password
 self~init:super /* let superclass initialize 1t */
 /* Create object to allow PW Change */
 .smpPwChange~new('Change Password', 'ICONFILE=C:\OBJREXX\PMREXX.ICO', self, 1)
 if \var('PASSWORD') Then /* PW initialized via SetupString? */
 password = '' /* Nope, give default '' */

Object Classes, Meta Classes and Method Resolution in Object Rexx, page 18-23 (final)

::METHOD wpOpen

 expose password
 use arg handleContainer, view, params
 if password == '' then /* no password set? */
 return self~wpOpen:super(handleContainer, view, params) /* go ahead and open this*/
 /* Ask user for password. */
 enterpw = self~displayPrompt('Enter Password ...','Locked Folder Password')
 if password = enterPw then Do /* Was correct password entered */
 /*Yup, forward to WPFolder top Open */
 return self~wpOpen:super(handleContainer, view, params)
 End
 else Do /* Incorrect pw entered. */
 reply .false /* Return failure, and return to WPS */
 guard off
 self~displayError('LockFolder Error' password) /* Now display error to user. */
 End

::METHOD wpSetup

 use arg setupString
 strLength = .WPDLFULong~new(256) /* Will allow for up to 256 cahr PW */
 /* Get INOUT String parm */
 str = .WPDLFString~new~~_set_maxSize(strLength)
 /* see if setup strings has PW */
 if self~wpScanSetupString(setupString, 'PASSWORD', str, strLength) then
 self~password = str~asString /* Yup, set password. */

 return self~wpSetup:super(setupString)/* Superclass does remainder. */

::METHOD scrollTitle unguarded /* unguarded, want to rn concurrently*/
 title = self~wpQueryTitle /* Get current title */
 do 2 /* Will scroll twice. */
 do i = 1 to title~length /* For length of title. */
 /* display 1st 1 chars of title */
 self~wpSetTitle(right(left(title, i), title~length))
 end /* iincrement i. */
 end

::METHOD password ATTRIBUTE /* set/retrieve methods for password */

::METHOD wpSaveState /* Save the password data */
 self~wpSaveString(self~somGetClassName, 1, self~password)

 return self~wpSaveState:super /* Let parent save any state. */

::METHOD wpRestoreState

 self~initButtons /* make sure OREXX side initialized. */
 size = .WPDLFULong~new /* Get DLFUlong for size query. */
 /* Retrive size of string for restor */
 self~wpRestoreString(self~somGetClassName, 1, .nil, size)

 /* Create DLFString large enough to */
 /* contain the string, plus NULL */
 str = .WPDLFString~new~~_set_maxSize(size+1)
 /* Now get saved password. */
 self~wpRestoreString(self~somGetClassName, 1, str, size)

 self~password = str~asString /* Save password state value. */
 /* let parent restore state. */
 return self~wpRestoreState:super(arg(1))

Object Classes, Meta Classes and Method Resolution in Object Rexx, page 19-23 (rgf)

::CLASS SMPPWChange subclass WPAbstract

::METHOD wpOpen

 use arg handleContainer, view, params
 if view \= 2 & view \= 3 then Do /* Opening Default view? Dbl-click */
 lockf = self~wpQueryFolder /* Get our conatining lock folder */
 /* Ask for new password */
 newpw = lockf~displayPrompt('Enter New Password', 'New LockFolder Password')
 if newpw \= .nil Then Do /* Get a new password? */
 lockf~password = newpw /* Yup, set new pw. */
 lockF~wpSaveImmediate /* Save object state (PW) */
 End
 return 0
 End
 else /* Forward wpOpen to super class to handle. */
 return self~wpOpen:super(handleContainer, view, params)

Figure 11: Password Protected Folder in Object Rexx (source: Rick McGuire, posted in

the internet newsgroup on "Date: 10 Aug 1995 22:18:09 GMT", "Subject: Re: A practical

example of ORexx?")

All WPS-messages not intercepted by the Object Rexx program are handled by the

appropriate WPS classes due to the OO-method resolution. This example shows how

powerful true object orientation (in this case inheritance) is, even more, how impressive

the object oriented features of Object Rexx are! It should also demonstrate how Object

Rexx extends the notion of scripting into the object oriented world by allowing it to be used

as a scripting language for object oriented systems.

8 TWO LITTLE UTILITIES RELATED TO CLASSES: ISA AND ISCLASS

While developing Object Rexx programs many times it becomes necessary to be

able to tell whether an object is of a specific class (or its superclasses), and at times it may

become important to learn at runtime whether an object in hand is a class object.

Figure 12 depicts two routines where „IsA“ determines whether an object (or a class

object) belongs to the class of the object given as the second argument. The routine

„IsClass“ determines whether an object is in effect a class object by attempting to send it

messages which allow for determining this fact.

Object Classes, Meta Classes and Method Resolution in Object Rexx, page 20-23 (final)

There are also two floating methods defined, which may be used to be defined

dynamically to classes and which allow for using the message form „self ~ IsA(

otherClass)“ and „self ~ IsClass“.

/* IsA_IsClass.cmd */

:: METHOD IsA /* see routine for description */
 USE ARG SuperClassID
 RETURN isA(self, SuperClassID) /* call routine to do the work */

:: METHOD IsClass /* see routine for description */
 RETURN isClass(self) /* call routine to do the work */

:: ROUTINE IsA PUBLIC

 USE ARG SubClass, SuperClassID, internal_flag

 /* execute on very first invocation only ("internal_flag" is undefined),
 make sure to turn an object argument into its own class object for
 testing */

 IF internal_flag <> .true THEN /* check for class objects */
 DO
 IF \IsClass(SubClass) THEN SubClass = SubClass ~ class

 IF \IsClass(SuperClassID) THEN SuperClassID = SuperClassID ~ class ~ ID
 ELSE SuperClassID = SuperClassID ~ ID
 END

 IF SubClass~ID = SuperClassID THEN /* o.k., same class */
 RETURN .true

 DO SuperClass OVER SubClass~SUPERCLASSES /* test immediate superclasses */
 IF SuperClass~ID = SuperClassID THEN
 RETURN .true
 END

 /* not found, maybe one of the superclasses preceding the immediate ones ? */
 DO SuperClass OVER SubClass~SUPERCLASSES
 IF IsA(SuperClass, SuperClassID, .true) THEN
 RETURN .true
 END

 RETURN .false /* nope */

Object Classes, Meta Classes and Method Resolution in Object Rexx, page 21-23 (rgf)

:: ROUTINE IsClass PUBLIC

 USE ARG object

 /* if argument is a plain object NOMETHOD will be raised */
 SIGNAL ON NOMETHOD NAME nomethod_IsClass
 tmp = object ~ QUERYMIXINCLASS /* try class' method QUERYMIXINCLASS */

 /* take care of the case that we have an object of type .directory in hand
 which has an interesting UNKNOWN method implemented */
 SIGNAL ON NOMETHOD NAME nomethod_IsClass2
 object ~ ENTRY("id") /* use a .directory instance method */

 RETURN .false /* testing a directorylike object ! */

NOMETHOD_IsClass: /* not a class object, method QUERYMIXINCLASS unknown */
 RETURN .false

NOMETHOD_IsClass2: /* a class object, does not understand the directory message*/
 RETURN .true

Figure 12: Determining whether (class) object is of a specific kind and/or if object in hand

is a class object

9 CONCLUSIONS

This paper attempted to discuss various aspects of classes, metaclasses and

method resolutions as implemented by Object Rexx. Due to a true object oriented

implementation of the language all the benefits object oriented systems may be capable of

taking advantage of are available to programmers of Object Rexx. Because the language

has been kept as simple as possible, yet became extremely powerful in terms of object

orientation it has the potential of revolutionizing scripting languages with respect to object

oriented systems.

It is therefore a logical choice for IBM that Object Rexx is being used as the preferred

scripting language for OpenDoc’s „open scripting architecture“ (abbrev. OSA) in its own

OpenDoc implementations.

If the language gets ported to the various Unix flavors (most notable Linux and AIX)

enhanced with a standard class for utilizing (TCP/IP) sockets it may even be a stark

contender with Unix scripting languages like Perl, Python or TcL, allowing Object Rexx to

Object Classes, Meta Classes and Method Resolution in Object Rexx, page 22-23 (final)

become an industry wide scripting standard. As a matter of fact in this case even a

network scripting language.

Object Rexx in any case allows for utilizing all CORBA services via the SOM

interface, adding additional potential to the language. The moment Java classes get

SOMified (or „CORBAfied“) it became possible to utilize Object Rexx as a scripting

language for Java applets and applications also.

Given such potential developments Object Rexx would be able to become a true

universal scripting language in the IT-market.

10 ACKNOWLEDGEMENTS

The author wishes to thank Rick McGuire, one of the former lead developers for

Object Rexx, for his great hints and explanations given on the Internet-newsgroup

„comp.lang.rexx“ thru the past years, and Christian Michel the present lead developer for

the Object Rexx project.

11 REFERENCES

Online documentations of various beta versions of Object Rexx (the latest version

used for this paper stems from February 16th, 1996).

Various postings on the internet newsgroup „comp.lang.rexx“, 1995-1996.

Flatscher, R.G.: „Local Environment and Scopes in Object Rexx“, in: Proceedings of

the "7th International REXX Symposium, May 12-15, Texas/Austin 1996", The Rexx

Language Association, Raleigh N.C. 1996.

Goldberg, A., Robson, D.: „Smalltalk-80 - The Language and its Implementation“,

Reading: Addison Wesley, 1983..

Object Classes, Meta Classes and Method Resolution in Object Rexx, page 23-23 (rgf)

Date of Article: 1996-05-30.

Published in: Proceedings of the "7th International REXX Symposium", Texas/Austin,

May 12th-15th, 1996, The Rexx Language Association, Raleigh N.C. 1996.

Presented at: "7th International REXX Symposium", Texas/Austin, May 12th-15th,

1996, The Rexx Language Association.

Object Classes, Meta Classes and Method Resolution in Object Rexx, page 24-23 (final)

