

Developer's Toolkit for OS/2 2.0

Getting Started

Document Number S10G-6199-00

 Note

Before using this information and the product it supports, be sure to read

the general information under “Notices” on page ix.

First Edition (March 1992)

The following paragraph does not apply to the United Kingdom or any country

where such provisions are inconsistent with local law: INTERNATIONAL

BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states

do not allow disclaimer of express or implied warranties in certain transactions,

therefore, this statement may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes

are periodically made to the information herein; these changes will be incorporated in

new editions of the publication. IBM may make improvements and/or changes in the

product(s) and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM

products (machines and programs), programming, or services that are not announced

in your country. Such references or information must not be construed to mean that

IBM intends to announce such IBM products, programming, or services in your

country.

Requests for technical information about IBM products should be made to your IBM

Authorized Dealer or your IBM Marketing Representative.

IBM may have patents or pending patent applications covering subject matter in this

document. The furnishing of this document does not give you any license to these

patents. You can send license inquiries, in writing, to the IBM Director of Commercial

Relations, IBM Corporation, Purchase, NY 10577.

 Copyright International Business Machines Corporation 1992. All rights

reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use,

duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule

Contract with IBM Corp.

 Contents

Notices . ix

Preface . xi

Who Should Read This Book . xi

How This Book Is Organized . xi

Developer's Toolkit for OS/2 2.0 xiii

Chapter 1. Installing the Toolkit 1-1

System Requirements . 1-1

Installation Program . 1-1

Installation Procedure . 1-2

Subdirectory Structure . 1-5

Library Files . 1-6

Header Files . 1-6

Include Files . 1-7

Installing the Toolkit on Other Operating Systems 1-7

The WorkFrame/2 . 1-8

Adding Toolkit Tools . 1-9

Ordering Information . 1-9

Chapter 2. Online Documents 2-1

Control Program Reference . 2-1

Information Presentation Facility Reference 2-1

Presentation Manager Reference 2-2

REXX Reference . 2-2

System Object Model Reference 2-2

Tools Reference . 2-3

Using Online Documents . 2-3

Finding Help When Using the Enhanced Editor 2-5

Chapter 3. Sample Programs 3-1

Starting a Sample Program . 3-1

ANIMALS . 3-2

CLIPBRD . 3-3

CLOCK . 3-3

DIALOG . 3-3

DLLAPI . 3-3

 Copyright IBM Corp. 1992 iii

DRAGDROP . 3-4

EAS . 3-4

GRAPHIC . 3-5

HANOI . 3-5

HELLO . 3-5

IMAGE . 3-6

IPF . 3-6

JIGSAW . 3-6

NPIPE . 3-7

PDD . 3-7

PRINT . 3-7

QUEUES . 3-8

REXX . 3-8

CALLREXX . 3-8

DEVINFO . 3-9

PMREXX . 3-9

RXMACDLL . 3-9

REXXUTIL . 3-10

SEMAPH . 3-10

SORT . 3-10

STYLE . 3-11

TEMPLATE . 3-11

TP . 3-12

VMM . 3-12

WORMS . 3-12

WPCAR . 3-13

Chapter 4. Application-Management Tools 4-1

EXEHDR . 4-1

Starting EXEHDR . 4-2

FWDSTAMP . 4-2

Using Forwarders . 4-3

Starting FWDSTAMP . 4-3

IMPLIB . 4-4

Creating an Import Library . 4-4

Starting IMPLIB . 4-5

IMPLIB Options . 4-5

LINK386 . 4-7

Starting LINK386 . 4-8

Responding to LINK386 Prompts 4-8

iv Getting Started

Specifying LINK386 Options 4-9

Typing Input on the Command Line 4-9

Creating a Response File 4-10

Example of a Response File 4-11

OS2STUB.EXE . 4-11

MARKEXE . 4-11

Starting MARKEXE . 4-12

Viewing the Application Type 4-13

Setting the Application Type 4-13

MKMSGF . 4-14

Creating a Message File . 4-14

Starting MKMSGF . 4-16

Starting MKMSGF Using a Message Control File 4-16

MSGBIND . 4-17

Starting MSGBIND . 4-17

Binding the Message File 4-18

NMAKE . 4-18

Using NMAKE . 4-19

Starting NMAKE . 4-19

PACK . 4-20

Starting PACK . 4-20

Creating a List File . 4-23

Starting UNPACK . 4-24

Chapter 5. Presentation Manager Tools 5-1

Information Presentation Facility Compiler 5-1

Developing Online Information 5-2

Starting the IPF Compiler . 5-3

Compiling Help Files . 5-4

Compiling with International Language Considerations . . 5-4

Viewing an Online Document 5-4

Resource Compiler . 5-5

Creating a Resource Script File 5-5

Starting the Resource Compiler 5-6

Dialog Editor . 5-7

Starting the Dialog Editor . 5-8

Font Editor . 5-9

Starting the Font Editor . 5-9

Font Resource Files . 5-10

Icon Editor . 5-10

 Contents v

Starting the Icon Editor . 5-11

System Object Model Compiler 5-12

Setting the SMINCLUDE Environment Variable 5-12

Starting the SOM Compiler 5-13

Running SOM Emitters . 5-13

Workplace Class List . 5-14

Starting Workplace Class List 5-16

Chapter 6. System Debug Support 6-1

Communications . 6-1

The Debug Files . 6-1

Debug Kernel . 6-1

Debug Presentation Manager Interface 6-2

Installing the Debug Installation Program 6-2

Editing the CONFIG.SYS FILE 6-3

For the Debug Kernel . 6-3

Restoring the Kernel . 6-3

For the Debug Presentation Manager Interface 6-4

Restoring the Presentation Manager Interface 6-4

MAPSYM . 6-4

Starting MAPSYM . 6-5

T (Terminal Emulator) . 6-5

Hardware Requirements . 6-5

Starting T . 6-6

Chapter 7. The OS/2 Technical Library 7-1

Application Design Guide . 7-1

Programming Guide . 7-1

Information Presentation Facility Guide and Reference 7-2

System Object Model Guide and Reference 7-2

Control Program Programming Reference 7-2

Presentation Manager Programming Reference 7-3

Procedures Language 2/REXX User's Guide 7-3

Procedures Language 2/REXX Programming Reference 7-3

Physical Device Driver Reference 7-4

Virtual Device Driver Reference 7-4

Presentation Driver Reference 7-4

Systems Application Architecture: Common User Access Guide

to User Interface Design . 7-4

vi Getting Started

Systems Application Architecture: Common User Access

Advanced Interface Design Reference 7-5

Ordering Information . 7-6

Index . X-1

 Contents vii

viii Getting Started

 Notices

The following terms, denoted by an asterisk (*) in this publication, are

trademarks of the IBM Corporation in the United States and/or other

countries:

Common User Access

CUA

IBM

Operating System/2

OS/2

Personal Systems/2

Presentation Manager

SAA

Systems Application Architecture

WorkFrame/2.

The following terms, denoted by a double asterisk (**) in this

publication, are trademarks of other companies as follows:

Intel 80386 Intel Corporation

Intel486 Intel Corporation

 Copyright IBM Corp. 1992 ix

x Getting Started

 Preface

This book describes the individual components that make up the

Developer's Toolkit for OS/2 2.0 (Toolkit). Use this book as an

overview of the Toolkit, as a guide when installing the Toolkit

components, and later as a reference.

Who Should Read This Book

This book is for the professional programmer who will be installing

and using the components of the Toolkit. The reader is assumed to

be familiar (as a user) with the online services — the tutorial,

messages, and helps — provided by OS/2 2.0.

How This Book Is Organized

This book contains the following chapters.

� Chapter 1, “Installing the Toolkit,” provides a step-by-step

procedure of the installation of the Toolkit. A section on library,

header, and include files also is included in this chapter.

� Chapter 2, “Online Documents,” summarizes the contents of the

online programming documents and provides a brief description

of their features.

� Chapter 3, “Sample Programs,” explains the OS/2 function every

sample program demonstrates.

� Chapter 4, “Application-Management Tools,” describes the tools

that accept 32-bit application code and provides a command-line

syntax for starting the tool.

� Chapter 5, “Presentation Manager Tools,” describes the

Resource, Information Presentation Facility, and System Object

Model compilers; the Presentation Manager resource editors; and

the Workplace Class List.

� Chapter 6, “System Debug Support” describes the interface that

installs the debug kernel, and the debug Presentation Manager

interface, as well as other tools associated with system

debugging.

 Copyright IBM Corp. 1992 xi

� Chapter 7, “The OS/2 Technical Library,” describes each of the

books that support OS/2 application development.

xii Getting Started

Developer's Toolkit for OS/2 2.0

 Preface xiii

xiv Getting Started

Chapter 1. Installing the Toolkit

The Toolkit is a collection of sample application programs,

programming tools, library files, header files, and online documents

designed to aid you in developing applications for OS/2* 2.0 (OS/2).

 System Requirements

This chapter provides a step-by-step procedure that guides you

through installing the Toolkit using the program diskettes. Before we

begin, make sure you have the following:

� An IBM Personal System/2 (or equivalent) that has an Intel386**

(or higher) microprocessor with the OS/2 operating system

installed

� A minimum of 4MB of memory

� A high capacity 3.5-inch or 5.25-inch diskette drive

� A hard disk drive with 22MB of free disk space.

We recommend that you install a mouse.

 Installation Program

The Toolkit installation program is a Presentation Manager*

application. Three components are available for installation: “Sample

Programs,” “Online Information,” and “Development Tools.” The

installation program is preset to install all three components on the

drive the OS/2 operating system was installed on (the default drive).

If you want to install the Toolkit on another drive, or install each of

the components separately on different drives, you can do so using

the installation program menus.

* Trademark of the IBM Corporation

** Trademark of Intel Corporation

 Copyright IBM Corp. 1992 1-1

 Installation Procedure

While you are installing the Toolkit, few decisions are necessary.

However, if you need help, you can get it by pressing the F1 key, by

selecting the Help push button, or by choosing one of the help

choices from the Help menu.

For example, suppose you want information about installing a

component on a drive other than the default drive. To access the

online help for Toolkit installation:

1. Select Help from the menu bar.

2. Select General help.

The Toolkit comes with 3.5-inch 2.0MB diskettes, or 5.25-inch

1.44MB diskettes. Using the appropriate diskettes, follow these

steps to install the Toolkit:

1. Start an OS/2 Window or OS/2 Full Screen session.

2. Insert Toolkit installation Diskette 1 in drive A.

3. Type the following at the command prompt:

a:install

 Special Note

If you have a system with multiple diskette drives, the Toolkit

installation Diskette 1 can be inserted into a diskette drive

other than A. For example, you can insert the diskette into

drive B and type

b:install

4. Press Enter and wait for the logo window to appear.

1-2 Getting Started

5. Select OK. The Toolkit Installation window appears.

6. Mark the box preceding the components to be installed.

 7. Select Options.

To install one or more components on the default drive:

 a. Select Install.

b. Follow the prompts in the message boxes to complete the

installation on the default drive.

 Chapter 1. Installing the Toolkit 1-3

To install components on other drives:

a. Select Set drives.

The Toolkit Drive Selection window shows the selected

Toolkit component and the current drive assignment.

If you did not select a component for installation on the

previous window, it will not appear in THIS window. To

install a component on another drive, select the Down arrow

in the Drive field, then select the desired drive letter. After

completing your changes, select OK to activate the change.

The Toolkit Installation window re-appears.

 b. Select Options.

 c. Select Install.

d. Follow the prompts in the message boxes to complete the

installation.

You will swap diskettes several times during installation. The

message Install successful on drive x appears under the name

of each component at the completion of the installation. Remove the

last diskette. Select Options, then Exit.

1-4 Getting Started

For changes to take effect, you need to shut down your system, then

restart it.

 Subdirectory Structure

The subdirectory TOOLKT20 is created when you install Toolkit

components on a hard disk. The Toolkit can coexist with OS/2

Version 1.3 Programming Tools and Information. The following is

the subdirectory structure for the Toolkit:

─TOOLKT20
 ├─── ASM
 │ ├── OS2INC
 │ └── SAMPLES
 ├─── BOOK
 ├─── C
 │ ├── OS2H
 │ └── SAMPLES
 ├─── IPFC
 ├─── OS2BIN
 ├─── OS2HELP
 ├─── OS2LIB
 ├─── REXX
 └─── SC

The subdirectories and their contents are:

ASM\OS2INC Assembler language include files.

ASM\SAMPLES Assembler language sample programs.

BOOK Online documents.

C\OS2H C language header files.

C\SAMPLES C language sample programs.

IPFC Information Presentation Facility header

files.

OS2BIN Programming tools.

OS2HELP Help files for Presentation Manager

resource editors.

OS2LIB Library files.

REXX REXX header files and sample programs.

SC System Object Model class definition files.

 Chapter 1. Installing the Toolkit 1-5

 Library Files

Because the OS/2 operating system provides different names and

entry points for 16-bit and 32-bit functions, it is possible to mix 16-

and 32-bit code within a single .OBJ module. You also can call

32-bit functions from a 16-bit C-language program or call 16-bit APIs

from a 32-bit program. To support this mixed-mode programming,

the Toolkit provides two sets of library files.

OS2286.LIB The library against which the system calls for

16-bit programs are resolved.

OS2386.LIB The library against which the system calls for

32-bit programs are resolved.

 Header Files

Source 32-bit C-language header files (file name extension .H) are

provided with the Toolkit. The OS2.H header file contains a set of

files that has OS/2 API function definitions. Each of these files

contains definitions and macros for most of the system functions,

structures, data types, and constants associated with a specific

group of API functions. The following list provides a brief description

of these files:

OS2DEF.H

Defines common constants, types, error codes, and structures.

BSE*.H

Includes all control program (base) API functions.

PM*.H

Includes all Presentation Manager API functions.

REXX.H

Includes all REXX functions.

SOM*.H

System object model functions and definitions.

WP*.H

Workplace object methods.

1-6 Getting Started

An include statement at the top of your source-code file automatically

calls a hierarchy of header files. You can select the files you want to

include by placing statements in your source code before the include

statement; for example:

 #define INCL_\
 #include <os2.h>

Where INCL_* represents a symbolic identifier (* represents an

abbreviation that defines the include file or part of the include file

where the API function is declared).

 Include Files

Source assembler language include files are provided for the

assembler language programmer. OS2.INC is the top-level include

file used to call lower level control program (base) and Presentation

Manager include files.

Installing the Toolkit on Other Operating Systems

If you have an operating system other than OS/2, you must use the

TKXFER command to copy files to your hard disk. TKXFER is

located on diskette 1. Copy TKXFER to the operating system you

want to install the Toolkit on.

Some of the files on the diskettes are compressed. When the Toolkit

is installed under OS/2, the data on the diskettes are unpacked

automatically. When the Toolkit is installed under any other

operating system, the files must be unpacked manually.

Files that are “packed” can be recognized by the @ symbol as the

third character in the file-name extension. Extensions with only one

character have blanks padded with underscores; for example:

Original Compressed

FILE1.COM FILE1.CO@

FILE2.H FILE2.H_@

 Chapter 1. Installing the Toolkit 1-7

When unpacking manually, do not specify an output file name;

TKXFER uses the original uncompressed file name and extension as

the destination file name. It also preserves the date, time, and file

attributes of the original uncompressed file from the header of the

compressed file.

TKXFER copies files that are not compressed and handles file

information, such as date, time, and file attributes in the same way

the COPY command does. Therefore, a diskette can have both

compressed and uncompressed files.

 The WorkFrame/2

The WorkFrame/2* is a companion product to the Toolkit. It takes full

advantage of the OS/2 platform to create a graphical interface that

makes developing applications simple and straightforward.

The WorkFrame/2 has its own set of tools, supplementing those of

the Toolkit. It starts the Toolkit tools, as well as other IBM and

non-IBM tools, from a menu.

If You Want To: Type:

Copy a compressed

file from the current

directory on drive A to

drive C

TKXFER A:FILE.CO@ C:

Copy an entire

diskette of

compressed and

uncompressed files

from the current

directory on drive A to

the root directory on

drive C

TKXFER A:\\.\ C:

* Trademark of the IBM Corporation

1-8 Getting Started

Adding Toolkit Tools

You can add several Toolkit tools to the WorkFrame/2 environment:

 � Dialog Editor

 � Font Editor

 � Icon Editor

� Information Presentation Facility

 � Resource Compiler.

To help you do this, the Toolkit has the TOOLKT20.INI file in the

\TOOLKT20\OS2BIN subdirectory.

At the OS/2 command prompt, type:

ADDTOOL \TOOLKT20\OS2BIN\TOOLKT20.INI

Press Enter. The message Addtool utility finished successfully

appears at the completion of the installation.

To access the tools, select Tools from the WorkFrame/2 menu bar.

A list of the installed tools appears.

To add other Toolkit tools to the WorkFrame/2 environment, see the

IBM WorkFrame/2 Introduction.

 Ordering Information

To order the WorkFrame/2 interface, contact your IBM authorized

dealer or IBM representative and provide the appropriate part

number:

� For 3.5-inch diskettes, order part number 10G2994.

� For 5.25-inch diskettes, order part number 10G3292

 Chapter 1. Installing the Toolkit 1-9

1-10 Getting Started

 Chapter 2. Online Documents

Control Program Reference

The Control Program Reference provides the C-language syntax for

each of the base operating-system application programming interface

(API), including input and output parameters, data structures, data

types, return codes, and example code. API functions (indicated by

the prefix “Dos”) are presented by component; such as Error

Management, Exception Management, and File System. The API

functions, within each of the components to which they apply, are

listed in alphabetic order. API functions also are available from a

single alphabetic list. The online Control Program Reference

duplicates the information in the Control Program Programming

Reference book.

Information Presentation Facility Reference

The Information Presentation Facility Reference presents guidance

and reference information for the design and development of online

documents. It also presents guidance and reference information for

a help facility that users of your application will access.

This online reference contains an alphabetic list of Information

Presentation Facility (IPF) tags, symbols, and control words. IPF

compiler error messages, window functions, dynamic data formatting

functions, and help manager messages also are included. The

The Toolkit includes six online documents:

� Control Program Reference

� Information Presentation Facility

Reference

� Presentation Manager Reference

 � REXX Reference

� System Object Model Reference

 � Tools Reference

 Copyright IBM Corp. 1992 2-1

online IPF document duplicates the information in the Information

Presentation Facility Guide and Reference book.

Presentation Manager Reference

The Presentation Manager Reference provides the C-language

syntax for all the API functions for the Presentation Manager,

including input and output parameters, data structures, data types,

return codes, and example code. API function prefixes include Dev

(device), Drg (dragdrop), Ddf (dynamic data format), Gpi (graphics),

Prf (profile), Spl (spooler), and Win (window). Also included are

graphics orders, application hooks, Presentation Manager messages,

and the new workplace (WP) methods. The online Presentation

Manager Reference duplicates the information in these books:

� Presentation Manager Programming Reference, Volume I

� Presentation Manager Programming Reference, Volume II

� Presentation Manager Programming Reference, Volume III

 REXX Reference

The REXX Reference provides details of REXX functions, including

call syntax, parameters, return values, and error messages. Code

examples also are included. The information is presented by

component, such as Subcommand Interface, System Exit,

Macrospace, Variable Pool Interface, and Halt and Trace. The

online REXX Reference duplicates the information in the Procedures

Language 2/REXX Programming Reference book.

System Object Model Reference

The System Object Model Reference is a complete reference for

each of the Classes and Methods used for the object-oriented

programming environment. Also included are System Object Model

(SOM) C-language bindings, the Object Interface Definition

Language syntax, and the SOM compiler command syntax. The

information in this online document duplicates the System Object

Model Guide and Reference book.

2-2 Getting Started

 Tools Reference

The Tools Reference presents a collection of the tools that support

OS/2 applications development. They are:

 � EXEHDR

 � FWDSTAMP

 � IMPLIB

 � LINK386

 � MARKEXE

 � MKMSGF

 � MSGBIND

 � NMAKE

 � PACK

Also included are the Presentation Manager tools:

 � Dialog Editor

 � Font Editor

 � Icon Editor

 � Resource Compiler

� Workplace Class List

Finally, a special tool that provides kernel debug support also is

described.

Using Online Documents

The online documents in the Toolkit were developed with IPF. IPF

displays information through a familiar user interface and lets you do

the following:

� View a table of contents from which you can quickly gain access

to a category

� View the category and select related topics from a menu

� View multiple windows of related information for comparison

values

� Search for a topic throughout the document

� Copy the contents of a topic to the system clipboard for editing

with the OS/2 System Editor, the Enhanced Editor, or any other

editor with this capability.

 Chapter 2. Online Documents 2-3

� Copy the contents of a topic to a temporary file for editing with a

full-screen editor.

When installed, the online documents are added to the Information

folder. To access the online documents, select the folder, then

select the appropriate book. A window that has a table of contents

(Contents window) will appear. Figure 2-1 shows the Contents

window for the Control Program Reference.

Figure 2-1. Control Program Reference. The Contents window lists

available categories.

When the Contents window first appears, some categories have a

plus sign (+) beside them. The plus sign indicates that additional

topics are available. Click on the plus sign to expand the category.

For more information about using Toolkit online documents, see the

“How to Use” sections in each of the documents.

2-4 Getting Started

Finding Help When Using the Enhanced Editor

The Enhanced Editor (available with the OS/2 operating system) has

a feature that lets you obtain instant access to information in each of

the Toolkit online documents. Suppose you invoke the Enhanced

Editor, begin writing a window procedure using WinSetFocus, and

need information for one of its parameters. To find this information,

position the cursor at the beginning of the text string WinSetFocus

and press Ctrl + H. The Enhanced Editor takes you directly to the

WinSetFocus call in the online Presentation Manager Reference

document. When you finish using WinSetFocus, exit back to the

Enhanced Editor by pressing Alt + Esc.

Copying the Contents of a Window: You can also copy the

contents of WinSetFocus (or any other online topic) for editing with

the Enhanced Editor. Here's how:

1. Select Services from the menu bar.

2. Select Copy. A clock icon appears briefly, indicating that the

system has placed a copy of the topic to the clipboard (a

temporary holding place).

3. Toggle back (Alt + Esc) to the Enhanced Editor.

4. Move the mouse pointer to where you want the copy to appear.

Select Edit from the menu bar.

5. Select Paste. A copy of the topic is inserted at the entry field of

the Enhanced Editor file.

 Chapter 2. Online Documents 2-5

2-6 Getting Started

 Chapter 3. Sample Programs

This chapter describes the sample programs available with the

Toolkit. Most sample programs are written in C language and

demonstrate the use of the API functions of the control program

(base operating system) and the Presentation Manager interface. In

addition to C language, there are assembler language and REXX

sample programs. Each sample program serves as a template that

can be easily modified for your own purposes. All C language

samples contain the overhead routines necessary to create a

Presentation Manager application, as well as stubs for the basic

menu items that all applications should have. There are many

comments within the source code that clarify technical information by

presenting it in an alternate form. Names of the sample programs

correspond to their Toolkit subdirectory names.

Starting a Sample Program

From the Desktop: When installed, most sample programs appear

in the Sample Programs folder. To start a sample program, select

the folder, then select the appropriate sample program.

From an OS/2 Command Prompt: To start a sample program from

an OS/2 command prompt, type the name of the executable file and

press Enter. If you have edited source code of a sample program

and want to recompile, link, and run the files; change to the

subdirectory where the sample program resides and type:

NMAKE /f samples.mak [samplename]

where:

samplename

is the name of the sample program you want to build. To build

all of the programs, set samplename to all (or omit it).

Your output is the executable file. For information about the NMAKE

utility, see “NMAKE” on page 4-18.

 Copyright IBM Corp. 1992 3-1

From WorkFrame/2: Perhaps you have installed both the Toolkit

and the WorkFrame/2 product; if so, you can start a sample program

(assuming you have set up a project for the sample program) from

the WorkFrame/2 Project Control window. Select Actions from the

menu bar, then select Run; a project window displays the sample

program. You also can edit, compile, link, and run a sample

program from the WorkFrame/2 (see “The WorkFrame/2” on

page 1-8).

 ANIMALS

The Basic SOM Sample Program: ANIMALS demonstrates a

system object model (SOM) program in an object-oriented

programming context. ANIMALS also demonstrates basic concepts

of subclassing and inheritance, polymorphism, encapsulation, and

constructors using the analogy of a zoological taxonomy. This

sample program consists of 6 classes containing 14 methods. The 6

classes and their parentage are shown below:

Animal ─────► metaclass ─────► AnimalFactory
 │ │
 │ │
 │ │

Dog ─────► metaclass ─────► DogFactory
 │
 ┌───────┴─────────┐
 │ │
BigDog LittleDog

The AnimalFactory and DogFactory metaclass supply constructor

methods. BigDog and LittleDog inherit the metaclass of their parent,

DogFactory, and their constructors can be used to create BigDogs,

LittleDogs, and generic Dogs.

3-2 Getting Started

 CLIPBRD

The Clipboard Sample: CLIPBRD demonstrates how to provide a

Presentation Manager interface to the clipboard. Initially, CLIPBRD

displays a standard window with a bit map. The user can cut and

paste data in this window, using the system clipboard as an

intermediate storage area.

 CLOCK

The Timer Services Sample: CLOCK demonstrates how to use

and implement window timers and system-resource timers. This

sample program displays both an analog and digital clock. To

simulate elapsed seconds, the main Presentation Manager thread

repeatedly sets a one-second window timer that updates the current

time. CLOCK features an audible and visual alarm that the user can

set. When the time expires, the sample makes use of the DOS timer

services and notifies the user by sounding an alarm.

 DIALOG

The Dialog Box Sample: DIALOG demonstrates how to associate

a dialog box with a standard window. The dialog box is defined as a

dialog template in a resource file. This sample program also

demonstrates how to implement an entry field, push buttons, and

message boxes.

 DLLAPI

The Dynamic Link Library Sample: DLLAPI demonstrates how to

write and use a dynamic link library (DLL). The sample has a DLL

file and an executable (EXE) file. The DLL uses protected memory

on its shared data, and exception management to validate the

pointer parameters for a 32-bit API function. The EXE file

demonstrates how to handle a divide-by-zero exception, and calls the

function with invalid pointer parameters, followed by a call with valid

pointer parameters.

 Chapter 3. Sample Programs 3-3

 DRAGDROP

The Direct Manipulation Sample: DRAGDROP demonstrates how

to move files between directories with the dragging techniques of

direct manipulation. This sample program creates a list box that

contains a scrollable list of the current directory. To change the

current directory to one lower in the directory tree, the user selects

the directory name from the list and presses Enter. To change the

current directory to one higher in the directory tree, the user selects

File from the menu bar, then Open. The Select subdirectory

window appears. The user types the name of the subdirectory, then

selects OK.

The sample program must be started twice so there are two running

instances of the sample. Then, using a mouse, the user:

� Displays a directory file list from the first sample

� Selects a file name from the second sample

� Drags the file name (with mouse button 2) to the directory in the

first sample

� Drops the file name in the directory of the first sample.

The file is now moved into the chosen directory.

 EAS

The Extended Attributes Editor Sample: EAS demonstrates a

multithreaded application that retrieves, modifies, or sorts files by

their extended attribute value. Included in this sample program are

Presentation Manager procedures for dialog boxes and a standard

client window. EAS lets the user select an extended attribute file

name from a list, or enter a new name in an entry field. The user

can select the extended attribute type from a table.

3-4 Getting Started

 GRAPHIC

The Graphics Sample: GRAPHIC demonstrates how to use default

viewing transformation functions of the Presentation Manager. It also

demonstrates how to use an asynchronous drawing thread. The

sample program lets the user load metafiles using a dialog box. The

dialog box has a help push button. When the help push button is

activated, it provides instructions on loading a metafile from another

directory. The user also can print a metafile or graphic circle.

 HANOI

The Multithreaded Presentation Manager Sample: HANOI

demonstrates a multithreaded application with the familiar “towers of

Hanoi” puzzle. When the sample program is started the user sees

three poles (A, B, and C). Initially, pole A has on it a stack of disks

starting with the largest disks on the bottom and succeeding smaller

disks on the top. The main thread handles the Presentation

Manager interface and lets the user start or stop the Hanoi routine.

It also lets the user reset the number of working disks. The second

thread is created when Start is selected from the Options menu.

This thread starts the recursive execution of the Hanoi algorithm,

runs in the background, and moves and paints the disks.

 HELLO

The Standard Window Sample: HELLO demonstrates how to

create and display a standard window. This sample program also

demonstrates how to use resources defined in a resource script file.

Initially, HELLO displays a standard window with the text “Hello.”

The menu bar contains the Options choice. If the choice is

selected, the resulting menu contains three choices, each of which

paint a different text string in the window.

 Chapter 3. Sample Programs 3-5

 IMAGE

The Presentation Manager Porting Sample: IMAGE demonstrates

how to migrate from an existing OS/2 16-bit application to a 32-bit

application. This program also demonstrates how to display an

image using the GpiImage function. The image data comes from a

file the user selects using the standard File Open dialog procedure.

 IPF

The Information Presentation Facility Sample: IPF demonstrates

how to use the Information Presentation Facility to create an online

document and an application-controlled window that displays

animation. The online document also features customized windows

that display text and graphics.

Two files are associated with this sample:

� The IPF online document (.INF) file

� The OS/2 dynamic link library (.DLL) file.

The .INF file is the compiled IPF tag document. The source contains

tagging that defines different types of windows. Tags that control the

format and display of text also are included in this file.

The .DLL file is the compiled C-language source for the

communication object that is called when the .INF file is read during

run time. The bit map files used for the animation are also provided.

 JIGSAW

The Retained Graphics Sample: JIGSAW demonstrates the use of

bit maps in a graphics application. JIGSAW provides a jigsaw puzzle

based on the decomposition of an arbitrary bit map loaded from a

file. The user can jumble the pieces, then drag them with a mouse.

The image can be made smaller or larger, or scrolled horizontally

and vertically.

3-6 Getting Started

JIGSAW also demonstrates how to call the Information Presentation

Facility help hook, to create a help instance and associate the

instance with the active application window.

 NPIPE

The Named Pipes Sample: NPIPE demonstrates two-way

communication between two unrelated processes using named pipe

functions. This sample program implements the game of tic-tac-toe

with two executable files, CLINPIPE.EXE (the client) and

SVRNPIPE.EXE (the server). The server is the computer, and the

client is the user.

 PDD

The Physical Device Driver Sample: PDD demonstrates how to

construct a physical device driver. Features of this sample include:

� Initializing a device driver

� Defining a device driver header

� Requesting device driver helper services.

Also included are such elements as a strategy routine and interrupt

handlers.

PDD is an assembler language sample program. To run PDD, add a

DEVICE statement to the bottom of the CONFIG.SYS file. Specify

the path and complete file name to PDD. For example:

DEVICE=C:\TOOLKT20\ASM\SAMPLES\PDD\PDD.SYS

 PRINT

The Printer Sample: PRINT demonstrates how to display and print

text, graphics, metafiles, and bit maps. It also demonstrates how to:

� Query and display a system printer configuration

� Interact with the printer drivers to change job properties

� Query and display available printer and screen fonts

� Print from an asynchronous thread.

 Chapter 3. Sample Programs 3-7

 QUEUES

The Interprocess Communication Queue Sample: QUEUES

demonstrates interprocess communications (IPC) using 32-bit

queuing APIs. It consists of two executable programs,

SVRQUEUE.EXE and CLIQUEUE.EXE.

SVRQUEUE creates an IPC queue; a named, shared-memory buffer

for queue elements; and a shared, named, mutex (mutual exclusive)

semaphore. After initializing the queue, SVRQUEUE starts a thread

to read from the queue, prints the contents of the messages read

from the queue, and terminates at the user's request.

CLIQUEUE opens the queue and accesses the shared-memory

element buffer and mutex semaphore, and starts a thread to write to

the queue. CLIQUEUE requests a string of data from the user,

allocates a shared-memory element from the buffer, puts the string in

the shared-memory element, then uses an event semaphore to direct

the thread to write the element to the queue. CLIQUEUE terminates

at the user's request.

 REXX

Five REXX sample programs are included with the Toolkit:

 � CALLREXX

 � DEVINFO

 � PMREXX

 � RXMACDLL

 � REXXUTIL

 CALLREXX

The REXX Interpreter Invocation Sample: CALLREXX

demonstrates how a C-language application calls a REXX

application. To run the REXX application BACKWARD.FNC,

CALLREXX.C issues RexxStart. RexxStart calls the REXX

interpreter and passes in a parameter string. BACKWARD.FNC

returns a result string to the C-language application.

3-8 Getting Started

 DEVINFO

The REXX Variable Pool Interface Sample: This program issues

DosDevConfig and returns the data in a collection of compound

variables when all available items are requested, or a single variable

when only one item is requested. This is a REXX subcommand

handler and Variable Pool example. This sample can be run in an

OS/2 full-screen session, an OS/2 text-window session, or in

PMREXX.

 PMREXX

The Presentation Manager REXX Interface Sample: This sample

provides a Presentation Manager window in which the user can

display the output from a REXX procedure or from any programs

called by the REXX procedure. The window has an entry field into

which the user can type.

 RXMACDLL

The External Functions in REXX Macrospace Sample: This

sample demonstrates the macrospace interface with two C-language

programs: MACRO.C and RXNLSINF.C, which are compiled into

two separate dynamic link libraries.

MACRO.C contains REXX external functions, which perform REXX

macrospace operations. RXNLSINF.C contains a REXX external

function that provides information related to National Language

Support (for example, as a currency symbol and separator).

RXMACDLL.CMD uses MACRO.DLL to load NLSMONEY.CMD into

the macrospace and calls NLSMONEY.CMD several times to format

currency amounts. NLSMONEY.CMD formats the amounts

according to the specifications provided by RXNLSINF.DLL.

RXMACDLL can be run in an OS/2 full-screen session, an OS/2

window session, or in PMREXX.

 Chapter 3. Sample Programs 3-9

 REXXUTIL

The REXX Utility Functions Sample: REXXUTIL demonstrates a

set of external functions packaged in a dynamic link library, including:

� Use of OS/2 system functions in REXX external functions

� Techniques for passing large amounts of data to a REXX

program using REXX compound variables as arrays.

REXXUTIL can be run in an OS/2 full-screen session or an OS/2

window session. REXXUTIL cannot be run in PMREXX because

some of the functions use video services.

 SEMAPH

The Semaphore and Shared Memory Sample: SEMAPH

demonstrates the use of mutex and event semaphores. In the

sample, several threads share access to the same resource. A

mutex semaphore is used to guarantee that only one thread has

access to the resource at a time. An event semaphore is used to

signal the thread to give up the resource. The event semaphore can

be posted by the user or run in auto mode. In auto mode, the event

semaphore will be posted at fixed time intervals. A mutex

semaphore is used to check for a stop event or for a user signal to

give up the resource.

Each thread can display as a different colored square; similarly, the

resource can display as a rectangle, the color of which is that of the

first thread that owns it.

 SORT

The Multithreaded Process Sample: SORT demonstrates the use

of multiple threads by performing multiple sorts at the same time.

Each sorting algorithm runs from a separate thread. The main

thread is used to handle the main window's messages, while the

routine that updates the display is run from another thread.

3-10 Getting Started

 STYLE

The Style-Guide Sample: STYLE demonstrates a Presentation

Manager application that conforms with Common User Access*

requirements and implements the following new controls:

 � Container

 � Notebook

 � Slider

 � Spin button

 � Value set.

This sample program also demonstrates secondary windows, such

as dialog and message boxes. The code in STYLE is structured so

that the addition of a new function is handled in an efficient manner.

For example, to add a new command to an existing menu, you need

only add the command to the resource file, then add the appropriate

message-processing routines to the STY_USER.C file.

 TEMPLATE

The Application Template Sample: TEMPLATE demonstrates the

structure common to all Presentation Manager applications. This

sample program shows how to structure an application that has more

than one source file. TEMPLATE also demonstrates how to:

� Create a standard window

� Load resources from a resource file

� Create a dialog box and a button control

� Display a message box

� Open a file

� Close a file

 � Print text

� Paint a window

� Process a message from a menu

� Run a thread in the background

� Exit a process.

* Trademark of the IBM Corporation

 Chapter 3. Sample Programs 3-11

 TP

The Advanced SOM Sample Program: TP (text processing)

demonstrates an advanced system object model (SOM) program in

an object-oriented programming context. TP demonstrates the use

of abstract superclasses, and public and private methods. This

sample program also demonstrates subclassing, polymorphism, and

encapsulation.

TP reads a free-form file of text and markup language and produces

a formatted output file. The markup language is deliberately made

up so that it is clearly defined as a simulation. The input file

demonstrates the production of paginated, multi-column text with

indentation, page numbers, unordered lists, headers, and footers.

 VMM

The Virtual-Memory Management Sample: VMM demonstrates

the use of virtual memory by using new memory-management

functions to allocate and set the attributes of memory. Users can

read or write data into memory and reset the attributes using a dialog

box. The memory manager protects or opens the virtual memory to

read or write operations according to the different attributes of each

memory block. To free memory, the user enters the address of the

memory.

 WORMS

The Mixed-Mode Sample: WORMS demonstrates how to call video

(Vio), keyboard (Kbd), and mouse (Mou) 16-bit function from a 32-bit

code segment. This sample program displays earth worms aimlessly

moving about the screen. Each worm is a separate thread with a

unique color combination and movement pattern. When one worm

encounters another worm, the color attribute of the first worm is set

to red. The user can add or delete worms using the keyboard or

mouse.

3-12 Getting Started

 WPCAR

The Workplace Object Sample: WPCAR demonstrates how to

create a workplace object using basic object-oriented programming

techniques and the IBM System Object Model (SOM), including:

� Initializing an object

� Adding settings pages to an object

� Saving and restoring the state of an object

� Modifying object context menus (adding and deleting menu

items)

� Querying of object class data

� Processing context menu items

� Implementing settings page dialog processing.

 Chapter 3. Sample Programs 3-13

3-14 Getting Started

 Chapter 4. Application-Management Tools

The Toolkit provides the following tools:

 � EXEHDR

 � FWDSTAMP

 � IMPLIB

 � LINK386

 � MARKEXE

 � MKMSGF

 � MSGBIND

 � NMAKE

 � PACK

This chapter provides a brief description of each tool with just

enough detail to get you started at the OS/2 command line. If you

are using WorkFrame/2, you can start and operate all the tools from

a Presentation Manager menu (see “The WorkFrame/2” on

page 1-8).

For complete information about the tools described here, please refer

to the online Tools Reference.

 EXEHDR

EXEHDR provides a listing of the contents of the executable-file

header; it also provides a listing of the attributes of all segments in

the file.

Uses of EXEHDR include:

� Determining whether a file is an application or a dynamic link

library

� Modifying and viewing the attributes set by the module definition

file

� Viewing the number and size of code and data segments.

 Copyright IBM Corp. 1992 4-1

 Starting EXEHDR

You can start EXEHDR and specify all input from the command line.

An example of the syntax follows:

EXEHDR [options] filename

where:

options

is the name of the EXEHDR option that modifies the file

header. Regardless of options, EXEHDR always generates a

listing of the file header. See the online Tools Reference for a

description of EXEHDR options.

filename

is the name of the application or dynamic link library file. You

can specify any number of files.

 FWDSTAMP

FWDSTAMP adds entry points, called forwarders, to a dynamic link

library file (.DLL). Forwarders point to API functions or other

exported code or data. They contain an import reference so that the

final target address of the forwarded entry is contained in a different

module. A forwarder might be called an imported export.

When a file has a fix-up to a forwarded entry point, the loader

resolves that fix-up to the address of the entry point that the

forwarder imports by traversing the chain of forwarders until the end

of the chain (a nonforwarded export) is reached. All forwarders are

implicitly exported.

The imported entry point that a forwarder refers to may itself be

another forwarder. The loader will process a chain of forwarders

until a nonforwarder entry point is encountered.

There is no run-time cost to forwarders; however, there is a slight

load-time cost as the loader resolves forwarder chains with their final

addresses.

4-2 Getting Started

 Using Forwarders

You use forwarders to combine several DLLs into one without having

to relink old applications. For example, if MOUCALLS and

VIOCALLS were combined into a single DLL called NEWLIB.DLL,

then MOUCALLS and VIOCALLS could be replaced with special

DLLs containing forwarders to NEWLIB.DLL.

 Starting FWDSTAMP

You can start FWDSTAMP and specify all input from the command

line. An example of the syntax follows:

FWDSTAMP infile deffile outfile

where:

infile

Specifies the name of the dynamic link library file that LINK386

created. Use the file-name extension of DLL.

deffile

Specifies the name of the module definition file (.DEF) that

contains the forwarders.

outfile

Specifies the name of the .DLL file that will contain the added

forwarders.

Forwarders are specified in the module definition file so that an

exported name, which is also imported, is a forwarder. For example:

 IMPORTS
 VIOMODEWAIT=NEWLIB.123
 EXPORTS

VIOMODEWAIT @ 25

In the example, a forwarder entry point for VIOMODEWAIT is

created and contains an import reference to NEWLIB.123.

 Chapter 4. Application-Management Tools 4-3

 IMPLIB

IMPLIB is used to generate an import library (.LIB) file. IMPLIB

takes a module definition file (.DEF) as input. For each export

definition in the .DEF file, IMPLIB generates a corresponding import

definition.

The .LIB file generated by IMPLIB is used as input to LINK386,

which creates an executable (.EXE) file. The .LIB file provides

LINK386 with information about imported dynamic link functions.

Creating an Import Library

Import libraries are created by IMPLIB and are used to link dynamic

link libraries with applications.

Import libraries are similar in some respects to standard libraries:

� You specify import libraries and standard libraries in the same

command-line field of LINK386.

� Both types of libraries resolve external references at link time.

However, import libraries differ from standard libraries in that they

contain no executable code. Rather, they identify the dynamic link

libraries where the executable code can be found at run time.

Creating import libraries is an extra step. Nevertheless, import

libraries are recommended for use with all dynamic link libraries for

two reasons:

� IMPLIB automates much of the program creation process for

you. To use IMPLIB, you need to supply the .DEF file you

already created for the dynamic link library. Without an import

library, you must create a second .DEF file that explicitly defines

all needed functions in the dynamic link library.

� Import libraries make it easier for one person to write a library

and another to write the application. Much of the linking process

(linking the .DLL file and creating the import library) can be done

by the author of the dynamic link library. The import library and

associated .DLL file can then be given as a unit to the person

4-4 Getting Started

linking the application — that person need not worry about

creating a .DEF file.

 Starting IMPLIB

You can start IMPLIB and specify all input from the command line.

An example of the syntax follows:

IMPLIB [options] implibname {deffile... | dllfile...}

where:

options

is the name of the option that modifies the output of IMPLIB.

All options are described in “IMPLIB Options.”

implibname

is the name of the import library created.

deffile

is one or more module definition files that export routines in the

dynamic link library.

dllfile

is one or more dynamic link libraries with exported entry points.

Note: You can specify any number of either module definition files

or dynamic link libraries.

The following command creates the import library, MYLIB.LIB, from

the module definition file, MYLIB.DEF.

IMPLIB MYLIB.LIB MYLIB.DEF

 IMPLIB Options

Syntax Description

/HELP Displays a short summary of IMPLIB syntax.

/IGNORECASE

Turns case sensitivity off. This is the default.

/NOIGNORECASE

Turns case sensitivity on.

 Chapter 4. Application-Management Tools 4-5

/NOLOGO Suppresses the copyright screen when IMPLIB starts.

4-6 Getting Started

 LINK386

LINK386 is used to translate object files and standard library files

into a single executable file. LINK386 also generates dynamic link

libraries and device drivers.

LINK386 uses the following files as input:

� One or more object files that are linked with any optional library

files to form the executable file. Object files usually have a

.OBJ extension.

� One or more library files. The library files contain object modules

that are linked to the object files to form the executable file.

Library files usually have a .LIB extension.

� A module definition file. The module definition file provides

information to LINK386 about the executable file or dynamic link

library file it is creating. The module definition file usually has a

.DEF extension.

LINK386 produces three types of output files:

� An executable file that runs under OS/2 whenever you specify a

module definition file that has a NAME statement. The

executable file usually has a .EXE extension.

� A dynamic link library file. A dynamic link library is produced

whenever you specify a module definition file that has a

LIBRARY statement. A dynamic link library file usually has a

.DLL extension.

� A device driver file. A virtual or physical device driver is

produced whenever you specify a module definition file that has

the VIRTUAL DEVICE or PHYSICAL DEVICE statements. A

device driver file usually has a .DRV extension.

 Chapter 4. Application-Management Tools 4-7

 Starting LINK386

To link the object files and optional library files of your application,

supply input to LINK386 by:

� Responding to a series of LINK386 prompts

� Typing commands directly at the command prompt

� Creating a response file and entering the file name on the

command line.

Responding to LINK386 Prompts

To start LINK386, type the following at the command prompt:

LINK386

Press Enter; a series of prompts appear, one at a time:

Object modules [.OBJ]:
Run file [basename.EXE]:
List file [NUL.MAP]:
Libraries [.LIB]:
Definitions file [NUL.DEF]:

You can respond using any combination of uppercase and lowercase

letters. Enter your responses by pressing Enter.

To extend input to a new line, type a plus sign as the last character

on the current line. When the same prompt appears on a new line,

you can continue. Do not split a file name across lines.

To select the default response to a prompt, press Enter. The next

prompt appears.

To select the default response to the current prompt and all

remaining prompts, type a semicolon and press Enter. Note that you

must enter the name of at least one object file.

Responses within a command line are separated by commas.

4-8 Getting Started

LINK386 supplies the following default file extensions: .OBJ, .EXE,

.MAP, .LIB, and .DEF. You can override these extensions by typing

the file extension of your choice.

Specifying LINK386 Options

You can specify options anywhere on the response line, except

before a comma at the end of a line of characters. If you want to

specify more than one option, either group them at the end of a

response, or specify them at the end of several responses. Each

option must begin with a forward slash (/). For a complete list of

options and their descriptions, see the online Tools Reference.

To end the linking process at any point, press Ctrl+Break.

Typing Input on the Command Line

You can start LINK386 and specify all input from the command line.

An example of the LINK386 command is:

LINK386 [options] objfiles[,exefile,mapfile,libraries,deffile]

where:

options

is the name of the LINK386 option. Any number of options may

be specified.

objfiles

is the name of the object files that you want linked.

exefile

is the output file that LINK386 created. LINK386 produces

either an executable file, a dynamic link library, or a device

driver. If you do not specify a file name, LINK386 uses the

name of the first object file. Use the file-name extension .EXE

if it is an executable file, .DLL if it is a dynamic link library, and

.DRV if it is a device driver.

mapfile

is the name of the file that contains the map listing. The default

file name extension is .MAP. Use the /M option to include

public symbols in this file. (For information on public symbols,

 Chapter 4. Application-Management Tools 4-9

see the online Tools Reference.) Enter NUL if you do not want

a map file.

libraries

is a list of libraries for LINK386 to search. These libraries

include standard or import libraries, but not dynamic link

libraries. The library names should be separated by plus signs

(+) or blank spaces.

deffile

is the name of the module definition file for the executable file

or dynamic link library.

Creating a Response File

To operate LINK386 using a response file, you must first create a file

that contains the responses you want LINK386 to process. You can

give the file any name, and create it with any text editor.

Type the following command at the command prompt:

LINK386 @filename[.ext]

The @ symbol tells LINK386 that filename is a response file. If the

file is not in the working directory, you must specify the path. Begin

using a response file at any point on the LINK386 command line or

at any LINK386 prompt. The file should contain responses in the

same order as the LINK386 prompts. Each response needs to be on

a separate line. If you choose to place responses on the same line,

separate them with commas.

If the file does not contain responses for all the prompts, LINK386

displays the appropriate prompt and waits for you to supply a

response. End the response file with a semicolon.

You can use special characters in the response file the same way

you would use them in responses entered at the keyboard.

4-10 Getting Started

Example of a Response File

The response file in the following example instructs LINK386 to

generate an executable file called FUN.EXE, and four object

modules, FUN, SUN, RUN, and GAMES.

If you specify the file name, FUNLIST, LINK386 will generate a map

file named FUNLIST.MAP. Adding the /MAP option will cause

LINK386 to include the public symbols of the application in the map

file.

fun+sun+run+games /map
fun.exe
funlist
;

 OS2STUB.EXE

OS2STUB.EXE is included in the executable file created by

LINK386, if the STUB statement is included in the module definition

file. The stub is invoked whenever the file is executed under DOS.

By default, LINK386 adds its own standard stub for this purpose.

 MARKEXE

MARKEXE lets you view and set the type of application. The type of

application identifies the OS/2 sessions in which a program can run.

You can use MARKEXE in conjunction with programs that you have

created using LINK386 or with programs created by some other

means.

 Chapter 4. Application-Management Tools 4-11

 Starting MARKEXE

The MARKEXE command has the following form:

MARKEXE [force] [no] [display|dllinit|dllterm|type|lfns] filename

where:

force

Marks the executable file with OS/2 as the target operating

system even though the file was marked for another operating

system. Using force may produce internally inconsistent

executable files.

no

Sets the command to the opposite condition.

display

Displays the application type in a message. Does not change

the file.

dllinit

Sets per process initialization for the dynamic link library.

dllterm

Sets per process termination for the dynamic link library.

type

specifies the application type of the executable file. It can be

one of the following:

WINDOWAPI Uses the API function provided by the

Presentation Manager. It must be

executed in a Presentation Manager

window.

WINDOWCOMPAT Runs (compatible) in a Presentation

Manager window or in a full-screen

session.

NOTWINDOWCOMPAT The application must execute in a

full-screen session only.

4-12 Getting Started

UNSPECIFIED The application type is unknown. By

default, OS/2 runs an unspecified

application type in a full-screen

session.

If type is not specified, MARKEXE simply displays the current

type of the executable file.

lfns

specifies that the program supports long file names.

filename

specifies the executable file to be marked. Any number of files

can be marked.

MARKEXE does not modify the file if the application type of the

executable file is the same as the requested type. It displays the

message unchanged to indicate this.

Viewing the Application Type

You can view the application type of MYPROG.EXE by typing the

following:

MARKEXE MYPROG.EXE

MARKEXE displays the type in a message that looks like this:

MYPROG.EXE: OS/2 2.0, WINDOWCOMPACT, LFNS

Setting the Application Type

You can set the application type for MYPROG.EXE to

WINDOWCOMPAT by typing:

MARKEXE windowcompat myprog.exe

If you have more than one executable file to be set to the same

application type, you can supply the file names in a single command

line, as in the following example:

MARKEXE windowcompat myprog.exe abc.exe xyz.exe

 Chapter 4. Application-Management Tools 4-13

 MKMSGF

MKMSGF converts a text message file to an output (binary) message

file that DosGetMessage uses to display messages. Text messages

in OS/2 full-screen applications do not need to be loaded into

memory with the application; they can reside on disk until needed.

You can use the output message file by specifying a message file

name and a message number in the DosGetMessage parameter list.

The messages also can be bound to the executable file by

MSGBIND (see “MSGBIND” on page 4-17).

Creating a Message File

The input message file is a standard ASCII file that contains three

types of lines:

 � Comment

 � Component identifier

 � Component message.

Comment lines are the first lines of a file and must begin with a

semicolon. A component-identifier is a three-character name

identifier (for example, “DOS”) that precedes all MKMSGF message

numbers. Component-message lines consist of a message header

and an ASCII text message.

The following is an example of a text message source file.

4-14 Getting Started

;This is an example
;of a text message
;file
DOS
DOS0100E: File not found
DOS0101?:
DOS0102H: Usage: del [drive:][path] filename
DOS0103?:
DOS0104I: 1% files copied
DOS0105?:
DOS0106W: Warning! All data will be erased!
DOS0107?:
DOS0108?:
DOS0109P: Do you wish to apply these patches (Y or N)? %0

 Chapter 4. Application-Management Tools 4-15

where:

DOS0100E — DOS0109P

identifies message numbers in sequence. The first three

characters indicate the component identifier; the four-digit

number indicates the message number, which is followed by a

letter (described below), then a colon and blank space. If a

message number is not used, type the number, end it with a

question mark (?), and leave an empty entry.

E, H, I, P, W

indicates the type of message. Categories include error (E),

help (H), information (I), prompt (P), and warning (W).

%0

displays a prompt for input from the user, after which a carriage

return and line feed are inserted.

 Starting MKMSGF

To start MKMSGF, type:

MKMSGF infile outfile [option]

where:

infile

specifies the input file that contains message profiles.

outfile

names the outfile using the three-character component identifier

and the .MSG file extension; for example, MES.MSG.

option

Specifies the name of the option that modifies the output file.

For a complete list of options and their description, see the online

Tools Reference.

Starting MKMSGF Using a Message Control File

A message control file is used to create multiple code page message

files. An example of the command-line syntax follows:

4-16 Getting Started

MKMSGF @controlfile

where:

@controlfile

is the name of the file that contains the control statements used

to generate a multiple code page message file.

The @ symbol is not part of the file name; it is a required

delimiter.

An example of a message control file follows:

root.in root.out /Pcodepage
/Ddbcsrang/ctryid /LlangID,VerId /V
sub.001 sub1.out /Pcodepage
/Ddbcsrang/ctryid /LlangID,VerId
...
sub.00n subn.out /Pcodepage
/Ddbcsrang/ctryid /LlangID,VerId

 MSGBIND

When the DosGetMessage function is issued, it searches for the

message in the message segment bound to the application's

executable file, and then the application's message file on a a hard

disk. To ensure that a message is displayed quickly, you can bind it

to the application's executable file by using the MSGBIND utility

program. For each executable file, MSGBIND specifies which

message files to scan; for each message file, it specifies which

message to include in the executable file.

 Starting MSGBIND

To start MSGBIND, type:

MSGBIND [infile]

where:

infile

specifies the input file that contains the executable files, output

message files, and message numbers that are to be bound.

 Chapter 4. Application-Management Tools 4-17

Binding the Message File

The input file contains three types of lines:

� > Executable file

� < Message file

 � Message numbers.

An example of an input file follows:

>PROG1.EXE
<\MESSAGES\PRGMSG.MSG
PRG0100
PRG0101
PRG0102
<\MESSAGES\APP.MSG
APP0001
APP0002
APP0003

Where:

>PROG1.EXE

is the executable file to be modified

<

defines the first message of a series to be bound, delimited

either by the end of the series or a less-than symbol (<).

<\MESSAGES\PRGMSG.MSG and <\MESSAGES\APP.MSG

names the files containing the binary versions of the messages

(created by MKMSGF) and their identifying numbers: the

three-character component identifier and the four-digit message

number.

 NMAKE

NMAKE carries out all tasks needed to update a program after one

or more of the source files in the program have changed. NMAKE

compares the modification dates for one set of files — the target files

— with those of another set of files — the source files. NMAKE then

carries out a given task only if a target file is out of date. NMAKE

does not compile and link all files just because one file was updated.

4-18 Getting Started

This can save time when creating programs that have many source

files or that take several steps to complete.

 Using NMAKE

To use NMAKE, create a description file (or make file). A description

file, in its simplest form, lists which files depend on others and which

commands need to be executed if a file changes. You can create an

NMAKE description file with any text editor that produces ASCII files.

A description file looks like this:

targets... : dependents...│
 command │◄───description block
 : │

targets... : dependents...
 command
 :

A dependent relationship among files is defined in a description

block. A description block indicates the relationship among various

parts of the program. It contains commands to bring all components

up-to-date. The description file can contain any number of

description blocks.

Use NMAKE description files for creating backup files, configuring

data files, and running programs when data files are modified.

 Starting NMAKE

You can start NMAKE and specify all input from the command line.

An example of the syntax follows:

NMAKE [options][macrodefinitions] [targets][/F filename]

where:

options

is the name of the option that modifies the action of NMAKE.

For information about NMAKE options, refer to the online Tools

Reference.

 Chapter 4. Application-Management Tools 4-19

macrodefinitions

is the name of the macro that replaces one text string for

another in the description file. For a list of predefined macros

to use with NMAKE, see the Tools Reference.

targets

is the name of one or more target files you want NMAKE to

create. If you do not list any targets, NMAKE creates the first

target in the description file.

/F filename

is the name of the option that specifies filename as the name of

the description file to use. If a dash (—) is entered instead of a

file name, NMAKE reads a description file from the standard

input device.

 PACK

PACK reduces the size of a file by compressing its data. You can

use PACK for a single file or a group of files, thereby reducing the

disk space required for your OS/2 application. UNPACK restores a

compressed file to its original size and copies it to a specified

directory.

 Starting PACK

You can start PACK with a single command from the command line.

The input required can be specified in one of two ways:

� You can type the names of all the files you want to compress

directly in the command line (method 1).

� You can type the name of a single file that contains a list of all

the files you want to compress (method 2).

When using PACK, select the method that is suitable for you.

Include the drive and path if the files are not in the working directory.

You can specify file names with any combination of uppercase and

lowercase letters. File-name extensions are not required; however, if

you specify a file name that has an extension, also type the

extension.

4-20 Getting Started

Examples of the command-line syntax follow:

 Method 1:

PACK sourcefile [packedfile]
 [/H:headerpath\|/H:headerfile|/H:headerpath\headerfile]

[/D:headerdate] [/T:headertime] [/C] [/A] [/R]

 Method 2:

PACK listfile [packedfile] /L
 [/H:headerpath\|/H:headerfile|/H:headerpath\headerfile]

[/D:headerdate] [/T:headertime] [/C]

where:

sourcefile

Specifies the name of the file you want packed (compressed).

This parameter is required. Include the drive and path if the

file is not in the working directory. Global file-name characters

are permitted.

When the data is compressed, the name of the source file is

placed in the header of the compressed file and is used as the

destination file name during unpacking.

listfile

Specifies the name of the file that contains a list of files that are

to be compressed. When naming a list file, do not use global

file-name characters.

For information about list files, see “Creating a List File” on

page 4-23.

packedfile

Specifies the name of the file that will contain the compressed

data. Files that contain compressed data can be recognized by

the @ symbol as the last character in the file name. If you do

not specify this parameter, PACK places the compressed data

in sourcefile and modifies its name to contain the @ symbol.

/H:headerpath\ or /H:headerfile or /H:headerpath\headerfile

These parameters can be used separately or paired.

 Chapter 4. Application-Management Tools 4-21

/H:headerpath\

Specifies the destination path (drive letters are not

permitted) to be placed in the header of the file that

contains the compressed data. Unless this path is

overridden with the UNPACK command, it will be the

destination path when the file is uncompressed.

Headerpath must end with a backslash (\).

/H:headerfile

Specifies the name of the file to be placed in the header

of the compressed file. This file name will be used as the

destination file for the uncompressed data and cannot be

overridden.

If a header file name is not specified, PACK automatically

uses sourcefile as the name of the file that is placed in the

header of the compressed file.

/H:headerpath\ headerfile

Specifies that both a destination path and a destination file

name are to be placed in the header of the file that has

the compressed data.

/D:headerdate

Records the date in the header of the file that has the

compressed data, and also in the destination file when it is

uncompressed.

The date must follow the format /D:MM-DD-YYYY. For

example: /D:08-20-1991 and /D:12-30-2010.

/T:headertime

Records the time in the header of the file that has the

compressed data, and also in the destination file when it is

uncompressed.

The time must follow the format /T:HH.MM. For example

/T:02.06 and /T:14.54. Hour 00 represents 12 a.m. and hour 12

represents 12 p.m.

/A

Adds data from sourcefile to the data in packedfile.

The source file can be either in a compressed or uncompressed

state. If the source file is in an uncompressed state, the data is

4-22 Getting Started

compressed before being added to the file containing the

compressed data.

/C

Specifies that the current path be placed in the header of the

file that contains the compressed data. When the UNPACK

command is used, this path will be the destination path for the

file that contains the uncompressed data.

You cannot use /C when the headerpath is used.

/L

Indicates that filename is a list file. A list file is not

compressed; it simply contains a listing of the names of the files

that are to be compressed.

/R

Removes the file specified by sourcefile from the file that

contains only compressed data. The sourcefile parameter must

specify the path and file name exactly as they appear in the

header of the file with the compressed data; otherwise, the

following error message

The specified file to remove was not found.

appears on the screen.

The /R parameter is valid only when used in conjunction with

sourcefile and packedfile.

Note: The path and file-name information stored in the header of

the file that contains the compressed data can be displayed

by using the /SHOW option available with UNPACK. For

information about the /SHOW option, see the UNPACK

command in the online OS/2 Command Reference.

Creating a List File

To use a list file with PACK, you must first create a file that contains

the names of the files you want to compress. You can give the list

file any name. Following is an example of specifying a list file at the

command line:

PACK DEVICE.LST DEVICE.DRV /L

 Chapter 4. Application-Management Tools 4-23

The /L indicates that DEVICE.LST is a list file. If the list file is not in

the working directory, you must specify the drive and path. Global

file-name characters are not permitted in the list-file name.

DEVICE.DRV is the destination file for the end-to-end-compressed

data. (End-to-end compressed data is the data from each of the files

contained in the list file. This data is stored in a contiguous format in

the destination file.)

The syntax used in the list file is similar to that used in the command

line. The syntax for a single line in the list file follows:

sourcefile [/H:headerpath\|/H:headerfile|/H:headerpath\ headerfile]
[/D:headerdate] [/T:headertime] [/C]

Remember, when using the list-file method (method 2), global

file-name characters are not permitted in the source-file name.

Notice also that “PACK” is excluded, and packedfile is not permitted

in the list file, because they were specified on the command line.

You can include comments or blank lines by entering a semicolon as

the first character of the line. An example of a list file follows:

;This is a comment
C:\OS2\COMMAND.COM
CONFIG.SYS /H:CONFIG.BAK /C
\OS2\INSTALL\DDINSTAL.EXE /H:\OS2\DDINSTAL.TMP /D:10-15-91 /T:11.45

 Starting UNPACK

UNPACK restores a file of compressed data to its original size and

copies it to a specified drive and path. To start the UNPACK

command, type:

UNPACK sourcefile [destinationdrive:] [destinationpath]
[/SHOW] [/N:singlefile] [/V] [/F]

where:

sourcefile

Specifies the name of an existing file that contains compressed

data. If this file contains one or more files of compressed data,

UNPACK restores each file within the file.

4-24 Getting Started

destinationdrive:

Specifies the name of the drive to which you want UNPACK to

copy one or more restored files.

When you specify a destination drive, but not a path, UNPACK

uses the path information stored in the header of the file that

contains the compressed data.

destinationpath

Specifies the name of the directory (and its subdirectories) to

which you want UNPACK to copy one or more restored files.

When specified, the destination path overrides the path

information stored in the header of the file that contains the

compressed data.

/SHOW

Displays the destination path and file-name information that are

saved in the header of each file containing compressed data.

/N:singlefile

Extracts and uncompresses one file from a file that contains

multiple files of compressed data.

/V

Verifies that sectors written to the target disk are recorded

properly. This parameter lets you know that critical data has

been correctly recorded.

This parameter causes UNPACK to run slower because a

check is made for each entry recorded on the disk.

/F

Specifies that files with extended attributes should not be

unpacked or copied if the destination file system does not

support extended attributes.

 Chapter 4. Application-Management Tools 4-25

4-26 Getting Started

Chapter 5. Presentation Manager Tools

This chapter describes the Presentation Manager tools that let you:

� Develop a user-help interface or online documents

� Add resources to your applications, such as message strings,

menus, and dialog boxes

� Create dialog boxes or change controls in existing dialog boxes

� Modify raster fonts to construct images, such as lines, circles or

other geometric shapes

� Create icons, pointers, and bit maps

� Implement workplace objects

� Create workplace object classes and instances of workplace

object classes.

Information Presentation Facility Compiler

The Information Presentation Facility (IPF) is a set of tools used to

create an online help facility for an application. IPF also is used to

create online information that can be viewed independent of an

application. It is a tool for both the information author and the

application programmer.

As an author of online information, you can define the windows in

which information is displayed. For example, a window can be split

so that scrollable text can be displayed beside a stationary illustration

that the text describes. Figure 5-1 shows an IPF split-window

design that describes the IBM* Personal System/2* Model 90 XP 486

series.**

* Trademark of the IBM Corporation

** Trademark of Intel Corporation

 Copyright IBM Corp. 1992 5-1

Figure 5-1. IPF Split Window. The split window was created with the IPF

tagging language.

Developing Online Information

IPF makes it possible for you to design your information in two types

of formats:

� An online document format for tutorials or reference books

� A help-window format for fields within application programs.

To produce either format, you must create a text file using a text

editor program and two IPF elements:

� The IPF tagging language — it consists of the instructions for

formatting and displaying your document on the screen.

� The IPF compiler — it interprets the tags and converts the

source file into an IPF format.

5-2 Getting Started

Starting the IPF Compiler

You can start the IPF compiler and specify all input from the

command line. An example of the syntax follows:

IPFC filename [/INF] [/S] [/X] [/W] [> messageoutputfilename]

where:

filename

Specifies the name of your IPF source file.

If you do not give a file-name extension, the IPF compiler uses

.IPF by default. If your file has a file-name extension other than

IPF, include that file-name extension in the command line.

/INF

Compiles the source file as an online document.

If this parameter is not included, the default is to compile the

source file as a help library, whose extension is .HLP.

/S

Suppresses the performance of the Search function. This

parameter increases compression of compiled data by about

10% to further reduce the storage it requires.

/X

Generates and displays a cross-reference list.

/Wn

Generates and displays a list of error messages. The n

indicates the level of error messages you want to receive.

Values you can specify for n are 1, 2, or 3.

� Warning Level 1 (the most severe)

� Warning Level 2 (moderately severe)

� Warning Level 3 (the least severe).

messageoutputfilename

Specifies the name of the file where error and cross reference

messages are sent. If you do not specify this parameter,

messages generated by /X and /Wn are sent to the display

screen.

 Chapter 5. Presentation Manager Tools 5-3

Compiling Help Files

To compile a source file that is intended as a help-text window, use

the IPFC command without the /INF option. For example:

IPFC myhelp.hlp

Compiling with International Language Considerations

The following parameters provide international language support:

/COUNTRY=nnn (nnn is the 3-digit country code)

/CODEPAGE=nnn (nnn is the 3-digit code page)

/LANGUAGE=xxx (xxx is a 3-letter identifier that indicates an

international languages file is to be used).

An example of the command-line syntax follows:

IPFC myfile.txt /INF /COUNTRY=033 /CODEPAGE=437 /LANGUAGE=FRA

Viewing an Online Document

If you want to see your formatted online document, you can use the

VIEW command to display it.

An online document has an extension of INF. It can be viewed by

entering its name as a parameter to the VIEW command; for

example:

VIEW myfile

You do not need to include the INF file extension.

Note: You cannot use VIEW to display help-text windows for

application programs.

For complete information about this tool, see the online Information

Presentation Facility Reference.

5-4 Getting Started

 Resource Compiler

The OS/2 Resource Compiler is a tool that lets you add application

resources, such as message strings, pointers, menus, and dialog

boxes, to your application's executable file. The primary purpose of

the Resource Compiler is to prepare data for applications that use

functions such as WinLoadString, WinLoadPointer, WinLoadMenu,

and WinLoadDlg. These functions load resources from the

application's executable file or another specified executable file. The

application then can use the loaded resources as needed.

The Resource Compiler and the resource functions let you define

and modify application resources without recompiling the application

itself. The Resource Compiler can modify the resources in an

executable file at any time without affecting the rest of the file. You

can create custom applications from a single executable file by using

the Resource Compiler to add the custom resources you need to

each application. The Resource Compiler is especially important for

international language support because it lets you define all

language-dependent data, such as message strings, as resources.

Preparing the application for a new language is simply a matter of

adding new resources to the existing executable file.

Creating a Resource Script File

All resources are defined in a resource script file. You use a text

editor to create a resource script file that has an RC extension.

Resources are defined either explicitly in statements in the resource

script file, or in other files (such as output files from the resource

editors). The .RC file is the input file to the Resource Compiler; the

output has an RES extension. The .RC file can contain statements

that define resources and that include resources from other files.

Text-based resources such as menus, shortcut keys, and text strings

are defined in the .RC file. Non-text-based resources are specified

in the .RC file as file names of the external files where these

resources reside. Such resources include icons, pointers, and bit

maps. The syntax for including external files in a resource script

varies according to the nature of the resources defined or contained

in the files. Fonts have a resource file to themselves.

 Chapter 5. Presentation Manager Tools 5-5

Make sure that none of the include files in your resource script file

contain an end-of-file character. When the Resource Compiler sees

an end-of-file character, it assumes it to be the end of all input.

For an example of a resource script file, see the sample program

“TEMPLATE” on page 3-11.

Starting the Resource Compiler

You can start the resource compiler in three ways:

� Compile a resource script file and bind it to an executable file

� Compile a resource script file but do not bind it to the executable

file

� Compile a resource script file and put it in a dynamic link library.

Compiling and Binding Resources to an Executable File: To

compile the resource script file EXAMPLE.RC and bind the resulting

compiled resource (.RES) file to the executable file, EXAMPLE.EXE,

use the following command:

RC EXAMPLE

You do not need to specify the .RC extension for EXAMPLE. The

Resource Compiler program creates the resource file

EXAMPLE.RES and then adds the compiled resource to the

executable file EXAMPLE.EXE.

Compiling Without Binding Resources to an Executable File:

To compile the resource script file, EXAMPLE.RC, into a resource

file without binding the resources to an executable file, use the

following command:

RC -R EXAMPLE

The compiler creates the resource file EXAMPLE.RES.

Putting Resources in a Dynamic Link Library: Instead of binding

a resource file to your application, you can put it in a dynamic link

library. To add the compiled resources to a dynamic link library, use

the following command:

RC EXAMPLE.RES DYNALINK.DLL

5-6 Getting Started

You can then link the file at run time and load the resources into

your application by using the DosLoadModule or GpiLoadFonts

functions. However, you cannot switch from binding resources to

putting resources into a dynamic link library without changing your

application source code. For information on how to put resources

into a dynamic link library, see the Application Design Guide. For

complete information about the Resource Compiler, see the online

Tools Reference.

 Dialog Editor

The Dialog Editor is used to create and modify dialog boxes and

specify the controls and text within dialog boxes. As you create a

dialog box and add controls, the Dialog Editor draws it to the screen.

You can resize and reposition the dialog box, then test its controls

before you incorporate it in your application.

Although the Dialog Editor draws box outlines and controls to the

screen so that you can view it from a user's perspective, the Dialog

Editor does not save it as a graphic. Instead, the Dialog Editor

stores a description of the dialog box and its controls in a text file

that has a file-name extension of DLG. It also creates a compiled

form of the .DLG file into a resource file that has an extension of

RES. The dialog-box and resource files can each contain

descriptions of more than one dialog box. The resource file can

contain other application resources, such as icons, bit maps, and

string tables. It is attached to the application's executable (.EXE) file

during the compile and link processes.

 Chapter 5. Presentation Manager Tools 5-7

Starting the Dialog Editor

To start the Dialog Editor, select the PM Development Tools folder,

them select Dialog Editor. The following window appears.

The File and Edit menu bar choices provide two ways to create a

dialog box:

� From the File menu, select New. This opens new resource files

with the extensions .RES and .DLG, but the Dialog Editor does

not tell you that it has opened the resource files. You can open

a new include file or an existing one.

� From the Edit menu, select New Dialog. The editor opens new

files with the extensions .RES and .DLG. This opens a new

include file, but the Dialog Editor does not tell you that it has

opened the include file.

Both of the above methods have the same effect.

When you edit a dialog box, the names of the resource and include

files are shown in the title bar of the Dialog Editor. If you are editing

a new file that has not yet been named or saved, (Untitled) appears

in the title bar in place of a name. If (Untitled)* appears in the title

bar in place of a name, there are unsaved changes.

For more information about the many functions of the Dialog Editor,

see the online Tools Reference.

5-8 Getting Started

 Font Editor

The Font Editor is used to design and save fonts for use in

applications. A font is a set of alphanumeric characters, punctuation

marks, and other symbols that share a common typeface design and

line weight.

When the Font Editor creates a font file, it supplies an FNT file-name

extension. The font file contains a header, which describes the font

in general terms, and a section that contains bit maps of the

characters themselves.

Starting the Font Editor

To start the Font Editor select the PM Development Tools folder,

then select Font Editor. The following window appears.

The quadrille to the left of the screen has within it an enlarged

version of the character selected from the long, scrollable, horizontal

box at the bottom of the screen. To edit the enlarged version of the

character in the quadrille, use the mouse to switch the enlarged

representation to black or white. You can change a series of pels by

holding mouse button 1 down and moving the pointer through the

pels.

 Chapter 5. Presentation Manager Tools 5-9

Several choices are available from the menu bar that enable you to

tailor individual fonts. With these choices you can:

� Create a font file or open an existing file

� Edit a new or existing font

� Define the characteristics of the font

� Specify character spacing (fixed or proportional)

� Name the typeface

� Identify a type style (italic, underscored)

� Change the width and weight of individual characters

� Insert or delete a column in the character.

Font Resource Files

All resources, except fonts, can be bound to the application's

executable file or compiled into a dynamic link library (DLL). Fonts

must be put in a separate DLL using the Resource Compiler. You

then link the file at run time and load the resources into your

application by using the DosLoadModule or GpiLoadFonts function.

A DLL containing font resources must have a file-name extension of

FON. The .FON file can be installed on the system.

For more information about the Font Editor, see the online Tools

Reference.

 Icon Editor

The Icon Editor is used to to create icons, pointers, and bit maps. In

the Presentation Manager, an icon is a graphic symbol that identifies

a data object, a system action, or a minimized application. A pointer

is a small shape on the screen that reflects the movement of the

mouse. Pointers have a hot spot that identifies their exact location

on the screen.

Icons, pointers, and bit maps produced by the Icon Editor are graphic

symbols comprised of pels in any of the following display states:

 � Black

 � White

 � Color

5-10 Getting Started

� Screen (background color)

� Inverse screen (inverse of background color).

Starting the Icon Editor

To start the Icon Editor, select the PM Development Tools folder,

then select Icon Editor. The following window appears:

Notice the information area at the top of the Icon Editor window; the

items displayed from left to right include:

� A two-button mouse, showing the color currently selected for

each button

� An actual-size image of the current figure that you are editing

� A status area that provides:

– Size (in pels using x and y coordinates)

 – Pen location

– Pen size (from 1-by-1 to 9-by-9)

– Hot spot (for icons and pointers, but not bit maps)

– Figure type (icon, pointer, or bit map)

 – Form name.

The palette window, in the lower-right corner, displays the colors that

are available for use during editing. The colors currently selected

are marked with frames.

 Chapter 5. Presentation Manager Tools 5-11

The editing window is the largest part of your working area. Use the

mouse to paint the enlarged representation with the selected color.

The menu-bar choices provide access to the many functions of the

Icon Editor. These choices enable you to:

� Create a new icon, pointer, or bit map

� Edit an existing icon, pointer, or bit map

� Test the new icon or pointer

� Superimpose a grid over the editing window (for drawing a

symmetrical figure)

� Restrict a drawing to straight vertical or horizontal lines

� Make transparent pels (for icons or pointers) visible

� Change the shape and size of the pen

� Select system preferences (to set prompts or suppress warnings)

� Define hot spots (where the mouse pointer is directed).

For more information about the features of the Icon Editor, see the

online Tools Reference.

System Object Model Compiler

The OS/2 2.0 operating system has introduced a programming

interface that allows applications to implement desktop objects. This

programming interface enables you to create desktop objects that

conform to the new CUA architecture using basic object-oriented

programming techniques. The interface is implemented using the

IBM System Object Model (SOM).

Setting the SMINCLUDE Environment Variable

The SOM compiler uses an environment variable called SMINCLUDE

to locate included class definitions. Because every SOM class will

have an include file for its parent class definition, you must set

SMINCLUDE before running the SOM compiler. Its form is similar to

the OS/2 PATH or DPATH environment variables, in that it can

consist of one or more directory names, separated by a semicolon.

Directory names can be specified with absolute or relative path

names. For example:

5-12 Getting Started

 SET SMINCLUDE=.;..\mySCdir;C:\TOOLKT20\C\INCLUDE;

Starting the SOM Compiler

The SOM compiler is actually a precompiler and a collection of code

emitters that produce binding files from the output of the precompiler.

The files have several forms, including C-header files, a

C-implementation template, and the language-neutral version of the

class definition file.

To start the SOM precompiler from the command line, type:

SC [-options] filename [csc]

where:

options

is the name of the SOM compiler option. Options can be

specified individually, as a string of option characters, or as a

combination of these forms. Any option that takes an argument

must be specified individually or be the final option in a string of

option characters.

For a complete list of SOM compiler options, see the online

System Object Model Reference.

filename

is the name of a file that contains an OIDL class definition. If

you do not specify a file-name extension, the compiler uses

.CSC by default.

The SOM compiler (SC.EXE) produces .SOF and .SCF files using

the file name you specify.

Running SOM Emitters

You complete the SOM compilation process by running the emitters.

You can control the output of the emitters from the command line by

typing:

COMMAND [-o filename] [-a name[=value]]\ filestem

where:

 Chapter 5. Presentation Manager Tools 5-13

command

is one of the following:

 EMITH

 EMITPH

 EMITIH

 EMITC

 EMITDEF

 EMITSC

 EMITPSC

 EMITCSC

-o

is an explicit name (including drive, path, and file-name

extension) for the emitted output file. If this option is not

specified, the output file is placed in the current directory, and

the file-name extension defaults to a type appropriate to the

selected emitter program.

-a name[=value]

adds a global attribute. Attributes are listed in the online

System Object Model Reference.

filestem

is the file stem of the .SOF file produced by SC.EXE to use as

the basis for emissions.

Workplace Class List

The workplace class list is a tool that creates a workplace object

class and an instance of a workplace object class. Workplace

objects are constructed using the SOM protocol and are instances of

one of the following workplace object classes:

Predefined

These classes are defined by the system. Examples of

predefined workplace object classes are WPObject, WPFileSys,

and WPAbstract.

5-14 Getting Started

Subclass

These classes are derived from existing predefined workplace

object classes. They add or remove function; however, they

retain the basic behavior of that class.

Replaced

These classes replace the class being subclassed. They

modify the behavior of an instance of a predefined workplace

object class without the instance being aware of the new class.

 Chapter 5. Presentation Manager Tools 5-15

Starting Workplace Class List

To start Workplace Class List, select the PM Development Tools

folder, then select Workplace Class List. The following window

appears:

Figure 5-2. The workplace object hierarchy.

Using this window, you can:

� Add, delete, and browse registered Workplace Class Objects

� Create an instance of a Workplace Class Object

� View the registered Workplace Class Object in the system

For more information about this tool, see the online Tools Reference.

5-16 Getting Started

Chapter 6. System Debug Support

The chapter introduces you to the interface that installs the debug

kernel, symbol files, and debug version of the Presentation Manager.

It also describes tools that support your debugging efforts.

 Communications

Local and remote debugging are the same, except for the location of

the system to be debugged (also known as the system under test).

If the system to be debugged is close to the debug terminal, use a

null modem cable to connect them. If the system is physically

distant, use modems. The default setup for the communication port

of the debug kernel is:

Baud rate 9600

Parity none

Data bits 8

Stop bits 1

The Debug Files

The files described in this section are referred to as either a retail or

debug version. “Retail” stands for the files that came with your OS/2

2.0 operating system; “debug” stands for the files that came with the

Toolkit Debug Diskettes.

 Debug Kernel

The debug kernel, a special version of the OS/2 kernel, makes it

possible to set breakpoints and trace programs. It also permits the

use of symbolic addresses. You can interact with the debug kernel

by using a modem or null modem and a second asynchronous

debug terminal.

 Copyright IBM Corp. 1992 6-1

Debug Presentation Manager Interface

The debug Presentation Manager interface is a special version of the

Presentation Manager dynamic link libraries. The debugger detects

errors in your Presentation Manager application and issues

messages to the terminal.

Installing the Debug Installation Program

The menu-based debug installation program installs debug

replacement files for the kernel and the Presentation Manager

interface. Once the program is installed, you can install other debug

files, or restore retail files, from the OS/2 command prompt.

During initial installation, two files are copied to the root directory of

your specified installation drive:

DBINST.CMD A command file that can be executed

separately. This file calls

DBUGINST.EXE with the requested

installation drive as a command-line

argument.

DBUGINST.EXE This executable file is the user interface.

The user can choose which parts of the

debug system to install, or which parts to

restore to the retail version.

To install and start the debug installation program:

1. Insert Debug Diskette 1 in drive A.

2. At the OS/2 command prompt, type the following to install the

program on your designated installation drive (in this case,

drive C).

a:install c

Note: Do not type a colon after the installation drive letter.

3. Press Enter. The following screen appears.

6-2 Getting Started

The user interface consists of a menu that provides installation

choices in three optional parts. It also provides the ability to

restore two of those parts to their corresponding retail versions.

When prompted to enter a debug installation option, choose the

options in the order they appear on the screen.

Editing the CONFIG.SYS FILE

When you complete the debug installation procedure, you must edit

your CONFIG.SYS file.

For the Debug Kernel

If you installed only the debug kernel, modify the DEVICE statement

that has the PMDD.SYS line as follows:

DEVICE=C:\OS2\PMDD.SYS /Cn

The statement includes the C drive as the installation drive, and adds

the /C switch with n as the communication port for the debug output.

If you do not specify a value for n, the default communication port is

COM2 (if one is present) and COM1 (if one is not present).

Restoring the Kernel

To restore the retail kernel, restore the DEVICE statement as follows:

 Chapter 6. System Debug Support 6-3

DEVICE=C:\OS2\PMDD.SYS

For the Debug Presentation Manager Interface

If you have installed the debug version of the Presentation Manager

interface, modify the DEVICE statement with the PMDD.SYS line as

follows:

DEVICE=C:\OS2\DEBUG\DLL\PMDD.SYS \Cn

The DEVICE statement includes the C drive as the installation drive

and allows you to call the debug version of PMDD.SYS from the

OS2\DEBUG\DLL subdirectory. The /C switch is set with n as the

communication port for the debug output.

Modify the LIBPATH statement by adding the DEBUG DLL

subdirectory as follows:

 LIBPATH=C:\OS2\DEBUG\DLL;

Restoring the Presentation Manager Interface

To restore the retail Presentation Manager, you only need to restore

the DEVICE statement:

DEVICE=C:\OS2\PMDD.SYS

You do not need to restore the LIBPATH statement. The

Presentation Manager Restore option removes the debug versions of

the DLL from the DEBUG DLL subdirectory.

For a detailed description of the Installation and Restore options

available with this interface, see the online Tools Reference.

 MAPSYM

MAPSYM is used to generate binary files that the debug kernel uses

to associate a symbolic name with an address in memory.

6-4 Getting Started

 Starting MAPSYM

MAPSYM creates public symbol (.SYM) files from map (.MAP) files.

You must start MAPSYM from the directory in which the map file is

located. An example of the syntax follows:

MAPSYM filename [options]

where:

filename

is the name of the map file. You do not have to type the .MAP

file-name extension.

options

is the name of the MAPSYM option that modifies the action of

MAPSYM. For information about MAPSYM options, refer to the

online Tools Reference.

Note: Be sure the .SYM files are in the same subdirectory as their

corresponding DLLs.

T (Terminal Emulator)

T is a terminal emulator and is used by the debug kernel to

communicate with the system to be debugged. You can use any

ASCII terminal emulator; the Toolkit provides T. A terminal emulator

allows a device, such as a personal computer, to enter and receive

data from a computer system as if it were a particular type of

attached terminal. For example, you use T to send and receive

ASCII files.

 Hardware Requirements

Make sure your system has a properly installed asynchronous-port

and communication-port driver, and that your CONFIG.SYS file has

the following line.

 DEVICE=C:\OS2\COM.SYS

 Chapter 6. System Debug Support 6-5

 Starting T
You can start T at the command line by typing its executable name:

T

A blank screen appears. Press the F1 key; a menu appears that lets

you:

� Display function-key assignments

� Set up communication-port parameters

� Set the file name and start sending

� View the text that has scrolled off the screen

� Send the text that was written to a screen, to a file (capture

mode)

� Toggle to the capture mode

� Set the file name or delete the current capture file

� Exit from the terminal program.

Note: Capture mode can be started automatically when T is

executed by placing the line Capture=yes in the initialization

file.

For more information about T, see the online Tools Reference.

6-6 Getting Started

Chapter 7. The OS/2 Technical Library

Application Design Guide

This book provides an overview of OS/2 programming concepts,

including guidance on using the System Object Model (SOM) to

develop applications and create workplace objects. Use this book

when building executable files or dynamic link libraries, when writing

code for an object-oriented environment, or when migrating from

DOS or OS/2 16-bit applications.

 Programming Guide

This three volume book provides guidance information and code

examples to enable you to start writing source code using the

application programming interfaces (APIs). Volume I describes the

Control Program for programming functions that are internal to

applications, including file system, memory management, exception

management, and multitasking functions. Volume II describes the

Presentation Manager windowed user interface, including messages

and message queues, window classes, frame windows, control

windows, and window controls. This book also describes how to

write a Presentation Manager application so that it conforms to CUA

guidelines. Volume 3 describes the graphics programming interface,

including graphic primitives, and graphics segments, bit maps, and

This chapter describes the OS/2

Technical Library and the individual

books that support an OS/2-based

applications development

environment. Take some time to

read about the books in this

technical library and determine

which ones you need to use. The

entire library can be ordered with a

single part number. You also can

order each book separately (see

“Ordering Information” on

page 7-6).

 Copyright IBM Corp. 1992 7-1

transformation functions. This book also describes printing and

device support.

Information Presentation Facility Guide and
Reference

This book is for both the application programmer designing help

windows, as well as the author developing online documents. It

provides guidance in using the IPF tagging language and the IPF

compiler and serves as a reference for window functions, dynamic

data functions, and help manager messages. The information in this

book also is available as an online document (see “Information

Presentation Facility Reference” on page 2-1).

System Object Model Guide and Reference

This book describes the System Object Model (SOM), and the tools

that support its use. The book is aimed primarily at the experienced

C-language programmer, who has knowledge of object-oriented

programming concepts. It covers the Object Interface Definition

Language (OIDL), and the SOM compiler. It is a reference for

C-language bindings and SOM programming interface functions.

The information in this book also is available as an online document

(see “System Object Model Reference” on page 2-2).

Control Program Programming Reference

Refer to this book for functions of the base operating system

(functions with a prefix of “Dos”). Dos functions are listed in

alphabetic order, and each one includes a C-language code example

and pointers to related functions. The information in this book also is

available as an online document (see “Control Program Reference”

on page 2-1).

7-2 Getting Started

Presentation Manager Programming Reference

This three-volume book provides a detailed reference for

programming to the Presentation Manager interface. Volume I has

an alphabetic listing of the Ddf (dynamic data format), Dev (device),

Drg (dragdrop), Gpi (graphics), Prf (profile), and Spl (spooler) API

functions. Volume II has an alphabetic listing of the Win (window)

API functions and the new WP (workplace) methods. Volume III

contains related information such as, graphics-orders,

graphics-orders data types, application hooks and procedures, and

Presentation Manager messages. The information in these books

also is available as an online document (see “Presentation Manager

Reference” on page 2-2).

Procedures Language 2/REXX User's Guide

This book describes the REXX language. Each chapter is divided

into two sections: “Basics” includes frequently used features;

“Advanced Topics” describes special features and includes

examples. The book is for the user who wants to learn how to

program in REXX.

Procedures Language 2/REXX Programming
Reference

Refer to this book for a list of the REXX functions supported by the

OS/2 operating system. This book is a more detailed description of

the REXX programming language. The book contains detail

descriptions of C language APIs for those who wish to extend their

applications with REXX as a macro language. The information in

this book also is available as an online document (see “REXX

Reference” on page 2-2).

 Chapter 7. The OS/2 Technical Library 7-3

Physical Device Driver Reference

Use this book to write OS/2 physical device drivers. It provides

category, function code, and calling conventions for I/O control

(IOCtl) functions. Calling conventions also are described for DevHlp

routines. This book is written for system programmers as well as

application programmers.

Virtual Device Driver Reference

This book is for writing virtual device drivers. It provides information

on virtual DevHlp routines and describes virtual device driver

architecture, operations, and inter-device driver communication. It

also includes a detailed description of each of the virtual device

drivers available with the OS/2 operating system. This book is

written for system programmers as well as application programmers.

Presentation Driver Reference

The information in this book is for experienced system programmers

who are developing presentation drivers for devices operating in an

OS/2 program environment. It describes the internal interface

between the Presentation Manager interface and the driver, and

between the driver and the I/O subsystem. This book also contains

information about queue drivers and port drivers. Detailed

descriptions of control structures, data structures, and I/O formats

also are included.

Systems Application Architecture: Common User
Access Guide to User Interface Design

This book is for software and user-interface designers. It describes

the principles, components, and techniques of user-interface design

in general, as applied to a variety of software products for a variety

of operating systems. It also describes the process of designing a

product with a Common User Access (CUA*) interface.

* Trademark of the IBM Corporation

7-4 Getting Started

Systems Application Architecture: Common User
Access Advanced Interface Design Reference

This book lists all of the fundamental and recommended guidelines

for designing and developing a product with a CUA interface. Refer

to this book when developing a user interface that needs to be

consistent within your application and across other applications.

 Chapter 7. The OS/2 Technical Library 7-5

 Ordering Information

To order the technical library, call 1-800-IBM-PCTB

(1-800-426-7282). In Canada call toll free 1-800-465-1234. In

British Columbia call toll free 112-800-465-1234. In Alaska call

1-414-633-8108. You can also order copies of these books from an

IBM authorized dealer or IBM representative.

To order the complete OS/2 Technical Library, specify part number

10G3356. To order each book separately, select the appropriate

part number from the following table:

Title Part No.

Application Design Guide 10G6260

Programming Guide, Volume I 10G6261

Programming Guide, Volume II 10G6494

Programming Guide, Volume III 10G6495

Control Program Programming Reference 10G6263

Presentation Manager Programming Reference,

 Volume I

10G6264

Presentation Manager Programming Reference

 Volume II

10G6265

Presentation Manager Programming Reference

 Volume III

10G6272

Information Presentation Facility Guide and Reference 10G6262

System Object Model Guide and Reference 10G6309

Procedures Language 2/REXX User's Guide 10G6269

Procedures Language 2/REXX Reference 10G6268

Physical Device Driver Reference 10G6266

Virtual Device Driver Reference 10G6310

Presentation Driver Reference 10G6267

Systems Application Architecture:

Common User Access Guide to User Interface Design

SC34-4289

Systems Application Architecture:

Common User Access Advanced Interface Design

Reference

SC34-4290

7-6 Getting Started

 Index

Special Characters
@controlfile 4-16

Numerics
16- to 32-bit sample program 3-6

16-bit library file 1-6

32-bit library file 1-6

A
adding tools to WorkFrame/2 1-9

ANIMALS sample program 3-2

Application Design Guide 7-1

ASM subdirectory 1-5

assembler language

PDD sample program 3-7

assembler language include

files 1-7

B
BOOK subdirectory 1-5

BSE*.H 1-6

C
C subdirectory 1-5

C-Language header files 1-6

CALLREXX sample program 3-8

CLIPBRD sample program 3-3

CLOCK sample program 3-3

Common User Access Guide to

User Interface Design 7-4

Common User Access sample

program 3-11

compiler

Information Presentation

Facility 5-1

Resource Compiler 5-5

System Object Model 5-12

compiling command for IPF 5-3

control file for MKMSGF 4-16

Control Program Programming

Reference 7-2

Control Program Reference (online

document) 2-1

copying the contents of a

window 2-5

CUA Guide 7-4

D
debug version of Presentation

Manager 6-1

debug, kernel 6-1

default file extensions for

LINK386 4-9

Device Driver Reference book 7-4

device driver sample program 3-7

DEVINFO (REXX) sample

program 3-8

Dialog Editor 5-7

DIALOG sample program 3-3

DLLAPI sample program 3-3

DRAGDROP sample program 3-4

E
EAS sample program 3-4

Enhanced Editor, using the 2-5

event semaphores sample

program 3-10

 Copyright IBM Corp. 1992 X-1

EXEHDR 4-1

exiting installation 1-4

extended attributes sample

program 3-4

F
file extensions for LINK386,

default 4-9

Font Editor 5-9

FWDSTAMP 4-2

G
GRAPHIC sample program 3-5

H
HANOI sample program 3-5

hardware requirements 1-1

header files 1-6

HELLO sample program 3-5

help windows, compiling 5-4

I
Icon Editor 5-10

IMAGE sample program 3-6

IMPLIB 4-4

Information Presentation Facility

Compiler 5-1

Information Presentation Facility

Guide and Reference 7-2

Information Presentation Facility

Reference (online document) 2-1

installation procedure 1-2

installing tools on WorkFrame/2 1-9

international language documents,

compiling 5-4

international language support

(RXMACDLL) 3-9

IPF book 7-2

IPF command for help files 5-4

IPF sample program 3-6

IPFC command 5-3

IPFC subdirectory 1-5

J
JIGSAW sample program 3-6

L
library files 1-6

LINK386 4-7

local debugging, debug kernel 6-1

M
MAPSYM 6-4

MARKEXE 4-11

migration sample program 3-6

MKMSGF 4-14

MSGBIND 4-17

multiple thread PM sample

program 3-5

multiple thread sample

program 3-10

mutex and event semaphores

sample program 3-10

N
named pipe functions sample

program 3-7

national language support

(RXMACDLL) 3-9

NMAKE 4-18

NPIPE sample program 3-7

X-2 Getting Started

O
online document, viewing an 5-4

online documents

Control Program Reference 2-1

Information Presentation Facility

Reference 2-1

Presentation Manager

Reference 2-2

REXX Reference 2-2

System Object Model

Reference 2-2

Tools Reference 2-3

using 2-3

ordering information

Developer's WorkFrame/2 1-9

OS/2 Technical Library 7-6

OS2.H 1-6

OS2.INC 1-7

OS2286.LIB 1-6

OS2386.LIB 1-6

OS2BIN subdirectory 1-5

OS2DEF.H 1-6

OS2H subdirectory 1-5

OS2HELP subdirectory 1-5

OS2INC subdirectory 1-5

OS2LIB subdirectory 1-5

OS2STUB.EXE 4-11

P
PACK 4-20

PDD sample program 3-7

physical device driver sample

program 3-7

PM*.H 1-6

predefined object class 5-14

Presentation Driver Reference

book 7-4

Presentation Manager debug

version 6-1

Presentation Manager Reference

(online document) 2-2

Presentation Manager reference

books 7-3

PRINT sample program 3-7

Procedures Language 2/REXX

User's Guide 7-3

Programming Guide 7-1

Q
QUEUES sample program 3-7

R
remote debugging, debug

kernel 6-1

replaced object class 5-15

Resource Compiler 5-5

retained graphics sample

program 3-6

REXX subdirectory 1-5

REXX.H 1-6

REXXUTIL sample program 3-10

RXMACDLL sample program 3-9

S
sample programs

ANIMALS 3-2

CALLREXX 3-8

CLIPBOARD 3-3

CLOCK 3-3

DEVINFO 3-8

DIALOG 3-3

DLLAPI 3-3

DRAGDROP 3-4

EAS 3-4

GRAPHIC 3-5

HANOI 3-5

HELLO 3-5

 Index X-3

sample programs (continued)

IMAGE 3-6

IPF 3-6

JIGSAW 3-6

NPIPE 3-7

PDD 3-7

PRINT 3-7

QUEUES 3-7

REXX 3-8

REXXUTIL 3-10

RXMACDLL 3-9

SEMAPH 3-10

SORT 3-10

starting 3-1

STYLE 3-11

TEMPLATE 3-11

TP 3-12

VMM 3-12

WORMS 3-12

WPCAR 3-13

SC subdirectory 1-5

SEMAPH sample program 3-10

semaphore sample program 3-10

software requirements 1-1

SOM (advanced) sample

program 3-2

SOM (basic) sample program 3-12

SOM (see System Object Model)

SORT sample program 3-10

standard window sample

program 3-5

starting the sample program 3-1

STYLE sample program 3-11

subclass of an object class 5-15

symbol files for debug kernel 6-1

System Object Model Compiler

SMINCLUDE environment

variable 5-12

starting 5-13

System Object Model Guide and

Reference 7-2

T
TEMPLATE sample program 3-11

terminal emulator 6-5

terminate LINK386 process 4-9

thread sample program,

multiple 3-10

TKXFER command 1-7

tools

Dialog Editor 5-7

EXEHDR 4-1

Font Editor 5-9

FWDSTAMP 4-2

Icon Editor 5-10

IMPLIB 4-4

Information Presentation Facility

Compiler 5-1

LINK386 4-7

MAPSYM 6-4

MARKEXE 4-11

MKMSGF 4-14

MSGBIND 4-17

NMAKE 4-18

PACK 4-20

Resource Compiler 5-5

System Object Model

Compiler 5-12

T (terminal emulator) 6-5

Workplace Class List 5-14

Tools Reference (online

document) 2-3

TP sample program 3-12

U
UNPACK 4-20

UNPACK command 4-24

X-4 Getting Started

unpacking Toolkit files 1-7

V
VIEW command 5-4

viewing an online document 5-4

virtual memory sample

program 3-12

VMM sample program 3-12

W
WorkFrame/2 product 1-8

workplace class list (tool) 5-14

workplace object sample

program 3-13

WORMS sample program 3-12

WPCAR sample program 3-13

 Index X-5

