

IBM C/C++ Tools: User Interface Class Library
Guide

Version 2.0

Document Number S71G-2230-00

 Note!

Before using this information and the product it supports, be sure to read

the general information under “Notices” on page iii.

First Edition (May 1993)

This edition applies to Version 2.0 of IBM C/C++ Tools (Programs 61G1176

and 61G1426) and to all subsequent releases and modifications until otherwise

indicated in new editions. Make sure you are using the correct edition for the

level of the product.

Requests for publications and for technical information about IBM products

should be made to your IBM Authorized Dealer or your IBM Marketing

Representative.

A form for readers’ comments is provided at the back of this publication. If the

form has been removed, address your comments to:

IBM Canada Ltd. Laboratory

Information Development

21/986/844/TOR

844 Don Mills Road

North York, Ontario, Canada. M3C 1V7

You can also send your comments by facsimile to (416) 448-6057 addressed to

the attention of the RCF Coordinator. If you have access to Internet, you can

send your comments electronically to torrcf@vnet.ibm.com; IBMLINK, to

toribm(torrcf); or IBM/PROFS, to torolab4(torrcf).

If you choose to respond through Internet, please include either your entire

Internet network address, or a postal address.

When you send information to IBM, you grant IBM a nonexclusive right to use

or distribute the information in any way it believes appropriate without incurring

any obligation to you.

 Copyright International Business Machines Corporation 1993. All rights

reserved.

Note to U.S. Government Users — Documentation related to restricted rights —

Use, duplication or disclosure is subject to restrictions set forth in GSA ADP

Schedule Contract with IBM Corp.

IBM is a registered trademark of International Business Machines Corporation,

Armonk, N.Y.

 Notices

References in this publication to IBM products, programs, or services

do not imply that IBM intends to make these available in all countries in

which IBM operates. Any reference to an IBM licensed program in this

publication is not intended to state or imply that only IBM’s licensed

program may be used. Any functionally equivalent product, program, or

service that does not infringe any of IBM's intellectual property rights

may be used instead of the IBM product, program, or service.

Evaluation and verification of operation in conjunction with other

products, except those expressly designated by IBM, is the user's

responsibility.

IBM may have patents or pending patent applications covering subject

matter in this document. The furnishing of this document does not give

you any license to these patents. You can send license inquiries, in

writing, to the IBM Director of Commercial Relations, IBM Corporation,

Purchase, NY 10577.

Trademarks and Service Marks

The following terms used in this publication are trademarks or service

marks of IBM Corporation in the United States or other countries. They

are denoted by an asterisk (*) when they first appear in the text.

The following terms used in this publication are trademarks or service

marks of other corporations in the United States or other countries.

They are denoted by a double asterisk (**) when they first appear in the

text.

BookManager

C/2

C Set/2

Common User Access

CUA

IBM

Operating System/2

OS/2

Personal System/2

Presentation Manager

PS/2

SAA

Systems Application Architecture

WorkFrame/2

Microsoft

Pentium

Microsoft Corporation

Intel Corporation

 Copyright IBM Corp. 1993 iii

iv User Interface Class Library Guide

 Acknowledgments

This publication is the result of a residency conducted at the

International Technical Support Center, Boca Raton, Florida.

The advisor for this project was:

Dieter Neumann International Technical Support Center,

Boca Raton, Florida.

The authors of this document are:

Fred Brown IBM Cary

Wayne Chen IBM Taiwan

Roberto Ribeiro dos Santos IBM Brazil

Niroo Thaya-Paran IBM UK

Special thanks to the following people for providing information and

technical assistance in the production of this document:

David Lavin C++ User Interface Development, IBM Cary

Stephenie Joyner IBM Cary

Wes Wilson IBM Cary

Kevin Leong IBM San Jose

Maxine Houghton IBM Toronto

Alistair Rennie IBM Toronto

Special thanks to the entire User Interface Class Library team for

reviewing and suggesting improvements to this document.

 Copyright IBM Corp. 1993 v

vi User Interface Class Library Guide

About This Book

The purpose of the IBM C/C++ Tools: User Interface Class Library

(hereafter referred to as User Interface Class Library) is to provide a

library of classes that you can use to develop graphical user interfaces

for object-oriented applications using the C++ programming language.

The IBM C/C++ Tools: User Interface Class Library User’s Guide will

help you learn some of the basic features the class library provides to

help you develop your own applications and will enable you to start

using the User Interface Class Library classes. This book assumes that

you have C++ programming knowledge and experience. Refer to the

C++ Programmers Guide to review C++ programming concepts and

principles.

The IBM C/C++ Tools: User Interface Class Library User’s Guide is

divided into three parts. Everyone should read Chapter 1,

“Introduction” on page 3, which provides an overview of the class

libraries and defines some terms used throughout this book. If you are

new to C++ class libraries, you'll want to read Part 1 first to gain a

general understanding of the benefits that the User Interface Class

Library offers. If you have previously used class libraries, you may

want to browse Part 1 and go directly to Part 2 to learn about the

advanced features you can use in complex applications. To get started

using the User Interface Class Library classes, read Part 3, “Sample

Applications” on page 137 first. You can use our code samples to

learn how to develop your own applications using the User Interface

Class Library classes.

Part 1. Learning the Basics

This part introduces some of the key concepts you will want to

understand about class libraries.

Chapter 1, “Introduction” on page 3 provides a high-level description of

the class library. The classes in the library are grouped into categories

based on the tasks you perform when developing applications.

 Copyright IBM Corp. 1993 vii

Chapter 2, “Application Classes” on page 17 describes the classes that

make up a typical application and the classes you use to develop basic

application components.

Chapter 3, “Window Classes” on page 21 describes the classes that

enable you to create frame extensions, basic controls, and canvas

controls.

In Chapter 4, “Handlers and Events” on page 61, you will learn about

handler and event classes, as well as how to create your own handler

class.

Chapter 5, “Data Types and Attributes” on page 69 describes the

classes used to manage character data.

Part 2. Beyond the Basics

This part introduces some of the more advanced features of the class

library.

Chapter 6, “Advanced Controls” on page 81 describes classes used to

create MLEs, containers, and notebook controls.

In Chapter 7, “Advanced Topics” on page 105, you will learn about

some of the advanced features of the User Interface Class Library class

library (including ways to extend event handling, tips on exception

handling, and creating threads) that will enable you to create more

complex applications.

Chapter 8, “Finishing Touches” on page 123 discusses the ways to put

finishing touches on your applications and describes how to create help

and use NLS functions in your applications.

Part 3. Sample Applications

This part of the book contains sample applications that will help you

apply what you learned in Parts 1 and 2.

Chapters 9 through 16 take you step-by-step through a simple

application that illustrates many of the features of the User Interface

viii User Interface Class Library Guide

Class Library classes and member functions. You can find sample

code for each of the examples on the User Interface Class Library

Samples directory, so you can follow along and create your own

examples as you read this book. You will look at several versions of

the “Hello World” application, and each version builds on concepts

covered in the previous versions.

Appendix A, “Hierarchy,” contains a complete list of the classes,

organized by the categories described in the “Introduction.”

Appendix B, “Class Library Conventions,” lists the guidelines used by

the class library to define standard file names, class names, function

names, and data member names.

Finally, the Bibliography lists additional sources of information that will

help you as you begin developing your own applications with the User

Interface Class Library.

While reading this book, you will want to refer to the IBM C/C++ Tools:

User Interface Class Library Reference (S61G-1179-00) for complete

reference details on the classes. That book is available online as part

of the product, and you can order a separate hard copy version.

 About This Book ix

x User Interface Class Library Guide

 Getting Started

This chapter contains the following information to help you start using

the User Interface Class Library:

• Hardware, software, and operating system requirements

• Introduction to the contextual help and online documentation.

Hardware, Software, and Operating System Requirements

The IBM C/C++ Tools product requires a workstation with a 32-bit

processor (80386, 80486, or Pentium** microprocessor) running the

OS/2* 2.0 or later operating system.

The OS/2 2.0 Developer's Toolkit, referred to in this document as the

Toolkit, is also a prerequisite, primarily because it contains the system

linker that the compiler uses, as well as the system header files and

import libraries that increase the capabilities of the compiler, and the

IMPLIB utility that helps manage the build process for projects.

The IBM C/C++ Tools Version J2.0 product requires a workstation

running the IBM OS/2 Version J2.0 operating system. The IBM OS/2

Developer's Toolkit Version J2.0 is also a prerequisite.

To effectively use the C/C++ Tools compiler and debugger, you need a

minimum of 8M of RAM for C applications and 12M for C++

applications. You must also set your swap path to a directory with at

least 10MB free for C applications or 14M for C++ applications. A full

installation of the C/C++ Tools or C/C++ Tools Version J2.0 files

requires about 30MB of disk space, broken down in the following

manner:

Compiler and libraries 8.0 MB
Debugger 6.0 MB
EXTRA 2.0 MB
Browser 2.0 MB
Standard class libraries .5 MB
Collection class library 1.0 MB
User Interface class library 5.0 MB
Online information 4.5 MB
WorkFrame/2* support 1.0 MB

 Copyright IBM Corp. 1993 xi

When you install the product, the installation program tells you how

much space you have available on the selected drive and how much

space is required for the options you select.

If you have an 80386 processor, an 80387 math coprocessor is

recommended because it will greatly increase the speed of floating

point operations. If you have an 80486SX processor, an 80487 math

coprocessor is recommended.

About the Contextual Help Feature

The User Interface Class Library provides contextual help for each

class and member function. The requirements for accessing contextual

help are:

• The DDE4UIL.INF and DDE4UIL.NDX files must be installed and

available.

• You must use the Enhanced System Editor provided by OS/2

Version 2.0.

If these requirements are met, you can access contextual help from the

Enhanced System Editor by positioning the cursor over the name of a

class or member function in the text being edited and pressing the

Ctrl-H keys. This opens the online version of the IBM C/C++ Tools:

User Interface Class Library Reference and displays information about

the class or member function under the cursor.

For complete details on setting the environment variables needed to

use the contextual help feature, refer to the installation instructions for

this product.

About the Samples

Many of the samples described in this document are shipped with the

User Interface Class Library product. To find these samples, look in the

\ibmcpp\samples\iclui directory.

xii User Interface Class Library Guide

 Contents

Notices . iii

Trademarks and Service Marks . iii

Acknowledgments . v

About This Book . vii

Part 1. Learning the Basics . vii

Part 2. Beyond the Basics . viii

Part 3. Sample Applications . viii

Getting Started . xi

Hardware, Software, and Operating System Requirements xi

About the Contextual Help Feature xii

About the Samples . xii

Part 1. Learning the Basics . 1

Chapter 1. Introduction . 3

Overview of the Class Library . 3

Overview of the Classes . 4

A Simple Class Library Application 10

A Sample C++ Source File . 12

A Sample Resource File . 15

Using What You've Learned . 16

Chapter 2. Application Classes 17

Command Line Parameters . 17

Run and Exit . 18

String Resources . 18

User Resource Files . 19

Chapter 3. Window Classes . 21

Frame Extensions and Resources 21

Title Bar . 23

The Minimized Icon . 24

Menu Bar . 24

 Copyright IBM Corp. 1993 xiii

Information Area . 28

Status Area . 30

Basic Controls . 31

Static Text Control . 31

Entry Field Control . 33

Push Button Control . 34

Check Box Control . 36

Radio Button Control . 38

Slider Control . 40

Canvas Controls . 44

Split Canvas . 45

Set Canvas . 47

Multicell Canvas . 51

Viewport . 54

Styles . 55

Style Objects . 56

Setting Window Styles . 56

Cursors . 58

Chapter 4. Handlers and Events 61

Handlers and Events . 61

Handlers . 62

Events . 65

Writing a Handler . 67

Chapter 5. Data Types and Attributes 69

Managing Character Data . 69

Stream I/O . 69

Accessors . 70

Testing . 71

Comparison . 72

Conversion . 74

Modifying and Aligning . 75

Manipulation . 76

Fonts . 77

Part 2. Beyond the Basics . 79

Chapter 6. Advanced Controls 81

xiv User Interface Class Library Guide

Multiple-Line Entry Field Control . 81

Creating an IMultiLineEdit Instance 81

Loading and Saving a File . 83

Positioning the Cursor . 83

Clipboard Operations . 85

Container Control . 86

Creating a Container . 87

Creating an Instance of a Container Object 87

Adding and Removing Objects 89

Filtering Objects . 90

Cursors and Containers . 93

Working with Views . 95

Container Columns and Details View 97

Creating a Pop-up Menu in a Container 100

Notebook Control . 101

Notebook Styles . 102

Page Settings . 104

Chapter 7. Advanced Topics . 105

Extending the Event Handling . 105

Tracing . 109

Exception Handling . 112

Providing a Default Exception Handler 114

Threads and Protecting Data . 116

Current Thread . 116

Starting a Thread . 117

Protecting Data . 121

Critical Sections . 122

Chapter 8. Finishing Touches 123

Standard Dialogs . 123

File Dialog . 123

Font Dialog . 125

Message Box . 127

Pop-Up Menus . 128

Using Help . 130

DBCS and NLS Support . 133

Part 3. Sample Applications . 137

 Contents xv

Chapter 9. Introduction to the Sample Applications 139

Running the Samples . 139

Conventions Overview . 140

Other Conventions Used in the Sample Code 140

Chapter 10. Class Library Applications 141

Structure of User Interface Class Library Applications 141

Creating Your Own Classes . 143

Chapter 11. A Simple Application with a Main Window . . . 145

Version 1 Window Parent Relationship Diagram 146

Version 1 Files . 147

The Source Code File . 147

The Module Definition File . 148

Tasks Performed by Version 1 . 148

Creating the Main Window . 148

Creating a Static Text Control for Version 1 149

Putting Text in the Static Text Control 150

Aligning Text within the Static Text Control 150

Setting the Control as the Client Window 150

Setting the Focus and Showing the Main Window 151

Running the Application . 151

Compiling and Linking Version 1 152

The Module Definition File Format 153

Chapter 12. Adding a Resource File and Frame Extensions 155

Version 2 Window Parent Relationship Diagram 156

Version 2 Files . 158

The Primary Source Code File 158

The AHelloWindow Class Header File 160

The Constants Definition File 161

The Resource File . 162

The Icon File . 162

AHELLOW2.DEF . 163

Advantages of the C++ File Structure 163

Tasks Performed by Version 2 . 164

Creating the Main Window . 164

Getting the Current Application and Running It 166

Constructing the Main Window 166

xvi User Interface Class Library Guide

Chapter 13. Event Handling and Menu Bars 173

Version 3 Window-Parent Relationship Diagram 174

Version 3 Files . 175

The Primary Source Code File 176

The AHelloWindow Class Header File 178

The Constants Definition File 179

The Resource File . 180

The Icon File . 181

AHELLOW3.DEF . 182

Tasks Performed by Version 3 . 182

Creating a Status Area Using a Static Text Control 183

Putting Text in a Static Text Control for a Status Line 183

Specifying the Location and Height of the Status Area 184

Setting AHelloWindow as the Event Handler 184

Creating a Menu Bar . 185

Setting an Initial Check Mark in the Pull-down Menu 186

Adding Command Processing to Align the Static Text 186

Compiling and Linking Version 3 187

Chapter 14. Simple Dialogs and Push Buttons 189

Version 4 Window-Parent Relationship Diagram 190

Version 4 Files . 191

The Primary Source Code File 192

The AHelloWindow Class Header File 197

The Constants Definition File 198

The Text Dialog Source Code File 199

The ATextDialog Class Header File 201

The Resource File . 202

The Icon File . 204

The Text Dialog Template . 204

The Text Dialog Resource File 204

AHELLOW4.DEF . 205

Tasks Performed by Version 4 . 205

Modifying the Menu Bar and Pull-down Menu 206

Adding Push Buttons in a Set Canvas 211

Compiling and Linking Version 4 215

Chapter 15. Canvas, User-Created Control, and Help 217

Version 5 Window-Parent Relationship Diagram 218

Version 5 Files . 219

 Contents xvii

The Primary Source Code File 219

The AHelloWindow Class Header File 225

The Constants Definition File 226

The Text Dialog Source Code File 227

The ATextDialog Class Header File 228

The Earth Window Source File 229

The AEarthWindow Class Header File 230

The Resource File . 230

The Icon File . 232

The Text Dialog Template . 233

The Text Dialog Resource File 233

The Help Window Source File 233

The Module Definition File . 239

Tasks Performed by Version 5 . 240

Constructing the Main Window Using Newly Defined Member

Functions . 241

Compiling and Linking Version 5 249

Chapter 16. NLS and Advanced Functions 251

Version 6 Window-Parent Relationship Diagram 253

Version 6 Files . 254

Tasks Performed by Version 6 . 255

Compiling and Linking Version 6 256

Appendix A. Hierarchy . 259

Application Classes . 259

Window Classes . 260

Handler Classes . 261

Event Classes . 262

Event Classes - DDE Events . 263

Data Types and Attributes Classes 264

Settings and Styles Classes . 265

Support Classes . 266

Exception and Error Handling Classes 267

Appendix B. Class Library Conventions 269

File Names . 269

Class Names, Function Names, and Data Member Names . . . 270

Enumerations . 271

Function Return Types . 271

xviii User Interface Class Library Guide

Function Arguments . 272

Other Standards . 272

Bibliography . 273

The IBM C/C++ Tools Library . 273

C and C++ Related Publications 273

IBM WorkFrame/2 Publications . 273

IBM OS/2 2.0 Publications . 273

IBM OS/2 2.0 Technical Library 274

Other Books You Might Need . 274

BookManager* READ/2 Publications 274

Systems Application Architecture* Publications 274

Glossary . 275

Index . 283

 Contents xix

xx User Interface Class Library Guide

Part 1. Learning the Basics

 Copyright IBM Corp. 1993 1

2 User Interface Class Library Guide

 Chapter 1. Introduction

The User Interface Class Library is an Object Oriented (OO) C++ class

library that simplifies the construction of OS/2 applications with

graphical user interfaces (GUI). You can use the library to build

efficient applications that support Common User Access* (CUA).

Workplace look and feel, and that take advantage of all the features of

OS/2 Presentation Manager* (PM).

Overview of the Class Library

Here are some of the key features of the class library:

• A rich set of window and control classes that use the base

operating system controls. Applications created with this class

library have the same appearance and behavior as other OS/2

Presentation Manager Applications.

• Additional functions above the base controls, including the canvas

classes and the information area control. The canvas classes help

developers with window layout and eliminate the need to specify

absolute screen positions and sizes.

• A set of event and handler classes. These classes give developers

added control and flexibility in event handling.

• Support for easily adding window frame extensions, such as a

status line, to a frame window.

• A set of supporting classes to help with the total application. These

include classes to help manage resources and threads.

• Support for writing National Language Support (NLS) and Double

Byte Character Support (DBCS) enabled applications. The string

and canvas classes assist developers with these tasks.

• A rich set of window styles to change the appearance or behavior

of the windows. In addition, defaults are provided to make writing

applications easier.

• Support for C++ exception handling. Classes are also provided to

help with tracing your application.

 Copyright IBM Corp. 1993 3

Overview of the Classes

The class library contains over 260 classes and over 2600 member

functions. To assist you in learning about the classes and to guide you

as you start developing applications, we've grouped the classes into

eight basic categories:

 1. Application

 2. Window

 3. Handler

 4. Event

5. Data Types and Attributes

6. Settings and Styles

 7. Supporting classes

8. Exception and Error Handling

While most applications will use classes from all of these categories,

the focus of this book will be on the window category and its

relationship with the event, handler, and the other categories.

The application-related classes provide support for the application,

threads, profiles and the resources used by the application.

The window classes encapsulate the basic graphical building blocks

that are used to construct application windows. These range from the

simple graphical objects like title bars, which display the title of the

window, to complex objects like containers which can contain other

objects and provide different views on those objects. Window classes

support both parent and owner windows. This allows window position

and appearance (parent windows) to be separated from event handling

(owner windows).

The event and handler classes encapsulate the user interaction with

application windows. The library creates event objects as a result of

some action by the user or by other applications. These event objects

contain information about what occurred and they are passed to

handler objects for processing. Each window has some default

processing of events; however, the application can create instances of

the handler classes in order to process certain event objects to override

the default behavior. Some of key features of event handling:

4 User Interface Class Library Guide

• Handler classes allow the developer to change the behavior of a

control or window class without subclassing this control.

• Handlers can be dynamically added and deleted to a window. The

developer can dynamically change the behavior a window by

dynamically adding and removing handlers assigned to a window.

• The developer can provide common behavior and code reuse by

using a single handler for more than one window.

• Multiple handlers can be attached to a single window.

The data types and attributes classes model basic data types such as

strings, points and rectangles. These classes hide the structure of the

data, while providing the capability to access and alter the data.

Attributes classes are used to specify the color or font to be used within

a given window. In addition, a set of handle classes are provided to

access window or application specific handles.

Settings and style classes allow the application developer to change the

appearance or behavior of window classes. For example, the

IFontDialog class allows the developer to specify the default font and

window title to be displayed. Setting the text alignment, specifying a

minimize button on a frame, or specifying a tab stop are some

examples of styles that can be set by the developer.

Supporting classes are used in a collaborative manner with other

classes. Examples of these classes are cursors and

program-to-program communication using dynamic data exchange

(DDE).

The library creates exception objects to inform the application that the

library cannot complete a request. Instances of these classes capture

the type of exception and other information about the exception.

The next two pages provide a summary of the classes in each

category.

 Chapter 1. Introduction 5

IBase
IVBase

IEvent
ICnrDrawBackgroundEvent
ICommandEvent
IControlEvent

ICnrEvent
ICnrEditEvent

ICnrBeginEditEvent
ICnrEndEditEvent
ICnrReallocStringEvent

ICnrEmphasisEvent
ICnrEnterEvent
ICnrHelpEvent
ICnrQueryDeltaEvent
ICnrScrollEvent

IDrawItemEvent
ICnrDrawItemEvent
IListBoxDrawItemEvent
IMenuDrawItemEvent
INotebookDrawItemEvent

IPageEvent
IPageHelpEvent
IPageRemoveEvent
IPageSelectEvent

IDDEBeginEvent
IDDEEndEvent

IDDEClientEndEvent
IDDEEvent

IDDEAcknowledgeEvent
IDDEClientAcknowledgeEvent

IDDEAcknowledgePokeEvent
IDDEAcknowledgeExecuteEvent

IDDEServerAcknowledgeEvent
IDDESetAcknowledgeInfoEvent

IDDEClientHotLinkEvent
IDDEDataEvent
IDDEExecuteEvent
IDDEPokeEvent
IDDERequestDataEvent
IDDEServerHotLinkEvent

IFileDialogEvent
IFrameEvent

IFrameFormatEvent
IHelpErrorEvent
IHelpHyperTextEvent
IHelpMenuBarEvent
IHelpNotifyEvent
IHelpSubItemNotFoundEvent
IHelpTutorialEvent
IKeyboardEvent
IMenuEvent
IMouseClickEvent
IPaintEvent
IResizeEvent
IScrollEvent

IEventData
IEventParameter1
IEventParameter2
IEventResult

Event

IBase
IMessageBox
IVBase

IWindow
IControl

ICanvas
IMultiCellCanvas
ISetCanvas
ISplitCanvas
IViewPort

IContainerControl
IListBox
INotebook
IOutlineBox
IProgressIndicator

ISlider
IScrollBar
ISpinButton
ITextControl

IButton
IPushButton
ISettingButton

I3StateCheckBox
ICheckBox
IRadioButton

IEntryField
IComboBox

IGroupBox
IMultiLineEdit
IStaticText

IBitmapControl
IIconControl

IInfoArea
ITitle

IFrameWindow
IFileDialog
IFontDialog

IHelpWindow
IMenu

IMenuBar
IPopUpMenu
ISubMenu
ISystemMenu

IObjectWindow

Window

IBase
IVBase

IHandler
ICnrDrawHandler
ICnrEditHandler
ICnrHandler
ICommandHandler
IDDEClientConversation
IDDETopicServer
IEditHandler
IFileDialogHandler
IFocusHandler
IFontDialogHandler
IFrameHandler
IHelpHandler
IKeyboardHandler
IListBoxDrawItemHandler
IMenuDrawItemHandler
IMenuHandler

ICnrMenuHandler
IInfoArea

IMouseClickHandler
IPageHandler
IPaintHandler
IResizeHandler
IScrollHandler
ISelectHandler
IShowListHandler
ISliderDrawHandler
ISpinHandler

Handler

IBase
IVBase

IErrorInfo
IGUIErrorInfo
ISystemErrorInfo

ITrace
IWindow::ExceptionFn

IException
IAccessError
IAssertionFailure
IDeviceError
IInvalidParameter
IInvalidRequest
IResourceExhausted

IOutOfMemory
IOutOfSystemResource
IOutOfWindowResource

IException::TraceFn

IExceptionLocation

IMessageText

Exceptions

Figure 1. Event, Handler, Exception and Window Classes

6 User Interface Class Library Guide

IBase
ICritSec
IProcedureAddress
IReference
IResourceId
IVBase

IApplication
ICurrentApplication

IProfile
IRefCounted

IThreadFn
IThreadMemberFn

IResource
IPrivateResource
ISharedResource

IResourceLibrary
IDynamicLinkLibrary

IResourceLock
IThread

ICurrentThread

Application

IBase
IAccelerator
IDDEActiveServer
IFrameExtension
IMenuItem
ISWP
ISWPArray
IVBase

IComboBox::Cursor
IContainerColumn
IContainerControl::ColumnCursor
IContainerControl::CompareFn
IContainerControl::FilterFn
IContainerControl::Iterator
IContainerControl::ObjectCursor
IContainerControl::TextCursor
IContainerObject
IListBox::Cursor
INotebook::Cursor
IProfile::Cursor
ISpinButton::Cursor
IWindow::ChildCursor

ISequence<>
IFrameExtensions

ISet<>
IDDEActiveServerSet
IDDEClientHotLinkSet

Support

IBase
IBitFlag

I3StateCheckBox::Style
IBitmapControl::Style
IButton::Style
ICanvas::Style
ICheckBox::Style
IComboBox::Style
IContainerControl::Attribute
IContainerControl::Style
IControl::Style
IEntryField::Style
IFileDialog::Style
IFontDialog::Style
IFrameWindow::Style
IGroupBox::Style
IIconControl::Style
IListBox::Style
IListBoxDrawItemHandler::DrawFlag
IMenuDrawItemHandler::DrawFlag
IMenuItem::Attribute
IMenuItem::Style
IMessageBox::Style
IMultiLineEdit::Style
INotebook::PageSettings::Attribute
INotebook::Style
IOutlineBox::Style
IProgressIndicator::Style
IPushButton::Style
IRadioButton::Style
IScrollBar::Style
ISetCanvas::Style
ISlider::Style
ISpinButton::Style
ISplitCanvas::Style
IStaticText::Style
IViewPort::Style
IWindow::Style

IFileDialog::Settings
IFontDialog::Settings
IHelpWindow::Settings
IVBase

INotebook::PageSettings

Settings & Styles

IBase
IColor

IDeviceColor
IGUIColor

IDate
IHandle

IAccelTblHandle
IAnchorBlockHandle
IBitmapHandle

ISystemBitmapHandle
IEnumHandle
IMessageQueueHandle
IModuleHandle
IPageHandle
IPointerHandle

ISystemPointerHandle
IPresSpaceHandle
IProcessId
IProfileHandle
ISemaphoreHandle
IStringHandle
IThreadId
IWindowHandle

IPair
IPoint
IRange
ISize

IRectangle
IString

I0String

Data Types

Figure 2. Data Types, Support, Application and Settings & Styles

 Chapter 1. Introduction 7

To learn more about a specific category, refer to the sections listed with

each category:

Categories References

Application Chapter 2, “Application Classes” on

page 17

“Threads and Protecting Data” on

page 116

“Application Classes” on page 259

Window Chapter 3, “Window Classes” on

page 21

Chapter 6, “Advanced Controls” on

page 81

Chapter 8, “Finishing Touches” on

page 123

“Window Classes” on page 260

Handler Chapter 4, “Handlers and Events” on

page 61

“Handler Classes” on page 261

Event Chapter 4, “Handlers and Events” on

page 61

“Extending the Event Handling” on

page 105

“Event Classes” on page 262

Data types and attributes Chapter 5, “Data Types and Attributes”

on page 69

“Data Types and Attributes Classes” on

page 264

Settings and styles “Styles” on page 55

“Settings and Styles Classes” on

page 265

8 User Interface Class Library Guide

Supporting classes “Cursors” on page 58

“Support Classes” on page 266

Exception and error handling

“Exception Handling” on page 112

“Tracing” on page 109

“Exception and Error Handling Classes”

on page 267

 Chapter 1. Introduction 9

A Simple Class Library Application

An easy way to understand how the different classes and objects

you've just read about work together is to look at a simple application.

The application has three basic user interface components:

• A standard frame window with a title bar, minimized icon, borders,

minimize and maximize buttons. The window title will be set to

"Simple Application".

• A Menu Bar that contains a single menu item called "Close". When

the user selects this menu item, the application will close the

window and terminate.

• The rest of the window or client area that contains the phrase

"Simple Example".

Simple Application

Menu Bar

Title BarTitle Text
Minimized
Icon

Minimize
Button

Maximize
Button

Border

Client Area

Simple Example

Close

Figure 3. Simple Application Main Window

Two source files are required to write this application. The first file is

the C++ source file used by the C++ compiler to generate the

executable part of this application. The second file contains the

10 User Interface Class Library Guide

resource definitions used by the resource compiler to generate the

resources for this application. It is not important that you understand

every line in these files or the steps to create an application. Let's

focus on learning the key concepts.

 Chapter 1. Introduction 11

A Sample C++ Source File
Listing of the C++ source file:

 1 #include <iapp.hpp> //IApplication Class
 2 #include <iframe.hpp> //IFrameWindow Class
 3 #include <icmdhdr.hpp> //ICommandHandler & ICommandEvent
 4 #include <istattxt.hpp> //IStaticText Class
 5 #include <istring.hpp> //IString Class
 6
 7 #define WND_MAIN 5000 //Main Window Id
 8 #define MI_CLOSE 5001 //Push Button Window Id and Command Id
 9
10 class AWindow : public IFrameWindow, //Define AWindow Class from
11 public ICommandHandler // IFrameWindow & ICommandHandler
12 {
13 public:
14 AWindow(unsigned long windowId) //Define AWindow Constructor
15 : IFrameWindow (//Call IFrameWindow constructor
16 IFrameWindow::defaultStyle() // Use default styles plus
17 | IFrameWindow::menuBar, // Get Menu Bar from Resource File
18 windowId) // Main Window Id
19 {
20 IString aString("Simple Example"); //Create text string for static text
21 IStaticText staticText(MI_CLOSE, //Create Static Text Control
22 this, this); // Pass in myself as parent & owner
23 staticText.setText(aString); //Set text in Static Text Control
24 handleEventsFor(this); //Set self as command event handler
25 setClient(&staticText); //Set button control in Client Area
26 setFocus(); //Set focus to main window
27 show(); //Set to show main window
28 } /* end AWindow :: AWindow(...) */
29
30 Boolean command(ICommandEvent& cEvent)//Define command member function
31 {
32 if (cEvent.commandId() == MI_CLOSE) //Is Command Event Id = Close Id
33 { // Yes, the command is close
34 close(); // Let's close the main window
35 return true; // Normally, you would return true
36 }; // to indicate command processed
37 return false; //Return Command not Processed
38 } /* end AWindow :: command(...) */
39 }; // End of AWindow class definition
40
41 void main() //Main Procedure with no parameters
42 {
43 AWindow mainWindow(WND_MAIN); //Create main window on the desktop
44 IApplication::current().run(); //Get current application & start
45 } /* end main */

12 User Interface Class Library Guide

Lines 1-5 include the class header files needed from the class library

for the application. WND_MAIN (line 7) is used as the window ID for

the main window. MI_CLOSE (line 8) is used as the command ID for

the "Close" menu item.

A class called AWindow is defined in lines 10-39. This class is derived

from the IFrameWindow and ICommandHandler classes (lines 10-11). The

AWindow class has a single constructor (lines 14-28) and a single

member function called command (lines 30-39). Many objects are

created when this application is run; however, the application does not

need to know about most of these objects. A list of the key objects

created by running the application follows:

Object Name Details about the Object

mainWindow This AWindow object is the main window for the

application. It is created on line 43.

staticText This is the static text control (IStaticText) object that

will contain the phrase "Simple Example". This object

is created on line 21.

aString This IString object is created on line 20. It contains the

phrase "Simple Example" that will be set in the

staticText object on line 23.

title bar This object is created by the class library because we

specified the default styles on the IFrameWindow

contrustor on lines 15-16.

menu bar This object is created by the class library as a result of

specifying the menuBar style on the IFrameWindow

construtor on lines 15-17. Several handlers are also

created supporting the menu bar. In this application,

the default command handler for this menu bar will

send the command events to the frame window. Line

24 specifies that we are a command handler for

ourselves. Lines 30-38 define the processing for these

command events.

cEvent This ICommandEvent object is created by the class

library and is a parameter on the command member

function on line 30. This object returns the command

ID on line 32 and is compared against MI_CLOSE. If it

 Chapter 1. Introduction 13

is an MI_CLOSE command, the application closes the

window and terminates using the close on line 34;

otherwise, the member function returns false indicating

that the command has not been processed.

14 User Interface Class Library Guide

A Sample Resource File
Now, let's list the resource file for this simple application:

 1 #define WND_MAIN 5000 //Main window Id
 2 #define MI_CLOSE 5001 //Push button window Id & Command Id
 3
 4 STRINGTABLE
 5 BEGIN
 6 WND_MAIN, "Simple Application" //Title bar text (main Id)
 7 END
 8
 9 MENU WND_MAIN //Main window menu (WND_MAIN)
10 BEGIN
11 MENUITEM "˜Close", MI_CLOSE //Close menu item
12 END

Line 1 defines WND_MAIN for this resource file. This number (5000)

needs to match the definition on line 7 of the C++ source file. Line 2

defines MI_CLOSE for this resource file. This number (5001) needs to

match the definition on line 8 of the C++ source file.

Line 6 defines a string resource containing the phrase "Simple

Example" with a string ID of WND_MAIN. Because this matches the

main window ID used on line 43 of the C++ source program, the class

library uses this string as the default window title. Note, the "Simple

Example" phrase can changed without changing the application code.

Lines 9-12 define the menu bar used by this application. Since we

specified the menuBar style on line 17, the class library attempts to

load the menu with an ID equal to the window ID. In this example, the

main window ID is WND_MAIN (5000) and line 9 defines the menu with

a menu ID of WND_MAIN; therefore, the class library uses this menu

bar for the main window.

The close menu item is defined on line 11. This menu item appears to

the user as Close with a command ID of MI_CLOSE. When the user

selects this menu item, lines 30-38 in the C++ source code are

executed. An important point in this example is that the "Close" phrase

could be changed (e.g., "Quit") and the application code would not be

required to change. This is important if your application will be

translated into other languages or for changes required by end users.

It is also possible to reorganize complex menus with many menu items

and submenus without changing the application code.

 Chapter 1. Introduction 15

Using What You've Learned

This chapter described the benefits of the Class Library to C++
programmers developing OS/2 applications with graphical user

interfaces (GUIs). It defined the general categories of classes that are

included in the User Interface Class Library. In addition, it illustrated

some concepts and principles using the basic classes and member

functions in a simple application. You are now ready to learn more

about the classes in the class library and how you can use them to

make your application programming tasks easier and more effective.

16 User Interface Class Library Guide

 Chapter 2. Application Classes

To develop an User Interface Class Library application, you always use

at least two classes: IApplication and ICurrentApplication.

Use the IApplication class member functions to :

• Assign a name to a process

• Query the name of a process

• Set the priority of a process

• Query the priority of a process.

Use the ICurrentApplication class member functions to:

• Save the command line parameters to the program

• Start event processing

• Exit from an application

• Assign resources to an application

• Query resources from an application.

Command Line Parameters

ICurrentApplication provides functions to record and query the

command line arguments of your application. The arguments are set

by calling setArgs and passing in the arguments that were passed to

main. An example of saving the command line parameter follows:

void main(int argc, char **argv) //Main procedure with parameters
{
 IApplication::current().setArgs(argc, argv);
... rest of program

where argc is the number of parameters received and argv is the actual

parameters.

Use the member function argc to query the number of parameters.

This member function always returns a non-zero value because it

always has at least the name of the program as a parameter.

To get the nth parameter, use the member function argv, where the

argv(0) component is always the name of the program. Because argv

 Copyright IBM Corp. 1993 17

is returned as an IString, you can use all the overloaded operators for

this class. See “Managing Character Data” on page 69 and refer to the

IBM C/C++ Tools: User Interface Class Library Reference for more

information about the IString class.

Run and Exit

To start the event processing of any C++ program using the User

Interface Class Library you can use the run member function of the

ICurrentApplication class. An example of the statement is highlighted

in the following program:

void main() //Main procedure with no parameters
{
AHelloWindow mainWindow (WND_MAIN); //Create our main window on the desktop
IApplication::current().run(); //Get current & run the application

} /* end main */

To exit from the program, use the member function exit, as shown

below:

if (IApplication::current().argv(1)=="") { //If no command line parameters
IApplication::current().exit(); //Get current & exit the application

} /* endif */
} /* end AHelloWindow :: AHelloWindow(...) */

 String Resources

The OS/2 Presentation Manager allows you to collect certain

application resources in a resource file. The resource file is compiled

and stored either in the application’s executable file or in a dynamic-link

library (DLL). You can replace these application resources by simply

changing and recompiling the resource file. The benefits of separating

your application components are obvious. You can alter items such as

text on the title bar or in a menu without changing the main application

code.

You can enable your applications for National Language Support by

storing the resources for each language in a separate resource file.

You can then build your applications as separate executable versions

for each language or as a separate DLL for each language.

18 User Interface Class Library Guide

The User Interface Class Library provides efficient methods for

maintaining application resources, such as bit maps, menus, and title

text. Each static string used in a window has a corresponding string ID

that is defined in a resource file. To alter these text strings, you must

change only the strings defined in the resource file. The source

programs do not have to be updated. That is, by using the User

Interface Class Library and string resource architecture, you can port

OS/2 Presentation Manager applications to different national languages

by translating only the resource file.

The menu, string table, and dialog template are all defined in the

resource file by resource script format.

You can change the title text from the resource file directly and use the

resource compiler, RC.EXE, provided with the IBM C/C++ Tools:

Compiler, to compile the resource file and link the resource, *.RES, to

your executable file.

User Resource Files

Using the User Interface Class Library, you can load a resource from a

DLL. Use the ICurrentApplication member function

setUserResourceLibrary to define the specific resource to be loaded in

the program. An example is highlighted in the following program:

void main(int argc, char **argv) //Main procedure with no parameters
 {
 IApplication::current(). //Get current

setArgs(argc, argv); // and set command line parameters

 IString Dllname(IApplication::current().argv(1));

IApplication::current(). //Get current application
setUserResourceLibrary(Dllname.asString()); // Set the name of resource DLL .

AHelloWindow mainWindow (WND_MAIN); //Create our main window on the desktop

IApplication::current().run(); //Get current & run the application

} /* end main */

In addition, you can use a different resource DLL to support multiple

languages without changing the program. Once you change the DLLs,

all resource strings are changed for the language chosen. See

 Chapter 2. Application Classes 19

Chapter 16, “NLS and Advanced Functions” on page 251 for an

example.

You can also query which user resource library is active at a specific

moment. To query for the active user resource library specify the

member function userResourceLibrary:

AHelloWindow :: AHelloWindow(unsigned long windowId)
: IFrameWindow(windowId) //Call IFrameWindow constructor

{
hello = new IStaticText(WND_HELLO, //Create static text control
this, this); // Pass in myself as owner & parent

 hello->setText(
 IApplication::current().
 userResourceLibrary().asString());

//Set text in static text control
hello->setAlignment(//Set alignment to center in both

 IStaticText::centerCenter); // directions
setClient(hello); //Set hello control as client window

setFocus(); //Set focus to main window
show(); //Set to show main window

} /* end AHelloWindow :: AHelloWindow(...) */

20 User Interface Class Library Guide

 Chapter 3. Window Classes

Frame Extensions and Resources

In addition to the standard Presentation Manager frame controls, the

User Interface Class Library allows you to add extensions to the

standard frame window. These extensions are additional controls

placed in specific locations (relative to the title bar, menu bar, or client

area) and are primarily application specific.

Use the IFrameWindow class to create OS/2 frame windows. Frame

windows are usually children of the desktop and parent/owner windows

of the controls in the User Interface Class Library A member function in

the IFrameWindow class, called addExtension, enables you to add a

control as a frame extension. The arguments of addExtension indicate

where the extension is to be located and what portion of the location

control is to be allocated to this extension. The information area,

implemented by the IInfoArea class, is an example of such an

extension. See “Information Area” on page 28 and refer to the IBM

C/C++ Tools: User Interface Class Library Reference for more

information about information areas.

Conceptually, the IFrameWindow class is composed of a number of child

windows, including a system menu symbol, a title bar, minimize and

maximize buttons, a border, a menu bar, and a client area. The

frame’s client area is the rectangular portion of the frame window not

occupied by the other frame controls. The client window is the window

occupying the client area. Figure 4 on page 22 shows the components

of a frame window created using the IFrameWindow class.

 Copyright IBM Corp. 1993 21

C++ Hello World - Version 3

Menu Bar

Title BarTitle Text
Minimized
Icon

Minimize
Button

Maximize
Button

Status Area

Border

Information Area

Client Area

Hello, World!!!

Center Alignment

Use Alt-F4 to Close Window

Alignment

Figure 4. Frame window components

The default style of the IFrameWindow class has a title bar, a system

menu symbol, a minimize button, a maximize button, and a sizing

border. The style also specifies that an entry for this frame will be

added to the system window list after this object is created. The

IFrameWindow also provides several styles, including :

accelerator The frame has an associated accelerator key

table

minimizedIcon The frame has an associated icon to be used

when minimized

maximized The frame window is created in the maximized

state

minimized The frame window is created in the minimized

state.

22 User Interface Class Library Guide

For more information about the styles of IFrameWindow, refer to the IBM

C/C++ Tools: User Interface Class Library Reference.

 Title Bar
The title bar is the area at the top of each window that contains the

system menu symbol, a minimized icon, a window title, and the

maximize and minimize buttons. If you create a minimized icon for your

application, you can us it to replace the system menu symbol in your

application windows. When a window is maximized, selecting the

restore button restores the window to its previous size. The color of the

window title bar changes when it receives the input focus.

In the IFrameWindow class, you can optionally specify the frame window

title. If you do not explicitly provide a title, your application attempts to

set the title to a string loaded from the application’s resource library

using the frame ID. If a string cannot be found, the title defaults to the

system-generated title (typically, the name of the executable).

The following example shows how to create the title text by creating the

AHelloWindow class as a subclass of the IFrameWindow class:.

#define WND_MAIN 0x1000
void main()
{
 AHelloWindow mainWindow(WND_MAIN);
 IApplication::current.run();
}
AHelloWindow :: AHelloWindow(unsigned long windowId)
 :IFrameWindow(windowId)
{
 setFocus();
 show();
}

And the title text appears in the resource file as:

STRINGTABLE
 BEGIN

WND_MAIN, "Title Text Sample"
 END

The result is a default style frame window with “Title Text Sample” as

the title text. WND_MAIN is the frame window identifier. The

application passes this identifier to the frame window and uses it to

load icon, title, menu, or accelerator table resources from the

 Chapter 3. Window Classes 23

application’s resource file (if these components are specified using the

frame style). In the example, the application passes the title text into

the IFrameWindow using the WND_MAIN frame ID.

The Minimized Icon
When you create a minimized icon for your application, the minimized

icon is placed on the leftmost position in the title bar to replace the

system menu symbol.

To add a minimized icon to the title bar, add the icon information to the

resource file as follows:

ICON WND_MAIN HELLO.ICO
STRINGTABLE
 BEGIN

WND_MAIN, "Title Bar with Minimized Icon Sample"
 END

Next, modify the IFrameWindow constructor to add the minimizedIcon
style into the default style, as shown below:

AHelloWindow :: AHelloWindow(unsigned long windowId)
: IFrameWindow (

 IFrameWindow::defaultStyle()
 | IFrameWindow::minimizedIcon,
 windowId)
{
 setFocus();
 show();

}

When the AHellowWindow object is created, its IFrameWindow base class

is constructed using the default style with a minimized icon, named

HELLO.ICO, and “Title Bar with Minimized Icon Sample” as the title

text. See “Styles” on page 55 for more information on setting styles.

 Menu Bar
The menu bar is the area near the top of a window, below the title bar

and above the client area of the window. A menu bar contains a list of

choices. When a user selects a choice on a menu bar, a pull-down

menu associated with that choice is displayed.

24 User Interface Class Library Guide

To add a menu bar to a window, define the contents of the menu bar in

the resource file and add the “menubar” into the default style frame

window.

In the resource file, define a menu bar with only one submenu, named

Alignment:

MENU WND_MAIN
 BEGIN

SUBMENU "˜Alignment", MI_ALIGNMENT
 BEGIN
 MENUITEM "˜Left", MI_LEFT

MENUITEM "˜Center", MI_CENTER
 MENUITEM "˜Right", MI_RIGHT
 END
 END

When you run the sample and select the Alignment choice, an

associated pull-down menu is displayed. There are three choices in the

pull-down menu: Left, Center, and Right. When one of the choices is

selected, the text string in the client window aligns to the position that

was selected.

 Chapter 3. Window Classes 25

First, define the IMenuBar object to the AHelloWindow class:

class AHelloWindow : public IFrameWindow,
 public ICommandHandler
{
 public:

AHelloWindow(unsigned long windowId);
 virtual ˜AHelloWindow();
 protected:

Boolean command(ICommandEvent& cmdEvent);
 private:
 IStaticText hello; //Hello contains "Hello, World" text
 IMenuBar menuBar;
};

When the AHelloWindow object is created, the IFrameWindow and menuBar
are constructed sequentially.

AHelloWindow :: AHelloWindow(unsigned long windowId)
: IFrameWindow (

 IFrameWindow::defaultStyle()
 | IFrameWindow::minimizedIcon,
 windowId),
 menuBar(WND_MAIN,this),
 hello(WND_HELLO,this,this)
{
 hello.setText(STR_HELLO);
 hello.setAlignment(IStaticText::centerCenter);
 setClient(&hello);
 handleEventsFor(this);
 menuBar.checkItem(MI_CENTER);

}

In the preceding example, a static string is shown in the center of the

client area. The statement handleEventsFor(this) is used to handle

upcoming events. The statement menuBar.checkItem(MI_CENTER);
places a check mark beside the Center menu item.

26 User Interface Class Library Guide

A command handler is added to handle the selection of menu items.

Boolean AHelloWindow :: command(ICommandEvent & cmdEvent)
{
switch (cmdEvent.commandId()) {

 case MI_CENTER:
 hello.setAlignment(IStaticText::centerCenter);
 menuBar.checkItem(MI_CENTER);
 menuBar.uncheckItem(MI_LEFT);
 menuBar.uncheckItem(MI_RIGHT);
 return(true);
 break;

 case MI_LEFT:
 hello.setAlignment(IStaticText::centerLeft);
 menuBar.uncheckItem(MI_CENTER);
 menuBar.checkItem(MI_LEFT);
 menuBar.uncheckItem(MI_RIGHT);
 return(true);
 break;

 case MI_RIGHT:
 hello.setAlignment(IStaticText::centerRight);
 menuBar.uncheckItem(MI_CENTER);
 menuBar.uncheckItem(MI_LEFT);
 menuBar.checkItem(MI_RIGHT);
 return(true);
 break;
}

The alignment of the static text in the client area is adjusted according

to the selected menu item, and a check mark is placed in the front of

the selected menu item.

See Chapter 4, “Handlers and Events” on page 61 for more

information about event handling.

 Chapter 3. Window Classes 27

 Information Area
The information area is a small rectangular area that is usually located

at the bottom of a window. The information area is used to:

• Display a brief explanation of the state of an object

• Display brief help information

• Display information about the completion of a process.

Use the IInfoArea class to create and manage the information area.

The objects of this class provide a frame extension to show information

about the menu item at which the selection cursor is currently

positioned. The string displayed in the information area is defined in a

resource string table. The string resource is obtained by using the

same identifier as the menu item plus some optional offset value (the

default offset is 0) that is added to the menu item ID to locate the

corresponding string of information about it.

To create an instance of this class, you can use one of the following

constructors:

IInfoArea (IFrameWindow *frame, unsigned long id = 0);
IInfoArea (IFrameWindow *frame, unsigned long id, const char *resDLLName);
IInfoArea (IFrameWindow *frame, const IModuleHandle &resMod,

unsigned long id = 0);
IInfoArea (IFrameWindow *frame, const char *resDLLName,

unsigned long id = 0);

where IFrameWindow *frame points to the frame window to which the

information area will be attached. The unsigned long id is an ID of the

information area control (the default value is 0). The const char
*resDLLName specifies the resource library from which the information

strings are to be loaded. The default is the user resource library in the

current application class.

28 User Interface Class Library Guide

The following example uses the IInfoArea class to create the

information area. The menu bar and string table in the resource file are

defined as follows:

MENU WND_MENU
 BEGIN

SUBMENU "˜Alignment", MI_ALIGNMENT
 BEGIN
 MENUITEM "˜Left", MI_LEFT

MENUITEM "˜Center", MI_CENTER
 MENUITEM "˜Right", MI_RIGHT
 END
 END
STRINGTABLE
 BEGIN

MI_ALIGNMENT "Select Alignment Menu"
MI_LEFT "Select Left Alignment Menu Item"

 MI_CENTER "Select Center Alignment Menu Item"
MI_RIGHT "Select Right Alignment Menu Item"

 END

Define an object infoArea in the AHelloWindow class, for example:

class AHelloWindow : public IFrameWindow,
 public ICommandHandler
{
 public:

AHelloWindow(unsigned long windowId);
 protected:

Boolean command(ICommandEvent& cmdEvent);
 private:
 IMenuBar menuBar;
 IStaticText hello;
 IInfoArea infoArea;
};

Modify the constructor of AHelloWindow. The information area is

constructed when AHelloWindow is created.

AHelloWindow :: AHelloWindow(unsigned long windowId)
: IFrameWindow (IFrameWindow::defaultStyle()

| IFrameWindow::minimizedIcon, windowId),
 menuBar(WND_MENU,this),
 hello(WND_HELLO,this,this),
 infoArea(this)
{
 ...
}

 Chapter 3. Window Classes 29

When you choose the menu item, the string related to the chosen menu

item is displayed automatically in the information area.

 Status Area
The status area is a small rectangular area that is usually located at the

top of a window, below the menu bar. The status area is used to

display information about the state of an object or the state of a

particular view of an object.

To create a status area, first define an object IStaticText statusLine in

the AHelloWindow class.

class AHelloWindow : public IFrameWindow,
 public ICommandHandler
{
 public:

AHelloWindow(unsigned long windowId);
 virtual ˜AHelloWindow();
 protected:

Boolean command(ICommandEvent& cmdEvent);
 private:
 IMenuBar menuBar;
 IStaticText hello;
 IInfoArea infoArea;
 IStaticText statusLine;
};

Next, modify the constructor of AHelloWindow. The status area is

constructed when AHelloWIndow is created.

AHelloWindow :: AHelloWindow(unsigned long windowId)
: IFrameWindow (IFrameWindow::defaultStyle()

| IFrameWindow::minimizedIcon, windowId),
 menuBar(WND_MAIN,this),
 hello(WND_HELLO,this,this),
 infoArea(this),
 statusLine(WND_STATUS,this,this)
{
 statusLine.setText(STR_STATUS);
 addExtension(&statusLine,
 IFrameWindow::aboveClient,
 IFont(statusLine).maxCharHeight());

}

30 User Interface Class Library Guide

WND_STATUS is a control ID defined in the header file.

STR_STATUS, defined in the resource file, is a string resource ID that

specifies a string to be displayed in the status area.

 Basic Controls

The following sections provide information about creating and using the

basic Presentation Manger controls with the User Interface Class

Library. Included are discussions of the controls for static text, entry

fields, push buttons, check boxes, radio buttons, and sliders.

Static Text Control
The IStaticText class allows you to create and manage static text in a

window. Using this class, you can control the colors, position, and size

of the text in the static text window.

Creating and Setting an IStaticText Instance: There are three ways

to create an IStaticText instance:

1. From a control ID, parent and owner windows, rectangle, and style.

Creates the specified static text control and an object for it.

2. From the ID of a static text control on a frame window. Creates the

object for the specified static text control.

3. From the window handle of an existing static text control. Creates

the object for the specified static text control.

To create an instance of the first type, you use the window ID, the

parent window, and the owner window, as in the following example

taken from the AHELLOW1.CPP sample file:

void main() //Main procedure with no parameters
{
IFrameWindow * mainWindow=new //Create our main window on the desktop
IFrameWindow(0x1000); // Pass in our Window ID

IStaticText * hello=new IStaticText(//Create static text control with
0x1010, mainWindow, mainWindow); // mainWindow as owner & parent

hello->setText("Hello, World!"); //Set text in Static Text Control
hello->setAlignment(//Set Alignment to Center in both

 IStaticText::centerCenter); // directions

mainWindow->setClient(hello); //Set hello control as client window
mainWindow->setFocus(); //Set focus to main window

 Chapter 3. Window Classes 31

mainWindow->show(); //Set to show main window

IApplication::current().run(); //Get the current application and
// run it

} /* end main */

Refer to the IBM C/C++ Tools: User Interface Class Library Reference

for other ways of creating an instance.

Setting the Text: To set a text string in the IStaticText class, use the

member function setText, as follows:

hello1->setText("This is an IStaticText");

The setText function is inherited from ITextControl.

Setting the Alignment: Using the setAlignment member function, you

can position the text in nine places in a window. Figure 5 shows the

nine locations for positioning text within a static text control.

HELLO1.EXE

topLeft topCenter

centerCentercenterLeft

bottomLeft bottomCenter bottomRight

centerRight

topRight

Figure 5. Aligning Text in a Window

The following example illustrates how to position text in a screen:

 hello->setAlignment(//Set alignment to center text
 IStaticText::topCenter); // horizontally

32 User Interface Class Library Guide

Setting the Color: To set the foreground color used to draw the text,

use the setColor function, as follows:

 hello->setColor(IStaticText::foreground, IColor(IColor::cyan));

Entry Field Control
An entry field control is a control into which a user places text. There

are three ways to create an instance of the IEntryField class:

1. From a control ID, parent and owner windows, rectangle, and style.

Creates the specified entry field control and an object for it.

2. From the ID of a entry field control on a frame window. Creates the

object for the specified entry field control.

3. From the window handle of an existing entry field control. Creates

the object for the specified entry field control.

Figure 6 shows an example of an entry field control.

Hello World Edit Dialog

Edit Text:

CancelOK

Hello, World!!!!

Figure 6. Example of an Entry Field Control

To create an IEntryField instance of the second type, first define a

resource file and create a frame window that uses it, as in the following

example from the ADIALOG4.DLG file (see “The Text Dialog Template”

on page 204 for complete listing of ADIALOG4.DLG):

ENTRYFIELD "", DID_ENTRY, 8, 44, 114, 8, ES_MARGIN

 Chapter 3. Window Classes 33

You can manipulate the entry field using the IEntryField class. Supply

the ID of the entry field (in this example, DID_ENTRY) and the window

in which it is located. To set the text to the entry field, use the member

function setText, as in the following example from the ADIALOG4.CPP

file (see “The Text Dialog Source Code File” on page 199 for complete

listing of ADIALOG4.CPP):

textField=new IEntryField(DID_ENTRY, //Create entry field object using dialog
 this); // entry field
textField->setText(textString); //Set top current "Hello, World" text

After an event occurs, you can query the entry field for its contents

using the member function text, as in the following statement from

AWINDOW4.CPP:

 textValue = textField->text(): //Get text from frame entry field

Push Button Control
A push button is a button, labeled with text, graphics, or both, that

represents an action that will be initiated when a user selects it. When

a user selects a push button, the action occurs immediately if there is a

handler for the generated command event.

Use the IPushButton class to create and manage the push button

control window. To create an instance of this class, you can use one of

the following constructors:

IPushButton(unsigned long id, IWindow* parent, IWindow* owner,
const IRectangle& initial= IRectangle(),
const Style& style = defaultStyle());

IPushButton(unsigned long id, IWindow* parentWindow);
IPushButton(IWindowHandle handle);

34 User Interface Class Library Guide

Generally, an application ICommandEvent event is generated when a

push button is pressed. The application can change the style value to

generate a help event or system ICommandEvent event by setting the

following value into default style:

 • help

Causes a help event, instead of a command event, to be generated

when the push button is pressed.

 • systemCommand

Causes an ICommandEvent system command event, instead of an

application command, to be generated when the push button is

pressed.

In Version 6 of the Hello World example, the member function

setupButtons creates four push buttons, Left, Center, Right, and Help,

at the bottom of the client window. The Left push button is created

using the following statements:

IPushButton * leftButton;
leftButton=new IPushButton(MI_LEFT, buttons, buttons, IRectangle(),
 IPushButton::defaultStyle()
 | IControl::tabStop);
leftButton->setText(STR_LEFTB);

The Center and Right push buttons are created with the same

statements, except the push button ID and text shown on the item are

different.

 Chapter 3. Window Classes 35

Because the Help push button generates a help event when it is

pressed, the help style is added into default style.

helpButton=new IPushButton(MI_HELP, buttons, buttons, IRectangle(),
 IPushButton::defaultStyle()
 | IPushButton::help
 | IControl::tabStop);
helpButton->setText(STR_HELPB);

By adding the IControl::tabStop into the default style, the user can use

the Tab key to move the selection between these push buttons.

The command events generated by pressing the Left, Center, and

Right push buttons are handled by the command member function. The

help event generated by pressing the Help push button is handled by

the keysHelpId member function.

For examples of command and keyHelpId member functions, refer to

Chapter 16, “NLS and Advanced Functions” on page 251.

Check Box Control
A check box is a square box with associated text that represents a

choice. When a user selects the choice, a “√” symbol appears in the

check box to indicate that the choice is selected. By selecting the

choice again, the user can clear the check box. A check box is used to

set a choice in a group of choices that are not mutually exclusive.

The ICheckBox class allows you to create and manage a check box.

The selection of a check box is processed by using the ISelectHandler
class and adding the handler to either the check box or its owner

window.

To create an instance of this class, you can use one of the following

constructors:

ICheckBox(unsigned long Id, IWindow* parent, IWindow* owner,
const IRectangle& initial= IRectangle(),
const Style& style = defaultStyle());

ICheckBox(unsigned long Id, IWindow* parentDialog);
ICheckBox(IWindowHandle handle);

In the following example, the text associated with the check box is

defined in the resource file as string text:

36 User Interface Class Library Guide

STRINGTABLE
 BEGIN

STR_CHECK1 , "check box one"
STR_CHECK2 , "check box two"
STR_CHECK3 , "check box three"

 END

Each check box has a control ID, for example:

#define STR_CHECK1 0x1001
#define STR_CHECK2 0x1002
#define STR_CHECK3 0x1003

The following example defines three ICheckBox objects and constructs

them in the parentWindow.

ICheckBox checkBox1(WND_CHECK1, &parentWindow, &ownerWindow);
checkBox1.setText(STR_CHECK1);
ICheckBox checkBox2(WND_CHECK2, &parentWindow, &ownerWindow);
checkBox2.setText(STR_CHECK2);
ICheckBox checkBox3(WND_CHECK3, &parentWindow, &ownerWindow);
checkBox3.setText(STR_CHECK3);

The ISelectHandler class processes item selection events for the

ICheckBox, IComboBox, IListBox, and IRadioButton objects.

You can define a select handler class, which is inherited from the

ISelectHandler class, to handle the check box selection. You must

provide your own selected member function for the select handler

class. Refer to the example given in “Radio Button Control” on

page 38 for more information about how to define the select handler

class and create the selected member function.

 Chapter 3. Window Classes 37

Radio Button Control
A radio button is a circle with text beside it. Radio buttons are used to

display a fixed set of choices from which the user can select one. A

group of radio buttons always contains at least two radio buttons.

The IRadioButton class allows you to create and manage the radio

button control window. The ISelectHandler class processes the

selection of a radio button and adds the handler to either the radio

button or its owner window.

To create an instance of this class, you can use one of the following

constructors:

IRadioButton(unsigned long id, IWindow* parent, IWindow* owner,
const IRectangle& initial= IRectangle(),
const Style& style = defaultStyle());

IRadioButton(unsigned long id, IWindow* parentDialog);
IRadioButton(IWindowHandle handle);

The following example shows how to create two instances of this class:

IRadioButton radioBtBlack(WND_BLACKBT, &parentWindow, &ownerWindow);
radioBtBlack.setText(STR_BLACK);
IRadioButton radioBtWhite(WND_WHITEBT, &parentWindow, &ownerWindow);
radioBtWhite.setText(STR_WHITE);

WND_BLACKBT and WND_WHITEBT are control IDs given to each

radio button.

These radio buttons are created in the parentWindow. A string for each

radio button is defined as a string resource in the resource file:

STRINGTABLE
 BEGIN
 STR_BLACK, "Black"
 STR_WHITE, "White"
 END

You can use the enableGroup and enableTabStop member functions to

set the group styles of a control. User the select member function to

make the black button the default selected button, as shown below:

radioBtBlack.enableGroup().enableTabStop();
radioBtBlack.select();

38 User Interface Class Library Guide

The valid control styles are:

group Identifies the control as being the first in a group (arrow

keys rotate through the group).

tabStop Identifies the control as one to which the user can tab.

You can define a select handler class, which is inherited from the

ISelectHandler class, to handle the radio button selection, as follows:

class MySelectHandler : public ISelectHandler
{
 public:
 MySelectHandler() ;
 protected:

selected(IControlEvent& evt);
 private:

};

To set the select handler to handle events from the selection of “Black”

and “White” radio buttons, code the following:

selectHdr.handleEventsFor(&radioBtBlack);
selectHdr.handleEventsFor(&radioBtWhite);

You must provide your own selected member function for the select

handler class, as in the following: as:

Boolean MySelectHandler::selected(IControlEvent& evt)
{
Boolean fProcess= false;
 switch (evt.controlId())
 {
 case WND_BLACKBT:

 fProcess= true;
 break;
 case WND_WHITEBT:

 fProcess= true;
 break;
 }
 return fProcess;
}

 Chapter 3. Window Classes 39

 Slider Control
A progress indicator, or slider, is a control that represents a quantity

and its relationship to the range of possible values for that quantity. A

slider consists of a slider arm, slider shaft and, optionally, detents, tick

marks, tick text, and slider buttons. Figure 7 shows the components of

a slider control.

0 1 2 3 4 5 6 7 8 9

Slider Buttons Detent Tick Text Tick Mark

Slider ShaftSlider Arm

Figure 7. Slider components

Use the ISlider class to create a slider control, which enables users to

set, display, or modify a value by moving the slider arm along the slider

shaft.

The default style of ISlider positions the slider horizontally and

centered in the window with tick marks and text above it. The slider

arm is based on the left edge. You can also construct a slider with the

tick marks and text below the shaft at various positions in the window,

and you can position the slider vertically in the window.

The ISlider class is inherited from the IProgressIndicator class, which

is a read-only version of the slider control. Typically, a progress

indicator is used to display the percentage of a task that has been

completed by filling in its shaft as the task progresses. Because the

user cannot change the value represented by a progress indicator, a

slider arm and slider buttons are not provided in a progress indicator.

p. The progress indicator’s shaft is filled with color as the arm moves.

The following example shows how to create a slider in the constructor

of a subclass of IFrameWindow:

AHelloWindow :: AHelloWindow(unsigned long windowId)

40 User Interface Class Library Guide

: IFrameWindow (
 IFrameWindow::defaultStyle()
 | IFrameWindow::minimizedIcon,
 windowId)
{
clientCanvas = new IMultiCellCanvas(WND_MCCANVAS, this, this);
setClient(clientCanvas);

infoArea = new IStaticText(WND_INFO, clientCanvas, clientCanvas);
infoArea->setAlignment(IStaticText::centerCenter);
infoArea->setText(STR_INFO);

unsigned long numberOfTicks = 10;
unsigned long tickSpacing=0 ;

mySlider = new ISlider((unsigned long)ID_SLIDER,
 clientCanvas, clientCanvas,
 IRectangle(),
 numberOfTicks,
 tickSpacing,
 ISlider::defaultStyle());

 mySlider->setTickLength(5);
for (unsigned long z=0; z<10; z++)

 mySlider->setTickText(z, (char*)(IString(z)));

 unsigned long DetentId = mySlider->addDetent((unsigned long) 105) ;

clientCanvas->addToCell(infoArea, 1, 1);
 clientCanvas->addToCell(mySlider ,1,2);
 clientCanvas->setColumnWidth(1,100,true);
 clientCanvas->setRowHeight(2,100,true);

 setFocus();
 show();
}

In the example, a multi-cell canvas is created and set to be the client

area of this frame window. A static text control is created to show a

message string. The slider is created with the default style, and tick

marks, tick text, and detents are added to the slider.

Because tick marks are created with zero length and are, therefore,

invisible, you must use the setTickLength member function to set the

length of all tick marks on the slider scale. The setTickText member

function sets the text associated with the tick at the specified index.

The addDetent member function adds a detent to the slider at the pixel

 Chapter 3. Window Classes 41

offset from the home position specified, then returns a unique ID. This

ID is required for removing a detent or querying its position.

The default style of a slider is horizontal. To change the style to

vertical, add IProgressIndicator::vertical to the default style, as

follows:

mySlider = new ISlider((unsigned long)ID_SLIDER,
 clientCanvas, clientCanvas,
 IRectangle(),
 numberOfTicks,
 tickSpacing,
 ISlider::defaultStyle()
 | IProgressIndicator::vertical);

Several member functions are provided to perform the slider arm

operation:

 • armPixelOffset

Returns the offset of the slider arm from the home position; the

return value is the number of pixels.

 • armTickOffset

Returns the position of the slider arm; the return value is a tick

number. Tick marks are numbered starting at zero.

 • moveArmToTick

Moves the slider arm to the specified tick number. Tick marks are

numbered starting at zero.

 • moveArmToPixel

Moves the slider arm to a pixel offset relative to the home position.

For example, you can use the following statements to return the current

slider arm position measured by tick offset, and then modify it to the

result plus one.

unsigned long tickNumber= mySlider->armTickOffset ();
tickNumber++ ;
mySlider->moveArmToTick (tickNumber);

Figure 8 on page 43 shows the completed slider control.

42 User Interface Class Library Guide

Slider Sample

The Current Value is: 2

0 1 2 3 4 5 6 7 8 9

OK

Figure 8. Slider Sample

 Chapter 3. Window Classes 43

 Canvas Controls

The canvas classes provide a flexible way to build windows with

multiple child controls. The various canvas classes provide different

layout and sizing rules that enable you to build windows that contain

fixed size areas, user sizeable areas, and scrollable areas. In addition,

canvas controls allow you to control tabbing and cursor movement

between child controls.

The following canvas classes are available:

 • ISplitCanvas
 • ISetCanvas
 • IMultiCellCanvas
 • IViewPort

Generally, you will build a complex window with a canvas control as the

client area. This canvas may itself contain other canvas controls to

provide the required layout.

Set and multicell canvases automatically size themselves to contain

their child windows. This makes writing programs that are NLS

compatible much easier, because the windows are sized dynamically

when they are created while still retaining the same design. Because

of the support for tabbing and cursoring between child controls,

windows built using canvas classes provide an alternative to dialog

boxes.

44 User Interface Class Library Guide

 Split Canvas
A split canvas can contain two or more child controls. Each child

control is placed in a pane. The panes are separated by moveable

(default) or fixed split bars. A split canvas can have its split bars

oriented vertically or horizontally.

A split canvas is best used to contain controls that can be resized to

display more information. Examples of such controls are list boxes,

containers, MLEs, and notebooks.

Note: Use the noAdjustPosition style on a list box control, when used

within a split canvas.

The order in which you create the child controls determines both their

relative position on the split canvas and the order in which tab and

cursor keys switch focus between them. For a canvas with vertical split

bars, the child controls are arranged with the control created first in the

leftmost pane. For a canvas with horizontal split bars, the control

created first is placed in the top pane.

The following example shows how to create a window containing two

split canvases. Each pane is occupied by a static text control.

1. The class declaration.

The ASplitCanvas class is derived from the IFrameWindow class.

#include <iframe.hpp> // IFrameWindow
#include <istattxt.hpp> // IStaticText
#include <isplitcv.hpp> // ISplitCanvas
class ASplitCanvas : public IFrameWindow
{
 public:

ASplitCanvas(unsigned long windowId); // Constructor

 private:
ISplitCanvas horzCanvas, // Note: the order of

vertCanvas; // declaration is the order
IStaticText lText, // that the windows are

 rText, // created
 bText;
};

 Chapter 3. Window Classes 45

2. The constructor for the class.

It creates a canvas with horizontal split bars and makes it the client

area. A canvas with vertical split bars containing two static text

controls is added to the top pane, and a static text control is added

to the bottom pane.

ASplitCanvas :: ASplitCanvas(unsigned long windowId)
: IFrameWindow(windowId)
, horzCanvas(WND_CANVAS, this, this)
, vertCanvas(WND_CANVAS2, &horzCanvas, &horzCanvas)
, lText(WND_TXTL, &vertCanvas, &vertCanvas)
, rText(WND_TXTR, &vertCanvas, &vertCanvas)
, bText(WND_TXTB, &horzCanvas, &horzCanvas)

{
//Give the canvas a horizontal split bar
// and make it the client area

horzCanvas.setOrientation(ISplitCanvas::horizontalSplit);
setClient(&horzCanvas);

//Give the canvas a vertical split bar
vertCanvas.setOrientation(ISplitCanvas::verticalSplit);

//Set top left static text
 lText.setText(STR_TOPLEFT);
lText.setAlignment(IStaticText::centerCenter);

//Set top right static text
 rText.setText(STR_TOPRIGHT);
rText.setAlignment(IStaticText::centerCenter);

//Set bottom static text
 bText.setText(STR_BOTTOM);
bText.setAlignment(IStaticText::centerCenter);

setFocus().show(); //Set focus and show window

} /* end ASplitCanvas :: ASplitCanvas(...) */

Figure 9 on page 47 shows the completed split canvas.

46 User Interface Class Library Guide

Canvas Classes Example1 - Split Canvas

Top left text Top right text

Bottom text

First pane
of vertical
split canvas

Second pane
of vertical
split canvas

Vertical split bar

Horizontal
split bar

Figure 9. Split Canvas Example

 Set Canvas
A set canvas arranges its child controls in either rows or columns. The

User Interface Class Library uses the direction-independent term deck

for either a row or column. You can arrange the deck or decks of a set

canvas either horizontally or vertically. The set canvas attempts to

place the same number of controls in each deck.

Each deck is large enough to contain the largest control in the deck.

To do this, the canvas calls the minimumSize member function for each

child control. For controls that have a size defined by the text they

contain, such as push buttons and radio buttons, this default processing

is normally sufficient. However, for controls that do not have a fixed

size, such as notebooks, the control should set its minimum size

overhiding calcMinimizeSize member function or calling the

setMinimumSize member function before being added to the set canvas;

otherwise, a default size is used.

 Chapter 3. Window Classes 47

The order in which you create the child controls determines both their

position on the set canvas and the order in which tab and cursor keys

switch focus between the controls. Several styles are available to

control the orientation of the decks and the placement of controls within

the decks. It is also possible to alter the spacing between controls and

between the decks and the edge of the canvas.

The following example uses a split canvas as a client area. Two set

canvases, each with seven radio buttons, are then added to the split

canvas:

1. The class declaration.

The ASetCanvas class is derived from the IFrameWindow class.

#include <iframe.hpp> // IFrameWindow
#include <istattxt.hpp> // IStaticText
#include <iradiobt.hpp> // IRadioButton
#include <isetcv.hpp> // ISetCanvas
#include <isplitcv.hpp> // ISplitCanvas
#define NUMBER_OF_BUTTONS 14

class ASetCanvas : public IFrameWindow
{
public: //Define the public information
ASetCanvas(unsigned long windowId); //Constructor for this class
˜ASetCanvas(); //Destructor for this class

private: //Define private information
 ISplitCanvas clientCanvas;
 IStaticText status;
 ISetCanvas vSetCanvas,
 hSetCanvas;
 IRadioButton * radiobut[NUMBER_OF_BUTTONS];
};

48 User Interface Class Library Guide

2. The constructor for the example uses a split canvas as the client

area. A static text control is added as the top pane of the split

canvas and below that two set canvases are added.

ASetCanvas::ASetCanvas(unsigned long windowId)
: IFrameWindow(windowId)
, clientCanvas(WND_SPLITCANVAS, this, this ,IRectangle(),

ISplitCanvas::defaultStyle() | ISplitCanvas::horizontal)
, status(WND_STATUS, &clientCanvas, &clientCanvas)
, vSetCanvas(WND_VSETCANVAS, &clientCanvas, &clientCanvas)
, hSetCanvas(WND_HSETCANVAS, &clientCanvas, &clientCanvas)

{
//Make split canvas the client area

 setClient(&clientCanvas);
//Set alignment of status area text

 status.setAlignment(IStaticText::centerCenter);

//Top canvas has 3 vertical decks
 vSetCanvas.setDeckOrientation(ISetCanvas::vertical);
 vSetCanvas.setDeckCount(3);

//Bottom canvas has 3 horizontal decks
 hSetCanvas.setDeckOrientation(ISetCanvas::horizontal);
 hSetCanvas.setDeckCount(3);
hSetCanvas.setPad(ISize(10,10)); //Set some space around buttons

unsigned int i, mid = (NUMBER_OF_BUTTONS/2);
//Create the first set of radio buttons

for (i = 0 ; i < mid ; ++i)
 {

radiobut[i]=new IRadioButton(WND_BUTTON+i, &vSetCanvas, &vSetCanvas);
radiobut[i]->setText(STR_TEXT + i);

 }
radiobut[0]->enableGroup().enableTabStop();//Set tabStop and Group styles
radiobut[0]->select(); //Select first button in group

 Chapter 3. Window Classes 49

//Create the second set of radio buttons
for (i = mid ; i < NUMBER_OF_BUTTONS ; ++i)

 {
radiobut[i]=new IRadioButton(WND_BUTTON+i, &hSetCanvas, &hSetCanvas);
radiobut[i]->setText(STR_TEXT + i);

 }
radiobut[mid]->enableGroup().enableTabStop();//Set tabStop and Group styles
radiobut[mid]->select(); //Select first button in group

radiobut[0]->setFocus(); //Set focus to radio button one
status.setText(STR_STATUS); //Set status area text from resource

show(); //Show main window

} /* end ASetCanvas :: ASetCanvas(...) */

Figure 10 shows the set canvas created using this code.

Canvas Classes Example 2 - Set Canvas

Button one

Button two

Button three

Button four

Button five

Button six

Button seven

Button eight Button nine Button ten

Button eleven Button twelve

Button thirteen Button fourteen

ISplitCanvas and ISetCanvas example

Vertical set canvas
with 3 decks

Horizontal set canvas
with 3 decks

Split canvas with 3 panes. Top pane contains a static
text control. The lower two panes contain set canvases.

Figure 10. Set Canvas Example

50 User Interface Class Library Guide

 Multicell Canvas
A multicell canvas consists of a grid of rows and columns. Child

controls are placed on the canvas by specifying the starting cell and the

number of contiguous rows and columns that they are allowed to span.

Cells in the grid can be referred to by giving the column and row value,

with the top left cell coordinate being (1,1). The actual number of rows

and columns in the canvas is the highest row and column value used.

In the following example, a radio button is placed at (4,5) and a push

button at (2,7). Therefore the canvas will be at least 4 columns and 7

rows.

The initial size of a row or column is determined by the size of the

largest control in that row or column. By default, rows and columns are

of fixed size. If necessary, they can be made expandable, in which

case sizing the canvas causes them to resize.

Rows and columns can be left empty to provide spacing between child

controls. If you do this, you need to explicitly specify the size of the

empty rows and columns.

The following example code shows how to create a window containing

a multicell canvas. The canvas contains two check boxes, two radio

buttons, three static text controls, and a single push button.

1. The class declaration.

The AMultiCellCanvas class is derived from the IFrameWindow class.

#include <iframe.hpp> // IFrameWindow
#include <istattxt.hpp> // IStaticText
#include <ipushbut.hpp> // IPushButton
#include <iradiobt.hpp> // IRadioButton
#include <icheckbx.hpp> // ICheckBox
#include <imcelcv.hpp> // IMultiCellCanvas
class AMultiCellCanvas : public IFrameWindow
{
 public:

AMultiCellCanvas(unsigned long windowId);

 private:
 IMultiCellCanvas clientCanvas;
 IStaticText status,
 title1,
 title2;
 ICheckBox check1,

 Chapter 3. Window Classes 51

 check2;
 IRadioButton radio1,
 radio2;
 IPushButton pushButton;
};

2. The constructor for the multicell canvas window.

It creates a multicell canvas and makes it the client area. The

other controls are then placed on the canvas using the addToCell
member function.

AMultiCellCanvas::AMultiCellCanvas(unsigned long windowId)
 : IFrameWindow(windowId)
, clientCanvas(WND_MCCANVAS, this, this)
, status(WND_STATUS, &clientCanvas, &clientCanvas)
, title1(WND_TITLE1, &clientCanvas, &clientCanvas)
, title2(WND_TITLE2, &clientCanvas, &clientCanvas)
, check1(WND_CHECK1, &clientCanvas, &clientCanvas)
, check2(WND_CHECK2, &clientCanvas, &clientCanvas)
, radio1(WND_RADIO1, &clientCanvas, &clientCanvas)
, radio2(WND_RADIO2, &clientCanvas, &clientCanvas)
, pushButton(WND_PUSHBUT, &clientCanvas, &clientCanvas)

{
// make multicell canvas the client

setClient(&clientCanvas);
// set status area text

status.setAlignment(IStaticText::centerCenter);
status.setText(STR_STATUS);

title1.setAlignment(IStaticText::centerLeft); // set text and alignment
title1.setText(STR_TITLE1);

title2.setAlignment(IStaticText::centerLeft); // set text and alignments
title2.setText(STR_TITLE2);

check1.setText(STR_CHECK1); // set checkbox text
check2.setText(STR_CHECK2);
radio1.setText(STR_RADIO1); // set radio button text
radio2.setText(STR_RADIO2);

pushButton.setText(STR_PUSHBUT);

radio2.select(); // pre-select one radio button
check1.enableGroup().enableTabStop(); // set tabStop and Group styles

 radio1.enableGroup().enableTabStop();
 pushButton.enableGroup().enableTabStop();

 clientCanvas.addToCell(&status , 1, 1, 4, 1); // add controls to canvas.
 clientCanvas.addToCell(&title1 , 1, 3, 2, 1); // the canvas runs from
 clientCanvas.addToCell(&title2 , 3, 3, 2, 1); // 1,1 to 4,7

52 User Interface Class Library Guide

 clientCanvas.addToCell(&check1 , 2, 4); // exactly one row and
 clientCanvas.addToCell(&check2 , 2, 5); // one column are
 clientCanvas.addToCell(&radio1 , 4, 4); // expandable, as this
 clientCanvas.addToCell(&radio2 , 4, 5); // allows the canvas to
clientCanvas.addToCell(&pushButton , 2, 7); // fill the whole client.

// make row 2 20 pixels high and expandable
clientCanvas.setRowHeight(2, 20, true);

// make row 6 40 pixels high
 clientCanvas.setRowHeight(6, 40);

// make column 4 40 pixels wide and expandable
clientCanvas.setColumnWidth(4, 40, true);

check1.setFocus(); // set focus to first checkbox
show(); // show main window

} /* end AMultiCellCanvas :: AMultiCellCanvas(...) */

Figure 11 shows the completed multicell canvas.

Canvas Classes Example 3 - Multi-cell Canvas

Check Boxes
check box one
check box two

Radio Buttons
radio button one
radio button two

IMultiCellCanvas example

Multicell Canvas with 4 Columns and 7 rows

Expandable
row

Row

Column

1

1

2

2

3

3

4

4
5

6

7

Expandable column

Read . . .

Figure 11. Multicell Canvas Example

 Chapter 3. Window Classes 53

 Viewport
A viewport differs from other canvas types in that it allows only one

child control. The size of the child control is not altered when the

viewport is resized. If the viewport is smaller than the child control,

scroll bars are added to the viewport. The user can then use the scroll

bars on the viewport to view different parts of the child control. The

child control does not need to provide any code to handle scrolling.

If several controls are required inside a viewport, they should be placed

into another type of canvas, which can then be made the child of the

viewport.

The following example code shows how to create a window containing

a viewport. The viewport has a single bit-map control inside it.

1. The class declaration.

The AViewPort class is derived from the IFrameWindow class.

#include <iframe.hpp> // IFrameWindow
#include <ivport.hpp> // IViewPort
#include <ibmpctl.hpp> // IBitmapControl
class AViewPort : public IFrameWindow
{
public: // define the public information
AViewPort(unsigned long windowId); // constructor for this class

private: // define private information
 IViewPort clientViewPort;
 IBitmapControl bitmap;
};

2. The constructor for the viewport window.

It creates a viewport control and sets it as the client area. The

bit-map control is then made a child of the viewport.

#include <ireslib.hpp> // IResourceId class
AViewPort :: AViewPort(unsigned long windowId)
: IFrameWindow(windowId)
, clientViewPort(WND_VIEWPORT, this, this)
, bitmap(WND_BITMAP, &clientViewPort, &clientViewPort

, IResourceId(BMP_ID))
{

// make viewport the client
setClient(&clientViewPort);

setFocus().show(); // set focus and show window

54 User Interface Class Library Guide

} /* end AViewPort :: AViewPort(...) */

Figure 12 shows the viewport canvas created using this code.

Canvas Classes Example 4 - ViewPort

Figure 12. Viewport Canvas Example

 Styles

Every window provided by the User Interface Class Library has a

number of different styles that affect the appearance and behavior of

the window. These styles are encapsulated in style objects. The style

classes operate within the scope of the window class that they affect.

Generic styles are defined in IWindow and IControl. Windows that are

subclasses of these can combine their own styles with those of IWindow
and IControl.

Each window class maintains its own default style. This default style

object can be accessed using the static member function defaultStyle
and set using the static member function setDefaultStyle. Each class

also maintains a style object called classDefaultStyle that corresponds

to the initial setting of defaultStyle.

 Chapter 3. Window Classes 55

 Style Objects
Style objects can be combined using the | (bitwise OR) operator.

Styles can also be removed from a style object by creating a

negated-style object using the ∼ (logical negation) operator and then

using the & (logical AND) operator.

1. Combine two styles

The following example creates a list box style object that can be

used to construct a multiple-selection list box.

IListBox::Style lbStyle = IListBox::defaultStyle()
 | IListBox::multipleSelect;

2. Remove a style

The following example creates a list box style object that can be

used to construct a list box without a horizontal scroll bar:

IListBox::Style lbStyle = IListBox::defaultStyle()
 & ˜IListBox::horizontalScroll;

Setting Window Styles
The User Interface Class Library provides three ways to create a

window with a specific style:

1. Create a window using a constructor which accepts the style as a

parameter

2. Create a window with the default style and change it using member

functions of the window

3. Change the default style for the window class and then construct

the window

All windows provide one or more constructors that accept a style object

as one parameter. A style object can only be constructed from existing

style objects. Additionally, you can combine style objects using the |

(logical OR) operator.

56 User Interface Class Library Guide

The following example shows how to create an entry field control with a

style that is a combination of styles taken from IWindow, IControl and

IEntryField.

 IEntryField entryField(ID_EF1, parent, owner,
IRectangle(10, 10, 100, 20),

 IWindow::visible |
 IControl::tabStop |
 IControl::group |
 IEntryField::margin |
 IEntryField::autoScroll);

Alternatively, the style object can be explicitly constructed and passed

as a parameter:

IEntryField::Style efStyle = IWindow::visible |
 IControl::tabStop |
 IControl::group |
 IEntryField::margin |
 IEntryField::autoScroll ;
 IEntryField entryField(ID_EF1, parent, owner,

IRectangle(10, 10, 100, 20),
 efStyle);

Each window class maintains its own default style. This default style

object can be accessed using the static member function defaultStyle.

This simplifies the preceding example to:

 IEntryField entryField(ID_EF1, parent, owner,
IRectangle(10, 10, 100, 20),

 IEntryField::defaultStyle() |
 IControl::tabStop |
 IControl::group);

 Chapter 3. Window Classes 57

Use the static member function setDefaultStyle. to set the default

style for a class. For example:

IEntryField::Style efStyle = IEntryField::defaultStyle() |
 IControl::tabStop |
 IControl::group ;
 IEntryField::setDefaultStyle(efStyle);
 IEntryField entryField(ID_EF1, parent, owner,

IRectangle(10, 10, 100, 20));

To set the style of a window after creating it, use specific member

functions provided by each class. The example now becomes:

 IEntryField entryField(ID_EF1, parent, owner,
IRectangle(10, 10, 100, 20));

entryField.enableGroup(); // member function of IControl
entryField.enableTabStop(); // member function of IControl
entryField.enableAutoScroll(); // member function of IEntryField

For a complete list of available styles, see the IBM C/C++ Tools: User

Interface Class Library Reference.

 Cursors

The User Interface Class Library provides cursor classes to iterate

through collections of items. Window classes that can contain one or

more items generally provide a nested cursor class. Cursors are

usually constructed by providing the window to iterate over (look at

each item).

A cursor must be in a valid state to access the items in a list. A cursor

is generally created in an invalid state. Any cursor function that causes

the cursor to be pointing at an item in the list will validate the cursor.

For example, the function setToFirst causes the cursor to be valid if

there are items in the list. If the contents of the list that the cursor is

iterating over changes by the addition or removal of items, the cursor

becomes invalid and cannot be used to access items in the list until it is

validated again (by a function that points the cursor at a valid item).

All cursor classes provide member functions to move through the items,

either forward or backward, and to add items after the cursor position.

58 User Interface Class Library Guide

In some cases, you may want to construct a cursor that iterates only

over items with a particular property. For example, the constructor for a

list box cursor takes a second parameter that determines whether the

cursor returns all items in the list box or just the selected items.

The following example shows how to iterate through all selected items

in a multiple-selection list box:

IListBox listbox(ID_LB, parent, owner, IRectangle(),
IListBox::defaultStyle() | IListBox::multipleSelect);

 /* ... add items to listbox ... */
 IListBox::Cursor lbCursor(listbox);
for (lbCursor.setToFirst(); lbCursor.isValid(); lbCursor.setToNext())

 {
IString str(listbox.elementAt(lbCursor)); //Return item at cursor
unsigned long ul = lbCursor.asIndex(); //Return zero-based index
/* ... process string or index ... */

 }

 Chapter 3. Window Classes 59

60 User Interface Class Library Guide

Chapter 4. Handlers and Events

Handlers and Events

The User Interface Class Library uses handlers and events to

encapsulate the message architecture of OS/2 Presentation Manager in

an object-oriented way. Presentation Manager messages are

encapsulated in event objects, which are passed to the window or

control that had the event. The window then invokes the handlers that

have been attached to the window, passing the event object as a

parameter. The handlers are called sequentially with the most recently

added handler being invoked first. A handler must return a Boolean
value to indicate whether processing for the event is complete. A

return value of true indicates to the window that all processing for the

event has been completed. The event is not routed to any other

handler attached to the window or passed to the default PM window

procedure for the window. Events that are not processed by any

handler are processed by the window procedure for the underlying PM

window.

Figure 13 on page 62 shows the main relationships between window,

event, and handler classes.

 Copyright IBM Corp. 1993 61

Event

PM

Window

1

2

3

4

5

Handler

3 - window dispatches event

1 - handler registered with window

2 - event routed to window

4 - event passed on until processed or

5 - event passed to PM for default processing

Figure 13. Windows, events, and handlers

The distinction between window classes and handler classes provided

by the User Interface Class Library allows an application to separate its

own event handling logic from the rest of the application. This enables

the reuse of event handling logic. For example, a handler to verify

telephone numbers can be reused wherever there is an entry field

which accepts telephone numbers.

 Handlers
Each handler class has one or more virtual functions that are called to

process the event. When an application processes events, it normally

subclasses a handler class and overrides the virtual function to provide

its own application-specific logic.

Note: Handlers need to return from the virtual functions within 1/10

second to avoid locking up the system by delaying the PM

message processing.

62 User Interface Class Library Guide

Figure 14 on page 63 shows how the ICommandHandler works. All

handler classes contain a dispatchHandlerEvent function to determine

whether the handler needs to process the event or return it. If the

event needs processing, it creates the appropriate event object and

calls the appropriate virtual function to process the event.

Event

IWindow

dispatch()

ICommandHandler

dispatchHandlerEvent()

command()

ICommandEvent

1

2

3a

3b

4

1

2

3a

3b

4

- window creates event

- IEvent passed to ICommandHandler

- IEvent not processed

- ICommandEvent generated

- ICommandEvent processed by command()

Figure 14. Processing within the ICommandHandler

The following table presents some of the more common events for

which you might want to provide handlers. It relates the type of event,

the handler for that event, and the member function in the handler class

that the application must override in order to provide its own logic. The

IBM C/C++ Tools: User Interface Class Library Reference contains a

description of all handler classes and member functions.

 Chapter 4. Handlers and Events 63

Figure 15. Handler Classes and Their Member Functions

Type of Event Generated by Event Class Handler Class Function

Command event Menu selection,

push button,

accelerator key

ICommandEvent ICommandHandler command

System command

event

Menu selection,

push button,

accelerator key

ICommandEvent ICommandHandler systemCommand

Edit event Entry field,

combination box,

MLE, slider

IControlEvent IEditHandler edit

Gain focus or lose

focus

Entry field,

combination box,

MLE, slider,

container, spin

button

IControlEvent IFocusHandler getFocus or

lostFocus

Keyboard entry Entry field,

combination box,

MLE or other input

focus control

IKeyboardEvent IKeyboardHandler keyPress,

scanCodeKeyPress,

virtualKeyPress,

characterKeyPress,

key

Paint area event All controls IPaintEvent IPaintHandler paintWindow

Resize event All controls IResizeEvent IResizeHandler windowResize

Item selected List box,

combination-box,

container, check

box, radio button

IControlEvent ISelectHandler selected

Enter pressed when

item selected, or

double-click on item

List box,

combination-box,

container

IControlEvent ISelectHandler enter

Menu about to be

shown

Menu bar IMenuEvent IMenuHandler menuShowing

Context menu of

container item

requested

Container IMenuEvent ICnrMenuHandler makePopupMenu

64 User Interface Class Library Guide

 Events
The IEvent class acts as the base class for the more specialized event

classes. It provides general member functions to extract the message

ID and message parameters. The subclasses of IEvent generally add

more specialized functions for extracting information specific to that type

of event.

The following table shows some of the more common event classes,

and some of the functions they contain to extract event information.

Refer to the IBM C/C++ Tools: User Interface Class Library Reference

for a complete list of event classes and member functions.

 Chapter 4. Handlers and Events 65

The IEvent class provides a member function, setResult, for those

events that require a value to be returned.

Figure 16. Event classes and accessor functions

Event Class Accessor

Function

Description of Return Value

IEvent window The IWindow object pointer

IEvent handle IWindowHandle of the window

IEvent eventId ID of the event

IEvent parameter1 IEventData containing first event

parameter

IEvent parameter2 IEventData containing second event

parameter

ICommandEvent source An enumeration type which gives the type

of control

ICommandEvent commandId The ID of the control that caused the

event

IControlEvent controlId The ID of the control that caused the

event

IControlEvent control Pointer to the control that caused the

event

IKeyboardEvent character Single-byte character code (exception

thrown if DBCS)

IKeyboardEvent mixedCharacter IString containing character (may be

DBCS)

IKeyboardEvent virtualKey An enumeration type which gives the

virtual key event

IMenuEvent menuItemId The ID of the selected menu Item

IMenuEvent mousePosition Position of mouse at the time the event

occurred

IPaintEvent presSpaceHandle The handle of the presentation space to

use for any drawing

IPaintEvent rect The screen rectangle that needs updating

66 User Interface Class Library Guide

Writing a Handler
In general, handling an event can be divided into four distinct stages.

1. Determine which handler class processes the event

2. Subclass the handler class and override the event handling

functions

3. Create an instance of your subclass

4. Attach the instance to the window

The Hello World applications have several event handlers. The

following code is taken from Hello World Version 3 (see Chapter 13,

“Event Handling and Menu Bars” on page 173) and shows how to

process user menu selection.

1. Determine which handler class processes the event

Selecting a menu results in a command message being sent to the

frame window and the client window. The handler class for this

type of event is ICommandHandler.

2. Subclass the handler class and override the event handling function

The Hello World application uses multiple inheritance to provide a

class AHelloWindow which inherits from both IFrameWindow and

ICommandHandler. The class ICommandHandler has a virtual function

command which is invoked to process command events. The class

AHelloWindow overrides this function in order to provide its own

command handling. The following extract from AHELLOW3.HPP

shows the class declaration.

class AHelloWindow : public IFrameWindow,
 public ICommandHandler
{
public: // define the public information
AHelloWindow(unsigned long windowId); // constructor for this class

protected: // define protected member
Boolean command(ICommandEvent& cmdEvent);

 /* ... rest of class declaration ... */

};

The definition of the command function is taken from

AHELLOW3.CPP . The ID of the menu item is extracted from the

command event object using the commandId member function.

 Chapter 4. Handlers and Events 67

Boolean AHelloWindow :: command(ICommandEvent & cmdEvent)
{
switch (cmdEvent.commandId()) { // get command id
case MI_CENTER: // process center command

 /* ... process center menu item ... */
return(true); // return command processed

 break;
case MI_LEFT: // code to process left command

 /* ... process left menu item ... */
return(true); // return command processed

 break; //
case MI_RIGHT: // code to process right command

 /* ... process left menu item ... */
return(true); // return command processed

 break; //
 }

return(false); // return command not processed
} /* end HelloWindow :: command(...) */

3. Create an instance of your subclass.

Since the window is its own command handler, creating the window

creates an instance of the handler. In the case where a separate

handler class has been defined, it would be necessary to create an

instance of it. Normally this would be done during the constructor

for the window.

4. Attach the instance to the window.

The base class IHandler provides a member function

handleEventsFor to attach a handler to a window. In the Hello

World example, the handler is attached during the constructor for

the window.

AHelloWindow :: AHelloWindow(unsigned long windowId)
: IFrameWindow (// call IFrameWindow constructor
IFrameWindow::defaultStyle() // use default plus
| IFrameWindow::minimizedIcon, // get minimized icon from RC file
windowId) // main window ID

{
 /* ... constructor code ... */

handleEventsFor(this); // set self as command event handler

} /* end AHelloWindow :: AHelloWindow(...) */

68 User Interface Class Library Guide

Chapter 5. Data Types and Attributes

Managing Character Data

The IString class contains member functions that enable you to

perform a variety of data manipulation and management activities.

You can perform the following tasks with the IString class:

• Perform stream I/O

• Query string characteristics

• Test the contents of the string

• Compare strings using overloaded operators

 • Convert string

 • Edit strings

• Manipulate strings using concatenation, copy, and alignment

operators.

 Stream I/O
You can read and write an IString instance using the operators << and

>>. The following example shows how to do this:

#include <istring.hpp>
#include <iostream.h>
void main()
{
IString

s1="Enter a letter = ",
 s2;

cout << s1 << endl;
cin >> s2 ;

} /* end main */

Following are the results of running this program:

[C:\]t1
Enter a letter =
a
[C:\]

 Copyright IBM Corp. 1993 69

 Accessors
The IString class provides accessors that allow you to analyze various

elements of a string. Some examples are:

size Returns the size of the string.

Substring Returns one part of the string.

Operator[] Returns the value of the nth position in the string.

In the following example, the highlighted commands show examples of

how to use these accessors to determine the size of the string:

#include <istring.hpp>
#include <iostream.h>
void main()
{
 IString
 s1("string"),
 s2;
cout << " The size of s1 is " << s1.size() << endl;
cout << "And the 5th element is " << s1[5] << endl;
cout << "And the first three characters are " << s1.subString(1,3) << endl;

} /* end main */

The results of this program are as follows:

[C:\]t2
 The size of s1 is 6
And the 5th element is n
And the first three characters are str
[C:\]

70 User Interface Class Library Guide

 Testing
Use the IString member functions to test for certain conditions or

characteristics of a string. For example:

isAlphanumeric Returns true if all characters are in ('A-Z,'a-z','0-9').

isAlphabetic Returns true if all characters are in ('A-Z,'a-z').

isDigits Returns true if all characters are in ('0-9').

isLowerCase Returns true if all characters are in ('a-z').

isUppercase� Returns true if all characters are in ('A-Z').

isControl Returns true if all characters are in (0x00-0x1F,

0x7F).

The following examples show how to identify one string:

#include <istring.hpp>
#include <iostream.h>
void main()
{
 IString s,s1;

cin >> s;
 if (s.isDigits())

{cout << "the string " << s << " contains only numbers" << endl;}
 else
 {
 if (s.isAlphabetic())
 {
 if (s.isLowerCase())

{ cout << "the string " << s << " contains only lowercase characters" << endl;}
 else
 if (s.isUpperCase())

{cout << "the string " << s << " contains only uppercase characters" << endl;}
 else

{cout << "the string " << s << " contains only mixed Alphabetic characters" << endl;}
 }
 else
 {
 if (s.isAlphanumeric())

{ cout << "the string " << s << " contains only Alphanumeric characters" << endl;}
 else

{ cout << "the string " << s << " contains some unusual characters" << endl; }
 }
 }
} /* end main */

 Chapter 5. Data Types and Attributes 71

The results of this program are as follows:

[C:\]t3
ABC
the string ABC contains only uppercase characters

[C:\]t3
abc
the string abc contains only lowercase characters

[C:\]t3
Abc
the string Abc contains only mixed Alphabetic characters

[C:\]t3
12a
the string 12a contains only Alphanumeric characters

[C:\]t3
#@%
the string #@% contains some unusual characters

[C:\]

 Comparison
The IString class includes a full set of comparison operators for

comparing an IString to another IString or to a literal character string:

== Returns true if the strings are identical.

!= Returns true if the strings are not identical.

< Returns true if the first string is less than the second, applying the

standard collating scheme(memcmp).

<= Equivalent to (string1 < string2)||(string1 == string2).

> Equivalent to !(string1 <= string2).

>= Equivalent to !(string1 < string2).

72 User Interface Class Library Guide

The following example compares two strings to determine if they are

equal:

#include <istring.hpp>
#include <iostream.h>
void main()
{

IString s("Name"), s1;

cin >> s1;

if (s1 == s)
cout << s1 << " is equal to " << s << endl;

 else
if (s1 != "name")
cout << s1 << " is not expected" << endl;

 else
cout << " You forgot the first letter is capital" << endl;

} /* end main */

The results of the program are as follows:

[C:\]t4
12
12 is not expected

[C:\]t4
name
 You forgot the first letter is capital

[C:\]t4
Name
Name is equal to Name

[C:\]

 Chapter 5. Data Types and Attributes 73

 Conversion
The IString class provides member functions to convert strings into

other values. For example:

asInt Converts a string into a long integer.

asDouble Converts a string into a double.

Refer to the IBM C/C++ Tools: User Interface Class Library Reference

for additional conversion member function.

The following example converts into a long integer:

#include <istring.hpp>
#include <iostream.h>
void main()
{

IString s1("11101");
int n1;

 n1=s1.asInt();
 n1+=1;
 s1=n1;
 cout << s1 << endl;

} /* end main */

Here are the results of this program:

[C:\]t5
11102

[C:\]

74 User Interface Class Library Guide

Modifying and Aligning
The IString class provides member functions for modifying and aligning

text strings. The following member functions are available:

change Changes occurrences of an argument to an argument

replacement string.

center Centers the receiver within a string of a specified length.

leftJustify Left justifies the receiver within a string of a specified

length.

rightJustify Right justifies the receiver within a string of a specified

length.

upperCase Translates all lowercase letters in the receiver to

uppercase.

lowerCase Translates all uppercase letters in the receiver to

lowercase.

The following examples show how to replace one string with another,

change the text alignment, and translate text from lowercase to

uppercase:

#include <istring.hpp>
#include <iostream.h>
void main()
{

IString s("text"),s1,s2,s3,s4, s5("this is a test");
s4 = s3 = s2 = s1 = s;
cout << " | " << s1.center(10,'+') << " | " << endl;
cout << " | " << s2.leftJustify(10,'<') << " | " << endl;
cout << " | " << s3.rightJustify(10,'>') << " | " << endl;
cout << " | " << s4.upperCase().center(10,' ') << " | " << endl;
cout << " | " << s4.upperCase().center(10,' ') << " | " << endl;
cout << " | " << s5.change("this","these").change("is","are")
.change("test","tests").change("a ","",8,1) << " | " << endl;

} /* end main */

 Chapter 5. Data Types and Attributes 75

Here are the results:

[C:\]t6
 | +++text+++ |
 | text<<<<<< |
 | >>>>>>text |
| TEXT |
| TEXT |
 | these are tests |

[C:\]

 Manipulation
The IString class provides operators to manipulate text in a variety of

ways:

= Assigns the following string to a receiver.

╚ Performs bitwise negation.

+ Concatenates two strings.

+= Concatenates and replaces.

The following example shows how to concatenate two strings:

#include <istring.hpp>
#include <iostream.h>
void main()
{

IString s("1"), s1("2"), s2;

s2 = s + s1;
if (s2 != "12") cout << " Something is wrong " << endl;
else cout << " I expected that " << endl;

} /* end main */

The results of this program are as follows:

[C:\]t7
 I expected that

[C:\]

76 User Interface Class Library Guide

 Fonts

Use the IFont class to set and change all characteristics of the fonts

you use in your applications.

To create a system default font, use the following statement:

 IFont curFont();

To create a font of a specific name and point size, use the following

statement:

 IFont curFont("Helv",10);

The following example creates a font using the current font from the

hello window:

 IFont curFont(&hello);

where hello is the IWindow instance.

The IFont class includes member functions that enable you to set or

change a variety of font characteristics, for example:

setName Set the name of the font.

setPointSize Set the font's point size.

setBold Use a bold font.

setItalic Use an italic font.

setUnderscore Use a font that underscores.

setStrikeout Use a font that contains character strike-overs.

setOutline Use an outline font.

setAllEmphasis Use emphasis on all text.

You can set the font of almost all objects in the User Interface Class

Library using the member function setFont. Because this member

function is defined in the IControl class, it is inherited for classes

several classes, including IStaticText, IEntryField, IPushButton, and

IMultiLineEdit. Refer to the IBM C/C++ Tools: User Interface Class

Library Reference for the classes derived from IControl.

 Chapter 5. Data Types and Attributes 77

The following example shows how to create a font with a specific name

and point size, and then change the point size of different text strings:

#include <ifont.hpp>
 .
 IFont Fonts("Helv",8);
 .
 .
title1 = new IStaticText(WND_TITLE1, clientCanvas, clientCanvas);
title1->setAlignment(IStaticText::centerLeft);
title1->setText(STR_TITLE1);

 Fonts.setPointSize(12);
 title1->setFont(Fonts);
 .
 .
check1 = new ICheckBox(WND_CHECK1, clientCanvas, clientCanvas);
check1->setText(STR_CHECK1);

 Fonts.setPointSize(20);
 check1->setFont(Fonts);
 .

To test the font statements, include the highlighted lines into the

AMCELCV.CPP file.

Refer to the IBM C/C++ Tools: User Interface Class Library Reference

for information about member functions used to query the appearance

of a font.

78 User Interface Class Library Guide

Part 2. Beyond the Basics

 Copyright IBM Corp. 1993 79

80 User Interface Class Library Guide

 Chapter 6. Advanced Controls

Multiple-Line Entry Field Control

Use the IMultiLineEdit class to create a multiple-line entry (MLE) field

control. The IMultiLineEdit class member functions enable you to

display text files with horizontal and vertical scrolling, read a file into an

MLE and save it from an MLE, or perform basic editing tasks, such as

cut, copy, clear, discard, paste marked lines and move to top or bottom

of the MLE.

Figure 17 shows the hierarchy of the IMultiLineEdit class.

IBase
 IVBase
 IWindow
 IControl
 ITextControl
 IMultiLineEdit

Figure 17. Hierarchy for IMultiLineEdit Class

Creating an IMultiLineEdit Instance
To create an instance of this class, you include the ID of a specified

multiple-line entry field control, the parent and owner windows, an

IRectangle instance, and one or more styles. Styles are available to

define such features as scrolling text, wrapping words, adding a border,

and making the field read-only. Refer to IBM C/C++ Tools: User

Interface Class Library Reference for further information about creating

an instance of this class and the styles used with this class.

 Copyright IBM Corp. 1993 81

The following example creates an instance of an MLE that uses the

default style and includes horizontal scrolling:

 .
 .
AEditorWindow :: AEditorWindow(unsigned long windowId)
: IFrameWindow (//Call IFrameWindow constructor
IFrameWindow::defaultStyle() //Use default plus
| IFrameWindow::minimizedIcon, //Get minimized icon from RC file
windowId) //Main window ID

{
mtextfield = new IMultiLineEdit(DID_MLE, this, this,IRectangle(),

 IMultiLineEdit::defaultStyle() |
 IMultiLineEdit::horzScroll);
 .
 setClient(mtextfield);
 .
 .

where DID_MLE is the ID of an MLE defined in the resource file.

The preceding command creates an instance of an IMultiLineEdit
class. When it is set in a client window, it looks like Figure 18.

Figure 18. Multiple-line Entry Field Control

82 User Interface Class Library Guide

Loading and Saving a File
Three member functions allow you to manage files and MLEs:

 • importFromFile
 • exportToFile
 • exportSelectedTextToFile

Using these functions, you can load a file into an MLE, save a file from

an MLE, or save marked text in an MLE into a file. The following

example illustrates how to load a file into an MLE:

 .
 .
 filename=fd->fileName(); //

if (filename.size()) //Has filename been specified?
 { //
 mtextfield->importFromFile(filename.asString());
 mtextfield->setCursorAtLine(0);

} /* endif */ //
} /* endif */ //

 .
 .

Refer to IBM C/C++ Tools: User Interface Class Library Reference for

descriptions of these member functions.

Positioning the Cursor
Using the cursor position, you can position a cursor in a specific line of

an MLE or in a specific character position, add or remove lines, or ask

for the number of lines in an MLE. These are the member functions

available for line operations:

 • addLine
 • addLineAsLast
 • removeLine
 • setTop
 • setCursorAtLine
 • setCursorAt
 • top
 • cursor
 • numberOfLines
 • visibleLines

 Chapter 6. Advanced Controls 83

The following example shows how to position the cursor at the first line

of an MLE into which a file has been imported:

 .
 .
 filename=fd->fileName(); //

if (filename.size()) //Has Filename been specified?
 { //
 mtextfield->importFromFile(filename.asString());
 mtextfield->setCursorAtLine(0);

} /* endif */ //
} /* endif */ //

 .
 .

Figure 19 shows the file that has been imported into the MLE. Notice

that the cursor is positioned on the first line.

Editor 1.0Cursor
position

File Options HelpEdit

DEVICE=C:\DOS\SETVER.EXE
DEVICE=C:\DOS\HIMEM.SYS
DOS=HIGH
files= 30
BREAK=ON
BUFFERS=25,8
FCBS=20,8
LASTDRIVE=Z
SHELL=C:\DOS\COMMAND.COM /P /E:2048
DEVICE=C:\DOS\ANSI.SYS /x

Figure 19. Example of Positioning the Cursor

Refer to the IBM C/C++ Tools: User Interface Class Library Reference

for descriptions of these member functions.

84 User Interface Class Library Guide

 Clipboard Operations
The IMultiLineEdit control has several member functions to perform

clipboard operations, including copy, cut, paste, clear, and discard

Once you have defined an MLE and set it into a client window, use

these member functions to copy text to the clipboard, cut and put text

into the clipboard, or paste from the clipboard only the marked lines.

Editor 1.0Cursor
position File Options HelpEdit

DEVICE=C:\DOS\SETVER.EXE
DEVICE=C:\DOS\HIMEM.SYS

FCBS=20,8
LASTDRIVE=Z
SHELL=C:\DOS\COMMAND.COM /P /E:2048
DEVICE=C:\DOS\ANSI.SYS /x

DOS=HIGH
files= 30
BREAK=ON

Copy

Cut

Paste

Figure 20. Example of Cutting Text to the Clipboard

Figure 20 contains marked lines and a menu option, Edit with a menu

item, Cut. Suppose that the menu item ID of this menu item is

MI_CUT. The following statements implement the action of cutting to

the clipboard:

 .
 .
 case MI_CUT:

mtextfield->cut(); // cut to clipboard
 break;
 .
 .

Refer to the IBM C/C++ Tools: User Interface Class Library Reference

for descriptions of other member functions.

 Chapter 6. Advanced Controls 85

 Container Control

A container is a control used to hold objects. OS/2 provides a variety

of containers, such as folders, templates, and the Workplace Shell

itself. Containers can show their objects in different views: the tree

view, the icon view, the text view, the name view, and the details view.

Using the User Interface Class Library, you can develop your own

containers and change views, behaviors, and layouts.

Figure 21 shows an example of a container.

CnrEx 1.0

This is a container

Views Edit Filters

AIX Development

Workstation Platform Development

Figure 21. Example of a Container

Containers are defined by the Common User Access (CUA)

architecture. For a complete description of CUA containers, refer to the

SAA CUA Guide to User Interface Design and the SAA CUA Advanced

Interface Design Reference.

86 User Interface Class Library Guide

Creating a Container
Use the IContainerControl class to create an instance of a container

object. This class allows you to control, for example, the view of the

objects inside the container. To create a container, use the following

statement:

IContainerControl cnrCtl(CNR_RESID, this, this);

Several styles are available for containers that allow you to manage

such activities as multiple-selection and automatic positioning.

You can define the styles in the constructor or you can use member

functions to set the style required after you create an instance of the

container object. An example of a style statement is highlighted in the

following:

 .
cnrCtl = new IContainerControl (CNR_RESID, this, this);

 cnrCtl->setMultipleSelection();
 .

Refer to the IBM C/C++ Tools: User Interface Class Library Reference

to learn about other styles and related member functions.

Creating an Instance of a Container Object
A container has no meaning without its objects. Using the

IContainerObject class, you can create the objects to be used in the

container.

The following statement is an example of an IContainerObject
constructor:

 IContainerObject (const IString& string,
const IPointerHandle& iconHandle = 0);

At a minimum, an IContainerObject has an Icon and a Text(Name).

Because you will usually want to design your own objects for your

applications, you should create a class that is derived from the

IContainerObject class. For example, suppose you want to create a

container object with information such as names, addresses, and ZIP

codes, for a department in a company. You can define this class as

follows:

 Chapter 6. Advanced Controls 87

class Department : public IContainerObject
{
 public:

Department(const IString& Name,
const IPointerHandle& Icon,
const IString& Code,
const IString& Address,

 ACnrexWindow* win);

 IString Code()
const { return strCode; }

 IString Address()
const { return strAddress; }

void setCode (IString code)
{strCode = code;}

void setAddress (IString address)
{strAddress = address;}

 private:

 IString strAddress;
 IString strCode;
};

The statements for a constructor definition are:

Department :: Department(const IString& Name, const IPointerHandle& Icon,
const IString& Code, const IString& Address, ACnrexWindow* win):

 IContainerObject(Name, Icon),
 strCode (Code),
 strAddress (Address),
 Mywin(win)
 {}

After the class is defined, you can create an instance of an object using

the following statements:

dept1 = new Department (
 "Workstation Platform Development",
 IApplication::current().userResourceLibrary().loadIcon(OSLOGO),
 "TWPD",
 "Building 71",
 this);

88 User Interface Class Library Guide

Adding and Removing Objects
Once you have created the objects and the container, you need to add

the objects into the container. To add an object, use the following

statement:

 cnrCtl->addObject(dept1);
 cnrCtl->addObject(dept2,dept1);
 cnrCtl->addObject(dept3,dept1);
 cnrCtl->addObject(dept4,dept1);
 cnrCtl->addObject(dept5);

To add objects in a certain order, use the following highlighted

statement:

cnrCtl0->addObject(dept1); //WorkStation Platform Development
cnrCtl->addObject(dept2,dept1); // UI Development
cnrCtl->addObject(dept3,dept1); // Platform I
cnrCtl->addObject(dept4,dept1); // Edit and Services
cnrCtl->addObject(dept5); // AIX Development

where dept2 is an object of the same class and constructor as dept1

and, in the hierarchy view, dept2 appears under dept1.

When you place the container in the client window and show the

window and the container, you see a window similar to the one in

Figure 22 on page 90:

 Chapter 6. Advanced Controls 89

CnrEx 1.0

dept1
object

This is a container

Views Edit Filters

Workstation Platform Development

C ++ UI Development

Workstation Platform I

OS/2 Edit and CommServices

AD/Cycle Generators Development

OS/2

Figure 22. Example of a Container Showing a Tree View

The window in Figure 22 shows a tree Icon view of the container’s

objects. This view is discussed later.

 Filtering Objects
The User Interface Class Library allows you to filter objects in a

container. The container uses the FilterFn nested class to show a

subset of the existing objects by filtering out some of the objects.

First, define a class derived from FilterFn and then override the

member function isMemberOf . When you apply the filter member

function of the IContainerControl class, the member function

isMemberOf of the FilterFn class receives the container objects and the

container itself, and returns true or false. If true is returned, the

container object remains displayed in the container; however, if false is

returned, the object is hidden.

Overriding the member function isMemberOf allows you to code the

conditions of a valid object. The following example shows a FilterFn
class definition:

class OnlySelectedObjects : public IContainerControl::FilterFn
 {
 virtual Boolean

90 User Interface Class Library Guide

isMemberOf(IContainerObject* object,
IContainerControl* container) const

 {
 return isSelected(object);
 }
 };

The isSelected function returns true if the object has selection

emphasis. Refer to IBM C/C++ Tools: User Interface Class Library

Reference for information about the types of emphasis.

After the class is defined, you can create an instance of the FilterFn
object and use the filter member function using the following

statements:

 OnlySelectedObjects onlySelectedObjects;
 cnrCtl->filter(onlySelectedObjects);

Figure 23 on page 92 shows how the container appears before and

after you apply the filter:

 Chapter 6. Advanced Controls 91

CnrEx 1.0

CnrEx 1.0

Before

After

Views Filters

Views Filters

Workstation Platform Development

Workstation Platform Development

AD/Cycle Generators Development

Show Only Level Selected

Show All

Figure 23. Example of Filtering Container Objects

92 User Interface Class Library Guide

Cursors and Containers
You can use an object cursor to apply an action to a group of objects

or to know which objects have a specific emphasis. Use the

ObjectCursor nested class to iterate through a collection of container

objects.

The following example creates an ObjectCursor and uses it to set the

emphasis selected to all container objects:

IContainerControl::ObjectCursor CO1 (cnrCtl);

for (CO1.setToFirst(); CO1.isValid(); CO1.setToNext())
 {
 cnrCtl->setSelected(cnrCtl.objectAt(CO1));
 }

Figure 24 on page 94 shows the result of setting the selection

emphasis:

 Chapter 6. Advanced Controls 93

CnrEx 1.0

CnrEx 1.0

Before

After

Views Edit Filters

Views Edit Filters

Workstation Platform Development

Workstation Platform Development

AIX Development

AIX Development

select All objects

deselect All objects

Figure 24. Example of Using an Object Cursor

94 User Interface Class Library Guide

Working with Views
You can use most of the views provided by the User Interface Class

Library by using the corresponding member function. For example, the

following statement uses the member function that causes a container

to display the icon view:

 cnrCtl->showIconView();

The statement above provides the container view shown in Figure 25:

CnrEx 1.0

Views Edit Filters

Workstation Platform Development

AD/Cycle Generators Development

Figure 25. Example of the Icon View

The following statement provides the tree icon view:

 cnrCtl->showTreeIconView();

Figure 26 on page 96 shows a container with the tree icon view:

 Chapter 6. Advanced Controls 95

CnrEx 1.0

Views Edit Filters

Workstation Platform Development

AD/Cycle Generators Development

Figure 26. Example of the Tree Icon View

The “+” sign indicates the tree can be expanded, as shown in Figure 27

CnrEx 1.0

Views Edit Filters

Workstation Platform Development

UI Development

Platform I

Edit and Services

AIX Development

OS/2

Figure 27. Example of an Expanded Tree Icon View

96 User Interface Class Library Guide

Container Columns and Details View
Use the IContainerColumn class to show a details view from a container

object in a container. Use this class to set text in the heading of the

columns, add horizontal and vertical separators by column, and align

the column contents.

One way to create an instance of a IContainerColumn is to provide the

offset of the object data to be displayed in the column and, optionally,

the styles to be used for the heading and data.

The following is an example of the constructor for this class:

IContainerColumn (unsigned long dataOffset,
const HeadingStyle& title = defaultHeadingStyle(),
const DataStyle& data = defaultDataStyle());

To create an instance of a container column, use the following

statements:

colIcon = new IContainerColumn (IContainerObject :: iconOffset(),
 IContainerColumn::defaultHeadingStyle (),
 IContainerColumn::icon |
 IContainerColumn::alignVerticallyCentered);

colName = new IContainerColumn (IContainerObject::iconTextOffset(),
 IContainerColumn::defaultHeadingStyle (),
 IContainerColumn::string |
 IContainerColumn::alignVerticallyCentered |
 IContainerColumn::alignLeft |
 IContainerColumn::horizontalSeparator);

colCode = new IContainerColumn (offsetof(Department, strCode));

colAddress = new IContainerColumn (offsetof(Department, strAddress));

 Chapter 6. Advanced Controls 97

Use the IContainerObject member functions iconOffset and

iconTextOffset with the C++ function offsetof to obtain the necessary

offsets.

In the previous example, colIcon, colName, colCode, colAddress are

defined as members of an IFrameWindow. The statements look like

this:

private: //Define private information
IContainerControl * cnrCtl;
Department *dept1, *dept2, *dept3, *dept4, *dept5, *dept6, *dept7;
IContainerColumn *colIcon, *colName, *colCode, *colAddress;

 IMenuBar * menuBar;

After creating the container columns, you can add heading text to them

using the following statements:.

 colIcon->setHeadingText("Icon");
 colName->setHeadingText("Department Name");
 colCode->setHeadingText("Code");
 colAddress->setHeadingText("Address ");

Use the member function showSeparators to add a vertical separator

after a column or a horizontal separator under the heading text. By

default, both are added. To create only one of the separators, specify it

in the member function statement. The following statements show

examples of how to create separators:

//Only Horizontal Separator
 colIcon->showSeparators(IContainerColumn::horizontalSeparator);

//Only Vertical Separator
 colName->showSeparators(IContainerColumn::verticalSeparator);

colCode->showSeparators(); //both separator by default
colAddress->showSeparators(); //both separator by default

98 User Interface Class Library Guide

After you create the container columns, you can add them into the

container using the following statements:

 cnrCtl->addColumn(colIcon);
 cnrCtl->addColumn(colName);
 cnrCtl->addColumn(colCode);
 cnrCtl->addColumn(colAddress);

Figure 28 is an example of a details view of a container.

CnrEx 1.0

Views FiltersEdit

Icon Code

TWPD

Address

Building 71

Building 71TAIX

Department Name

Workstation Platform Development

AIX Development

Figure 28. Example of the Details View

Use the following statements to put a split bar in the details view by

specifying the last column to be viewed in the left window and the

location of the split bar in pixels.

 cnrCtl->setDetailsViewSplit(colName, 150);

The following statement deletes all objects in the container when the

container is deleted. By default, the container only removes objects, but

does not delete them when the container is deleted.

 cnrCtl->setDeleteObjectsOnClose();

 Chapter 6. Advanced Controls 99

Creating a Pop-up Menu in a Container
To create a pop-up menu in a container, create a subclass of

ICnrMenuHandler and override the member function makemenuto handle

the pop-up menu events. Use the setCnr member function to set the

container control and make it visible for our class. The following

statements create class:

class ACnrMenuHandler: public ICnrMenuHandler //
{
 public:

setCnr(IContainerControl * pcnr) { pcnrCtl = pcnr; }
protected: //Define Protected Member .
IPopUpMenu* makePopUpMenu(const IMenuEvent& cnEvt);

 private:
IContainerControl * pcnrCtl;

};

After overriding the makePopUpMenu member function, you can add you

own statements. The following statements create a pop-up menu

displayed next to a container object with source emphasis:

IPopUpMenu * ACnrMenuHandler :: makePopUpMenu(const IMenuEvent& cnEvt) //
{ //
IPopUpMenu * popUp; //Define popUp variable
if (popupMenuObject()) {
popUp = new IPopUpMenu (ID_POPMENU, //Create pop-up menu with AutoDelete on

cnEvt.window()); // from a resource id.
popUp->show(cnEvt.mousePosition()); //Show pop-up menu
pcnrCtl->showSourceEmphasis(popupMenuObject()); //Put source emphasis on the

// from where the pop-up menu
// was called

return popUp; //Return pop-up menu
 }
 else
 return 0;
};

Figure 29 on page 101 shows the pop-up menu in a container object.

100 User Interface Class Library Guide

CnrEx 1.0

Source
Emphasis

Pop-up
Menu

Views Edit Filters

AIX Development

Workstation Platform DevelopmentEdit Record

Edit Name

Edit Code

Edit Address

Figure 29. Example of a Pop-up Menu in a Container Object

 Notebook Control

Use the INotebook class to create and manage the notebook control

window. You can create an instance of this class in the following ways:

INotebook(unsigned long windowId, IWindow* parent, IWindow* owner,
const IRectangle& initial = IRectangle(),
const Style style = defaultStyle());

INotebook(unsigned long windowId, IWindow* parentAndOwner);
INotebook(const IWindowHandle& handle);

The default style of this class is with solid binding, square corner tabs,

and the status line text is left-justified. To change the style, define an

instance of the INotebook::Style class and initialize it. For example:

INotebook::Style style = INotebook::spiralBinding |
 INotebook::roundedTabs ;

The notebook created using the preceding statements has a spiral

binding and rounded corner tabs. Figure 30 on page 102 shows an

example of a notebook control.

 Chapter 6. Advanced Controls 101

Notebook Sample Program

Hello World Color

Select OK to change color

White
Black
Blue
Red

Pink
Green
Cyan
Yellow

Color

Text

OK Cancel

Figure 30. Notebook Control Example

 Notebook Styles
Use the following notebook styles to customize you notebook controls:

• Type of binding

spiralBinding Draws a spiral binding.

solidBinding Draws a solid binding. This is the default.

• Intersection of back pages

backPagesBottomRight Draws the back pages of the notebook

behind the bottom right corner. This is

the default.

backPagesBottomLeft Draws the back pages of the notebook

behind the bottom left corner.

backPagesTopRight Draws the back pages of the notebook

behind the top right corner.

backPagesTopLeft Draws the back pages of the notebook

behind the top left corner.

102 User Interface Class Library Guide

• Location of major tabs

majorTabsRight Draws the major tabs on the right side.

This is the default.

majorTabsLeft Draws the major tabs on the left side.

majorTabsTop Draws the major tabs on the top side.

majorTabsBottom Draws the major tabs on the bottom side.

• Shape of tabs

squareTabs Draws tabs with square corners. This is

the default.

roundedTabs Draws tabs with rounded corners.

polygonTabs Draws tabs with polygon-shaped corners.

• Alignment of status line text

statusTextLeft Left justifies the status line text.

statusTextRight Right justifies the status line text.

statusTextCenter Centers the status line text. This is the

default.

• Alignment of text associated with tabs

tabTextLeft Left justifies the text in the tabs. This is

the default.

tabTextRight Right justifies the text in the tabs.

tabTextCenter Centers the text in the tabs.

The User Interface Class Library also provides functions to change the

size of a notebook’s parts:

setMajorTabSize Sets the size of the major tabs (in pixels).

setMinorTabSize Sets the size of the minor tabs (in pixels).

setPageButtonSize Sets the size of the arrow buttons used to

turn the notebook’s pages (in pixels).

 Chapter 6. Advanced Controls 103

You can create a notebook, specify its style, and change the size of

major tabs and minor tabs with the following statements:

INotebook *pnoteBook;

pnoteBook= new INotebook (ID_NOTEBOOK, this , this,
 IRectangle(),
 INotebook::spiralBinding |
 INotebook::backPagesTopRight |
 INotebook::majorTabsRight |
 INotebook::statusTextLeft |
 IWindow::visible);

pnoteBook->setMajorTabSize(ISize(60,30));
pnoteBook->setMinorTabSize(ISize(80,40));

Version 6 of the Hello World example creates a notebook using these

statements in ACOLORW6.CPP:

INotebook * notebook;

notebook=new INotebook(WND_COLOR_NOTE, this, this, IRectangle(),
 INotebook::defaultStyle());

 Page Settings
Use the INotebook class in conjunction with the PageSettings class.

The page settings objects allow the user to change and set information

about pages in a notebook.

The following example of PageSettings is taken from the file

ACOLORW6.CPP used in Version 6 of the Hello World example:

IMultiCellCanvas * staticCanvas;
INotebook::PageSettings staticPage;

staticCanvas=new IMultiCellCanvas(WND_STATIC_COLOR, notebook, this,
 IRectangle());
INotebook::PageSettings::Attribute //Define the page attributes
attribute=INotebook::PageSettings::majorTab // with a major tab and

 | INotebook::PageSettings::autoPageSize; // AutoPageSize
staticPage=INotebook::PageSettings(attribute); //Create static color page
staticPage.setTabText("1"); //Set tab text
notebook->addFirstPage(staticPage, //Add as first page to notebook
staticCanvas); //

This page is created on a multi-cell canvas. The tab text is set to 1 and

this page is inserted into the notebook as the first page.

104 User Interface Class Library Guide

 Chapter 7. Advanced Topics

Extending the Event Handling

The User Interface Class Library provides handlers for most of the

common PM messages. However, you may find it necessary to

process messages for which there are no predefined handler classes.

The User Interface Class Library makes it easy to add new event and

handler classes seamlessly.

The IHandler class is designed to act as a base class for handlers. All

event handlers should be derived from this class. The following steps

are required to provide a handler:

1. Subclass the IHandler class.

2. Override the dispatchHandlerEvent member function.

3. Provide a virtual function (callback) to process the message.

The following example shows how to provide a handler for PM timer

events.

1. Class declaration for ATimerHandler.

The class is derived from IHandler and provides a virtual function

timer to process the event.

class ATimerHandler : public IHandler
{
public:
/* use default constructor */

 Boolean
dispatchHandlerEvent(IEvent& evt);

protected:
virtual Boolean

timer(IEvent& evt);
};

 Copyright IBM Corp. 1993 105

2. Override dispatchHandlerEvent member function.

The function must determine the relevance of the message. If the

message is not relevant, the function returns false and passes the

message to other handlers attached to the window.

Boolean ATimerHandler::dispatchHandlerEvent(IEvent& evt)
{
if (evt.eventId() == WM_TIMER) //If timer event call

return timer(evt); // function to process
//note: WM_TIMER is defined in the

return false; // OS/2 Developer's Toolkit
}

3. The timer member function.

This provides a default return. This class acts as a base class.

The default provides safe behavior when you create an instance of

the class.

Boolean ATimerHandler::timer(IEvent& evt)
{
 return false;
}

The ATimerHandler class encapsulates the WM_TIMER messages

generated by PM. You can derive a class from ATimerHandler and

override the timer member function to provide whatever event handling

is required.

To prevent users of this class from having to understand how

information is encoded in the two message parameters inside the

event, you should derive an event class from IEvent to encapsulate this

information. The following statements show an example of how to do

this:

class ATimerEvent : public IEvent
{
public:
ATimerEvent(IEvent &evt) : IEvent(evt) {;} // Define functions inline

 unsigned long
timerId() const { return parameter1().number1(); }

};

106 User Interface Class Library Guide

You can construct objects of this class only from an instance of IEvent.

Because of the small amount of code required, the example defines the

code inline.

Change the dispatchHandlerEvent to create an instance of ATimerEvent.

You should also change the timer to accept an ATimerEvent object as a

parameter.

Boolean ATimerHandler::dispatchHandlerEvent(IEvent& evt)
{
if (evt.eventId() == WM_TIMER) //If timer event call

{ // function to process
ATimerEvent timerEvt(evt);
Boolean rc = timer(timerEvt); //Call timer to process
evt.setResult(timerEvt.result()); //Move results to event
return rc; //Return with return code

 }

 return false;
}

The two classes now completely encapsulate timer messages. Users

of the classes do not need to know which PM messages are generated

or how the information is encoded in the message parameters.

When adding handlers, it is often useful to restrict the window classes

to which the handler can be attached. A handler class can override the

handleEventsFor and stopHandlingEventsFor member functions to

provide a certain degree of type safety.

The following example shows how to restrict the class of windows to

which the timer class can be attached to the ITextControl class and its

derived classes:

1. The class declaration.

class ATimerHandler : public IHandler
{
public:
/* use default constructor */

Boolean
dispatchHandlerEvent(IEvent& evt);

virtual ATimerHandler
&handleEventsFor (ITextControl* textWindow),
&stopHandlingEventsFor (ITextControl* textWindow);

 Chapter 7. Advanced Topics 107

protected:
virtual Boolean

timer(ATimerEvent& evt);

private: //Make these functions private
virtual IHandler // so they cannot be called

&handleEventsFor (IWindow* window),
&stopHandlingEventsFor (IWindow* window);

};

2. Override handleEventsFor to accept only ITextControl objects.

ATimerHandler &ATimerHandler::handleEventsFor(ITextControl* textWindow)
{
IHandler::handleEventsFor(textWindow); //Call parent class
return *this; // member function

}

3. Override stopHandlingEventsFor to accept only ITextControl
objects.

ATimerHandler &ATimerHandler::stopHandlingEventsFor(ITextControl* textWindow)
{
IHandler::stopHandlingEventsFor(textWindow); //Call parent class
return *this; // member function

}

108 User Interface Class Library Guide

 Tracing

Use the trace class, ITrace, together with related macros to simplify the

process of adding tracing code to an application. Using the trace

functions, you can write trace output to STDOUT (standard output

stream), STDERR (standard error stream), or an OS/2 queue. You can

control the trace options using environment variables or by statements

in your program.

The environment variables, ICLUI TRACE and ICLUI TRACETO,

provide the default tracing options.

ICLUI TRACE has three valid values:

OFF Set trace off. This is the default.

ON Set trace on.

NOPREFIX Set trace on, but no prefix information is written to

trace.

ICLUI TRACETO has three valid values:

QUEUE Trace is written to a 32-bit named OS/2 queue. The

name is \\QUEUES\PRINTF32. This is the default.

STDOUT Trace is written to the standard output stream.

STDERR Trace is written to the standard error stream.

 Chapter 7. Advanced Topics 109

The following example shows how to write trace information:

#include <itrace.hpp> //Include trace class
 /* ... function to trace ... */
void myFunction(int x)

 {
ITrace trc("myFunction"); //Create an ITrace object
trc.write("now at this point"); //Use static member function
ITrace::write(IString("the value is = ") + IString(x)); // write

 return;
 }

If you provide message text, the ITrace instance writes a message

during its constructor and destructor, thus indicating the start and end

of the function. Because of the performance overhead of tracing, you

may want to limit your use of the trace code to the development and

test phases. For example, to run the preceding example program after

testing it, you remove the tracing lines and recompile the program.

A more flexible approach to tracing is to use the predefined User

Interface Class Library macros. These macros expand to calls to the

trace function only if another macro is defined. Using this approach,

the example becomes:

 #define IC_TRACE_DEVELOP //Define trace level
#include <itrace.hpp> //Include trace class

 /* ... function to trace ... */
void myFunction(int x)

 {
IFUNCTRACE_DEVELOP(); //Trace entry and exit
ITRACE_DEVELOP("now at this point");
ITRACE_DEVELOP(IString("the value is = ") + IString(x));

 return;
 }

For PM programs, information written to the standard output stream and

standard error stream is discarded. If you start the program from the

command line, you can redirect these streams to a file or named pipe.

The commands to redirect the stream to a file are as follows:

[C:\]hello1 >stdout.lst <- redirect stdout to file stdout.lst
[C:\]hello1 2>stderr.lst <- redirect stderr to file stderr.lst

110 User Interface Class Library Guide

An example of the trace output is shown below:

<--- prefix -----> <----- trace ----------------->

00000009 000595:01 +myFunction(int x)(121) <- function entry
00000010 000595:01 >now at this point
00000011 000595:01 >the value is = 5
00000012 000595:01 -myFunction(int x) <- function exit

The prefix area shows the trace line number, the process ID, and the

thread ID. The IFUNCTRACE_DEVELOP macro automatically

generates the trace lines that show the entry and exit from the function.

The number in brackets after the parameter list is the source code line

number of the macro. The I_TRACE_DEVELOP macro produces the

other two lines.

If the IC_TRACE_DEVELOP macro is defined, the trace statements are

generated; otherwise, no trace statements are generated. This means

that after testing is complete, it is not necessary to remove all the trace

lines. Remove the macro and recompile the code as usual.

 Chapter 7. Advanced Topics 111

 Exception Handling

The User Interface Class Library uses the C++ exception handling

mechanism to return errors to the application. Several different classes

of exception objects can be thrown. Because all these classes are

derived from the IException class, an application can catch specific

exceptions or all exceptions.

The following table lists the exception classes and the situations in

which they are typically thrown.

Figure 31. Exception Classes

Exception Class Description

IAccessError Thrown when a logical error occurs, such as “resource not

found”

IAssertionFailure Thrown when the expression in an IASSERT macro evaluates to

false

IDeviceError Thrown when a hardware related error occurs

IInvalidParameter Thrown when an invalid parameter is passed

IInvalidRequest Thrown when an object is in the wrong state for a function

IResourceExhausted Thrown when a resource is exhausted or currently unavailable

IOutOfMemory Thrown when heap storage is exhausted

IOutOfSystemResourceThrown when an OS/2 resource is exhausted

IOutOfWindowResourceThrown when a PM resource is exhausted

112 User Interface Class Library Guide

Typically, an application surrounds a function that might fail with a

try-catch block. The following example shows how an application

attempts to set its default resource library. If this fails, an IAccessError
is thrown and the example code explicitly handles the exception. The

application passes on any other exception that is thrown:

 try
{ //Try to use notfound.dll

 IApplication::current().setUserResourceLibrary("NOTFOUND");
 }
catch (IAccessError &exc) //Catch only access errors

{ //DLL probably not in libpath
const char *exText = exc.text();
unsigned long exId = exc.errorId();
/* ... add code to process the exception ... */

 }

Each exception object thrown contains an error number, a severity

indicator, one or more lines of text, and information about where the

exception was thrown. The IException class provides accessor

functions to extract this information from the object. The member

function textCount retrieves the number of lines of exception text, and

the member function text. retrieves the exception text.

The ITHROW, IASSERTSTATE, IASSERTPARAM, and ITHROWGUIERROR macros

throw all exceptions in the library and the RETHROW macro rethrows the

exceptions. These macros automatically insert into the exception object

the line and program file in which the exception was thrown. These

macros also log the exception information. By default, exception

information is written to the same destination as the trace output.

However, you can provide your own function by deriving a class from

IException::TraceFn, overriding the write virtual function, and

registering it using IException::setTraceFunction.

Note: C++ exceptions are not the same as OS/2 exceptions.

 Chapter 7. Advanced Topics 113

Providing a Default Exception Handler
The C++ exception mechanism passes exceptions back up the function

call chain until a try-catch block is found that handles the exception.

Because most processing in a User Interface Class Library application

is a result of events, this usually results in the uncaught exceptions

being passed to PM which, in turn, causes the application to terminate

in an unpredictable way.

The User Interface Class Library allows an application to register a

default exception handler. The event dispatching loop catches any

exception thrown in a handler or function called from a handler, and

passes it to the registered default exception function. This allows the

application to either try to continue or to terminate in a controlled way.

The steps to register a default exception handler are as follows:

1. Subclass the IWindow::ExceptionFn class.

2. Override the handleException member function.

3. Create an instance of this class.

4. Register using IWindow::setExceptionFunction

The following example shows how to create a default handler that uses

the tracing functions to log the exception and displays the information in

a message box.

 1. Subclass IWindow::ExceptionFn.

The class declaration.

The class has a single constructor that requires a frame window in

which the handler displays a message box. The frame window acts

as the owner of the message box.

class AExceptionFn : public IWindow::ExceptionFn
{
public:

AExceptionFn(IFrameWindow *frame) : owner(frame) {;}
Boolean

handleException (IException& exception, IEvent& event);
private:
 IFrameWindow *owner;
};

114 User Interface Class Library Guide

 2. Override handleException.

The member function definition.

The last of the text messages of the exception object is written to

the trace output and displayed in a message box. The function

returns true to indicate that the exception should not be rethrown.

Boolean AExceptionFn::handleException (IException& exception, IEvent& event)
{
IFUNCTRACE_DEVELOP(); //Trace function entry/exit
unsigned long cnt = exception.textCount();
const char *text = (cnt > 0) ? exception.text(cnt-1)

: "No error text available" ;
IString str(text);
ITRACE_DEVELOP(exception.name());
ITRACE_DEVELOP(IString("text count = ") + IString(cnt));
ITRACE_DEVELOP(str);
IMessageBox msgbox(owner); //Create message box
msgbox.setTitle(exception.name());
msgbox.show((char *)str ,

 IMessageBox::okButton |
 IMessageBox::informationIcon |
 IMessageBox::applicationModal |
 IMessageBox::moveable);
return true; //Stop rethrow of exception

}

3. Create an object of this class.

The class definition of the frame window.

The object is part of our main application window object.

class aListBoxWindow : public IFrameWindow
{
 public:

aListBoxWindow(unsigned long windowId); //Constructor for this class
/* ... other public member functions ... */

 private:
 AExceptionFn excptHandler;

/* ... other private data ... */
};

 Chapter 7. Advanced Topics 115

4. Register using IWindow::setExceptionFunction.

The exception function is created in the constructor for the window

and then registered.

aListBoxWindow::aListBoxWindow(unsigned long windowId)
: IFrameWindow(IFrameWindow::defaultStyle() |

 IFrameWindow::minimizedIcon,
 windowId) ,

excptHandler(this)
{
 setExceptionFunction(&excptHandler);
/* ... rest of constructor code ... */

}

Threads and Protecting Data

The User Interface Class Library provides classes to implement

multi-threaded programs. The primary class used to deal with threads

is IThread. Instances of this class represent separate threads of

execution and provide the ability to start and stop the thread, set

various thread attributes, and determine the default environment for the

thread. In addition, the ICurrentThread class allows you to set and

query attributes for the currently executing thread, start event

processing, and suspend the current thread until another thread has

terminated.

 Current Thread
There is only a single instance of the class for each thread, and it can

be accessed using the following statement:

ICurrentThread curThread = IThread::current();

This static data member allows access to some information held on a

per-thread basis. The member also allows access to some functions

that can be applied only to the current thread. One example is the

initialization of the PM environment for a thread. A thread without a PM

environment can initialize one and later terminate it using the following

statements:

 IThread::current().initializePM();
/* ... do thread processing ... */

 IThread::current().terminatePM();

If necessary, the thread can enter its event processing loop using:

116 User Interface Class Library Guide

 IThread::current().processMsgs();

Starting a Thread
You can start a thread of execution using the IThread class. Once

started, the instance of IThread provides a means of querying and

stopping the thread. The thread and the instance of IThread are

independent; therefore, when the instance of IThread is destroyed, the

thread is unaffected.

The function to be dispatched on a separate thread can be either a

member function or a non-member function. If you create an instance

of IThread with the function, a thread is created and dispatched

immediately. Alternatively, you can create an instance of the class and

later dispatch it. This has the advantage of allowing you to set

parameters that affect the execution of the thread prior to dispatching.

Starting Non-member Functions
The IThreadclass dispatches non-member functions with either of the

following two function prototypes:

void (_Optlink *)(void *)
void (_System *)(unsigned long)

This provides support for migrating code that uses either _beginthread
or DosCreateThread to start the function. The linkage directives,

_Optlink and _System, are discussed in the C++ Compiler Reference.

The linkage directive, _Optlink, is the default. The following examples

assume this default.

To start a thread with the default environment and default options, the

following statements are needed:

void threadFn(void *pvParms); //Function to run on separate thread
 void *pv;

IThread thread(threadFn, pv); //Dispatch thread with default environment

 Chapter 7. Advanced Topics 117

The following example shows how to set some of the options before

dispatching the thread. The environment is created before the function

is called, and appropriate cleanup action are taken after it terminates:

IThread thread; //Assume PM environment
thread.setStackSize(65536) //Set 64K stack size
thread.setQueueSize(32) //32 elements in PM queue

 thread.start(threadFn, pv); //Dispatch thread

Other functions also exist to change the priority level of the thread,

although for threads that process events, changing the priority can

adversely affect the overall performance of the system.

Once you have started a thread, you can suspend, resume, or stop the

thread. You can also query its thread ID. The following example stops

the thread if it has a thread ID of 2:

 void *pv;
IThread thread(threadFn, pv); //Dispatch thread with default environment
/* ... let thread process ... */
if (thread.id() == IThreadId(2)) //If thread ID is 2, then stop it

 thread.stop();

Because threads often require that a PM environment has been

established before they can do their work, the User Interface Class

Library automatically establishes a PM environment for all threads

created in a PM application. If this is not necessary, a thread can

request that this initialization be skipped. For example:

void threadFn(void *pvParms); //Function to run on separate thread
 void *pv;

IThread thread(threadFn, pv, false); //No PM environment

Starting a Member Function
Use the IThread class to start member functions. Direct support is

provided for starting member functions that have no parameters, but

you can also start functions that have parameters.

118 User Interface Class Library Guide

To start a member function that takes no parameters, use the following

statements:

1. Create an instance of the template class IThreadMemberFn.

2. Start a thread and pass the instance as a parameter.

The following example shows how to execute the function

AClass::longFn on a separate thread:

Create an instance of the template class with the class that contains

the member function. Create the instance of the template class with

the new operator so that the instance can be destroyed automatically

when the thread ends. The two parameters on the constructor are the

object for which the member function is called and the member function

itself, as shown in the following example:

/* function to run is ... void AClass::longFn() */
AClass object; //Object to run member function against

IThreadMemberFn<AClass> *aMemberFn =
new IThreadMemberFn<AClass>(object

, AClass::longFn);
 IThread thread(aMemberFn); //Dispatch thread

To start a member function that takes parameters, use the following

statements:

1. Derive a class from the IThreadFn class.

2. Define constructor that takes an object of the class and the

parameters you want to pass

3. Override the run member function to call the member function.

4. Create an instance of the derived class.

5. Start a thread and pass the instance as a parameter.

 Chapter 7. Advanced Topics 119

The following example shows how to start a function:

AClass::longFn(int, IString).

1. The class declaration.

The class is derived from the IThreadFn class. It has a single

constructor that requires an instance of the AClass class and the

two parameters. The class overrides the virtual function run and

calls the required member function, as in the following example:

 class AClass
 {
 public:

void longFn(int, IString);
/* ... rest of class declaration ... */

 };

//This class runs the member function
// AClass::longFn(...) on a separate thread

class AThreadLongFn : public IThreadFn
 {
 public:

AThreadLongFn(AClass &obj, int i, IString str)
: object(obj)
, value(i)
, string(str) {;}

void run() { object.longFn(value, string); }
 private:
 AClass &object;
 int value;
 IString string;
 };

120 User Interface Class Library Guide

2. Create an instance and dispatch.

As before, create the instance using the new operator so that it can

be destroyed automatically:

 AClass object; //Object to run member function against
int number = 6;
IString greeting("Hello");

/* function to run is ... void AClass::longFn(int, IString) */
 //Create object
 AThreadLongFn *aMemberFn = new AThreadLongFn(object, number, greeting);
IThread thread(aMemberFn); //Dispatch thread

 Protecting Data
If your applications have multiple threads, you typically need to serialize

access to certain resources. The User Interface Class Library provides

several classes to assist you. Use the IPrivateResource class to

serialize access to a resource within a single process. The

ISharedResource class extends this ability by providing a lock that can

also be used between processes.

The simplest way to serialize access to a function is to provide a static

instance of the IPrivateResource class. You can use this instance in

association with the IResourceLock class to control access.

In the following example, the function guarantees that only one thread

accesses it at one time:

static IPrivateResource resourceKey; //Key must exist when function
 // called
 void serializedFunction()
 {
 IResourceLock resLock(resourceKey); //Create lock

/* ... serialized code ... */
} //Lock freed with resLock destructed

When a thread calls serialzedFunction, it is blocked until any other

thread executing the function exits it. This may lead to deadlock

problems, so a slightly safer approach is to give a timeout value, which

is the number of milliseconds that a thread can be blocked. If this time

limit is exceeded an IResourceExhausted exception is thrown, which can

then be caught.

 Chapter 7. Advanced Topics 121

The definition of the function becomes:

 static IPrivateResource resourceKey;

 void serializedFunction()
 {

IResourceLock resLock(resourceKey, 100); // timeout period = 0.1 s
/* ... serialized code ... */

 }

The code to call the function is:

 try
 {
 serializedFunction();
 }

catch (IResourceExhausted exc)
 {

/* ... handle failure to run function ... */
 }

 Critical Sections
A critical section of code is a portion of code that must be executed by

one thread while all other threads in the process are suspended. An

example situation would be the need for one thread to modify global

data while preventing other threads from accessing the data until the

modifications are complete.

The User Interface Class Library provides a critical section object to

handle such situations. A thread should create the critical section

object before it enters a critical section and destroy when it exits the

section.

The simplest way to do this is to enclose the critical section in its own

block and define the object at the start of the block, as in the following:

 {
 ICritSec lock;
/* ... do critical section processing here ... */
} // lock destructed when block ends

Because critical sections freeze the other threads in the process, you

should use them with care. In addition, you should be careful when

calling certain OS/2 functions within a critical section because the

results may be unpredictable.

122 User Interface Class Library Guide

 Chapter 8. Finishing Touches

 Standard Dialogs

The User Interface Class Library provides a standard file dialog and a

standard font dialog.

 File Dialog
The IFileDialog class allows you to define the standard dialog for files

from OS/2. Figure 32 shows an example of a file dialog:

C++ Open File Dialog

Open filename:

OK Cancel

*.hlo

<All Files> C: [OS2]

Type of file:

File:

HELLO6.HLO

Directory:

C:\

TEXTS

MLE

Drive:

HELLO6

Figure 32. Example of a File Dialog

To use a dialog, follow these steps:

1. Set up the file dialog.

2. Create the file dialog.

3. Test the response.

4. Read the result.

 Copyright IBM Corp. 1993 123

Setting Up a File Dialog
Use this optional feature of the IFileDialog class to specify initial

settings for the dialog you create. To use this feature, create an

instance of the Settings class when you create the dialog, as shown in

the following:

 IFileDialog::Settings fsettings;

The Settings class has several member functions, including:

 • setOpenDialog
 • setSaveAsDialog
 • setFileName
 • setPosition

Note: Do not use the setOpenDialog and setSaveAsDialog settings

together. Because these member functions perform conflicting tasks,

using them together produces unpredictable results.

To set up the dialog, use the following statements:

fsettings.setTitle(STR_FILEDLGT); //Set open dialog title from resource
fsettings.setFileName("*.hlo"); //Set FileNames to *.hlo

Creating an Instance of IFileDialog
After setting up the dialog, create an instance of the IFileDialog class

using the following statements:

.
IFileDialog * fd=new IFileDialog(// Create file open dialog
desktopWindow(), // Parent is desktop
this, // Owner is me

 fsettings); // with settings

Refer to the IBM C/C++ Tools: User Interface Class Library Reference

for other ways to define an instance of the IFileDialog class.

Testing the Response from the Dialog
Use the following member function to test the response from the dialog:

pressedOK Returns true if the user ended the dialog by pressing

OK.

124 User Interface Class Library Guide

Reading the Result
The result from the file dialog should be the name of a file, as

illustrated in the following statement:

fileName Returns the fully qualified name selected by the user.

For the complete sample code, see the openFile member function in

the AHELLOW6.CPP file (Version 6 of Hello World application).

 Font Dialog
Use the IFontDialog class to handle fonts in your applications.

Figure 33 shows an example of a font dialog.

C++ Open Font Dialog

Name:

OK Reset Cancel

Size

Display

Underline

Strikeout

Printer

Outline

10

Style::

Bold

System Proportional

Sample Emphasis

Figure 33. Example of a Font Dialog

Setting Up a Font Dialog
To set up a font dialog, parse a font instance using the IFont class

when creating the settings:

IFont curfont(hello);
IFontDialog::Settings fsettings(&curfont);

In the preceding example, the curfont member function initializes the

settings with the window’s current font. When the user makes a

selection in the font dialog, the settings font changes.

 Chapter 8. Finishing Touches 125

Test the Response from the Dialog
Use the following member function to test the response from the dialog:

pressedOK Returns true if the user ended the dialog by pressing

OK.

Reading the Result
The result from the font dialog should be the font name and other

characteristics such as weight and width. The following member

functions return these values:

fontFamily Returns the font’s family name.

fontWeight Returns the weight class (boldness) of the font.

fontWidth Returns the width class of the font.

Refer to “Fonts” on page 77 to see how to set up a font.

Refer to the openFont member function in the AHELLOW6.CPP file for

complete sample code.

126 User Interface Class Library Guide

 Message Box

The User Interface Class Library provides an IMessageBox class for

displaying messages in a message box.

C++ Hello World - Version 6

Could not open file:

CancelEnter

C:\TEXTS\MLE\HELLO6\t!

Figure 34. Example of a message box

The only way to construct instances of this class is by using an

instance of IWindow. The instance of IWindow becomes the owner of the

new message box. Following is an example:

 IMessageBox mbox(owner);

 Chapter 8. Finishing Touches 127

Some of the member functions available are:

setTitle Sets the title of a message box.

show Given a message text string, shows the message box.

The following statements show how to create a message box:

 .
IMessageBox msgbox(this); //Creates an instance of IMessageBox
msgbox.setTitle(IResourceId(STR_MSGBOX)); //Load an String using its resource id res
msgbox.show("This is a message", IMessageBox::okButton |

 IMessageBox::informationIcon |
 IMessageBox::applicationModal |
 IMessageBox::moveable);
 .

The displayButtonStatus function in the AMCELCV.HPP file provides

more examples of these statements.

 Pop-Up Menus

A pop-up menu is a menu that is displayed next to the object with

which it is associated when a user presses the appropriate key or

mouse button. A pop-up menu contains choices that can be applied to

an object at the time the menu is displayed.

The User Interface Class Library provides the IPopUpMenu class, which

is inherited from the IMenu class, to manipulate pop-up menus. Use the

makePopUpMenu member function to construct a pop-up menu.

There is only one way to construct objects of this class:

IPopUpMenu(const IResourceId& menuResId, const IWindow* owner,
Boolean autoDelete = true);

where menuResId is a resource ID specified in the resource file. The

owner is the object to which the pop-up menu applies. If the autoDelete
is true, the pop-up menu object is deleted by IMenuHandler when it is

no longer visible. The pop-up menu will not be visible until its show
member function is called. Normally, applications will override the the

makePopUpMenu member function in the IMenuHandler class and create a

pop-up menu.

128 User Interface Class Library Guide

Version 6 of the Hello World application creates a pop-up menu object

to apply to the “Hello, World” static text control area. The contents of

the pop-up menu are defined in the AHELLOWE.RC resource file, as

follows:

MENU WND_POPUP
 BEGIN
 MENUITEM "Left", MI_LEFT

MENUITEM "Center", MI_CENTER
 MENUITEM "Right", MI_RIGHT
 END

In the AHELLOW6.HPP file, an AMenuHandler class is defined to create

the pop-up menu.

class AMenuHandler: public IMenuHandler
{
 protected:

IPopUpMenu * makePopUpMenu(const IMenuEvent& mnEvt);
};

The makePopUpMenu member function creates an IPopUpMenu object with

the default AutoDelete attribute. The pop-up menu is not visible until its

show member function is called. In this example, the WND_POPUP

menu resource ID is used to create the pop-up menu.

IPopUpMenu * AMenuHandler :: makePopUpMenu(const IMenuEvent& mnEvt)
{
IPopUpMenu * popUp;
popUp=new IPopUpMenu(WND_POPUP, mnEvt.window());

 popUp->show(mnEvt.mousePosition());
 return popUp;
}

 Chapter 8. Finishing Touches 129

The AMenuHandler is created in the setupClient member function. The

menu handler is set for the hello static text control.

Boolean AHelloWindow :: setupClient()
{
clientWindow=new ISplitCanvas(WND_CANVAS, this, this);

 setClient(clientWindow);
helloCanvas=new ISplitCanvas(WND_HCANVAS, clientWindow, clientWindow);

 helloCanvas->setOrientation(ISplitCanvas::horizontalSplit);
hello = new IStaticText(WND_HELLO, helloCanvas, helloCanvas);
AMenuHandler * mh=new AMenuHandler();

 mh->handleEventsFor(hello);
 ICommandHandler::handleEventsFor(hello);

}

The selected menu item in the pop-up menu is processed by the

command member function, which is used to handle command events for

the frame window.

 Using Help

Help information is the information about how to use a product. By

describing a product’s choices, objects, and interaction techniques, help

information can assist users in learning to use a product.

The User Interface Class Library provides an IHelpWindow class that

uses the OS/2 Information Presentation Facility (IPF) to provide help

information for applications. An IHelpWindow is created and associated

with one of the application’s main windows. The User Interface Class

Library also provides an IHelpHandler class to deal with help window

events. When an application window is associated with a help window,

a help event is dispatched to the handlers attached to the application

window.

130 User Interface Class Library Guide

To create a help menu in your application window, define the Help
submenu and the title of the help window in your resource file first. In

Version 5 of the Hello World application, the help menu is defined as

follows:

STRINGTABLE
 BEGIN

STR_HTITLE, "C++ Hello World - Help Window" //Help title
 END
MENU WND_MAIN
 BEGIN

SUBMENU "˜Help", MI_HELP //Help submenu
 BEGIN

MENUITEM "˜General help...", MI_GENERAL_HELP
MENUITEM "˜Extended help...", SC_HELPEXTENDED, MIS_SYSCOMMAND
MENUITEM "˜Keys help...", SC_HELPKEYS, MIS_SYSCOMMAND
MENUITEM "Help ˜index...", SC_HELPINDEX, MIS_SYSCOMMAND

 END
 END

MI_HELP is the help menu ID. The contents of the help information

are stored in an IPF file, AHELLOW5.IPF. You can define a help table

in the resource file to establish the relationship between the menu item

ID and the panel ID that is defined in the IPF file.

HELPTABLE HELP_TABLE
 BEGIN
 HELPITEM WND_MAIN, SUBTABLE_MAIN, 100
 HELPITEM WND_TEXTDIALOG, SUBTABLE_DIALOG, 200
 END

HELPSUBTABLE SUBTABLE_MAIN //Main window help subtable
 BEGIN //

HELPSUBITEM WND_HELLO, 100 //Hello <-> help ID 100
HELPSUBITEM WND_LISTBOX,102 //List box help
HELPSUBITEM MI_EDIT, 110 //Edit menu
HELPSUBITEM MI_ALIGNMENT, 111 //Alignment menu
HELPSUBITEM MI_LEFT, 112 //Left menu item
HELPSUBITEM MI_CENTER, 113 //Center menu item
HELPSUBITEM MI_RIGHT, 114 //Right menu item
HELPSUBITEM MI_TEXT, 199 //Text menu item

 END //

HELPSUBTABLE SUBTABLE_DIALOG //Text dialog help subtable
 BEGIN //

HELPSUBITEM DID_ENTRY, 201 //Entry field <-> help ID 201
HELPSUBITEM DID_OK, 202 //OK button <-> help ID 202
HELPSUBITEM DID_CANCEL, 203 //OK button <-> help ID 203

 END //

 Chapter 8. Finishing Touches 131

WND_HELLO is a static text control ID and MI_* are menu item IDs.

Each of these IDs is related to a panel ID. The main frame window ID,

WND_MAIN, is also related to a panel ID. In this example, WND_MAIN

and WND_HELLO both correspond to help panel ID 100. That is,

pressing the F1 key in the main window area displays the same help

panel as selecting General help ... from the Help menu.

A pointer help, which points to the IHelp class, is added into the

AHelloWindow class. An AHelpHandler, which is derived from

IHelpHandler, overrides the member function keysHelpId, so that the

correct Keys Help panel can be displayed when keys help is requested.

class IHelpHandler: public IHelpHandler
{
 protected:
 virtual Boolean
 keysHelpId(IEvent& evt);
};

The keysHelpId function is called when the user requests the keys help

function. The default action is to set the event result to zero, which

indicates to IPF to do nothing. In the example, this function is

overridden and the result is set to the identity of the help window it

wants IPF to display, in this case, the keys help panel.

Boolean AHelpHandler :: keysHelpId(IEvent& evt)
{
 evt.setResult(1000);
 return true;
}

The number 1000 is the keys help ID defined in the AHELLOW5.IPF file.

The AHELLOW5.IPF file is compiled to produce AHELLOW5.HLP and

added to the help window object, pointed to by IHelp in the example.

help = new IHelpWindow(HELP_TABLE,this);
 help->addLibraries("AHELLOW5.HLP");

Use the addLibraries member function to add a library or list of libraries

to the help window object, so that when you look for a help panel by

panel ID, these libraries can be used (if multiple library names are

specified, they should be separated by a blank space).

132 User Interface Class Library Guide

DBCS and NLS Support

The User Interface Class Library provides double-byte character set

(DBCS) and national language support (NLS). You can use one source

file for your application code and provide DBCS and NLS support by

using separate resource files for the languages you support. The

benefits of the approach include the following:

• The application is easy to maintain, because a single version of the

application code is used. This reduces the cost of maintaining your

code.

• The application is easy to upgrade, because only the source code

is upgraded and then linked with different DLLs to generate

different language versions. This reduces the time and cost of

upgrading your code, because different language versions can be

generated at the same time.

Because message strings are defined in resource files, they can be

translated easily to another language without changes to source code.

These resource files are linked to resource DLLs. From the command

line, users can specify the parameter of the language they want to use

so that applications link the correct resource DLLs at run time and

generate the specified language messages. In Version 6 of the Hello

World application, if you specify the parameter “/P” on the command

line, the application links the Portuguese resource DLL file and

generates the messages in Portuguese.

The canvas classes provide a window to control the position and size of

message strings when the font changes and child windows are resized

dynamically. The canvas classes also allow you to use different

resource DLLs, thus simplifying the task of enabling your applications

for DBCS and NLS support.

The following suggestions will assist you in creating DBCS-enabled

applictions:

• The IKeyboardEvent class, which provides all the keyboard action

event information, includes the mixedCharacter member function,

which returns the event’s single-byte or double-byte character. This

function is recommended for DBCS-enabled applications.

 Chapter 8. Finishing Touches 133

• String manipulation is DBCS-enabled. The IString class supports

mixed strings that contain both SBCS and DBCS characters.

Objects of the IString class are essentially arrays of characters.

The IString class provides functions to test the characters that

make up the string. These functions help users determine whether

the character is single-byte or double-byte, and whether it is a valid

DBCS first byte.

• The IDBCSBuffer class ensures that the search functions do not

inadvertently match the second byte of a DBCS character. The

IDBCSBuffer class is derived from the IBuffer class, which holds the

IString contents. The two bytes of a DBCS character will not be

split. Use the following member functions in a DBCS-enabled

application:

 – isCharValid

The return value is true if and only if the character at the given

index is in the set of valid characters.

 – isDBCS1

The return value is true if and only if the byte at the given offset

is the first byte of DBCS.

 – isPrevDBCS

The return value is true if and only if the character preceding

the one at the given offset is a DBCS character.

• When you create and manage the entry field control window, you

can set the style to be anyData, which allows the input text to be a

mixture of SBCS and DBCS characters. For DBCS-only data, set

the style to be dbcsData. For SBCS-only data, set the style to be

sbcsData.

• In the IComboBox class, which combines an entry field and a list box

to form one control containing both entry field and list box features,

the default data style is anyData This allows the input text to be a

mixture of SBCS and DBCS characters. For pure double-byte text,

set the data style to be dbcsData.

In the IFrameWindow class, add the appDBCSStatus member function

into the style to include a DBCS status area when the frame

appears in a DBCS environment. Use the shareParentDBCSStatus

134 User Interface Class Library Guide

member function to share DBCS status control between a parent

and child frame.

 Chapter 8. Finishing Touches 135

136 User Interface Class Library Guide

 Part 3. Sample Applications

 Copyright IBM Corp. 1993 137

138 User Interface Class Library Guide

 Introduction to the Sample Applications

Chapter 9. Introduction to the Sample Applications

This section shows you how to build an application using the User

Interface Class Library. It is not designed to teach you the details of

C++ programming. If you are unfamiliar with the principles and aspects

of C++ programming, consult the IBM C/C++ Programming Guide

before continuing with this section.

The creation of this application is divided into several versions, starting

with the simplest form, Version 1, and building up to the most

complicated form, Version 6. Each version is designed to show you a

different aspect of the User Interface Class Library.

Running the Samples

Sample files for each version are provided with the User Interface Class

Library product diskettes. Installing and using the samples will help you

understand the classes more quickly. For your convenience, complete

listings of each file that contains sample code for this application are

included.

In addition, files are included to help you compile and link each version

of this sample application. READMEn.TXT files, where n is the version

number, are also included with complete instructions for compiling and

linking each version.

You'll notice that many versions of the sample application create

pointers to objects (new). For simplicity, we do not always show object

cleanup in our samples. When your applications create pointers to

objects, the objects are not destroyed unless your application deletes

them. Therefore, it is up to your application to use the C++ delete
statement or to specify setAutoDeleteObject on your window objects to

free the used memory when an object is no longer needed.

 Copyright IBM Corp. 1993 139

 Conventions Overview

The User Interface Class Library uses a few conventions to enhance

the usability and readability of the code. Here are two that will help you

as you learn how to create an application. See Appendix B, “Class

Library Conventions” on page 269 for information about other

conventions used by the User Interface Class Library.

• Class names all begin with a capital letter. For example, all classes

belonging to the User Interface Class Library with a global scope

begin with the letter “I,” as in IApplication. If a class name

consists of more than one word, the first letter of each word is

capitalized, such as IFrameWindow.

In keeping with this standard, the letter “A” was chosen as the first

letter (e.g. AHelloWindow) for Application defined classes. This

convention will help distinguish application classes from the classes

that belong to the User Interface Class Library. You may find this

standard useful, as well, to help you distinguish classes that you

create from those supplied by the class library.

• Member functions begin with a lower case letter. If a member

function name consists of more than one word, the first letter of

each word that follows the first word is capitalized, such as setText.

Other Conventions Used in the Sample Code

Each version of the sample application builds upon the previous version

in terms of complexity and functions provided. A version indicator (for

example, v2 or v4) appears in the sample code comments to indicate

which statements were added to enhance the previous version. The

following example illustrates this convention:

#include <istattxt.hpp> //IStaticText Class
#include <iinfoa.hpp> //IInfoArea Class v2
#include <imenubar.hpp> //IMenuBar Class v3
#include <ifont.hpp> //IFont v3
#include <istring.hpp> //IString Class v4
#include <isetcv.hpp> //ISetCanvas Class v4

140 User Interface Class Library Guide

Chapter 10. Class Library Applications

To create a User Interface Class Library application, first you need to

know which files to create and what goes in them. The following list

describes the minimum files required for an application. Typically, the

name of each file is the same; only the extensions differ.

filename.CPP Contains the primary C++ code for your application.

filename.HPP Contains the declaration of any class or classes that

you create. You can put each class in a separate

.HPP file or all classes in one file. If your classes are

used in only one .CPP file, they can be declared in

that .CPP file instead.

Optionally, you may want to create the following files:

filename.RC (and associated resources)

Application resource file. Used when the application

requires data, such as text strings or bit maps, from

an external source. Examples of external sources

include .BMP, .ICO and .DLG files.

filename.H Defines constants used in a resource (.RC) file.

filename.DEF Module definition file. Contains information that

defines your application for the linker.

filename.MAK Contains information to compile and link your

application.

Structure of User Interface Class Library Applications

User Interface Class Library applications are written using the C++
programming language. These files have the following structure:

 1. #include statements

Insert #include statements at the beginning of the file to specify

other files that contain information that your application will require.

Typical #include statements are:

 • #include <Ixxxxx.HPP>

 Copyright IBM Corp. 1993 141

Includes the header file that contains information about an User

Interface Class Library class that your application uses. The

header file for each class you use must be included. All User

Interface Class Library classes with a global scope begin with

the letter “I.” Refer to the IBM C/C++ Tools: User Interface

Class Library Reference for an appendix that contains

cross-reference tables for header files and the classes they

contain.

Note: For faster compiles, surround #include statements with

#define and #endif statements, as follows:

#ifndef _IXXXX_
 #include <IXXXX.HPP>
#endif

where IXXXX is the name of the class library header file being

included (without the .HPP extension).

 • #include "xxxxx.HPP"

Represents the inclusion of a header file for a class that you

have created. You must include header files for classes that

you create if your application uses those classes. See

“Creating Your Own Classes” on page 143 for more

information.

 • #include "xxxxx.H"

Includes the file that defines your constants.

2. Main procedure to define the application entry point

Normally, the main procedure creates the application window. The

windows are then displayed and event processing is started for the

application. This is can be done by using the run member function

within the ICurrentApplication class. See “Run and Exit” on

page 18 for more information.

3. Constructor for the application window

The IFrameWindow class is used to construct the application window.

This class can be called directly from your application, or it can be

subclassed within a class of your own creation.

142 User Interface Class Library Guide

Once the application window is constructed, other classes can be

called to insert controls and dialogs into the window, handle mouse

and keyboard events, and so forth. The rest is up to you.

Creating Your Own Classes

Most applications will require new classes to be created. Most new

classes can be derived from an existing base class. For developers

familiar with other object oriented programming languages, a derived

class is the C++ term for a subclass and a base class is the C++ term

for a super class. Classes are derived from a base class to inherit

implementation details and/or to be substitutes for the base class.

When a derived class is just using the implementation details from a

base class, private or protected inheritance should be used. When a

derived class is a substitute for the base class, the developer should

declare the base class using public inheritance. The following table

provides a starting point to determine the base class to use:

New Function Base Class

Adding a new dialog window An IFrameWindow Class

Adding primary or secondary window

An IFrameWindow Class

Changing behavior of a window An IHandler Class

Adding a new event An IEvent Class

Adding a new control An IControl Class or

ITextControl

Adding a new canvas class An ICanvas Class

Adding a new data type An IBase or IVBase Class

Adding a new attribute An IBase or IVBase Class

Adding a new cursor An IVBase

Adding a new style An IBitFlag Class

Adding a new settings An IBase Class

Adding a new exception An IException Class

 Chapter 10. Class Library Applications 143

144 User Interface Class Library Guide

 Hello World — Version 1

Chapter 11. A Simple Application with a Main Window

Version 1 of the Hello World sample application creates a main window

and inserts a text string into it using the static text control. In doing so,

it shows you how to:

• Create the main window using the IFrameWindow class

• Create a static text control

• Put a text string into the control

• Set the static text control as the client window

• Run the application

The main window for Version 1 of the application looks like this:

HELLO1.EXE

Hello, World!

Figure 35. Version 1 of the Hello World Application

 Copyright IBM Corp. 1993 145

 Hello World — Version 1

Version 1 Window Parent Relationship Diagram

Figure 36 shows the relationships between the objects built for Version

1 of the Hello World application:

IApplication: :current() .run()

Diagram
Key:

IStaticText

hello

IFrameWindow

mainWindow

Class Name

Object Name

(Client Window)

Figure 36. Window Parent Relationship Diagram

As the diagram shows, Version 1 of the Hello World application creates

two objects: a main window and a static text control. The mainWindow
object is the main window of the Hello World application.

The hello object, a static text control, is an instance of the IStaticText
class. The phrase “(Client Window)” indicates that the static text control

is displayed in the main window’s client area. In this case, the client

area is that part of the primary or main window inside the borders and

below the title bar. In general, all space not used by the frame and its

extensions belongs to the client area.

146 User Interface Class Library Guide

 Hello World — Version 1

Version 1 Files

The AHELLOW1.CPP file contains the source code for the main

procedure. The tasks performed by this code are described in “Tasks

Performed by Version 1” on page 148 and its related sections.

AHELLOW1.CPP Source code for the main procedure.

AHELLOW1.DEF Module definition file for HELLO1.EXE.

The Source Code File
AHELLOW1.CPP contains the source code used for Version 1. Here is

a listing of the source code:

//Include IBM UI class headers:
#include <iapp.hpp> //IApplication Class
#include <istattxt.hpp> //IStaticText Class
#include <iframe.hpp> //IFrameWindow Class Header

//***
// main - Application entry point *
//***
void main() //Main procedure with no parameters
{
IFrameWindow * mainWindow=new //Create our main window on the desktop
IFrameWindow(0x1000); // Pass in our Window ID

IStaticText * hello=new IStaticText(//Create static text control with
0x1010, mainWindow, mainWindow); // mainWindow as parent & owner

hello->setText("Hello, World!"); //Set text in Static Text Control
hello->setAlignment(//Set Alignment to Center in both

 IStaticText::centerCenter); // directions

mainWindow->setClient(hello); //Set hello control as Client Window
mainWindow->setFocus(); //Set focus to main window
mainWindow->show(); //Set to show main window

IApplication::current().run(); //Get the current application and
// run it

} /* end main */

 Chapter 11. A Simple Application with a Main Window 147

 Hello World — Version 1

The Module Definition File
A module definition file may be created in order to define certain

aspects of the application to the linker. See “The Module Definition File

Format” on page 153 for information about the format of this file.

AHELLOW1.DEF, the module definition file we created for Version 1,

contains the following:

NAME HELLO1 WINDOWAPI

DESCRIPTION 'Hello World Sample C++ Program - Version 1'

CODE LOADONCALL MOVEABLE
DATA MOVEABLE MULTIPLE

HEAPSIZE 16000
STACKSIZE 65000

Tasks Performed by Version 1

The following sections describe each of the tasks performed by Version

1 of the Hello World application. These tasks are:

• Creating the main window

• Creating a static text control

• Putting text in the static text control

• Aligning text within the static text control

• Setting the static text control as the client window

• Setting the focus and showing the main window

• Getting the current application and running it

Creating the Main Window
The first task is to create the main window for the application. The

main window will be an instance of the IFrameWindow class. To make

this class available, the application must include the IFRAME.HPP

library header file, as follows:

#include <iframe.hpp> //IFrameWindow Class Header

148 User Interface Class Library Guide

 Hello World — Version 1

Now that the IFrameWindow class is available, a variable, in this case

mainWindow, can be defined as a pointer to a new instance of this class,

thus creating the main window of the application:

IFrameWindow * mainWindow=new //Create our main window on the desktop
IFrameWindow(0x1000); // Pass in our Window ID

The hexadecimal value 0x1000 is assigned as the window ID.

Creating a Static Text Control for Version 1
The next task is to create a static text control for the “Hello, World!” text

string. Since this control will be an instance of the IStaticText class,

another library header file, ISTATTXT.HPP, must be included:

#include <istattxt.hpp> //IStaticText Class

Now, another variable, in this case hello, can be defined as a pointer to

a new instance of the IStaticText class, which creates a static text

control:

IStaticText * hello=new IStaticText(//Create static text control with
0x1010, mainWindow, mainWindow); // mainWindow as parent & owner

The hexadecimal value 0x1010 is assigned as the control ID.

The parameter that follows the hexadecimal value identifies the parent

of the static text control, represented by the mainWindow variable. This

is done so the static text control will be positioned in relation to the

main window and displayed on top of the main window.

The last parameter identifies the main window as the owner of the static

text control. Controls notify their owner windows when significant

events take place by using command, help or control events. In this

case, if an action is performed on the static text control, such as

modifying its text string, that action will be reported to the main window,

which is specified as the owner. In Version 1, no actions can be

performed on the static text control, but that will change in Versions 2

through 6.

 Chapter 11. A Simple Application with a Main Window 149

 Hello World — Version 1

Putting Text in the Static Text Control
Now that the static text control has been created, it can be given a

static text string. The IStaticText class is derived from the

ITextControl class, and thus inherits its functions. One of those

functions, setText, is used here to define the text string for the static

text control:

hello->setText("Hello, World!"); //Set text in Static Text Control

Aligning Text within the Static Text Control
Next, the setAlignment function of the IStaticText class is used to

align the text string in the static text control. In this case, it is centered

both horizontally and vertically.

hello->setAlignment(//Set the alignment to center both
IStaticText::centerCenter); // horizontally and vertically

If the text string had not been aligned, it would have been placed in the

upper left corner of the client area (aligned left horizontally and at the

top of the window vertically) by default.

Setting the Control as the Client Window
The next task is to designate the static text control as the frame’s client

window so the “Hello, World!” text string can be displayed in the main

window’s client area. This is done by using the setClient function of

the IFrameWindow class:

mainWindow->setClient(hello); //Set hello control as Client Window

The frame’s client window is essentially the window corresponding to

the client area, which is the rectangular portion of the frame window not

occupied by the other frame controls (title bar, window border, minimize

and maximize buttons, and so forth). Setting the static text control as

the client window causes it to occupy the entire client area and to be

aligned within the boundaries of that area. When the main window is

resized, the client area (static text control in this example) grows or

shrinks but the frame and its extensions remain the same size.

150 User Interface Class Library Guide

 Hello World — Version 1

Setting the Focus and Showing the Main Window
Only two tasks remain in writing this application:

• Designating the main window as the active window

• Allowing the main window to be displayed when the application is

run

These tasks are done by using the setFocus and show functions:

mainWindow->setFocus(); //Set focus to main window
mainWindow->show(); //Show main window

The setFocus and show functions are inherited from the IWindow class,

as shown in the following class hierarchy:

IWindow
 │
 └─IFrameWindow

The User Interface Class Library allows classes that are used in an

application to inherit functions from the classes from which they are

derived without the application having to include those classes.

Therefore, since IFrameWindow is derived from IWindow, the library

header file that contains the declaration for the IWindow class does not

need to be included in this application for its functions to be available.

Running the Application
The last task is to get the main window displayed and start the user

interface event processing for the application. This involves getting and

dispatching window events until the application is terminated. This

sample application accomplishes the task using the function

ICurrentApplication::run(). This requires using member functions that

belong to the IApplication and ICurrentApplication classes.

Therefore, another library header file, IAPP.HPP, must be included:

#include <iapp.hpp> // IApplication class

 Chapter 11. A Simple Application with a Main Window 151

 Hello World — Version 1

The current member function of the IApplication class returns the

current application, in this case the Hello World application, as an

instance of the ICurrentApplication class. Once this is done, the

ICurrentApplication class’s run function can be used to display the

main window and start event processing for this application.

IApplication::current().run(); //Get the current application and
// run it

Compiling and Linking Version 1

Figure 37 shows the files that were used to create Version 1 of the

Hello World application, their relationship to each other, and the order

in which they are compiled and linked. File names are shown in

uppercase letters; program names are shown in lowercase letters.

AHELLOW1.CPP

AHELLOW1.OBJ

AHELLOW1.MAPAHELLOW1.DEF

AHELLOW1.EXE

icc -c

icc /Tdp

Figure 37. Compiling and Linking Version 1 of Hello World Application

152 User Interface Class Library Guide

 Hello World — Version 1

The Module Definition File Format

A module definition file may be created in order to define certain

aspects of the application to the linker. This file provides the following

information.

NAME The application name and type.

DESCRIPTION A short description of the application.

CODE Information about the attributes for the code

segment:

LOADONCALL Specifies that the code segment is

loaded when called.

MOVEABLE Specifies that the code segment is

moveable.

DATA Information about the data segment:

MOVEABLE Specifies that the data segment is

moveable.

MULTIPLE Causes a data segment to be

created for each instance of the

executable code.

HEAPSIZE A user-defined minimum heap size, rather than

letting the linker determine the minimum heap size.

STACKSIZE A user-defined stack size, rather than letting the

linker determine the stack size.

See “The Module Definition File” on page 148 for the module definition

file used by this application.

 Chapter 11. A Simple Application with a Main Window 153

 Hello World — Version 1

154 User Interface Class Library Guide

 Hello World — Version 2

Chapter 12. Adding a Resource File and Frame
Extensions

This chapter shows you how to use a resource file and how to add

frame extensions to the application window. A resource file is a file that

contains data used by an application, such as text strings and icons.

This data is often easier to maintain in a resource file than in the

source code of an application because the resource file keeps all of the

application’s data together in one place. Frame extensions are controls

that you can add to a frame window in addition to those that are

provided for you by basic PM frame windows. For example, in Version

2, an information area is added below the client area.

Version 2 of the Hello World application extends Version 1 by showing

you how to:

• Get the “Hello, World!!” text string and text for an information area

from a resource file

• Set the window title and system menu icon from a resource file

• Create and set the information area below the client area

The window for Version 2 of the Hello World application looks like this:

 Copyright IBM Corp. 1993 155

 Hello World — Version 2

C++ Hello World - Version 2

Hello, World!!

Information Area

Use Alt-F4 to Close Window

Figure 38. Version 2 of Hello World Application

Version 2 Window Parent Relationship Diagram

Figure 39 on page 157 shows the relationship between the objects

built for Version 2 of the Hello World application:

156 User Interface Class Library Guide

 Hello World — Version 2

IApplication: :current() .run()

Diagram
Key:

IStaticText

hello

IInfoArea

infoArea

AHelloWindow

mainWindow

Class Name

Object Name

ITitle

(Client Window)

Figure 39. Window Parent Relationship Diagram

For Version 2, the mainWindow object is an instance of the AHelloWindow
class, a subclass that is created for Version 2 and derived from the

IFrameWindow class.

The hello object is the same as in Version 1.

In addition to the mainWindow and hello objects, Version 2 provides:

• An instance of the ITitle class, for the window title

• An infoArea object, which is an instance of the IInfoArea class that

is used to display text in an information area in the main window.

 Chapter 12. Adding a Resource File and Frame Extensions 157

 Hello World — Version 2

Version 2 Files

The following files contain the code used to create Version 2:

AHELLOW2.CPP Source code for the main procedure and window

constructor.

AHELLOW2.HPP Header file for the AHellowWindow class.

AHELLOW2.H Constant definition file for HELLO2.EXE.

AHELLOW2.RC Resource file for HELLO2.EXE.

AHELLOW2.ICO Icon file for HELLO2.EXE.

AHELLOW2.DEF Module definition file for HELLO2.EXE.

The Primary Source Code File
The AHELLOW2.CPP file contains the source code for the main

procedure and the window constructor. If lines 79-80 contain a v2 or a

period, then this source line was modified or added in this version. The

tasks performed by this code are described in “Tasks Performed by

Version 2” on page 164 and its related sections.

//Include the IBM UI class headers:
#include <iapp.hpp> //IApplication Class
#include <istattxt.hpp> //IStaticText Class
#include <iinfoa.hpp> //IInfoArea Class v2

#include "ahellow2.hpp" //Include the AHelloWindow class v2
 // header v2
#include "ahellow2.h" //Include our symbolic definitions v2

//***
// main - Application entry point *
//***
void main() //Main procedure with no parameters
{
AHelloWindow mainWindow (WND_MAIN); //Create our main window on the

 // desktop
IApplication::current().run(); //Get the current application and

// run it
} /* end main */

158 User Interface Class Library Guide

 Hello World — Version 2

//**
// AHelloWindow :: AHelloWindow - Constructor for our main window *
//**
AHelloWindow :: AHelloWindow(unsigned long windowId)
: IFrameWindow (//Call the IFrameWindow constructor
IFrameWindow::defaultStyle() // using the default style, plus v2
| IFrameWindow::minimizedIcon, // get minimized icon from RC file v2
windowId) // and set the main window ID

{
hello=new IStaticText(WND_HELLO, //Create a static text control
this, this); // Pass in this AHelloWindow as the

// parent and owner of the control
hello->setText(STR_HELLO); //Set text in the static text control v2

// from the RC file v2
hello->setAlignment(//Set the alignment to center both
IStaticText::centerCenter); // horizontally and vertically

setClient(hello); //Set the static text control as the
// client window

infoArea=new IInfoArea(this); //Create the information area v2
 infoArea->setInactiveText(STR_INFO); //Set information area text from RC v2

sizeTo(ISize(400,300)); //Set the pixel size of main window v2
setFocus(); //Set the focus to the main window
show(); //Show the main window

} /* end AHelloWindow :: AHelloWindow(...) */

 Chapter 12. Adding a Resource File and Frame Extensions 159

 Hello World — Version 2

The AHelloWindow Class Header File
AHELLOW2.HPP is not an User Interface Class Library header file.

Instead, it is the type of header file that you would create for a class of

your own. In this case, it contains the class definition and interface

specifications for the AHelloWindow class, a subclass of IFrameWindow
that we created specifically for this application. Here is the source

listing for AHELLOW2.HPP:

#ifndef AHELLOWINDOW_HPP
#define AHELLOWINDOW_HPP

#include <iframe.hpp> //Include the IFrameWindow class
 // header

//**
// Class: AHelloWindow *
// *
// Purpose: Main window for the C++ Hello World sample application. *
// It is a subclass of IFrameWindow. *
// *
//**
class AHelloWindow : public IFrameWindow
{
public: //Define the public Information
AHelloWindow(unsigned long windowId);//Constructor for this class

private: //Define the private Information
IStaticText * hello; //Define a Static Text Control to

// keep the "Hello, World" text
// and as the client window

IInfoArea * infoArea; //Define an Information Area v2
// Control to create an information .
// area beneath the client area v2

};
#endif

160 User Interface Class Library Guide

 Hello World — Version 2

The Constants Definition File
AHELLOW2.H contains our constant definitions for this application.

These constants and their definitions provide the IDs for the application

main window, controls and text strings. They are required because, in

this version of the application, the text strings are being pulled in from a

resource file. The constants and their definitions are shown in the

following code:

#ifndef AHELLOWINDOW_H
#define AHELLOWINDOW_H
//**
// window IDs - Used by IWindow constructors, such as IStaticText and *
// AHelloWindow. *
//**
#define WND_MAIN 0x1000 //Main window ID

#define WND_HELLO 0x1010 //Hello World window ID
#define WND_INFO 0x1012 //Information area ID v2

//** v2
// string IDs - Used to relate resources to IStaticText and ITitle. * .
//** v2
#define STR_HELLO 0x1200 //Hello World string ID v2
#define STR_INFO 0x1220 //Information area string ID v2

#endif

 Chapter 12. Adding a Resource File and Frame Extensions 161

 Hello World — Version 2

The Resource File
Version 2 of the Hello World application provides a resource file,

AHELLOW2.RC. This resource file assigns an icon and three text

strings to the constants defined in the AHELLOW2.H file shown in “The

Constants Definition File” on page 161. AHELLOW2.H is included in

this resource file so the icon and text strings can be associated with the

appropriate IDs. Here is the code used in the AHELLOW2.RC file:

#include "ahellow2.h" //Symbolic definitions v2

//** v2
// Icon and bit-map resources * .
// Symbolic Name (ID) <-> Icon File Name * .
//** .
ICON WND_MAIN ahellow2.ico //Title bar icon (use same ID)v2

//** v2
// string resources - Used by the IStaticText and ITitle classes * .
// Symbolic Name (ID) <-> Text String * .
//** v2
STRINGTABLE
 BEGIN

STR_HELLO, "Hello, World!!" //Hello World text string v2
WND_MAIN, "C++ Hello World - Version 2" //Title bar text (main ID) v2
STR_INFO, "Use Alt-F4 to close window" //Information area text v2

 END

The Icon File
AHELLOW2.ICO is used as both the title bar icon and the icon that is

displayed when the application is minimized. We cannot provide a

listing for the AHELLOW2.ICO file, but this is how the icon appears

when minimized:

Hello World Icon

Figure 40. Hello World Icon

162 User Interface Class Library Guide

 Hello World — Version 2

 AHELLOW2.DEF
The AHELLOW2.DEF file is required for the same reasons that

AHELLOW1.DEF was needed for Version 1. See “The Module

Definition File” on page 148 if you need to review the reasons for

creating a .DEF file.

The only difference between the two .DEF files used in Version 1 and

Version 2 is the change in the version number.

NAME HELLO2 WINDOWAPI

DESCRIPTION 'Hello World Sample C++ Program - Version 2'

CODE LOADONCALL MOVEABLE
DATA MOVEABLE MULTIPLE

HEAPSIZE 8192
STACKSIZE 256000

Advantages of the C++ File Structure

In Version 1 of the Hello World application, all of the source code was

intentionally put in the AHELLOW1.CPP file to make that version of the

application very simple. However, for Version 2, the source code has

been distributed among a variety of files in order to show the flexibility

and versatility that you can achieve by structuring your applications this

way.

First of all, the AHelloWindow class, the subclass of IFrameWindow that

was referred to in the preceding section, is defined in the header file

(AHELLOW2.HPP). Putting the class definition and interface

specifications in the header file separates them from their

implementation in the source code (AHELLOW2.CPP). This allows the

class and its specifications to be used over again with other

applications and implemented in different ways. If the class definition

or interface specifications change, they change in only one place, the

header file.

Similarly, the constant definitions file (AHELLOW2.H) allows IDs to be

assigned to the windows and text strings in one place. Defining the

constants in one place allows those constants to be used in a variety of

places, such as the source code and the resource file, while keeping

 Chapter 12. Adding a Resource File and Frame Extensions 163

 Hello World — Version 2

their definitions in one place. Then, if a need to change the constant

definitions arises, only the AHELLOW2.H file must be modified.

The advantage of placing the application’s data in a resource file

(AHELLOW2.RC) is that it allows all of the resources to be specified in

one place. For example, finding and modifying text strings is much

easier when they are all grouped in one place, rather than if you had to

search through the source code for each one.

Tasks Performed by Version 2

The following sections describe each of the tasks performed by Version

2 of the Hello World application. Some of the tasks are the same as

those performed by Version 1, but are described again because they

are done a little differently in Version 2. The tasks are:

• Creating the main window

• Getting the current application and running it

• Constructing the main window, which involves the following:

– Creating a static text control

– Setting a text string from a resource file

– Putting a text string into a static text control

– Aligning the text

– Setting the static text control in the main window

– Setting the window title and title bar icon from a resource file

– Creating and setting the information area below the client area

– Setting the focus to the main window and showing the main

window

Creating the Main Window
One of the major differences between Version 1 of the Hello World

application and Version 2 is the manner in which the main window is

created. Version 1 simply creates an instance of the IFrameWindow
class. However, Version 2 provides its own class, AHelloWindow, for

creating the main window.

The AHelloWindow class is defined in the AHELLOW2.HPP header file

and is derived from the IFrameWindow class. The IFrameWindow class is

defined in the IFRAME.HPP library header file. Therefore, the

164 User Interface Class Library Guide

 Hello World — Version 2

AHELLOW2.HPP header file contains the following line to make the

derivation of the AHelloWindow class from the IFrameWindow class

possible:

//<in ahellow2.hpp>
#include <iframe.hpp> //Include the IFrameWindow class
 // header

Note: See “Version 2 Files” on page 158 to learn about reasons for

putting class definitions and interface specifications in a header file.

The AHELLOW2.CPP file, which contains most of the source code for

the application, includes the AHELLOW2.HPP header file in order to

have access to the AHelloWindow class:

// <in AHELLOW2.CPP>
#include "ahellow2.hpp" //Include the AHelloWindow class
 // header

The following line in the AHELLOW2.CPP file creates the main window

by using the AHelloWindow class constructor:

// <in AHELLOW2.CPP>
AHelloWindow mainWindow (WND_MAIN); //Create the main window on

// the desktop

In Version 1, the main window was given a hexadecimal value of

0x1000 as its window ID when the main window was created. The

same value is used for the window ID of the main window in Version 2.

However, instead of specifying that value in the primary source code

file, Version 2 uses a constant, WND_MAIN, which is defined in the

AHELLOW2.H file, as follows:

//<in ahellow2.h>
#define WND_MAIN 0x1000 //Main window ID

Note: See “Version 2 Files” on page 158 to learn about reasons for

using a constants definition file.

In order to have access to this definition, the primary source code file,

AHELLOW2.CPP, must include the AHELLOW2.H file, as follows:

// <in AHELLOW2.CPP>
#include "ahellow2.h" //Include definitions of the constants

 Chapter 12. Adding a Resource File and Frame Extensions 165

 Hello World — Version 2

Getting the Current Application and Running It
When the main window is constructed, the following line gets the

current application and runs it.

IApplication::current().run(); //Get the current application and
// run it

See “Running the Application” on page 151 for a more detailed

explanation.

Once the main window has been created, it next must be constructed.

The following sections explain how this is done.

Constructing the Main Window
Version 2 of the Hello World application constructs the main window

using the AHelloWindow class. Here is the class constructor as it is

defined in the AHELLOW2.HPP header file:

// <in AHELLOW2.HPP>
AHelloWindow(unsigned long windowId); //Constructor for this class

In the primary source code file, Version 2 uses the following lines of

code to construct the main window:

// <in AHELLOW2.CPP>
AHelloWindow :: AHelloWindow(unsigned long windowId)
: IFrameWindow (//Call the IFrameWindow constructor
IFrameWindow::defaultStyle() // using the default style, plus v2
| IFrameWindow::minimizedIcon, // get minimized icon from RC file v2
windowId) // and set the main window ID

Two capabilities provided by the IFrameWindow class have been used

here that were not used in Version 1:

• Setting the main window to the default style

The defaultStyle function is inherited from the IFrameWindow class.

It returns the current default style that your application is using for

all frame windows. The current default style is either the original

default style that is provided by the User Interface Class Library for

frame windows, or a new default style that has been established by

using the setDefaultStyle function.

In this case, since the setDefaultStyle function has not been used,

the current default style is the same as the original default style,

166 User Interface Class Library Guide

 Hello World — Version 2

which provides a title bar, title bar icon, minimize button, maximize

button, window border, window list, and an initial shell position for

the window.

In the Hello World application, the text and icon for the title bar are

specified in the resource file, AHELLOW2.RC, which is described in

the following sections. The text string for the window title is

included in the resource file, and the icon, AHELLOW2.ICO, is

specified.

Refer to “Styles” on page 55 and to the IBM C/C++ Tools: User

Interface Class Library Reference for more information about styles.

• Getting an icon that is used when the main window is minimized

The minimizedIcon function is also inherited from the IFrameWindow
class. This function allows your application to use an icon,

contained in your .EXE file and specified in your resource file, to

represent the application when it is minimized on the desktop. The

Hello World application provides the AHELLOW2.ICO icon file for

this purpose. The following figure shows how this icon appears

when the main window is minimized:

Hello World Icon

Figure 41. Hello World Icon

Creating a Static Text Control for Version 2
Another difference between Version 1 and Version 2 is the means of

creating a static text control to display a text string. In Version 1, this

was done very simply by setting hello equal to a new instance of the

IStaticText class, associating an ID with the control window (0x1010),

and making the main window the parent and owner of the control, as

follows:

// <in AHELLOW1.CPP>
IStaticText * hello=new IStaticText(//Create static text control with
0x1010, mainWindow, mainWindow); // mainWindow as parent and owner

 Chapter 12. Adding a Resource File and Frame Extensions 167

 Hello World — Version 2

In Version 2, however, this code is divided into separate parts and

placed in different files. As shown in the following lines of code, hello
is now declared in the AHelloWindow class:

// <in AHELLOW2.HPP>
IStaticText * hello; //Define a Static Text Control to

// keep the "Hello, World" text
// as the client window

In the AHELLOW2.CPP file, hello is used to create a new instance of a

static text control:

// <in AHELLOW2.CPP>
hello = new IStaticText(WND_HELLO, //Create a static text control
this, this); // Pass in this AHelloWindow as the

// parent and owner of the control

The WND_HELLO constant provides the ID for the static text control.

All Presentation Manager windows must have a unique ID, including

controls. Therefore, the AHELLOW2.CPP file must include

AHELLOW2.H, because that is where this constant is defined:

// <in AHELLOW2.CPP>
#include "ahellow2.h" //Include our symbolic definitions v2

With the AHELLOW2.H included, the ID is associated with the

WND_HELLO constant:

// <in AHELLOW2.H>
#define WND_HELLO 0x1010 //Hello World window ID

The other two parameters (this, this) are used to pass in the main

window (this instance of the AHelloWindow class) as the parent and

owner of the static text control. See “Creating a Static Text Control for

Version 1” on page 149 for information about parent and owner

windows.

168 User Interface Class Library Guide

 Hello World — Version 2

Setting a Text String from an RC File for the Static Text
Control
Once the static text control is created, the next task is to set text in it.

Version 2 of the Hello World application gets the text string from a

resource file. To do this, it uses the setText function, which is inherited

from the ITextControl class:

// <in AHELLOW2.CPP>
hello->setText(STR_HELLO); //Set text in the static text control

// from the resource file

The setText member function finds this constant in the AHELLOW2.RC

resource file and puts it into the static text control:

// <in AHELLOW2.RC>
STR_HELLO, "Hello, World!!" //Hello World text string

As we noted earlier, each window, even a control, must have a numeric

value assigned as its ID. The STR_HELLO constant is associated with

a string ID, hexadecimal value 0x1200, in the AHELLOW2.H constant

definition file. The resource file includes the constant definition file, so

this constant definition is available.

// <in AHELLOW2.H>
#define STR_HELLO 0x1200 //Hello World string ID

Aligning the Static Text Control
As in Version 1, the static text control for the client area is centered

both horizontally and vertically in the static text control:

hello->setAlignment(//Set the alignment to center in both
 IStaticText::centerCenter); // directions

Setting the Control as the Client Window
The last task to perform for the static text control is to set it as the client

window. See “Setting the Control as the Client Window” on page 150

for an explanation of client windows.

setClient(hello); //Set the static text control as the
// client window

 Chapter 12. Adding a Resource File and Frame Extensions 169

 Hello World — Version 2

Creating an Information Area
The following code creates a new instance of an information area using

the IInfoArea class. This class provides a frame extension at the

bottom of the client area that shows information about the application.

infoArea=new IInfoArea(this); //Create the information area v2

Setting Information Area Text from the Resource File
Normally, the information shown in the information area pertains to the

frame menu item at which the selection cursor is currently positioned.

The information is taken from a resource string table. A different text

string is displayed for each menu item, changing dynamically in the

information area as the cursor moves from item to item. The

information area also has a special string (called the “inactive text”) that

is displayed whenever no menu item is selected.

Version 2 sets the information area's inactive text to the same string

placed in the static text control in Version 1. As a result, this text

appears whenever the menu is inactive. The only difference is the

setInactiveText function of the IInfoArea class is used instead of the

setText function:

 infoArea->setInactiveText(STR_INFO); //Set information area text from RC v2

The setInactiveText member function finds the STR_INFO constant in

the AHELLOW2.RC resource file and puts it into the information area:

// <in AHELLOW2.RC>
STR_INFO, "Use Alt-F4 to close window" //Information area text v2

170 User Interface Class Library Guide

 Hello World — Version 2

The STR_INFO constant is associated with a string ID, hexadecimal

value 0x1220, in the AHELLOW2.H constant definition file. The

resource file includes the constant definition file, so this constant

definition is available.

// <in AHELLOW2.H>
#define STR_INFO 0x1220 //Information area string ID v2

Setting the Size of the Main Window
In Version 1, the main window’s default size was used when it was

displayed. Version 2 shows you how to change the size:

sizeTo(ISize(400,300)); //Set the pixel size of main window v2

This sets the size of the main window to 400 pixels wide by 300 pixels

high.

Setting the Focus and Showing the Main Window
As in Version 1, the last two member functions used are setFocus and

show. However, since the AHelloWindow class is the parent and owner of

the main window, you only need to specify the function names:

setFocus(); //Set the focus to the main window
 show(); //Show window

Compiling and Linking Version 2
Figure 42 on page 172 shows the files that were used to create

Version 2 of the Hello World application, their relationship to each

other, and the order in which they are compiled and linked. File names

are shown in uppercase letters; program names are shown in

lowercase letters.

 Chapter 12. Adding a Resource File and Frame Extensions 171

 Hello World — Version 2

AHELLOW2.H

AHELLOW2.HPP

AHELLOW2.RC

AHELLOW2.RES

AHELLOW2.OBJ

AHELLOW2.DEF AHELLOW2.MAP

AHELLOW2.CPP

HELLO2.EXE HELLO2.EXE

AHELLOW2.ICO

icc -c

icc /Tdp

rc -r

rc

iconedit

Figure 42. Compiling and Linking Version 2 of the Hello World Application

172 User Interface Class Library Guide

 Hello World — Version 3

Chapter 13. Event Handling and Menu Bars

Version 3 provides a menu bar with an Alignment choice. By selecting

this choice, the user can display a pull-down menu and align the “Hello,

World!!!” text string left, right, or center. In addition, this version adds a

status area to show the status of the text string, and an event handler

for the menu bar and the pull-down menu.

In covering these topics, this section shows you how to:

• Add a menu bar to an application window

• Add command processing (event handling) to align a text string

• Place a check mark next to the selected pull-down menu choice

• Create a status line to show the status of the text string alignment

• Add string resources so the information area is updated when the

user is selecting menu items

The window for Version 3 of the Hello World application looks like this:

 Copyright IBM Corp. 1993 173

 Hello World — Version 3

C++ Hello World - Version 3

Menu Bar

Title BarTitle Text
Minimized
Icon

Minimize
Button

Maximize
Button

Status Area

Border

Information Area

Client Area

Hello, World!!!

Center Alignment

Use Alt-F4 to Close Window

Alignment

Figure 43. Version 3 of Hello World Application

Version 3 Window-Parent Relationship Diagram

Figure 44 on page 175 shows the relationship between the objects

built for Version 3 of the Hello World application:

174 User Interface Class Library Guide

 Hello World — Version 3

IApplication: :current() .run()

Diagram
Key:

IStaticText

statusLine

IStaticText

hello

IInfoArea

infoArea

AHelloWindow

mainWindow

IMenuBar

menuBar

Class Name

Object Name

ITitle

(Client Window)

Figure 44. Window Parent Relationship Diagram

Version 3 Files

The following files contain the code used to create this window:

AHELLOW3.CPP Source code for the main procedure, main window

constructor, and command processing.

AHELLOW3.HPP Header file for the AHellowWindow class.

AHELLOW3.H Constants definition file for HELLO3.EXE.

AHELLOW3.RC Resource file for HELLO3.EXE.

AHELLOW3.ICO Icon file for HELLO3.EXE.

AHELLOW3.DEF Module definition file for HELLO3.EXE.

 Chapter 13. Event Handling and Menu Bars 175

 Hello World — Version 3

The Primary Source Code File
The AHELLOW3.CPP file contains the source code for the main

procedure, window constructor, and menu commands. The tasks

performed by this code are described in “Tasks Performed by Version

3” on page 182 and its related sections.

Here is a listing of the primary source code:

//Include IBM UI class headers:
#include <iapp.hpp> //IApplication Class
#include <istattxt.hpp> //IStaticText Class
#include <iinfoa.hpp> //IInfoArea Class v2
#include <imenubar.hpp> //IMenuBar Class v3
#include <ifont.hpp> //IFont v3

#include "ahellow3.hpp" //Include AHelloWindow Class headers v2
#include "ahellow3.h" //Include our Symbolic definitions v2

//***
// main - Application entry point *
//***
void main() //Main Procedure with no parameters
{
AHelloWindow mainWindow (WND_MAIN); //Create our main window on the

 // desktop
IApplication::current().run(); //Get the current application and

// run it
} /* end main */

//**
// AHelloWindow :: AHelloWindow - Constructor for our main window *
//**
AHelloWindow :: AHelloWindow(unsigned long windowId)
: IFrameWindow (//Call IFrameWindow constructor v2
IFrameWindow::defaultStyle() // Use default plus v2
| IFrameWindow::minimizedIcon, // Get Minimized Icon from RC file v2
windowId) // Main Window ID

{
hello=new IStaticText(WND_HELLO, //Create Static Text Control
this, this); // Pass in myself as parent & owner

hello->setText(STR_HELLO); //Set text in Static Text Control v2
hello->setAlignment(//Set Alignment to Center in both

 IStaticText::centerCenter); // directions
setClient(hello); //Set hello control as Client Window

infoArea=new IInfoArea(this); //Create the information area v2
 infoArea->setInactiveText(STR_INFO); //Set information area text from RC v2

statusLine=new IStaticText //Create Status Area using Static Text v3

176 User Interface Class Library Guide

 Hello World — Version 3

(WND_STATUS, this, this); // Window ID, Parent, Owner Parameters.
statusLine->setText(STR_CENTER); //Set Status Text to "Center" from Res .
addExtension(statusLine, //Add Status Line above the client .
IFrameWindow::aboveClient, // and specify the location .
IFont(statusLine).maxCharHeight()); // and specify height v3

handleEventsFor(this); //Set self as event handler (commands)v3
menuBar=new IMenuBar(WND_MAIN, this); //Create Menu Bar for main window .
menuBar->checkItem(MI_CENTER); //Place Check on Center Menu Item v3

sizeTo(ISize(400,300)); //Set the size of main window v2
setFocus(); //Set focus to main window
show(); //Set to show main window

} /* end AHelloWindow :: AHelloWindow(...) */

//** v3
// AHelloWindow :: command * .
// Handle menu commands * .
//** .
Boolean AHelloWindow :: command(ICommandEvent & cmdEvent) // .
{ //v3
switch (cmdEvent.commandId()) { //Get command id v3

case MI_CENTER: //Code to Process Center Command Item v3
hello->setAlignment(//Set alignment of hello text to .
IStaticText::centerCenter); // center-vertical, center-horizontal .

statusLine->setText(STR_CENTER); //Set Status Text to "Center" from Res .
menuBar->checkItem(MI_CENTER); //Place Check on Center Menu Item .
menuBar->uncheckItem(MI_LEFT); //Uncheck Left Menu Item .
menuBar->uncheckItem(MI_RIGHT); //Uncheck Right Menu Item .
return(true); //Return command processed .

 break; // v3

case MI_LEFT: //Code to Process Left Command Item v3
hello->setAlignment(//Set alignment of hello text to .

 IStaticText::centerLeft); // center-vertical, left-horizontal .
statusLine->setText(STR_LEFT); //Set Status Text to "Left" from Res .
menuBar->uncheckItem(MI_CENTER); //Uncheck Center Menu Item .

 menuBar->checkItem(MI_LEFT); //Place Check on Left Menu Item .
menuBar->uncheckItem(MI_RIGHT); //Uncheck Right Menu Item .
return(true); //Return command processed .

 break; // v3

case MI_RIGHT: //Code to Process Right Command Item v3
hello->setAlignment(//Set alignment of hello text to .

 IStaticText::centerRight); // center-vertical, right-horizontal .
statusLine->setText(STR_RIGHT); //Set Status Text to "Right" from Res .
menuBar->uncheckItem(MI_CENTER); //Uncheck Center Menu Item .
menuBar->uncheckItem(MI_LEFT); //Uncheck Left Menu Item .
menuBar->checkItem(MI_RIGHT); //Place Check on Right Menu Item .

 Chapter 13. Event Handling and Menu Bars 177

 Hello World — Version 3

return(true); //Return command processed .
 break; // v3

} /* end switch */ // v3

return(false); //Return command not processed v3
} /* end HelloWindow :: command(...) */ //v3

The AHelloWindow Class Header File
Like AHELLOW2.HPP, AHELLOW3..HPP contains the class definition

and interface specifications for the AHelloWindow class, with a few

modifications for Version 3. Here is the source listing for

AHELLOW3.HPP:

#ifndef AHELLOWINDOW_HPP
#define AHELLOWINDOW_HPP

#include <iframe.hpp> //Include IFrameWindow Class Header
#include <icmdhdr.hpp> //Include ICommandEvent & ICommandHandler v3

//**
// Class: AHelloWindow *
// *
// Purpose: Main Window for C++ Hello World sample application *
// It is a subclass of IFrameWindow & ICommandHandler * v3
// *
//**
class AHelloWindow : public IFrameWindow,
 public ICommandHandler //v3
{
public: //Define the Public Information
AHelloWindow(unsigned long windowId); //Constructor for this class

protected: //Define Protected Member v3
Boolean command(ICommandEvent& cmdEvent); //v3

private: //Define Private Information
IStaticText * hello; //Hello contains "Hello, World" text
IInfoArea * infoArea; //Define an Information Area v2

// Control to create an information .
// area beneath the client area v2

IStaticText * statusLine; //Status Line at top of client window v3
IMenuBar * menuBar; //Define Menu Bar v3

};
#endif

178 User Interface Class Library Guide

 Hello World — Version 3

The Constants Definition File
AHELLOW3.H contains the constant definitions for this application.

These constants and their definitions, which provide the IDs for the

application window components, are shown in the following code:

#ifndef AHELLOWINDOW_H
#define AHELLOWINDOW_H
//**
// window ids - used by IWindow constructors (eg IStaticText, AHelloWindow)*
//**
#define WND_MAIN 0x1000 //Main Window ID

#define WND_HELLO 0x1010 //Hello World Window ID
#define WND_INFO 0x1012 //Information Area v2
#define WND_STATUS 0x1011 //Status Line Window ID v3

//** v2
// string ids - used to relate resources to IStaticText and ITitle * .
//** v2
#define STR_HELLO 0x1200 //Hello World String ID v2
#define STR_INFO 0x1220 //Info String ID v2
#define STR_CENTER 0x1230 //Center Alignment Status String ID v3
#define STR_LEFT 0x1231 //Left Alignment Status String ID .
#define STR_RIGHT 0x1232 //Right Alignment Status String ID v3

//** v3
// menu ids - used on relate command ID to Menu Items and Function Keys * .
//** .
#define MI_ALIGNMENT 0x1500 //Alignment Menu ID .
#define MI_CENTER 0x1501 //Center Menu ID .
#define MI_LEFT 0x1502 //Left Menu ID .
#define MI_RIGHT 0x1503 //Right Menu ID v3

#endif

For Version 3, the constants definition file contains a new window ID

(WND_STATUS) for the status area and three new string IDs

(STR_CENTER, STR_LEFT, and STR_RIGHT) for the text strings used

in the status area. In addition, menu IDs (MI_ALIGNMENT,

MI_CENTER, MI_LEFT, and MI_RIGHT) have been added for the

menu bar Alignment choice and the Center, Left, and Right choices in

the pull-down menu.

 Chapter 13. Event Handling and Menu Bars 179

 Hello World — Version 3

The Resource File
Version 3 of the Hello World application provides a resource file,

AHELLOW3.RC. This resource file associates an icon and several text

strings with the symbols defined in the AHELLOW3.H file shown in “The

Constants Definition File” on page 179. It also contains the text strings

for the menu bar. AHELLOW3.H is included in this resource file so the

icon and text strings can be associated with the appropriate IDs. Here

is the code used in the AHELLOW3.RC file:

#include "ahellow3.h" //Symbolic Definitions v2

//** v2
// icon and bitmap resources * .
// Symbolic Name (ID) <-> icon filename * .
//** .
ICON WND_MAIN ahellow3.ico //Title Bar Icon (use same id)v2

//** v2
// string resources - used by IStaticText & ITitle Classes * .
// Symbolic Name (ID) <-> Text String * .
//** v2
STRINGTABLE
 BEGIN

STR_HELLO, "Hello, World!!!" //Hello World String v3
WND_MAIN, "C++ Hello World - Version 3" //Title Bar String (main id) v3
STR_INFO, "Use Alt-F4 to Close Window" //Information Area String v2
MI_ALIGNMENT,"Alignment Menu" //InfoArea - Alignment Menu v3
MI_CENTER, "Set Center Alignment" //InfoArea - Center Menu .

 MI_LEFT, "Set Left Alignment" //InfoArea - Left Menu .
MI_RIGHT, "Set Right Alignment" //InfoArea - Right Menu v3
STR_CENTER, "Center Alignment" //Status Line Text - Center v3
STR_LEFT, "Left Alignment" //Status Line Text - Left .
STR_RIGHT, "Right Alignment" //Status Line Text - Right v3

 END

//** v3
// menu bar for main window - used by IMenuBar Class * .
// Text String <-> Menu Item ID (Command ID) * .
//** v3
MENU WND_MAIN //Main Window Menu (WND_MAIN) v3
 BEGIN

SUBMENU "˜Alignment", MI_ALIGNMENT //Alignment Submenu v3
 BEGIN

MENUITEM "˜Left", MI_LEFT //Left Menu Item v3
MENUITEM "˜Center", MI_CENTER //Center Menu Item v3
MENUITEM "˜Right", MI_RIGHT //Right Menu Item v3

 END
 END

180 User Interface Class Library Guide

 Hello World — Version 3

The resource file for Version 3 contains two primary additions. The first

is the text strings that are assigned to the new string constants that

were defined in AHELLOW3.H. These text strings are used in the

status area to show the state of the static “Hello, World!!!” text string in

the client area. For example, when the main window is first displayed,

the Center Alignment text string is shown in the status area.

The second addition provides the text that will appear on the menu bar

(Alignment) and pull-down menu (Left, Center, and Right) to indicate

the choices that will be available. Each text string is assigned to a

constant, also defined in AHELLOW3.H.

The tilde (∼) to the left of the first letter in each text string indicates that

those letters can be used in combination with the Alt key to provide

shortcut keys for the application. For example, pressing Alt-R will align

the “Hello, World!!!” text string on the right side of the main window, just

as if the Right choice had been selected from the pull-down menu.

The Icon File
AHELLOW3.ICO is used as both the title bar icon and the icon that is

displayed when the application is minimized. We cannot provide a

listing for the AHELLOW3.ICO file, but this is how the icon appears

when minimized:

Hello World Icon

Figure 45. Hello World Icon

 Chapter 13. Event Handling and Menu Bars 181

 Hello World — Version 3

 AHELLOW3.DEF
The AHELLOW3.DEF file is required for the same reasons that

AHELLOW1.DEF was needed for Version 1. See “The Module

Definition File” on page 148 if you need to review the reasons for

creating a .DEF file.

The only difference between the two .DEF files used in Version 1 and

Version 3 is the change in the version number.

NAME HELLO3 WINDOWAPI

DESCRIPTION 'Hello World Sample C++ Program - Version 3'

CODE LOADONCALL MOVEABLE
DATA MOVEABLE MULTIPLE

HEAPSIZE 8192
STACKSIZE 256000

Tasks Performed by Version 3

The following sections describe each of the tasks performed by Version

3 of the Hello World application that were not described already for

Version 2. Those tasks are:

• Creating a status area using a static text control

• Putting text in a static text control for a status line

• Specifying the location and height of the status area

• Setting AHelloWindow as the event handler

• Creating a menu bar

• Setting an initial check mark in the pull-down menu

• Adding command processing to set the static text control alignment

Tasks this version performs that were described for Version 2 are:

• Creating the main window

• Getting the current application and running it

• Constructing the main window, which involves the following:

– Creating a static text control

– Setting a text string from a resource file

– Putting a text string into a static text control

– Aligning the text

182 User Interface Class Library Guide

 Hello World — Version 3

– Setting the static text control in the main window

– Setting the window title and title bar icon from a resource file

– Creating and setting the information area below the client area

– Setting the focus to the main window and showing the main

window

Creating a Status Area Using a Static Text Control
The IStaticText class is used to create the static text control for

displaying a text string in a status area. As shown in the following line

of code, statusLine is declared in the AHelloWindow class declaration in

the header file (AHELLOW3.HPP):

// <in AHELLOW3.HPP>
IStaticText * statusLine; //Status Line at top of client window

In the AHELLOW3.CPP file, statusLine is set equal to the IStaticText
library class to create a static text control for the status area and pass

in the main window, this instance of the AHelloWindow class, as the

parent and owner of this control:

// <in AHELLOW3.CPP>
statusLine=new IStaticText //Create Status Area using Static Text v3
(WND_STATUS, this, this); // Window ID, Parent, Owner Parameters.

The WND_STATUS constant provides the window ID for this static text

control. This constant is defined in AHELLOW3.H.

Putting Text in a Static Text Control for a Status Line
The resource file (AHELLOW3.RC) comes into play now because the

status area text strings are specified in the resource file:

// <in AHELLOW3.RC>
STR_CENTER, "Center Alignment" //Status Line Text - Center
STR_LEFT, "Left Alignment" //Status Line Text - Left
STR_RIGHT, "Right Alignment" //Status Line Text - Right

The following code in the .CPP file is used to get the “Center

Alignment” text string from the resource file and center it in the static

text control for the status area:

// <in AHELLOW3.CPP>
statusLine->setText(STR_CENTER); //Set Status Text to "Center" from Res .

 Chapter 13. Event Handling and Menu Bars 183

 Hello World — Version 3

This is done because the “Hello, World!!!” text string is center aligned,

both horizontally and vertically, when the static text control that displays

it is created.

Specifying the Location and Height of the Status Area
The IFrameWindow member function addExtension is used to specify

where the status area will be positioned and how high it will be:

// <in AHELLOW3.CPP>
addExtension(statusLine, //Add Status Line above the client .
IFrameWindow::aboveClient, // and specify the location .
IFont(statusLine).maxCharHeight()); // and specify height v3

The aboveClient argument of the Location enumeration specifies that

the static text control used to display the status area is to be located

above the client window.

The maxCharHeight member function returns the maximum height that

the status area can be based on the current font.

Setting AHelloWindow as the Event Handler
In Version 3, the AHelloWindow class is derived from both the

IFrameWindow and the ICommandHandler classes. This is necessary

because, for the first time, this application will begin to handle events,

in this case, commands that align the “Hello, World!!!” text string.

The next line of code contains the handleEventsFor member function of

the ICommandHandler class. This member function is used to set the

event handler for the application. In this case, the this argument is

specified, setting this instance of the AHelloWindow class as the event

handler for the Hello World application:

// <in AHELLOW3.CPP>
handleEventsFor(this); //Set self as event handler (commands)v3

This member function is available because the header file,

AHELLOW3.HPP, includes the ICMDHDR.HPP library header file,

which contains the ICommandHandler class.

// <in AHELLOW3.HPP>
#include <icmdhdr.hpp> //Include ICommandEvent & ICommandHandler v3

184 User Interface Class Library Guide

 Hello World — Version 3

Creating a Menu Bar
Now it is time to create a menu bar. In the header file, menuBar is

defined as an instance of the IMenuBar class.

// <in AHELLOW3.HPP>
IMenuBar * menuBar; //Define Menu Bar v3

It is now used to create a new instance of that class in the main

window:

// <in AHELLOW3.CPP>
menuBar=new IMenuBar(WND_MAIN, this); //Create Menu Bar for main window .

The WND_MAIN specified as the first argument identifies the following

menu to be used from the AHELLOW3.RC resource file:

// <in AHELLOW3.RC>
MENU WND_MAIN //Main Window Menu (WND_MAIN) v3
 BEGIN

SUBMENU "˜Alignment", MI_ALIGNMENT //Alignment Submenu v3
 BEGIN

MENUITEM "˜Left", MI_LEFT //Left Menu Item v3
MENUITEM "˜Center", MI_CENTER //Center Menu Item v3
MENUITEM "˜Right", MI_RIGHT //Right Menu Item v3

 END
 END

This menu puts one choice, Alignment, on the menu bar, and provides

a pull-down menu with three choices: Left, Center, and Right.

In addition, the MI_ALIGNMENT, MI_LEFT, MI_CENTER, and

MI_RIGHT menu item attributes correspond to those in the resource

file’s string table:

// <in AHELLOW3.RC>
MI_ALIGNMENT,"Alignment Menu" //InfoArea - Alignment Menu v3
MI_CENTER, "Set Center Alignment" //InfoArea - Center Menu .

 MI_LEFT, "Set Left Alignment" //InfoArea - Left Menu .
MI_RIGHT, "Set Right Alignment" //InfoArea - Right Menu v3

This means that as the selection cursor passes over each menu item,

the text string associated with that menu item will be displayed in the

information area below the client window. For example, when the

cursor is on the Right menu item, the text string “Set Right Alignment”

will appear in the information area.

 Chapter 13. Event Handling and Menu Bars 185

 Hello World — Version 3

Setting an Initial Check Mark in the Pull-down Menu
The pull-down menu that is displayed when the Alignment choice is

selected on the menu bar contains three choices for aligning the “Hello,

World!!!” text string: Left, Center, and Right. Since this text string is

aligned in the center of the client area when the application is created,

a check mark should be displayed next to the Center choice the first

time the pull-down menu is displayed.

The checkItem member function of the IMenuBar class allows you to

place a check mark on a pull-down menu choice. The line of code

below is used to place a check mark on the Center choice:

// <in AHELLOW3.CPP>
menuBar->checkItem(MI_CENTER); //Place Check on Center Menu Item v3

The MI_CENTER constant was defined in the AHELLOW3.RC resource

file as the “Center” text string for the menu. This is not to be confused

with the MI_CENTER menu item attribute defined in the string table,

which is used only by the information area.

Adding Command Processing to Align the Static Text
Now we will show you how to associate commands with the menu

items to align the text string.

An example of the command processing for one of the menu items

follows. This code is used to left-align the “Hello, World!!!” text string in

the client window:

// <in AHELLOW3.CPP>
case MI_LEFT: //Code to Process Left Command Item v3
hello->setAlignment(//Set alignment of hello text to .

 IStaticText::centerLeft); // center-vertical, left-horizontal .
statusLine->setText(STR_LEFT); //Set Status Text to "Left" from Res .
menuBar->uncheckItem(MI_CENTER); //Uncheck Center Menu Item .

 menuBar->checkItem(MI_LEFT); //Place Check on Left Menu Item .
menuBar->uncheckItem(MI_RIGHT); //Uncheck Right Menu Item .
return(true); //Return command processed .

 break; // v3

This code does the following:

• Uses the setAlignment function to center the static text control

vertically and align it on the left horizontally

186 User Interface Class Library Guide

 Hello World — Version 3

• Sets the appropriate text string in the status area (Left Alignment).

• Uses the uncheckItem function to Remove any existing check marks

from the Center and Right menu items

• Uses the checkItem function to set a check mark on the Left item

• Returns true and quits

Compiling and Linking Version 3

Figure 46 shows the files that were used to create Version 3 of the

Hello World application, their relationship to each other, and the order

in which they are compiled and linked. File names are shown in

uppercase letters; program names are shown in lowercase letters.

AHELLOW3.H

AHELLOW3.HPP

AHELLOW3.RC

AHELLOW3.RES

AHELLOW3.OBJ

AHELLOW3.DEF AHELLOW3.MAP

AHELLOW3.CPP

HELLO3.EXE HELLO3.EXE

AHELLOW3.ICO

icc -c

icc /Tdp

rc -r

rc

iconedit

Figure 46. Compiling and Linking Version 3 of the Hello World Application

 Chapter 13. Event Handling and Menu Bars 187

 Hello World — Version 3

188 User Interface Class Library Guide

 Hello World — Version 4

Chapter 14. Simple Dialogs and Push Buttons

Version 4 modifies menu bar and the pull-down menu in several

significant ways. It puts an Edit choice on the menu bar and moves the

Alignment choice from the menu bar to the pull-down menu. The menu

items associated with the Alignment choice (Left, Center, and Right) are

moved from the pull-down menu into a cascaded menu that is

displayed when the Alignment choice is selected. These items are still

used to align the “Hello, World!!!!” text string in the client window.

However, the commands assigned to these menu items are also

assigned to function keys so the keyboard can be used to bypass the

menu entirely for text alignment purposes.

The Alignment choice is joined on the pull-down menu by a new Text...

choice. Selecting this choice displays a dialog box that contains an

entry field in which the “Hello, World!!!!” text string can be edited.

In covering these topics, this section shows you how to:

• Add a cascaded menu to a pull-down menu

• Assign command processing (event handling) to function keys

• Create a dialog box that contains an entry field

• Set the “Hello, World!!!!” text string in the entry field

• Edit the text string

• Adding push buttons and a set canvas to change the alignment

The window for Version 4 of the Hello World application looks like this:

 Copyright IBM Corp. 1993 189

 Hello World — Version 4

C++ Hello World - Version 4

Hello, World!!!!

Center Alignment

Use Alt-F4 to Close Window

Edit

RightCenterLeft

Figure 47. Version 4 of Hello World Application

Version 4 Window-Parent Relationship Diagram

Figure 48 on page 191 shows the relationship between the objects

built for Version 4 of the Hello World application:

190 User Interface Class Library Guide

 Hello World — Version 4

IApplication: :current() .run()

Diagram
Key:

IStaticText

statusLine

IStaticText

hello

ISetCanvas

buttons

IPushButton

rightButton

IPushButton

leftButton

IInfoArea

infoArea

IInfoArea

infoArea

AHelloWindow

mainWindow

IMenuBar

menuBar

Class Name

Object Name

ATextDialog

textDialog

IEntryField

textField

ITitle

IAccelerator

(Client Window)

Figure 48. Window Parent Relationship Diagram

Version 4 Files

The following files contain the code used to create this window:

AHELLOW4.CPP Source code for the main procedure, main window

constructor, and command processing.

AHELLOW4.HPP Header file for the AHellowWindow class.

AHELLOW4.H Constants definition file for HELLO4.EXE.

ADIALOG4.CPP Source code to create the ATextDialog class.

ADIALOG4.HPP Header file for the ATextDialog class.

AHELLOW4.RC Resource file for HELLO4.EXE.

 Chapter 14. Simple Dialogs and Push Buttons 191

 Hello World — Version 4

AHELLOW4.ICO Icon file for HELLO4.EXE.

ADIALOG4.DLG Dialog resource source file for HELLO4.EXE.

ADIALOG4.RES Dialog resource file for HELLO4.EXE.

AHELLOW4.DEF Module definition file for HELLO4.EXE.

The Primary Source Code File
The AHELLOW4.CPP file contains the source code for the main

procedure, window constructor, and menu commands. The tasks

performed by this code are described in “Tasks Performed by Version

4” on page 205 and its related sections.

Here is a listing of the primary source code:

//Include IBM UI class headers:
#include <iapp.hpp> //IApplication Class
#include <istattxt.hpp> //IStaticText Class
#include <iinfoa.hpp> //IInfoArea Class v2
#include <imenubar.hpp> //IMenuBar Class v3
#include <ifont.hpp> //IFont v3
#include <istring.hpp> //IString Class v4
#include <isetcv.hpp> //ISetCanvas Class v4
#include <ipushbut.hpp> //IPushButton Class v4

#include "ahellow4.hpp" //Include AHelloWindow Class headers v2
#include "ahellow4.h" //Include our Symbolic definitions v2
#include "adialog4.hpp" //ATextDialog Class v4

//***
// main - Application entry point *
//***
void main() //Main Procedure with no parameters
{
AHelloWindow mainWindow (WND_MAIN); //Create our main window on the

 // desktop
IApplication::current().run(); //Get the current application and

// run it
} /* end main */

192 User Interface Class Library Guide

 Hello World — Version 4

//**
// AHelloWindow :: AHelloWindow - Constructor for our main window *
//**
AHelloWindow :: AHelloWindow(unsigned long windowId)
: IFrameWindow (//Call IFrameWindow constructor v2
IFrameWindow::defaultStyle() // Use default plus v2
| IFrameWindow::minimizedIcon // Get Minimized Icon from RC file v2
| IFrameWindow::accelerator, // Get Accelerator Table from RC file v4
windowId) // Main Window ID

{
hello=new IStaticText(WND_HELLO, //Create Static Text Control
this, this); // Pass in myself as owner & parent

hello->setText(STR_HELLO); //Set text in Static Text Control v2
hello->setAlignment(//Set Alignment to Center in both

 IStaticText::centerCenter); // directions
setClient(hello); //Set hello control as Client Window

infoArea=new IInfoArea(this); //Create the information area v2
 infoArea->setInactiveText(STR_INFO); //Set information area text from RC v2

statusLine=new IStaticText //Create Status Area using Static Text v3
(WND_STATUS, this, this); // Window ID, Parent, Owner Parameters.

statusLine->setText(STR_CENTER); //Set Status Text to "Center" from Res .
addExtension(statusLine, //Add Status Line above the client .
IFrameWindow::aboveClient, // and specify the height .
IFont(statusLine).maxCharHeight()); // and specify height v3

handleEventsFor(this); //Set self as event handler (commands)v3
menuBar=new IMenuBar(WND_MAIN, this); //Create Menu Bar for main window .
menuBar->checkItem(MI_CENTER); //Place Check on Center Menu Item v3

 setupButtons(); //Setup Buttons v4

sizeTo(ISize(400,300)); //Set the size of main window v2
setFocus(); //Set focus to main window
show(); //Set to show main window

} /* end AHelloWindow :: AHelloWindow(...) */

 Chapter 14. Simple Dialogs and Push Buttons 193

 Hello World — Version 4

//** v4
// AHelloWindow :: setupButtons * .
// Setup Buttons * .
//** .
Boolean AHelloWindow :: setupButtons() //Setup Buttons .
{ // .
ISetCanvas * buttons; //Define canvas of buttons .

 // .
buttons=new ISetCanvas(WND_BUTTONS, //Create a Set Canvas for Buttons .
this, this) ; // Parent and Owner=me .

buttons->setMargin(ISize()); //Set Canvas Margins to zero .
buttons->setPad(ISize()); //Set Button Canvas Pad to zero .
leftButton=new IPushButton(MI_LEFT, //Create Left Push Button .
buttons, buttons, IRectangle(), // Parent, Owner=Button Canvas .
IPushButton::defaultStyle() | // Use Default Styles plus .

 IControl::tabStop); // tabStop .
leftButton->setText(STR_LEFTB); //Set Left Button Text .
centerButton=new IPushButton(MI_CENTER,//Create Left Push Button .
buttons, buttons, IRectangle(), // Parent, Owner=Button Canvas .
IPushButton::defaultStyle() | // Use Default Styles plus .

 IControl::tabStop); // tabStop .
centerButton->setText(STR_CENTERB); //Set Center Button Text .
rightButton=new IPushButton(MI_RIGHT, //Create Right Push Button .
buttons, buttons, IRectangle(), // Parent, Owner=Button Canvas .
IPushButton::defaultStyle() | // Use Default Styles plus .

 IControl::tabStop); // tabStop .
rightButton->setText(STR_RIGHTB); //Set Right Button Text .
addExtension(buttons, //Add Buttons Canvas .
IFrameWindow::belowClient, // below client and .
30UL); // specify height in pixels .

 return true; //Return .
} /* end AHelloWindow :: setupButtons() */ //v4

194 User Interface Class Library Guide

 Hello World — Version 4

//** v3
// AHelloWindow :: command * .
// Handle menu commands * .
//** .
Boolean AHelloWindow :: command(ICommandEvent & cmdEvent) // .
{ //v3
IString temp; //String to pass in/out from dialog v4
unsigned short value; //Return value from dialog v4
switch (cmdEvent.commandId()) { //Get command id v3

case MI_CENTER: //Code to Process Center Command Item v3
hello->setAlignment(//Set alignment of hello text to .
IStaticText::centerCenter); // center-vertical, center-horizontal .

statusLine->setText(STR_CENTER); //Set Status Text to "Center" from Res .
menuBar->checkItem(MI_CENTER); //Place Check on Center Menu Item .
menuBar->uncheckItem(MI_LEFT); //Uncheck Left Menu Item .
menuBar->uncheckItem(MI_RIGHT); //Uncheck Right Menu Item .
return(true); //Return command processed .

 break; // v3

case MI_LEFT: //Code to Process Left Command Item v3
hello->setAlignment(//Set alignment of hello text to .

 IStaticText::centerLeft); // center-vertical, left-horizontal .
statusLine->setText(STR_LEFT); //Set Status Text to "Left" from Res .
menuBar->uncheckItem(MI_CENTER); //Uncheck Center Menu Item .

 menuBar->checkItem(MI_LEFT); //Place Check on Left Menu Item .
menuBar->uncheckItem(MI_RIGHT); //Uncheck Right Menu Item .
return(true); //Return command processed .

 break; // v3

 Chapter 14. Simple Dialogs and Push Buttons 195

 Hello World — Version 4

case MI_RIGHT: //Code to Process Right Command Item v3
hello->setAlignment(//Set alignment of hello text to .

 IStaticText::centerRight); // center-vertical, right-horizontal .
statusLine->setText(STR_RIGHT); //Set Status Text to "Right" from Res .
menuBar->uncheckItem(MI_CENTER); //Uncheck Center Menu Item .
menuBar->uncheckItem(MI_LEFT); //Uncheck Left Menu Item .
menuBar->checkItem(MI_RIGHT); //Place Check on Right Menu Item .
return(true); //Return command processed .

 break; // v3

case MI_TEXT: //Code to Process Text Command v4
 {

temp=hello->text(); //Get current Hello text .
infoArea->setInactiveText(//Set Info Area to Dialog Active .
STR_INFODLG); // Text from Resource File .

ATextDialog * textDialog=new //Create a Text Dialog .
 ATextDialog(temp, this); // .

textDialog->showModally(); //Show this Text Dialog as Modal .
value=textDialog->result(); //Get result (eg OK or Cancel) .
if (value != DID_CANCEL) //Set new string if not canceled .
hello->setText(temp); //Set Hello to Text from Dialog .

 infoArea->setText(STR_INFO); //Set Info Text to "Normal" from Res .
 delete textDialog; //Delete textDialog .

return(true); //Return Command Processed .
 break; // v4
 }

} /* end switch */ // v3

return(false); //Return command not processed v3
} /* end HelloWindow :: command(...) */ //v3

196 User Interface Class Library Guide

 Hello World — Version 4

The AHelloWindow Class Header File
Like AHELLOW3.HPP, AHELLOW4..HPP contains the class definition

and interface specifications for the AHelloWindow class, with a few

modifications for Version 4. Here is the source listing for

AHELLOW4.HPP:

#ifndef AHELLOWINDOW_HPP
#define AHELLOWINDOW_HPP

#include <iframe.hpp> //Include IFrameWindow Class Header
#include <icmdhdr.hpp> //Include ICommandEvent & ICommandHandler v3

class ATextDialog; //Define the ATextDialog Class v4

//**
// Class: AHelloWindow *
// *
// Purpose: Main Window for C++ Hello World sample application *
// It is a subclass of IFrameWindow & ICommandHandler * v3
// *
//**
class AHelloWindow : public IFrameWindow,
 public ICommandHandler //v3
{
public: //Define the Public Information
AHelloWindow(unsigned long windowId); //Constructor for this class

protected: //Define Protected Member v3
Boolean command(ICommandEvent& cmdEvent); //v3
virtual Boolean setupButtons(); //Setup Buttons v4

private: //Define Private Information
IStaticText * hello; //Hello contains "Hello, World" text
IInfoArea * infoArea; //Define an Information Area v2

// Control to create an information .
// area beneath the client area v2

IStaticText * statusLine; //Status Line at top of client window v3
IMenuBar * menuBar; //Define Menu Bar v3
ATextDialog * textDialog; //Define Text Dialog v4
IPushButton * leftButton; //Define Left Button .
IPushButton * centerButton; //Define Center Button .
IPushButton * rightButton; //Define Right Button v4

};
#endif

 Chapter 14. Simple Dialogs and Push Buttons 197

 Hello World — Version 4

The Constants Definition File
AHELLOW4.H contains the constant definitions for this application.

These constants and their definitions, which provide the IDs for the

application window components, are shown in the following code:

#ifndef AHELLOWINDOW_H
#define AHELLOWINDOW_H

//**
// window ids - used by IWindow constructors (eg IStaticText, AHelloWindow)*
//**
#define WND_MAIN 0x1000 //Main Window ID

#define WND_HELLO 0x1010 //Hello World Window ID
#define WND_INFO 0x1012 //Information Area v2
#define WND_STATUS 0x1011 //Status Line Window ID v3
#define WND_TEXTDIALOG 0x1013 //Text Dialog Window ID v4
#define WND_BUTTONS 0x1021 //Button Canvas Window ID v4

//** v2
// string ids - used to relate resources to IStaticText and ITitle * .
//** v2
#define STR_HELLO 0x1200 //Hello World String ID v2
#define STR_INFO 0x1220 //Info String ID v2
#define STR_INFODLG 0x1221 //Info String ID v4
#define STR_CENTER 0x1230 //Center Alignment Status String ID v3
#define STR_LEFT 0x1231 //Left Alignment Status String ID .
#define STR_RIGHT 0x1232 //Right Alignment Status String ID v3
#define STR_CENTERB 0x1240 //Center Button String ID v4
#define STR_LEFTB 0x1241 //Left Button String ID .
#define STR_RIGHTB 0x1242 //Right Button String ID v4

198 User Interface Class Library Guide

 Hello World — Version 4

//** v3
// menu ids - used on relate command ID to Menu Items and Function Keys * .
//** .
#define MI_ALIGNMENT 0x1500 //Alignment Menu ID .
#define MI_CENTER 0x1501 //Center Menu ID .
#define MI_LEFT 0x1502 //Left Menu ID .
#define MI_RIGHT 0x1503 //Right Menu ID v3
#define MI_EDIT 0x1504 //Edit Menu ID v4
#define MI_TEXT 0x1505 //Text Menu ID v4
#define MI_HELP 0x1510 //Help Menu ID v4

//** v4
// dialog ids - used to relate dialog fields to controls/commands * .
//** .
#ifndef DID_OK // .
#define DID_OK 0x0001 //OK Button (Defined by OS/2) .
#endif // .
#ifndef DID_CANCEL // .
#define DID_CANCEL 0x0002 //Cancel Button (Defined by OS/2) .
#endif // .
#define DID_ENTRY 0x1603 //Dialog Entry Field ID .
#define DID_STATIC 0x1604 //Dialog Static Text v4

#endif

For Version 4, the constants definition file contains new window IDs

(WND_TEXTDIALOG and WND_BUTTONS) for the text dialog and the

push button controls on the canvas, respectively. It also contains new

string IDs (STR_CENTERB, STR_LEFTB, and STR_RIGHTB) for the

text strings used in the push buttons. In addition, menu IDs (MI_EDIT,

MI_HELP, and MI_TEXT) have been added for the menu bar Edit and

Help choices and the Text choice in the pull-down menu.

The Text Dialog Source Code File
The ADIALOG4.CPP file contains the source code for the text dialog

window constructor, the ATextDialog class, created for Version 4.

Here is a listing of the source code:

//**
// The entire file was created at version 4 *
//**

#include <ientryfd.hpp> //IEntryField Class
#include <icmdevt.hpp> //ICommandEvent
#include <istring.hpp> //IString Class
#include <ireslib.hpp> //IResourceLibrary/IResourceId Class

 Chapter 14. Simple Dialogs and Push Buttons 199

 Hello World — Version 4

#include "ahellow4.h" //Include our Symbolic definitions
#include "adialog4.hpp" //ATextDialog Class

//**
// ATextDialog :: ATextDialog - Constructor for text dialog window *
//**
ATextDialog :: ATextDialog(IString & textString, IWindow * parent)

: IFrameWindow(IResourceId(WND_TEXTDIALOG), ownerWnd),
 textValue(textString)
{
ICommandHandler::handleEventsFor(this);//Set self as command event handler

textValue=textString ; //Save textValue for exit of dialog
textField=new IEntryField(DID_ENTRY, //Create entry field object using dialog

 this); // entry field
textField->setText(textString); //Set top current "Hello, World" text
textField->setFocus(); //Set focus to entry field

} /* end ATextDialog :: ATextDialog(...) */

//**
// ATextDialog :: ˜ATextDialog - Destructor *
//**
ATextDialog :: ˜ATextDialog()
{
} /* end ATextDialog :: ˜TextDialog(...) */

//**
// ATextDialog :: command - Process Commands *
//**
Boolean ATextDialog :: command(ICommandEvent& cmdevt)
{
 switch(cmdevt.commandId()) {

case DID_OK: // DID_OK //Process OK Button
 textValue=textField->text(); //Get Text from Dialog Entry Field

dismissModal(DID_OK); //Dismiss Dialog - Allow focus to main
return(true); //Return Processing Completed

 break;

case DID_CANCEL: // DID_CANCEL //Process CANCEL Button
dismissModal(DID_CANCEL); //Dismiss Dialog - Allow focus to main
return(true); //Return Processing Completed

 break;
}/* end switch */

return(false); //Allow Default Processing to occur
} /* end ATextDialog :: command(...) */

200 User Interface Class Library Guide

 Hello World — Version 4

The ATextDialog Class Header File
The ADIALOG4.HPP contains the class definition and interface

specifications for the ATextDialog class. Here is the source listing for

ADIALOG4.HPP:

#ifndef ATEXTDIALOG_HPP
#define ATEXTDIALOG_HPP

//**
// The entire file was created at version 4 *
//**

#include <iframe.hpp> //IFrameWindow Class (Parent)
#include <icmdhdr.hpp> //ICommandHandler (Parent)

class IEntryField;

//**
// Class: ATextDialog *
// *
// Purpose: Dialog window for the C++ Hello World sample application. *
// It is a subclass of IFrameWindow, ICommandHandler *
// *
//**
class ATextDialog : public IFrameWindow, public ICommandHandler
{
public:
ATextDialog (IString & textString, IWindow * ownerWnd) ;

 ˜ATextDialog();

protected:
 virtual Boolean

command(ICommandEvent& cmdevt); //Process the dialog command events

private:
IEntryField * textField ; //Entry Field to Edit Hello Text
IString & textValue ; //String Value for in/out of dialog

}; // TextDialog

#endif

 Chapter 14. Simple Dialogs and Push Buttons 201

 Hello World — Version 4

The Resource File
Version 4 of the Hello World application provides a resource file,

AHELLOW4.RC. This resource file associates an icon and several text

strings with the symbols defined in the AHELLOW4.H file shown in “The

Constants Definition File” on page 198. It also contains resources for

the menu bar, the accelerator keys (CUA calls these “shortcut” keys),

and the text dialog.

AHELLOW4.H is included in this resource file so the icon, text strings,

and other resources can be associated with the appropriate IDs. OS.H

is included because it is the top level include file that includes all the

files necessary for writing an OS/2 application.

Here is the code used in the AHELLOW4.RC file:

#include <os2.h> //Include os2.h v4
#include "ahellow4.h" //Symbolic Definitions v2

//** v2
// icon and bitmap resources * .
// Symbolic Name (ID) <-> icon filename * .
//** .
ICON WND_MAIN ahellow4.ico //Title Bar Icon (use same id)v2

//** v2
// string resources - used by IStaticText & ITitle Classes * .
// Symbolic Name (ID) <-> Text String * .
//** v2
STRINGTABLE
 BEGIN

STR_HELLO, "Hello, World!!!!" //Hello World String v4
WND_MAIN, "C++ Hello World - Version 4" //Title Bar String (main id) v4
STR_INFO, "Use Alt-F4 to Close Window" //Information Area String v2

 MI_EDIT, "Edit Menu" //InfoArea - Edit Menu v4 .
MI_ALIGNMENT,"Alignment Menu" //InfoArea - Alignment Menu v3
MI_CENTER, "Set Center Alignment" //InfoArea - Center Menu .

 MI_LEFT, "Set Left Alignment" //InfoArea - Left Menu .
MI_RIGHT, "Set Right Alignment" //InfoArea - Right Menu v3

 MI_TEXT, "Display Edit Dialog" //InfoArea - Text Menu v4
STR_INFODLG,"Modal Edit Text Dialog Active" //Information Area String v4
STR_CENTER, "Center Alignment" //Status Line Text - Center v3
STR_LEFT, "Left Alignment" //Status Line Text - Left .
STR_RIGHT, "Right Alignment" //Status Line Text - Right v3
STR_LEFTB, "Left" //String for Left Button v4
STR_CENTERB,"Center" //String for Center Button .
STR_RIGHTB, "Right" //String for Right Button v4

 END

202 User Interface Class Library Guide

 Hello World — Version 4

//** v3
// menu bar for main window - used by IMenuBar Class * .
// Text String <-> Menu Item ID (Command ID) * .
//** v3
MENU WND_MAIN //Main Window Menu (WND_MAIN) v3
 BEGIN

SUBMENU "˜Edit", MI_EDIT //Edit Submenu v4
 BEGIN

SUBMENU "˜Alignment", MI_ALIGNMENT //Alignment Submenu v3
 BEGIN

MENUITEM "˜Left\tF7", MI_LEFT //Left Menu Item - F7 Key v4
MENUITEM "˜Center\tF8", MI_CENTER //Center Menu Item - F8 Key v4
MENUITEM "˜Right\tF9", MI_RIGHT //Right Menu Item - F9 Key v4

 END
MENUITEM "˜Text...", MI_TEXT //Text Menu Item v4

 END
 END

//** v4
// Accelerator (key) table resources - used by IAccelerator Class * .
// Key Value <-> Menu Item ID (Command ID) * .
//** .
ACCELTABLE WND_MAIN //Acc. Table for Main Window .
 BEGIN // .

VK_F7, MI_LEFT, VIRTUALKEY //F7 - Left Command .
VK_F8, MI_CENTER, VIRTUALKEY //F8 - Center Command .
VK_F9, MI_RIGHT, VIRTUALKEY //F9 - Right Command .

 END // v4

//** v4
// dialog resources - used by ATextDialog Class * .
//** .
rcinclude adialog4.dlg //Text Dialog Template v4

The resource file for Version 4 contains two primary additions. The first

is the accelerator table of text strings that are assigned to the function

keys. These text strings are used in the cascaded menu to show the

accelerator, or shortcut, key assignments. For example, with these

assignments and the command processing in AHELLOW4.CPP,

pressing the F7 key is the same as selecting the Left choice in the

cascaded menu.

The second addition is an rcinclude statement that includes the text

dialog template. See “The Text Dialog Template” on page 204 for

information about that file.

 Chapter 14. Simple Dialogs and Push Buttons 203

 Hello World — Version 4

The Icon File
AHELLOW4.ICO is used as both the title bar icon and the icon that is

displayed when the application is minimized. We cannot provide a

listing for the AHELLOW4.ICO file, but this is how the icon appears

when minimized:

Hello World Icon

Figure 49. Hello World Icon

The Text Dialog Template
ADIALOG4.DLG contains the template used to build the text dialog.

Here is that template:

DLGINCLUDE 1 "AHELLOW4.H"

DLGTEMPLATE WND_TEXTDIALOG LOADONCALL MOVEABLE DISCARDABLE
BEGIN

DIALOG "Hello World Edit Dialog", WND_TEXTDIALOG, 17, 22, 137, 84,
WS_VISIBLE, FCF_SYSMENU | FCF_TITLEBAR

 BEGIN
DEFPUSHBUTTON "OK", DID_OK, 6, 4, 40, 14
PUSHBUTTON "Cancel", DID_CANCEL, 49, 4, 40, 14
LTEXT "Edit Text:", DID_STATIC, 8, 62, 69, 8
ENTRYFIELD "", DID_ENTRY, 8, 44, 114, 8, ES_MARGIN

 END
END

The Text Dialog Resource File
ADIALOG4.RES is created by the resource compiler as input to

HELLO4.EXE.

204 User Interface Class Library Guide

 Hello World — Version 4

 AHELLOW4.DEF
The AHELLOW4.DEF file is required for the same reasons that

AHELLOW1.DEF was needed for Version 1. See “The Module

Definition File” on page 148 if you need to review the reasons for

creating a .DEF file.

The only difference between the two .DEF files used in Version 1 and

Version 4 is the change in the version number.

NAME HELLO4 WINDOWAPI

DESCRIPTION 'Hello World Sample C++ Program - Version 4'

CODE LOADONCALL MOVEABLE
DATA MOVEABLE MULTIPLE

HEAPSIZE 8192
STACKSIZE 256000

Tasks Performed by Version 4

The following sections describe each of the tasks performed by Version

4 of the Hello World application that were not described already for

previous versions. Those tasks are:

• Adding a cascaded menu to a pull-down menu

• Adding accelerator, or shortcut, keys for the Left (F7), Center(F8),

and Right(F9) cascaded menu choices

• Adding the ADialogText class to allow the user to edit the “Hello,

World!!!!” text string

• Adding push buttons in a set canvas

Tasks this version performs that were described for Version 3 are:

• Creating a status area using a static text control

• Putting text in a static text control for a status line

• Specifying the location and height of the status area

• Setting AHelloWindow as the event handler

• Creating a menu bar

• Setting an initial check mark in the pull-down menu

• Adding command processing to set the static text control alignment

 Chapter 14. Simple Dialogs and Push Buttons 205

 Hello World — Version 4

Tasks this version performs that were described for Versions 1 and 2

are:

• Creating the main window

• Getting the current application and running it

• Constructing the main window, which involves the following:

– Creating a static text control

– Setting a text string from a resource file

– Putting a text string into a static text control

– Aligning the text

– Setting the static text control in the main window

– Setting the window title and title bar icon from a resource file

– Creating and setting the information area below the client area

– Setting the focus to the main window and showing the main

window

Modifying the Menu Bar and Pull-down Menu
For Version 4, we made several modifications to the menu bar and its

associated pull-down menu. Following is the code from the

AHELLOW4.RC file used to define this menu:

// <in AHELLOW4.RC>
MENU WND_MAIN //Main Window Menu (WND_MAIN) v3
 BEGIN

SUBMENU "˜Edit", MI_EDIT //Edit Submenu v4
 BEGIN

SUBMENU "˜Alignment", MI_ALIGNMENT //Alignment Submenu v3
 BEGIN

MENUITEM "˜Left\tF7", MI_LEFT //Left Menu Item - F7 Key v4
MENUITEM "˜Center\tF8", MI_CENTER //Center Menu Item - F8 Key v4
MENUITEM "˜Right\tF9", MI_RIGHT //Right Menu Item - F9 Key v4

 END
MENUITEM "˜Text...", MI_TEXT //Text Menu Item v4

 END
 END

206 User Interface Class Library Guide

 Hello World — Version 4

Adding a Cascaded Menu to a Pull-down Menu
First, we changed the Alignment item on the menu bar to Edit. The

Alignment choice is now in the pull-down menu. Selecting this choice

displays a cascaded menu, which is a menu that is displayed to the

right of the pull-down menu. An arrow next to the Alignment choice

indicates that a cascaded menu will be displayed when it is selected, as

shown in Figure 50.

Edit

Left

Center

Right

Alignment

Text . . .

F7

F8

F9

Figure 50. Cascaded Menu for Version 4 of Hello World

Adding Accelerator or Shortcut Keys to the Application
The Left, Center, and Right choices, which were items in the pull-down

menu in Version 3, are now in the cascaded menu, and a function key

is displayed to the right of each choice. These function keys are called

accelerator, or shortcut, keys and perform the same actions as the

menu items. These keys (F7, F8, and F9) can be used in place of the

Left, Center, and Right menu items to align the “Hello, World!!!!” text

string.

The default processing of the accelerator style is to use the accelerator

that matches the frame window id. In our example, the frame window

id is WND_MAIN. For Version 4, the following line of code is added to

the main window constructor:

// <in AHELLOW4.CPP>
| IFrameWindow::accelerator, // Get Accelerator Table from RC file v4

This line of code gets the accelerator table from the resource file to

define accelerator, or shortcut, keys for the Hello World application.

Here is the code for the accelerator table:

 Chapter 14. Simple Dialogs and Push Buttons 207

 Hello World — Version 4

// <in AHELLOW4.RC>
ACCELTABLE WND_MAIN //Acc. Table for Main Window .
 BEGIN // .

VK_F7, MI_LEFT, VIRTUALKEY //F7 - Left Command .
VK_F8, MI_CENTER, VIRTUALKEY //F8 - Center Command .
VK_F9, MI_RIGHT, VIRTUALKEY //F9 - Right Command .

 END // v4

Adding a Dialog to a Pull-down Menu
As Figure 50 on page 207 shows, the final modification to the

pull-down menu is the addition of the Text... choice. The ellipsis (...)

indicates that selecting this choice causes a dialog to be displayed. In

this case, the dialog that is displayed is a text dialog that uses the entry

field control to allow the user to edit the “Hello, World!!!!” text string.

The dialog looks like this:

Hello World Edit Dialog

Edit Text:

CancelOK

Hello, World!!!!

Figure 51. Text Dialog for Version 4 of Hello World

208 User Interface Class Library Guide

 Hello World — Version 4

Processing the Text Menu Item: The following code from the

AHELLOW4.CPP file processes this menu item:

// <in AHELLOW4.CPP>
case MI_TEXT: //Code to Process Text Command v4

 {
temp=hello->text(); //Get current Hello text .
infoArea->setInactiveText(//Set Info Area to Dialog Active .
STR_INFODLG); // Text from Resource File .

ATextDialog * textDialog=new //Create a Text Dialog .
 ATextDialog(temp, this); // .

textDialog->showModally(); //Show this Text Dialog as Modal .
value=textDialog->result(); //Get result (eg OK or Cancel) .
if (value != DID_CANCEL) //Set new string if not canceled .
hello->setText(temp); //Set Hello to Text from Dialog .

 infoArea->setText(STR_INFO); //Set Info Text to "Normal" from Res .
 delete textDialog; //Delete textDialog .

return(true); //Return Command Processed .
 break; // v4
 }

Getting the Text String for the Dialog: The IString class uses the

temp data member to get the text string for the dialog. The following

code was added to the declaration of the command member function in

AHELLOW4.CPP to accomplish this:

// <in AHELLOW4.CPP>
IString temp; //String to pass in/out from dialog v4

This means the IString class must be included:

// <in AHELLOW4.CPP>
#include <istring.hpp> //IString Class v4

The temp data member is set to the text string that is currently in the

hello control, the static text control that contains the “Hello, World!!!!”

text string.

// <in AHELLOW4.CPP>
temp=hello->text(); //Get current Hello text .

 Chapter 14. Simple Dialogs and Push Buttons 209

 Hello World — Version 4

Putting Text for the Dialog Status in the Information Area: The

STR_INFODLG constant is used to put a text string in the information

area to show that the dialog is active:

// <in AHELLOW4.CPP>
infoArea->setInactiveText(//Set Info Area to Dialog Active .

STR_INFODLG); // Text from Resource File .

This constant is defined in the AHELLOW4.RC file:

// <in AHELLOW4.RC>
STR_INFODLG,"Modal Edit Text Dialog Active" //Information Area String v4

Creating the Text Dialog: The textDialog data member is used to

create an instance of the ATextDialog class, a new class that was

created as a subclass of the IFrameWindow class:

// <in AHELLOW4.CPP>
textDialog=new ATextDialog //Create a Text Dialog .
(temp, this); // pass in temp text string, self .

The temp data member is used to pass the current text string to the

dialog.

The code for the text dialog is provided by the ADIALOG4.CPP file The

declaration and interface specifications for the ATextDialog class are

contained in the ADIALOG4.HPP file, which is included by both the

AHELLOW4.CPP and ADIALOG4.CPP files.

In addition, the dialog template is contained in the ADIALOG.DLG file.

The AHELLOW4.RC resource file uses the following line of code to

include the dialog template:

// <in AHELLOW4.RC>
rcinclude adialog4.dlg //Text Dialog Template v4

See the following for listings of the files that provide the code used to

create the text dialog:

• “The Text Dialog Source Code File” on page 199

• “The ATextDialog Class Header File” on page 201

• “The Text Dialog Template” on page 204

210 User Interface Class Library Guide

 Hello World — Version 4

Adding Push Buttons in a Set Canvas
The setupButtons function is used to set up push buttons that can be

used as an alternate way to align the “Hello, World!!!!” text string. This

function is declared in AHELLOW4.HPP as follows:

// <in AHELLOW4.HPP>
virtual Boolean setupButtons(); //Setup Buttons v4

The function is specified in AHELLOW4.CPP with no arguments, as

follows:

// <in AHELLOW4.CPP>
 setupButtons(); //Setup Buttons v4

The following sections describe the setupButtons function.

Defining the setupButtons Member Function
First, setupButtons is defined as a member function of AHellowWindow:

// <in AHELLOW4.CPP>
Boolean AHelloWindow :: setupButtons() //Setup Buttons .

Creating the Set Canvas
The buttons data member is defined as an instance of the ISetCanvas
class to set a canvas area in which the push buttons will be positioned.

See “Set Canvas” on page 47 for more information about the

ISetCanvas features described in this chapter.

// <in AHELLOW4.CPP>
ISetCanvas * buttons; //Define canvas of buttons .

To make this class available to the application, the ISETCV.HPP library

header file must be included:

// <in AHELLOW4.CPP>
#include <isetcv.hpp> //ISetCanvas Class v4

 Chapter 14. Simple Dialogs and Push Buttons 211

 Hello World — Version 4

Next, the buttons data member is used to create a set canvas control

with the main window as the parent and owner of the control:

// <in AHELLOW4.CPP>
buttons=new ISetCanvas(WND_BUTTONS, //Create a Set Canvas for Buttons .
this, this) ; // Parent and Owner=me .

The WND_BUTTONS constant provides the window ID for this set

canvas control. This constant is defined in AHELLOW4.H:

// <in AHELLOW4.H>
#define WND_BUTTONS 0x1021 //Button Canvas Window ID v4

Setting the Canvas Margin and Pad to Zero
The canvas margin and pad are set to zero:

// <in AHELLOW4.CPP>
buttons->setMargin(ISize()); //Set Canvas Margins to zero .
buttons->setPad(ISize()); //Set Button Canvas Pad to zero .

Defining the Push Buttons
The following code defines three push button data members in the

header file:

// <in AHELLOW4.HPP>
IPushButton * leftButton; //Define Left Button .
IPushButton * centerButton; //Define Center Button .
IPushButton * rightButton; //Define Right Button v4

212 User Interface Class Library Guide

 Hello World — Version 4

Creating the Push Buttons
The AHELLOW4.CPP file includes the IPUSHBUT.HPP library header

file, making the IPushButton class available to the application:

// <in AHELLOW4.CPP>
#include <ipushbut.hpp> //IPushButton Class v4

This allows the data members defined in the AHELLOW4.HPP file to be

used to create three pushbuttons in the set canvas: Left, Center, and

Right. The following code shows how this is done for the Left push

button:

// <in AHELLOW4.CPP>
leftButton=new IPushButton(MI_LEFT, //Create Left Push Button .
buttons, buttons, IRectangle(), // Parent, Owner=Button Canvas .
IPushButton::defaultStyle() | // Use Default Styles plus .

 IControl::tabStop); // tabStop .

This code creates a new instance of a push button control, specifying

that it is to use the command processing that is associated with the

MI_LEFT menu item attribute to align the “Hello, World!!!!” text string on

the left side of the client window. Other than the data member used

(centerButton is used for the Center push button and rightButton is

used for the Right push button), this attribute is the only difference in

the code that is used to create all three push buttons. For the Center

push button, the MI_CENTER menu item attribute is specified, while

MI_RIGHT is used for the Right push button.

The set canvas control is identified as the owner and parent of the push

button control.

 Chapter 14. Simple Dialogs and Push Buttons 213

 Hello World — Version 4

The defaultStyle member function specifies that the default style

defined for the IPushButton class is to be used for this push button with

one exception. The tabStop style, inherited from the IControl class, is

specified so the user can tab to this push button.

Setting Text in the Push Buttons
The setText function is used to set text strings in each push button.

Here is the code used to set the text in the Left push button:

// <in AHELLOW4.CPP>
leftButton->setText(STR_LEFTB); //Set Left Button Text .

Other than the data member for which the text is being set

(centerButton is used for the Center push button and rightButton is

used for the Right push button), the only difference between this code

and the code used to put text in the other two push buttons is the

STR_LEFTB constant, which is associated with the appropriate text

string in the AHELLOW4.RC file. Here are the text string associations

for all three push buttons:

// <in AHELLOW4.RC>
STR_LEFTB, "Left" //String for Left Button v4
STR_CENTERB,"Center" //String for Center Button .
STR_RIGHTB, "Right" //String for Right Button v4

214 User Interface Class Library Guide

 Hello World — Version 4

Compiling and Linking Version 4

Figure 52 shows the files that were used to create Version 4 of the

Hello World application, their relationship to each other, and the order

in which they are compiled and linked. File names are shown in

uppercase letters; program names are shown in lowercase letters.

AHELLOW4.H

AHELLOW4.HPP
ADIALOG4.HPP

AHELLOW4.RC

AHELLOW4.RES

AHELLOW4.OBJ
ADIALOG4.OBJ

ADIALOG4.DLG

ADIALOG4.RESdigedit

AHELLOW4.DEF AHELLOW4.MAP

AHELLOW4.CPP
ADIALOG4.CPP

HELLO4.EXE HELLO4.EXE

AHELLOW4.ICO

icc -c

icc /Tdp

rc -r

rc

iconedit

Figure 52. Compiling and Linking Version 4 of the Hello World Application

 Chapter 14. Simple Dialogs and Push Buttons 215

 Hello World — Version 4

216 User Interface Class Library Guide

 Hello World — Version 5

Chapter 15. Canvas, User-Created Control, and Help

Version 5 of the Hello World application covers the following topics:

• Coding a new control (AEarthWindow) using PM graphics calls

• Adding AEarthWindow to the bottom of the client area

• Adding help windows for the main, dialog, and entry field windows

• Using a split canvas as the client area

• Adding a list box to the client area to change the “Hello, World!!!!!”

text

The window for Version 5 of the Hello World application looks like this:

C++ Hello World - Version 5

Hello, World!!!!!

Center Alignment

Use Alt-F4 to Close Window

Edit Help

Left Center Right Help

Alo, Mundo!
Bonjour le monde!
Hello Welt!
Hallo wereld!
Hello, World!
Hi, World!
Howdy, World!
Ola, Mondo!

Figure 53. Version 5 of Hello World Application

 Copyright IBM Corp. 1993 217

 Hello World — Version 5

Version 5 Window-Parent Relationship Diagram

Figure 54 shows the relationship between the objects built for Version

5 of the Hello World application:

IApplication: :current() .run()

Diagram
Key:

IStaticText

statusLine

ISplitWindow

clientWindow

ISetCanvas

buttons

AEarthWindow

earthWindow

IListBox

listBox

IPushButton

hlepButton

IStaticText

hello

ISplitWindow

hellowCanvas

IPushButton

leftButton

IInfoArea

infoArea

IInfoArea

infoArea

AHelloWindow

mainWindow

IMenuBar

menuBar

Class Name

Object Name

ATextDialog

textDialog

IEntryField

textField

IHelpWindow

help

ITitle

IAccelerator

Figure 54. Window Parent Relationship Diagram

218 User Interface Class Library Guide

 Hello World — Version 5

Version 5 Files

The following files contain the code used to create this window:

AHELLOW5.CPP Source code for main procedure and AHelloWindow
class.

AHELLOW5.HPP Class header file for AHellowWindow.

AHELLOW5.H Symbolic defintion file for HELLO5.EXE.

ADIALOG5.CPP Source code to create the ATextDialog class.

ADIALOG5.HPP Class header file for ATextDialog.

AEARTHW5.CPP Source code to create the AEarthWindow class.

AEARTHW5.HPP Class header file for AEarthWindow.

AHELLOW5.RC Resource file for HELLO5.EXE.

AHELLOW5.ICO Icon file for HELLO5.EXE.

ADIALOG5.DLG Dialog resource source file for HELLO5.EXE.

ADIALOG5.RES Dialog resource file for HELLO5.EXE.

AHELLOW5.IPF Help file for HELLO5.EXE.

AHELLOW5.DEF Module definition file for HELLO5.EXE.

The Primary Source Code File
The AHELLOW5.CPP file contains the source code for the main

procedure, window constructor, and menu commands. The tasks

performed by this code are described in “Tasks Performed by Version

5” on page 240 and its related sections.

Here is a listing of the lines in the primary source code that were added

or changed for Version 5:
...
#include <ihelp.hpp> //IHelpWindow Class
#include <ihelphdr.hpp> //IHelpHandler Class
#include <isplitcv.hpp> //ISplitCanvas Class
#include <ilistbox.hpp> //IListBox
...
#include "aearthw5.hpp" //AEarthWindow Class

 Chapter 15. Canvas, User-Created Control, and Help 219

 Hello World — Version 5

//***
// main - Application entry point *
//***
...
<Same as Version 4>
...
//**
// AHelloWindow :: AHelloWindow - Constructor for our main window *
//**
...
<Same as Version 4>
...
setupClient(); //Setup Client Window
setupStatusArea(); //Setup Status Area
setupInfoArea(); //Setup Information Area

...
setupMenuBar(); //Setup Menu Bar

 setupHelp(); //Setup Help
...

//**
// AHelloWindow :: setupButtons *
// Setup Buttons *
//**
...
<Same as Version 4>
...
IPushButton * helpButton; //Define Help Button

...
helpButton=new IPushButton(MI_HELP, //Create Help Push Button
buttons, buttons, IRectangle(), // Parent, Owner=Button Canvas
IPushButton::defaultStyle() | // Use Default Styles plus

 IPushButton::help | // Help Style
 IControl::tabStop); // tabStop
helpButton->setText(STR_HELPB); //Set Help Button Text

...

220 User Interface Class Library Guide

 Hello World — Version 5

//**
// AHelloWindow :: setupHelp() *
// Setup Help *
//**
Boolean AHelloWindow :: setupHelp() //Setup Help Area
{ //
help=new IHelpWindow(HELP_TABLE, //Create Help Window Object
this); //Setup Help info

help->addLibraries("AHELLOW5.HLP"); // set self, help table filename
help->setTitle(STR_HTITLE); //Set the Help Window Title

 //
AHelpHandler* phelpHandler= //Create Custom Help Handler to
new AHelpHandler(); // handle the Keys Help

 phelpHandler->handleEventsFor(this); //Start Help Handler
 return true; //
} /* end AHelloWindow :: setupHelp() */

//**
// AHelloWindow :: setupClient() *
// Setup Client *
//**
Boolean AHelloWindow :: setupClient() //Setup Client Window
{ //
 clientWindow=new ISplitCanvas(//Create Canvas

WND_CANVAS, this, this); // with Window Id, parent, owner
setClient(clientWindow); //Set canvas as Client Window

helloCanvas=new ISplitCanvas(//Create Hello Canvas
WND_HCANVAS, clientWindow, // with Window Id, parent

 clientWindow); // and owner
helloCanvas->setOrientation(//Set the orientation

 ISplitCanvas::horizontalSplit); // to horizontal

hello=new IStaticText(WND_HELLO, //Create Static Text Control
helloCanvas, helloCanvas); // Pass in client as owner & parent

...
<Same as Version 4>
...
earthWindow=new AEarthWindow //Create Earth Graphic Window
(WND_EARTH, helloCanvas); // Set Window ID, client-owner/parent

...
<Same as Version 4>
...

 Chapter 15. Canvas, User-Created Control, and Help 221

 Hello World — Version 5

 listBox=new IListBox(WND_LISTBOX, //Create ListBox
clientWindow, clientWindow, // Parent/Owner is ClientWindow

 IRectangle(), //
 IListBox::defaultStyle() | //

IControl::tabStop | // Set Tab Stop
IListBox::noAdjustPosition); // Allow the Canvas to control size

listBox->addAscending("Hello, World!"); //Add "Hello, World!"
listBox->addAscending("Hi, World!"); //Add "Hi, World!"
listBox->addAscending("Howdy, World!"); //Add "Howdy, World!"
listBox->addAscending("Alo, Mundo!"); //Add Portuguese Version

 listBox->addAscending("Ola, Mondo!"); //Add Spain
 listBox->addAscending("Hallo wereld!"); //Add Dutch
 listBox->addAscending("Hallo Welt!"); //Add German
listBox->addAscending("Bonjour le monde!");//Add French
ISelectHandler::handleEventsFor(listBox);//Set self as select event handler

 //
clientWindow->setSplitWindowPercentage(//Set the Window Percentage for
helloCanvas, 60); // the helloCanvas to 60

clientWindow->setSplitWindowPercentage(//Set the Window Percentage for
listBox, 40); // the listBox to 40

 //
 return true; //
} /* end AHelloWindow :: setupClient() */

//**
// AHelloWindow :: setupInfoArea() *
// Setup Information Area *
//**
Boolean AHelloWindow :: setupInfoArea() //Setup Information Area
{ //
...
<Same as Version 4>
...
 setExtensionSize(infoArea, //

(int)IFont(infoArea).maxCharHeight());//and specify height
 return true; //
} /* end AHelloWindow :: setupInfoArea() */

222 User Interface Class Library Guide

 Hello World — Version 5

//**
// AHelloWindow :: setupMenuBar() *
// Setup Menu Bar *
//**
Boolean AHelloWindow :: setupMenuBar() //Setup Menu Bar
{ //
ICommandHandler::handleEventsFor(this);//Set self as command event handler

...
<Same as Version 4>
...
 return true; //
} /* end AHelloWindow :: setupMenuBar() */

//**
// AHelloWindow :: setupStatusArea() *
// Setup Statue Area *
//**
Boolean AHelloWindow :: setupStatusArea()//Setup Status Area
{ //
...
<Same as Version 4>
...
 return true; //
} /* end AHelloWindow :: setupStatusArea() */

//**
// AHelloWindow :: setText(...) *
// Set Text *
//**
Boolean AHelloWindow :: setText(const char* text)//Set Text using String
{ //
hello->setText(text); //Set Text in Control

 return true; //Return
} /* end AHelloWindow :: setText(...) */

 Chapter 15. Canvas, User-Created Control, and Help 223

 Hello World — Version 5

//**
// AHelloWindow :: selected(...) *
// Handle selected command from list box *
// *
// Note: It would be easy to change this selected member function to enter *
//**
Boolean AHelloWindow :: selected(IControlEvent & evt)
{
IListBox::Cursor lbCursor(*listBox); //List Box Cursor
lbCursor.setToFirst(); //Set to first item selected
setText(listBox->elementAt(lbCursor));//Set Hello Text to Selected Item
return true; //Return Command Processed

} /* end AHelloWindow :: selected(...) */

//**
// AHelloWindow :: command *
// Handle menu commands *
//**
...
<Same as Version 4>
...

case MI_GENERAL_HELP: //Code to Process Help for help
help->show(IHelpWindow::general); //Show General Help Panel
return(true); //Return command processed

 break; //

...
<Same as Version 4>
...

//**
// AHelpHandler :: keysHelpId *
// Handle the keys help request event *
// This overrides the default provided by IBMCLASS *
//**
Boolean AHelpHandler :: keysHelpId(IEvent& evt) //
{ //
evt.setResult(1000); //1000=keys help id in

 // ahellow5.ipf file
return true; //Return command processed

} /* end AHelpHandler :: keysHelpId(...) */

224 User Interface Class Library Guide

 Hello World — Version 5

The AHelloWindow Class Header File
AHELLOW5..HPP contains the class definition and interface

specifications for the AHelloWindow class, with a few modifications for

Version 5. Here is the source listing for AHELLOW5.HPP:

#ifndef AHELLOWINDOW_HPP
#define AHELLOWINDOW_HPP

...
<Same as Version 4>
...
#include <iselhdr.hpp> //Include ISelectHandler
#include <ihelphdr.hpp> //Include IHelpHandler

...
<Same as Version 4>
...
class AEarthWindow; //Define the AEarthWindow Class

//**
// Class: AHelloWindow *
// *
// Purpose: Main Window for C++ Hello World sample application *
// It is a subclass of IFrameWindow, ICommandHandler and *
// ISelectHandler (Processing List Box Selection) *
// *
//**
...
<Same as Version 4>
...
 public ISelectHandler
...
<Same as Version 4>
...

virtual Boolean setupClient(); //Setup Client Window
virtual Boolean setupHelp(); //Setup Help
virtual Boolean setupInfoArea() ; //Setup Information Area
virtual Boolean setupMenuBar(); //Setup Menu Bar
virtual Boolean setupStatusArea(); //Setup Status Area

virtual Boolean setText(const char* text);//Set Text using String

virtual Boolean selected(IControlEvent& evt);
...
<Same as Version 4>
...

IHelpWindow * help; //Define Help Window
 AEarthWindow * earthWindow; //Define earthWindow

ISplitCanvas * clientWindow; //Define canvas as a Split Canvas
ISplitCanvas * helloCanvas; //Define hello canvas

 IListBox * listBox; //Define ListBox
};

 Chapter 15. Canvas, User-Created Control, and Help 225

 Hello World — Version 5

//**
// Class: AHelpHandler *
// *
// Purpose: Subclass of IHelpHandler so that the correct keys help *
// panel can be displayed when keys help is requested. *
// *
//**
class AHelpHandler: public IHelpHandler//
{ //
protected: //Define Protected Member

 virtual Boolean //
keysHelpId(IEvent& evt); //Override this function

};
#endif

The Constants Definition File
AHELLOW5.H contains the constant definitions for this application.

These constants and their definitions, which provide the IDs for the

application window components, are shown in the following code:

#ifndef AHELLOWINDOW_H
#define AHELLOWINDOW_H
//**
// window ids - used by IWindow constructors (eg IStaticText, AHelloWindow)*
//**
...
<Same as Version 4>
...
#define WND_EARTH 0x1014 //Earth Window ID
#define WND_CANVAS 0x1020 //Canvas Window ID
...
<Same as Version 4>
...
#define WND_HCANVAS 0x1040 //Hello Canvas Window ID
#define WND_LISTBOX 0x1050 //List Box Window ID

//**
// string ids - used to relate resources to IStaticText and ITitle *
//**
...
<Same as Version 4>
...
#define STR_HELPB 0x1243 //Help Button String ID
#define STR_HTITLE 0x1250 //Help Window Title

//**
// menu ids - used on relate command ID to Menu Items and Function Keys *
//**
...
<Same as Version 4>
...
#define MI_GENERAL_HELP 0x1511 //General Help

226 User Interface Class Library Guide

 Hello World — Version 5

//**
// dialog ids - used to relate dialog fields to controls/commands *
//**
...
<Same as Version 4>
...

//**
// help ids - used to relate resources to IHelp Class *
//**
#define HELP_TABLE 0x1800 //Help Table ID
#define SUBTABLE_MAIN 0x1801 //Help Subtable for Main Window
#define SUBTABLE_DIALOG 0x1802 //Help Subtable for Dialog Window
#endif

The Text Dialog Source Code File
The ADIALOG5.CPP file contains the source code for the text dialog

window constructor, the ATextDialog class, created for Version 5.

Here is a listing of the source code:

//**
// The entire file was created at version 4 *
//**

#include <ientryfd.hpp> //IEntryField Class
#include <icmdevt.hpp> //ICommandEvent
#include <istring.hpp> //IString Class
#include <ireslib.hpp> //IResourceLibrary/IResourceId Class

#include "ahellow5.h" //Include our Symbolic definitions
#include "adialog5.hpp" //ATextDialog Class

//**
// ATextDialog :: ATextDialog - Constructor for text dialog window *
//**
ATextDialog :: ATextDialog(IString & textString, IWindow * ownerWnd)

: IFrameWindow(IResourceId(WND_TEXTDIALOG), ownerWnd),
 textValue(textString)
{
ICommandHandler::handleEventsFor(this);//Set self as command event handler

textValue=textString ; //Save textValue for exit of dialog
textField=new IEntryField(DID_ENTRY, //Create entry field object using dialog

 this); // entry field
textField->setText(textString); //Set top current "Hello, World" text
textField->setFocus(); //Set focus to entry field

} /* end ATextDialog :: ATextDialog(...) */

//**
// ATextDialog :: ˜ATextDialog - Destructor *
//**

 Chapter 15. Canvas, User-Created Control, and Help 227

 Hello World — Version 5

ATextDialog :: ˜ATextDialog()
{
} /* end ATextDialog :: ˜TextDialog(...) */

//**
// ATextDialog :: command - Process Commands *
//**
Boolean ATextDialog :: command(ICommandEvent& cmdevt)
{
 switch(cmdevt.commandId()) {

case DID_OK: // DID_OK //Process OK Button
textValue=textField->text() ; //Get Text from Dialog Entry Field
dismiss(DID_OK); //Dismiss Dialog - Allow focus to main
return(true); //Return Processing Completed

 break;

case DID_CANCEL: // DID_CANCEL //Process CANCEL Button
dismiss(DID_CANCEL); //Dismiss Dialog - Allow focus to main
return(true); //Return Processing Completed

 break;
}/* end switch */

return(false); //Allow Default Processing to occur
} /* end ATextDialog :: command(...) */

The ATextDialog Class Header File
The ADIALOG5.HPP contains the class definition and interface

specifications for the ATextDialog class. Here is the source listing for

ADIALOG5.HPP:

#ifndef ATEXTDIALOG_HPP
#define ATEXTDIALOG_HPP

//**
// The entire file was created at version 4 *
//**

#include <iframe.hpp> //IFrameWindow Class (Parent)
#include <icmdhdr.hpp> //ICommandHandler (Parent)

class IEntryField;

//**
// Class: ATextDialog *
// *
// Purpose: Dialog window for the C++ Hello World sample application. *
// It is a subclass of IFrameWindow, ICommandHandler *
// *
//**
class ATextDialog : public IFrameWindow, public ICommandHandler
{
public:
ATextDialog (IString & textString, IWindow * ownerWnd) ;

 ˜ATextDialog();

228 User Interface Class Library Guide

 Hello World — Version 5

protected:
 virtual Boolean

command(ICommandEvent& cmdevt); //Process the dialog command events

private:
IEntryField * textField ; //Entry Field to Edit Hello Text
IString & textValue ; //String Value for in/out of dialog

}; // TextDialog

#endif

The Earth Window Source File
The AEARTHW5.CPP contains the source code for the “earth” window.

Here is the source listing for AEARTHW5.CPP:

//**
// The entire file was created at version 5 *
//**

#include <irect.hpp> //IRectangle Class Header
#include <ipainevt.hpp> //IPaintEvent Class Header
#include <ihandle.hpp> //IHandle Class Header

#define INCL_GPIPRIMITIVES //Set to include GPI Primitives
#define INCL_GPIPATHS //Set to include GPI Paths
#include <os2.h>

#include "aearthw5.hpp" //Include our class header

//**
// AEarthWindow :: AEarthWindow - Constructor for "earth" window *
//**
AEarthWindow :: AEarthWindow(unsigned long windowId,

IWindow * parowWindow,
const IRectangle& rect) :

IStaticText(windowId, parowWindow, parowWindow, rect)
{
handleEventsFor(this); //Set self as event handler

 show();
} /* end AEarthWindow :: AEarthWindow(...) */

//**
// AEarthWindow :: paintWindow - paint an view of "earth" from space *
//**
Boolean AEarthWindow :: paintWindow(IPaintEvent & paintEvent)
{
...
<Code for painting the window>
...
IPresSpaceHandle hps ; //Presentation Space Handle

hps = paintEvent.presSpaceHandle() ; //Get the presentation space handle
...
<More code for painting the window>

 Chapter 15. Canvas, User-Created Control, and Help 229

 Hello World — Version 5

...

} /* end AEarthWindow :: paintEvent(..) */

The AEarthWindow Class Header File
The AEARTHW5.HPP contains the class definition and interface

specifications for the AEarthWindow class. Here is the source listing for

AEARTHW5.HPP:

#ifndef AEARTHWINDOW_HPP
#define AEARTHWINDOW_HPP

//**
// The entire file was created at version 5 *
//**

#include <istattxt.hpp> //IStaticText Class Header
#include <ipainhdr.hpp> //IPaintHandler Class Header

//**
// Class: AEarthWindow *
// *
// Purpose: "Earth" window for the C++ Hello World sample application. *
// It is a subclass of IStaticText & IPaintHandler. *
// *
//**
class AEarthWindow : public IStaticText, public IPaintHandler
{
 public:

AEarthWindow(unsigned long windowId,//AEarthWindow Constructor
IWindow * parentownerWindow, // Parent/Owner Window
const IRectangle& rect=IRectangle()); // Origin/Size Rectangle

Boolean paintWindow(IPaintEvent&) ; //Handle the paint window event
};
#endif

The Resource File
Version 5 of the Hello World application provides a resource file,

AHELLOW5.RC. Here is the code used in the AHELLOW5.RC file:
...
<Same as Version 4>
...

//**
// icon and bitmap resources *
// Symbolic Name (ID) <-> icon filename *
//**
...
<Same as Version 4>

230 User Interface Class Library Guide

 Hello World — Version 5
 ...

//**
// string resources - used by IStaticText & ITitle Classes *
// Symbolic Name (ID) <-> Text String *
//**
STRINGTABLE
 BEGIN

STR_HELLO, "Hello, World!!!!!" //Hello World String
WND_MAIN, "C++ Hello World - Version 5" //Title Bar String (main id)

...
<Same as Version 4>
...
 MI_HELP, "Help Menu" //Help Menu ID

MI_GENERAL_HELP, "Display General Help" //General Help
SC_HELPEXTENDED, "Display Extended Help" //Extended Help
SC_HELPKEYS,"Display Keys Help" //Keys Help
SC_HELPINDEX,"Display Help Index" //Help Index

...
<Same as Version 4>
...

STR_HELPB, "Help" //String for Help Button
STR_HTITLE, "C++ Hello World - Help Window" //Help Title

 END

//**
// menu bar for main window - used by IMenuBar Class *
// Text String <-> Menu Item ID (Command ID) *
//**
...
<Same as Version 4>
...

SUBMENU "˜Help", MI_HELP //Help Submenu
 BEGIN

MENUITEM "˜General help...", MI_GENERAL_HELP
MENUITEM "˜Extented help...", SC_HELPEXTENDED, MIS_SYSCOMMAND
MENUITEM "˜Keys help...", SC_HELPKEYS, MIS_SYSCOMMAND
MENUITEM "Help ˜index...", SC_HELPINDEX, MIS_SYSCOMMAND

 END
 END

//**
// Accelerator (key) table resources - used by IAccelerator Class *
// Key Value <-> Menu Item ID (Command ID) *
//**
...
<Same as Version 4>
...

//**
// dialog resources - used by ATextDialog Class *
//**
...
<Same as Version 4>
...

 Chapter 15. Canvas, User-Created Control, and Help 231

 Hello World — Version 5

//**
// help table resources - used by IHelp Class *
//**
HELPTABLE HELP_TABLE
 BEGIN
 HELPITEM WND_MAIN, SUBTABLE_MAIN, 100
 HELPITEM WND_TEXTDIALOG, SUBTABLE_DIALOG, 200
 END

HELPSUBTABLE SUBTABLE_MAIN //Main Window Help Subtable
 BEGIN //

HELPSUBITEM WND_HELLO, 100 //Hello <-> Help ID 100
HELPSUBITEM WND_LISTBOX,102 //List Box Help
HELPSUBITEM MI_EDIT, 110 //Edit Menu
HELPSUBITEM MI_ALIGNMENT, 111 //Alignment Menu
HELPSUBITEM MI_LEFT, 112 //Left Menu Item
HELPSUBITEM MI_CENTER, 113 //Center Menu Item
HELPSUBITEM MI_RIGHT, 114 //Right Menu Item
HELPSUBITEM MI_TEXT, 199 //Text Menu Item

 END //

HELPSUBTABLE SUBTABLE_DIALOG //Text Dialog Help Subtable
 BEGIN //

HELPSUBITEM DID_ENTRY, 201 //Entry Field <-> Help ID 201
HELPSUBITEM DID_OK, 202 //OK Button <-> Help ID 202
HELPSUBITEM DID_CANCEL, 203 //OK Button <-> Help ID 203

 END //

The Icon File
AHELLOW5.ICO is used as both the title bar icon and the icon that is

displayed when the application is minimized. We cannot provide a

listing for the AHELLOW5.ICO file, but this is how the icon appears

when minimized:

Hello World Icon

Figure 55. Hello World Icon

232 User Interface Class Library Guide

 Hello World — Version 5

The Text Dialog Template
ADIALOG5.DLG contains the template used to build the text dialog.

Here is that template:

DLGINCLUDE 1 "AHELLOW5.H"

DLGTEMPLATE WND_TEXTDIALOG LOADONCALL MOVEABLE DISCARDABLE
BEGIN

DIALOG "Hello World Edit Dialog", WND_TEXTDIALOG, 17, 22, 137, 84,
WS_VISIBLE, FCF_SYSMENU | FCF_TITLEBAR

 BEGIN
DEFPUSHBUTTON "OK", DID_OK, 6, 4, 40, 14
PUSHBUTTON "Cancel", DID_CANCEL, 49, 4, 40, 14
LTEXT "Edit Text:", DID_STATIC, 8, 62, 69, 8
ENTRYFIELD "", DID_ENTRY, 8, 44, 114, 8, ES_MARGIN

 END
END

The Text Dialog Resource File
ADIALOG5.RES is created by the resource compiler as input to

HELLO5.EXE.

The Help Window Source File
The AHELLOW5.IPF file contains the text and IPF tags used to

produce the help information for the Hello World application. IPF, or

Information Presentation Facility, uses a tag language to format the text

that appears in a help window. For example, :p. is the paragraph tag,

which is used to start a new paragraph. Refer to the OS/2 2.0

Information Presentation Facility Guide and Reference for descriptions

of other tags used in the following source file. The IPFC complier,

provided by the OS/2 2.0 Developer’s Toolkit, is used to compile this

file.

:userdoc.
:docprof toc=123456.
:title.C++ Hello World Help
:h1.C++ Hello World - Application Help
:p.This file contains the help for the C++ Hello World Application.
:h2 res=100.C++ Hello World - Main Window Help
:p.This is the help panel for the main window.
The main window contains the following areas:
:ul.
:li.The title bar icon, which provides access to the system menu.
:li.The window title, which displays the title of the window.
:li.The menu bar, which allows the user to select specific actions.
:li.A status line, which contains the current alignment.
:li.A client area, which is divided into three areas:
:ul.
:li.The first area contains the static text for :q.Hello, World:eq..

 Chapter 15. Canvas, User-Created Control, and Help 233

 Hello World — Version 5

:li.The second area is a graphic control that shows a graphic of the world
from space with stars.
:li.The third area contains a list box that allows the user to change the
:q.Hello, World:eq. text string.
:eul.
:li.Alignment push buttons, which change the alignment, and a help push
button, which is used to request help.
:li.An information area, which helps the user understand the current options
of the program, including the menu bar choices.
:eul.
:h2 res=102.C++ Hello World - List Box Help
:p.This is the help panel for the list box window.
Selecting any item in the list box changes the :q.Hello, World:eq. text.
The code that handles the list box can be found in AHELLOW5.CPP.

234 User Interface Class Library Guide

 Hello World — Version 5

:h2 res=110.C++ Hello World - Edit Menu Help
:p.This is the help panel for the Edit menu.
:p.
This submenu (MI_EDIT) can be found under the following statement in the
resource file (AHELLOW5.RC):
:xmp.

SUBMENU "˜Edit", MI_EDIT //Edit Submenu
:exmp.
:p.
This help panel (id=110) was linked to the menu item (MI_EDIT)
by the following statement in the resource file (AHELLOW5.RC):
:xmp.

HELPSUBITEM MI_EDIT, 110 //Edit Menu
:exmp.
:h3 res=111.C++ Hello World - Alignment Menu Help
:p.This is the help panel for the Alignment menu item.
:p.
This submenu (MI_ALIGNMENT) can be found under the following statement in the
resource file (AHELLOW5.RC):
:xmp.

SUBMENU "˜Alignment", MI_ALIGNMENT //Alignment Submenu
:exmp.
:p.
This help panel (id=111) was linked to the menu item (MI_ALIGNMENT)
by the following statement in the resource file (AHELLOW5.RC):
:xmp.

HELPSUBITEM MI_ALIGNMENT, 111 //Alignment Menu
:exmp.
:h4 res=112.C++ Hello World - Left Command Help
:p.This is the help panel for the Left alignment command.
Selecting the Left menu item or Left push button sets the :q.Hello, World:eq.
text to be left aligned.
:p.
This menu item (MI_LEFT) was created by the following statement in the
resource file (AHELLOW5.RC):
:xmp.

MENUITEM "˜Left\tF7", MI_LEFT //Left Menu Item - F7 Key
:exmp.
:p.
The code that handles this menu item can be found in AHELLOW5.CPP under the
following case statement:
:xmp.

case MI_LEFT: //Code to Process Left Command Item
:exmp.
:p.
This help panel (id=112) was linked to the menu item (MI_LEFT)
by the following statement in the resource file (AHELLOW5.RC):
:xmp.

HELPSUBITEM MI_LEFT, 112 //Left Menu Item
:exmp.

 Chapter 15. Canvas, User-Created Control, and Help 235

 Hello World — Version 5

:h4 res=113.C++ Hello World - Center Command Help
:p.This is the help panel for the Center alignment command.
Selecting the Center menu item or Center push button sets the
:q.Hello, World:eq. text to be center aligned.
:p.
This menu item (MI_CENTER) was created by the following statement in the
resource file (AHELLOW5.RC):
:xmp.

MENUITEM "˜Center\tF8", MI_CENTER //Center Menu Item - F8 Key
:exmp.
:p.
The code that handles this menu item can be found in AHELLOW5.CPP under the
following case statement:
:xmp.

case MI_CENTER: //Code to Process Center Command Item
:exmp.
:p.
This help panel (id=113) was linked to the menu item (MI_CENTER)
by the following statement in the resource file (AHELLOW5.RC):
:xmp.

HELPSUBITEM MI_CENTER, 113 //Center Menu Item
:exmp.
:h4 res=114.C++ Hello World - Right Command Help
:p.This is the help panel for the Right alignment command.
Selecting the Right menu item or Right push button sets the
:q.Hello, World:eq. text to be right aligned.
:p.
This menu item (MI_RIGHT) was created by the following statement in the
resource file (AHELLOW5.RC):
:xmp.

MENUITEM "˜Right\tF9", MI_RIGHT //Right Menu Item - F9 Key
:exmp.
:p.
The code that handles this menu item can be found in AHELLOW5.CPP under the
following case statement:
:xmp.

case MI_RIGHT: //Code to Process Right Command Item
:exmp.
:p.
This help panel (id=114) was linked to the menu item (MI_RIGHT)
by the following statement in the resource file (AHELLOW5.RC):
:xmp.

HELPSUBITEM MI_RIGHT, 114 //Right Menu Item
:exmp.

236 User Interface Class Library Guide

 Hello World — Version 5

:h3 res=199.C++ Hello World - Text... Menu Help
:p.This is the help panel for the Text... menu item.
:p.
This menu item (MI_TEXT) was created by the following statement in the
resource file (AHELLOW5.RC):
:xmp.

MENUITEM "˜Text...", MI_TEXT //Text Menu Item
:exmp.
:p.
The code that handles this menu item can be found in AHELLOW5.CPP under the
following case statement:
:xmp.

case MI_TEXT: //Code to Process Text Command
:exmp.
:p.
This help panel (id=199) was linked to the menu item (MI_TEXT)
by the following statement in the resource file (AHELLOW5.RC):
:xmp.

HELPSUBITEM MI_TEXT, 199 //Right Menu Item .
:exmp.
:h2 res=200.C++ Hello World - Dialog Window Help
:p.This is the help panel for the text dialog.
:h3 res=201.C++ Hello World - Dialog Entry Field Help
:p.This is the help panel for the entry field in the text dialog.
:p.
This entry field was defined by the following statement in the dialog
resource file (ADIALOG5.DLG):
:xmp.

ENTRYFIELD "", DID_ENTRY, 8, 44, 114, 8, ES_MARGIN
:exmp.
:p.
The application code that handles this entry field can be found in
ADIALOG5.CPP.
:p.
This help panel (id=201) was linked to this entry field (DID_ENTRY)
by the following statement in the resource file (AHELLOW5.RC):
:xmp.

HELPSUBITEM DID_ENTRY, 201 //Entry Field <-> Help ID 201
:exmp.

 Chapter 15. Canvas, User-Created Control, and Help 237

 Hello World — Version 5

:h3 res=202.C++ Hello World - Dialog OK Button Help
:p.This is the help panel for the OK push button in the text dialog.
Selecting this push button closes the dialog.
Any changes made to the :q.Hello, World:eq. text are shown in the main
window.
:p.
The OK push button is defined by the following statement in the dialog
resource file (ADIALOG5.DLG):
:xmp.

DEFPUSHBUTTON "OK", DID_OK, 6, 4, 40, 14
:exmp.
:p.
The application code that handles this push button field can be found
in ADIALOG5.CPP.
:p.
This help panel (id=202) was linked to this entry field (DID_OK)
by the following statement in the resource file (AHELLOW5.RC):
:xmp.

HELPSUBITEM DID_OK, 202 //OK Button <-> Help ID 202
:exmp.
:h3 res=203.C++ Hello World - Dialog Cancel Button Help
:p.This is the text for the Cancel push button in the text dialog.
Selecting this button closes the dialog without changing the
:q.Hello, World:eq. text.
:p.
The Cancel push button is defined by the following statement in the dialog
resource file (ADIALOG5.DLG):
:xmp.

PUSHBUTTON "Cancel", DID_CANCEL, 49, 4, 40, 14
:exmp.
:p.
The application code that handles this push button field can be found
in ADIALOG5.CPP.
:p.
This help panel (id=203) was linked to this entry field (DID_CANCEL)
by the following statement in the resource file (AHELLOW5.RC):
:xmp.

HELPSUBITEM DID_CANCEL, 203 //OK Button <-> Help ID 203
:exmp.

238 User Interface Class Library Guide

 Hello World — Version 5

:h2 res=1000.C++ Hello World - Keys Help Panel
:p.This is the keys help panel.
:p.The following is a list of system-provided keys:
:dl compact tsize=10.
:dt.Alt-F4
:dd.Close window.
:dt.Alt-F7
:dd.Move window.
:dt.Alt-F8
:dd.Size window.
:dt.Alt-F9
:dd.Minimize window.
:dt.Alt-F10
:dd.Maximize window.
:edl.
:p.The following is a list of application-provided keys:
:dl compact tsize=10.
:dt.F7
:dd.Left alignment.
:dt.F8
:dd.Center alignment.
:dt.F9
:dd.Right alignment.
:edl.
:euserdoc.

The Module Definition File
The AHELLOW5.DEF file is required for the same reasons that

AHELLOW1.DEF was needed for Version 1. See “The Module

Definition File” on page 148 if you need to review the reasons for

creating a .DEF file.

The only differences between the two .DEF files used in Version 1 and

Version 5 are the change in the version number and the stack size.

NAME HELLO5 WINDOWAPI

DESCRIPTION 'Hello World Sample C++ Program - Version 5'

CODE LOADONCALL MOVEABLE
DATA MOVEABLE MULTIPLE

HEAPSIZE 8192
STACKSIZE 128000

 Chapter 15. Canvas, User-Created Control, and Help 239

 Hello World — Version 5

Tasks Performed by Version 5

The following sections describe each of the tasks performed by Version

5 of the Hello World application that were not described already for

previous versions. Those tasks use newly defined member functions to

construct the main window. The tasks performed by those member

functions are:

• Setting up the client window with the following:

– Two split canvases, one split vertically in the client window and

one split horizontally in the left pane of the first split canvas

– The static text control used to display the “Hello, World!!!!!” text

string, placed in the top pane of the horizontally split canvas

– A new control (AEarthWindow) that uses PM graphics calls to

paint one of the panes in the split canvas, placed in the bottom

pane of the horizontally split canvas

– A list box containing text strings that can be used to replace the

“Hello, Window!!!!!” text string, placed in the right pane of the

vertically split canvas

• Adding help windows for the main, dialog, and entry field windows

• Adding a help handler (AHelpHandler) to display the correct window

when keys help is requested

• Setting up the information area, menu bar, and status area

Tasks this version performs that were described for Version 4 are:

• Adding a cascaded menu to a pull-down menu

• Adding accelerator, or shortcut, keys for the Left (F7), Center(F8),

and Right(F9) cascaded menu choices

• Adding the ADialogText class to allow the user to edit the “Hello,

World!!!!” text string

• Adding push buttons in a set canvas

Tasks this version performs that were described for Version 3 are:

• Creating a status area using a static text control

• Putting text in a static text control for a status line

• Specifying the location and height of the status area

• Setting AHelloWindow as the event handler

240 User Interface Class Library Guide

 Hello World — Version 5

• Creating a menu bar

• Setting an initial check mark in the pull-down menu

• Adding command processing to set the static text control alignment

Tasks this version performs that were described for Versions 1 and 2

are:

• Creating the main window

• Getting the current application and running it

• Constructing the main window, which involves the following:

– Creating a static text control

– Setting a text string from a resource file

– Putting a text string into a static text control

– Aligning the text

– Setting the static text control in the main window

– Setting the window title and title bar icon from a resource file

– Creating and setting the information area below the client area

– Setting the focus to the main window and showing the main

window

Constructing the Main Window Using Newly Defined Member
Functions

Version 5 provides several new member functions for the AHelloWindow
class to use when constructing the main window. They are declared as

protected member functions in the AHELLOW5.HPP file:

//<in AHELLOW5.HPP>
protected: //Define Protected Member
virtual Boolean setupClient(); //Setup Client Window
virtual Boolean setupHelp(); //Setup Help
virtual Boolean setupInfoArea(); //Setup Information Area
virtual Boolean setupMenuBar(); //Setup Menu Bar
virtual Boolean setupStatusArea(); //Setup Status Area

These member functions are implemented in the AHelloWindow window

constructor in AHELLOW5.CPP, as follows:

//<in AHELLOW5.CPP>
setupClient(); //Setup Client Window v5
setupStatusArea(); //Setup Status Area .
setupInfoArea(); //Setup Information Area v5
setupMenuBar(); //Setup Menu Bar v5
setupHelp(); //Setup Help v5

 Chapter 15. Canvas, User-Created Control, and Help 241

 Hello World — Version 5

The following sections describe the implementation of these functions.

Setting Up the Client Window
The setupClient member function sets up the client window for the

main window, as follows:

• Creates a split canvas control as the client window with the canvas

split vertically into a left pane and a right pane by default:

//<in AHELLOW5.CPP>
clientWindow=new ISplitCanvas(//Create Canvas .
WND_CANVAS, this, this); // with Window Id, parent, owner .

setClient(clientWindow); //Set canvas as Client Window .

• Creates another split canvas control in the left pane of the first split

canvas control; the second canvas is split horizontally:

//<in AHELLOW5.CPP>
helloCanvas=new ISplitCanvas(//Create Hello Canvas .
WND_HCANVAS, clientWindow, // with Window Id, parent .

 clientWindow); // and owner .
helloCanvas->setOrientation(//Set the orientation .
 ISplitCanvas::horizontalSplit); // to horizontal v5

• Puts the static text control for displaying the “Hello, World!!!!!” text

string in the top pane of the second split canvas, sets the text in it,

and centers the text:

//<in AHELLOW5.CPP>
hello=new IStaticText(WND_HELLO, //Create Static Text Control

helloCanvas, helloCanvas); // Pass in client as owner & parent v5
hello->setText(STR_HELLO); //Set text v2
hello->setAlignment(//Set Alignment to Center in both
 IStaticText::centerCenter); // directions

• Creates a graphic in the bottom pane of the second split canvas

using the AEarthWindow class, which is new for Version 5:

//<in AHELLOW5.CPP>
earthWindow=new AEarthWindow //Create Earth Graphic Window v5
(WND_EARTH, helloCanvas); // Set Window ID, client-owner/parentv5

The interface specifications and implementation of the AEarthWindow
class are declared in the AEARTHW5.HPP file, shown in “The

AEarthWindow Class Header File” on page 230, and in the

AEARTHW5.CPP file, shown in “The Earth Window Source File” on

page 229.

• Creates a list box in the right pane of the client window split canvas

and fills the list box with text strings:

//<in AHELLOW5.CPP>
listBox=new IListBox(WND_LISTBOX, //Create ListBox v5

242 User Interface Class Library Guide

 Hello World — Version 5

clientWindow, clientWindow, // Parent/Owner is ClientWindow .
 IRectangle(), // .
 IListBox::defaultStyle() | // .
IControl::tabStop | // Set Tab Stop .
IListBox::noAdjustPosition); // Allow the Canvas to control size .

listBox->addAscending("Hello, World!"); //Add "Hello, World!" .
listBox->addAscending("Hi, World!"); //Add "Hi, World!" .
listBox->addAscending("Howdy, World!"); //Add "Howdy, World!" .
listBox->addAscending("Alo, Mundo!"); //Add Portuguese Version .
listBox->addAscending("Ola, Mondo!"); //Add Spain .
listBox->addAscending("Hallo wereld!"); //Add Dutch .
listBox->addAscending("Hallo Welt!"); //Add German .
listBox->addAscending("Bonjour le monde!");//Add French .
ISelectHandler::handleEventsFor(listBox);//Set self as select event handler .

• Allocates 60 percent of the screen for the left pane of the client

window split canvas, and 40 percent for the right pane:

//<in AHELLOW5.CPP>
clientWindow->setSplitWindowPercentage(//Set the Window Percentage for .
helloCanvas, 60); // the helloCanvas to 60 .

clientWindow->setSplitWindowPercentage(//Set the Window Percentage for .
listBox, 40); // the listBox to 40 .

Setting Up Help
The setupHelp member function sets up the help area, as follows:

• Creates a help window:

//<in AHELLOW5.CPP>
help=new IHelpWindow(HELP_TABLE, //Create Help Window Object .
this); //Setup Help info .

The HELP_TABLE constant identifies the following help table in the

resource file, AHELLOW5.RC:

//<in AHELLOW5.RC>
HELPTABLE HELP_TABLE // .
 BEGIN // .
 HELPITEM WND_MAIN, SUBTABLE_MAIN, 100 // .
 HELPITEM WND_TEXTDIALOG, SUBTABLE_DIALOG, 200 // .
 END //v5

This help table provides help for the main window (WND_MAIN)

and also for the text dialog (WND_TEXTDIALOG) that is used to

edit the “Hello, World!!!!!” text string (see Chapter 14, “Simple

Dialogs and Push Buttons” on page 189 for a description of the text

dialog). The window IDs for WND_MAIN and WND_TEXTDIALOG

are specified in AHELLOW5.H:

//<in AHELLOW5.H>
#define WND_MAIN 0x1000 //Main Window ID
#define WND_TEXTDIALOG 0x1013 //Text Dialog Window ID v4

 Chapter 15. Canvas, User-Created Control, and Help 243

 Hello World — Version 5

The SUBTABLE_MAIN and SUBTABLE_DIALOG constants identify

two help subtables, which define other windows, plus menu items,

the entry field in the text dialog, and push buttons for which help is

available:

//<in AHELLOW5.RC>
HELPSUBTABLE SUBTABLE_MAIN //Main Window Help Subtable v5
 BEGIN // .

HELPSUBITEM WND_HELLO, 100 //Hello <-> Help ID 100 .
HELPSUBITEM WND_LISTBOX,102 //List Box Help
HELPSUBITEM MI_EDIT, 110 //Edit Menu .
HELPSUBITEM MI_ALIGNMENT, 111 //Alignment Menu .
HELPSUBITEM MI_LEFT, 112 //Left Menu Item .
HELPSUBITEM MI_CENTER, 113 //Center Menu Item .
HELPSUBITEM MI_RIGHT, 114 //Right Menu Item .
HELPSUBITEM MI_TEXT, 199 //Text Menu Item .

 END // v5

HELPSUBTABLE SUBTABLE_DIALOG //Text Dialog Help Subtable v5
 BEGIN // .

HELPSUBITEM DID_ENTRY, 201 //Entry Field <-> Help ID 201 .
HELPSUBITEM DID_OK, 202 //OK Button <-> Help ID 202 .
HELPSUBITEM DID_CANCEL, 203 //OK Button <-> Help ID 203 .

 END // v5

• Designates the AHELLOW5.HLP file as the source of the help

information:

//<in AHELLOW5.CPP>
help->addLibraries("AHELLOW5.HLP"); // set self, help table filename .

The IPFC compiler, which is included with the OS/2 2.0 Developer’s

Toolkit, is used to compile the AHELLOW5.IPF file to produce the

AHELLOW5.HLP file. See “The Help Window Source File” on

page 233 for the AHELLOW5.IPF source listing. The help provided

for the main window of the Hello World application looks like this:

244 User Interface Class Library Guide

 Hello World — Version 5

C++ Hello World - Help Window

C++ Hello World - Main Window Help

Services Options Help

Search... Print...Previous Index

This is the help panel for the main window.

Figure 56. Main Window Help for Hello World Version 5

This window is displayed by pressing the F1 key, or selecting the

Help choice on the menu bar and then selecting General help...

from the pull-down menu, The following code is used:

//<in AHELLOW5.CPP>
case MI_GENERAL_HELP: //Code to Process Help for help v5
help->show(IHelpWindow::general); //Show General Help Panel .
return(true); //Return command processed .

 break; // v5

• Sets the title of the help window:

//<in AHELLOW5.CPP>
help->setTitle(STR_HTITLE); //Set the Help Window Title .

• Creates a handler, AHelpHandler to customize the keys help:

//<in AHELLOW5.CPP>
AHelpHandler* phelpHandler= //Create Custom Help Handler to .
new AHelpHandler(); // handle the Keys Help .

The interface specifications for the AHelpHandler class are declared

in the AHELLOW5.HPP header file:

 Chapter 15. Canvas, User-Created Control, and Help 245

 Hello World — Version 5

//<in AHELLOW5.HPP>
class AHelpHandler: public IHelpHandler// .
{ // .
protected: //Define Protected Member .

 virtual Boolean // .
keysHelpId(IEvent& evt); //Override this function .

}; //v5

The keysHelpId member function of AHelpHandler is implemented in

the AHELLOW5.CPP file as follows:

//<in AHELLOW5.CPP>
Boolean AHelpHandler :: keysHelpId(IEvent& evt) // .
{ // .
evt.setResult(1000); //1000=keys help id in .

 // AHELLOW5.IPF file .
return true; //Return command processed .

} /* end AHelpHandler :: keysHelpId(...) */ //v5

• Starts the help handler:

//<in AHELLOW5.CPP>
phelpHandler->handleEventsFor(this); //Start Help Handler .

246 User Interface Class Library Guide

 Hello World — Version 5

Setting Up the Information Area
The setupInfoArea member function sets up the information area for the

main window, as follows:

• Creates the information area:

//<in AHELLOW5.CPP>
infoArea=new IInfoArea(this); //Create the information area v2

• Puts the text in the information area from the resource file as in

previous versions:

//<in AHELLOW5.CPP>
infoArea->setInactiveText(STR_INFO); //Set information area text from RC v2

• Uses the height of the current font as the height of the information

area:

//<in AHELLOW5.CPP>
setExtensionSize(infoArea, // v5
(int)IFont(infoArea).maxCharHeight());//and specify height .

Setting Up the Menu Bar
The setupMenuBar member function sets up the menu bar for the main

window, as follows:

• Sets the main window as the event handler for commands:

// <in AHELLOW5.CPP>
ICommandHandler::handleEventsFor(this);//Set self as command event handler v5

• Creates the menu bar:

// <in AHELLOW5.CPP>
menuBar=new IMenuBar(WND_MAIN, //Create Menu Bar for main window v3
this); // Set self as parent .

• Places a check on the Center choice in the cascading menu that is

displayed when the Alignment choice is selected from the Edit

menu:

// <in AHELLOW5.CPP>
menuBar->checkItem(MI_CENTER); //Place Check on Center Menu Item v3

 Chapter 15. Canvas, User-Created Control, and Help 247

 Hello World — Version 5

Setting Up the Status Area
The setupStatusArea member function sets up the status area for the

main window, as follows:

• Creates the status area:

// <in AHELLOW5.CPP>
statusLine=new IStaticText //Create Status Area using Static Textv3
(WND_STATUS, this, this); // Window ID, Parent, Owner Parameters.

• Gets the “Center Alignment” text string from the resource file and

sets it in the status area:

// <in AHELLOW5.CPP>
statusLine->setText(STR_CENTER); //Set Status Text to "Center" from Res .

• Sets the position and height of the status area. The status area is

placed above the client area and its height is that of the current

font:

// <in AHELLOW5.CPP>
addExtension(statusLine, //Add Status Line .
IFrameWindow::aboveClient, // above the client area .
IFont(statusLine).maxCharHeight()); // and specify height v3

248 User Interface Class Library Guide

 Hello World — Version 5

Compiling and Linking Version 5

Figure 57 shows the files that were used to create Version 5 of the

Hello World application, their relationship to each other, and the order

in which they are compiled and linked. File names are shown in

uppercase letters; program names are shown in lowercase letters and

are enclosed in a rectangle.

AHELLOW5.H
AHELLOW5.HPP
ADIALOG5.HPP
AEARTHW5.HPP

AHELLOW5.RC AHELLOW5.IPF

AHELLOW5.RES AHELLOW5.HLP
AHELLOW5.OBJ
ADIALOG5.OBJ
AEARTHW5.OBJ

ADIALOG5.DLG

ADIALOG5.RESdigedit

AHELLOW5.DEF AHELLOW5.MAP

AHELLOW5.CPP
ADIALOG5.CPP
AEARTHW5.CPP

HELLO5.EXE HELLO5.EXE

AHELLOW5.ICO

icc -c

icc /Tdp

rc -r ipfc /x

rc

iconedit

Figure 57. Compiling and Linking Version 5 of the Hello World Application

 Chapter 15. Canvas, User-Created Control, and Help 249

 Hello World — Version 5

250 User Interface Class Library Guide

 Hello World — Version 6

Chapter 16. NLS and Advanced Functions

Version 6 of the Hello World application covers the following topics:

• Specifying English, German, or Portuguese DLL resources using

the command line

• Adding an Open... menu item and using a file dialog

• Showing a message box when the input file cannot be read from

the file dialog

• Adding a pop-up menu for changing the alignment

 Copyright IBM Corp. 1993 251

 Hello World — Version 6

• Changing the status area to a split canvas and adding the date and

time

• Adding a time handler (ATimeHandler) and updating the time on the

status area

• Adding HELLOWPS.CMD to create a folder with programs on the

OS/2 Workplace Shell

The window for Version 6 of the Hello World application looks like this:

C++ Hello World - Version 6

Hello, World!!!!!

Center Alignment

Use Alt-F4 to Close Window

Edit DemoFile Help

04-12-93 08:18:01

Left Center Right Help

Alo, Mundo!
Bonjour le monde!
Hello Welt!
Hallo wereld!
Hello, World!
Hi, World!
Howdy, World!
Ola, Mondo!

Figure 58. Version 6 of Hello World Application

252 User Interface Class Library Guide

 Hello World — Version 6

Version 6 Window-Parent Relationship Diagram

Figure 59 shows the relationship between the objects built for Version

6 of the Hello World application:

IApplication: :current() .run()

AColorWindow

ASpeedWindow

Diagram
Key:

IStaticText

statusLine

ISplitWindow

clientWindow

ISetCanvas

buttons

AEarthWindow

earthWindow

IListBox

listBox

IPushButton

hlepButton

IStaticText

date

IStaticText

statusLine

IStaticText

hello

IStaticText

time

ISplitWindow

hellowCanvas

IPushButton

leftButton

IInfoArea

infoArea

IInfoArea

infoArea

AHelloWindow

mainWindow

IMenuBar

menuBar

Class Name

Object Name

ATextDialog

textDialog

IEntryField

textField

IHelpWindow

help

ITitle

IPopMenu

IAccelerator

Figure 59. Window Parent Relationship Diagram

 Chapter 16. NLS and Advanced Functions 253

 Hello World — Version 6

Version 6 Files

The following files contain the code used to create this version:

AHELLOW6.CPP Source code for main procedure and AHelloWindow
class.

AHELLOW6.HPP Header file for the AHellowWindow class.

AHELLOW6.H Symbolic definition file for HELLO6.EXE.

ADIALOG6.CPP Source code to create the ATextDialog class.

ADIALOG6.HPP Header file for the ATextDialog class.

AEARTHW6.CPP Source code to create the AEarthWindow class.

AEARTHW6.HPP Header file for the AEarthWindow class.

ACOLORW6.CPP Source code to create the AColorWindow class.

ACOLORW6.HPP Header file for the AColorWindow class.

ASPEEDW6.CPP Source code to create the ASpeedWindow class.

ASPEEDW6.HPP Header file for the ASpeedWindow class.

ATIMEHDR.CPP Source code to create the ATimeHandler class.

ATIMEHDR.HPP Header file for the ATimeHandler class.

ADUMMY6.CPP File to provide dummy file for resource DLLs.

AHELLOWE.RC English resource file for HELLO5.EXE.

AHELLOWG.RC German resource file for HELLO6.EXE.

AHELLOWP.RC Portuguese resource file for HELLO6.EXE.

AHELLOW6.ICO Icon file for HELLO6.EXE.

BRAZIL.ICO Icon file for Portuguese option of HELLO6.EXE.

GERMANY.ICO Icon file for German option of HELLO6.EXE.

ADIALOGE.DLG English dialog resource source file for

HELLO6.EXE.

ADIALOGG.DLG German dialog resource source file for

HELLO6.EXE.

254 User Interface Class Library Guide

 Hello World — Version 6

ADIALOGP.DLG Portuguese dialog resource source file for

HELLO6.EXE.

ADIALOGE.RES Dialog resource file for HELLO6.EXE.

AHELLOW6.IPF Help file for HELLO6.EXE.

AHELLOW6.DEF Module definition file for HELLO6.EXE.

AHELLOWE.DEF Module definition file for AHELLOWE.DLL.

AHELLOWG.DEF Module definition file for AHELLOWG.DLL.

AHELLOWP.DEF Module definition file for AHELLOWP.DLL.

Tasks Performed by Version 6

The listings of the source files are not included in this book due to the

size. The following list contains the changes required for each key

task:

• Using English, German or Portuguese DLL resources

– Updated main routine in AHELLOW6.CPP

– Created AHELLOWE.RC, AHELLOWG.RC, and

AHELLOWP.RC resource files.

– Created ADIALOGE.DLG, ADIALOGG.DLG, and

ADIALOGP.DLG dialog files.

– Created BRAZIL.ICO and GERMAN.ICO icon files.

• Adding an Open... menu item and using a file dialog

– Updated Menu in resource files

– Added openFile member function to AHELLOW6.CPP and

AHELLOW6.HPP

• Showing a message box

– Added code in the openFile member function

– Added STR_MSGTXT string resource to resource files

• Adding a pop-up menu for changing the alignment

– Added a new menu to the resource files

 Chapter 16. NLS and Advanced Functions 255

 Hello World — Version 6

– Added the AMenuHandler class with the makePopUpMenu member

function in AHELLOW6.CPP and AHELLOW6.HPP

– Updated setupClient in AHELLOW6.CPP to create this handler

and attach it to the hello static text window.

• Changing the status area to a split canvas and adding the date and

time

– Updated the setupStatusArea member function in

AHELLOW6.CPP

• Adding a time handler and updating the time on the status area

– Added the ATimeHandler class in the new ATIMEHDR.CPP and

ATIMEHDR.HPP files

– Added ATimeHandler::handleEventsFor(this); in the constructor

for AHelloWindow

– Added ATimeHandler::stopHandlingEventsFor(this); in the

destructor for AHelloWindow

– Added the tick member function in AHELLOW6.CPP and

AHELLOW6.HPP

Compiling and Linking Version 6

Figure 60 on page 257 shows the files used to create Version 6 of the

Hello World application, their relationship to each other, and the order

in which they are compiled and linked. File names are shown in

uppercase letters; program names are shown in lowercase letters and

are enclosed in a rectangle.

256 User Interface Class Library Guide

 Hello World — Version 6

AHELLOW6.H

AHELLOW6.HPP
ADIALOG6.HPP
AEARTHW6.HPP
ATIMEHDR.HPP
ACOLORW6.HPP
ASPEEDW6.HPP

AHELLOWE.RC
AHELLOWG.RC
AHELLOWP.RC

AHELLOW6.IPF

AHELLOWE.RES
AHELLOWG.RES
AHELLOWP.RES

AHELLOW6.HLP

ADUMMY6.CPP

ADUMMY6.OBJ

AHELLOW6.OBJ
ADIALOG6.OBJ
AEARTHW6.OBJ
ATIMEHDR.OBJ
ACOLORW6.OBJ

ADIALOGE.DLG
ADIALOGG.DLG
ADIALOGP.DLG

ADIALOGE.RES

digedit

AHELLOW6.DEF

AHELLOW6.MAP

AHELLODE.DEF
AHELLODG.DEF
AHELLODP.DEF

AHELLODE.DLL
AHELLODG.DLL
AHELLODP.DLL

AHELLODE.DLL
AHELLODG.DLL
AHELLODP.DLL

AHELLOWE.MAP
AHELLOWG.MAP
AHELLOWP.MAP

AHELLOW6.CPP
ADIALOG6.CPP
AEARTHW6.CPP
ATIMEHDR.CPP
ACOLORW6.CPP
ASPEEDW6.CPP

AHELLOW6.EXE

AHELLOW6.ICO
GERMANY.ICO
BRAZIL.ICO

icc -c

icc /TDP

rc -r

rc

ipfc /x

link386

iconedit

Figure 60. Compiling and Linking Version 6 of the Hello World Application

 Chapter 16. NLS and Advanced Functions 257

 Hello World — Version 6

258 User Interface Class Library Guide

 Appendix A. Hierarchy

 Application Classes
IBase
 ICritSec
 IProcedureAddress
 IReference
 IResourceId
 IVBase
 IApplication
 ICurrentApplication
 IProfile
 IRefCounted
 IThreadFn
 IThreadMemberFn
 IResource
 IPrivateResource
 ISharedResource
 IResourceLibrary
 IDynamicLinkLibrary
 IResourceLock
 IThread
 ICurrentThread

 Copyright IBM Corp. 1993 259

 Window Classes
IBase
 IMessageBox
 IVBase
 IWindow
 IControl
 ICanvas
 IMultiCellCanvas
 ISetCanvas
 ISplitCanvas
 IViewPort
 IContainerControl
 IListBox
 INotebook
 IOutlineBox
 IProgressIndicator
 ISlider
 IScrollBar
 ISpinButton
 ITextControl
 IButton
 IPushButton
 ISettingButton
 I3StateCheckBox
 ICheckBox
 IRadioButton
 IEntryField
 IComboBox
 IGroupBox
 IMultiLineEdit
 IStaticText
 IBitmapControl
 IIconControl
 IInfoArea
 ITitle
 IFrameWindow
 IFileDialog
 IFontDialog
 IHelpWindow
 IMenu
 IMenuBar
 IPopUpMenu
 ISubMenu
 ISystemMenu
 IObjectWindow

260 User Interface Class Library Guide

 Handler Classes
IBase
 IVBase
 IHandler
 ICnrDrawHandler
 ICnrEditHandler
 ICnrHandler
 ICommandHandler
 IDDEClientConversation
 IDDETopicServer
 IEditHandler
 IFileDialogHandler
 IFocusHandler
 IFontDialogHandler
 IFrameHandler
 IHelpHandler
 IKeyboardHandler
 IListBoxDrawItemHandler
 IMenuDrawItemHandler
 IMenuHandler
 ICnrMenuHandler
 IInfoArea
 IMouseClickHandler
 IPageHandler
 IPaintHandler
 IResizeHandler
 IScrollHandler
 ISelectHandler
 IShowListHandler
 ISliderDrawHandler
 ISpinHandler

 Appendix A. Hierarchy 261

 Event Classes
IBase
 IVBase
 IEvent
 ICnrDrawBackgroundEvent
 ICommandEvent
 IControlEvent
 ICnrEvent
 ICnrEditEvent
 ICnrBeginEditEvent
 ICnrEndEditEvent
 ICnrReallocStringEvent
 ICnrEmphasisEvent
 ICnrEnterEvent
 ICnrHelpEvent
 ICnrQueryDeltaEvent
 ICnrScrollEvent
 IDrawItemEvent
 ICnrDrawItemEvent
 IListBoxDrawItemEvent
 IMenuDrawItemEvent
 INotebookDrawItemEvent
 IPageEvent
 IPageHelpEvent
 IPageRemoveEvent
 IPageSelectEvent
 IFileDialogEvent
 IFrameEvent
 IFrameFormatEvent
 IHelpErrorEvent
 IHelpHyperTextEvent
 IHelpMenuBarEvent
 IHelpNotifyEvent
 IHelpSubItemNotFoundEvent
 IHelpTutorialEvent
 IKeyboardEvent
 IMenuEvent
 IMouseClickEvent
 IPaintEvent
 IResizeEvent
 IScrollEvent
 IEventData
 IEventParameter1
 IEventParameter2
 IEventResult

262 User Interface Class Library Guide

Event Classes - DDE Events
IBase
 IVBase
 IEvent
 IDDEBeginEvent
 IDDEEndEvent
 IDDEClientEndEvent
 IDDEEvent
 IDDEAcknowledgeEvent
 IDDEClientAcknowledgeEvent
 IDDEAcknowledgePokeEvent
 IDDEAcknowledgeExecuteEvent
 IDDEServerAcknowledgeEvent
 IDDESetAcknowledgeInfoEvent
 IDDEClientHotLinkEvent
 IDDEDataEvent
 IDDEExecuteEvent
 IDDEPokeEvent
 IDDERequestDataEvent
 IDDEServerHotLinkEvent

 Appendix A. Hierarchy 263

Data Types and Attributes Classes
IBase
 IColor
 IDeviceColor
 IGUIColor
 IDate
 IHandle
 IAccelTblHandle
 IAnchorBlockHandle
 IBitmapHandle
 ISystemBitmapHandle
 IEnumHandle
 IMessageQueueHandle
 IModuleHandle
 IPageHandle
 IPointerHandle
 ISystemPointerHandle
 IPresSpaceHandle
 IProcessId
 IProfileHandle
 ISemaphoreHandle
 IStringHandle
 IThreadId
 IWindowHandle
 IPair
 IPoint
 IRange
 ISize
 IRectangle
 IString
 I0String
 ITime
 IVBase
 IBuffer
 IDBCSBuffer
 IFont
 IStringTest
 IStringTestMemberFn

IStringEnum

264 User Interface Class Library Guide

Settings and Styles Classes
IBase
 IBitFlag
 I3StateCheckBox::Style
 IBitmapControl::Style
 IButton::Style
 ICanvas::Style
 ICheckBox::Style
 IComboBox::Style
 IContainerControl::Attribute
 IContainerControl::Style
 IControl::Style
 IEntryField::Style
 IFileDialog::Style
 IFontDialog::Style
 IFrameWindow::Style
 IGroupBox::Style
 IIconControl::Style
 IListBox::Style
 IListBoxDrawItemHandler::DrawFlag
 IMenuDrawItemHandler::DrawFlag
 IMenuItem::Attribute
 IMenuItem::Style
 IMessageBox::Style
 IMultiLineEdit::Style
 INotebook::PageSettings::Attribute
 INotebook::Style
 IOutlineBox::Style
 IProgressIndicator::Style
 IPushButton::Style
 IRadioButton::Style
 IScrollBar::Style
 ISetCanvas::Style
 ISlider::Style
 ISpinButton::Style
 ISplitCanvas::Style
 IStaticText::Style
 IViewPort::Style
 IWindow::Style
 IFileDialog::Settings
 IFontDialog::Settings
 IHelpWindow::Settings
 IVBase
 INotebook::PageSettings

 Appendix A. Hierarchy 265

 Support Classes
IBase
 IAccelerator
 IDDEActiveServer
 IFrameExtension
 IMenuItem
 ISWP
 ISWPArray
 IVBase
 IComboBox::Cursor
 IContainerColumn
 IContainerControl::ColumnCursor
 IContainerControl::CompareFn
 IContainerControl::FilterFn
 IContainerControl::Iterator
 IContainerControl::ObjectCursor
 IContainerControl::TextCursor
 IContainerObject
 IListBox::Cursor
 INotebook::Cursor
 IProfile::Cursor
 ISpinButton::Cursor
 IWindow::ChildCursor

ISequence<>
 IFrameExtensions

ISet<>
 IDDEActiveServerSet
 IDDEClientHotLinkSet

266 User Interface Class Library Guide

Exception and Error Handling Classes
IBase
 IVBase
 IErrorInfo
 IGUIErrorInfo
 ISystemErrorInfo
 ITrace
 IWindow::ExceptionFn

IException
 IAccessError
 IAssertionFailure
 IDeviceError
 IInvalidParameter
 IInvalidRequest
 IResourceExhausted
 IOutOfMemory
 IOutOfSystemResource
 IOutOfWindowResource

IException::TraceFn

IExceptionLocation

IMessageText

 Appendix A. Hierarchy 267

268 User Interface Class Library Guide

Appendix B. Class Library Conventions

The purpose of this appendix is to introduce you to the conventions

used in the User Interface Class Library. These conventions are:

 • File names

• Class, function, and data member names

 • Enumerations

• Function return types

 • Function arguments

 • Other standards

 File Names

All files provided by the User Interface Class Library begin with the

letter “I,” such as IAPP.HPP. File names have a maximum of eight

characters, including the “I.” Following is a list of the file name

extensions that are used:

Ixxxxxxx.HPP User Interface Class Library header file.

Ixxxxxxx.INL User Interface Class Library inline functions.

DDE4MUII.LIB The multi-threaded user interface import library.

DDE4MUI.DLL The multi-threaded user interface import dynamic-link

library.

DDE4MUI.DEF The multi-threaded user interface import module

definition file.

DDE4MUI.RSP The multi-threaded user interface import linker

automatic response file.

DDE4MUIB.LIB The multi-threaded user interface regular object

library (base).

DDE4MUIC.LIB The multi-threaded user interface regular object

library (controls).

DDE4MUID.LIB The multi-threaded user interface regular object

library (DDE).

 Copyright IBM Corp. 1993 269

The file name generally indicates the class or classes it contains. For

example, the IAPP.HPP file contains the IApplication and

ICurrentApplication classes. Refer to the IBM C/C++ Tools: User

Interface Class Library Reference for an appendix that contains

cross-reference tables for the header files and the classes they contain.

Class Names, Function Names, and Data Member Names

Class names are mixed case, with the first letter of each word

capitalized, as in ICurrentApplication. All class names in the global

name space begin with the letter “I.”

Function names and data member names are also mixed case, except

the first letter is always lower case, as in the autoSize data member.

Here are some more general rules about class and function names:

• Acronyms are upper case, as in IDBCSBuffer. DBCS is the

acronym for double-byte character set. Other acronyms you will

see are GUI (graphical user interface) and DDE (dynamic data

exchange).

• Abbreviations are mixed case, as IPresSpaceHandle, which is the

class for presentation space handles.

• Functions that query begin with a prefix that implies a query is

being conducted, such as “is” or “has.” The IDragItem class, for

example, has the isCopyable function, which queries whether an

object can be copied.

• Functions that render an object as a different type begin with the

“as” prefix, as in asUnsignedLong, which renders an object as an

unsigned long.

• Functions that provide enabling or disabling capabilities begin with

the “enable” or “disable” prefix, respectively. The IEntryField
class, for example, provides the enableAutoScroll function, which

enables automatic scrolling.

• Functions that set something begin with the “set” prefix. The

setDefaultStyle function, to follow the preceding example, is used

to set the default style for a class.

270 User Interface Class Library Guide

• Functions that get something have no “get” prefix. For example,

the defaultStyle function is used by many classes to get the

default style for that class.

• Functions that act on objects are verbs, such as copy, move, and so

forth.

• Function names and arguments are written to be virtually self

explanatory. The following example would move the IWindow object

aWindow to the position specified by the IPoint object aPoint.

aWindow.moveTo(aPoint);

• Many functions that toggle the state of an object are provided with

an optional Boolean argument that can be used to perform the

opposite action of the function. This allows the result of a prior

query function to be used as an input argument, such as:

Boolean initialVisibility = isVisible();
hide();
/* Do some hidden work */
show(initialVisibility);

 Enumerations

Here are the conventions followed for enumeration types and

enumerators:

• The first character of each enumeration name is upper case. If two

words are joined, each begins with an upper case letter.

• Enumerators use the same naming conventions as functions; they

begin with lower case letters, but if two words are joined, the

second begins with an upper case letter.

Function Return Types
Here are the return types for the various types of functions:

• A testing function typically returns a Boolean (true or false):

Boolean isValid() const

• Other accessor functions typically return an object:

ISize size() const; //Returns an object
IWindow* static owner(); //Returns a pointer to an object
static IWindow* desktopWindow(); //Returns a pointer that points to an
 //object

 Appendix B. Class Library Conventions 271

• Functions that act on an object return an object reference:

IWindow& hide();

This allows the chaining of function calls:

aWindow.moveTo(IPoint(10,10)).show();

 Function Arguments

Function arguments are usually passed using the following conventions:

• Built-in types (ints, doubles) and enumerations are passed in by

value.

• Objects are passed by reference (a const reference if the argument

is not modified by the function).

• “Optional” objects are passed by pointer. For example, a 0 pointer

can be passed.

• IWindow objects are usually passed by pointer.

• IContainerObjects are usually passed by pointer.

• “Strings” are passed as const char *. This enables you to pass

either an IString or a literal character array.

 Other Standards

The following are miscellaneous standards followed by the User

Interface Class Library:

• Header files are wrapped to ensure that files are not included more

than once.

• All functions that can be inlined are placed in separate INL files with

a user option (I_NO_INLINES) to determine whether they should be

inlined into the application code. If you do not want to inline these

functions, then define I_NO_INLINE.

• ISYNONYM.HPP contains the names of the types and values which

are in the global name space but do not begin with the letter “I.” If

you have collisions with other libraries, the names in

ISYNONYM.HPP can be changed.

272 User Interface Class Library Guide

 Bibliography

This bibliography lists the publications comprising the IBM C/C++ Tools library and publications of related

IBM products referenced in this book. The list of related publications is not exhaustive but should be

adequate for most C/C++ Tools users.

The IBM C/C++ Tools Library

The following books are part of the IBM C/C++
Tools library.

 • Programming Guide

 • Migration Guide

 • Reference Summary

 • Debugger Introduction

• Execution Trace Analyser Introduction

 • Browser Introduction

• C/C++ Tools Installation

• C Library Reference

• C Language Reference

• C++ Language Reference

• Standard Class Library Reference

• User Interface Class Library Reference

• Collection Class Library Reference

C and C++ Related
Publications

• SAA Common Programming Interface C

Reference, SC09-1308

• Portability Guide for IBM C, SC09-1405

• American National Standard for Information

Systems — Programming Language C

(X3.159-1989)

• International Standard C ISO/IEC

9899:1990(E)

• Draft Proposed American National Standard

for Information Systems — Programming

Language C++ (X3J16/92-0060)

 IBM WorkFrame/2
Publications

• IBM WorkFrame/2: Introduction, S10G-4475

IBM OS/2 2.0 Publications

The following books describe the OS/2 2.0

operating system and the Developer's Toolkit.

• IBM OS/2 2.0 Overview Manual, S84F-8465

• IBM OS/2 2.0 Installation Guide, S84F-8464

• IBM OS/2 2.0 Quick Reference, S10G-5964

• Getting Started, S10G-6199

 Copyright IBM Corp. 1993 273

IBM OS/2 2.0 Technical
Library

The following books make up the OS/2 2.0

Technical Library (10G3356).

• Application Design Guide, S10G-6260

• Programming Guide, S10G-6261

• Information Presentation Facility Guide and

Reference, S10G-6262

• System Object Model Guide and Reference,

S10G-6309

• Control Program Programming Reference,

S10G-6263

• Presentation Manager Programming

Reference Volume 1, S10G-6264

• Presentation Manager Programming

Reference Volume 2, S10G-6265

• Presentation Manager Programming

Reference Volume 3, S10G-6272

• Physical Device Driver Reference, S10G-6266

• Virtual Device Driver Reference, S10G-6310,

• Presentation Manager Driver Reference,

S10G-6267

• Procedures Language 2/REXX Reference,

S10G-6268,

• Procedures Language 2/REXX User's Guide,

S10G-6269

• SAA Common User Access Guide to User

Interface Design, SC34-4289

• SAA Common User Access Advanced User

Interface Design Guide. SC34-4290

Other Books You Might Need

The following list contains the titles of IBM books

that you might find helpful. These books are not

part of the C/C++ Tools, WorkFrame/2, or OS/2

2.0 libraries.

 BookManager* READ/2
Publications

• IBM BookManager READ/2: General

Information, GB35-0800

• IBM BookManager READ/2: Getting Started

and Quick Reference, SX76-0146

• IBM BookManager READ/2: Displaying Online

Books, SB35-0801

• IBM BookManager READ/2: Installation,

GX76-0147

 Systems Application
Architecture* Publications

• An Overview, GC26-4341

• C Reference Level 1, SC26-4353

• C Reference Level 2, SC09-1308

• Common User Access: Panel Design and

User Interaction, SC26-4351

• Communications Reference, SC26-4399

• Database Reference, SC26-4353

• Dialog Reference, SC26-4356

• SAA Common Programming Interface PL/I

Reference, SC26-4381

• Presentation Reference, SC26-4359

• Procedures Language Reference, SC26-4358

• Query Reference, SC26-4349

• Writing Applications: A Design Guide,

SC26-4362

274 User Interface Class Library Guide

 Glossary

This glossary defines terms and abbreviations that are used in this book. It does not include all terms

previously established in the SAA CPI C Reference - Level 2. If you do not find the term you are looking

for, refer to the IBM Dictionary of Computing, SC20-1699.

This glossary includes terms and definitions from the American National Standard Dictionary for

Information Systems, ANSI X3.172-1990, copyright 1990 by the American National Standards Institute

(ANSI). Copies may be purchased from the American National Standards Institute, 1430 Broadway, New

York, New York 10018.

__

A

abstract class. A class with at least one pure

virtual function that is used as a base class for

other classes. The abstract class represents a

concept; classes derived from it represent

implementations of the concept. You cannot have

a direct object of an abstract class. See also

base class.

abstraction (data). See data abstraction.

access. An attribute that determines whether or

not a class member is accessible in an

expression or declaration.

address. A name, label, or number identifying a

location in storage, a device in a system or

network, or any other data source.

American National Standard Code for

Information Interchange (ASCII). The code

developed by ANSI for information interchange

among data processing systems, data

communications systems, and associated

equipment. The ASCII character set consists of

7-bit control characters and symbolic characters.

Note: IBM has defined an extension to ASCII

code (characters 128-255).

API. Application program interface.

application. The use to which an information

processing system is put, for example, a payroll

application, an airline reservation application, a

network application.

application program interface (API). The

formally defined programming language interface

between an IBM system control program or a

licensed program and the user of the program.

argument. In a function call, an expression that

represents a value that the calling function passes

to the function specified in the call. Also called a

parameter.

array. A variable that contains an ordered group

of data objects. All objects in an array have the

same data type.

ASCII. American National Standard Code for

Information Interchange.

asynchronous (ASYNC). Without regular time

relationship; unexpected or unpredictable with

respect to the execution of program instructions.

 Copyright IBM Corp. 1993 275

B

base class. A class from which other classes

are derived. A base class may itself be derived

from another base class. See also abstract class.

binary. (1) Pertaining to a system of numbers to

the base two; the binary digits are 0 and 1.

(2) Involving a choice of two conditions, such as

on-off or yes-no.

bit. A binary digit.

block. The unit of data transmitted to and from a

device. Each block contains one record, part of a

record, or several records.

buffer. A portion of storage used to hold input

or output data temporarily.

byte. For IBM C compilers, 8 bits equal 1 byte.

C

call. To transfer control to a procedure, program,

routine, or subroutine.

character set. A group of characters used for a

specific reason; for example, the set of characters

a printer can print or a keyboard can support.

class. A C++ aggregate that may contain

functions, types, and user-defined operators in

addition to data. Classes may be defined

hierarchically, allowing one class to be an

expansion of another, and may restrict access to

its members.

class library. A collection of C++ classes.

Collection Classes. A set of classes that

provide basic functions and can be used as base

classes.

command. A request to perform an operation or

run a program. associated with a command, the

resulting character string is a single command.

compiler. A program that translates instructions

written in a programming language (such as C

language) into machine language.

condition. A relational expression in a program

or procedure that can be evaluated to a value of

either true or false.

const. An attribute of a data object that declares

the object cannot be changed.

constructor. A special class member function

that has the same name as the class and is used

to construct and possibly initialize class objects.

conversion. A change in the type of a value.

The compiler converts both values to a common

form before adding the values. Because accuracy

of data representation varies among different data

types, information may be lost in a conversion.

copy constructor. A constructor used to make a

copy of a class object from another class object of

the same class type.

cursored emphasis. When the selection cursor

is on a choice, that choice has cursored

emphasis.

D

data abstraction. A data type with a private

representation and a public set of operations.

The C++ language uses the concept of classes to

implement data abstraction.

data object. A storage area used to hold a

value.

data stream. A continuous stream of data

elements being transmitted, or intended for

276 User Interface Class Library Guide

transmission, in character or binary-digit form,

using a defined format.

DBCS. (1) See double-byte character set.

(2) See ASCII.

declaration. A description that makes an

external object or function available to a function

or a block.

declare. To identify the variable symbols to be

used at preassembly time.

default. An attribute, value or option that is used

when no alternative is specified by the

programmer.

default constructor. A constructor that takes no

arguments, or for which all the arguments have

default values.

definition. A data description that reserves

storage and may provide an initial value.

delete. A C++ keyword that identifies a free

storage deallocation operator.

derived class. A class that inherits from a base

class. You can add new data members and

member functions to the derived class. A derived

class object can be manipulated as if it were a

base class object. The derived class can override

virtual functions of the base class.

destructor. A special member function that has

the same name as its class, preceded by a tilde

(∼), and that "cleans up" after an object of that

class, for example, freeing storage that was

allocated when the object was created. A

destructor has no arguments and no return type.

directory. A file containing the names and

controlling information for other files or other

directories.

double-byte character set (DBCS). A set of

characters in which each character is represented

by 2 bytes. Languages such as Japanese,

Chinese, and Korean, which contain more

symbols than can be represented by 256 code

points, require double-byte character sets.

Because each character requires 2 bytes,

entering, displaying, and printing DBCS

characters requires hardware and supporting

software that are DBCS capable.

dynamic. Pertaining to an operation that occurs

at the time it is needed rather than at a

predetermined or fixed time.

E

EBCDIC. See extended binary-coded decimal

interchange code.

element. A data object in an array.

exception. (1) Under the OS/2 operating

system, a user or system error detected by the

system and passed to an OS/2 or user exception

handler. (2) For C++, any user, logic, or system

error detected by a function that does not itself

deal with the error but passes the error on to a

handling routine (also called throwing the

exception).

exception handling. A type of error handling

that allows control and information to be passed

to an exception handler when an exception

occurs. Under the OS/2 operating system,

exceptions are generated by the system and

handled by user code. In C++, try, catch, and

throw expressions are the constructs used to

implement C++ exception handling.

expression. A representation for a value. For

example, variables and constants appearing alone

or in combination with operators.

 Glossary 277

extended binary-coded decimal interchange

code (EBCDIC). A set of 256 eight-bit

characters.

extension. (1) An element or function not

included in the standard language. (2) File name

extension.

F

file. A collection of data that is stored and

retrieved by an assigned name.

file handle. A value created by the system that

identifies a drive, directory, and file so that the file

can be found and opened.

file name. The name used to identify a file.

friend function. A function that is granted

access to the private and protected parts of a

class. It is named in the declaration of the other

class with the prefix friend.

function. A named group of statements that can

be invoked and evaluated and can return a value

to the calling statement.

G

global. Pertaining to information available to

more than one program or subroutine.

H

header file. A file that contains system-defined

control information that precedes user data.

I

identifier. A sequence of letters, digits and

underscores used to designate a data object or

function.

inheritance. An object-oriented programming

technique that allows you to use existing classes

as bases for creating other classes.

initialize. To set the starting value of a data

object.

input. Data to be processed.

instance. Synonym for object, a particular

instantiation of a data type.

interrupt. A temporary suspension of a process

caused by an external event, performed in such a

way that the process can be resumed.

L

label. (1) An identifier followed by a colon. It is

the target of a goto statement. (2) An identifier

within or attached to a set of data elements.

library. (1) A collection of functions, function

calls, subroutines, or other data. (2) A set of

object modules that can be specified in a link

command.

link. To interconnect items of data or portions of

one or more computer programs; for example,

linking of object programs by a linkage editor to

produce an executable file.

linker. A program that resolves cross-references

between separately compiled object modules and

then assigns final addresses to create a single

executable program. load module.

278 User Interface Class Library Guide

list box. A control window containing a vertical

list of selectable description.

M

macro. An identifier followed by arguments (may

be a parenthesized list of arguments) that the

preprocessor replaces with the replacement code

located in a preprocessor #define directive.

main function. A function with the identifier main
that is the first user function to get control when

program execution begins. Each C program must

have exactly one function named main.

map. A set of values having a defined

correspondence with the quantities or values of

another set.

mask. A pattern of characters that controls the

keeping, deleting, or testing of portions of another

pattern of characters.

member. (1) A data object in a structure or a

union. (2) In C++, classes and structures can

also contain functions and types as members.

member function. An operator or function that

is declared as a member of a class. A member

function has access to the private and protected

data members and member functions of objects of

its class.

method. Synonym for member function.

module. A program unit that usually performs a

particular function or related functions, and that is

distinct and identifiable with respect to compiling,

combining with other units, and loading.

N

nested class. A class defined within the scope

of another class.

NULL. A pointer guaranteed not to point to a

data object.

null character (\0). The ASCII or EBCDIC

character with the hex value 00 (all bits turned

off).

O

operand. An entity on which an operation is

performed.

operating system. Software that controls

functions such as resource allocation, scheduling,

input/output control, and data management.

operation. A specific action such as add,

multiply, shift.

operator. A symbol (such as +, -, *) that

represents an operation (in this case, addition,

subtraction, multiplication).

OS/2. Pertaining to the operating system for the

PS/2 workstation.

overflow. A condition that occurs when a portion

of the result of an operation exceeds the capacity

of the intended unit of storage.

overlay. To write over existing data in storage.

 Glossary 279

P

pad. To fill unused positions in a field with data,

usually zeros, ones, or blanks.

pointer. A variable that holds the address of a

data object or function.

private. Pertaining to a class member that is

only accessible to member functions and friends

of that class.

process. An instance of an executing application

and the resources it uses.

program. One or more files containing a set of

instructions conforming to a particular

programming language syntax.

protected. Pertaining to a class member that is

only accessible to member functions and friends

of that class, or to member functions and friends

of classes derived from that class.

public. Pertaining to a class member that is

accessible to all functions.

R

record. The unit of data transmitted to and from

a program.

register. A storage area commonly associated

with fast-access storage, capable of storing a

specified amount of data such as a bit or an

address.

run. To cause a program, utility, or other

machine function to be performed.

S

scalar. An arithmetic object, or a pointer to an

object of any type.

scope. That part of a source program in which

an object is defined and recognized.

semaphore. An object used by multithread

applications for signalling purposes and for

controlling access to serially reusable resources.

source file. A file that contains source

statements for such items as language programs

and data description specifications.

stack. An area of storage used for keeping

variables associated with each call to a function

or block.

statement. An instruction that ends with the

character ; (semicolon) or several instructions that

are surrounded by the characters { and }.

static. (1) Pertaining to properties that can be

established before execution of a program, for

example, the length of a fixed length variable.

(2) Pertaining to an operation that occurs at a

predetermined or fixed time. (3) Pertaining to a

variable that receives private and permanent

storage, and is not known outside of the block or

file in which it is declared.

stream. See data stream.

structure. A construct that contains an ordered

group of data objects. Unlike an array, the data

objects within a structure can have varied data

types.

system default. A default value defined in the

system profile.

280 User Interface Class Library Guide

T

tag. One or more characters attached to a set of

data that identifies the set.

task. One or more sequences of instructions

treated by a control program as an element of

work to be accomplished by a computer.

template. A family of classes or functions with

variable types.

this. A C++ keyword that identifies a special type

of pointer in a member function, that references

the class object with which the member function

was invoked.

thread. A unit of execution within a process.

type. See data type.

U

union. A construct that can hold any one of

several data types, but only one data type at a

time.

V

virtual function. A function of a class that is

declared with the keyword virtual. The

implementation that is executed when you make a

call to a virtual function depends on the type of

the object for which it is called, which is

determined at run time.

W

whitespace. Space characters, tab characters,

form feed characters, and new-line characters.

 Glossary 281

282 User Interface Class Library Guide

 Index

A
accelerator keys

adding to the application 207

adding a resource file

example 155

application classes

critical sections 122

description 17

hierarchy 259

overview 4

protecting data 121

threads 116

tracing 109

attribute classes

overview 5

C
canvas classes

creating 217

DBCS/NLS usage 133

description 44

multicell canvas 51

set canvas 47

split canvas 45

viewport 54

cascaded menu

adding to a pull-down menu 207

character data

managing with IString class 69

check box control

description 36

events 64

handlers 64

class library application

files used to create 141

class library application (continued)

structure 141

class names

coding conventions 270

client window

example 242

clipboard

multiple-line entry control 85

coding conventions

description 269

color

setting in a window 33

combo box control

events 64

handlers 64

command line parameters

setting 17

constants definition file

example 161

container control

adding and removing objects 89

columns 97

creating objects 87

cursors 93

description 86

details view 97

events 64

filter objects 90

handlers 64

make popup menu event 64

pop-up menu 100

views 95

contextual help

description xii

controls

check box control 36

container control 86

 Copyright IBM Corp. 1993 283

controls (continued)

entry field control 33

information area control 28

multiple-line entry field control 81

notebook text control 101

push button control 34

radio button control 38

slider control 40

static text control 31

creating a main window

example 145

Hello World version 1 148

creating a static text control

example 167

Hello World version 1 149

creating simple dialogs

example 189

creating the main window

Hello World version 2 164

critical sections

description 122

cursors

container control 93

description 58

multiple-line entry control 83

sample code 59

D
data member names

coding conventions 270

data type classes

overview 5

DBCS

description 133

def files

description 269

dialogs

creating simple 189

standard dialogs 123

directory location xii

DLL

resource 133

E
entry field control

description 33

events 64

handlers 64

sample code 34

styles example 56

enumerations

coding conventions 271

event

command 64

control 64

description 65

enter 64

extending 105

focus 64

keyboard 64, 133

make popup menu 64

menu 129

menu showing 64

paint window 64

resize 64

selected 64

summary table 65

system command 64

event classes

hierarchy 262

overview 4

event handling

example 173

examples

directory location xii

exception classes

exception handling 112

hierarchy 267

284 User Interface Class Library Guide

exception handling

default exception handler 114

description 112

exiting an application 18

F
file dialog

description 123

files

class library conventions 269

def files 269

DLL resources 18

hpp files 269

inl files 269, 272

lib files 269

string resources 18

user resource 19

font class

description 77

sample code 78

font dialog

description 125

frame extensions

description 21

information area 28

menu bar 24

minimized icon 24

status area 30

title bar 23

frame window

styles 22

function arguments

coding conventions 272

function member names

coding conventions 270

function return types

coding conventions 271

H
handler

command 64

container menu 64

description 62

edit 64

focus 64

keyboard 64

menu 64, 128

paint 64

resize 64

select 64

summary table 63

writing a handler 67

handler classes

hierarchy 261

overview 4

hardware requirements xi

Hello World sample application

version 1 145

version 2 155

version 3 173

version 4 189

version 5 217

version 6 251

Hello World version 1

compiling and linking the application 152

creating a static text control 149

creating the main window 148

files 147

running the application 151

tasks performed 148

Hello World version 2

compiling and linking 171

creating the main window 164

files 158

tasks performed 164

Hello World version 3

compiling and linking 187

files 175

 Index 285

Hello World version 3 (continued)

tasks performed 182

Hello World version 4

compiling and linking 215

files 191

tasks performed 205

Hello World version 5

compiling and linking 249

files 219

tasks 240

Hello World version 6

compiling and linking 256

files 254

tasks 255

help

contextual xii

creating for your application 217

description 130

push button example 36

setting up 243

hpp files

description 269

I
icon file

example 162

information area

creating 170

description 28

setting up 247

inl files

description 269, 272

L
lib files

description 269

list box control

cursor sample code 59

events 64

list box control (continued)

handlers 64

styles examples 56

styles within a canvas 45

M
main window

setting the size 171

menu bar

creating 185

description 24

example of modifying 206

menus

events 64

handlers 64

help menu 131

menu bar 24

menu showing event 64

pop-up menu 128

system menu 21

message box

description 127

minimized icon

description 24

multicell canvas

description 51

multiple-line entry control

clipboard 85

cursors 83

description 81

events 64

handlers 64

interface to files 83

N
NLS

description 133

example 251

286 User Interface Class Library Guide

notebook control

description 101

page settings 104

styles 102

O
operating system requirements xi

P
pop-up menu

container control 100

description 128

protecting data

description 121

pull-down menu

adding a cascaded menu 207

example 206

push button control

adding in a set canvas 211

description 34

events 64

example of creating 213

handlers 64

sample code 213

setting text 214

styles example 35

R
radio button control

description 38

events 64

handlers 64

rc file

setting a text string 169

requirements

hardware xi

installation xii

operating system xi

requirements (continued)

 software xi

resource file

adding 155

description 18

example 162

running an application 18

S
set canvas

adding push buttons 211

description 47

example of creating 211

setting classes

hierarchy 265

overview 5

setting up help

example 243

setting up the client window

example 242

setting up the information area

example 247

setting up the status area

example 248

shortcut keys

adding to the application 207

slider control

description 40

events 64

handlers 64

software requirements xi

spin button control

handlers 64

split canvas

description 45

standard dialogs

description 123

file dialog 123

font dialog 125

 Index 287

static text control

alignment styles 32

description 31

example 149

sample code 31

status area

description 30

setting up 248

specifying location and height 184

string class

accessors 70

comparison operators 72

converting strings 74

DBCS/NLS 133

managing character data 69

manipulating text 76

modifying and aligning strings 75

reading and writing text 69

testing 71

string resources

descriptions 18

style classes

hierarchy 265

overview 5

styles

container control 87

description 55

frame window 22

multiple-line entry field control 81

notebook control 102

push button control 35

push button example 36

sample code 57

slider example 42

static text control 32

support classes

hierarchy 266

overview 5

T
text

aligning in a window 32

setting in a window 32

text string

setting from an RC file 169

threads

description 116

title bar

description 23

tracing

description 109

U
User Interface Class Library

running and exiting an application 18

user resource files 19

user resource files 19

user-created control

creating 217

V
viewport

description 54

W
window classes

cursors 58

events 64

handlers 64

help 130

hierarchy 260

message box 127

overview 4

pop-up menu 128

standard dialogs 123

styles 55

288 User Interface Class Library Guide

windows

defining layout with canvas classes 44

sizing with canvas classes 44

 Index 289

