
 

IBM C/C++ Tools:
Debugger Introduction

 
2.0

Document Number S61G-1184-00



  



IBM C/C++ Tools:

Debugger Introduction

 

2.0

S61G-1184-00



 



IBM C/C++ Tools:

Debugger Introduction

 

2.0

S61G-1184-00

ÉÂÔ



  

 

 Note!

 Before using this information and the product it supports, be sure

to read the general information under “Notices” on page v.

Second Edition (March 1993)

This edition applies to Version 2.0 of the IBM C/C++ Debugger (Programs

61G1176 and 61G1426) and to all subsequent releases and modifications

until otherwise indicated in new editions.

Requests for publications and for technical information about IBM products

should be made to your IBM Authorized Dealer or your IBM Marketing Rep-

resentative. Publications are not stocked at the address given below.

A form for readers’ comments is provided at the back of this publication. If

the form has been removed, address your comments to:

IBM Canada Ltd. Laboratory

Information Development

21/986/844/TOR

844 Don Mills Road

North York, Ontario, Canada. M3C 1V7

You can also send your comments by facsimile to (416) 448-6057 addressed

to the attention of the RCF Coordinator. If you have access to Internet, you

can send your comments electronically to torrcf@vnet.ibm.com; IBMLink, to

toribm(torrcf); IBM/PROFS, to torolab4(torrcf); IBMMAIL, to

ibmmail(caibmwt9)

If you choose to respond through Internet, please include either your entire

Internet network address, or a postal address.

When you send information to IBM, you grant IBM a nonexclusive right to

use or distribute the information in any way it believes appropriate without

incurring any obligation to you.

  Copyright International Business Machines Corporation 1992, 1993.

All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights

— Use, duplication or disclosure is subject to restrictions set forth in GSA

ADP Schedule Contract with IBM Corp.

IBM is a registered trademark of International Business Machines Corpo-

ration, Armonk, N.Y.



  
 

 Contents

Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Trademarks and Service Marks . . . . . . . . . . . . . . . . . . .  v

Highlighting Conventions  . . . . . . . . . . . . . . . . . . . . . . . vi

Related Books  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Introducing the IBM C/C++ Debugger . . . . . . . . . . . . . . .  1

Understanding the New and Enhanced Features . . . . . . . . .  1

Using the Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

Using the Contextual Help . . . . . . . . . . . . . . . . . . . . .  3

Using the Online Tutorial . . . . . . . . . . . . . . . . . . . . . .  3

Before You Begin . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

Writing Code that the Debugger Supports . . . . . . . . . . . . .  5

Compiling and Linking Your Program . . . . . . . . . . . . . . . .  5

Customizing the Environment . . . . . . . . . . . . . . . . . . .  6

Getting Started  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Starting the Debugger from an OS/2 Prompt . . . . . . . . . . . .  7

Starting the Debugger from the WorkFrame/2* Environment . . .  8

Ending the Debugging Session . . . . . . . . . . . . . . . . . . . .  8

Using the Debugger Windows . . . . . . . . . . . . . . . . . .  11

Using the Debug Session Control Window . . . . . . . . . . . .  11

Using the Program View Windows . . . . . . . . . . . . . . . . .  12

Displaying Other Source Files . . . . . . . . . . . . . . . . . . .  12

Using Buttons on the Title Bar . . . . . . . . . . . . . . . . . . .  13

Executing a Program . . . . . . . . . . . . . . . . . . . . . . . . .  14

Setting Breakpoints  . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Handling Exceptions  . . . . . . . . . . . . . . . . . . . . . . . . . 16

Using the Register Window . . . . . . . . . . . . . . . . . . . . .  16

Using the Stack Window . . . . . . . . . . . . . . . . . . . . . .  16

Using the Storage Window . . . . . . . . . . . . . . . . . . . . .  17

Using the Data Popup and Monitor Windows . . . . . . . . . . .  17

Displaying Data Constructs . . . . . . . . . . . . . . . . . . .  18

Using C++ Debugger Windows . . . . . . . . . . . . . . . . . . .  18

Using the Inheritance View Window . . . . . . . . . . . . . .  18

Using the Class Details Window . . . . . . . . . . . . . . . .  19

  Copyright IBM Corp. 1992, 1993  iii



  

 

Using the Debugger Options . . . . . . . . . . . . . . . . . . .  21

Using Session Settings and Window Settings . . . . . . . . . .  21

Using the Initial Window Placement . . . . . . . . . . . . . .  21

Using the Monitor Properties . . . . . . . . . . . . . . . . . .  22

Controlling the PM Debugging Mode . . . . . . . . . . . . . .  22

Controlling Window Repainting . . . . . . . . . . . . . . . . .  22

Using the Source Window Properties . . . . . . . . . . . . . .  22

Setting the Animation Rate . . . . . . . . . . . . . . . . . . . .  22

Changing the Default Data Representation . . . . . . . . . .  23

Changing the Font Selection . . . . . . . . . . . . . . . . . . .  23

Using the PM Debugger Features . . . . . . . . . . . . . . . .  25

Using PM Debugging Mode . . . . . . . . . . . . . . . . . . . . .  25

Understanding the Synchronous Mode . . . . . . . . . . . . .  25

Understanding the Asynchronous Mode . . . . . . . . . . . .  26

Setting the PM Debugging Mode . . . . . . . . . . . . . . . .  26

Using the Message Queue Monitor Window . . . . . . . . . . .  26

Using the Window Analysis Window . . . . . . . . . . . . . . . .  27

Using the Window Characteristics Window . . . . . . . . . .  27

Using the Parent and Z-Order Window . . . . . . . . . . . . .  27

Appendix A. Expressions Supported  . . . . . . . . . . . . . 29

Using the Supported Expression Operands . . . . . . . . . . . .  29

Using the Supported Expression Operators . . . . . . . . . . . .  30

Using Supported Data Types . . . . . . . . . . . . . . . . . .  31

iv IBM C/C++ Tools: Debugger Introduction  



  
 

 Notices

References in this publication to IBM products, programs, or services

do not imply that IBM intends to make these available in all countries

in which IBM operates. Any reference to an IBM licensed program in

this publication is not intended to state or imply that only IBM’s

licensed program may be used. Any functionally equivalent product,

program or service that does not infringe any of IBM’s intellectual

property rights may be used instead of the IBM product, program, or

service. Evaluation and verification of operation in conjunction with

other products, except those expressly designated by IBM, is the

user’s responsibility.

IBM may have patents or pending patent applications covering

subject matter in this document. The furnishing of this document

does not give you any license to these patents. You can send

license inquiries, in writing, to the IBM Director of Commercial

Relations, IBM Corporation, Purchase, NY 10577.

Trademarks and Service Marks

The following terms, which are denoted by an asterisk (*) in this pub-

lication, are trademarks and service marks of IBM Corporation in the

United States and/or other countries:

IBM Operating System/2

OS/2 Presentation Manager

WorkFrame/2  

  Copyright IBM Corp. 1992, 1993  v



  

 

 Highlighting Conventions

The following highlighting conventions are used in this book:

Font Convention

Bold Names of windows, menus, menu choices, push

buttons, and fields and selections in action

windows.

Monospace Text displayed in the sample program, text or

commands that you type, or text that you select.

Italics Words that are used for emphasis and variables

in command strings.

 Related Books

You should be familiar with the following books before you use this

manual.

• Presentation Manager Programming Reference Volume I,

10G6264, which describes the Operating System/2&trade.

(OS.2*) functions.

• Presentation Manager Programming Reference Volume II,

10G6265, which details the OS/2 function calls.

• Presentation Manager Programming Reference Volume III,

10G6272, which describes window processing, messages, and

other OS/2 features.

The following publications provide information about the IBM C/C++
Debugger:

• IBM C/C++ Tools: Installation, S10G-4443, which describes how

to install the product.

• IBM C/C++ Tools: Programming Guide, S10G-4444, which

describes how to write, compile, and link programs for the

debugger.

• IBM WorkFrame/2: Introduction, S10G-4475, which describes

how to install the WorkFrame/2.

• IBM C/C++ Tools: License Information, S10G-4442, which pro-

vides a summary of the features and warranty information.

vi IBM C/C++ Tools: Debugger Introduction  



  
 

Introducing the IBM C/C++ Debugger

The IBM* C/C++ Debugger (hereafter called the debugger) uses

Presentation Manager* (PM) window services to help detect and

diagnose errors in code developed in IBM 32-bit C/C++.

The debugger provides three program view windows that display an

image of the program you are debugging. You can execute your

program, set breakpoints, examine message queues, and monitor

variables, registers, storage, and stacks.

This chapter describes the new and enhanced features of the OS/2*

debugger. It also describes how to access the online contextual help

and online tutorial that are provided by the debugger.

Understanding the New and Enhanced Features

The debugger now supports the C++ language. A summary of the

new features added to support C++ are as follows:

Template support Allows you to debug template functions.

When an action is ambiguous, the

debugger prompts you for the correct

instance of a function.

Inheritance view Displays class hierarchy in a graphical

format.

Class details view Displays information about a class. This

information includes type information for

data members, member functions and

parameters, access information and

relationship data.

Expression evaluation Evaluates expressions that use the new

C++ operators for reference and scope.

Full casting is supported for C++.

  Copyright IBM Corp. 1992, 1993  1



  

 

In addition to the features supporting C++, there are new and

enhanced features. Descriptions of these features are as follows:

Window analysis Displays PM windows in a three-

dimensional view. Window charac-

teristics and window relationship

data are also displayed.

Message queue monitor Monitors PM messages that are

related to specific PM windows.

Include file support Debugs include files that contain

executable code. You can browse

the source code of an include file

and set breakpoints.

Exception handling Displays options when an exception

occurs during execution of your

program.

Jump to location Resets the extended instruction

pointer (EIP) to a location in your

program without executing any

statements.

Buttons in the title bar Provides quick access to step com-

mands and various utility windows.

Breakpoints Manipulates breakpoints using a

notebook format. This allows

easier access to different types of

breakpoints.

Stack Views a more complete picture of

the stack.

Debug Session Control Displays a hierarchical represen-

tation of the relationships among all

components, such as executable

files, object files, and functions.

Default data representation Allows you to change the default

representation of data. For

example, integers can be displayed

as either decimal or hexadecimal.

2 IBM C/C++ Tools: Debugger Introduction  



  
 

Locate function Displays source code for a given

function. The debugger lists over-

loaded functions and lets you

choose the correct function.

Registers Views and alters the individual flags

in the processor's EFLAGS register,

coprocessor floating point control

word, and floating point status word

registers.

Using the Help

The debugger provides online help as contextual help and an online

tutorial.

Using the Contextual Help
Documentation is available as context-sensitive help. You can ask

for help on any menu choice or window to discover how to use that

particular item.

You can access the help screens in one of the following ways:

• Select a choice from the Help menu.

• Press F1 in any debugger action window.

• Press F1 while highlighting any menu-bar choice.

• Select the Help push button in any action window.

Using the Online Tutorial
To become familiar with the debugger features, use the online tuto-

rial.

The online tutorial guides you through sample debugging sessions in

several different sample programs, demonstrating basic C debugging

features, debugging features specific to C++, and features for PM

programs.

To access the tutorial, select Tutorial from the Help menu in the

Debug Session Control window, or any of the program view

windows (Source, Disassembly, or Mixed).

  Introducing the IBM C/C++ Debugger 3



  

 

4 IBM C/C++ Tools: Debugger Introduction  



  
 

Before You Begin

Before you run the debugger on your program, there are consider-

ations you need to be aware of and preparatory items you should

complete. This chapter explains how to complete these tasks.

Writing Code that the Debugger Supports

Using C and C++, you can write your program code with stylistic fea-

tures that are not supported by the debugger. Multiple statements

on the same line are difficult to debug. None of the individual state-

ments can be accessed separately when you set breakpoints1 or

when you use step commands.

Compiling and Linking Your Program

To use the debugger, compile and link your program with the fol-

lowing options:

/Ti+ Compiles your program to produce an object file that

includes line number information and a symbol table, in

addition to the source code.

/O- Compiles your program with optimization off. This is

the default.

/Oi- Compiles your program with inlining off. This is the

default.

/Debug Links your program to produce an executable file that

includes line number information and a symbol table, in

addition to the executable code.

For more information about compiling and linking your program, refer

to IBM C/C++ Tools: Programming Guide.

1 Breakpoint is a defined location or condition in a program that, when it is met, stops

the execution of the program.

  Copyright IBM Corp. 1992, 1993  5



  

 

Customizing the Environment
There are two environment variables that you can set: PMDPATH

and PMDTAB. For more information, refer to the online help.

6 IBM C/C++ Tools: Debugger Introduction  



  
 

 Getting Started

This chapter explains how to start and end a debugging session.

You can start the debugger either from the OS/2 command prompt or

the WorkFrame/2 environment.

Starting the Debugger from an OS/2 Prompt

To start the debugger from the OS/2 command prompt, enter the

command ipmd and the following parameters, in the order they are

listed:

1. Any debugger parameters that you want to use.

2. Name of the program you want to debug.

3. Any input parameters that you want to pass to the program.

For example, type the following:

ipmd /x myprog xyz

where /x represents a debugger parameter, myprog represents your

program name, and xyz represents the program parameter you want

to pass to the program.

The debugger parameters are:

/n Do not use any restart information.

/i Start the debugger in the system initialization routine so that

you can debug initialization code.

If you type ipmd only and press Enter, the Startup Information

action window is displayed. To continue, complete the entry fields as

follows:

1. In the Program entry field, type the name of the program you

want to debug or click on the list button at the end of the entry

field to select a program. You can also select the File List push

button.

If you select File List, the Select Program action window is dis-

played. From this action window, select the program you want

and select OK. The Startup Information action window is dis-

  Copyright IBM Corp. 1992, 1993  7



  

 

played again with the program name you selected displayed in

the Program entry field.

2. In the Parameters field, type any parameters that you want to

pass to your program. You must separate multiple parameters

with spaces.

3. Select OK to accept the information entered, close the action

window, and start the debugger.

Note:  If you are starting the debugger for the first time, the Change

Location action window is displayed, prompting you to type the

location where you want to store the profile information file. The

debugger uses the profile information file to store session settings.

Type the full path name and then select OK. The profile information

file, IPMD.@2S, is created and stored in the directory that you typed.

You can also select the Default push button and the profile informa-

tion file is stored in the default directory.

Starting the Debugger from the WorkFrame/2*
Environment

Before you start the debugger from the WorkFrame/2* environment,

you must create a project for the program you want to debug. To be

able to compile and link a target program with debugging information,

you must set the debugger options that the WorkFrame/2 environ-

ment uses for creating a project. For information on creating a

project, setting options, and starting the debugger, refer to IBM

WorkFrame/2: Introduction.

Ending the Debugging Session

To end the debugging session, select Close debug from the File

menu in a debugger window. The Close Debug action window is

displayed. Select one of the following choices:

• Select Yes to end your debugging session and save the restart

information.

• Select No to end your debugging session without saving the

restart information.

• Select Cancel to return to the previous screen without exiting the

debugger or changing any information.

8 IBM C/C++ Tools: Debugger Introduction  



  
 

Restart information is used to restore the debugger windows and

breakpoints when debugging a program more than once. It is stored

separately for each program debugged.

You can also end the debugging session by pressing F3 in the

program view windows or in the Debug Session Control window.

  Getting Started 9



  

 

10 IBM C/C++ Tools: Debugger Introduction  



  
 

Using the Debugger Windows

This chapter describes the Debug Session Control window,

program view windows, the basic debugger windows, and the C++
windows. The Debug Session Control window and the program

view windows are the main debugger windows.

Using the Debug Session Control Window

The Debug Session Control window is the control window of the

debugger and is displayed during the entire debugging session. This

window displays the threads and components for the program you

are debugging. From this window, you can enable or disable threads

and select program components for viewing. Selecting program

components for viewing provides you with the capability to access

any part of your program.

The Threads list box shows the state of the threads that have been

started by your program.

The Components list box shows the executable files (EXEs and

DLLs) for the program you are debugging. To display a list of object

files (OBJs) contained within an executable file, click on the plus icon

to the left of the executable file name. To open a program view of

an object file, double-click on the object file name. To display a list

of functions for a specific object file, click on the plus icon to the left

of the object file name. To open a program view to a specific func-

tion, double-click on the function name.

Note:  For C++ programs, the function name includes the class

name and parameters.

To determine the characteristics of the displayed view, select the

Source Window Properties action window as described in “Using

the Source Window Properties” on page 22.

  Copyright IBM Corp. 1992, 1993  11



  

 

Using the Program View Windows

The program view windows display the source, if available, for the

program you are debugging. The following program view windows

are displayed by the debugger:

Source Used to view the source file.

Disassembly Used to view the lower-level machine instructions

and the use of the registers.

Mixed Used to view the source statements of your program

combined with the disassembly instructions.

The Notebook choice is available for the Source and Mixed

windows. This choice supports easy access to executable state-

ments that are in the include files. If your program contains execut-

able code in include files and you enable Notebook, the program

view is displayed in a notebook format. To enable or disable Note-

book, select the View cascaded menu from the File menu in any of

the program view windows.

All program view windows have a prefix area located at the left of

each window. In the Source window, each line is prefixed with a

line number. In the Disassembly window, each line is prefixed with

an address. In the Mixed window, each source line is prefixed with

its line number, as it is in the Source window and each disassem-

bled line is prefixed with an address, as it is in the Disassembly

window.

To switch from one view to another, select a different view choice

from the View cascaded menu in the File menu of the Debug

Session Control window or from any of the program view windows.

Displaying Other Source Files

If you have multiple source files in your program, only one source file

is initially displayed. However, you can display additional source

files.

12 IBM C/C++ Tools: Debugger Introduction  



  
 

To switch from one source file to another source file, use the fol-

lowing steps:

1. Select Open new source from the File menu of the Debug

Session Control window or from any of the program view

windows. The Open New Source action window is displayed.

2. In the Source entry field, type the source file name.

 3. Select OK.

Using Buttons on the Title Bar

Buttons have been provided for easier access to frequently used

functions. The following buttons are located in the title bar of the

program view windows.

Step over executes the current line in the program. If

the current line is a call, execution is halted when the

call is completed.

Step into executes the current line in the program. If

the current line is a call, execution is halted at the first

statement in the called function.

Step debug executes the current line in the program.

The debugger steps over any function for which debug-

ging information is not available (for example, library

and system routines), and steps into any function for

which debugging information is available.

Step return automatically executes the lines of code up

to, and including, the return statement of the current

function.

Run allows you to start and halt the program. When

the push button is green, you can start the program.

When the push button is red, you can stop the

program.

  Using the Debugger Windows 13



  

 

View changes the current view to one of the other

views (Source, Disassembly or Mixed).

Stack displays the Stack window. See “Using the

Stack Window” on page 16 for more information.

Register displays the Register window. See “Using

the Register Window” on page 16 for more information.

Program Monitor displays the Program Monitor

window. See “Using the Data Popup and Monitor

Windows” on page 17 for more information.

Storage displays the Storage window. See “Using the

Storage Window” on page 17 for more information.

Debug Session Control displays the Debug Session

Control window. See “Using the Debug Session

Control Window” on page 11 for more information.

Executing a Program

You can execute your program by using step commands or the Run

command.

Step commands Step commands control the execution of the

program. The execution of the line of code is

reflected in all open views, and is performed in the

thread specific to the view.

To single step your program, click mouse button

two. This executes the current line in the program.

Run command The Run command runs the program until a break-

point is encountered, the program is halted, or the

program ends.

14 IBM C/C++ Tools: Debugger Introduction  



  
 

When you execute your program, a clock icon is displayed to indi-

cate that the program is running and might require input to continue

to the next breakpoint or termination of the program.

 Setting Breakpoints

You can control how your program executes by setting breakpoints.

A breakpoint stops the execution of your program at a specific

location or when a specific event occurs. To set breakpoints, select

the Breakpoints menu from the Debug Session Control window or

from any of the program view windows. You can also set a simple

line breakpoint by double-clicking in the prefix area of an executable

statement in any of the program view windows. The prefix area is

the area on the left of the program view window where line numbers

or addresses are displayed. The prefix area turns red indicating that

the breakpoint has been set.

The following is a list of the types of breakpoints that can be set in

your program. For detailed information on setting breakpoints, refer

to the online help.

 • Line

 • Function

 • Address

 • Change address

 • Load occurrence.

  Using the Debugger Windows 15



  

 

 Handling Exceptions

During execution of the program by the debugger, it is possible that

the program can generate an exception. If this happens, the

debugger suspends execution of the program and indicates the

location within the code where the exception occurred. The OS/2

Application Exception action window is displayed with the following

choices:

Examine/Retry You can investigate the cause of the exception

and retry execution of the line that caused the

fault.

Step Exception The debugger steps into the first registered

exception handler, which is tracked by OS/2.

Execution stops at the first executable line of

code in that exception handler.

Run Exception The debugger runs the exception handlers.

Using the Register Window

The Register window lists all the processor and coprocessor regis-

ters for a particular thread. The contents of all of the registers

except ST0 through ST7 are displayed in hexadecimal. To update a

register, type over the contents that are displayed in the register. To

toggle the value of a 1-bit flag, double-click on it or place the cursor

on it and press Enter.

To display the processor registers and flags, including the math

coprocessor information, select Registers from the Windows menu

or select the Register button on the title bar.

Using the Stack Window

The Stack window lists all of the active functions for a particular

thread including the PM calls. The functions are displayed in the

order that they were called.

To display the Stack window, select Stack from the Windows menu

or select the Stack button on the title bar.

16 IBM C/C++ Tools: Debugger Introduction  



  
 

Using the Storage Window

The Storage window shows the storage contents and the address of

the storage. Multiple storage windows can display the same storage.

When you run a program or update displayed data, the Storage

window is updated to reflect the change.

To update the storage contents and all affected windows, type over

the contents of the field in the Storage window.

To specify a new address location, type over the address field in the

Storage window. The window scrolls to the appropriate storage

location.

To display the Storage window, select Storage from the Windows

menu or select an already displayed storage monitor from the list.

You can also select the Storage button on the title bar to display a

new Storage window.

Using the Data Popup and Monitor Windows

The debugger has four windows that you can use to monitor

variables:

 • Data popup

 • Local variables

 • Program monitor

 • Private monitor.

A Data Popup window monitors single variables or expressions.

The variables or expressions can be transferred either to the

Program Monitor window or the Private Monitor window.

The Local Variables window monitors the local variables (static,

automatic, and parameters) for the current execution point in the

program. The contents of the Local Variables window change each

time your program enters or leaves a function.

The Program Monitor and the Private Monitor windows are used

as collectors for individual variables or expressions you might be

  Using the Debugger Windows 17



  

 

interested in. Variables and expressions may be created in these

monitors or may be transferred to them from a Data Popup window.

The difference between the Private Monitor window and the

Program Monitor window is the length of time that they remain

open. The Program Monitor window is a main debugging window

and remains open for the entire debugging session.

The Private Monitor window is associated with the program view

window from which it was opened and closes when its associated

view is closed.

Displaying Data Constructs
The debugger shows the value of classes, structures, and arrays in a

graphical hierarchy. When a class, structure, or array is displayed in

a monitor window, you can select the associated icon to see the con-

tents of each element. After expanding the element, you can con-

tract it by clicking on the icon. This leaves more space to expand

the contents of other classes, structures or arrays.

Using C++ Debugger Windows

This topic describes the debugger windows available for C++ pro-

grams. The Inheritance View window and the Class Details

window provide information pertaining to classes in your program.

Using the Inheritance View Window
The Inheritance View window displays a list of C++ classes and a

graphical depiction of the C++ class hierarchy. This provides a

method of visualizing the relationships of the classes in your

program.

To display the Inheritance View window for the classes in a C++
object, highlight the name of the object in the Debug Session

Control window, then select Inheritance from the Windows menu.

You can browse the total class picture for an object as a graph that

shows the inheritance and multiple inheritance relationships of the

classes.

18 IBM C/C++ Tools: Debugger Introduction  



  
 

To view the member data and member functions for the class,

double-click on the class name to open the Class Details window.

Using the Class Details Window
The Class Details window allows you to view more information

about a particular class definition in a C++ program. This view con-

tains a list of the base and derived classes for a particular class. It

also contains the type information and attributes for data members.

To display the Class Details window, select Class details from the

File menu in the Inheritance View window.

  Using the Debugger Windows 19



  

 

20 IBM C/C++ Tools: Debugger Introduction  



  
 

Using the Debugger Options

Use the debugger options to control the operation of the debugger.

Some of the more commonly used options are described in this

chapter.

Using Session Settings and Window Settings

The debugger settings are divided into two categories: session set-

tings and window settings.

The session settings options can be accessed from any of the

program view windows or from the Debug Session Control window

by selecting choices from the Session settings cascaded menu in

the Options menu. These settings affect the behavior of the

debugger and remain in effect for the duration of the session. If you

select Save session settings on any of these windows, these set-

tings apply to future debugging sessions.

The window settings options are accessed from those windows that

have additional formatting requirements and by selecting choices

from the Window settings cascaded menu in the Options menu.

The settings for the window options apply only to the particular

window in which they are available. If a particular window has only

one window setting option, then the Window settings cascaded

menu does not display. However, the available option is displayed in

the Options menu.

Using the Initial Window Placement
The Initial Window Placement action window lets you select the

initial position and size for all the primary windows that the debugger

creates. To display the Initial Window Placement action window,

select Session settings → Initial window placement from the

Options menu.

  Copyright IBM Corp. 1992, 1993  21



  

 

Using the Monitor Properties
The Monitor Properties action window lets you save the options for

the monitor. To display the Monitor Properties action window,

select Session settings → Monitor properties from the Options

menu.

Controlling the PM Debugging Mode
When you are debugging a PM program, you can set the synchro-

nous or asynchronous debugging mode by selecting Session set-

tings → PM debugging mode from the Options menu. For more

information about setting the PM debugging mode, refer to “Using

PM Debugging Mode” on page 25.

Controlling Window Repainting
You can control the repainting of windows from the PM Debugging

Mode action window that is displayed when you select Session set-

tings → PM debugging mode from the Options menu. The

choices under the Application windows group heading lets you

control the interaction between the application windows and PM,

while the program you are debugging is stopped. The color you

select from the Invalid area color combination box is used for the

repainting.

Using the Source Window Properties
You can control how windows are displayed and closed from the the

Source Window Properties action window.

The Source Window Properties action window is displayed when

you select Session settings → Source window properties from

the Options menu.

Setting the Animation Rate
Use the Animation Rate action window to modify the rate that the

debugger single steps when you select Animate from the Run menu

from any of the program view windows.

To display the Animation Rate action window, select Session set-

tings → Animation rate from the Options menu.

22 IBM C/C++ Tools: Debugger Introduction  



  
 

Changing the Default Data Representation
The Default Data Representation action window lets you select a

different data type. For example, in a C program, you can display an

integer as a decimal or hexadecimal.

To display the Default Data Representation action window, select

Default data representation from Session settings from the

Options menu.

Changing the Font Selection
The Font Selection action window lets you select alternative fonts

for the current windows. To display the Font Selection action

window for your current window, select Fonts from the Options

menu.

  Using the Debugger Options 23



  

 

24 IBM C/C++ Tools: Debugger Introduction  



  
 

Using the PM Debugger Features

Because the debugger runs in the OS/2 environment (and, more

specifically, the PM environment) it offers some features that allow

you to debug programs written for PM. These features are described

in this chapter.

Using PM Debugging Mode

PM is a message-based system, meaning that as program events

are encountered by PM applications, the applications communicate

with each other by passing messages and by receiving user input

through input messages. When a PM program encounters an

enabled breakpoint, the input queue can become blocked and

dependent program events or processes can become blocked also.

For example, the input queue can become blocked when your

program is halted at a breakpoint that has been triggered by an input

event.

The debugger provides two modes of operation by which PM mes-

sages can be processed while the debugger has control. These two

modes are synchronous and asynchronous.

Understanding the Synchronous Mode
When the debugger is operating in synchronous mode, the mes-

sages passed between PM applications are answered by their target

applications in the order that they were created. The messages that

are passed within the debugger, however, take priority over any

other messages that are passed in the system.

When the program being debugged is stopped and the debugger is

in synchronous mode, other PM applications are locked, leaving the

debugger free to operate. In synchronous mode, you are not able to

use any other applications that are running.

  Copyright IBM Corp. 1992, 1993  25



  

 

Understanding the Asynchronous Mode
When the debugger is operating in asynchronous mode and the

program you are debugging is stopped, the debugger immediately

responds to messages sent to the program being debugged on the

program’s behalf. The debugger answers the messages with a

simple default response, freeing up other processes to operate while

the debugger has control. When you are running the debugger in

asynchronous mode, other PM applications running in the system are

not blocked when the program being debugged stops.

CAUTION:

Do not operate the debugger in asynchronous mode if the PM

application you are debugging requires appropriate responses

to its messages. For example, a dynamic data exchange (DDE)

message would require the appropriate response.

Setting the PM Debugging Mode
By selecting Session settings → PM debugging mode from the

Options menu in the Debug Session Control window, you can set

the mode of the debugger to asynchronous or synchronous. This

lets you control how PM messages are processed while the

debugger has control.

Using the Message Queue Monitor Window

The Message Queue Monitor window displays PM messages asso-

ciated with a PM application. It presents formatted messages in a

list as they occur. Using the message queue monitor, you can

control:

• How the information is displayed for each message.

• How message parameters are formatted.

• Which messages are monitored.

• Which windows have their messages monitored.

• Which message queues have their messages monitored.

• How the user generated messages are displayed.

26 IBM C/C++ Tools: Debugger Introduction  



  
 

Using the Window Analysis Window

The Window Analysis window gives you an understanding of PM

application windows. It presents both graphical and textual informa-

tion about your program’s windows and lets you observe the relation-

ships between windows.

It allows you to view a three-dimensional image of your program’s

windows. When this image is displayed, you can rotate the image to

visually separate the windows, select a window on the image, and

look at the detailed information pertaining to that window.

The two secondary windows of Window Analysis are Window

Characteristics and Parent and Z-Order Tree.

To display the Window Analysis window, stop the program, then

select Window Analysis from the Windows menu.

Using the Window Characteristics Window
The Window Characteristics window shows the window character-

istics of the debuggee windows, such as the size and the window

handles.

The windows listed in the Window Characteristics window at one

time reflect the debuggee windows on the current page of the

Window Analysis window. The characteristics are displayed in a

column format with each row representing a different window. To

specify which characteristics are displayed, select Display style from

the Options menu in the Window Characteristics window.

Using the Parent and Z-Order Window
The Parent and Z-Order Tree window shows the parent and z-order

relationships between the debuggee windows and some non-

debuggee windows. This allows you to see which windows are

drawn in front of other windows. The non-debuggee windows shown

in the Parent and Z-Order Tree view are the desktop and desktop-

object windows and their children which are not debuggee windows.

To specify which characteristics are displayed, select Display style

from the Options menu in the Parent and Z-Order Tree window.

  Using the PM Debugger Features 27



  

 

28 IBM C/C++ Tools: Debugger Introduction  



  
 

 Appendix A. Expressions Supported

This appendix describes the expression language supported by the

debugger, which is a subset of C/C++. This includes the operands,

operators, and data types.

Note:  You can display and update bit fields for OS/2 C/C++ code

only. You cannot look at variables that have been defined using the

define preprocessor directive.

Using the Supported Expression Operands

You can monitor expressions or set conditional breakpoints using the

following operands:

Variable A variable

Constant The constant can be one of the following types:

 • Floating-point

Note:  The largest floating-point number supported

is 1.8E308. The smallest floating-point number sup-

ported is 2.23E-308.

• String (enclosed in “ ”)

• Character (enclosed in ‘ ’)

• Segment: Offset address specification.

When you are specifying a segment offset address

for monitoring in a variable monitor window, specify

the offset address in the format 0x0000:0x0000.

 • Integer.

Register One of the following general register names: AX, BX,

CX, DX, SP, BP, SI, DI, AL, BL, CL, DL, AH, BH, CH,

DH, EAX, EBX, ECX, EDX, ESP, EBP, ESI, EDI, EIP,

CS, DS, ES, FS, GS, SS, and EFLAGS.

One of the following floating-point registers: ST0

through ST7, FPCW, FPSW, FPTW, FPEIP, FPCS,

FPEDP, and FPDS.

If there are conflicting names, the program variable

names take precedence over the register names. For

  Copyright IBM Corp. 1992, 1993  29



  

 

conversions that are done automatically when the regis-

ters are displayed in mixed-mode expressions, the reg-

ister attributes are:

• General purpose registers are represented as 32-bit

pointers

• Floating-point registers are represented as 80-bit

float operands.

Using the Supported Expression Operators

You can monitor expressions or set conditional breakpoints using the

following operators:

Table 1 (Page 1 of 2). Supported Expression Operators and Their

Coding in C

Operator Coded as

Complement -a

Bitwise negate ╚a

Logical negation !a

Dereference *a

Address of &a

Multiply a * b

Divide a / b

Modulo a % b

Add a + b

Subtract a - b

Shift left a << b

Shift right a >> b

Less than a < b

Greater than a > b

Less than or equal to a <= b

Greater than or equal to a >= b

Equal a == b

Not equal a != b

Bitwise AND a & b

30 IBM C/C++ Tools: Debugger Introduction  



  
 

Table 1 (Page 2 of 2). Supported Expression Operators and Their

Coding in C

Operator Coded as

Bitwise OR a | b

Bitwise exclusive OR a ˆ b

Logical AND a && b

Logical OR a || b

Structure element a.b

Array element a[b]

Subfield select a->b

Scope * a::b

Cast (dt)(exp), where dt is one of the data

types listed under “Using Supported

Data Types” on page 31, and exp is

an expression that evaluates to one of

these data types.

Note:  * C++ operator only.

Using Supported Data Types
Operations on the following data types and references to the fol-

lowing data types are supported:

• 8-bit signed byte

• 8-bit unsigned byte

• 16-bit signed integer

• 16-bit unsigned integer

• 32-bit signed integer

• 32-bit unsigned integer

 • 32-bit floating-point

 • 64-bit floating-point

 • 80-bit floating-point

 • Pointers

 • User-defined types

 • Enumerated.

  Appendix A. Expressions Supported 31



  

 

32 IBM C/C++ Tools: Debugger Introduction  



 

 



ÉÂÔ

Part Number: 61G1184

Program Number: 61G1176

 61G1426

Printed in U.S.A.
6
1
G
1
1
8
4

S61G-1184-00


