

Bento Specification 69

Revision 1.0d5

Copyright 1993 Apple Computer

July 15, 1993

Chapter 8: Format Usage

This chapter serves two purposes. FIrst, it provides several examples of how the
container format can be used. These are complete, worked examples with specific values
for all the relevant TOC entries.

Second, the more advanced examples show how to use the built-in extensibility of
Bento to address additional needs, by defining the required properties and types. Thus
these advanced examples provide examples of how to extend the basic format.

Usage Examples ___

These usage examples are given in a relatively complete and literal form. Even the
TOC entries for standard objects are given, although they are not required, to provide a
complete picture of what is going on.

The examples are given in the prevous, tablular form of the TOC, which is much
more human readable than the new stream format.

Many details of the representation have been invented for these examples, such as
the actual ID values, details of the naming conventions used in the property and type
names, etc. The discussion in the Format Overview and Format Definition chapters
explains the items which are part of the standard as such.

In particular, the Global Unique Names in the examples have not been revised to
conform to ISO structured name syntax.

Embedded Stream Files

Suppose we have a container that simply contains two objects, with references from
the first stream to the second. For example, the first object could consist of a stream of rich
text, and the second object could be an image that is logically embedded in the text. Let
us further suppose that the image has two alternate representations in different formats,
each of which is a stream. This example exercises much of the basic machinery of Bento.

Below is a picture of the relevant parts of the TOC, and following that is a detailed
discussion of the entries in the TOC.

70 Format Usage

July 15, 1993

Copyright 1993 Apple Computer

Revision 1.0d5

Each TOC entry is labeled with a lowercase letter to make it easier to refer to it; the
letters are not actually part of the TOC contents. For the sake of this example we assume
that the rich text type is a standard object that does not need to be in the TOC, but that an
entry is provided anyway. We also assume that the types of the image streams are not
standard objects, so that they must be provided.

Entry (a) is the only entry in the rich text type description. The local ID of the rich
text type is 268. Note that since this is less than 2

16

 we know that it is a standard object.
Thus this TOC entry is not really required, but it is provided for illustative purposes. The
value of the entry is simply the Globally Unique Name that identifies the type. The text
of the Globally Unique Name is listed below the TOC entries, labeled ”vo.1” (for ”value
offset 1”). The value of vl.1 is the length of the string, including the null at the end (I
didn’t count). The property ID (18) means “TypeName”; the type ID (22) means “Global-
lyUniqueName”. The description object is immutable, so it has generation 0. No flag bits
are set (in this example, we are not using any flags).

Entries (b) and (c) are very similar. Each one is a type description object. Because
their IDs are greater than 2

16

, we know that they are not standard objects, and thus they
are actually required in the TOC (this is mainly for illustrative reasons). The property and
type IDs are the same as in entry (a).

Entry (d) is the single entry for the RTXT object. Its property ID (38) means “Primary
Value”. Its type ID (268) is the same as the ID of entry (a), indicating that its value is an
RTXT value. Its offset (vo.4) points to the actual rich text data, which contains an
embedded ID (723655). Its generation number (6) means that its entry and value were last
modified in the sixth generation (copy) of this container.

268 vo.4723421 38 vl.4 6 0

400348723655 38 vl.5 8 0

. . .

22 vo.2400348 18 vl.2 0 0

vo.5

b

c

d

e

f

22 vo.3400563 18 vl.3 0 0

400563723655 38 vl.6 11 0vo.6

22 vo.1268 18 vl.1 0 0a

. . .

vo.1: “Bento:ContentStandards:Text:RTXT”

vo.4: <the actual RTXT stream...embedded ID 723655...>

vo.2: “AppleComputer:Imaging:PICT”

vo.5: <the actual PICT stream>

vo.3: “Microsoft:Imaging:WindowsMetafile”

vo.6: <the actual Windows metafile stream>

. . .

Bento Specification 71

Revision 1.0d5

Copyright 1993 Apple Computer

July 15, 1993

Entries (e) and (f) are also very similar, but in a different way than (b) and (c). Note
that both entries have the same ID, indicating that they are both properties of the same
object. Furthermore, both entries have the same property ID (38) indicating that they are
both primary values of the object. Thus, they are alternative representations of the
primary value. Looking at their type IDs, we can see that one value is a PICT (400348) and
the other is a Windows metafile (400563). Furthermore, looking at the generation
numbers, we can see that both have been updated more recently than the text stream but
that the Windows metafile was updated most recently.

The TOC Itself

A somewhat more recursive example is the description of the TOC by itself. Every
TOC actually contains such a self-description, so reader code actually has to deal with
some of this structure, but it will typically not be visible at the application level.

This is a portion of the same TOC as the previous example, so we will see some rela-
tionships between the content objects described above, and the properties of the TOC
itself.

Entry (a) is an actual reference to the TOC as a value. The offset field (vo.1) will
contain the offset of the TOC in the container(that is, the offset of the beginning of this
entry). The length field (vl.1) will contain the length of the TOC in bytes. The property
indicates that this is the primary value for the TOC object, and the type indicates that it is
the normal top-level TOC format.

Entry (b) is also a property of the TOC object. It contains a value 1 larger than the
last ID used. Note in this case that it is somewhat higher than highest ID that appeared
in the previous example. This occurs if more objects were created, and then deleted. The
seed prevents reuse of those IDs, in case some of them have been remembered (either
within this container, or in external references to objects in this container). This prevents
accidental aliasing.

22 vo.22 20 vl.2 0 0

223 20 vl.3 0 0

6 7236891 2 -- 11 1

vo.3

b

c

d

e

f

25 7234211 3 -- 6 1

225 18 vl.4 0vo.4

5 vo.11 38 vl.1 11 0a

. . .
vo.1: <the actual TOC itself>

vo.4: “Bento:Basic:TOC:AbsoluteTOCFormat”

vo.2: “Bento:Basic:TOC:IDSeed”

vo.5: “Bento:Basic:TOC:Integer4Byte”

vo.3: “Bento:Basic:TOC:RootContentObject”

g 226 18 vl.5 0 0vo.5

0

72 Format Usage

July 15, 1993

Copyright 1993 Apple Computer

Revision 1.0d5

Since the value of entry (b) is only four bytes long, it can be stored as an immediate
value. Note that the immediate flag is set.

Entry (c) indicates the root object of the content in the container. Note that it contains
the ID of the RTXT stream in the previous example, since that is the root content object.
The ID is also an immediate value.

Note that the generation numbers of the TOC entries correspond to generation
numbers of the relevant content objects. The generation of the TOC value itself is the
generation of its most recent object. The generation of the root reference, however, indi-
cates when the root was set to that object. It is the same generation as the object itself, so
probably that object has been the root since it was created.

The remaining entries, (d) through (g), would not actually appear in a normal TOC
because they are standard objects. Note, however, that they would be legal. They are
provided for illustrative purposes. The first two are property descriptions, and the
second two are type descriptions. Note that the only property of each description is the
Globally Unique Name.

Types and Properties

Our last usage example is the most recursive, and would never occur in a real Bento
container, but it documents the format, and it may be interesting as an extreme case. The
example shows the top of thetype hierarchy, where the properties TypeName and Prop-
ertyName, and the type GloballyUniqueName are defined. Naturally these descriptions
are all standard objects, and they are very unlikely to appear in any TOC. Furthermore,
realistically, if they did, no reader would be able to use them. However, as an example,
this may give some insight into both the more exotic uses of Bento, and the structure of
the type and property mechanism.

In addition, to tie the example to some of the concrete types we have already seen,
we give a more complete derivation of the RTXT type, including its supertype COBJ, and
a dictionary that describes RTXT in terms of COBJ.

Bento Specification 73

Revision 1.0d5

Copyright 1993 Apple Computer

July 15, 1993

In entries (a), (b), and (d) we finally see the definition of the ubiquitous property IDs

18, 20, and 22. Aside from the fact that they use each other, and (b) and (d) use themselves,

they are fairly normal property and type descriptions.

Entry (c) introduces the SuperType property, and it is used in entry (e). Entry (e)

effectively says that a GloballyUniqueName is spelled in printable 7 bit ASCII. Note that

it uses an immediate reference to the supertype. Entry (f) defines the local ID type we

have been using, and entry (g) defines printable 7 bit ASCII.

Entry (h) introduces a very general property that allows us to attach data format

descriptions to objects. It is intended primarily for use in type descriptions. The interpre-

tation of the data format description will depend on its type.

. . .

22 vo.118 20 vl.1 0 0

22 vo.422 18 vl.4 0 0

2522 21 -- 0 3

22 vo.626 18 vl.6 0 0

. . .

vo.1: “Bento:Basic:TypeName”

vo.4: “Bento:Basic:GloballyUniqueName”

22 vo.220 20 vl.2 0 0

vo.2: “Bento:Basic:PropertyName”

26

a

b

c

d

e

f

g

vo.5: “Bento:Basic:LocalIDReference”

22 vo.321 20 vl.3 0 0

vo.3: “Bento:Basic:SuperType”

2225 18 vl.5 0 0vo.5

vo.6: “Bento:Formats:Printable7BitAscii”

136 vo.11268 76 vl.11 0 0l
22 vo.10268 18 vl.10 0 0k

vo.8: “Bento:Formats:COBJ:GenericStream”

vo.9: “Bento:Formats:COBJ:TypeDictionary”

vo.10: “Bento:ContentStandards:Text:RTXT”

22 vo.9136 18 vl.9 0 0j
22 vo.8132 18 vl.8 0 0i

vo.11: <the actual RTXT type dictionary>

. . .

25 132268 21 -- 0 3m

22 vo.776 20 vl.7 0 0h

vo.7: “Bento:Descriptions:DataFormat”

74 Format Usage

July 15, 1993

Copyright 1993 Apple Computer

Revision 1.0d5

Entries (i) and (j) are parts of the description of COBJ, a stream oriented data defini-
tion standard under development at Apple. (i) describes the type of actual COBJ values,
while (j) describes the type of COBJ type dictionaries, which define the format of partic-
ular streams.

Finally, entries (k) and (l) and (m) describe RTXT (ID 268, as we saw in the first
example). Here in addition to the Globally Unique Name of RTXT, we have the COBJ type
dictionary, and the reference to COBJ as the supertype of RTXT.

Multi-Media Issues __

Multi-media formats require two types of support beyond what is defined in the
basic format::

1) They need to be able to interleave values and then reconstitute them in two ways:

a) by playing them linearly, without holding a large table of contents in memory or
seeking off to look at the table of contents, and

b) by asking for them as “normal” values, and getting them either as a single hunk of
data in a buffer or as a non-interleaved stream.

2) They need to have a stream of data containing

local

 tables of contents, which will
(typically) describe what is coming up in the stream, allowing a“player” to get ready,
select the right stuff as it comes along, etc.

Using interleaved values

Requirement (1) is largely handled by value segments, which permit arbitrary inter-
leaving of values. This only addresses the format flexibility and the ability to retrieve the
complete value as a "normal" value.

Note that the actual interleaving is determined by the application that writes out the
values into the container. Thus, the container does not "understand" interleaving, and has
no built in mechanism to define the particular interleaving chosen. This allows total
control by the application.

To play interleaved values efficiently, without frequent references to a remote table
of contents, the player application and the authoring tools need an additional contract.
Each interleaved object needs to "know" the rules by which its values are broken up, how
far apart the pieces are, etc. This information can be recorded in an additional property
attached to each interleaved object.

Using this additional information, the player application can read the values directly
from a stream, without having to remember the TOC entry for each partial value. The
player will only need to reference a table of contents to select objects to play, and to
retrieve the interleaving specifications.

The definition of particular interleaving is beyond the scope of this specification If
and when an industry standard interleaving specification emerges, we can certainly make
sure Bento meshes with this standard.

Thus, all that is required to address requirement (1) is an interleaving specification
attached to the appropriate objects.

Bento Specification 75

Revision 1.0d5

Copyright 1993 Apple Computer

July 15, 1993

Local tables of contents

Problem (2) can be solved by allowing partial tables of contents in a container. This
is required for other reasons, such as breaking a Bento container across multiple volumes.
This question is currently under investigation.

Other Usage Issues___

Property Index

Sometimes we want to find all the objects in a container with a particular (set of)
value(s) of a particular property. With a few objects that have the property in a sea of irrel-
evant ones that do not have the property, such a search may become very expensive.

To facilitate finding all the objects with a given property, we can keep an index of
objects according to which properties they support.

External Reference Table

When a container is moved into a new environment, often its links to other
containers, files, etc. need to be fixed up. This fixup can be done by a general utility, or
even by the finder (in some future version) if the links are sufficiently inspectable.

The format of the TOC as described provides some of this inspectability. All refer-
ences to external entities are indirect. Therefore, external references can be found by a
scan of the TOC. However this remains somewhat inconvenient. It forces utilities to
distinguish between external references and other uses of indirect values by inspecting
their types. Furthermore, it does not specify any particular scheme for sharing the poten-
tially common information in external references, such as directory path names.

To simplify the task of fixing up the links of a container, we can provide a list of all
the external references in the TOC, as a property of the TOC itself. In its simplest form the
external reference list only needs to contain the object IDs of all objects with external refer-
ences. However, we will probably want some information about the shared content of
these indirect values as well, to avoid redundant binding.

Encoding

We need a way to specify encoding information for the value of each entry. A single
object may have different property values created on different systems (for example, a
PICT and a Windows metafile), and the encoding information needs to be able to reflect
this.

The encoding information is logically independent of the type of the value, but in
many cases, the encoding may be derivable from the type. In some cases, however, the
type and encoding are essentially independent.

To deal with this set of design constraints, we will specify encoding by the type.
However, when we have a type that is essentially independent of encoding, we will need
to specify the encoding explicitly as a property of the type description. Note that in some
cases we could have two or more types with different encoding properties, but the same
underlying "abstract" format type.

76 Format Usage

July 15, 1993

Copyright 1993 Apple Computer

Revision 1.0d5

