

Bento Specification 61

Revision 1.0d5

Copyright 1993 Apple Computer

July 15, 1993

Chapter 7: Format Definition

In this chapter, we will describe the concrete format of the file label and the table of
contents. The motivation for the design choices is given in the previous chapter.

The format is effectively completely new, although it still encodes essentially the
same information. Changes to this chapter are not indicated by change bars because
almost everything would be marked.

The new format accomodates 64 bit value offsets, 32 bit generation numbers, and
reference tables for values. At the same time, the format results in much lower overhead
for most TOC entries.

Container Label Format___

As mentioned in the previous chapter, a standard Bento container must have a label
at the end. Exotic containers may have labels in other locations. However, the label will
always provide the same information.

 The label contains the smallest possible amount of information, because it has to be
the most stable part of the standard. It consists of seven fields:

Magic byte sequence

unsigned char magicBytes[8]

;

This identifies the container as a Bento container. It must be chosen to be unlikely to
occur as the initial or final bytes in any existing file.

Label flags

unsigned short flags

;

These are currently unused.

Buffer size

unsigned short blockSize;

This defines the size of the TOC blocks in this container, in multiples of 1024 bytes.
This used to be the encoding field, which is no longer needed because the TOC now
has a fixed encoding.

Container format major version number

unsigned short majorVersion;

The major format version number changes only on incompatible format changes.

Container format minor version number

unsigned short minorVersion;

The minor version number changes on upward compatible format changes. When
the major version number changes, the minor version number is set to zero.

Offset of TOC

unsigned long tocOffset;

62 Format Definition

July 15, 1993

Copyright 1993 Apple Computer

Revision 1.0d5

This provides the offset of the top level TOC (Table of Contents) from the beginning
of the container. The TOC describes the structure of the rest of the container.

Size of TOC

unsigned long tocSize;

This provides the size of the TOC in bytes.

A picture of the Bento label format is as follows:

We do not expect additional information to be added to the TOC label. Instead, it
can be added as values of the distinguished object #1, which represents the container
itself.

Table Of Contents Format___

Understanding the TOC is the key to understanding how the Bento format works.
We begin with an overview, and follow up with the concrete details.

The TOC consists of a sequence of entries. Each entry corresponds to a single
segment of a value of some object.

TOC entries are sorted by object ID, and within a single object they are sorted by
property ID. This gives us two things:

• All the entries for a given object are contiguous in the TOC, and all the entries for a
given property are contiguous within the object.

• We can find an object within the TOC, or a property within an object, by binary
search. If an object ID or a property is not defined, we can quickly determine that it
is not defined.

Thus, each object in the container is represented in the TOC by a sequence of entries,
one for each segment of a value of the object. (Bento has no way to represent an object
without at least one value.)

Since each TOC entry defines a value, we know immediately that it must indicate the
object ID, property, type, and data of the value. In addition, it indicates the generation
number of the value and it may contain additional bookkeeping information for the
value. Let us examine each of these in detail:

Object ID

The ID of the object that this value is part of.

Property

The property is indicated by the object ID of a property description.

Type

The type is indicated by the object ID of a type description.

Magic Byte Seq. Flags blkSz Maj.V Min.V TOC Off. TOC Size

8 bytes 2 bytes 2 bytes 2 bytes2 bytes 4 bytes 4 bytes

Bento Specification 63

Revision 1.0d5

Copyright 1993 Apple Computer

July 15, 1993

Data

The value is indicated by the offset and length of the sequence of bytes representing
the value. The offset is a 0 origin byte offset from the beginning of the container. The
length is a byte count, and may be 0, indicating a 0 length value.

If the data is four bytes long or less, it may be included directly in the TOC as an

im-
mediate value

, rather than being referenced by offset and length.

Generation number

This allows applications to check consistency between different properties.

Bookkeeping information

This field provides some additional information about the entry. It is described in
more detail below.

Table Of Contents Low-Level Design

A TOC entry could simply be defined by putting all the information above in a
record. Unfortunately, this record would be relatively large and would be very likely to
contain redundant and/or unused information.

Specifically, the object ID, property, type, generation number, and bookkeeping
information are each 4 bytes long. The data length is also four bytes, and the data offset
can be as much as eight bytes. This is a total of 32 bytes, which would impose a significant
overhead on small values.

Furthermore, sequential TOC entries are very likely to have the same object ID and
generation number. They are may have the same property, and even the same type. (This
last case means that the sequential entries are segments of the same value.) Many TOC
entries will not need any bookkeeping information. Thus a scheme that requires all these
fields for each TOC entry imposes considerable unnecessary overhead.

Instead, we have adopted an approach in which each TOC entry contains only the
information that is new or different compared with the previous TOC entry. This results
in a TOC that is organized as a stream rather than a table, and is parsed as it is read in.
Due to the compression, we have found that reading in the new TOC format is signifi-
cantly faster than reading in the old tabular format.

We will describe the TOC format at two levels: first, the logical structure of the
stream, and second the actual physical representation.

Logical Stream Structure

The following grammar describes the set of stream elements and how they can be
combined. Terminals are given in

bold

; they are described in detail in the list following

the grammar. “*” means repeated 0 or more times. “

+

” means repeated 1 or more times.
Square brackets mean present 0 or 1 time.

TOC ::=

object-ID

property

+

property ::=

property-ID

 value

+

64 Format Definition

July 15, 1993

Copyright 1993 Apple Computer

Revision 1.0d5

value ::=

type-ID

[

gen-num

] [

ref-obj-ID

] value-data

value-data ::= initial-data continued-data*

initial-data ::=

immediate

 |

short-reference

 |

long-reference

continued-data ::=

ctd-immediate

 |

ctd-short-ref

ctd-long-ref

Object-ID, Property-ID, Type-ID, Ref-obj-ID

These are all object IDs. An object ID is a 32-bit persistent indentifier. The
namespace for object IDs is local to the container. Object IDs are assigned sequen-
tially as objects are allocated, and the last ID allocated in the container is maintain as
a property of object # 1.

Gen-num

This is a 32-bit generation number of the value. It can be set by default from the
container, or explicitly for a given value. Generation numbers are intended to be
assigned sequentially to each consistent update of the container. The generation
number of the TOC value in object # 1 is the default generation number of the
container.

Immediate, Ctd-immediate

These are 0, 1, 2, 3 or 4 byte data values. They represent the actual data of the value.
Except for the 0 byte case, they are all packaged in a 4 byte field. The ctd-immediate
is exactly the same as the immediate, except that it is flagged to indicate that it is a
value segment other than the first.

Short-ref, Ctd-short-ref

These are references to the data for a value segment using a 32-bit offset and a 32-bit
length. The ctd-short-ref is exactly the same as the short-ref, except that it is flagged
to indicate that it is a value segment other than the first.

Long-Ref, Ctd-long-ref

These are references to the data for a value segment using a 64-bit offset and a 32-bit
length. The ctd-long-ref is exactly the same as the long-ref, except that it is flagged
to indicate that it is a value segment other than the first.

Physical Stream Format

To make the TOC readable without starting from the beginning, it is broken up into
fixed size blocks. The block size in any given container is specified in its label, and can

range from 2

10

 bytes to 2

26

 bytes.

At the beginning of each block, there is assumed to be no previous information, and
all information is written to the TOC. Thus a block can be read in and interpreted in isola-
tion.

Bento Specification 65

Revision 1.0d5

Copyright 1993 Apple Computer

July 15, 1993

The stream of elements in the TOC is annotated with format information to make it
possible to parse it. This annotation is done by placing one-byte codes at each point
where the stream is ambiguous. Each distinct code is followed by a specific sequence of
fields.

The specific byte codes used int the TOC, and associated sequence of fields for each
code are given in the following list. The fields correspond to the grammar terminals
described above. All fields are four bytes long, except for long data offsets, which are
eight bytes long.

NewObject 1U

Fields: object ID, property ID, type ID

Meaning: Full specification of the identity of a value in the container. Found only at
the beginning of an object or the beginning of a block.

NewProperty 2U

Fields: property ID, type ID

Meaning: Information required to begin a new property in an existing object.

NewType 3U

Fields: type ID

Meaning: Information required to begin a new value in an existing property.

ExplicitGen 4U

Fields: generation number

Meaning: Generation number of this value is different from preceeding value, or this
is the first value in a block.

Offset4Len4 5U

Fields: offset (4 bytes), length

Meaning: Reference to value data; the first data segment for the value.

ContdOffset4Len4 6U

Fields: continued offset (4 bytes), length

Meaning: Reference to value data;

not

 the first data segment for the value.

Offset8Len4 7U

Fields: offset (8 bytes), length

Meaning: Reference to value data; the first data segment for the value.

ContdOffset8Len4 8U

Fields: continued offset (8 bytes), length

Meaning: Reference to value data;

not

 the first data segment for the value.

Immediate0 9U

Fields: none

Immediate1 10U

66 Format Definition

July 15, 1993

Copyright 1993 Apple Computer

Revision 1.0d5

Fields: immediate data (1 byte) stored in a 4 byte field

Immediate2 11U

Fields: immediate data (2 bytes) stored in a 4 byte field

Immediate3 12U

Fields: immediate data (3 bytes) stored in a 4 byte field

Immediate4 13U

Fields: immediate data (4 bytes) stored in a 4 byte field

ContdImmediate4 14U

Fields: continued immediate data (4 bytes) stored in a 4 byte field

Meaning: Immediate data but

not

 the first data segment for the value.

ReferenceListID 15U

Fields: object ID

Meaning: The ID of a bookkeeping object associated with this value. Occurs before
any data references. Omitted if the value does not have a bookkeeping object.

EndOfBufr 24U

Fields: none

Meaning: end of current block, go to next

NOP 0xFFU

Fields: none

Meaning: NOP or filler; skipped.

Additional Table Of Contents Issues

The description above covers the byte level format of the TOC. However, there are
a number of fine points that are necessary to understand how the TOC is used.

Standard Object IDs

Object ID 0 is never used, to avoid confusion with

NULL

, and for error checking.

The first 216 object IDs (out of 232) are reserved for standard objects specified in the
Bento specification. Thus, any ID with the two high order bytes 0 is the ID of a standard
object. Most standard objects are type or property description objects, but some are
specific objects required by the implementation. A list of the currently defined standard
objects is given in Appendix D.

Standard objects are intended for use in defining the format of containers and
supporting the API, and are not intended to be used for application data, types, or prop-
erties. Standard objects are required to “bootstrap” the API, since even finding the global
name in a type description requires knowing a particular property and type.

TOC entries for standard objects are not required, but they are permitted. Thus, the
IDs for standard objects may be used without a corresponding TOC entry.

Bento Specification 67

Revision 1.0d5

Copyright 1993 Apple Computer

July 15, 1993

Any given container can contain TOC entries for any subset of the defined properties
for a given standard object, from none to all. If the TOC

does

 contain entries for defined
properties of standard objects, the entries must conform to the specification. Thus, a
reader need not look in the TOC when it encounters a standard object ID.

Allowing entries for standard objects in the TOC gives us a mechanism for providing
some backward compatibility. If we want to introduce a new standard object, we can put
its description in the TOC of backward compatible containers for a while. Then older
applications can still understand that object, assuming they can understand the descrip-
tion. At a minimum, the object description can be used to explain to the user what’s
missing and what she can do about it.

Additional “non-standard” properties can be given for standard objects, as long as
they do not conflict with the standard properties.

TOC Self Reference

Every TOC contains a standard object that is used to describe the TOC itself. In
particular, it is object ID 1, so the TOC entries for the TOC itself always come at the begin-
ning of the TOC.

Additional TOC properties can be useful. For example, an index to speed access to
the entries by ID could be attached to the TOC through another property. Potentially
several such indexes, using different formats, could be attached.

Applications are free to attach additional properties to object 1. For example, it is
sometimes useful to have an array of “root” objects in a container, from which all other
objects can be found. Information about when the last update was performed, by whom,
etc. could be maintained using properties of object 1. Etc.

Generation of Object IDs

Object IDs other than IDs of standard objects are generated by sequentially incre-
menting a counter from

0x00010000

. Object IDs are never reused in later generations of
a container if an object is deleted. The last ID number generated is kept as a property of
object # 1 to allow generating further IDs without reuse.

Generation Number

The current generation number of a Bento container is the generation number of its
TOC, as recorded in the TOC value entry. Any change at all in a container requires a
change to the TOC (since at least one entry has to change), so this is logically consistent.

Immediate values

Eight bytes to twelve bytes of an entry are required to “point to” the value data for
an entry (four or eight bytes of offset and four bytes of length). When the property value
is large, such as a video clip, PICT, or rich text object, this is reasonable, but when it is just
an object ID or an integer, it is excessive.

An entry can be an immediate value. In this case it contains data instead of a offset
and length referring to the data. All of the other fields of the entry are interpreted exactly
as before. In particular, the type of the entry still describes the format of the value.

68 Format Definition

July 15, 1993

Copyright 1993 Apple Computer

Revision 1.0d5

The library automatically creates immediate values when a four or less bytes of data
are written to a new value segment. If more data is written to the value later, the API auto-
matically converts it to a normal TOC entry.

Note that it is perfectly legal for an entry to “point to” a single byte of data, or even
zero bytes of data, somewhere in the file. Such an entry will never be created by the
library, but will be read correctly if it is encountered. Immediate values are only an opti-
mization and are never required.

Spelling of Globally Unique Names

A given globally unique name is the value of a property of a type, property, or other
description. The type of that property entry defines the format of the name. Currently,
all Globally Unique Names must be in ISO 9070 name syntax, and must be derived from
a name provided by an ISO naming authority.

Updating and Bookkeeping Information

The information used by the library to record updates and to perform reference
tracking is stored as normal values in objects. Of course, these values are marked with
standard properties known to the library.

The format of this information is not described in this version of the Bento specifica-
tion. It is fully documented in the library source code.

Format Usage Issues__

Dealing With Tagged Streams

The actual value data corresponding to a TOC entry in general will be completely
“naked,” with no required bytes specified by the format around it at all. This is in
contrast to ”internally tagged” file formats, in which each chunk of data is required to
begin with (at least) a size and type, and possibly other information.

To accomodate existing internally tagged data formats, in Bento a given format of
value can be defined to contain its own size, type or any other metadata. Furthermore, a
TOC can be created that provides different TOC entries for data and tags in a stream of
tagged chunks. In this case the tags are still in the stream, but they have been “logically
separated” from the data when viewed through the Bento API. The tags can even be
omitted from the TOC altogether, in which case they will be invisible if the data is viewed
through the API.

