
Util2 Package:

Unix-like and Other Utilities

For OS/2, Win32, and DOS

Version 2.9

Brian Yoder

beyoder@us.ibm.com

7 February 1998

Contents

Introduction 1

Filename Matching and Patterns 2

Basic Rules . 2

Patterns . 3

Examples . 4

ccp|Conditional Copy 5

Usage . 5

Flags . 6

Examples . 7

cdx|Enhanced Change Directory 11

Usage . 11

Examples . 12

chmod|Change File Mode 13

Usage . 13

Examples . 14

crc and crcchk 15

Usage . 15

Flags . 16

Input File for crcchk . 16

Output File from crcchk . 16

Examples . 17

du|Directory Usage 19

Usage . 19

Example . 19

grep|Search for regular expression 20

Usage . 20

Flags . 20

Customizing the Output . 21

i

CONTENTS ii

Notes . 22

Regular Expressions . 23

Examples . 24

ls|List Directory 26

Usage . 26

Flags . 27

Notes . 29

Examples . 30

strings|Shows printable strings 33

Usage . 33

Flags . 33

txtcut|Text Preprocessor 34

Usage . 34

Flags . 35

Input Text File Format . 35

Examples . 35

Introduction

This package contains a set of Unix-like and other miscellaneous command-line

utilities. Each is available for 16-bit DOS, Win32, and 32-bit OS/2 command

lines. The Win32 versions work with Windows 95 and Windows NT command-

line sessions and support long �lenames. The OS/2 versions work with HPFS

long �lenames and can run in an OS/2 window.

The package is available inside IBM as the Util2 Package. It is available

outside IBM as the UTLOS2 Package from the various Internet sites that mirror

the IBM Employee Written Software (EWS) packages.

The following utility programs are included:

ccp : Conditional copy: A better XCOPY. Very nice!

cdx : Change directory { a much better CD

chmod : Change �le mode { a better ATTRIB

crc : Calculate CRC for �le(s)

crcchk : Calculate and check CRC for �le(s)

du : Display �le space usage

grep : Search text �les for regular expression

ls : List directory { a much better DIR

strings : Show printable character strings

txtcut : Text �le preprocessor for cut, awk, and Perl

Most of these utilities are based on Unix commands of the same or similar

name but are more friendly to DOS, Windows, and OS/2 users and don't require

that you have a Unix background or bias. They accept both \ and / as path

separators. They show �elds (such as system, hidden, and archive attributes)

that Windows has and don't show �elds (such as the Unix-like user/group/other

permissions) that DOS and Windows 95 don't have and that Windows NT has

in but a far di�erent
avor.

1

Filename Matching and

Patterns

The utilities in this package match �lenames using Bourne shell style �lename

patterns, a superset of the DOS, Win32, and OS/2 \wildcard" �lename match-

ing characters.

A �le speci�cation consists of an optional drive, optional path information,

and a �lename. The �lename may consist of Bourne shell style pattern-matching

characters. DOS's �lename pattern matching is simplistic, Win32's and OS/2's

is a lot better, but Bourne shell pattern matching is better still. Also, all

versions (DOS, Win32, and OS2) of the commands in this package support the

same enhanced level of pattern-matching.

Basic Rules

� A dot is just another character and has no special meaning.

To the commands in this package, a �lename is just a string of characters.

The dot has no special meaning|it's just another character|so there is

no concept of a \�le extension". This is consistent with Win32 �lesystems,

OS/2's HPFS, and with Unix and Linux �lesystems.

Note that *.*" will not match a �lename that doesn't contain a dot.

The pattern *" matches any �lename. The pattern *.*" matches any

�lename that contains a dot. This is important to remember!

Note, however, that this is consistent across the DOS, Win32, and OS/2

versions of these utilities, unlike any of the native DOS, Win32, and OS/2

commands such as DIR and COPY. This is also consistent with native Unix

and Linux commands.

� Backslashes and forward slashes are accepted as path separators.

Either a \ (backslash) or / (forward slash) character may be used as a

�lename path separator on the command lines of these utilities. UNC-style

names may also be entered with either backslashes or forward slashes.

When one of these commands prints a path name, it uses the last path

separator character that it �nds on the last path name in its command

2

FILENAME MATCHING AND PATTERNS 3

line arguments. If you use \ then these commands print path names using

\; if you use / then these commands print path names using /.

If there are no path separators at all in any of the path names on the

command line, then these commands print path names using / as the

default path separator. If you prefer \ to be used as the default output

path separator in this case, then set the USEP environment variable to \.

Patterns

A �lename can contain one or more of the following patterns. Note that letters

within patterns are case-insensitive:

* Matches any string, including the null string.

For example, *ab* matches ab, blab, babies, and BABEL.

* matches any string, including TEMP, WINDOWS, makefile,

or myfile.c.

? Matches any single character.

For example, ab?c matches any �lename that is 4 charac-

ters long, begins with ab, and ends with c.

. Remember that \." matches a dot

For example, *.* matches myfile.c, config.sys, and

zip.hlp.

. does not match TEMP, WINDOWS, or makefile. This is

because these names do not contain a dot character.

[...] Matches any one of the enclosed characters.

For example, [ABC]* matches any �lename that begins

with A, B, or C.

[.-.] Matches any character between the enclosed pair, inclusive

(range).

For example, [A-Z]* matches any �lename that begins

with a letter. [A-LN-Z]* matches any �lename that

doesn't begin with M.

[!...] Matches any single character except one of those enclosed.

For example, [!XYZ]* matches any �lename that does not

begin with X, Y, or Z.

Put a backslash before the following characters if they are part of the �lename

to be matched. This removes their special meaning:

[] { } !

FILENAME MATCHING AND PATTERNS 4

In addition

Enclosed characters can be combined with ranges. Thus, [ABCM-Z]* matches

any �lename that begins with A, B, C, or M through Z.

Additionally, any pattern may be followed by:

{m} Matches exactly m occurrences of the pattern.

{m,} Matches at least m occurrences of the pattern.

{m,n} Matches at least m but no more than n occurrences of the pattern.

where: m and n must be integers from 0 to 255, inclusive.

Examples

1. The pattern [A-Z][0-9A-Z.]{0,}matches any �lename that begins with

a letter that is followed only by letters or numbers, and may contain one

or more dots.

2. The pattern [!.]{1,} matches any �lename that does not contain a dot.

Literally, the pattern means: Match any name that contains one or more

occurrences of any character that is not a dot.

3. The pattern *TXT* matches any �lename that contains the string \TXT",

either in the beginning, at the end, or in the middle.

4. Again, the pattern * matches any �lename. The pattern *.* matches any

�lename that contains a dot. Note that *.* will not match a �lename

that doesn't contain a dot! This is important to remember!

ccp|Conditional Copy

The ccp command conditionally copies �les to a target directory if they are

missing from the target directory or have a di�erent size, time, or date on the

target directory. It preserves the name, read/write mode (read-only attribute),

system and hidden attributes, and modi�cation date and time of the �les that it

copies. It can copy entire subdirectory trees as XCOPY /S does or just portions

of subdirectory trees. It can also exclude �les and subdirectory trees that match

one or more optional exclusion patterns.

Usage

ccp [-flags] [--] source ... [! Xsource ...] targetdir

The ccp command conditionally copies �les whose names match the source

�le speci�cation(s). It ignores hidden and system �les. It copies �les to the

target directory. The target directory must already exist.

If there is only one source �le speci�cation and no Xsource �le speci�cations,

then the targetdir is optional. In this case, it defaults to . (a dot, which means

the current directory).

A source �le speci�cation consists of an optional drive, an optional path,

and a �lename. The �lename may contain pattern-matching characters. If a

source �le speci�cation is the name of a directory, then ccp appends \/*" to it,

matching all �les in the directory.

If a ! is speci�ed, then ccp will exclude (not copy) any source �le whose

source name matches one of the Xsource patterns (listed between the ! and the

target directory). Each Xsource pattern must match the full source name to

exclude the source �le. An Xsource pattern may, of course, contain drive and

path information.

Generally, an Xsource pattern should start with a *" character or with the

drive and path of a source �le (as speci�ed on the command line) or it will not

exclude any source �les. This is because ccp compares each Xsource pattern

with the path and name of each source �le as it was speci�ed on the command

line, and including any subdirectory names that ccp added due to the -s
ag.

See the examples for more details.

Both \ (backslash) and / (forward slash) characters are interpreted as path

separators in source �le speci�cations, the Xsource (exclude source) patterns,

5

CCP|CONDITIONAL COPY 6

and the target directory speci�cations. Therefore, the \ (backslash) character

cannot be used as an escape character in an Xsource pattern.

This program writes the names of source �les (both those copied and, if

the -x
ag is speci�ed, those excluded) to standard output. It writes all other

messages, errors, and copy count statistics to standard error.

Flags

By default, ccp only copies a source �le if it is missing from the target directory,

has a di�erent size on the target directory, or has a di�erent modi�cation date

and time on the target directory. The behavior of ccp can be altered by the

following
ags:

-l (letter el) If a �le with the same name as a source �le exists in the target

directory, copy the source �le only if its modi�cation time is later than

that of the �le in the target directory. In other words, only copy source

�les that are later than those in the target.

-d If the target directory doesn't already exist, create it before attempting

to copy any �les to it.

Note that if you specify -s with or without -d, ccp always creates any

path components within the target directory that don't already exist.

-e If a �le with the same name as a source �le doesn't exist in the target

directory, then don't copy the source �le. In other words, only copy �les

that already exist in the target.

-f Force copy even if target �le is read-only.

-n Just display the names of source �les that would have been copied, but

don't actually copy any �les. If the -d
ag is also speci�ed and the tar-

get directory doesn't exist, then the target directory is also not actually

created.

The -n
ag is an excellent way to see just what �les would be copied and

which �les would be excluded without actually copying anything.

-s Descend subdirectories while searching for �les to copy, just as XCOPY

/S does. The subdirectory structure (relative to the source directory) is

preserved within the target directory. When a �le is copied, any subdirec-

tories that don't already exist within the target directory are created by

ccp.

If the speci�ed target directory doesn't exist, it is not created unless the

-d
ag is also speci�ed. The -s
ag without -d only creates subdirectories

within the target directory but never creates the target directory.

CCP|CONDITIONAL COPY 7

-S Also copy system and hidden �les.

Since system �les are quite often also read-only �les, the -S
ag should

usually be combined with the -f
ag to force updates. Be very careful

when updating system and hidden �les!

-t For each �le copied, show the path and name of each target �le in addition

to the path and name of each source �le, as follows:

sourcename -> targetname

-x Also display the names of source �les that are being excluded (not copied).

One of the following characters is displayed in front of each �lename that

ccp is excluding from copying:

! before �les that you want to exclude (via ! Xsource), and

x before �les that ccp decides to exclude (not copy).

Examples

1. ccp a:* .

This command copies all �les from the current directory on drive A to

the current directory if they don't exist in the current directory or have a

di�erent size, date, or time in the current directory.

2. ccp a:*

This command is the same as the previous one. Since there's only one �le

speci�cation, the target directory defaults to the current directory.

3. ccp * ! *.cod *xyz* a:

This command conditionally copies all �les in the current directory, ex-

cept for those whose names end with .cod or contain xyz, to the current

directory on drive A.

4. ccp -sd c:\windows* ! c:\windows\temp* d:\archive\windows

This command conditionally copies the c:\windows directory and all of its

subdirectories to the d:\archive\windows directory, except for any �les

that are in the c:\windows\tempdirectory. If any path components within

the target d:\archive\windows directory don't exist they are created

before copying the �les.

5. ccp -sd c:/windows/* ! *temp* d:/archive/windows

This command works like the previous command except it excludes any

�les within c:/windows that contain temp in their name or in any sub-

directory of their name.

CCP|CONDITIONAL COPY 8

Also notice that forward slashes work just as well as backslashes. Indeed,

when running ccp (or any of these other commands) from within a Perl,

Python, bash, gawk, or awk script, or from within another scripting lan-

guage, a backslash is often used to start an escape sequence and a forward

slash is a more convenient and robust path separator.

6. ccp -sd c:/windows/* ! */temp/* d:/archive/windows

This command works like the previous command except it excludes any

�les within c:/windows that also have a path component that includes

any temp subdirectory.

7. ccp -sd c:/windows/* ! */temp/* *sample.c d:/archive/windows

This command works like the previous command except it excludes any

�les within c:/windows that also have a path component that includes

any temp subdirectory, and it excludes any �le named sample.c.

Note that the exclusion pattern for sample.c begins with an asterisk.

This ensures that the pattern matches any �le ending in sample.c even

if there is path or other information present (such as test.sample.c and

tempdir/sample.c).

8. ccp -le * d:/tmp

This command copies all �les in the current directory to the d:/tmp

directory that already exist in d:/tmp but have a later modi�cation date

and time than those in d:/tmp.

9. ccp -n *.exe *.doc a:/

This command displays the names of all of the .exe and .doc �les in the

current directory that are missing from the root directory on drive A or

that have a di�erent size, date, or time in the root directory of drive A.

No �les are actually copied.

10. ccp -nelx * ! *.cod d:/mydir

This command displays the names of �les that would have been copied,

but doesn't actually copy anything.

It looks at all �les in the current directory, excluding any that end in .cod.

It displays the names of the source �les (that it would have copied) that

exist in the target directory and that are later than their counterparts in

the target directory.

Since you excluded the *.cod �les, ccp displays the names of the *.cod

�les with a \!" before each of their names. Since ccp excludes �les that

either don't exist in the target directory or have the same or earlier mod-

i�cation time in the source directory, ccp displays these latter �les with

an \x" before each of their names.

CCP|CONDITIONAL COPY 9

11. ccp -st c:*.exe d:

This command copies all of the .exe �les within the current directory and

all of its subdirectories on drive C to the current directory on drive D. If a

subdirectory in which a copied �le doesn't exist in the target, ccp creates

it. Note that ccp creates subdirectories within the target only for �les

that are copied.

The -t
ag tells ccp to show the path and name of each target �les that

is copied as well as its source path and name. For subdirectory copies,

this provides feedback that lets you know exactly where each source �le is

being copied.

12. ccp a:* .

This command copies all �les from the current directory on drive A to

the current directory if they don't exist in the current directory or have a

di�erent size, date, or time in the current directory.

13. ccp a:*

This command is the same as the previous one. Since there's only one �le

speci�cation, the target directory defaults to the current directory.

14. ccp * ! *.cod *xyz* a:

This command conditionally copies all �les in the current directory, ex-

cept for those whose names end with .cod or contain xyz, to the current

directory on drive A.

15. ccp -sd c:/windows/* ! c:/windows/temp/* d:/archive/windows

This command conditionally copies the c:/windows directory and all of

its subdirectories to the d:/archive/windows directory, except for any

�les that are in the c:/windows/temp directory. If any path components

within the target d:/archive/windows directory don't exist then ccp

creates them before copying the �les.

16. ccp -sd c:/windows/* ! *temp* d:/archive/windows

This command works like the previous command except it excludes any

�les within c:/windows that contain temp in their name or in any sub-

directory of their name.

17. ccp -sd c:/windows/* ! */temp/* d:/archive/windows

This command works like the previous command except it excludes any

�les within c:/windows that also have a path component that includes

any temp subdirectory.

18. ccp -sd c:/windows/* ! */temp/* *sample.c d:/archive/windows

This command works like the previous command except it excludes any

�les within c:/windows that also have a path component that includes

any temp subdirectory, and it excludes any �le named sample.c.

CCP|CONDITIONAL COPY 10

Note that the exlusion pattern for sample.c begins with an asterisk. This

ensures that the pattern matches any �le ending in sample.c even if there

is path or other information present.

19. ccp -le * d:/tmp

This command copies all �les in the current directory to the d:/tmp

directory that already exist in d:/tmp but have a later modi�cation date

and time than those in d:/tmp.

20. ccp -n *.exe *.doc a:/

This command displays the names of all of the .exe and .doc �les in the

current directory that are missing from the root directory on drive A or

that have a di�erent size, date, or time in the root directory of drive A.

No �les are actually copied.

21. ccp -nelx * ! *.cod d:/mydir

This command displays the names of �les that would have been copied,

but doesn't actually copy anything.

It looks at all �les in the current directory, excluding any that end in .cod.

It displays the names of the source �les (that it would have copied) that

exist in the target directory and that are later than their counterparts in

the target directory.

Since you excluded the *.cod �les, ccp displays the names of the *.cod

�les with a ! before each of their names. Since ccp excludes �les that either

don't exist in the target directory or have the same or earlier modi�cation

time in the source directory, ccp displays these latter �les with an x before

each of their names.

22. ccp -st c:*.exe d:

This command copies all of the .exe �les within the current directory and

all of its subdirectories on drive C to the current directory on drive D. If a

subdirectory in which a copied �le doesn't exist in the target, ccp creates

it. Note that ccp creates subdirectories within the target only for �les

that are copied.

The -t
ag tells ccp to show the path and name of each target �les that

is copied as well as its source path and name. For subdirectory copies,

this provides feedback that lets you know exactly where each source �le is

being copied.

cdx|Enhanced Change

Directory

The cdx command is an enhanced (eXtended) version of the CD (or CHDIR)

command. Like CD, it can go to a speci�ed directory. Unlike CD, it can

also change the current drive at the same time. It can go to a default HOME

directory. And it can search through a set of paths for the speci�ed directory,

eliminating the need for a lot of little command �les to change directories.

The c:ntmp directory must exist and be writable for the Win32 and OS/2

versions of cdx. A temporary batch (command) �le is written to c:ntmp by

the cdx command for these platforms.

On DOS, the cdx command is implemented as cdx.bat. The cdx.bat script

calls cdir.exe and cdir.exe changes the current directory and drive itself.

For Win32, the cdx command is implemented as the cdx.bat script. For

OS/2, it is implemented as the cdx.cmd script. For these platforms, cdx calls

cdir.exe just to get the path and drive change information and then cdx itself

performs the change. This is because these platforms, like Unix, don't allow a

process to change its parent process's environment or working directory.

For DOS, the cdx.bat �le just invokes the cdir.exe program. You can, if you

wish, run the cdir.exe program directly to change your current working drive

and path. Using cdx instead just lets your �ngers type the same command on

DOS, OS/2, and Win32.

This command cannot be named cd, which is the name of the less-capable

built-in DOS, Win32, and OS/2 command.

Usage

cdx [d:][path]

If both the drive and path are missing, then cdx attempts to change the

current drive and path to that speci�ed by the HOME environment variable.

If the drive is present, then cdx changes your current drive to that drive. If

the path is present, then cdx changes the current directory on that drive to the

the speci�ed path.

11

CDX|ENHANCED CHANGE DIRECTORY 12

If the drive is missing and the path is relative (doesn't begin with \ or /

path separator), then cdx looks in the current directory for that path. If it

doesn't �nd it, it then looks for the path in the directories speci�ed by the

CDPATH environment variable. The list of paths speci�ed by CDPATH should

be formatted just like those for the PATH environment variable.

The following are the settings for HOME and CDPATH that I use:

SET HOME=c:\u\brian

SET CDPATH=c:\u\brian;c:\Program Files;e:\watcom

Examples

The following examples use the settings for HOME and CDPATH shown above.

1. cdx

Go to the c:\u\brian (HOME) directory.

2. cdx a:

Go to the current directory on the A drive.

3. cdx d:/tmp

Go to the \tmp directory on the D drive.

4. cdx include

Go to the include directory within the current directory. If it doesn't

exist, then use the list of directoies in CDPATH and go to the �rst of the

following directories that exists:

c:\u\brian\include

c:\Program Files\include

e:\watcom\include

chmod|Change File Mode

The chmod command is an alternative to the ATTRIB command. It allows

you to change the attributes (�le mode) of one or more �les. It can process

hidden and system �les in addition to ordinary �les.

Unlike ATTRIB for DOS and OS/2, chmod treats a read-only �le as lacking

the \write" capability rather than having the \read-only" capability.

The Win32 version of chmod will change the speci�ed attributes of match-

ing directories. The DOS and OS/2 versions of chmod ignore matching direc-

tories.

Usage

chmod [-R] [+-=][wsha] fpsec ...

If -R is speci�ed, then chmod recursively descends subdirectories looking

for matching �les. The -R
ag is compatible with the AIX and the original Unix

versions of chmod.

The �rst argument must contain exactly one of the \+-=" �le mode operators

followed by one or more of the \wsha" �le mode letters, with no intervening

spaces.

One or more �le speci�cations must follow. A �le speci�cation consists

of some combination of drive, path, and �lename. The �lename may contain

Bourne shell pattern-matching characters.

The �le mode operator can be one of the following:

+ Sets the speci�ed �le mode(s).

- Resets the speci�ed �le mode(s).

= Sets the speci�ed �le mode(s) and clears the modes that aren't

speci�ed.

The �le mode letters have the following meanings:

w Write permission.

s System attribute.

h Hidden attribute.

a Archive attribute.

13

CHMOD|CHANGE FILE MODE 14

Examples

1. chmod -w *

Reset the write permission for all of the �les in the current directory,

making them read-only.

2. chmod -R -w *

Reset the write permission for all of the �les in the current directory and

in all subdirectories, recursively.

3. chmod +ha *.exe

Make the .exe �les in the current directory hidden, and set their archive

bits.

4. chmod -a *.c

Reset the archive attribute for all of the .c �les in the current directory.

5. chmod =sh /*

For all of the �les in the root directory, set their system and hidden at-

tributes and reset their write permission and archive attribute. When

complete, the �les will be unwritable (read-only), system, and hidden,

and their archive attributes will be zero.

crc and crcchk

The crc command is used to record the length and 16-bit CRC value (or, op-

tionally, the 32-bit CRC value) for one or more �les.

The crcchk command is used to record the length and CRC value (either

16-bit or 32-bit) for a list of �les and optionally check their lengths and CRC

values against a previously-obtained set of values for those �les.

The code used to calculate the 16-bit CRC value for an individual �le was

developed at IBM Austin, Texas, by Jim Czenkusch. The code to calculate the

32-bit CRC has enhancements to pre-condition and post-condition each value

so that it is compatible with the 32-bit CRC value generated by PKWARE's

PKZIP and InfoZIP's zip commands.

Usage

crc [-s] [-l] fspec ...

crcchk [-l] infile [outfile]

The crc program gets the length and calculates the CRC value for each �le

that matches the given command-line �le speci�cation(s). If -s is speci�ed,

then crc recursively descends into subdirectories looking for �les that match

the �le speci�cation(s).

The crcchk program reads the input text �le to get a list of �les. It then

calcuates the length and CRC of each �le listed. If the input �le also contains a

length and CRC value for a �le, those values are compared against the calculated

values for that �le. This input �le can be created directly from the output of

either the crc or crcchk command.

If an output �le name is speci�ed to crcchk, then each �le listed in the

input text �le, along with its actual length and CRC, is written to the output

�le. Later, this output �le can be read by the crcchk program to check to see

if any of the listed �les has changed.

File lengths are displayed in decimal format. CRCs are displayed in hexadec-

imal format with a leading 0x. Filenames are enclosed within double quotes in

case they contain embedded spaces or other puncutation.

If the -l (letter el)
at is speci�ed, crc and crcchk generate 32-bit (long)

CRCs that are compatible with those generated by PKZIP and zip. The default

is to generate 16-bit CRCs.

15

CRC AND CRCCHK 16

The crcchk program only honors the -l
ag if an output �le is speci�ed. It

ignores the -l
ag if no output �le was speci�ed.

For each matching �le, crc writes one line to standard output as follows:

length CRC "filename"

Flags

-l (letter el) crcchk (if an output �le was speci�ed) and crc calculate and

show long (32-bit) CRC values. The default is to calculate and show 16-bit

CRC values.

-s Descend subdirectories searching for matching �les (crc only).

Input File for crcchk

Blank lines are ignored. Lines that begin with # are assumed to contain com-

ments and are ignored. Each non-blank, non-comment line must be formatted

as follows:

[length CRC] "filename"

The length and CRC values in the line are optional. Either both must be

present or both must be missing. If present, the length must be speci�ed in

decimal, while the CRC must be speci�ed in hexadecimal as 0x followed by one

or more hexadecimal digits.

If the CRC is 0xNNNN or shorter (4 or less hex digits), then it is assumed to

be a 16-bit CRC. If it contains 5 or more hex digits, then it is assumed to be a

32-bit CRC.

If the length and CRC value are present, then crcchk compares the values

to those it calculated and logs any discrepancies to stderr.

The �lename must be enclosed in double quotes if it contains spaces, semi-

colons, commas, or other punctuation. Double quotes around the �lename are

optional otherwise.

Output File from crcchk

If an output �le is speci�ed, then crcchk writes to this output �le the name,

length, and CRC value for each �le that is listed in the input �le, one �le per

line, as follows:

length CRC "filename"

If the CRC in the input text �le is a 32-bit CRC, then the CRC in the output

�le will also be a 32-bit CRC. If the CRC in the input text �le is a 16-bit CRC,

then the CRC in the output text �le will be a 16-bit CRC.

CRC AND CRCCHK 17

Note: If an output �le is speci�ed but a �le listed in the input �le has no

CRC, then crcchk checks the -l (letter el)
ag. If -l is speci�ed in this case,

crcchk generates a 32-bit (long) CRC for the �le. Otherwise, it defaults to

generating a 16-bit CRC for the �le.

Examples

1. I entered the following command on my system (a very long time ago, I

might add):

crc *.h *.sys

It produced the following output:

3159 0xD65B BMTBL.H

10780 0x5495 UTIL.H

15473 0x064B REGEXP.H

178 0x4E87 \CONFIG.SYS

2. I entered the following command on my system (also a long time ago):

crc -l crc.doc

It produced the following output:

2409 0x070E5D3F CRC.DOC

3. The ls \u\brian\bin*.exe >files.txt command was run to produce

a list of �les that I wanted to check with crcchk. You should normally

specify the full pathname of the �les for ls so that you can later run crcchk

from any directory|crcchk will attempt to open each �le using the name

as listed. I then added the comment and blank line to the beginning of

the �le, as follows:

files.txt created on 05/20/91

\u\brian\bin\ati.exe

\u\brian\bin\b.exe

\u\brian\bin\cdcl.exe

\u\brian\bin\config.exe

\u\brian\bin\ccmt.exe

\u\brian\bin\cdir.exe

\u\brian\bin\chmod.exe

CRC AND CRCCHK 18

The crcchk files.txt files.crc command produced the following �le

named �les.crc:

7070 0xF359 "\u\brian\bin\ati.exe"

10000 0x8CFB "\u\brian\bin\b.exe"

27630 0x13AC "\u\brian\bin\cdcl.exe"

57954 0x5D88 "\u\brian\bin\config.exe"

14401 0x7352 "\u\brian\bin\ccmt.exe"

17827 0xDE07 "\u\brian\bin\cdir.exe"

24053 0xFE94 "\u\brian\bin\chmod.exe"

Now, we can run the crcchk files.crc command any time we want

to see if any of those executable �les has been changed. We might also

want to backup the �les.crc �le or make it read-only so we don't lose the

information it contains.

Note that since the length and CRC values are missing from the input

text �le, crcchk calculates 16-bit CRCs for the output �le by default.

du|Directory Usage

The du command calculates the total bytes used by a set of �les. For simplicity,

only the �les' sizes are calculated: the amount of space occupied by the disk

blocks is not.

Usage

du [-shR] fspec ...

The sizes of all �les that match each �le speci�cation are added. The total

size (in bytes) and the total number of matching �les are written to stdout.

By default, ordinary �les are included. Specify -s to include system �les

and -h to include hidden �les.

Specify -R to recurse subdirectories looking for matching �les.

Example

The du command writes information to stdout in the following format:

533908 bytes in 27 files

19

grep|Search for regular

expression

The grep (get regular expression and print) command is an subset of the Unix

grep command and even smaller subset of the superb GNU grep. It searches

one or more �les for a pattern, can descend into subdirectories when search-

ing, and can write its output (matching lines along with optional �le name,

line number, and column number) in one of a user-de�ned set of customizable

formats.

Usage

grep [-flags] [--] "pattern" [fspec ...]

The grep command searches for the speci�ed pattern. It writes each line

that contains the pattern to standard output. The pattern is a regular expres-

sion as described later in this document.

One or more �le speci�cations may be present on the command line. If no

�le speci�cations are present, then grep reads lines from standard input.

A �le speci�cation consists of an optional drive, optional path information,

and a �lename. The �lename may consist of Bourne shell pattern-matching

characters.

Binary �les (such as *.obj and *.exe) can be searched in addition to text

�les.

Flags

The
ags that are supported are a subset of those supported by the standard

Unix grep and of course an even smaller subset of those supported by GNU

grep:

-c Display only a count of matching lines.

-i Ignore case when making comparisons (same as -y).

20

GREP|SEARCH FOR REGULAR EXPRESSION 21

-l (letter el) List just the names of �les (once) with matching lines. Each �le

name is separated by a new-line character.

-n Preceed each line with the �le name and line number, in the following

default form: filename(line)

-# (where # is a digit from 0 through 9, inclusive): If the -n
ag is also

speci�ed, then a specifying a digit will select a pattern to use when showing

the �le name, line number, and starting column. If no digit is speci�ed,

then 0 (zero) is assumed.

-s Descend subdirectories, also.

-v Display lines that don't contain the pattern.

-y Ignore case when making comparisons (compatible with the RS/6000).

Customizing the Output

Normally, the Unix platform, GNU tools, and Emacs editor family support the

standard Unix-style grep output format. However, the DOS, Windows, and

OS/2 platforms have widely varying (and often uneven) requirements for the

output of grep and grep-like tools. Of course, GNU Emacs can be customized

for di�erent styles, but most other tools are not nearly as accomodating.

Therefore, the output of grep can be customized to include the �lename,

line number, column number, and other characters in the order required by

di�erent programs. If the -n
ag is speci�ed, then a format pattern number

may also be speci�ed. If no pattern number is speci�ed, then -0 (zero) is used

as the default.

The grep program looks in the GREPn environment variable, where n is the

pattern number. If there is no GREPn variable in the environment (for instance,

if -n5 is speci�ed but there is no GREP5 environment variable de�ned), then the

\$n($l) : " pattern is assumed.

The characters from the formatting pattern de�ned by the environment vari-

able are copied to the output and then the text from the line is added. If a dollar

sign $ meta character is encountered, then it and the next character are inter-

preted as follows:

$n speci�es the name of the �le.

$l (letter el) speci�es the line number within the �le.

$c speci�es the starting column within the line.

$$ speci�es the dollar sign itself.

$" speci�es a double quote character.

GREP|SEARCH FOR REGULAR EXPRESSION 22

With the exception of $", double quotes within or surrounding a format

pattern are ignored.

If no format pattern is found, the \$n($l) : " pattern is assumed. This

causes the following information to be shown:

filename(linenumber) : text from line

Some useful format patterns that may be speci�ed are:

set GREP0="$n($l) : "

set GREP1="$n($l:$c) : "

set GREP2="$n:$l:"

set GREP3="$n/$l/$c "

set GREP4="$n,$l,$c "

When speci�ed with the -n
ag, the format patterns shown above are used

as follows:

-n0 is the default that this package's grep has shown from the beginning.

It mimics the format of error messages from many PC compilers:

filename(linenumber) : text from line

The GREP0 environment variable can be changed to another pattern so that

-n by itself uses that pattern instead.

-n1 mimics the format of error messages from some modern C/C++ com-

pilers that also include the column number:

filename(line:column) : text from line

-n2 is the Unix and GNU grep's style:

filename:linenumber:text from line

-n3 and -n4 mimic the format used by the UltraEdit32 editor (for Windows

platforms only) allows you to select a �lename, open it, and put the cursor at the

speci�ed line and column within the �le. UltraEdit is a very capable shareware

editor available from the www.idmcomp.com Web site. It's a spectacular bargain

with a low shareware price and with capabilities, ease-of-use, and company

responsiveness far beyond that of many other editors at any price.

Notes

Lines are limited to a length of 512 characters. Longer lines are split into pieces

of 512 characters or less.

A dot within a �lename is treated as just another character and not assumed

to be the beginning of a �le extension. Therefore, you should specify * instead

of *.* when searching all �les in a speci�c directory.

Errors are listed on standard error.

GREP|SEARCH FOR REGULAR EXPRESSION 23

Regular Expressions

The grep command supports regular expressions that are combinations of one

or more of the following:

� The following expressions match a single character:

c Any ordinary character, other than one of the special

pattern-matching characters, matches itself.

. A . (period) matches any single character.

[string] A string enclosed in square brackets matches any one

character in the string.

[.-.] A range is two characters separated by a dash and en-

closed in square brackets. It matches any character

that is within the range.

[^string] A string (or range) enclosed in square brackets and pre-

ceeded by a ^ (circum
ex) matches any character ex-

cept for the characters in the string (or range).

Strings and ranges may be combined as needed, as in:

[a-m0-9xyz], which matches a through m, 0 through 9,

x, y, or z.

\c The \ (backslash) followed by any character matches

that character. This is useful for matching the following

special characters: . * [] { } ^ $ \

� The single-character expressions can be combined into regular expressions

as follows:

* Matches zero or more occurences of the previous char-

acter.

{m} Matches exactly m occurrences of the previous charac-

ter.

{m,} Matches at least m occurrences of the previous charac-

ter.

{m,n} Matches at least m but no more than n occurrences of

the previous character. m and n must be integers from

0 to 255, inclusive.

GREP|SEARCH FOR REGULAR EXPRESSION 24

� A regular expression can be restricted to match a string that begins on

the �rst character of the line, ends on the last character of the line, or

both, as follows:

^pattern The pattern matches a string that begins on the �rst

character of a line.

pattern$ The pattern matches a string that ends on the last char-

acter of a line.

^pattern$ The pattern matches an entire line.

Examples

1. grep "the cat" *.txt /*.bat

This command searches the �les in the current directory that end in .txt

and the .bat �les in the root directory for the string the cat. Only exact

case matches are listed on standard output: occurrences of The cat and

the Cat are not listed.

2. grep -i "the cat" *.txt /*.bat

This command is similar to the previous one except that it performs a

case-insensitive search. Occurrences of The cat and the CAT would be

listed in addition to any occurrences of the cat.

3. grep -sn "the {1,}cat" *.txt

This command searches all .txt �les in the current directory and in all

subdirectories (recursively) for the pattern. The pattern consists of the

word the, followed by one or more spaces, and followed by the word cat.

Therefore, it would match lines that contain the cat or the cat. The

\filename(linenumber) : " string is prepended to each line of each �le

in which the pattern is found.

4. grep -i "[a-z][a-z0-9_]{0,}(" *.c

This command searches all .c �les in the current directory for function

prototypes and function declarations. The pattern matches any string

that begins with a letter, is followed by zero or more letters, numbers, or

underscores, and ends with an open parenthesis.

5. foo | grep "&cont\."

This command searches the output of foo for the \&cont." string. Note

that the period in the pattern was escaped with a backslash. The grep

command would interpret the \&cont." pattern as meaning the \&cont"

string followed by any character.

GREP|SEARCH FOR REGULAR EXPRESSION 25

6. grep "^Usage$" *.doc

This command searches all .doc �les in the current directory for lines that

consist of nothing but the string \Usage".

7. grep "streams\[" *.c

This command searches all C �les in the current directory for lines that

contain the "streams[" string. Note that the \[" character has to be

escaped in the pattern so that it is interpreted by grep as a bracket and

not as the beginning of a set or range.

8. grep -v "^$" *.doc

This command searches all .doc �les in the current directory and lists all

lines that are not blank. Note that the ^$ pattern matches any blank line.

ls|List Directory

The ls (list directory) command is a loose adaptation of the GNU ls command,

and is a better DIR command than DIR. It supports multiple �le speci�cations

on the command line. It matches �lenames using the Bourne shell pattern

matching rules and not the DOS or OS/2 \wildcard" rules.

The ls command lists the names of ordinary �les, hidden �les, system �les,

and directories as you wish. It also lists each name with any drive and path

information that was in the original �le speci�cation. It can recursively descend

subdirectories looking for matching �les and or directories if you wish.

In the \long" format, the ls command displays each �le's attributes as well

as its size, date, and time.

By default, ls sorts the output by �lename, and displays the names in multi-

column format if standard output is a character device. When writing multi-

column output, ls sorts the �les by column, newspaper-style, just as the Unix

and GNU ls commands do (and unlike the simplistic sort by row performed by

the DOS, Win32, and OS/2 DIR commands).

Usage

ls [-flags] [--] [fspec ...]

The
ags are optional. If speci�ed, they must consist of a dash followed by

one or more contiguous
ag characters. The
ags control what names are listed

and in what format they are listed.

If no
ags are speci�ed, then -fdn is assumed: list all matching ordinary

�les and directories, and sort them by name.

Zero or more �le speci�cations may be entered. Each �le speci�cation con-

sists of an optional drive, optional path, and �lename. Each �lename may

contain Bourne shell pattern-matching characters (better than DOS's, Win32's,

and OS/2's wildcard characters, and supported on all of these platforms). The

ls command lists all �les in the speci�ed directory whose names match the

�lename, according to the
ags.

If a �le speci�cation is that of a directory, then ls appends /* to it and

matches everything in that directory. If there are no �le speci�cations, then ls

assumes *: match everything in the current directory.

26

LS|LIST DIRECTORY 27

Flags

The following (case-sensitive)
ag characters are supported:

-f Lists all ordinary (including read-only) �les that match the �le speci�ca-

tion(s). If the -f
ag is speci�ed, then directories are not listed unless the

-d
ag is also speci�ed.

-s Lists all system �les.

-h Lists all hidden �les.

-d Lists all subdirectories that match the �le speci�cation(s). If the -d
ag

is speci�ed, then ordinary �les are not listed unless the -f
ag is also

speci�ed.

-a Lists all ordinary �les, system �les, hidden �les, directories, the . and ..

directories, and, for DOS only, volume IDs.

-l Lists each matching �le or directory name in \long" format. For each

name, it also displays the attributes, size, time stamp, and date stamp. If

-l is not speci�ed, the ls command lists only the names.

-c Uses time of creation instead of time of last modi�cation. If used with -l,

it shows this time. If used with -t, it sorts using this time. (Win32 and

OS/2 versions only.)

-u Uses time of last access instead of time of last modi�cation. If used with

-l, it shows this time. If used with -t, it sorts using this time (NTFS and

HPFS only).

-x The same as -u, for compatibility with previous versions of ls.

-R Recursively descends subdirectories.

-p Puts a path separator after each name that is a directory.

-C Forces multicolumn output. The ls command tries to list more than one

�lename per line, depending upon the length of the longest name and the

width of the display screen. Filenames are sorted vertically.

-m The same as -C, for compatibility with previous versions of ls.

-1 Forces single (one) column output.

-n Sorts the output by name (default), in alphabetic order.

-t Sorts the output by date and time, from newest to oldest.

-z Sorts the output by �lesize, from smallest to largest.

-r Reverses the order of the sort.

LS|LIST DIRECTORY 28

-o Don't sort: display �lenames in the order in which they occur in each

directory.

-g Lists each set of matching �les as a group in the order that their fspecs

are speci�ed. For example, if *.h *.c are entered, then the -g
ag causes

all .h �les to be displayed �rst and all .c �les to be displayed next.

The -g
ag causes the program to make a separate pass through a di-

rectory for each fspec, making 'ls' run slower. The default behavior is to

display all matching �les as they are found, making only one pass through

each directory.

-L Shows �lenames in lowercase.

-U Shows �lenames in uppercase.

You can mix and match the f, s, h, and d
ags to include as many di�erent

�le types as you wish. If you specify at least one of the s, h, or d
ags, then you

must explicitly specify -f to include ordinary �les in the listing. If you don't

specify one of the f, s, h, d, or a
ags, then the default is -fd: list only ordinary

�les and directories.

You can specify the -l (letter el)
ag to list �le and/or directory names in

\long" format. In this format, each name appears along with its mode, size,

date, and time. The mode (attribute) consists of a set of characters that are

interpreted as follows:

� The �rst character is:

d The name is a directory.

- The name is a �le.

� The second character is:

r The �le is readable (always!).

- The �le is not readable (never!).

� The third character is:

w The �le is writable.

- The �le is read-only.

� The fourth character is:

s The �le is a system �le.

- The �le is not a system �le.

� The �fth character is:

h The �le is a hidden �le.

- The �le is not a hidden �le.

� The sixth character is:

a The �le has been changed (its archive bit is set).

- The �le's archive bit is not set.

LS|LIST DIRECTORY 29

Notes

An ordinary �le is a directory entry whose directory, system hidden, and volid

attribute (mode) bits are all zero.

Filenames are listed on standard output. Filespecs that don't match any

�les are listed on standard error.

A �le speci�cation consists of an optional drive, optional path information,

and a �lename. The �lename may consist of Bourne shell pattern-matching

characters. DOS's �lename pattern matching is simplistic, Win32's and OS/2's

is a lot better, but Bourne shell pattern matching is better still. Also, all

versions (DOS, Win32, and OS2) of the commands in this package support the

same enhanced level of pattern-matching.

A dot within a �lename is treated as just another character and not assumed

to be the beginning of a �le extension. Indeed, the ls command has no concept

of a �le extension. This is compatible with the use of dots within Win32, NTFS,

HPFS, and AIX �lenames.

Flag characters are case sensitive. Name comparisons are case-insensitive,

as speci�ed by DOS, Win32, and OS/2.

If the -l (long format)
ag is listed, each �le's modi�cation time and date

are displayed. Specify the -c
ag along with -l to display each �le's time of

creation. Or, specify the -u
ag along with -l to display each �le's time of

last access. Note that the c and u
ags don't yield valid times for a �le system

(such as DOS or OS/2 FAT) that don't maintain them. Also note that the DOS

version simply shows the time of last modi�cation for the -lu and -lc
ags.

You may specify more than one set of
ags. For example, you may enter the

commands ls -n -l *.c *.h and ls -nl *.c *.h both list all .c and .h �les

in long format, sorted by name.

The order in which you specify certain
ags is important. For example, if

you specify -l, -C, and/or -1, the last one entered takes precedence. Likewise,

if you specify -o, -n, -z, and/or -t, the last one entered overrides the others.

If the ls command is displaying �lenames in multicolumn format and/or

sorting the names, then ls �rst stores all of the �lenames in memory, sorts them

(n, t, or z
ag), and determines how many columns to display. The DOS version

of the ls command may run out of memory for large �le listings. If it does, you

should re-run ls with the -1o (number 1 and letter o)
ags: force single-column

output and don't sort.

The DOS version of ls defaults to showing all �lenames in lowercase since

this is more readable (especially on smaller displays). The OS/2 version shows

HPFS, NFS, and TVFS �lenames as-is and shows all other �lenames (including

those on FAT �lesystems) in lowercase. The Win32 version shows all �lenames

as-is. If you want uppercase �lenames, then specify the -U flag. On OS/2 and

Win32 platforms, the -L
ag will force all names to be shown in lowercase.

The Watcom-built versions (Win32, OS/2, and DOS) do not list the volume

label.

Enter ls -? to get help.

LS|LIST DIRECTORY 30

Examples

1. ls *

ls

ls -fd *

These commands all mean the same thing: List all ordinary �les and

subdirectories within the current directory. They match the same �les

that the DOS command DIR *.* matches.

2. ls *.*

This command lists all ordinary �les in the current directory that have

an extension (that is, that have a dot in their �le name). This is not the

same as the ls * command nor is it the same as the DIR *.* command,

since it won't list any �les or directories whose name contains no dot.

3. ls -Cn

List all �les in the current directory in multi-column format, sorted by

name. This is the default behaviour for the ls command when stdout is

the display (and when ls is entered with no
ags or arguments).

4. ls *.c

List all �les in the current directory that end in the .c su�x (or have the

.c extension, in DOS's words).

5. ls *.c *.h

ls *.[ch]

List all �les in the current directory that end in either .c or .h. These

commands show the same results. In the �rst command, notice that you

can enter more than one �le speci�cation. In the second command, notice

that the one Bourne shell pattern can replace the two simplistic DOS-sytle

patterns.

6. ls -Rd c:/

ls -Rd c:\

List all directories and subdirectories on drive C, starting at the root di-

rectory. This produces a tree listing of drive C.

Both \ (backslash) and / (forward slash) characters are interpreted as

path separators. When showing the matching directory entries, ls will use

the last path separator (if any) that you entered on the command line.

If you didn't enter a path separator on the command line, then ls uses a

default path separator of \ if the USEP environment variable is set to \

and a default path separator of / otherwise.

7. ls -a a:

List all �les and subdirectories in the current directory of the A drive.

LS|LIST DIRECTORY 31

8. ls -lsh *

This command lists only hidden and system �les in the current directory,

along with their mode (attributes), sizes, and time and date stamps.

9. ls -d *

This command lists all subdirectories within the current directory. The

DOS DIR *. command sort of does the same thing, provided that direc-

tory names have no extension and �le names always have an extension.

10. ls -l

List each �le in the current directory, along with its mode, size, and time

and date of last modi�cation.

11. ls -lc

Like -l, except display each �le's time and date of creation (Win32 and

OS/2 versions only).

12. ls -lu

Like -l, except display each �le's time and date of last access (NTFS and

HPFS only).

13. ls -R c:/[a-m]*.exe

List all .exe �les on drive C that begin with the letters A through M,

inclusive.

14. ls -R c:/my.bat

List all occurances of the my.bat �le on drive C. This command performs

a \whereis" type of function.

15. ls -R *.c

List all .c �les in the current directory and, recursively, in any subdirec-

tories within the current directory.

16. ls -lRdn /

List all directories on the current drive in \long" format, sorted by direc-

tory name.

17. ls -lt

List all �les in the current directory in \long" format, sorted by date and

time of modi�cation.

18. ls -lut

List all �les in the current directory in \long" format, sorted by date and

time of last access (NTFS and HPFS only).

LS|LIST DIRECTORY 32

19. ls -luo

List all �les in the current directory in \long" format, in the order in which

they occur in the directory (unsorted). Display the time of last access for

each one.

20. ls -lRn

ls -l -Rn

ls -l -R -n

You may specify
ags in one or more groups. For example, these com-

mands all produce identical results.

21. ls -lC1

The same command as ls -1. The C
ag disables the l
ag, and the 1

ag in turn disables the C
ag.

strings|Shows printable

strings

The strings command extracts and shows the printable strings in one or more

�les including binary �les. It is based on the *ix strings command, except that

it shows o�sets in hexadecimal rather than octal.

Usage

strings [-a] [-o] [-#] [-s] [fspec ...]

The strings command searches one or more �les for printable ASCII strings

and writes them to standard output. If no �les are speci�ed, then the command

searches standard input in binary mode.

The isprint() library function is used to test for printable ASCII characters.

A sequence of printable characters must be terminated with a null, carriage

return, or line feed character to be considered a valid string.

Flags

The
ags that are supported are similar to those supported by the standard

Unix strings command:

-a Search the entire �le. This
ag is present for command-line compatibility:

this strings command always searches �les in their entirety.

-o Also show the o�set of each string found. The o�set is shown in hexadec-

imal and not octal, unlike the Unix strings command.

-# Speci�y a number for #. Strings must have a minimum length of # char-

acters before they are shown. The default minimum number of characters

is 4.

-s Descend subdirectories, also.

-S Search system and hidden �les, also.

33

txtcut|Text Preprocessor

Text �les that contain blank lines, comments preceded by # (pound signs), a

varying amount of whitespace between tokens, and other features to make them

well-documented and readable (such as INI-style ASCII text �les) are not easily

processed by a Korn shell or REXX script and can even require a bit of extra

work for Perl scripts. Additional logic can be used to skip over blank lines

and remove comments, but this logic adds undesirable complexity and slow

performance to the script.

One solution is txtcut. This program prepares a text �le, stripping out

comments and blank lines and handling simple strings. It was originally devel-

oped as a fast preprocessor for the AIX cut command. However, the output

of txtcut can be piped into rxqueue, giving OS/2's REXX the ability to eas-

ily and quickly handle text-style INI-like �les. Even awk and Perl (of which

excellent Win32 and OS/2 ports exist) can bene�t from txtcut.

Information can be stored in an INI-style text �le in an easily- maintained

and readable fashion using comments, strings, and blank space. The txtcut

program preprocesses this text �le, removing comments and blank lines, pro-

cessing simple strings, and delimiting the tokens in a consistent manner. The

tokens produced by txtcut can be easily extracted using the AIX cut command,

a REXX script, or even an awk or Perl script.

The REXX, awk, Perl, and the Unix shells cover a lot of ground, but I

have wished for a long time for the capabilities of txtcut to make the basic

AIX, DOS, Win32, OS/2 toolsets more complete. I even maintain an AIX port

of txtcut which I use daily and on which the DOS, Win32, and OS/2 ports

are based. Text INI-style �les that are highly readable by people and easily

processed by command scripts: txtcut gives you the best of both worlds!

Usage

txtcut [-dchar] [-n] [-l] [-c] [textfile]

This program prepares a text �le for the AIX cut command. If the name of

the text �le is missing, then txtcut reads from standard input.

For each line that contains one or more tokens, txtcut writes one line to

stdout that contains the tokens. A delimiter character is placed between each

pair of tokens.

34

TXTCUT|TEXT PREPROCESSOR 35

The default delimiter character is a tab character. You may use the -d
ag

to change it to another character.

Flags

-d# Specify a character for # to be used as the token delimiter. This charac-

ter is speci�ed just as it is for the cut command. The default is a tab

character.

-n List the �lename as the �rst token in each line. If the text �le is being

read from standard input, then the �lename is listed as \(stdin)".

-l List the line number within the �le as a token.

-c List the number of tokens on the line as a token. This count does not

include the additional tokens that may be added by the -n, -l or -c
ags.

Input Text File Format

Blank lines are ignored. Lines that begin with a # or ; are assumed to be

comments and are ignored.

Each nonblank, noncomment line consists of one or more tokens. A token

can be:

� An = (equal) sign.

� A string of characters enclosed by either double quotes, single quotes, or

square brackets.

� A series of contiguous nonblank characters.

If a non-string token that begins with a # or a ; is encountered on a line, it

and the remaining tokens are assumed to be comments and are ignored.

Examples

1. Assume that the sample.txt �le contains the following:

This is a comment line

f1 = a b c # First line of tokens

x y z # Second line of tokens

aaa bbbb "cccc ddddd" # Last line of tokens

Run the following command:

TXTCUT|TEXT PREPROCESSOR 36

txtcut -d: sample.txt

The txtcut command writes the following to stdout:

f1:=:a:b:c

x:y:z

aaa:bbbb:cccc ddddd

2. Using the same sample.txt �le from the previous example, we'll cut the

third �eld from each line of the �le by running the following command:

txtcut sample.txt | cut -f3

The following is written to stdout:

a

z

cccc ddddd

3. Again, using the same sample.txt �le from the previous examples, we'll

cut the third �eld from each line of the �le. But this time we'll pipe the

�le into txtcut's standard input and we'll use a colon for the delimiter:

cat sample.txt | txtcut -d: | cut -f3 -d:

Again, the following is written to stdout:

a

z

cccc ddddd

4. Using the same sample.txt �le in example 1, we will add the �lename, the

line number within the �le where each line of tokens was found, and the

number of tokens in the line. The following shows a set of commands and

the output from each of them:

(a) txtcut -d: sample.txt

f1:=:a:b:c

x:y:z

aaa:bbbb:cccc ddddd

(b) txtcut -d: -n sample.txt

sample.txt:f1:=:a:b:c

sample.txt:x:y:z

sample.txt:aaa:bbbb:cccc ddddd

TXTCUT|TEXT PREPROCESSOR 37

(c) txtcut -d: -l sample.txt

3:f1:=:a:b:c

4:x:y:z

5:aaa:bbbb:cccc ddddd

(d) txtcut -d: -n -l sample.txt

sample.txt:3:f1:=:a:b:c

sample.txt:4:x:y:z

sample.txt:5:aaa:bbbb:cccc ddddd

(e) txtcut -d: -n -l -c sample.txt

sample.txt:3:5:f1:=:a:b:c

sample.txt:4:3:x:y:z

sample.txt:5:3:aaa:bbbb:cccc ddddd

