
Util2 Package:

Unix-like and Other Utilities

For OS/2, Win32, and DOS

Version 2.9

Brian Yoder

beyoder@us.ibm.com

7 February 1998

Contents

Introduction 1

Filename Matching and Patterns 2
Basic Rules . 2
Patterns . 3
Examples . 4

ccp—Conditional Copy 5
Usage . 5
Flags . 6
Examples . 7

cdx—Enhanced Change Directory 11
Usage . 11
Examples . 12

chmod—Change File Mode 13
Usage . 13
Examples . 14

crc and crcchk 15
Usage . 15
Flags . 16
Input File for crcchk . 16
Output File from crcchk . 16
Examples . 17

du—Directory Usage 19
Usage . 19
Example . 19

grep—Search for regular expression 20
Usage . 20
Flags . 20
Customizing the Output . 21

i

CONTENTS ii

Notes . 22
Regular Expressions . 23
Examples . 24

ls—List Directory 26
Usage . 26
Flags . 27
Notes . 29
Examples . 30

strings—Shows printable strings 33
Usage . 33
Flags . 33

txtcut—Text Preprocessor 34
Usage . 34
Flags . 35
Input Text File Format . 35
Examples . 35

Introduction

This package contains a set of Unix-like and other miscellaneous command-line
utilities. Each is available for 16-bit DOS, Win32, and 32-bit OS/2 command
lines. The Win32 versions work with Windows 95 and Windows NT command-
line sessions and support long filenames. The OS/2 versions work with HPFS
long filenames and can run in an OS/2 window.

The package is available inside IBM as the Util2 Package. It is available
outside IBM as the UTLOS2 Package from the various Internet sites that mirror
the IBM Employee Written Software (EWS) packages.

The following utility programs are included:

ccp : Conditional copy: A better XCOPY. Very nice!
cdx : Change directory – a much better CD
chmod : Change file mode – a better ATTRIB
crc : Calculate CRC for file(s)
crcchk : Calculate and check CRC for file(s)
du : Display file space usage
grep : Search text files for regular expression
ls : List directory – a much better DIR
strings : Show printable character strings
txtcut : Text file preprocessor for cut, awk, and Perl

Most of these utilities are based on Unix commands of the same or similar
name but are more friendly to DOS, Windows, and OS/2 users and don’t require
that you have a Unix background or bias. They accept both \ and / as path
separators. They show fields (such as system, hidden, and archive attributes)
that Windows has and don’t show fields (such as the Unix-like user/group/other
permissions) that DOS and Windows 95 don’t have and that Windows NT has
in but a far different flavor.

1

Filename Matching and

Patterns

The utilities in this package match filenames using Bourne shell style filename
patterns, a superset of the DOS, Win32, and OS/2 “wildcard” filename match-
ing characters.

A file specification consists of an optional drive, optional path information,
and a filename. The filename may consist of Bourne shell style pattern-matching
characters. DOS’s filename pattern matching is simplistic, Win32’s and OS/2’s
is a lot better, but Bourne shell pattern matching is better still. Also, all
versions (DOS, Win32, and OS2) of the commands in this package support the
same enhanced level of pattern-matching.

Basic Rules

• A dot is just another character and has no special meaning.

To the commands in this package, a filename is just a string of characters.
The dot has no special meaning—it’s just another character—so there is
no concept of a “file extension”. This is consistent with Win32 filesystems,
OS/2’s HPFS, and with Unix and Linux filesystems.

Note that “*.*” will not match a filename that doesn’t contain a dot.
The pattern “*” matches any filename. The pattern “*.*” matches any
filename that contains a dot. This is important to remember!

Note, however, that this is consistent across the DOS, Win32, and OS/2
versions of these utilities, unlike any of the native DOS, Win32, and OS/2
commands such as DIR and COPY. This is also consistent with native Unix
and Linux commands.

• Backslashes and forward slashes are accepted as path separators.

Either a \ (backslash) or / (forward slash) character may be used as a
filename path separator on the command lines of these utilities. UNC-style
names may also be entered with either backslashes or forward slashes.

When one of these commands prints a path name, it uses the last path
separator character that it finds on the last path name in its command

2

FILENAME MATCHING AND PATTERNS 3

line arguments. If you use \ then these commands print path names using
\; if you use / then these commands print path names using /.

If there are no path separators at all in any of the path names on the
command line, then these commands print path names using / as the
default path separator. If you prefer \ to be used as the default output
path separator in this case, then set the USEP environment variable to \.

Patterns

A filename can contain one or more of the following patterns. Note that letters
within patterns are case-insensitive:

* Matches any string, including the null string.

For example, *ab* matches ab, blab, babies, and BABEL.

* matches any string, including TEMP, WINDOWS, makefile,
or myfile.c.

? Matches any single character.

For example, ab?c matches any filename that is 4 charac-
ters long, begins with ab, and ends with c.

. Remember that “.” matches a dot

For example, *.* matches myfile.c, config.sys, and
zip.hlp.

. does not match TEMP, WINDOWS, or makefile. This is
because these names do not contain a dot character.

[...] Matches any one of the enclosed characters.

For example, [ABC]* matches any filename that begins
with A, B, or C.

[.-.] Matches any character between the enclosed pair, inclusive
(range).

For example, [A-Z]* matches any filename that begins
with a letter. [A-LN-Z]* matches any filename that
doesn’t begin with M.

[!...] Matches any single character except one of those enclosed.

For example, [!XYZ]* matches any filename that does not
begin with X, Y, or Z.

Put a backslash before the following characters if they are part of the filename
to be matched. This removes their special meaning:

[] { } !

FILENAME MATCHING AND PATTERNS 4

In addition

Enclosed characters can be combined with ranges. Thus, [ABCM-Z]* matches
any filename that begins with A, B, C, or M through Z.

Additionally, any pattern may be followed by:

{m} Matches exactly m occurrences of the pattern.
{m,} Matches at least m occurrences of the pattern.
{m,n} Matches at least m but no more than n occurrences of the pattern.

where: m and n must be integers from 0 to 255, inclusive.

Examples

1. The pattern [A-Z][0-9A-Z.]{0,}matches any filename that begins with
a letter that is followed only by letters or numbers, and may contain one
or more dots.

2. The pattern [!.]{1,} matches any filename that does not contain a dot.
Literally, the pattern means: Match any name that contains one or more
occurrences of any character that is not a dot.

3. The pattern *TXT* matches any filename that contains the string “TXT”,
either in the beginning, at the end, or in the middle.

4. Again, the pattern * matches any filename. The pattern *.* matches any
filename that contains a dot. Note that *.* will not match a filename
that doesn’t contain a dot! This is important to remember!

ccp—Conditional Copy

The ccp command conditionally copies files to a target directory if they are
missing from the target directory or have a different size, time, or date on the
target directory. It preserves the name, read/write mode (read-only attribute),
system and hidden attributes, and modification date and time of the files that it
copies. It can copy entire subdirectory trees as XCOPY /S does or just portions
of subdirectory trees. It can also exclude files and subdirectory trees that match
one or more optional exclusion patterns.

Usage

ccp [-flags] [--] source ... [! Xsource ...] targetdir

The ccp command conditionally copies files whose names match the source
file specification(s). It ignores hidden and system files. It copies files to the
target directory. The target directory must already exist.

If there is only one source file specification and no Xsource file specifications,
then the targetdir is optional. In this case, it defaults to . (a dot, which means
the current directory).

A source file specification consists of an optional drive, an optional path,
and a filename. The filename may contain pattern-matching characters. If a
source file specification is the name of a directory, then ccp appends “/*” to it,
matching all files in the directory.

If a ! is specified, then ccp will exclude (not copy) any source file whose
source name matches one of the Xsource patterns (listed between the ! and the
target directory). Each Xsource pattern must match the full source name to
exclude the source file. An Xsource pattern may, of course, contain drive and
path information.

Generally, an Xsource pattern should start with a “*” character or with the
drive and path of a source file (as specified on the command line) or it will not
exclude any source files. This is because ccp compares each Xsource pattern
with the path and name of each source file as it was specified on the command
line, and including any subdirectory names that ccp added due to the -s flag.
See the examples for more details.

Both \ (backslash) and / (forward slash) characters are interpreted as path
separators in source file specifications, the Xsource (exclude source) patterns,

5

CCP—CONDITIONAL COPY 6

and the target directory specifications. Therefore, the \ (backslash) character
cannot be used as an escape character in an Xsource pattern.

This program writes the names of source files (both those copied and, if
the -x flag is specified, those excluded) to standard output. It writes all other
messages, errors, and copy count statistics to standard error.

Flags

By default, ccp only copies a source file if it is missing from the target directory,
has a different size on the target directory, or has a different modification date
and time on the target directory. The behavior of ccp can be altered by the
following flags:

-l (letter el) If a file with the same name as a source file exists in the target
directory, copy the source file only if its modification time is later than
that of the file in the target directory. In other words, only copy source
files that are later than those in the target.

-d If the target directory doesn’t already exist, create it before attempting
to copy any files to it.

Note that if you specify -s with or without -d, ccp always creates any
path components within the target directory that don’t already exist.

-e If a file with the same name as a source file doesn’t exist in the target
directory, then don’t copy the source file. In other words, only copy files
that already exist in the target.

-f Force copy even if target file is read-only.

-n Just display the names of source files that would have been copied, but
don’t actually copy any files. If the -d flag is also specified and the tar-
get directory doesn’t exist, then the target directory is also not actually
created.

The -n flag is an excellent way to see just what files would be copied and
which files would be excluded without actually copying anything.

-s Descend subdirectories while searching for files to copy, just as XCOPY

/S does. The subdirectory structure (relative to the source directory) is
preserved within the target directory. When a file is copied, any subdirec-
tories that don’t already exist within the target directory are created by
ccp.

If the specified target directory doesn’t exist, it is not created unless the
-d flag is also specified. The -s flag without -d only creates subdirectories
within the target directory but never creates the target directory.

CCP—CONDITIONAL COPY 7

-S Also copy system and hidden files.

Since system files are quite often also read-only files, the -S flag should
usually be combined with the -f flag to force updates. Be very careful
when updating system and hidden files!

-t For each file copied, show the path and name of each target file in addition
to the path and name of each source file, as follows:

sourcename -> targetname

-x Also display the names of source files that are being excluded (not copied).
One of the following characters is displayed in front of each filename that
ccp is excluding from copying:

! before files that you want to exclude (via ! Xsource), and

x before files that ccp decides to exclude (not copy).

Examples

1. ccp a:* .

This command copies all files from the current directory on drive A to
the current directory if they don’t exist in the current directory or have a
different size, date, or time in the current directory.

2. ccp a:*

This command is the same as the previous one. Since there’s only one file
specification, the target directory defaults to the current directory.

3. ccp * ! *.cod *xyz* a:

This command conditionally copies all files in the current directory, ex-
cept for those whose names end with .cod or contain xyz, to the current
directory on drive A.

4. ccp -sd c:\windows* ! c:\windows\temp* d:\archive\windows

This command conditionally copies the c:\windows directory and all of its
subdirectories to the d:\archive\windows directory, except for any files
that are in the c:\windows\tempdirectory. If any path components within
the target d:\archive\windows directory don’t exist they are created
before copying the files.

5. ccp -sd c:/windows/* ! *temp* d:/archive/windows

This command works like the previous command except it excludes any
files within c:/windows that contain temp in their name or in any sub-
directory of their name.

CCP—CONDITIONAL COPY 8

Also notice that forward slashes work just as well as backslashes. Indeed,
when running ccp (or any of these other commands) from within a Perl,
Python, bash, gawk, or awk script, or from within another scripting lan-
guage, a backslash is often used to start an escape sequence and a forward
slash is a more convenient and robust path separator.

6. ccp -sd c:/windows/* ! */temp/* d:/archive/windows

This command works like the previous command except it excludes any
files within c:/windows that also have a path component that includes
any temp subdirectory.

7. ccp -sd c:/windows/* ! */temp/* *sample.c d:/archive/windows

This command works like the previous command except it excludes any
files within c:/windows that also have a path component that includes
any temp subdirectory, and it excludes any file named sample.c.

Note that the exclusion pattern for sample.c begins with an asterisk.
This ensures that the pattern matches any file ending in sample.c even
if there is path or other information present (such as test.sample.c and
tempdir/sample.c).

8. ccp -le * d:/tmp

This command copies all files in the current directory to the d:/tmp
directory that already exist in d:/tmp but have a later modification date
and time than those in d:/tmp.

9. ccp -n *.exe *.doc a:/

This command displays the names of all of the .exe and .doc files in the
current directory that are missing from the root directory on drive A or
that have a different size, date, or time in the root directory of drive A.
No files are actually copied.

10. ccp -nelx * ! *.cod d:/mydir

This command displays the names of files that would have been copied,
but doesn’t actually copy anything.

It looks at all files in the current directory, excluding any that end in .cod.
It displays the names of the source files (that it would have copied) that
exist in the target directory and that are later than their counterparts in
the target directory.

Since you excluded the *.cod files, ccp displays the names of the *.cod
files with a “!” before each of their names. Since ccp excludes files that
either don’t exist in the target directory or have the same or earlier mod-
ification time in the source directory, ccp displays these latter files with
an “x” before each of their names.

CCP—CONDITIONAL COPY 9

11. ccp -st c:*.exe d:

This command copies all of the .exe files within the current directory and
all of its subdirectories on drive C to the current directory on drive D. If a
subdirectory in which a copied file doesn’t exist in the target, ccp creates
it. Note that ccp creates subdirectories within the target only for files
that are copied.

The -t flag tells ccp to show the path and name of each target files that
is copied as well as its source path and name. For subdirectory copies,
this provides feedback that lets you know exactly where each source file is
being copied.

12. ccp a:* .

This command copies all files from the current directory on drive A to
the current directory if they don’t exist in the current directory or have a
different size, date, or time in the current directory.

13. ccp a:*

This command is the same as the previous one. Since there’s only one file
specification, the target directory defaults to the current directory.

14. ccp * ! *.cod *xyz* a:

This command conditionally copies all files in the current directory, ex-
cept for those whose names end with .cod or contain xyz, to the current
directory on drive A.

15. ccp -sd c:/windows/* ! c:/windows/temp/* d:/archive/windows

This command conditionally copies the c:/windows directory and all of
its subdirectories to the d:/archive/windows directory, except for any
files that are in the c:/windows/temp directory. If any path components
within the target d:/archive/windows directory don’t exist then ccp
creates them before copying the files.

16. ccp -sd c:/windows/* ! *temp* d:/archive/windows

This command works like the previous command except it excludes any
files within c:/windows that contain temp in their name or in any sub-
directory of their name.

17. ccp -sd c:/windows/* ! */temp/* d:/archive/windows

This command works like the previous command except it excludes any
files within c:/windows that also have a path component that includes
any temp subdirectory.

18. ccp -sd c:/windows/* ! */temp/* *sample.c d:/archive/windows

This command works like the previous command except it excludes any
files within c:/windows that also have a path component that includes
any temp subdirectory, and it excludes any file named sample.c.

CCP—CONDITIONAL COPY 10

Note that the exlusion pattern for sample.c begins with an asterisk. This
ensures that the pattern matches any file ending in sample.c even if there
is path or other information present.

19. ccp -le * d:/tmp

This command copies all files in the current directory to the d:/tmp
directory that already exist in d:/tmp but have a later modification date
and time than those in d:/tmp.

20. ccp -n *.exe *.doc a:/

This command displays the names of all of the .exe and .doc files in the
current directory that are missing from the root directory on drive A or
that have a different size, date, or time in the root directory of drive A.
No files are actually copied.

21. ccp -nelx * ! *.cod d:/mydir

This command displays the names of files that would have been copied,
but doesn’t actually copy anything.

It looks at all files in the current directory, excluding any that end in .cod.
It displays the names of the source files (that it would have copied) that
exist in the target directory and that are later than their counterparts in
the target directory.

Since you excluded the *.cod files, ccp displays the names of the *.cod
files with a ! before each of their names. Since ccp excludes files that either
don’t exist in the target directory or have the same or earlier modification
time in the source directory, ccp displays these latter files with an x before
each of their names.

22. ccp -st c:*.exe d:

This command copies all of the .exe files within the current directory and
all of its subdirectories on drive C to the current directory on drive D. If a
subdirectory in which a copied file doesn’t exist in the target, ccp creates
it. Note that ccp creates subdirectories within the target only for files
that are copied.

The -t flag tells ccp to show the path and name of each target files that
is copied as well as its source path and name. For subdirectory copies,
this provides feedback that lets you know exactly where each source file is
being copied.

cdx—Enhanced Change

Directory

The cdx command is an enhanced (eXtended) version of the CD (or CHDIR)
command. Like CD, it can go to a specified directory. Unlike CD, it can
also change the current drive at the same time. It can go to a default HOME
directory. And it can search through a set of paths for the specified directory,
eliminating the need for a lot of little command files to change directories.

The c:\tmp directory must exist and be writable for the Win32 and OS/2
versions of cdx. A temporary batch (command) file is written to c:\tmp by
the cdx command for these platforms.

On DOS, the cdx command is implemented as cdx.bat. The cdx.bat script
calls cdir.exe and cdir.exe changes the current directory and drive itself.

For Win32, the cdx command is implemented as the cdx.bat script. For
OS/2, it is implemented as the cdx.cmd script. For these platforms, cdx calls
cdir.exe just to get the path and drive change information and then cdx itself
performs the change. This is because these platforms, like Unix, don’t allow a
process to change its parent process’s environment or working directory.

For DOS, the cdx.bat file just invokes the cdir.exe program. You can, if you
wish, run the cdir.exe program directly to change your current working drive
and path. Using cdx instead just lets your fingers type the same command on
DOS, OS/2, and Win32.

This command cannot be named cd, which is the name of the less-capable
built-in DOS, Win32, and OS/2 command.

Usage

cdx [d:][path]

If both the drive and path are missing, then cdx attempts to change the
current drive and path to that specified by the HOME environment variable.

If the drive is present, then cdx changes your current drive to that drive. If
the path is present, then cdx changes the current directory on that drive to the
the specified path.

11

CDX—ENHANCED CHANGE DIRECTORY 12

If the drive is missing and the path is relative (doesn’t begin with \ or /

path separator), then cdx looks in the current directory for that path. If it
doesn’t find it, it then looks for the path in the directories specified by the
CDPATH environment variable. The list of paths specified by CDPATH should
be formatted just like those for the PATH environment variable.

The following are the settings for HOME and CDPATH that I use:

SET HOME=c:\u\brian

SET CDPATH=c:\u\brian;c:\Program Files;e:\watcom

Examples

The following examples use the settings for HOME and CDPATH shown above.

1. cdx

Go to the c:\u\brian (HOME) directory.

2. cdx a:

Go to the current directory on the A drive.

3. cdx d:/tmp

Go to the \tmp directory on the D drive.

4. cdx include

Go to the include directory within the current directory. If it doesn’t
exist, then use the list of directoies in CDPATH and go to the first of the
following directories that exists:

c:\u\brian\include

c:\Program Files\include

e:\watcom\include

chmod—Change File Mode

The chmod command is an alternative to the ATTRIB command. It allows
you to change the attributes (file mode) of one or more files. It can process
hidden and system files in addition to ordinary files.

Unlike ATTRIB for DOS and OS/2, chmod treats a read-only file as lacking
the “write” capability rather than having the “read-only” capability.

The Win32 version of chmod will change the specified attributes of match-
ing directories. The DOS and OS/2 versions of chmod ignore matching direc-
tories.

Usage

chmod [-R] [+-=][wsha] fpsec ...

If -R is specified, then chmod recursively descends subdirectories looking
for matching files. The -R flag is compatible with the AIX and the original Unix
versions of chmod.

The first argument must contain exactly one of the “+-=” file mode operators
followed by one or more of the “wsha” file mode letters, with no intervening
spaces.

One or more file specifications must follow. A file specification consists
of some combination of drive, path, and filename. The filename may contain
Bourne shell pattern-matching characters.

The file mode operator can be one of the following:

+ Sets the specified file mode(s).
- Resets the specified file mode(s).
= Sets the specified file mode(s) and clears the modes that aren’t

specified.

The file mode letters have the following meanings:

w Write permission.
s System attribute.
h Hidden attribute.
a Archive attribute.

13

CHMOD—CHANGE FILE MODE 14

Examples

1. chmod -w *

Reset the write permission for all of the files in the current directory,
making them read-only.

2. chmod -R -w *

Reset the write permission for all of the files in the current directory and
in all subdirectories, recursively.

3. chmod +ha *.exe

Make the .exe files in the current directory hidden, and set their archive
bits.

4. chmod -a *.c

Reset the archive attribute for all of the .c files in the current directory.

5. chmod =sh /*

For all of the files in the root directory, set their system and hidden at-
tributes and reset their write permission and archive attribute. When
complete, the files will be unwritable (read-only), system, and hidden,
and their archive attributes will be zero.

crc and crcchk

The crc command is used to record the length and 16-bit CRC value (or, op-
tionally, the 32-bit CRC value) for one or more files.

The crcchk command is used to record the length and CRC value (either
16-bit or 32-bit) for a list of files and optionally check their lengths and CRC
values against a previously-obtained set of values for those files.

The code used to calculate the 16-bit CRC value for an individual file was
developed at IBM Austin, Texas, by Jim Czenkusch. The code to calculate the
32-bit CRC has enhancements to pre-condition and post-condition each value
so that it is compatible with the 32-bit CRC value generated by PKWARE’s
PKZIP and InfoZIP’s zip commands.

Usage

crc [-s] [-l] fspec ...

crcchk [-l] infile [outfile]

The crc program gets the length and calculates the CRC value for each file
that matches the given command-line file specification(s). If -s is specified,
then crc recursively descends into subdirectories looking for files that match
the file specification(s).

The crcchk program reads the input text file to get a list of files. It then
calcuates the length and CRC of each file listed. If the input file also contains a
length and CRC value for a file, those values are compared against the calculated
values for that file. This input file can be created directly from the output of
either the crc or crcchk command.

If an output file name is specified to crcchk, then each file listed in the
input text file, along with its actual length and CRC, is written to the output
file. Later, this output file can be read by the crcchk program to check to see
if any of the listed files has changed.

File lengths are displayed in decimal format. CRCs are displayed in hexadec-
imal format with a leading 0x. Filenames are enclosed within double quotes in
case they contain embedded spaces or other puncutation.

If the -l (letter el) flat is specified, crc and crcchk generate 32-bit (long)
CRCs that are compatible with those generated by PKZIP and zip. The default
is to generate 16-bit CRCs.

15

CRC AND CRCCHK 16

The crcchk program only honors the -l flag if an output file is specified. It
ignores the -l flag if no output file was specified.

For each matching file, crc writes one line to standard output as follows:

length CRC "filename"

Flags

-l (letter el) crcchk (if an output file was specified) and crc calculate and
show long (32-bit) CRC values. The default is to calculate and show 16-bit
CRC values.

-s Descend subdirectories searching for matching files (crc only).

Input File for crcchk

Blank lines are ignored. Lines that begin with # are assumed to contain com-
ments and are ignored. Each non-blank, non-comment line must be formatted
as follows:

[length CRC] "filename"

The length and CRC values in the line are optional. Either both must be
present or both must be missing. If present, the length must be specified in
decimal, while the CRC must be specified in hexadecimal as 0x followed by one
or more hexadecimal digits.

If the CRC is 0xNNNN or shorter (4 or less hex digits), then it is assumed to
be a 16-bit CRC. If it contains 5 or more hex digits, then it is assumed to be a
32-bit CRC.

If the length and CRC value are present, then crcchk compares the values
to those it calculated and logs any discrepancies to stderr.

The filename must be enclosed in double quotes if it contains spaces, semi-
colons, commas, or other punctuation. Double quotes around the filename are
optional otherwise.

Output File from crcchk

If an output file is specified, then crcchk writes to this output file the name,
length, and CRC value for each file that is listed in the input file, one file per
line, as follows:

length CRC "filename"

If the CRC in the input text file is a 32-bit CRC, then the CRC in the output
file will also be a 32-bit CRC. If the CRC in the input text file is a 16-bit CRC,
then the CRC in the output text file will be a 16-bit CRC.

CRC AND CRCCHK 17

Note: If an output file is specified but a file listed in the input file has no
CRC, then crcchk checks the -l (letter el) flag. If -l is specified in this case,
crcchk generates a 32-bit (long) CRC for the file. Otherwise, it defaults to
generating a 16-bit CRC for the file.

Examples

1. I entered the following command on my system (a very long time ago, I
might add):

crc *.h *.sys

It produced the following output:

3159 0xD65B BMTBL.H

10780 0x5495 UTIL.H

15473 0x064B REGEXP.H

178 0x4E87 \CONFIG.SYS

2. I entered the following command on my system (also a long time ago):

crc -l crc.doc

It produced the following output:

2409 0x070E5D3F CRC.DOC

3. The ls \u\brian\bin*.exe >files.txt command was run to produce
a list of files that I wanted to check with crcchk. You should normally
specify the full pathname of the files for ls so that you can later run crcchk
from any directory—crcchk will attempt to open each file using the name
as listed. I then added the comment and blank line to the beginning of
the file, as follows:

files.txt created on 05/20/91

\u\brian\bin\ati.exe

\u\brian\bin\b.exe

\u\brian\bin\cdcl.exe

\u\brian\bin\config.exe

\u\brian\bin\ccmt.exe

\u\brian\bin\cdir.exe

\u\brian\bin\chmod.exe

CRC AND CRCCHK 18

The crcchk files.txt files.crc command produced the following file
named files.crc:

7070 0xF359 "\u\brian\bin\ati.exe"

10000 0x8CFB "\u\brian\bin\b.exe"

27630 0x13AC "\u\brian\bin\cdcl.exe"

57954 0x5D88 "\u\brian\bin\config.exe"

14401 0x7352 "\u\brian\bin\ccmt.exe"

17827 0xDE07 "\u\brian\bin\cdir.exe"

24053 0xFE94 "\u\brian\bin\chmod.exe"

Now, we can run the crcchk files.crc command any time we want
to see if any of those executable files has been changed. We might also
want to backup the files.crc file or make it read-only so we don’t lose the
information it contains.

Note that since the length and CRC values are missing from the input
text file, crcchk calculates 16-bit CRCs for the output file by default.

du—Directory Usage

The du command calculates the total bytes used by a set of files. For simplicity,
only the files’ sizes are calculated: the amount of space occupied by the disk
blocks is not.

Usage

du [-shR] fspec ...

The sizes of all files that match each file specification are added. The total
size (in bytes) and the total number of matching files are written to stdout.

By default, ordinary files are included. Specify -s to include system files
and -h to include hidden files.

Specify -R to recurse subdirectories looking for matching files.

Example

The du command writes information to stdout in the following format:

533908 bytes in 27 files

19

grep—Search for regular

expression

The grep (get regular expression and print) command is an subset of the Unix
grep command and even smaller subset of the superb GNU grep. It searches
one or more files for a pattern, can descend into subdirectories when search-
ing, and can write its output (matching lines along with optional file name,
line number, and column number) in one of a user-defined set of customizable
formats.

Usage

grep [-flags] [--] "pattern" [fspec ...]

The grep command searches for the specified pattern. It writes each line
that contains the pattern to standard output. The pattern is a regular expres-
sion as described later in this document.

One or more file specifications may be present on the command line. If no
file specifications are present, then grep reads lines from standard input.

A file specification consists of an optional drive, optional path information,
and a filename. The filename may consist of Bourne shell pattern-matching
characters.

Binary files (such as *.obj and *.exe) can be searched in addition to text
files.

Flags

The flags that are supported are a subset of those supported by the standard
Unix grep and of course an even smaller subset of those supported by GNU
grep:

-c Display only a count of matching lines.

-i Ignore case when making comparisons (same as -y).

20

GREP—SEARCH FOR REGULAR EXPRESSION 21

-l (letter el) List just the names of files (once) with matching lines. Each file
name is separated by a new-line character.

-n Preceed each line with the file name and line number, in the following
default form: filename(line)

-# (where # is a digit from 0 through 9, inclusive): If the -n flag is also
specified, then a specifying a digit will select a pattern to use when showing
the file name, line number, and starting column. If no digit is specified,
then 0 (zero) is assumed.

-s Descend subdirectories, also.

-v Display lines that don’t contain the pattern.

-y Ignore case when making comparisons (compatible with the RS/6000).

Customizing the Output

Normally, the Unix platform, GNU tools, and Emacs editor family support the
standard Unix-style grep output format. However, the DOS, Windows, and
OS/2 platforms have widely varying (and often uneven) requirements for the
output of grep and grep-like tools. Of course, GNU Emacs can be customized
for different styles, but most other tools are not nearly as accomodating.

Therefore, the output of grep can be customized to include the filename,
line number, column number, and other characters in the order required by
different programs. If the -n flag is specified, then a format pattern number
may also be specified. If no pattern number is specified, then -0 (zero) is used
as the default.

The grep program looks in the GREPn environment variable, where n is the
pattern number. If there is no GREPn variable in the environment (for instance,
if -n5 is specified but there is no GREP5 environment variable defined), then the
“$n($l) : ” pattern is assumed.

The characters from the formatting pattern defined by the environment vari-
able are copied to the output and then the text from the line is added. If a dollar
sign $ meta character is encountered, then it and the next character are inter-
preted as follows:

$n specifies the name of the file.

$l (letter el) specifies the line number within the file.

$c specifies the starting column within the line.

$$ specifies the dollar sign itself.

$" specifies a double quote character.

GREP—SEARCH FOR REGULAR EXPRESSION 22

With the exception of $", double quotes within or surrounding a format
pattern are ignored.

If no format pattern is found, the “$n($l) : ” pattern is assumed. This
causes the following information to be shown:

filename(linenumber) : text from line

Some useful format patterns that may be specified are:

set GREP0="$n($l) : "

set GREP1="$n($l:$c) : "

set GREP2="$n:$l:"

set GREP3="$n/$l/$c "

set GREP4="$n,$l,$c "

When specified with the -n flag, the format patterns shown above are used
as follows:

-n0 is the default that this package’s grep has shown from the beginning.
It mimics the format of error messages from many PC compilers:

filename(linenumber) : text from line

The GREP0 environment variable can be changed to another pattern so that
-n by itself uses that pattern instead.

-n1 mimics the format of error messages from some modern C/C++ com-
pilers that also include the column number:

filename(line:column) : text from line

-n2 is the Unix and GNU grep’s style:

filename:linenumber:text from line

-n3 and -n4 mimic the format used by the UltraEdit32 editor (for Windows
platforms only) allows you to select a filename, open it, and put the cursor at the
specified line and column within the file. UltraEdit is a very capable shareware
editor available from the www.idmcomp.com Web site. It’s a spectacular bargain
with a low shareware price and with capabilities, ease-of-use, and company
responsiveness far beyond that of many other editors at any price.

Notes

Lines are limited to a length of 512 characters. Longer lines are split into pieces
of 512 characters or less.

A dot within a filename is treated as just another character and not assumed
to be the beginning of a file extension. Therefore, you should specify * instead
of *.* when searching all files in a specific directory.

Errors are listed on standard error.

GREP—SEARCH FOR REGULAR EXPRESSION 23

Regular Expressions

The grep command supports regular expressions that are combinations of one
or more of the following:

• The following expressions match a single character:

c Any ordinary character, other than one of the special
pattern-matching characters, matches itself.

. A . (period) matches any single character.

[string] A string enclosed in square brackets matches any one
character in the string.

[.-.] A range is two characters separated by a dash and en-
closed in square brackets. It matches any character
that is within the range.

[^string] A string (or range) enclosed in square brackets and pre-
ceeded by a ^ (circumflex) matches any character ex-
cept for the characters in the string (or range).

Strings and ranges may be combined as needed, as in:
[a-m0-9xyz], which matches a through m, 0 through 9,
x, y, or z.

\c The \ (backslash) followed by any character matches
that character. This is useful for matching the following
special characters: . * [] { } ^ $ \

• The single-character expressions can be combined into regular expressions
as follows:

* Matches zero or more occurences of the previous char-
acter.

{m} Matches exactly m occurrences of the previous charac-
ter.

{m,} Matches at least m occurrences of the previous charac-
ter.

{m,n} Matches at least m but no more than n occurrences of
the previous character. m and n must be integers from
0 to 255, inclusive.

GREP—SEARCH FOR REGULAR EXPRESSION 24

• A regular expression can be restricted to match a string that begins on
the first character of the line, ends on the last character of the line, or
both, as follows:

^pattern The pattern matches a string that begins on the first
character of a line.

pattern$ The pattern matches a string that ends on the last char-
acter of a line.

^pattern$ The pattern matches an entire line.

Examples

1. grep "the cat" *.txt /*.bat

This command searches the files in the current directory that end in .txt
and the .bat files in the root directory for the string the cat. Only exact
case matches are listed on standard output: occurrences of The cat and
the Cat are not listed.

2. grep -i "the cat" *.txt /*.bat

This command is similar to the previous one except that it performs a
case-insensitive search. Occurrences of The cat and the CAT would be
listed in addition to any occurrences of the cat.

3. grep -sn "the {1,}cat" *.txt

This command searches all .txt files in the current directory and in all
subdirectories (recursively) for the pattern. The pattern consists of the
word the, followed by one or more spaces, and followed by the word cat.
Therefore, it would match lines that contain the cat or the cat. The
“filename(linenumber) : ” string is prepended to each line of each file
in which the pattern is found.

4. grep -i "[a-z][a-z0-9_]{0,}(" *.c

This command searches all .c files in the current directory for function
prototypes and function declarations. The pattern matches any string
that begins with a letter, is followed by zero or more letters, numbers, or
underscores, and ends with an open parenthesis.

5. foo | grep "&cont\."

This command searches the output of foo for the “&cont.” string. Note
that the period in the pattern was escaped with a backslash. The grep
command would interpret the “&cont.” pattern as meaning the “&cont”
string followed by any character.

GREP—SEARCH FOR REGULAR EXPRESSION 25

6. grep "^Usage$" *.doc

This command searches all .doc files in the current directory for lines that
consist of nothing but the string “Usage”.

7. grep "streams\[" *.c

This command searches all C files in the current directory for lines that
contain the ”streams[” string. Note that the “[” character has to be
escaped in the pattern so that it is interpreted by grep as a bracket and
not as the beginning of a set or range.

8. grep -v "^$" *.doc

This command searches all .doc files in the current directory and lists all
lines that are not blank. Note that the ^$ pattern matches any blank line.

ls—List Directory

The ls (list directory) command is a loose adaptation of the GNU ls command,
and is a better DIR command than DIR. It supports multiple file specifications
on the command line. It matches filenames using the Bourne shell pattern
matching rules and not the DOS or OS/2 “wildcard” rules.

The ls command lists the names of ordinary files, hidden files, system files,
and directories as you wish. It also lists each name with any drive and path
information that was in the original file specification. It can recursively descend
subdirectories looking for matching files and or directories if you wish.

In the “long” format, the ls command displays each file’s attributes as well
as its size, date, and time.

By default, ls sorts the output by filename, and displays the names in multi-
column format if standard output is a character device. When writing multi-
column output, ls sorts the files by column, newspaper-style, just as the Unix
and GNU ls commands do (and unlike the simplistic sort by row performed by
the DOS, Win32, and OS/2 DIR commands).

Usage

ls [-flags] [--] [fspec ...]

The flags are optional. If specified, they must consist of a dash followed by
one or more contiguous flag characters. The flags control what names are listed
and in what format they are listed.

If no flags are specified, then -fdn is assumed: list all matching ordinary
files and directories, and sort them by name.

Zero or more file specifications may be entered. Each file specification con-
sists of an optional drive, optional path, and filename. Each filename may
contain Bourne shell pattern-matching characters (better than DOS’s, Win32’s,
and OS/2’s wildcard characters, and supported on all of these platforms). The
ls command lists all files in the specified directory whose names match the
filename, according to the flags.

If a file specification is that of a directory, then ls appends /* to it and
matches everything in that directory. If there are no file specifications, then ls
assumes *: match everything in the current directory.

26

LS—LIST DIRECTORY 27

Flags

The following (case-sensitive) flag characters are supported:

-f Lists all ordinary (including read-only) files that match the file specifica-
tion(s). If the -f flag is specified, then directories are not listed unless the
-d flag is also specified.

-s Lists all system files.

-h Lists all hidden files.

-d Lists all subdirectories that match the file specification(s). If the -d flag
is specified, then ordinary files are not listed unless the -f flag is also
specified.

-a Lists all ordinary files, system files, hidden files, directories, the . and ..

directories, and, for DOS only, volume IDs.

-l Lists each matching file or directory name in “long” format. For each
name, it also displays the attributes, size, time stamp, and date stamp. If
-l is not specified, the ls command lists only the names.

-c Uses time of creation instead of time of last modification. If used with -l,
it shows this time. If used with -t, it sorts using this time. (Win32 and
OS/2 versions only.)

-u Uses time of last access instead of time of last modification. If used with
-l, it shows this time. If used with -t, it sorts using this time (NTFS and
HPFS only).

-x The same as -u, for compatibility with previous versions of ls.

-R Recursively descends subdirectories.

-p Puts a path separator after each name that is a directory.

-C Forces multicolumn output. The ls command tries to list more than one
filename per line, depending upon the length of the longest name and the
width of the display screen. Filenames are sorted vertically.

-m The same as -C, for compatibility with previous versions of ls.

-1 Forces single (one) column output.

-n Sorts the output by name (default), in alphabetic order.

-t Sorts the output by date and time, from newest to oldest.

-z Sorts the output by filesize, from smallest to largest.

-r Reverses the order of the sort.

LS—LIST DIRECTORY 28

-o Don’t sort: display filenames in the order in which they occur in each
directory.

-g Lists each set of matching files as a group in the order that their fspecs
are specified. For example, if *.h *.c are entered, then the -g flag causes
all .h files to be displayed first and all .c files to be displayed next.

The -g flag causes the program to make a separate pass through a di-
rectory for each fspec, making ’ls’ run slower. The default behavior is to
display all matching files as they are found, making only one pass through
each directory.

-L Shows filenames in lowercase.

-U Shows filenames in uppercase.

You can mix and match the f, s, h, and d flags to include as many different
file types as you wish. If you specify at least one of the s, h, or d flags, then you
must explicitly specify -f to include ordinary files in the listing. If you don’t
specify one of the f, s, h, d, or a flags, then the default is -fd: list only ordinary
files and directories.

You can specify the -l (letter el) flag to list file and/or directory names in
“long” format. In this format, each name appears along with its mode, size,
date, and time. The mode (attribute) consists of a set of characters that are
interpreted as follows:

• The first character is:

d The name is a directory.
- The name is a file.

• The second character is:

r The file is readable (always!).
- The file is not readable (never!).

• The third character is:

w The file is writable.
- The file is read-only.

• The fourth character is:

s The file is a system file.
- The file is not a system file.

• The fifth character is:

h The file is a hidden file.
- The file is not a hidden file.

• The sixth character is:

a The file has been changed (its archive bit is set).
- The file’s archive bit is not set.

LS—LIST DIRECTORY 29

Notes

An ordinary file is a directory entry whose directory, system hidden, and volid
attribute (mode) bits are all zero.

Filenames are listed on standard output. Filespecs that don’t match any
files are listed on standard error.

A file specification consists of an optional drive, optional path information,
and a filename. The filename may consist of Bourne shell pattern-matching
characters. DOS’s filename pattern matching is simplistic, Win32’s and OS/2’s
is a lot better, but Bourne shell pattern matching is better still. Also, all
versions (DOS, Win32, and OS2) of the commands in this package support the
same enhanced level of pattern-matching.

A dot within a filename is treated as just another character and not assumed
to be the beginning of a file extension. Indeed, the ls command has no concept
of a file extension. This is compatible with the use of dots within Win32, NTFS,
HPFS, and AIX filenames.

Flag characters are case sensitive. Name comparisons are case-insensitive,
as specified by DOS, Win32, and OS/2.

If the -l (long format) flag is listed, each file’s modification time and date
are displayed. Specify the -c flag along with -l to display each file’s time of
creation. Or, specify the -u flag along with -l to display each file’s time of
last access. Note that the c and u flags don’t yield valid times for a file system
(such as DOS or OS/2 FAT) that don’t maintain them. Also note that the DOS
version simply shows the time of last modification for the -lu and -lc flags.

You may specify more than one set of flags. For example, you may enter the
commands ls -n -l *.c *.h and ls -nl *.c *.h both list all .c and .h files
in long format, sorted by name.

The order in which you specify certain flags is important. For example, if
you specify -l, -C, and/or -1, the last one entered takes precedence. Likewise,
if you specify -o, -n, -z, and/or -t, the last one entered overrides the others.

If the ls command is displaying filenames in multicolumn format and/or
sorting the names, then ls first stores all of the filenames in memory, sorts them
(n, t, or z flag), and determines how many columns to display. The DOS version
of the ls command may run out of memory for large file listings. If it does, you
should re-run ls with the -1o (number 1 and letter o) flags: force single-column
output and don’t sort.

The DOS version of ls defaults to showing all filenames in lowercase since
this is more readable (especially on smaller displays). The OS/2 version shows
HPFS, NFS, and TVFS filenames as-is and shows all other filenames (including
those on FAT filesystems) in lowercase. The Win32 version shows all filenames
as-is. If you want uppercase filenames, then specify the -U flag. On OS/2 and
Win32 platforms, the -L flag will force all names to be shown in lowercase.

The Watcom-built versions (Win32, OS/2, and DOS) do not list the volume
label.

Enter ls -? to get help.

LS—LIST DIRECTORY 30

Examples

1. ls *

ls

ls -fd *

These commands all mean the same thing: List all ordinary files and
subdirectories within the current directory. They match the same files
that the DOS command DIR *.* matches.

2. ls *.*

This command lists all ordinary files in the current directory that have
an extension (that is, that have a dot in their file name). This is not the
same as the ls * command nor is it the same as the DIR *.* command,
since it won’t list any files or directories whose name contains no dot.

3. ls -Cn

List all files in the current directory in multi-column format, sorted by
name. This is the default behaviour for the ls command when stdout is
the display (and when ls is entered with no flags or arguments).

4. ls *.c

List all files in the current directory that end in the .c suffix (or have the
.c extension, in DOS’s words).

5. ls *.c *.h

ls *.[ch]

List all files in the current directory that end in either .c or .h. These
commands show the same results. In the first command, notice that you
can enter more than one file specification. In the second command, notice
that the one Bourne shell pattern can replace the two simplistic DOS-sytle
patterns.

6. ls -Rd c:/

ls -Rd c:\

List all directories and subdirectories on drive C, starting at the root di-
rectory. This produces a tree listing of drive C.

Both \ (backslash) and / (forward slash) characters are interpreted as
path separators. When showing the matching directory entries, ls will use
the last path separator (if any) that you entered on the command line.

If you didn’t enter a path separator on the command line, then ls uses a
default path separator of \ if the USEP environment variable is set to \

and a default path separator of / otherwise.

7. ls -a a:

List all files and subdirectories in the current directory of the A drive.

LS—LIST DIRECTORY 31

8. ls -lsh *

This command lists only hidden and system files in the current directory,
along with their mode (attributes), sizes, and time and date stamps.

9. ls -d *

This command lists all subdirectories within the current directory. The
DOS DIR *. command sort of does the same thing, provided that direc-
tory names have no extension and file names always have an extension.

10. ls -l

List each file in the current directory, along with its mode, size, and time
and date of last modification.

11. ls -lc

Like -l, except display each file’s time and date of creation (Win32 and
OS/2 versions only).

12. ls -lu

Like -l, except display each file’s time and date of last access (NTFS and
HPFS only).

13. ls -R c:/[a-m]*.exe

List all .exe files on drive C that begin with the letters A through M,
inclusive.

14. ls -R c:/my.bat

List all occurances of the my.bat file on drive C. This command performs
a “whereis” type of function.

15. ls -R *.c

List all .c files in the current directory and, recursively, in any subdirec-
tories within the current directory.

16. ls -lRdn /

List all directories on the current drive in “long” format, sorted by direc-
tory name.

17. ls -lt

List all files in the current directory in “long” format, sorted by date and
time of modification.

18. ls -lut

List all files in the current directory in “long” format, sorted by date and
time of last access (NTFS and HPFS only).

LS—LIST DIRECTORY 32

19. ls -luo

List all files in the current directory in “long” format, in the order in which
they occur in the directory (unsorted). Display the time of last access for
each one.

20. ls -lRn

ls -l -Rn

ls -l -R -n

You may specify flags in one or more groups. For example, these com-
mands all produce identical results.

21. ls -lC1

The same command as ls -1. The C flag disables the l flag, and the 1

flag in turn disables the C flag.

strings—Shows printable

strings

The strings command extracts and shows the printable strings in one or more
files including binary files. It is based on the *ix strings command, except that
it shows offsets in hexadecimal rather than octal.

Usage

strings [-a] [-o] [-#] [-s] [fspec ...]

The strings command searches one or more files for printable ASCII strings
and writes them to standard output. If no files are specified, then the command
searches standard input in binary mode.

The isprint() library function is used to test for printable ASCII characters.
A sequence of printable characters must be terminated with a null, carriage
return, or line feed character to be considered a valid string.

Flags

The flags that are supported are similar to those supported by the standard
Unix strings command:

-a Search the entire file. This flag is present for command-line compatibility:
this strings command always searches files in their entirety.

-o Also show the offset of each string found. The offset is shown in hexadec-
imal and not octal, unlike the Unix strings command.

-# Specifiy a number for #. Strings must have a minimum length of # char-
acters before they are shown. The default minimum number of characters
is 4.

-s Descend subdirectories, also.

-S Search system and hidden files, also.

33

txtcut—Text Preprocessor

Text files that contain blank lines, comments preceded by # (pound signs), a
varying amount of whitespace between tokens, and other features to make them
well-documented and readable (such as INI-style ASCII text files) are not easily
processed by a Korn shell or REXX script and can even require a bit of extra
work for Perl scripts. Additional logic can be used to skip over blank lines
and remove comments, but this logic adds undesirable complexity and slow
performance to the script.

One solution is txtcut. This program prepares a text file, stripping out
comments and blank lines and handling simple strings. It was originally devel-
oped as a fast preprocessor for the AIX cut command. However, the output
of txtcut can be piped into rxqueue, giving OS/2’s REXX the ability to eas-
ily and quickly handle text-style INI-like files. Even awk and Perl (of which
excellent Win32 and OS/2 ports exist) can benefit from txtcut.

Information can be stored in an INI-style text file in an easily- maintained
and readable fashion using comments, strings, and blank space. The txtcut
program preprocesses this text file, removing comments and blank lines, pro-
cessing simple strings, and delimiting the tokens in a consistent manner. The
tokens produced by txtcut can be easily extracted using the AIX cut command,
a REXX script, or even an awk or Perl script.

The REXX, awk, Perl, and the Unix shells cover a lot of ground, but I
have wished for a long time for the capabilities of txtcut to make the basic
AIX, DOS, Win32, OS/2 toolsets more complete. I even maintain an AIX port
of txtcut which I use daily and on which the DOS, Win32, and OS/2 ports
are based. Text INI-style files that are highly readable by people and easily
processed by command scripts: txtcut gives you the best of both worlds!

Usage

txtcut [-dchar] [-n] [-l] [-c] [textfile]

This program prepares a text file for the AIX cut command. If the name of
the text file is missing, then txtcut reads from standard input.

For each line that contains one or more tokens, txtcut writes one line to
stdout that contains the tokens. A delimiter character is placed between each
pair of tokens.

34

TXTCUT—TEXT PREPROCESSOR 35

The default delimiter character is a tab character. You may use the -d flag
to change it to another character.

Flags

-d# Specify a character for # to be used as the token delimiter. This charac-
ter is specified just as it is for the cut command. The default is a tab
character.

-n List the filename as the first token in each line. If the text file is being
read from standard input, then the filename is listed as “(stdin)”.

-l List the line number within the file as a token.

-c List the number of tokens on the line as a token. This count does not
include the additional tokens that may be added by the -n, -l or -c flags.

Input Text File Format

Blank lines are ignored. Lines that begin with a # or ; are assumed to be
comments and are ignored.

Each nonblank, noncomment line consists of one or more tokens. A token
can be:

• An = (equal) sign.

• A string of characters enclosed by either double quotes, single quotes, or
square brackets.

• A series of contiguous nonblank characters.

If a non-string token that begins with a # or a ; is encountered on a line, it
and the remaining tokens are assumed to be comments and are ignored.

Examples

1. Assume that the sample.txt file contains the following:

This is a comment line

f1 = a b c # First line of tokens

x y z # Second line of tokens

aaa bbbb "cccc ddddd" # Last line of tokens

Run the following command:

TXTCUT—TEXT PREPROCESSOR 36

txtcut -d: sample.txt

The txtcut command writes the following to stdout:

f1:=:a:b:c

x:y:z

aaa:bbbb:cccc ddddd

2. Using the same sample.txt file from the previous example, we’ll cut the
third field from each line of the file by running the following command:

txtcut sample.txt | cut -f3

The following is written to stdout:

a

z

cccc ddddd

3. Again, using the same sample.txt file from the previous examples, we’ll
cut the third field from each line of the file. But this time we’ll pipe the
file into txtcut’s standard input and we’ll use a colon for the delimiter:

cat sample.txt | txtcut -d: | cut -f3 -d:

Again, the following is written to stdout:

a

z

cccc ddddd

4. Using the same sample.txt file in example 1, we will add the filename, the
line number within the file where each line of tokens was found, and the
number of tokens in the line. The following shows a set of commands and
the output from each of them:

(a) txtcut -d: sample.txt

f1:=:a:b:c

x:y:z

aaa:bbbb:cccc ddddd

(b) txtcut -d: -n sample.txt

sample.txt:f1:=:a:b:c

sample.txt:x:y:z

sample.txt:aaa:bbbb:cccc ddddd

TXTCUT—TEXT PREPROCESSOR 37

(c) txtcut -d: -l sample.txt

3:f1:=:a:b:c

4:x:y:z

5:aaa:bbbb:cccc ddddd

(d) txtcut -d: -n -l sample.txt

sample.txt:3:f1:=:a:b:c

sample.txt:4:x:y:z

sample.txt:5:aaa:bbbb:cccc ddddd

(e) txtcut -d: -n -l -c sample.txt

sample.txt:3:5:f1:=:a:b:c

sample.txt:4:3:x:y:z

sample.txt:5:3:aaa:bbbb:cccc ddddd

