Assort User Documentation
Fundamentals

Overview

In the data processing world, sorting has always been an necessary evil. Most tasks will sooner or later
involve the sorting of records.

External sorting can make procedeural programming tasks easier and provide higer quality results.

This manual is designed to educate the user of this utility to attain higher productivity and produce high
quality results from data processing issues.

This product performs many more tasks than simply sorting records. Performance and flexibility were
fundamental requirements in the original design process. The syntax of the control information is
compatible with third party sorting utilities that have been available for a number of years in the IBM
MYVS and VSE environments.

There has been a woeful lacking of robust utilities available for microcomputer platforms that have been
commonplace in the mainframe world for years. Without these fundamental utilities, the microcomputer
platforms will be limited to processing relatively small volumes of data at an agonizingly slow pace.

What has been lacking in the PC marketplace is a robust, high performance sort/merge/select utility that
runs in the OS/2, Windows 95 and Windows/NT environments.

This product efficiently processes fixed and variable length records.

This product has been designed to efficiently process files in excess of one gigabyte. There are no
arbitrary limits on the number of sort fields, file size, or number of files that can be processed.

There is currently limit on the record length you can process. The maximum record length is
4,294,967,295 bytes (32 bits). If you wish to process records that approach this size, ensure that your
machine is configured with adequate virtual storage

File Formats

In order to effectively use this utility, a discussion about file formats is neccessary. A file is considered a
set of records. Records contain fields, and fields contain the individual bytes of information.

Operating systems such as IBM's MVS®, VM®, VSE® and Hewlett Packard's MPE/ix® maintain
information about the records in each file. This information includes the length (number of bytes) of
each record, the format of the records, and the number of records in the file. In these environment, the
operating system provides routines to process files a record at a time.

Typical file formats in these environments include Fixed, Variable and Undefined.
Fixed format files contain records that are all the same lengths.

Variable format files contain record of varying length. Each record contains header information
that defines the length of the record.

Undefined format files have no implied record length. They are simply a sequence of bytes.

Unix, OS/2 and DOS/Windows do not support the concept of a file format. All files are viewed as a
sequence of bytes. These files are basically the same as Undefined format files in the "mainframe"
environments.

For files that contain only text information, carriage return and line feed characters are commonly used to
delimit records.

0123456789
0123456789
0123456789

For files containing binary information, there must be a way to decipher the information. In many PC
products, the internal format of the file is known by the application processing the file. This is the case
for programs such as Microsoft Word® and Excel®. The contents of a spreadsheet saved in Excel® is
generally understood only by the Excel® application. In most cases, it would not make sense to "sort" an
Excel spreadsheet directly, though it may be desirable to sort a range of rows and columns within the
spreadsheet.

In this case you must convert the file to a format that the sorting utility can understand. This would most
likely be a "text" file.

In the Unix, OS/2® and DOS/Windows® environments, the application is generally responsible for the
formatting of the records and the file.

Since the Unix, OS/2® and DOS/Windows® operating systems do not maintain information about the
format of the records in a file, it is common to use delimiters between records. These delimiters are
usually the ASCII Carriage Return (Hex 0D) and Line Feed (Hex 0A)characters. Files of this type are
referred to as "Text" files. Text files generally contain only ASCII character data. This is because binary
characters that may occur in the file could be interpred as record delimiters.

In fixed format files, each record contains a fixed number of bytes. If a file contains 10,000 records that
are 80 bytes in length, then the total amount of disk space consumed by that file will be 800,000 bytes.
This is true regardless of the operating environment.

In "text" format files, each record contans a variable number of bytes. The end of the record is indicated
by the presence of a Carriage Return (CR) and possibly a Line Feed (LF). These CR/LF characters are
used to determine where the record ends. These characters really exist in the file on disk, but they are
generally not seen because most products such as editors do not display them.

If you create a new file with Windows® Notepad, and key the following records, pressing ENTER after
each of the three records:

If you do a directory command on this file the file will contain 36 characters, even though you only typed
30 characters. The six additional charcters are the Carriage Return and Line Feed charcters at the end of
each line.

Some editors add an additional End of File character after the last record in the file. Assort ignores this
character when you specify the Text record format.

When Assort reads a file of the Text record format, records are created by accumulating bytes until a
Carriage Return/Line Feed combination is encountered. These characters are not actually part of the
record. They only serve as delimiters between records in the file.

ASCII and EBCDIC

ASCII and EBCDIC are character sets that are commonly used to encode character information.

EBCDIC stands for Extended BCD Interchange Code. BCD refers to Binary Coded Decimal. EBCDIC
is used predomitely on IBM computers such as the System/390®, AS/400® and RS/6000®.

ASCII stands for American National Standard Code for Information Interchange. ASCII is used on most
all computers include IBM and APPLE personal computers.

When converting between ASCII and EBCDIC, be aware that there is not a one to one mapping of
characters. The only time files should be converted is when they contain only character data (A-Z, 0-9
and some punctuation characters). Data in binary and packed decimal fields will probably be translated
improperly.

Assort can operate directly on Packed Decimal (COBOL COMP-3), Zoned Decimal and signed or
unsigned binary fields. Sorting or summing on these fields should be performed prior to translation to
ASCII. Numeric fields such as these can be translated to their character representations with the EDIT
option of the INREC/OUTREC Statements.

If it is desired to sort the data based on its ASCII collating sequence, you can use the AC data format
option on the SORT/MERGE Statement. This option converts the EBCDIC characters to ASCII prior to
performing comparisons on the records.

The ASCII and EBCDIC character sets are documented in Appendix A of this manual.

The character set is generally of little importance to the end user, but becomes a significant issue when
transporting files from one platform to another. If both platforms use the same character set, there is no
issue. When the two platforms use different character sets, you must be aware of this and take
appropriate action to convert the data so that it is properly interpreted when read by application
programs.

Assort has the ability to perform conversion from EBCDIC to ASCII. This allows the user to read the
converted file into an application that only recognizes the ASCII character set.

An example of the need to convert data would be if you downloaded a file encoded with the EBCDIC
character set from an IBM mainframe and wanted to sort reformat it so that it could be processed by
another PC based application. The procedure would be as follows:

Identify the record length and record format of the mainframe base file.
Download the using a Binary file transfer utility.

Sort and/or reformat the records using Assort.

Specify the EBCDIC2ASCII and CRLF OUTREC options.

Process the file with the target application.

Assort Operations

Sorting

Sorting is the process of arranging a set of records into a defined sequence. The resulting sequence of
records can be ascending (non-descending) or descending (non-ascending).

If you had a text file that had check book transactions in it, you may want to sort the file by check
number or by date, or by date and check number.

The following examples will use the following file layout:

Field Name Start Position End Position Field Length | Field Format

Account Number 1 5 5 | Zoned Decimal

First Name 10 24 15 | Character

Last Name 25 42 18 | Character

Account Balance 43 48 6 | Zoned Decimal
(two implied
decimal places)

State Code 49 50 2 | Character

The input file contains the following records (PEOPLE.DAT):

ABEOERDBMHBE%EmeEBEBEBEBBmm$BEHEmmmEA@QT..45...50
0 [3 139800HR
1808@BAR

TAOHHBWK

RRRN : P ZUHIUBHK

BBUTY hasSBARDAIANCe OL EHHEEM&@nULL— 51, II9UBUPEK
18RDY9 RRMD WAWBRES 1092288@K
EEVPAY BERT BONTELLE Z TOBEUWK

Sort Staments (BYACCT.CTL):
Sort Command Line:
Output File (BYACCT.DAT):

In this example the input file is sorted by position one for five characters in ascending sequence. This is
the position of the account number in the input record. The resulting file contains the same records, but
ordered by account number.

If you wanted the file sorted by State Code, you would specify:

Sort Staments (BYSTATE.CTL):

Sort Command Line:

Output File (BYSTATE.DAT):

If you wanted the file sorted by descending account balance, you would specify:
Sort Staments (BYBALD.CTL):

Sort Command Line:

Output File (BYBALD.DAT):

Multiple records can be combined into a single record with the SUM function of the sort. This can be
used to add up all of the values in a field for records with equal keys.

To obtain the total of all accounts by state, specify:
Sort Staments (SUMST.CTL):

Sort Command Line:

Output File (SUMST.DAT):

Note that the output record contains account number, first name and last name. These fields are not
relevant. They contain the contents of one of the equal keyed records.

If you wanted the sort to be more efficient, you could eliminate unnecessary fields on input. The fields in
the record can also be moved.

Sort Staments (SUMST1.CTL):
Sort Command Line:
Output File (SUMST1.DAT):

The output record now contains the state code and the total of all accounts for that state. The output
record contains eight bytes.

To make the output even more appealing, editing can be used.
Sort Staments (SUMST2.CTL):
Sort Command Line:

Output File (SUMST2.CTL):

ABEOBRDMEEBE CHLENEOE-RAT, 0230.DAB5Q3940DAT4649450AT MERGED.DAT
SEEGEE BRZEABRE JBHIARCE Of 51,415.30

EBEBBQQﬁe QHBEBIBalﬁalaﬂce of $12.00

RUBVABERE : | XPPABYalBddalice Of $1,299.380

BEGCOBHHIC : WEZBABYa lPadalice OrL $400.00

ECEEEER 58491 1994 Z

EAZ39000 798843 1994 3

A97238201L 1998288 1994 4

BO0O9A0O0OD 390 1994 4

F0399992 1702900 1994 1

F0399992 99209 1994 2

F0399992 663526 1994 3

F0399992 27177 1994 4

H3392981 888819 1994 2

Y0000091 23110 1994 1

Y0000091 54497 1994 2

Y0000091 207 1994 3

Y0000091 56712 1994 4

77389000 798273 1994 4

The output record contains 39 bytes.

Merging

Merging is the process of combining a number of sorted sequences of records into a single sorted

sequence.

Suppose you had one file for each quarter of the year that contained the purchase each of your customers
made sorted by account number. The files could all be read into a sort and sorted by account number, but
it would be much more efficient to simply merge the files together.

The following examples will use the following file layout:

Field Name Start Position End Position Field Length | Field Format

Customer 1 8 8 | Character

Account ID

Purchase Total 9 17 9 | Zoned Decimal
(two implied
decimal places)

Year 19 22 4 | Zoned Decimal

Quarter 24 24 1 | Zoned Decimal

The input files contains the following records:
File for the first quarter of 1994 (Q194.DAT)
File for the second quarter of 1994 (Q294.DAT)
File for the third quarter of 1994 (Q394.DAT)
File for the fourth quarter of 1994 (Q494.DAT)
Sort Staments (MERGE.CTL):

Sort Command Line:

Output File MERGED.DAT):

To perform summing by account number in the merge process, code the following control information:

AREOBRDSUNPEELELONATERRESQ293DRETRO924DARETQOAE24DARTSBMMPADAT
AMHMGH95lbﬁﬁﬁ§lﬂ;5¢&ﬁ?ﬁ¥l.45 W1ith us
AQUMSFIELBRa{BNO5ZDP34540.96 With us
BANPRAQDFSE&EDE3I 9D, 8994568n00" ,With us

FORI9YIBDLMSPERE 312 1984928.1 With us
H33RW20B1uSpHBAB819 1984888.19 With us
YBRD0091 Spéfd#526 19%4345.26 With us

44389000 SpeH8Z /73 1994982, 73 WiTh Us

Sort Staments (SUM.CTL):
Sort Command Line:
Output File (SUM.DAT):

To perform summing by account number in the merge process, and use the built in edit mask (M5) to
reformat records, code the following control information:

Sort Staments (SUM2.CTL):
Sort Command Line:

Output File (SUM2.DAT):

Copying

The copy process is generally performed when the records need to be duplicated, but the order is not to
be changed. The records can be reformatted during the copy process to create a file that contains a subset
of the fields in the input file.

Copying can be performed for a single or multiple input files.

Reformatting

Reformatting is used to change the presentation of the data in a file. For example, the widths of fields
can be truncated or expanded, numeric fields can be edited to make them more readable.

Appendix A

Code Tables

Decimal Hex EBCDIC ASCII Binary
0 00 NUL NUL 0000 0000
1 01 SOH SOH 0000 0001
2 02 STX STX 0000 0010
3 03 EXT ETX 0000 0011
4 04 SEL EOT 0000 0100
5 05 HT ENQ 0000 0101
6 06 RNL ACK 0000 0110
7 07 DEL BEL 0000 0111
8 08 GE BS 0000 1000
9 09 SPS HT 0000 1001
10 0A RPT LF 0000 1010
11 0B VT VT 0000 1011
12 oc FF FF 0000 1100
13 0D CR CR 0000 1101
14 0E SO SO 0000 1110
15 OF ST SI 0000 1111
16 10 DLE DLE 0001 0000
17 11 DC1 DC1 0001 0001
18 12 DC2 DC2 0001 0010
19 13 DC3 DC3 0001 0011
20 14 RES/ENP DC4 0001 0100
21 15 NL NAK 0001 0101
22 16 BS SYN 0001 0110
23 17 POC ETB 0001 0111
24 18 CAN CAN 0001 1000
25 19 EM EM 0001 1001
26 1A UBS SUB 0001 1010
27 1B Cul ESC 0001 1011
28 1C IFS FS 0001 1100
29 1D IGS GS 0001 1101
30 1E IRS RS 0001 1110
31 1F | ITB/IUS Us 0001 1111
32 20 DS SP 0010 0000
33 21 S0S ! 0010 0001
34 22 FS " 0010 0010
35 23 WUS # 0010 0011
36 24 BYP/INP $ 0010 0100
37 25 LF % 0010 0101
38 26 ETB & 0010 0110
39 27 ESC ! 0010 0111
40 28 SA (0010 1000
41 29 SFE) 0010 1001
42 2A SM/SW * 0010 1010
43 2B CSP + 0010 1011
44 2C MFA , 0010 1100
45 2D ENQ _ 0010 1101
46 2E ACK . 0010 1110
47 2F BEL / 0010 1111
48 30 0 0011 0000
49 31 1 0011 0001
50 32 SYN 2 0011 0010
51 33 IR 3 0011 0011
52 34 PP 4 0011 0100
53 35 TRN 5 0011 0101
54 36 NBS 6 0011 0110
55 37 EOT 7 0011 0111
56 38 SBS 8 0011 1000
57 39 IT 9 0011 1001
58 3A RFF : 0011 1010
59 3B Cu3 ; 0011 1011
60 3C DC4 < 0011 1100
61 3D NAK = 0011 1101
62 3E > 0011 1110
63 3F SUB ? 0011 1111

Code Tables (Continued)

Decimal Hex EBCDIC ASCII Binary
64 40 SP SP 0100 0000
65 41 RSP A 0100 0001
66 42 B 0100 0010
67 43 C 0100 0011
68 44 D 0100 0100
69 45 E 0100 0101
70 46 F 0100 0110
71 47 G 0100 0111
72 48 H 0100 1000
73 49 I 0100 1001
74 4A ¢ J 0100 1010
75 4B . K 0100 1011
76 4cC < L 0100 1100
77 4D (M 0100 1101
78 4B + N 0100 1110
79 4F | 0 0100 1111
80 50 & P 0101 0000
81 51 Q 0101 0001
82 52 R 0101 0010
83 53 S 0101 0011
84 54 T 0101 0100
85 55 U 0101 0101
86 56 \ 0101 0110
87 57 W 0101 0111
88 58 X 0101 1000
89 59 Y 0101 1001
90 5A ! Z 0101 1010
91 5B $ [0101 1011
92 5C * \ 0101 1100
93 5D)] 0101 1101
94 5E ; ~ 0101 1110
95 S5F - B 0101 1111
96 60 - 0110 0000
97 61 / a 0110 0001
98 62 b 0110 0010
99 63 c 0110 0011

100 64 d 0110 0100
101 65 e 0110 0101
102 66 £ 0110 0110
103 67 g 0110 0111
104 68 h 0110 1000
105 69 i 0110 1001
106 6A i 3j 0110 1010
107 6B , k 0110 1011
108 6C % 1 0110 1100
109 6D o m 0110 1101
110 6E n 0110 1110
111 6F ? o 0110 1111
112 70 P 0111 0000
113 71 q 0111 0001
114 72 r 0111 0010
115 73 s 0111 0011
116 74 t 0111 0100
117 75 u 0111 o101
118 76 v 0111 0110
119 77 w 0111 0111
120 78 x 0111 1000
121 79 y 0111 1001
122 TA : z 0111 1010
123 7B # } 0111 1011
124 e @ i 0111 1100
125 7D ! } 0111 1101
126 7E = ~ 0111 1110
127 TF " DEL 0111 1111

Code Tables (Continued)

Decimal Hex EBCDIC ASCII Binary
128 80 1000 0000
129 81 a 1000 0001
130 82 b 1000 0010
131 83 c 1000 0011
132 84 d 1000 0100
133 85 e 1000 0101
134 86 £ 1000 0110
135 87 g 1000 0111
136 88 h 1000 1000
137 89 i 1000 1001
138 8A 1000 1010
139 8B 1000 1011
140 8C 1000 1100
141 8D 1000 1101
142 8E 1000 1110
143 8F 1000 1111
144 90 1001 0000
145 91 Jj 1001 0001
146 92 k 1001 0010
147 93 1 1001 0011
148 94 m 1001 0100
149 95 n 1001 0101
150 96 o 1001 0110
151 97 P 1001 0111
152 98 q 1001 1000
153 99 r 1001 1001
154 9A 1001 1010
155 9B 1001 1011
156 9C 1001 1100
157 9D 1001 1101
158 9E 1001 1110
159 9F 1001 1111
160 A0 1010 0000
161 Al ~ 1010 0001
162 A2 s 1010 0010
163 A3 t 1010 0011
164 A4 u 1010 0100
165 A5 v 1010 0101
166 A6 w 1010 0110
167 A7 x 1010 0111
168 A8 % 1010 1000
169 A9 z 1010 1001
170 AR 1010 1010
171 AB 1010 1011
172 AC 1010 1100
173 AD 1010 1101
174 AE 1010 1110
175 AF 1010 1111
176 BO 1011 0000
177 Bl 1011 0001
178 B2 1011 0010
179 B3 1011 0011
180 B4 1011 0100
181 B5 1011 0101
182 B6 1011 0110
183 B7 1011 0111
184 B8 1011 1000
185 B9 1011 1001
186 BA 1011 1010
187 BB 1011 1011
188 BC 1011 1100
189 BD 1011 1101
190 BE 1011 1110
191 BF 1011 1111

Code Tables (Continued)

Decimal Hex EBCDIC ASCII Binary
192 co { 1100 0000
193 Cl A 1100 0001
194 c2 B 1100 0010
195 C3 C 1100 0011
196 c4 D 1100 0100
197 C5 E 1100 0101
198 (619 F 1100 0110
199 C7 G 1100 0111
200 c8 H 1100 1000
201 Cc9 I 1100 1001
202 CA SHY 1100 1010
203 CB 1100 1011
204 cc 1100 1100
205 CD 1100 1101
206 CE 1100 1110
207 CF 1100 1111
208 DO } 1101 0000
209 D1 J 1101 0001
210 D2 K 1101 0010
211 D3 L 1101 0011
212 D4 M 1101 0100
213 D5 N 1101 0101
214 D6 ¢ 1101 0110
215 D7 P 1101 0111
216 D8 Q 1101 1000
217 D9 R 1101 1001
218 DA 1101 1010
219 DB 1101 1011
220 DC 1101 1100
221 DD 1101 1101
222 DE 1101 1110
223 DF 1101 1111
224 EO \ 1110 0000
225 E1l NSP 1110 0001
226 E2 S 1110 0010
227 E3 T 1110 0011
228 E4 U 1110 0100
229 ES v 1110 0101
230 E6 w 1110 0110
231 E7 X 1110 0111
232 E8 Y 1110 1000
233 E9 Z 1110 1001
234 EA 1110 1010
235 EB 1110 1011
236 EC 1110 1100
237 ED 1110 1101
238 EE 1110 1110
239 EF 1110 1111
240 FO 0 1111 0000
241 F1l 1 1111 0001
242 F2 2 1111 0010
243 F3 3 1111 0011
244 F4 4 1111 0100
245 F5 5 1111 0101
246 Fé6 6 1111 0110
247 F7 7 1111 0111
248 F8 8 1111 1000
249 F9 9 1111 1001
250 FA 1111 1010
251 FB 1111 1011
252 FC 1111 1100
253 FD 1111 1101
254 FE 1111 1110
255 FF EO 1111 1111

	Assort User Documentation
	Fundamentals
	Overview
	File Formats
	ASCII and EBCDIC

	Assort Operations
	Sorting
	Merging
	Copying
	Reformatting

	Appendix A
	Code Tables
	Code Tables (Continued)
	Code Tables (Continued)
	Code Tables (Continued)

