Assort

A high performance Sort/Merge/Select Utility

Bill Ahlbrandt Software
Little Rock, AR
(501) 280-0462

CompusServe 73121,652

Table Of Contents
Chapter 1 Introduction

Benefits

Basic Functions of Assort

Sorting

Merging

Copying

Chapter 2 Command Line Syntax

Sorting Multiple Input Files

Merging Multiple Input Files

Chapter 3 Control Statements

Control Statement Summary Chart

Chapter 4 Control Statement Formats

Example of Control Statements

Comments

Example of Comments

Labels

Example of Labels

Continuation of Control Statements

Example of Continuations

ALTSEQ Statement

END Statement

INCLUDE/OMIT Statement

Examples of Include/Omit Statements:

Field to Field Comparisons

Specifying Constant Data

Selection Based on Record Length

INREC/OUTREC Statement

Rules for specifying INREC/OUTREC fields
Fields Subparameters

Editing

MERGE Statement

FILES

OPTION Statement

RECORD Statement

SORT Statement

FIELDS

FORMAT Codes

DYNALLOC

EQUALS/NOEQUALS

SKIPREC

STOPAFT

SUM Statement

Chapter 5 Programmer's Reference

Function Definitions

Invoking Assort Directly

Using The Record Level Interface of Assort
Callback Functions

Message callback function

E61 callback function

Chapter 6 Performance and Tuning

Minimizing Elapsed Time

Eliminating Unnecessary Fields

Eliminating Unnecessary Records

Optimizing Disk Performance

Optimizing Sorts

Phase I: Reading Input Records

Phase II: Writing Output Records

Optimizing Merges and Copies

Sortwork calculations

Chapter 7 Messages

Chapter 8 Operating System Specifics

Chapter 9 Installation

Assort is a high performance sort/merge/copy utility designed for the manipulation of a wide variety of file
formats.

Assort is optimized to minimize the consumption of system resources such as disk space, CPU, memory and
/0.

Assort provides significant performance improvements over competitive products at a value based price.

Assort was modeled after sort utilities that are available on IBM 370/390 Architecture machines. These utilities
have been in use for years with various levels of integration with other mainframe based applications.

Assort allows the user to perform Sort/Merge/Copy operations in non-mainframe environments using a familiar
control card format.

Assort can be initiated through the command line interface, or called as a subprogram. When called as a
subprogram, the calling program can perform input/output, or Assort can do all input/output processing. When
Assort is allowed to perform all input/output, processing time is generally lower due to the optimized I/O and
memory management facilities of this product.

There are no run-time royalties associated with Assort. This allows the licensee of this product to integrate
Assort into his product and distribute it without paying any run time royalties. The only restriction is that the
product that is distributed is not a generic Sort/Merge/Select Utility.

1Introduction

1Benefits

b tlsatetidmeanddefatthattotidsoittepondssoritthd ouitpse filencing.
S oledyfymi andér et mgt sitenf dbeamdmins Epptmmdtapdeiiceacm aiftresectbastdesvironments by using familiar

control syntax.

Merging ombine any number of sorted input files into one sorted output file
. Pr0V1de rame, class re lla ility and a robpst feahture set for users u s1zmg applications.
Copying icate the 1np of records without changing their sequence

* Provide a hlgher level of performance than competitive products.

® Dramatically decrease database load and index time by sorting tables prior loading.
e Efficiently process extremely large files.

* Select records

* Reformat records through parameter based data manipulation

2Basic Functions of Assort
Basic Functions of Assort

1Sorting

2Merging

3Copying

whssort can be invoked from the command line with the following syntax:

controlFileName is the name of the text file that contains the control information

inputFileSpec the specification for the input file(s)

collectioni[, coll¢
where:

collectioni =file

outputFileSpec the specification for the output file(s)
filei[, file2..., fil

Multiple input files can be specified to
concatenate multiple physical files.

All files must have the same record format.
When specifying the record length for non-
fixed length records, use the largest record
length of all concatenated files.

The plus sign (+) is used to indicated that files
are to be concatenated.

The comma (,) is used to indicated that the
next collection of files corresponds to another
input file set.

The first file in a file specification corresponds
to SORTIN or SORTINO1, the second file
corresponds to SORTINO2.

When merging multiple input files use a
comma between the file name(s) to specify
another input stream of data.

The SORTIN dataset is all that is used in this
version of Assort.

The SORTOUT is the only output that is used
in this version of Assort.

2Command Line Syntax

ASSORT controlFileName inputFileSpec outputFileSpec

If thufbad dater fises fitmn dheglosviefo eredinp] ©meforatredd ysatedof thdate athagmedlQ bS ntefdAd by date into

QRSLBRATLAIE STLS. [TAT foltb Q#R SKEmplle titad we howarttedpecstr tfilgscfotanmeeragcount number,
the following syntax would be used:

2Sorting Multiple Input Files

ASSORT BYACCT.CTL QISLS.DAT+Q2SLS.DAT+Q3SLS.DAT+Q4SLS.DAT BYACCT.DAT
where:
BYACCT.CTL contains the sort control specification
QISLS.DAT contains the sales data for the first quarter
Q2SLS.DAT contains the sales data for the second quarter
Q3SLS.DAT contains the sales data for the third quarter
Q4SLS.DAT contains the sales data for the fourth quarter
BYACCT.DAT will contain the sorted data

Concatenating Input files

3Merging Multiple Input Files

ASSORT BYDATE.CTL QISLS.DAT,Q2SLS.DAT,Q3SLS.DAT,Q4SLS.DAT BYDATE.DAT
where:
BYDATE.CTL contains the merge control specification
QISLS.DAT contains the sales data for the first quarter
Q2SLS.DAT contains the sales data for the second quarter
Q3SLS.DAT contains the sales data for the third quarter
Q4SLS.DAT contains the sales data for the fourth quarter
BYDATE.DAT will contain the merged data

Example of merging input files

Assort control statements are used to specify the desired output from input data set.

The supported control statements are as follows:

Statement Function

ALTSEQ Define an alternate collating sequence

END Declare the end of the control statements
INCLUDE Specify records to be included in processing
INREC Reformat input records

MERGE Specify merge fields and options

OMIT Specify records to be omitted from processing
OPTION Specify runtime options

OUTREC Reformat output records

RECORD Define input record characteristics

SORT Specify sort fields

SUM Specify fields to accumulate or eliminated duplicate records

3Control Statements

Assort Control Statements

Télatrpilocess of summi
E‘%’iﬁﬁeﬁ‘fELDs:NON
ame

nPavaniecerds causes a sum field to overflow, multiple record:

E is coded, all but the first record with equal sort fields will be

WidFbglevritten out.
deleted.

ALTSEQ CODE=(ccpp1, - - - ,cCPP2s6) Unsigned binary collating
Sequence

END none
INCLUDE COND=(condition[,AND/,OR,condition]) Include all records
INREC FIELDS=(field, [,ﬁeldz]) Entire input record
MERGE FIELDS=(p1,1.,fi,01, . . ., Pu,ln,fn,00)

FIELDS=(p,li,01, . . ., Pu>ln,0n),FORMAT=f

FIELDS=COPY

EQUALS/NOEQUALS EQUALS

FILES=n

SKIPREC=n Merge or Copy all Records

STOPAFT=n Merge or Copy all Records
OMIT COND=(condition[,AND/,OR,condition]) Omit no records
OPTION [CORE=n] CORE=4000000
OUTREC FIELDS=(field, [,ﬁeldz]) Entire input record
RECORD ~-

LENGTH=(l,, .. .l;), = —~ === — [5]
SORT FIELDS:(p],ll,fl,Ol, e pn,ln,fn,On

FIELDS=(p;,l;,01, - - -, Pn,ln,0n),FORMAT=f

FIELDS=COPY

DYNALLOC=(d) TMP environment variable

EQUALS/NOEQUALS EQUALS

FILSZ=n

SIZE=n

SKIPREC=n Sort or Copy all Records

STOPAFT=n Sort or Copy all Records
SUM FIELDS=(p1,l1,fi,. . -,pn,ln,fn) No summarizing of records

FIELDS=(p;.L,. . ..pn,l,),FORMAT=f
FIELDS=NONE
FIELDS=(NONE)

1Control Statement Summary Chart

Control Statement Summary Chart

Control statements my be in any order with the exception of the END statement. The END statement must be
the last statement in the control file.

Each control statement may be only coded once.

Control statements must begin after column one.

Control statements must end before to column 72.

A control statement and it’s parameters must be separated by at least one blank.
Parameters must be separated by a comma.

Columns 73-80 are ignored. These columns can be used for sequence numbers.

4Control Statement Formats

1Example of Control Statements

RECORD TYPE=F, LENGTH=80
SORT FIELDS=(1,80,BI,A)
END

Comments can be used to document or improve readability of the sort control information.
A comment card contains a "*' in column one. Comment cards are ignored.
Any number of comment cards can be coded.

Comments can also be coded after the end of a control statement by inserting one or more blanks between the
control information and the comment.

If column 72 contains a non-blank character, the comment is continued to the next card.

2Comments

1Example of Comments

This is a comment card. It is ignored
This sort will sort a fixed length file with 80 byte records

* % % ot

RECORD TYPE=F, LENGTH=80
SORT FIELDS=(1,80,BI,A),EQUALS This is also a comment
END

Labels can be used on control statements to improve readability. Labels are for your reference only. Assort
ignores any labels that are coded.

Labels must begin in column one.
Labels can be any length provided other control statement rules are not violated.

At least one blank must separate a label from the control statement.

3Labels

1Example of Labels

RECORD TYPE=F, LENGTH=80
DoTheSort SORT FIELDS=(1,80,BI,A)
END

Bhisfettiittrshautspiowipmamitiadote it dobatiineditligatit zidobeh mar 22 culdrbpgiors tn

column T8.dbhthstatethentdhould be continued on the next line after column one.

A control statement may also be continued by placing a non-blank character in column 72, and continuing the
statement on the next line after column one. The continuation will begin at the first non-blank character.

If the next line contains a label, place at least one blank after the label and continue the control statement.

If the continuation is to occur in a quoted string, place a non-blank character in column 72, and begin the
continuation on the next line in column 16.

4Continuation of Control Statements

1Example of Continuations

RECORD TYPE=F,

LENGTH=80

INREC FIELDS=(1,20,5:
71,10)

SORT FIELDS=(1,80,BI,A)

END

RECORD TYPE=F, LENGTH=8000
INREC FIELDS=(1,8,400:9,2,200:79,2,60:7632,200,315:30,5,80,10,C’"abcdefX
ghijklmnop’)
* This is a very long comment X
and this is the rest of the comment.

END

RECORD TYPE=F, LENGTH=80

INREC FIELDS=(1,8,
THERESTOFTHESTATEMENT C’ABC’)

END

Tha L ASEQ) slatamectt thatstbtohspacifysa Qistrdefinéd eqllatihlankqu(eiz6.) Thidecthe Hollsadrte: sort
filesrthat contain information encoded in alternate character sets.

dhessthetdvexddbei hal TS HQsStaatnantfishes dodlavter in the input file.
pp is the hexadecimal position the character should be placed in.

The cc and pp values should be in the range x'00' - x'FF".

To sort ASCII data such that character zeros (x’30’) to be equal to blanks (x’20’) code the following:

S5ALTSEQ Statement

ALTSEQ CODE=(ccpp1, . . . cCPP2ss)

ALTSEQ CODE=(3020)
ALTSEQ CODE=(3020,3120,3220,3320,3420,3520,3620,3720,3820,3920)

The END statement is used to signify the end of the control statements. The END statement is required,
and must be the last control statement in the set of control cards.

There are no parameters for the END statement, but it can contain comments.

6END Statement

END

ip A0 Hied @R dipesaberaiicinfied or o5ttt pddioanshene for three:

Wﬁ%%m%msmmwmﬁmmmﬁcm byt it b HE RN G epdansiigon 1S Obded,

% Ws%%rentﬁ%gﬂ ﬂmi%lelclls%,dthe conditions for records that should be included in further

xample of the parameter on the tatement

POECINEY the FORMAT- he INCLUDE S

The OMIT Statement is used to specify the conditions for records that should be omitted from further
processing.

One INCLUDE statement and one OMIT statement may be used. The combination of the statements is
used to determine if the record is included in further processing.

These statements are useful for eliminating unnecessary records based on their length. In text processing
applications, it may be useful to delete records of zero length.

There is no limit to the number of Include/Omit conditions that can be coded.

7INCLUDE/OMIT Statement

{INCLUDP,

- COND = (comparison)[.FORMAT = f
OMIT

where comparison is defined as:

SEREereen | omr)} {SEE e

Cc—<>axag>caxi=<>za > Cc=<>arrxag>=axi=<>22>

cond, and cond, represent conditions of the following format:
FEE T et { = z_'\;' = ,;*:" } N L e S R ¥

I

p is the position in the input record (before INREC processing)
1 is the length of the fields

f is the field format

LRECL is the length of the current record

INCLUDE/OMIT syntax

1Examples of Include/Omit Statements:

INCLUDE COND=(1,5,CH,EQ,C'72202',0R,1,3,CH,EQ,C'652")
INCLUDE COND=(1,5,CH,EQ,C'72202"',AND, (10,2, PD,GT,30,0R,10,2,PD,LT,4))
INCLUDE COND=(1,5,EQ,C'72202',AND,1,3,EQ,C'652"), FORMAT=CH

When specifying field to field comparisons on INCLUDE/OMIT cards, use the following table to determine if
fields of different types can be compared.

FORMAT I FI BI CH ZD PD
CODE
I X X X
FI X X
BI X X X
CH X X
ZD X X
PD X X

8Field to Field Comparisons

Table of valid field to field comparisons

Wh e mgsthealN el eI B /€ PRiSthtmmant, thewseare dongthrdlwefsblo ter diebd dstapadddae valid constants are

li in th loyy: . . .
! 89 c atra%ttglb }fe?(fs,o%e padding takes place on the right. The pad character is a blank.

i;c())rn gfiﬁlé[r;%?equ, hg%%t&é‘ing takes place on th%xrallé%?.le'%he field is pe{ﬁ%teeo? with binary zeros.
. U . C'ALPHA' i i i
?glaﬁzhc&%nc fields z%rO‘S‘ of the appropriate d M type aieluﬁgd to padl %ﬁ%entﬁYﬁbséP%}f}t%%eﬁ.to Insert a quote m
€ the constant.
H the-fields-are-signed-data-types-such-as El o Fthe sicn-bits-are-prppasated-whennecessaryif paddingtakes
H%gdecimal . XT0DOF" The number of digits coded must be ever.
‘ x'ic!

Binary B.... B'00011100" Must code eight digits

B'l....... ' Use "' to indicate don't care conditions
Numeric numeric 89 Plus sign is optional

+421323

-370

9Specifying Constant Data

Specifying Constants

When using the INCLUDE/OMIT Statement, you can perform selections based on the length of the record.
This is useful when you want to eliminate records that have zero length.

For Example, to omit records that have a length of zero code:

10Selection Based on Record Length

OMIT COND=(LRECL,EQ,O0)
INCLUDE COND= (LRECL,GT, 0, AND, LRECL, LE, 80)

Spcc1 y anumberto rephcatet e ol owmg constant The default replicator is

zlﬂl the (ﬂlél[&Eﬁ

<

expandmglerﬁefd MR

Bhascatisd domathbernibe fed drdietdostililvimebie ptdesdnid desdripbisreoutst fuhenhending

Y d
X lﬁb%ellmsthe sqangé'lﬁd)rﬂlé m»llﬁﬂﬁ4ﬁﬂﬁbé’r will automat1cally be calculated to be one

W&ﬁ%@ﬁ%ﬁﬁﬁ@%ﬂad gins

INREC t £

L UL TT VNI O \/ﬂldo I,lllb TS lll\.a PUDILIUII TIr lll\; 111 Ul. 1\4\,_}1\,1 asS ll, TS l\aﬂd fl\}lll I,h\./ IJJPU
Use the X constant to create an output field that Contains blanks
EorOUTREC {“qwlo thisis-the ﬂl\c!f jon+n-therecordaft

N

(*hhhh...hh’

T

U icr(ttjlggt%n,@hh “hh’ constant to create an output field that contains a hexadecimal
donstan

1

The length of the ﬁ 1d in b%/tes
1) can be 1 the range rom 1 fo 2147483647.

C’literal’

Use the C’literal’ constant to insert a literal string into the output record.

n can be in the range from 1 to 2147483647.

Use the Z literal to insert binary zeros into the output record.

n can be in the range from 1 to 2147483647.

CRLF

Insert a Carriage Return/Line Feed (x'0D0A") in the output record. This can be used to
convert a file containing Fixed or Variable length records to a Text file.

11INREC/OUTREC Statement

INREC

OUTREC
where fields can be coded as follows:
[c:]p1, 11[, subparamcters]

FIELDS = (field:[. field=]. . .>

or
[n]B'bbbbbbbb'
[n]X
[n]X’hhhh...hh’
[n]C’literal’
[n]Z

INREC/OUTREC Position and Length parameters

INREC/OUTREC Constants

1Rules for specifying INREC/OUTREC fields

2

Wse the Fields Subparamete
* Force Halfword (two b]
e Edit a numeric field

® Convert a numeric field
* Convert a field to a prif

The following table shows t

rsAbipthadollspevifidasiosi. This can be either H, F, or D for Halfword, Fullword or

teDs?,u Hﬁwggda(l%gﬂr e}Illtte':s), or Doubleword (eight bytes) alignment
Halfword alignment rounds the output position up to the nearest two byte boundary

Fullword alignment rounds the output position up to the nearest four byte boundary

]%?u lewgrd alignment rounds the output position up to the nearest eight byte
lt%o ¢ hexadecimal represen ation

ary

he subparameters of the Fields parameter
An aBproprlate num]%er o?lglngry zeros will be inserted in the record to obtain the

specified alignment.

Note: Column one in the output record is double word aligned.

f The format subparameter is used to define the format of the input field. The format
should be BI, FI, PD, ZD or I. The length must be specified that is consistent with
the eligible lengths for each data type.

BI 1 to 4 bytes (kludge: are these correct?)
FI 1, 2 or 4 bytes
PD 1 to 8 bytes
ZD 1 to 15 bytes
I 1 to 4 bytes
Mm One of the default edit masks M0-M9.

See the section on default edit masks for more information

EDIT=(pattern)

A user defined edit pattern.

See the section on defining edit patterns for more information.

SIGNS=(s1,s2,s3,54)

This subparameter defines how the signs will be placed in the output record.

See the section on specifying signs for more information.

LENGTH=n

The LENGTH subparameter is used to override the default length for an edited field.

HEX

The HEX subparameter is used to convert a single byte in the input record to a two
byte hexadecimal representation of the field in the output record.

3Fields Subparameters

E ’-*"»‘f)_mgh — e [[[S1ENS =
][mEx]

e N(,,..f.‘JH}

INREC/OUTREC Fields Subparameters

INREC/OUTREC Fields Subparameter

ABdatihpas the process of converting a machine readable data element to a format that is pleasing to the eye.
the following

default edit

masks

available for

editing

numeric

fields:

Mask Edit Pattern

MO IIL..ITS
M1 TTTTT..TTTS
M2 LIIL...,IT.TTS

M3 LIL...IIT.TTCR

M4 SLIIL... . IIT.TT

MS SLIIL... . IIT.TTS

Me II-TTT-TTTT
M7 TTT-TTT-TTTT
M8 IT:-TT:TT

M9 IT/TT/TT

4Editing
1Default Edit Masks

Default Edit Masks

add d w1thlb1alaks on the left so
as sign ¢ ra ers ust e enclosed in single

rn, with the followmg exceptions:

jj v g B4 odandelgis felecton gledybofescathfofist/significant
. Tra11d1g13@ie@1ﬁ@mm&prmt asa blank unless a prev10 1sly selected digit was non-zero.

S2 Leading negative sign indicator o))]
e Any oﬁwﬁ@ﬂmmﬁe@a}f atthinldse sigpifiicesviodiizit selector will print as a blank if the edited number is
S3 ositive. rallmg positive sign indicator

There is no predetermined limit to the length of an edit mask. Edit masks that exceed 40 characters are
$encrhily chausisnabi el @ R BLSHAHies st Leadl bng dnsignd firant aligitpel disid, including a

. i left of the first 51gn1ﬁcant d1 it. The appropriate
The signiffeant an lﬁaﬁmﬁ%ﬁn& T S il %ﬁ%%’i‘}ﬁr‘?&%‘ieﬁ%‘rh by ds s ﬁ%&op@mted
The defyi i EQLLsp RN NS Juat uMMEP UL GORACTRT R ol pliaigniticant character. 1fyod

wish to use the characters ‘I’ or “T” 1n an output field, modlfy the Eny eyword and the edit mask
accomllyglgadili’igsmlgmﬁangt@@ammsmﬁddmﬂm depinsfisignificant digit selector will be treated as a

significant digit selector.

® The sign replacement character appearing as the first and/or last character of the pattern is replaced as per
the SIGNS subparameter.

2Defining Edit Patterns

EDxy=(pattern)
where: x = insignificant digit selector
y = significant digit selector

3The LENGTH=n Subparameter

4The Signs Subparameter

SIGNS Subparameter description

|SIGNS:(,IIII,IIII|)

Toe th ISR Saacenaerttisl osedhtm tht fome foretlie dissenig toodeo fhiae el uEeBQUAE S1e8KI PRIEESand BEFOPAFT
pynamxeodithe MERGE statement is as follows:

12MERGE Statement

it = Sl e
N e A e
P e R e e T G LU SN

1 [- = ww w= ==

= W W e === < x> - L E T w2 . e . R _ &
— W = = = = = W == —— < m= _ 1 = . = . W= e

1FILES

The BIFHOphstateteenteinesethtompadidy efidealtproeenenpe dptlidns. pdihenetatacceptetylbovaot currently
used. The number of files to be merged is determined by the number of files specified on the command
line.

130PTION Statement

OPTION [CORE=n]

THhIRRE IRD i tfifothouiiglifibyhes itpal oeate ddointetaaidsorting teblgth. THeedsfatix ishe for 7 is

a .

_ww&‘rlin 211 Q saotaley £osi o hataq af aetagl oo 4o 11 4 4o th 4 1 cortin
W SIS W T CatSCapproxXinatCry To U e gat y tCs O v ttdar StoTag Cto o CamoCarC OOt HtCiar SOt g

Probss.

Description

Fne coREB5Adineth seeifisstdhfo spathiscabieisdifiopdhesk 488 ding on the physical memory size of

your madhipav style variable length records.
The COR Eppargmststifposte AP Hasoiel 38tited: ifolgneyed fesddereesisnd Lpifife ludes a two byte IBM 370

format Unsigned Integer and two bytes of reserved information.
Following the four bytes of header information is the actual record data.

The record length in the header includes the length of the four byte header.

Text type records.
Records are delimited by:

e a Carriage-Return/Line-Feed character combination

e anewline character.

An MS-DOS style End of file character is permitted, but not required.

Variable length records. The record length is obtained from a two byte Intel format unsigned integer
that is appended to the front of each record.

The two byte field contains the length of the record. This length does not include the two byte
appendage.

14RECORD Statement

RECORD -+ — |2 |+

Valid Record Formats

Thh ¢ HONES Fateae ticief i § 0 Rdfestefionkerys isnd ed derdediot tihe gugitiofildength and format of sort keys.
Fhd PRI Bvidangih el dichfodbondfpsydtan:the TYPE is F.
p The myxpmginoleng the impyn iputdaeoby toheftcheNRIE pyoce¥sing I

1 Length of the Field in bytes.

If this is the last sort field, you can omit the length and the remainder of the record will be
used in field comparisons. This is useful when the length of the records is not known at
run time such as in Variable and Text records.

0 A for Ascending
D for Descending
E as modified by an E61 user exit
f the format of the field as documented in the valid formats chart

15SORT Statement

SORT FIELDS=

< > - a2 . <> 2 . m = _ B _ = _ <> -—

.
pathName

L DDYNAILTI. OC =
(pathNarme,r)

. EOUALS

. INOFEQUALS

[.sx7PREC =n].STOPAFT =)

= W2 > - w> = . B = _ e = _ _ _ _ _ B o B e > Ew e = T~ W

1FIELDS

Sort Fields Description

The following table contains the valid format codes, the data representation, and the valid lengths for

each code..
Format Code | Data Format Valid Lengths
AC The EBCDIC data is converted to ASCII prior to comparisons. 1 to record length
AQ Alternate Collating sequence as defined in the ALTSEQ statement 1 to record length
ASL ASCII Signed Leading 2 to record length
An ASCII '+ or - precedes the numeric field. One digit per byte.
AST ASCII Signed Trailing 2 to record length
An ASCII '+' or - trails the numeric field. One digit per byte
AU ASCII characters are converted to upper case prior to sorting 1 to record length
BI IBM 370 format Binary Unsigned 1 to record length
Fields of unequal length are zero padded and right justified.
CH Same as BI 1 to record length
Fields of unequal length are blank padded and left justified.
CLO Leading Overpunch sign. Hexadecimal D,B, or 2 in the first four 1 to record length
or bits of the field indicates a negative number. Any other value
OL indicates a positive number.
CSL an EBCDIC '+ or '-' precedes the numeric field. One digit per byte. | 2 to record length
or
LS
CST an EBCDIC '+' or '-' trails the numeric field. One digit per byte. 2 to record length
or
TS
FI IBM 370 format Signed integer 1 to record length
I Intel format Signed Integer. 1 to 4 bytes
Byte order reversed
PD Signed Packed decimal. 1 to record length
The sign is determined by the last four bits of the field. If the last
four bits are hexadecimal B, D, or 2, the field is negative, otherwise
the field is positive.
V) Zoned Decimal. Trail overpunch sign in the first four bits of the last | 1 to record length
or byte is used for the sign. Hexadecimal B, D, or 2 indicate a
CTO negative number. All other values result in a positive number.
2FORMAT Codes

SORT/MERGE Format Codes

TKd BRIAE S @ apacombtintisatsivi o s ip iveldthtrandotpd f ey tid ooy smthsgprock fidedefardlt iis the input
L i h .of k i . o .
mEd%gu t géml}lsctl?ler:n Sﬁggt%r@t tll*?aet?gdf):cglgte%ahye%eedemg%%smlgn%nvd;r?%qg TMP. This directory will be
doERREGssertfihdithjtiesidibAplodtopadmidseb fesusltsppEis was not the case in previous
Hothey %1‘6}? nl%ﬁ?‘%tff%?la i lfé”“é? sr&le%%esoiTE?Ee%’lr?n%’%ffmaQ%flﬁqlél% bield Safseqmiende fhat
cEQUALS dpﬁ?me et bte : COC eld 1f:1}lrg %der% %\Oe £qua keyed retords 1S significant.

% process recor: s 140 t]flroug Pigo, code the To owing:

!ﬁ [EA, eter can be used to indicate where work files should be created. For large sorts, the
:Si;%? i eszééagjcb(é%agj%j@o a different disk drive.
This will cause the first 99 records to be skipped, and 10 records to be processed.

3DYNALLOC

4EQUALS/NOEQUALS
SSKIPREC

6STOPAFT

Tmmmmmm TeiththsedSKHPREL fpaldm cTdrety alite teingthys Jort spaeifocmead endslist ¢hleinnghet

GBPAFT parame ill causg the sort to sto cessing after n records have been read from the
ere marize€ nunieric tl(irs or equafkeye recorésqrp tlcn)e mpugd%taset
lllJ l

=
?‘::l k/UU r@f(hlp‘l,] ll\mﬂl}l f I,ll REC prOCGSSlng

irl;l'lle format of the S J%ﬁ@f@‘@‘éﬁ‘ﬁﬁ@ff@l&ows
FI U, CUUIU .
f ?ﬁus?lgg thhé fl eld, Th Eoyr;[rélsa)t must be either BI, FI, I, PD, or ZD.

Ancven number o

I 1, 2, or 4 bytes
PD 1 to Record Length
ZD 1 to Record Length

16SUM Statement

SUMFIELDS= |27 s =

SUM FIELDS Subparameter descriptions

SUM FIELDS Format Codes

Assort can be invoked from the command line or from an application program.

TFlalPaf l'l&nﬂtﬁnﬁeﬁ!:SO Relfmnl@eght initiation of the program, the is the record level

interface. The record level interface allows you to pass records to the sort, sort them, and read them back.

The ASSORT.EXE uses the straight initiation of the program.
The Assort command replacement SORT.EXE uses the record level interface.

The main disadvantage to using the record level interface it that the optimized input/output facilities are not
used. The driver program performs all input/output.

The advantage to using the record level interface is that file formats that are not supported by Assort can be
processed.

Another advantage to the record level interface is that records do not have to reside on disk at all. They can be
C++ objects that reside in memory or they can be records in an external database.

When sorting objects that reside in memory, the records could be four byte addresses, and the E61 user exit
could be called to compare pairs of pointers to objects.

The following functions are used when calling Assort:

Function Name Straight Record Level Description/Usage

Initiation Interface
makeDeck Always Always Creates a deck object
registerCallbackFunction Sometimes Sometimes Registers a callback function
assortpar Always Always Parses out control information
assortsor Always Executes based on the parsed

information

sProc Always Sort Records
sPush Always Pull Sorted Records back
sPush Always Push Records to the Sort

17Function Definitions

The following functions are used when calling Assort.
deckT *makeDeck();

This function is used to construct a deckT object. If successful, returns a pointer to a deckT object. If
unsuccessful, returns NULL.
int registerCallbackFunction(

deckT *deck, /l pointer to deckT object

unsigned int routineNumber, /I callback Routine Number
pCallbackFunction pcallback, /l address of Callback Routine
void *userHandle /I user specified handle

);

Pass the address of the deckT object created by the makeDeck() function. The value for routineNumber should
be EMESSAGES, or E61Callback. These values are defined in the file assort.h.

The value for userHandle can be any four byte value including pointers. Whatever is passed in this parameter
will be passed to your callback function.
int assortpar(

deckT *deck, /l pointer to deckT object

const char *controlinformation /I Assort control information
);
This function parses out control information. After calling this function you can use the parsed information to
execute the Sort/Merge or Copy.

Pass the address of the deckT object created by the makeDeck() function. The controllnformation field contains
the Assort control information. Control cards should be separated by at least one space. No comments or
labels are permitted in this parameter.

int assortsor(

deckT *deck, /l pointer to deckT object

const char *inputFileSpec, /I input file specification

const char *outputFileSpec /I output file specification
);

Initiates the sorting process.

The inputFileSpec contains the specification for the input file name(s). This is the same format that the Assort
command accepts. Concatenate inputs with a ‘+’ sign and separate multiple inputs with commas. Multiple
inputs are used for merges.

The outputFileSpec contains a single file name.
int killDeck(

deckT *deck, /l pointer to deckT object
);

Initiates the sorting process.

The inputFileSpec contains the specification for the input file name(s). This is the same format that the Assort
command accepts. Concatenate inputs with a ‘+’ sign and separate multiple inputs with commas. Multiple
inputs are used for merges.

The outputFileSpec contains a single file name.
int makePcb(

pcbT *fabb, /I poiimttarttoeappbintdnjdota pcbT object
);const deckT *deck, Il pointer to a deckT object
Diibes yfites®drobject. This function is used when usind/tpoiateriteefilesréhbject

kr%%?&?%?’ﬁ%lbfe%‘j%%ﬁeﬁ%MH&H%H?E@J&’ WIS G, SHOTOES M Sevel interface.

If successful, returns zero. Returns non-zero value if an error occurs.
deck should be a pointer to a deckT object that was created with the assortpar function.

filesParm should be NULL.
int sProc(

int killPcb(

pokaemtii g mﬁw@@@smﬁaﬁmmmgmmr%h the sPush
ins a pointer to a regord Buffer %ﬁure for record 2
hiny §th 4heemakeBchrfunction. After all objects (records)

R
""!‘ 1 (!
pait]

e ‘_,‘f an—crror occurs.
¢ if an error occurs. EOF indicates there are no more objects

g ’v s pr -GS "Pwas
Record 1 : 1
int someHgx RRlEGEek sﬁmtpm(deck, EddESHAGHS, msgRoutine, NULL);
1InvokisE, ¢ %ﬁgﬁ@&(ﬂ , "c:\\test.in", "c:\\test.out");

C?g & kEcat fiiRackc Eiled6IRoutine, NULL)

i
; ?h rrelf eck§ i E?ﬁe"

f dec mak? maf<)e)]5e (la alled'\nﬂ1

L /% en d1 ——assortpar ck, controllnfo)) {

. if ('makePcb(&pcb, dec

retumn if ('makePcb(&pcb, deck, NULL

) ’ sPush(pcb, recordl, strlen(record1)+1);

sPush(pcb, record2, strlen(record2)+1);
sPush(pcb, record3, strlen(record3)+1);

int main() { sPush(pcb, record4, strlen(record4)+1);

someFunction();

) sProc(pcb);
! return 0; printf("The sorted records:\n");
while(EOF != sPull(pcb, &aRecord, &al.ength)) {

printf("%s\n", aRecord);
} /* endwhile */

2Using The Recog'gsg_{e\lfiéych‘ﬁé}"face of Assort

printf("makePcb Failed\n");
} /* endif */
} else {
printf("Parse Failed\n");
} /* endif */
killDeck(deck);
} else {
printf("makeDeck() failed!\n");
} /* endif */
return;

}

int main() {
someFunction();
return 0;

}
int sPull(

3Callback Functions 1Message callback function
1Example of using the message callback function

2E61 callback function

1Example of using the E61 callback function

int sPush(

5Performance and Tuning

hifichlteidotia fyomeinpquifidd, tthsdrttal falmosibty ofl imtoratih g e ldwardieetasdd dtwasoed .

iﬁ% s*a’hmﬂtﬁmaheoﬁﬁa;ilh ent in performan £
ere are many ways to 'tune'" the sorting process. Dépending on your objectives, you may wish to minimize

élnpsmimpim Qﬁﬂnmmmklslmtnﬁgdudlakl spainprtdfilicehmtntontained 4000 byte records. In each record there was

ne b te account number in 10ns on through nmﬁ: §f ﬁmwanted to know the umber Oh dlStln%t
ter %gcuses 1(lm erat ona ues %1 15¢ 1n t crge ess and %111 at can be used
§P cou o Sort AIESA posmons one nine w1

ﬁ ﬁ%sl\%oof)lﬁoﬁ fns vyould give you an output file with a s1ng1e 4000 byte record for each distinct
state code in the input file.

If the file had 20 million records, the maximum sortwork requirement would be 80 Gigabytes.

If you used the INREC card and only included the nine byte account number field, the maximum sortwork
requirement would be 180 Megabytes

This would be about a 95% reduction in disk processing time. Reductions in disk processing time are directly
proportional to total processing time, so the overall throughput would be significantly better.

1Minimizing Elapsed Time
1Eliminating Unnecessary Fields

2Eliminating Unnecessary Records

ﬁ Sgggn et tbmpdlambndstfmrsprmplphysuhaledemUmtﬂtbﬁtarﬂ;;abungcpevfermnbp

iﬂtmestbéam;ﬁtetheaptmﬂmdmamuwyemrgnwuraapﬂdaabattﬂeelmhmmmatement to select only the records for

lif.%ep 1%\tz?rzz)thlggnltnvtg%tab{atﬁ'MP can be set to a work drive. This drive should be a different device than where

permanent data files are generally stored.

The DYNALLOC parameter of the SORT card can also be used to direct sortwork files to a directory on
another device.

3Phase Hmﬁﬁhgmptpdtdlecdslis

20ptimizing Disk Performance

10ptimizing Sorts

The phases of a Sort

20ptimizing Merges and Copies

Tﬂfhefanmga zfndctzdpylptmgsw’smmﬂfmeqlh@rtmmm impsifaldwstput files at the same time. Therefore it is best to

1161 1££ 14 T 4l 1a PN N
haveaH-fHes-on-differentphysteal-deviees—Insenreeasesthismay net be-feastbledue to-alarge numbere
Fff Ocrtgd a <n‘P ﬁsﬁngl%%lil of physical devices. Maximtm Sortwo T(Required

Type
F fixed length records n*[*(1.01)
VorT Variable length or Text records n*(I+2)*(1.01)
I Variable length records (IBM Format) n*(1+4)*(1.01)
where:

n is the number of records that survive INCLUDE/OMIT processing
1 is the average record length of the records after INREC processing

3Sortwork calculations

Assort messages are all of the format ICY nnnnt or ICCnnnnt. 1CC messages come from the command driver

(ﬁmg@h 6é§essages originate in the sorting engine (ASSORT.DLL).

Where:
nnn is the message number
t is the message type

I for Informational Messages

E for Errors

W for warnings

B for tuning or performance statistics

ICC0004B
ICCO0012E

Message

ICC0004B

ICCO0011I
ICCO0012E
ICY00011I

ICY00021

ICY0002E

ICY 00041

ICY0207W

ICY0502E
ICY 05301
ICY05301

CPU Time: 1 seconds, Elapsed Time: 1 seconds

Assort Failed

Description

CPU Time: nnnnn seconds, Elapsed Time:
nnnnn seconds

End Assort
Assort Failed
Copyright (c) 1993, 1994, 1995 Bill

Ahlbrandt Software

xxxxxxxx Callback routine registerd
xxxxxxxx Callback routine unregisterd
Unsupported Callback Routine xxxx

Unregisterd Copy

Unable to open input file XXXxXxxXx
File xxxxxxxx, Records In XXXxXxXxXxx

File xxxxxxxx, Records Out XXXXXXXX

Action required or recovery procedure.

none

Assort completed successfully
Correct error

none

A callback routine (User Exit) named
XXXXXXXX was registered

A callback routine (User Exit) named
XXXXXXXX was unregistered

An attempt was made to register an
unsupported callback routine

Contact Bill Ahlbrandt for a registration
information

Correct the input file name specification
Number of records read from the input file

Number of records written to the output file

Assort has been written entirely in the C++ programming language. Operating system dependent information
D% ith 'Meww My 0S/2 2.x, OS/2 Warp, Windows 95 and
3gﬂmtzhvgrt§¥§o > 'Oth ﬁg are scheduled to be supported.

There are currently no platform specific differences or limitations in this product.

There are four directories on your installation disk. These are WIN32, OS2, INCLUDE and IVP. the

Wﬂﬁ g}fgmﬁes contains the following files:

Filename Description Installation Directory Notes
ASSORT.EXE The command line interface for Assort. Any directory that is in your path Required
ASSORT.DLL The Assort sorting engine. Any directory that is in your path Required
On 08S/2, this must be placed in a directory that is
included in your LIBPATH variable that is
specified in your CONFIG.SYS
ASSORT.LIB Import library for linking with your a directory your linker searches Optional
programs.
SORT.EXE A Sort command replacement for Win32 or a directory in your path that is searched before the Optional
0S/2 2.x DOS or OS/2 system directory that contains the

file SORT.EXE

The INCLUDE directory contains the file ASSORT.H. This file should be included into your C and C++

programs when calling Assort.

The IVP directory contains sample data files and control cards to ensure that the product has been installed

properly.

	1 Programmer's Reference
	1 Invoking Assort Directly
	2 Using The Record Level Interface of Assort
	3 Callback Functions
	1 Message callback function
	2 Phase I: Reading Input Records
	3 Phase II: Writing Output Records

	2 Messages
	3 Operating System Specifics
	4 Installation
	1 Introduction
	1 Benefits
	2 Basic Functions of Assort
	1 Sorting
	2 Merging
	3 Copying

	2 Command Line Syntax
	2 Sorting Multiple Input Files
	3 Merging Multiple Input Files

	3 Control Statements
	1 Control Statement Summary Chart

	4 Control Statement Formats
	1 Example of Control Statements
	2 Comments
	1 Example of Comments

	3 Labels
	1 Example of Labels

	4 Continuation of Control Statements
	1 Example of Continuations

	5 ALTSEQ Statement
	6 END Statement
	7 INCLUDE/OMIT Statement
	1 Examples of Include/Omit Statements:

	8 Field to Field Comparisons
	9 Specifying Constant Data
	10 Selection Based on Record Length
	11 INREC/OUTREC Statement
	1 Rules for specifying INREC/OUTREC fields
	3 Fields Subparameters
	4 Editing
	1 Default Edit Masks
	2 Defining Edit Patterns
	3 The LENGTH=n Subparameter
	4 The Signs Subparameter

	12 MERGE Statement
	1 FILES

	13 OPTION Statement
	14 RECORD Statement
	15 SORT Statement
	1 FIELDS
	2 FORMAT Codes
	3 DYNALLOC
	4 EQUALS/NOEQUALS
	5 SKIPREC
	6 STOPAFT

	16 SUM Statement
	17 Function Definitions
	1 Example of using the message callback function
	2 E61 callback function
	1 Example of using the E61 callback function

	5 Performance and Tuning
	1 Minimizing Elapsed Time
	1 Eliminating Unnecessary Fields
	2 Eliminating Unnecessary Records

	2 Optimizing Disk Performance
	1 Optimizing Sorts
	2 Optimizing Merges and Copies

	3 Sortwork calculations

