
Assort

A high performance Sort/Merge/Select Utility

Bill Ahlbrandt Software
Little Rock, AR
(501) 280-0462

CompuServe 73121,652



Table Of Contents
Chapter 1 Introduction________________________________________________________

 Benefits_________________________________________________________________________________

 Basic Functions of Assort____________________________________________________________
 Sorting__________________________________________________________________________________
 Merging_________________________________________________________________________________
 Copying_________________________________________________________________________________

Chapter 2 Command Line Syntax________________________________________________
 Sorting Multiple Input Files__________________________________________________________________
 Merging Multiple Input Files_________________________________________________________________

Chapter 3 Control Statements___________________________________________________
 Control Statement Summary Chart___________________________________________________

Chapter 4 Control Statement Formats____________________________________________
 Example of Control Statements_______________________________________________________________

 Comments________________________________________________________________________
 Example of Comments_____________________________________________________________________

 Labels____________________________________________________________________________
 Example of Labels_________________________________________________________________________

 Continuation of Control Statements___________________________________________________
 Example of Continuations___________________________________________________________________

 ALTSEQ Statement________________________________________________________________

 END Statement____________________________________________________________________

 INCLUDE/OMIT Statement_________________________________________________________
 Examples of Include/Omit Statements:_________________________________________________________

 Field to Field Comparisons__________________________________________________________

 Specifying Constant Data____________________________________________________________

 Selection Based on Record Length____________________________________________________

 INREC/OUTREC Statement_________________________________________________________
 Rules for specifying INREC/OUTREC fields____________________________________________________
 Fields Subparameters_______________________________________________________________________
 Editing__________________________________________________________________________________

 MERGE Statement_________________________________________________________________
 FILES___________________________________________________________________________________

 OPTION Statement________________________________________________________________

 RECORD Statement________________________________________________________________



 SORT Statement___________________________________________________________________
 FIELDS_________________________________________________________________________________
 FORMAT Codes__________________________________________________________________________
 DYNALLOC_____________________________________________________________________________
 EQUALS/NOEQUALS_____________________________________________________________________
 SKIPREC________________________________________________________________________________
 STOPAFT_______________________________________________________________________________

 SUM Statement____________________________________________________________________

Chapter 5 Programmer's Reference______________________________________________
 Function Definitions________________________________________________________________

 Invoking Assort Directly____________________________________________________________

 Using The Record Level Interface of Assort____________________________________________

 Callback Functions_________________________________________________________________
 Message callback function__________________________________________________________________
 E61 callback function______________________________________________________________________

Chapter 6 Performance and Tuning______________________________________________
 Minimizing Elapsed Time____________________________________________________________

 Eliminating Unnecessary Fields______________________________________________________________
 Eliminating Unnecessary Records_____________________________________________________________

 Optimizing Disk Performance________________________________________________________
 Optimizing Sorts__________________________________________________________________________
 Phase I: Reading Input Records_______________________________________________________________
 Phase II: Writing Output Records_____________________________________________________________
 Optimizing Merges and Copies_______________________________________________________________

 Sortwork calculations_______________________________________________________________

Chapter 7 Messages___________________________________________________________
Chapter 8 Operating System Specifics____________________________________________
Chapter 9 Installation_________________________________________________________



1Introduction

1Benefits

Assort is a high performance sort/merge/copy utility designed for the manipulation of a wide variety of file 
formats.

Assort is optimized to minimize the consumption of system resources such as disk space, CPU, memory and 
I/O.

Assort provides significant performance improvements over competitive products at a value based price.

Assort was modeled after sort utilities that are available on IBM 370/390 Architecture machines.  These utilities
have been in use for years with various levels of integration with other mainframe based applications.

Assort allows the user to perform Sort/Merge/Copy operations in non-mainframe environments using a familiar 
control card format.

Assort can be initiated through the command line interface, or called as a subprogram.  When called as a 
subprogram, the calling program can perform input/output, or Assort can do all input/output processing.  When 
Assort is allowed to perform all input/output, processing time is generally lower due to the optimized I/O and 
memory management facilities of this product.

There are no run-time royalties associated with Assort.  This allows the licensee of this product to integrate 
Assort into his product and distribute it without paying any run time royalties.  The only restriction is that the 
product that is distributed is not a generic Sort/Merge/Select Utility.



2Basic Functions of Assort
Basic Functions of Assort

1Sorting

2Merging

3Copying

Assort can provide the following  benefits:

· Minimize training when downsizing applications from mainframe based environments by using familiar 
control syntax.

· Provide mainframe class reliability and a robust feature set for users upsizing applications.

· Provide a higher level of performance than competitive products.

· Dramatically decrease database load and index time by sorting tables prior loading.

· Efficiently process extremely large files.

· Select records

· Reformat records through parameter based data manipulation

Assort has three basic functions:

Sorting Arrange a set of records in another sequence

Merging Combine any number of sorted input files into one sorted output file

Copying duplicate the input set of records without changing their sequence

Sorting is the process of arranging a set of records into another sequence.Merging combines any number of sorted input files of records into one sorted output file.The process of copying allows the selection and reformatting of records without resequencing.

Selection and reformatting of the records is permitted in each of these functions.



2Command Line Syntax

ASSORT controlFileName inputFileSpec outputFileSpec

1

Assort can be invoked from the command line with the following syntax:where:

controlFileName is the name of the text file that contains the control information

inputFileSpec the specification for the input file(s)

collection collection collection
where
collection file file file

n

i n

1 2

1 2

[, ..., ]
:

[ ... ]  

outputFileSpec the specification for the output file(s)

file file filen1 2[, ..., ]

Multiple input files can be specified to 
concatenate multiple physical files.

All files must have the same record format.  
When specifying the record length for non-
fixed length records, use the largest record 
length of all concatenated files.

The plus sign (+) is used to indicated that files 
are to be concatenated.

The comma (,) is used to indicated that the 
next collection of files corresponds to another 
input file set.

The first file in a file specification corresponds 
to SORTIN or SORTIN01, the second file 
corresponds to SORTIN02.

When merging multiple input files use a 
comma between the file name(s) to specify 
another input stream of data.

The SORTIN dataset is all that is used in this 
version of Assort.

The SORTOUT is the only output that is used 
in this version of Assort.



2Sorting Multiple Input Files

Concatenating Input files

3Merging Multiple Input Files

Example of merging input files

If you had four data files of sales information, one for each quarter of the year named Q1SLS.DAT, 
Q2SLS.DAT, Q3SLS.DAT and Q4SLS.DAT, that you wanted to sort by customer account number,
the following syntax  would be used:

ASSORT BYACCT.CTL Q1SLS.DAT+Q2SLS.DAT+Q3SLS.DAT+Q4SLS.DAT BYACCT.DAT
where:

BYACCT.CTL contains the sort control specification

Q1SLS.DAT contains the sales data for the first quarter
Q2SLS.DAT contains the sales data for the second quarter
Q3SLS.DAT contains the sales data for the third quarter
Q4SLS.DAT contains the sales data for the fourth quarter

BYACCT.DAT will contain the sorted data

If the four data files from the previous example were already sorted by date, they could be merged by date into 
one single output file.  The following example shows how to specify files for a merge:

ASSORT BYDATE.CTL Q1SLS.DAT,Q2SLS.DAT,Q3SLS.DAT,Q4SLS.DAT BYDATE.DAT
where:
BYDATE.CTL contains the merge control specification

Q1SLS.DAT contains the sales data for the first quarter
Q2SLS.DAT contains the sales data for the second quarter
Q3SLS.DAT contains the sales data for the third quarter
Q4SLS.DAT contains the sales data for the fourth quarter

BYDATE.DAT will contain the merged data



3Control Statements

Assort Control Statements

Assort control statements are used to specify the desired output from input data set.

The supported control statements are as follows:

Statement Function

ALTSEQ Define an alternate collating sequence

END Declare the end of the control statements

INCLUDE Specify records to be included in processing

INREC Reformat input records

MERGE Specify merge fields and options

OMIT Specify records to be omitted from processing

OPTION Specify runtime options

OUTREC Reformat output records

RECORD Define input record characteristics

SORT Specify sort fields

SUM Specify fields to accumulate or eliminated duplicate records



1Control Statement Summary Chart
Control Statement Summary Chart

Control
Statement
Name

Parameters Default

ALTSEQ CODE=(ccpp1, . . . ,ccpp256) Unsigned binary collating 
Sequence

END none

INCLUDE COND=(condition[,AND/,OR,condition]) Include all records

INREC FIELDS=(field1[,field2] . . .) Entire input record

MERGE FIELDS=(p1,l1,f1,o1, . . ., pn,ln,fn,on)
FIELDS=(p1,l1,o1, . . ., pn,ln,on),FORMAT=f
FIELDS=COPY
EQUALS/NOEQUALS
FILES=n
SKIPREC=n
STOPAFT=n

EQUALS

Merge or Copy all Records
Merge or Copy all Records

OMIT COND=(condition[,AND/,OR,condition]) Omit no records

OPTION [CORE=n] CORE=4000000

OUTREC FIELDS=(field1[,field2] . . .) Entire input record

RECORD
LENGTH=(l1, . . .,l7), TYPE

F
V
T
I





















SORT FIELDS=(p1,l1,f1,o1, . . ., pn,ln,fn,on)
FIELDS=(p1,l1,o1, . . ., pn,ln,on),FORMAT=f
FIELDS=COPY
DYNALLOC=(d)
EQUALS/NOEQUALS
FILSZ=n
SIZE=n
SKIPREC=n
STOPAFT=n

TMP environment variable
EQUALS

Sort or Copy all Records
Sort or Copy all Records

SUM FIELDS=(p1,l1,f1,. . .,pn,ln,fn)
FIELDS=(p1,l1,. . .,pn,ln),FORMAT=f
FIELDS=NONE
FIELDS=(NONE)

No summarizing of records

If the process of summing two records causes a sum field to overflow, multiple records will be written out.

If SUM FIELDS=NONE is coded, all but the first record with equal sort fields will be deleted.



4Control Statement Formats

1Example of Control Statements
 RECORD TYPE=F,LENGTH=80
 SORT FIELDS=(1,80,BI,A)
 END

Control statements my be in any order with the exception of the END statement.  The END statement must be 
the last statement in the control file.

Each control statement may be only coded once.

Control statements must begin after column one.

Control statements must end before to column 72.

A control statement and it’s parameters must be separated by at least one blank.

Parameters must be separated by a comma.

Columns 73-80 are ignored.  These columns can be used for sequence numbers.



2Comments

1Example of Comments
*
* This is a comment card.  It is ignored
* This sort will sort a fixed length file with 80 byte records
*
 RECORD TYPE=F,LENGTH=80
 SORT FIELDS=(1,80,BI,A),EQUALS      This is also a comment
 END

Comments can be used to document or improve readability of the sort control information.  

A comment card contains a '*' in column one.  Comment cards are ignored.

Any number of comment cards can be coded.

Comments can also be coded after the end of a control statement by inserting one or more blanks between the 
control information and the comment.

If column 72 contains a non-blank character, the comment is continued to the next card.



3Labels

1Example of Labels
           RECORD TYPE=F,LENGTH=80
DoTheSort  SORT FIELDS=(1,80,BI,A)
           END

Labels can be used on control statements to improve readability.  Labels are for your reference only.  Assort 
ignores any labels that are coded.

Labels must begin in column one.

Labels can be any length provided other control statement rules are not violated.

At least one blank must separate a label from the control statement.



4Continuation of Control Statements

1Example of Continuations
 RECORD TYPE=F,
 LENGTH=80
 INREC FIELDS=(1,20,5:
     71,10)
 SORT FIELDS=(1,80,BI,A)
 END
 RECORD TYPE=F,LENGTH=8000
 INREC FIELDS=(1,8,400:9,2,200:79,2,60:7632,200,315:30,5,80,10,C’abcdefX
               ghijklmnop’)
* This is a very long comment                                          X
                              and this is the rest of the comment.
 END
 RECORD TYPE=F,LENGTH=80
 INREC FIELDS=(1,8,
THERESTOFTHESTATEMENT C’ABC’)
 END

A control statement may be continued to the next line by ending the line with a comma or a colon prior to 
column 72. The statement should be continued on the next line after column one.

A control statement may also be continued by placing a non-blank character in column 72, and continuing the 
statement on the next line after column one.  The continuation will begin at the first non-blank character.

If the next line contains a label, place at least one blank after the label and continue the control statement.

If the continuation is to occur in a quoted string, place a non-blank character in column 72, and begin the 
continuation on the next line in column 16.

This example shows how parameters are continued to the next card.The following example shows a character literal that is continued using an ‘X’ in column 72 and begins in 
column 16 on the next card.
This example shows how a continuation is coded when the next card contains a label



5ALTSEQ Statement

ALTSEQ CODE=(ccpp1, . . . ccpp256)

 ALTSEQ CODE=(3020)
 ALTSEQ CODE=(3020,3120,3220,3320,3420,3520,3620,3720,3820,3920)

The ALTSEQ statement is used to specify a user defined collating sequence.  This can be used to sort 
files that contain information encoded in alternate character sets.

The syntax of the ALTSEQ Statement is as follows:

where:

cc is the hexadecimal representation of the character in the input file.
pp is the hexadecimal position the character should be placed in.

The cc and pp values should be in the range x'00' - x'FF'.

To sort ASCII data such that character zeros (x’30’) to be equal to blanks (x’20’) code the following:

To sort ASCII data such that the characters '0' through '9' equal blanks (x’20’) code the following:



6END Statement

END

The END statement is used to signify the end of the control statements.  The END statement is required, 
and must be the last control statement in the set of control cards.

There are no parameters for the END statement, but it can contain comments.



7INCLUDE/OMIT Statement

 INCLUDE
OMIT

 COND , FORMAT f








 ( )comparison

where comparison is defined as:
cond
comparison
(comparison)

,AND,
,OR,

cond
comparison
(comparison)

1 2



















































cond1 and cond2 represent conditions of the following format:
   p l f

LRECL

EQ
NE
GT
GE
LT
LE

p l f
cons t

1 1 1 2 2 2, ,

, ,
, ,
, ,
, ,
, ,
, ,

, ,
tan













































p is the position in the input record (before INREC processing)
l is the length of the fields
f is the field format
LRECL is the length of the current record

INCLUDE/OMIT syntax

1Examples of Include/Omit Statements:
 INCLUDE COND=(1,5,CH,EQ,C'72202',OR,1,3,CH,EQ,C'652')
 INCLUDE COND=(1,5,CH,EQ,C'72202',AND,(10,2,PD,GT,30,OR,10,2,PD,LT,4))
INCLUDE COND=(1,5,EQ,C'72202',AND,1,3,EQ,C'652'),FORMAT=CH

The INCLUDE/OMIT Statement is used to specify the records to be included in or omitted from the 
sort/merge/copy process.

The INCLUDE Statement is used to specify the conditions for records that should be included in further 
processing.

The OMIT Statement is used to specify the conditions for records that should be omitted from further 
processing.

One INCLUDE statement and one OMIT statement may be used.  The combination of  the statements is 
used to determine if the record is included in further processing.

These statements are useful for eliminating unnecessary records based on their length.  In text processing 
applications, it may be useful to delete records of zero length.

There is no limit to the number of Include/Omit conditions that can be coded.

Multiple conditions can be specified by using AND and OR operators.

ANDs are evaluated before ORs unless parenthesis are used to override the default order of evaluation.

Any level of nested parenthesis may be used.

To include records that contain the characters '72202' in positions one for five or '652' in positions one for three:

To include records that contain '72202' in positions one for five and positions 10 for 2 are greater than P'30' or 
less than P'4':
If all fields are the same format, the FORMAT= parameter can be coded.  If the FORMAT= parameter is coded,
do not code the format at the field level.

Example of the FORMAT= parameter on the INCLUDE Statement



8Field to Field Comparisons
Table of valid field to field comparisons

When specifying field to field comparisons on INCLUDE/OMIT cards, use the following table to determine if 
fields of different types can be compared.

FORMAT
CODE

I FI BI CH ZD PD

I X X X

FI X X

BI X X X

CH X X

ZD X X

PD X X



9Specifying Constant Data
Specifying Constants

If the fields that are being compared are not the same length, the shorter field is padded.

For character fields, the padding takes place on the right.  The pad character is a blank.

For Binary fields, the padding takes place on the right.  The field is padded with binary zeros.

For numeric fields, zeros of the appropriate data type are used to pad the number on the left.

If the fields are signed data types such as FI or I, the sign bits are propagated when necessary if padding takes 
place.

When using the INCLUDE/OMIT Statement, you can compare a field to a constant.  The valid constants are 
listed in the table below:

Constant Type Syntax Examples Notes

Character C'.....' C'ALPHA'
C'I''ll be'

Use two single quotes to insert a quote in 
the constant.

Hexadecimal X'....' X'0D0F'
X'7C'

The number of  digits coded must be even.

Binary B'....' B'00011100'
B'1.......'

Must code eight digits
Use '.' to indicate don't care conditions

Numeric numeric 89
+421323
-370

Plus sign is optional



10Selection Based on Record Length
 OMIT COND=(LRECL,EQ,0)
 INCLUDE COND=(LRECL,GT,0,AND,LRECL,LE,80)

When using the INCLUDE/OMIT Statement, you can perform selections based on the length of the record.  
This is useful when you want to eliminate records that have zero length.

For Example, to omit records that have a length of zero code:

T
o
 
i
n
c
l
u
d
e
 
r
e
c
o
r
d
s
 
t
h
a
t
 
h
a
v
e
 
a
 
l
e
n
g
t
h
 
g
r
e
a
t
e
r
 
t
h
a
n
 
z
e
r
o
 
a
n
d
 
l
e
s
s
 
t
h
a
n
 



11INREC/OUTREC Statement

 INREC
OUTREC

 FIELDS (field , field . . . )1 2










where fields can be coded as follows:
   c p l subparameters: , ,1 1

or
[n]B'bbbbbbbb'
[n]X
[n]X’hhhh...hh’
[n]C’literal’
[n]Z

INREC/OUTREC Position and Length parameters

INREC/OUTREC Constants

1Rules for specifying INREC/OUTREC fields

2

The INREC statement is used to reformat records before the records are sorted, merged or copied.  This is
useful to eliminate unnecessary fields to improve the performance of the sort.

The OUTREC statement is used to reformat the records after they have been sorted.  This is useful when 
expanding or reformatting fields.

In order to optimize the performance of a sort or a merge, unnecessary fields should be eliminated from 
the record with the INREC statement.  If the record is to be expanded or reformatted, it should be done 
with the OUTREC statement.

The INREC/OUTREC subparameters are defined in the following table:

c: The column number where the field should be placed in the output record.

If this is not specified, the column number will automatically be calculated to be one 
more than the last position of the previous field.

p The position in the record where the field begins

For INREC Cards, this is the position in the input record as it is read from the input file.

For OUTREC Cards, this is the position in the record after INREC and SUM fields 
processing.

l The length of the field in bytes

The following table shows the syntax of INREC/OUTREC Constants.

[n] Replicator.  Specify a number to replicate the following constant.  The default replicator is 
one.

n can be in the range from 1 to 2147483647.

B'bbbbbbbb' Insert a binary constant into the record.  Don't care conditions are not permitted.

Valid binary digits are 0 and 1.

X Use the X constant to create an output field that contains blanks.

X’hhhh...hh’ Use the X’hhhh...hh’ constant to create an output field that contains a hexadecimal 
constant.

n can be in the range from 1 to 2147483647.

C’literal’ Use the C’literal’ constant to insert a literal string into the output record.

n can be in the range from 1 to 2147483647.

Z Use the Z literal to insert binary zeros into the output record.

n can be in the range from 1 to 2147483647.

CRLF Insert a Carriage Return/Line Feed (x'0D0A') in the output record.  This can be used to 
convert a file containing Fixed or Variable length records to a Text file.

· The position is based from the beginning of the record.  The first character in the record is position one on 
all file formats.

· On variable length records, do not account for the record length or record descriptor words when coding 
the field position.

· To include a part of the variable length portion of a record, code the starting position without a length.  The
record will be constructed by using the specified position to the end of the record.  This field must be 
the last field specified on the INREC/OUTREC card.



3Fields Subparameters

  

  

c
p l

a

f
Mm
EDIT pattern

SIGNS s s s s LENGTH n

p l HEX

:
, ,

,
( )

( , , , )

, ,


















  

























































1 2 3 4

INREC/OUTREC Fields Subparameters

INREC/OUTREC Fields Subparameter

Use the Fields Subparameters for the following tasks:

· Force Halfword (two bytes), Fullword (four bytes), or Doubleword (eight bytes) alignment

· Edit a numeric field

· Convert a numeric field

· Convert a field to a printable hexadecimal representation

The following table shows the subparameters of the Fields parameter

a Alignment specification.  This can be either H, F, or D for Halfword, Fullword or 
Doubleword alignment.

Halfword alignment rounds the output position up to the nearest two byte boundary

Fullword alignment rounds the output position up to the nearest four byte boundary

Doubleword alignment rounds the output position up to the nearest eight byte 
boundary

An appropriate number of binary zeros will be inserted in the record to obtain the 
specified alignment.

Note:  Column one in the output record is double word aligned.

f The format subparameter is used to define the format of the input field.  The format 
should be BI, FI, PD, ZD or I.  The length must be specified that is consistent with 
the eligible lengths for each data type.

BI 1 to 4 bytes (kludge: are these correct?)
FI 1, 2 or 4 bytes
PD 1 to 8 bytes
ZD 1 to 15 bytes
I 1 to 4 bytes

Mm One of the default edit masks M0-M9.  

See the section on default edit masks for more information

EDIT=(pattern) A user defined edit pattern.  

See the section on defining edit patterns for more information.

SIGNS=(s1,s2,s3,s4) This subparameter defines how the signs will be placed in the output record.

See the section on specifying signs for more information.

LENGTH=n The LENGTH subparameter is used to override the default length for an edited field.

HEX The HEX subparameter is used to convert a single byte in the input record to a two 
byte hexadecimal representation of the field in the output record.



4Editing

1Default Edit Masks

Default Edit Masks

Editing is the process of converting a machine readable data element to a format that is pleasing to the eye.Assort has 
the following
default edit 
masks 
available for 
editing 
numeric 
fields:

Mask Edit Pattern

M0 IIII...ITS

M1 TTTTT...TTTS

M2 I,III,...,IIT.TTS

M3 I,III,...IIT.TTCR

M4 SI,III,...,IIT.TT

M5 SI,III,...,IIT.TTS

M6 III-TTT-TTTT

M7 TTT-TTT-TTTT

M8 IT:TT:TT

M9 IT/TT/TT



2Defining Edit Patterns

EDxy=(pattern)
where: x = insignificant digit selector

y = significant digit selector

3The LENGTH=n Subparameter

4The Signs Subparameter

SIGNS Subparameter description

 SIGNS=(,'''',,'''')

User defined edit patterns consist of the following components:

· Significant digit selectors

· Insignificant digit selectors

· Leading sign characters

· Trailing sign characters

· Any other characters to appear in the output record

There is no predetermined limit to the length of an edit mask.  Edit masks that exceed 40 characters are 
generally unreasonable due to the limited number of digits that can be created from an input field.

The significant and insignificant characters used in the edit pattern are determined by the EDxy keyword. 
The default is EDIT.  This makes ‘I’ the insignificant character and ‘T’ the significant character.  If you 
wish to use the characters ‘I’ or ‘T’ in an output field, modify the EDxy keyword and the edit mask 
accordingly.  This allows any character to be placed in the output field.

When a blank, quotation mark or unbalanced parenthesis appears within an EDIT pattern, the pattern must be 
enclosed within single quotation marks.  Balanced parentheses need not be enclosed within quotation marks.  A
single quotation mark with the pattern must be specified as a double apostrophe.

All other characters are printed as specified in the edit pattern, with the following exceptions:

· Any character specified after the first leading insignificant digit selector and before the first significant 
digit selector will print as a blank, unless a previously selected digit was non-zero.

· Any character specified after the last significant digit selector will print as a blank if the edited number is 
positive.

· Any character or character string specified before the first leading insignificant digit selector, including a 
leading sign character,  will print  to the immediate left of the first significant digit.  The appropriate 
number of leading blanks will be supplied, assuring that the total number of characters in the printed 
field corresponds to the total number of characters in the edit pattern.

· Any leading insignificant digit selector specified after the first significant digit selector will be treated as a 
significant digit selector.

· The sign replacement character appearing as the first and/or last character of the pattern is replaced as per 
the SIGNS subparameter.

Use the LENGTH=n subparameter to alter the default length determined by the edit pattern and the format of 
the field.  If LENGTH=n is not specified, the length is equal to the number of characters specified in the edit 
pattern.  If LENGTH=n is specified, the edit pattern will either be truncated or padded with blanks on the left so
that the length of the pattern equals the ‘n’ value.

The maximum value which can be specified for ‘n’ is 32.

The SIGNS subparameter is used to define the leading and trailing  characters for positive and negative 
numbers.  The format of the SIGNS subparameter contains four positional parameters that are defined in 
the following table:

SIGNS=(s1,s2,s3,s4)

s1 Leading positive sign indicator

s2 Leading negative sign indicator

s3 Trailing positive sign indicator

s4 Trailing negative sign indicator

Since the parameters to the SIGNS= subparameter are all positional, an unspecified sign characters should be 
omitted, and use a comma as a placeholder.

If a comma, blank, open or closing parenthesis are used as sign characters, the must be enclosed in single 
quotes.

If a single quote is to be used as a sign character is must be coded as four single quotes as follows:



12MERGE Statement

   

MERGE

EQUALS
NOEQUALS

FILES n SKIPREC n STOPAFT n

 
FIELDS = (p ,l , f ,o ,p , l , f ,o ,.  .  ., p , l , f ,o )
FIELDS = (p ,l ,o ,p ,l ,o ,.  .  ., p , l ,o ),FORMAT = f
FIELDS = COPY

1 1 1 1 2 2 2 2 n n n n

1 1 1 2 2 2 n n n























   

,
,

, , ,

1FILES

The  MERGE statement is used to define the fields and order that are used in the merge process.  The 
syntax of the MERGE statement is as follows:
See the SORT Statement documentation for the description of the p, l, f, EQUALS, SKIPREC and STOPAFT 
parameters.



13OPTION Statement

OPTION [CORE=n]

The FILES parameter defines the number of files to be merged.  This parameter accepted, but not currently 
used.  The number of files to be merged is determined by the number of files specified on the command 
line.

The OPTION statement is used to specify general processing options.  The syntax is as follows:



14RECORD Statement

RECORD TYPE

F
V
T
I

LENGTH l



















,

Valid Record Formats

where n is the amount of memory in kilobytes to allocate for internal sorting tables.  The default value for n is 
4000.  This will cause approximately four megabytes of virtual storage to be allocated to the internal sorting 
process.

The CORE Option can be adjusted to optimize the sorting process depending on the physical memory size of 
your machine.

The CORE parameter is only applies to Sorts, and is ignored for Merges and Copies.

The RECORD statement is used to define the input record format and record length.  The syntax is as 
follows:

The TYPE is defined in the following table:

TYPE Description

F Fixed length records.  The length is obtained from the l1 value

V IBM style variable length records.

The beginning of each record contains a four byte header.  This header includes a two byte IBM 370 
format Unsigned Integer and two bytes of reserved information.

Following the four bytes of header information is the actual record data.

The record length in the header includes the length of the four byte header.

T Text type records.  

Records are delimited by:

· a Carriage-Return/Line-Feed character combination 

· a newline character.

An MS-DOS style End of file character is permitted, but not required.

I Variable length records.  The record length is obtained from a two byte Intel format unsigned integer 
that is appended to the front of each record.

The two byte field contains the length of the record.  This length does not include the two byte 
appendage.



15SORT Statement

SORT FIELDS=
( , , , , , , , ,..., , l , , )

, , , , , ,..., , l , ),
n

n

p l f o p l f o p f o
p l o p l o p o FORMAT f
COPY

n n n

n n

1 1 1 1 2 2 2 2

1 1 1 2 2 2 
















  

,
( , )

,
,

, ,

DYNALLOC
pathName
pathName n

EQUALS
NOEQUALS

SKIPREC n STOPAFT n






























 

1FIELDS

Sort Fields Description

The LENGTH parameter should specify:

· The actual length of each record for when the TYPE is F.

· The maximum length of any input record when the TYPE is T, V, or I.

The SORT Statement is used to define to keys and ordering of the output file.

The SORT Statement has the following syntax:

The FIELDS parameter of the SORT statement is used to define the position, length and format of sort keys.  

variable Meaning

p Position in the input record in bytes after INREC processing.

l Length of the Field in bytes.

If this is the last sort field, you can omit the length and the remainder of the record will be 
used in field comparisons.  This is useful when the length of the records is not known at 
run time such as in Variable and Text records.

o A for Ascending
D for Descending
E as modified by an E61 user exit

f the format of the field as documented in the valid formats chart



2FORMAT Codes

SORT/MERGE Format Codes

The following table contains the valid format codes, the data representation, and the valid lengths for 
each code..

Format Code Data Format Valid Lengths

AC The EBCDIC data is converted to ASCII prior to comparisons. 1 to record length

AQ Alternate Collating sequence as defined in the ALTSEQ statement 1 to record length

ASL ASCII Signed Leading

An ASCII '+' or '-' precedes the numeric field.  One digit per byte.

2 to record length

AST ASCII Signed Trailing

An ASCII '+' or '-' trails the numeric field.  One digit per byte

2 to record length

AU ASCII characters are converted to upper case prior to sorting 1 to record length

BI IBM 370 format Binary Unsigned
Fields of unequal length are zero padded and right justified.

1 to record length

CH Same as BI
Fields of unequal length are blank padded and left justified.

1 to record length

CLO
or
OL

Leading Overpunch sign.  Hexadecimal D,B, or 2 in the first four 
bits of the field indicates a negative number.  Any other value 
indicates a positive number.

1 to record length

CSL
or
LS

an EBCDIC '+' or '-' precedes the numeric field.  One digit per byte. 2 to record length

CST
or
TS

an EBCDIC '+' or '-' trails the numeric field.  One digit per byte. 2 to record length

FI IBM 370 format Signed integer 1 to record length

I Intel format Signed Integer.  

Byte order reversed

1 to 4 bytes

PD Signed Packed decimal.

The sign is determined by the last four bits of the field.  If the last 
four bits are hexadecimal B, D, or 2, the field is negative, otherwise 
the field is positive.

1 to record length

ZD
or
CTO

Zoned Decimal.  Trail overpunch sign in the first four bits of the last
byte is used for the sign.  Hexadecimal B, D, or 2 indicate a 
negative number.  All other values result in a positive number.

1 to record length



3DYNALLOC

4EQUALS/NOEQUALS

5SKIPREC

6STOPAFT

The DYNALLOC parameter is used to specify the location to place temporary sort work files.

The default path is the directory that is pointed to by the environment variable TMP.  This directory will be 
used prior to the location specified in the DYNALLOC parameter.  

If the TMP environment variable is not set, or points to an invalid path, the DYNALLOC value is used.  If this 
path is invalid, the current working directory is used.

The DYNALLOC parameter can be used to indicate where work files should be created.  For large sorts, the 
work files could be directed to a different disk drive.

The EQUALS parameter instruct the sort to maintain the order of equal keyed records.  The default is 
NOEQUALS, which means that the order of equal keyed records is undefined.

In the current release of Assort, both parameters produce identical results.  This was not the case in previous 
versions, and may be different in future releases.  Therefore for compatibility purposes, it is recommended that 
the EQUALS parameter be coded if the ordering of equal keyed records is significant.

SKIPREC is used in combination with the STOPAFT parameter to selectively sort specific records in the input 
file.  

The default for SKIPREC is zero, which will cause zero records to be skipped.

For example:

To process records 100 through 110, code the following:

SKIPREC=99,STOPAFT=10

This will cause the first 99 records to be skipped, and 10 records to be processed.



16SUM Statement

SUM FIELDS=
NONE
NONE
p l f p f

p l p FORMAT

BI
FI
I
PD
ZD

n n

n

( )
( , , ,..., , l , )

( , ,..., , l ),

n

n

1 1 1

1 1 































































SUM FIELDS Subparameter descriptions

SUM FIELDS Format Codes

STOPAFT is used in combination with the SKIPREC parameter to selectively sort specific records in the input 
file. The STOPAFT parameter will cause the sort to stop processing after n records have been read  from the 
input file.

The default for STOPAFT is to process all records in the input file.

The SUM Statement is used to:

· Summarize numeric fields for equal keyed records in the input dataset

· Eliminate duplicate records

The format of the SUM Statement is as follows:

where:

p the Position of the field  in the record after INREC processing.

l the Length of the field

f the Format of the field.  The format must be either BI, FI, I, PD, or ZD.

There are certain restrictions on the lengths of the sum fields.  The valid lengths for each format are listed in the
following table.

Format Code Allowable Length

BI 1 to Record Length

FI 2 to Record Length
(Must be an even number of bytes)

I 1, 2, or 4 bytes

PD 1 to Record Length

ZD 1 to Record Length



17Function Definitions

1Programmer's Reference
Assort can be invoked from the command line or from an application program.

There are two different interfaces to Assort.  One is a straight initiation of the program, the is the record level 
interface.  The record level interface allows you to pass records to the sort, sort them, and read them back.

The ASSORT.EXE uses the straight initiation of the program.

The Assort command replacement  SORT.EXE uses the record level interface.

The main disadvantage to using the record level interface it that the optimized input/output facilities are not 
used.  The driver program performs all input/output.

The advantage to using the record level interface is that file formats that are not supported by Assort can be 
processed.

Another advantage to the record level interface is that records do not have to reside on disk at all.  They can be 
C++ objects that reside in memory or they can be records in an external database.

When sorting objects that reside in memory, the records could be four byte addresses, and the E61 user exit 
could be called to compare pairs of pointers to objects.

The following functions are used when calling Assort:

Function Name Straight 
Initiation

Record Level 
Interface

Description/Usage

makeDeck Always Always Creates a deck object

registerCallbackFunction Sometimes Sometimes Registers a callback function

assortpar Always Always Parses out control information

assortsor Always Executes based on the parsed 
information

sProc Always Sort Records

sPush Always Pull Sorted Records back

sPush Always Push Records to the Sort



deckT *makeDeck();
The following functions are used when calling Assort.



int registerCallbackFunction(

This function is used to construct a deckT object.  If successful, returns a pointer to a deckT object.  If 
unsuccessful, returns NULL.



int assortpar(

  deckT *deck, // pointer to deckT object
  unsigned int routineNumber, // callback Routine Number
  pCallbackFunction pcallback, // address of Callback Routine
  void *userHandle // user specified handle
);
Pass the address of the deckT object created by the makeDeck() function.  The value for routineNumber should 
be EMESSAGES, or E61Callback.  These values are defined in the file assort.h.

The value for userHandle can be any four byte value including pointers.  Whatever is passed in this parameter 
will be passed to your callback function.



int assortsor(

  deckT *deck, // pointer to deckT object
  const char *controlInformation // Assort control information
);
This function parses out control information.  After calling this function you can use the parsed information to 
execute the Sort/Merge or Copy.

Pass the address of the deckT object created by the makeDeck() function.  The controlInformation field contains
the Assort control information.  Control cards should be separated by at least one space.  No comments or 
labels are permitted in this parameter.



int killDeck(

  deckT *deck, // pointer to deckT object
  const char *inputFileSpec, // input file specification
  const char *outputFileSpec // output file specification
);
Initiates the sorting process.  

The inputFileSpec contains the specification for the input file name(s).  This is the same format that the Assort 
command accepts.  Concatenate inputs with a ‘+’ sign and separate multiple inputs with commas.  Multiple 
inputs are used for merges.  

The outputFileSpec contains a single file name.



int makePcb(

  deckT *deck, // pointer to deckT object
);
Initiates the sorting process.  

The inputFileSpec contains the specification for the input file name(s).  This is the same format that the Assort 
command accepts.  Concatenate inputs with a ‘+’ sign and separate multiple inputs with commas.  Multiple 
inputs are used for merges.  

The outputFileSpec contains a single file name.



int sProc(

  pcbT **pcb, // pointer to a pointer to a pcbT object
  const deckT *deck, // pointer to a deckT object
  files *filesParm // pointer to a files object
);
Creates a pcbT object.  This function is used when using the record level interface.

If successful, returns zero.  Returns non-zero value if an error occurs.

deck should be a pointer to a deckT object that was created with the assortpar function.

filesParm should be NULL.

int killPcb(  pcbT *pcb, // pointer to a pcbT object
);
Destroys a pcbT object.  This function is used when using the record level interface.

If successful, returns zero.  Returns non-zero value if an error occurs.



int sPull(

1Example of using the message callback function

2E61 callback function

1Example of using the E61 callback function

  pcbT *pcb, // pointer to a pcbT object
);
Sorts records that have been pushed to the sort.  Used after all records have been processed with the sPush 
function.

If successful, returns zero.  Returns non-zero value if an error occurs.

int sPush(  pcbT *pcb, // pointer to a pcbT object
  const char *objectAddress, // address of object (record) to send to sort
  unsigned long objectLength // length of the object (record)
);
Pushes a record to the sort.  Use a pcb that was created with the makePcb function. After all objects (records) 
have been pushed, execute the sProc function.

If successful, returns zero.  Returns non-zero value if an error occurs.  May return EOF if STOPAFT was 
specified in the control information.

  pcbT *pcb, // pointer to a pcbT object
  char **objectAddress, // address of the address of the object (record)
  unsigned long *objectLength // the length of the object (record)
);
Pulls a record from the sort.  Call this function until EOF or an error occurs.

If successful, returns zero.  Returns non-zero value if an error occurs.  EOF indicates there are no more objects 
to process.

1Invoking Assort Directly

An example of invoking Assort directly follows:
#include <stdio.h>
#include <string.h>
#include "assort.h"

void someFunction(void) {
char controlInfo[]="RECORD TYPE=T,LENGTH=1000 SORT FIELDS=(1,CH,A) END";
deckT *deck=NULL;
if (deck=makeDeck()) {

if (0==assortpar(deck, controlInfo)) {
assortsor(deck, "c:\\test.in", "c:\\test.out");

} else {
printf("Parse Failed\n");

} /* endif */
killDeck(deck);

} else {
printf("makeDeck() failed!\n");

} /* endif */
return;

}

int main() {
someFunction();
return 0;

}

2Using The Record Level Interface of Assort

An example of this function follows:

#include <stdio.h>
#include <string.h>
#include "assort.h"

void someFunction(void) {
char controlInfo[]="RECORD TYPE=V,LENGTH=1000 SORT FIELDS=(1,CH,A) END";
deckT *deck=NULL;
pcbT *pcb=NULL;
char *aRecord;
unsigned long aLength;
char record1[] = "cat";
char record2[] = "goat";
char record3[] = "zebra";
char record4[] = "antelope";
if (deck=makeDeck()) {

if (0==assortpar(deck, controlInfo)) {
if (!makePcb(&pcb, deck, NULL)) {

sPush(pcb, record1, strlen(record1)+1);
sPush(pcb, record2, strlen(record2)+1);
sPush(pcb, record3, strlen(record3)+1);
sPush(pcb, record4, strlen(record4)+1);
sProc(pcb);
printf("The sorted records:\n");
while(EOF != sPull(pcb, &aRecord, &aLength)) {

printf("%s\n", aRecord);
} /* endwhile */
killPcb(pcb);

} else {
printf("makePcb Failed\n");

} /* endif */
} else {

printf("Parse Failed\n");
} /* endif */
killDeck(deck);

} else {
printf("makeDeck() failed!\n");

} /* endif */
return;

}

int main() {
someFunction();
return 0;

}

3Callback Functions

Assort supports callback functions for messages and record comparisons.  To invoke these functions, use the 
registerCallbackFunction() function.

1Message callback function

The message callback function is called whenever Assort needs to display a message.  You can use this 
callback function to display messages in a window, write them to a file, display them on the console or 
ignore them completely.

int msgRoutine(void *userHandle, const void *cp1, const void *cp2) {
// cp1 contains a string with the message
fprintf(stderr,”%s\n”, cp1);
return 0;

}

int someFunction() {
deckT *deck;
deck=makeDeck();
registerCallbackFunction(deck, EMESSAGES, msgRoutine, NULL);
return 0;

}

The E61 callback function to determine the collating sequence of any two objects (records).  This function is 
called whenever two objects (records ) need to be compared.  The return value from this function should be as 
follows:

Record Comparison Result Return Value

Record 1 is less than Record 2 -1

Record 1 is equal to Record 2 0

Record 1 is greater than Record 2 1

int E61Routine(void *userHandle, const void *cp1, const void *cp2) {
// callback function to sort records by record length
// cp1 contains a pointer to a recordBuffer structure for record 1
// cp2 contains a pointer to a recordBuffer structure for record 2
recordBuffer *r1=(recordBuffer *)cp1;
recordBuffer *r2=(recordBuffer *)cp2;
return r1.recordLength-r2.recordLength

}

int someFunction() {
deckT *deck;
deck=makeDeck();
registerCallbackFunction(deck, E61, E61Routine, NULL);
return 0;

}



5Performance and Tuning



1Minimizing Elapsed Time

1Eliminating Unnecessary Fields

2Eliminating Unnecessary Records

Assort is highly functional and flexible.

There are many ways to "tune" the sorting process.  Depending on your objectives, you may wish to minimize 
elapsed time or minimize sortwork disk space requirements.

This chapter focuses on operational issues that arise in the Sort/Merge process and techniques that can be used 
to exploit this product efficiently.

The best way to minimize the amount of time required to sort a file is by eliminating fields and records that are 
not relevant to the final output file.
By eliminating unnecessary fields from your input file, the total amount of internal data movement is decreased.
This results in an overall improvement in performance.

An example of this would be if you had an input file that contained 4000 byte records.  In each record there was
a nine byte account number in positions one through nine.  If you wanted to know the number of distinct 
account numbers in the file, you could sort the file on positions one through nine with the SUM 
FIELDS=NONE option.  This would give you an output file with a single 4000 byte record for each distinct 
state code in the input file.

If the file had 20 million records, the maximum sortwork requirement would be 80 Gigabytes.

If you used the INREC card and only included the nine byte account number field, the maximum sortwork 
requirement would be 180 Megabytes

 This would be about a 95% reduction in disk processing time.  Reductions in disk processing time are directly 
proportional to total processing time, so the overall throughput would be significantly better.



2Optimizing Disk Performance

1Optimizing Sorts

The phases of a Sort

2Optimizing Merges and Copies

Another way to improve the performance of a Sort/Merge or Copy operation is to delete records that are not 
needed in the output file with the INCLUDE or OMIT statement.

If  the file in the previous example contained records for people in the entire United States, but you were only 
interested in the people that live in Wyoming, you could use the Include statement to select only the records for 
people that live in that state.

A significant amount of elapsed time in the Sort/Merge process is dedicated to input/output.  This time can be 
minimized by understanding how these processes work, and configuring your environment to permit the 
fastest possible sorts and merges.

In order to optimize the sorting process, it is useful to understand it's different phases.  

There are two major phases to the sort process:

2Phase I: Reading Input Records

This phase involves reading the input file(s) and writing the intermediate results to temporary disk files.  These 
temporary files are called sortwork files.  After all input records are read, the input files are closed.

3Phase II: Writing Output Records

The sortwork file(s) are merged into one final output file.To obtain the best overall performance, the sortwork files should be placed on different physical disk devices 
than the input and output files.  This allows concurrent input/output to take place in both phases of the sort.

Note that the input and output files can be placed on the same physical device without impacting performance.  
This is because the input and output files are never opened at the same time.

The environment variable TMP can be set to a work drive.  This drive should be a different device than where 
permanent data files are generally stored.

The DYNALLOC parameter of the SORT card can also be used to direct sortwork files to a directory on 
another device.



3Sortwork calculations

The merge and copy processes perform I/O to the input and output files at the same time.  Therefore it is best to 
have all files on different physical devices.  In some cases this may not be feasible, due to a large number of 
files and a small number of physical devices.

The formula for calculating sortwork requirements is as follows:

Record
Type

Description Maximum Sortwork Required

F fixed length records n*l*(1.01)

V or T Variable length or Text records n*(l+2)*(1.01)

I Variable length records (IBM Format) n*(l+4)*(1.01)

where:

n is the number of records that survive INCLUDE/OMIT processing
l is the average record length of the records after INREC processing



   

2Messages
Assort messages are all of the format ICYnnnnt or ICCnnnnt.  ICC messages come from the command driver 
(ASSORT.EXE).  ICY messages originate in the sorting engine (ASSORT.DLL).

Where:

nnn is the message number
t is the message type

I for Informational Messages
E for Errors
W for warnings
B for tuning or performance statistics

ICC0004B CPU Time: 1 seconds, Elapsed Time: 1 seconds

ICC0012E Assort Failed

Message Description Action required or recovery procedure.

ICC0004B CPU Time: nnnnn seconds, Elapsed Time: 
nnnnn seconds

none

ICC0011I End Assort Assort completed successfully

ICC0012E Assort Failed Correct error

ICY0001I Copyright (c) 1993, 1994, 1995 Bill 
Ahlbrandt Software

none

ICY0002I xxxxxxxx Callback routine registerd A callback routine (User Exit) named 
xxxxxxxx was registered

ICY0002E xxxxxxxx Callback routine unregisterd A callback routine (User Exit) named 
xxxxxxxx was unregistered

ICY0004I Unsupported Callback Routine xxxx An attempt was made to register an 
unsupported callback routine

ICY0207W Unregisterd Copy Contact Bill Ahlbrandt for a registration 
information

ICY0502E Unable to open input file xxxxxxxx Correct the input file name specification

ICY0530I File xxxxxxxx, Records In  xxxxxxxx Number of records read from the input file

ICY0530I File xxxxxxxx, Records Out xxxxxxxx Number of records written to the output file



There are currently no platform specific differences or limitations in this product.

3Operating System Specifics
Assort has been written entirely in the C++ programming language.  Operating system dependent information 
has been minimized without sacrificing performance.  Currently OS/2 2.x, OS/2 Warp, Windows 95 and 
Windows/NT are supported platforms.  Other 32-bit platforms are scheduled to be supported.



4Installation
There are four directories on your installation disk.  These are WIN32, OS2, INCLUDE and IVP.  the 
WIN32 and OS2  directories contains the following files:

Filename Description Installation Directory Notes

ASSORT.EXE The command line interface for Assort. Any directory that is in your path Required

ASSORT.DLL The Assort sorting engine. Any directory that is in your path

On OS/2, this must be placed in a directory that is 
included in your LIBPATH variable that is 
specified in your CONFIG.SYS

Required

ASSORT.LIB Import library for linking with your 
programs.

a directory your linker searches Optional

SORT.EXE A Sort command replacement for Win32 or
OS/2 2.x

a directory in your path that is searched before the 
DOS or OS/2 system directory that contains the 
file SORT.EXE

Optional

The INCLUDE directory contains the file ASSORT.H.  This file should be included into your C and C++ 
programs when calling Assort.

The IVP directory contains sample data files and control cards to ensure that the product has been installed 
properly.


	1 Programmer's Reference
	1 Invoking Assort Directly
	2 Using The Record Level Interface of Assort
	3 Callback Functions
	1 Message callback function
	2 Phase I: Reading Input Records
	3 Phase II: Writing Output Records


	2 Messages
	3 Operating System Specifics
	4 Installation
	1 Introduction
	1 Benefits
	2 Basic Functions of Assort
	1 Sorting
	2 Merging
	3 Copying


	2 Command Line Syntax
	2 Sorting Multiple Input Files
	3 Merging Multiple Input Files

	3 Control Statements
	1 Control Statement Summary Chart

	4 Control Statement Formats
	1 Example of Control Statements
	2 Comments
	1 Example of Comments

	3 Labels
	1 Example of Labels

	4 Continuation of Control Statements
	1 Example of Continuations

	5 ALTSEQ Statement
	6 END Statement
	7 INCLUDE/OMIT Statement
	1 Examples of Include/Omit Statements:

	8 Field to Field Comparisons
	9 Specifying Constant Data
	10 Selection Based on Record Length
	11 INREC/OUTREC Statement
	1 Rules for specifying INREC/OUTREC fields
	3 Fields Subparameters
	4 Editing
	1 Default Edit Masks
	2 Defining Edit Patterns
	3 The LENGTH=n Subparameter
	4 The Signs Subparameter


	12 MERGE Statement
	1 FILES

	13 OPTION Statement
	14 RECORD Statement
	15 SORT Statement
	1 FIELDS
	2 FORMAT Codes
	3 DYNALLOC
	4 EQUALS/NOEQUALS
	5 SKIPREC
	6 STOPAFT

	16 SUM Statement
	17 Function Definitions
	1 Example of using the message callback function
	2 E61 callback function
	1 Example of using the E61 callback function



	5 Performance and Tuning
	1 Minimizing Elapsed Time
	1 Eliminating Unnecessary Fields
	2 Eliminating Unnecessary Records

	2 Optimizing Disk Performance
	1 Optimizing Sorts
	2 Optimizing Merges and Copies

	3 Sortwork calculations


