
SOMTEMPL: The SOM Template Application Builder

The somtempl program is a programming utility that generates SOM source files and programs
from predefined templates. It is a useful tool to simplify repetitive SOM programming tasks. In
general, it can generate any sort of text file from a predefined template; however, it’s options are
primarily focused at SOM programming. It can also be used similarly to C++ templates to define
parameterized SOM classes. For beginners, somtempl is also useful because it includes a
template for a complete SOM/DSOM program – including make files for AIX, OS/2 and Win-
dows.

Running somtempl
To run somtempl, simply enter at the command line:

somtempl

When run without arguments, somtempl displays help on its options and also shows a list of the
available templates that can be generated. To generate one of the templates, use the –a option.
For example, to generate a generic IDL file from a template named gidl, enter:

somtempl –a gidl

With this command, the file defined in the gidl template will be generated into the current
directory. The gidl template generates the following IDL file named xxxx.idl by default:

#ifndef xxxx_idl
#define xxxx_idl
#include <somobj.idl>
#include <somcls.idl>
interface defaultClass : SOMObject
{
 // Attributes filled in here:
 // Operations filled in here:
#ifdef __SOMIDL__
 implementation {
 releaseorder:;
 // Class Modifiers:
 align = 4;
 dllname = ”xxxx.dll”;
 metaclass = ”SOMClass”;
 // Attribute Modifiers:
 // Overrides:
 somDefaultInit: override, init; // Default object initializer
 somDestruct: override; // Default object uninitializer
 };
#endif /* __SOMIDL__ */
};
#endif /* xxxx_idl */

When a template is generated, the names of files and classes have predefined values by
default. These values can, however, be changed with options given on the somtempl command
line. These options are described below.

Option

–n classname
The template will be generated with the given class name. If no class name
is given with this option, the class name defaults to defaultClass.

2 SOMobjects Developer Toolkit

–s filestem
This option allows you to uniquely name the files that are generated by
somtempl. The default file stem is xxxx. On systems that limit file names to
8 characters, the filestem given with this option should be limited to 4
characters.

–p class=filestem
This option allows you to select a parent class for the main class generated
in the template. If no parent is specified, the default parent is SOMObject.
This is equivalent to –p SOMObject=somobj. More than one parent class
can be specified by including more than one –p option on the command
line. The directories specified in the SMINCLUDE environment variable are
searched to locate the specified file named filestem.idl. If the file is not
found, a new parent class file named filestem.idl is generated from the
included generic IDL file template.

–m class=filestem
This option allows you to select a metaclass for the main class generated in
the template. If no metaclass is specified, the default metaclass is
SOMClass. This is equivalent to –m SOMClass=somcls. Only one
metaclass option can be specified. The directories specified in the
SMINCLUDE environment variable are searched to locate the specified file
named filestem.idl. If the file is not found, a new metaclass file named
filestem.idl is generated from the included generic IDL file template.

–e
This option inhibits the searching of the directories named in the
SMINCLUDE environment variable. This affects the operation of the –m and
–p options.

The following example uses the above options to generate the generic IDL template with a class
named “Animal”, a parent class named “SOMPPersistentObject”, a metaclass named
“AnimalFactory” and file names beginning with “ani”.

somtempl –a gidl –n Animal –s ani –p SOMPPersistentObject=po
–m AnimalFactory=animeta

The main IDL file produced by this command, named “ani.idl”, is shown below. Note the
differences between this and the earlier generic IDL file. The parent class file “po.idl” already
exists in the SOM include directory; therefore, it is not created in the current directory. The
“AnimalFactory” metaclass in “animeta.idl” did not previously exist; thus the “animeta.idl” file is
generated into the current directory.

#ifndef ani_idl
#define ani_idl
#include <po.idl>
#include <animeta.idl>
interface Animal : SOMPPersistentObject
{
 // Attributes filled in here:
 // Operations filled in here:
#ifdef __SOMIDL__
 implementation {
 releaseorder:;
 // Class Modifiers:
 align = 4;
 dllname = ”ani.dll”;
 metaclass = ”AnimalFactory”;

3SOM Template Application Builder

 // Attribute Modifiers:
 // Overrides:
 somDefaultInit: override, init; // Default object initializer
 somDestruct: override; // Default object uninitializer
 };
#endif /* __SOMIDL__ */
};
#endif /* ani_idl */

Templates may include more than just an IDL file. Supplied with somtempl is a DSOM template
(option –a dsom). This template includes the IDL files, as well as the C source files and make
files to create a complete DSOM application.

Template files
The somtempl program uses two files (located via the SMINCLUDE environment variable) to
determine the files to be generated and the available templates:

• The first file is called the configuration file. The configuration file contains the names of the
templates that can be generated and the names of the files that make up the template. The
configuration file also contains user–defined symbols for substitution when files are gener-
ated.

• The contents of the files defined by the configuration file are contained in the second file, the
template file.

The supplied templates

The default configuration file used by somtempl is named somtempl.cfg. The default template
file is named somtempl.app. These files are supplied in SOM’s include directory. To change the
names of the configuration and template files used by somtempl, you can use the following
options when you run the program:

Option

–f configfile
configfile is the name of the somtempl configuration file. Default is
somtempl.cfg.

–t templatefile
templatefile is the name of the somtempl template file. Default is
somtempl.app.

Contained in the default configuration and template files, you will find the following templates:

Template

gidl
A template of a generic IDL file. Generate this template and then add your
own methods, attributes and data.

idl_dll
A template of the same generic IDL file as in the gidl template plus make
files, module definition files and class library initialization source for AIX,
OS/2 and Windows. The generated template can be built immediately with
the make utility.

dsom
This template generates a complete Distributed SOM program for a basic
SOM class. Also generated are the make files, module definition files, class
library initialization source and source to simplify local/remote object
transparency. The generated application creates either local or remote
objects and includes command scripts to set up the server location.

4 SOMobjects Developer Toolkit

dsomsvr
The template generates a DSOM server program. The program generated
can be used in place of the somdsvr program supplied with the SOMobjects
Toolkit. Only the –s option is useful when generating this template. The –s
<stem> option allows you to change the server program name from xxxxsvr
to <stem>svr.

Other somtempl options
–o

This option indicates you will allow somtempl to overwrite existing files. By
default, a file in the current directory with the same name as a generated file
will not be overwritten.

–i file
When this option is used, somtempl will read options from the named file,
rather than from the command line.

–u name=value
This option specifies that a user–defined symbol name should be replaced
by the given value when files are generated. This allows you to define
parameterized SOM class templates. You may specify multiple –u options
on the same command line. If the name specified is the same as a
user–defined symbol name already defined in the somtempl configuration
file, the substitution value on the command line takes precedence.

–S
This option inhibits substitution of template symbols. The files generated by
somtempl will contain the content of the template file without substitution.
This may be useful for creating your own additions to the template file.

Modifying and adding templates to somtempl

You may add templates or modify existing templates by making changes to somtempl’s config-
uration and template files, somtempl.cfg and somtempl.app. This section describes the con-
tents of these files in more detail and explains how to modify these files.

Configuration file
The somtempl.cfg file defines the templates that can be generated by somtempl. There are two
sections in this file that can be modified by users. The first section is for user–defined symbols.
(Comments in the somtempl.cfg file indicate where the user–defined symbols should be
placed.) A user–defined symbol is defined with the syntax:

symbolname=value

An example of such a symbol, shown below, can be found in the somtempl.cfg file.

USERDEFINEDTYPE=long

The string “USERDEFINEDTYPE” within a template file (somtempl.app) will be replaced by the
string value “long” when the file containing the symbol is generated. The value associated with a
user–defined symbol can be modified when somtempl is run, by using the –u option. For
example, the above definition could be changed by adding the option:

–u USERDEFINEDTYPE=string

The second section that can be modified in a configuration file is the portion that defines the files
to be generated for a template. The syntax of this portion of the configuration file is shown below:

5SOM Template Application Builder

:<template_name>|<template_title>|templatefile==<filename>
 <template_filename> [template_section_name]
 ...
[>[?<AIX|OS2|W16>]]

template_name
The template name is a single string that uniquely identifies the template.

template_title
The title can be multiple strings. The title, along with the template’s name, is
shown when the somtempl help is displayed.

filename
This is the name of the template file that contains the aggregate contents of
the files named by template_filename. It can be any text file, although it is
typically somtempl.app.

template_filename
This is the name of a file that will be generated by somtempl. You include
one template_filename entry for each file you want somtempl to generate.
The specified file name may contain the string __SOM_STEM__.
__SOM_STEM__ will be replaced by the file stem specified with the –s
command line option. When the –s option is not used, __SOM_STEM__ is
replaced by xxxx. The generated contents of template_filename are located
via a label of the form

:<template_name>_<template_filename>

within the templatefile. If a template_section_name is given along with a
template_filename, the generated contents of template_filename are
located via a label of the form:

:<template_section_name>

The template_section_name option allows you to define a single label that
can be used by multiple templates.

>
This character, placed in the first column, directs the strings that follow on
that line to standard error output – usually the display – after the files
named by template_filename have been generated. You can tailor your
message by system by including an optional system name following the >
character. Specifically, >?AIX outputs only on AIX systems, >?OS2 outputs
only on OS/2 systems and >?W16 outputs only on Windows systems.

#
This character, placed in the first column, indicates the line is a comment.

A complete example for the template named “idl_dll”, contained in the supplied somtempl.cfg, is
shown below:

6 SOMobjects Developer Toolkit

Template: idl_dll
Title: Basic SOM Class Library
Contents of files in: somtempl.app
:idl_dll|Basic SOM Class Library|templatefile==somtempl.app
Generate the following 8 files.
Note: the __SOM_STEM__.idl file is just the
generic IDL file.
 Makefile
 makefile.32
 makefile.w16
 __SOM_STEM__.def
 __SOM_STEM__.exp
 __SOM_STEM__.idl gidl
 __SOM_STEM__init.c
 __SOM_STEM__w16.def
Output the following after the files are generated.
> Application __SOM_CLASS_NAME__ generation completed.
>?AIX Please type:
>?AIX make
>?AIX to build your __SOM_STEM__.dll.
>?OS2 Please type:
>?OS2 nmake –f makefile.32
>?OS2 to build your __SOM_STEM__.dll.
>?W16 Please type:
>?W16 nmake –f makefile.w16
>?W16 to build your __SOM_STEM__.dll.

Template file
A template file contains the aggregate contents of the files that have been defined within the
somtempl configuration file. A template file contains the contents of multiple files to be gener-
ated. Each file generated is located located within a template file via a label. As described in the
previous section, the label name may be either:

:<template_name>_<template_filename>

or

:<template_section_name>

The lines defining the generated file contents follow the label, up to but not including the line
containing the next label.

Template file symbols

Within a template file, there are several symbols that can be used to allow a template to be
generated based on the command line options used when somtempl is run. The value for each
symbol is determined when somtempl is run; that is, each value is substituted in place of the
corresponding symbol when files are generated. These symbols are in addition to the user–de-
fined symbols that can be defined in the somtempl configuration file. The available symbols are
described below: (Review the contents of the default template file somtempl.app to see in more
detail how these symbols are used.)

Symbol

__SOM_CLASS_NAME__
This symbol is replaced by the name of the class specified with the –n
option or with the default defaultClass.

__SOM_META_NAMES__
This symbol is used within IDL files and is replaced by the IDL file to be

7SOM Template Application Builder

included for the metaclass named with the –m option. This defaults to
#include <somcls.idl>.

__SOM_PARENT_NAMES__
This symbol is replaced by the names of the parent classes specified with
the –p option. This defaults to SOMObject. When more than one parent
class is specified, the parent class names of the value of this symbol will be
separated by commas.

__SOM_STEM__
This symbol can be used in file names or wherever a unique name is
needed. It corresponds to the stem specified with the –s command line
option. It defaults to xxxx.

__SOM_OBJS__
This symbol is used in make files. It names the object files that the
generated application will need to build. Typically, the value of this symbol is
xxxx.o. When parent class source is also generated, this object file name is
also included in the value of this symbol. For example: parent.o xxxx.o. A
metaclass object file name may also be added if generated.

__SOM_OBJS_RESPONSE__
This symbol is used in linker response files and is similar to
__SOM_OBJS__ except that file names are separated with a “+” character.

__SOM_OBJS_C_DEPS__
This symbol is used in make files. It includes a line for each dependency to
build an object file from a C source file. For example: xxxx.o: xxxx.ih xxxx.c.
The dependencies for parent and metaclasses are also included in the
symbol if they are generated.

__SOM_OBJS_CPP_DEPS__
This symbol is used in make files. It includes a line for each dependency to
build an object file from a C++ source file. For example: xxxx.o: xxxx.xih
xxxx.cpp. The dependencies for parent and metaclasses are also included
in the symbol if they are generated.

__SOM_INIT_BODY__
This symbol is used in the body of a SOMInitModule procedure. It contains
calls to the NewClass procedure of the classes generated. For example:

parentNewClass(parent_MajorVersion, parent_MinorVersion);
defaultClassNewClass(defaultClass_MajorVersion,

 defaultClass_MinorVersion);

__SOM_C_HEADER_FILES__
This symbol is used in C source code to include the generated class header
files. For example:

#include ”pppp.h”
#include ”xxxx.h”

__SOM_C_HEADER_DELETE_FILES__
This symbol is used in make files. It names the C header files to be deleted
when the directory is cleaned of unnecessary files. For example:

–$(DELETE) pppp.h
–$(DELETE) xxxx.h

__SOM_CPP_HEADER_FILES__
This symbol is used in C++ source code to include the generated class
header files. For example:

8 SOMobjects Developer Toolkit

#include ”pppp.xh”
#include ”xxxx.xh”

__SOM_CPP_HEADER_DELETE_FILES__
This symbol is used in make files. It names the C++ header files to be
deleted when the directory is cleaned of unnecessary files. For example:

–$(DELETE) pppp.xh
–$(DELETE) xxxx.xh

__SOM_EXPORT_C_NAMES__
This symbol is used in module definition files to name external entry points
for the generated classes. For example:

_parentCClassData
_parentClassData
_parentNewClass
_defaultClassCClassData
_defaultClassClassData
_defaultClassNewClass

__SOM_EXPORT_PASCAL_NAMES__
This symbol is used in module definition files to name external entry points
for the generated classes. For example:

parentCClassData
parentClassData
parentNewClass
defaultClassCClassData
defaultClassClassData
defaultClassNewClass

__SOM_META_CLASS_NAME__
This symbol is replaced by the class name of the metaclass specified with
the –m option.

__SOM_PARENT_CLASS_NAME__
This symbol is replaced by the class name of the parent specified with the
–p option. When more than one –p option is specified, this symbol
represents the first parent named.

__SOM_DLLSTEM__
This symbol is used to name overall output file names, such as a DLL or
library produced by a make file. It defaults to xxxx and can be set via the –s
option. The value of this symbol is constant, even when parent and
metaclass files are generated (that is, where __SOM_STEM__ is
determined by the –p and –m options.)

Adding templates
You can add new templates to the somtempl.cfg and somtempl.app files with any text editor. You
may find that this is the most convenient approach. There is, however, an alternate way to add
templates to these files that may simplify your task – you can use the –g option. The following
are the recommend steps to use the –g option:

1. Make backup copies of the current somtempl.cfg and somtempl.app files.

2. Generate an existing template with the –S option. This option generates a template’s files
without doing any symbol substitution. For example, first generate the idl_dll template:

somtempl –a idl_dll –S

9SOM Template Application Builder

This will give you a set of files that is ready to be placed back into the template file
somtempl.app as a new template.

3. Next, modify the set of generated template files to include the changes you want in your
new template.

4. Use the –g and –T options with the names of the generated template files to add a new
template to the configuration and template files. For example:

somtempl –T ”This is my modified template” –g newone Makefile
 makefile.32 makefile.w16 xxxx.def xxxx.exp xxxx.idl xxxxinit.c
 xxxxw16.def

This will add a section in the somtempl.cfg file for the template named “newone” with a
title of “This is my modified template”. The named files (Makefile, makefile.32, ...) will be
added to somtempl.app.

5. Finally, edit the somtempl.cfg and somtempl.app files to make any finishing touches to
your new template. For example, add text to the configuration file that should be
displayed when the template is generated:

>?AIX Please type:
>?AIX make
>?AIX to build your __SOM_STEM__.dll.
>?OS2 Please type:
>?OS2 nmake –f makefile.32
>?OS2 to build your __SOM_STEM__.dll.
>?W16 Please type:
>?W16 nmake –f makefile.w16
>?W16 to build your __SOM_STEM__.dll.

Note: When you use the –g option, the only reverse symbol substitution that is done is for
the stem name (–s) and class name (–n). That is, the names of the files in the
example above are stored in the configuration and template files using
__SOM_STEM__ instead of xxxx. Likewise, defaultClass is replaced with
__SOM_CLASS_NAME__.

