
1

Sedit Manual

T.W. Steiner

1995

2

THIS PROGRAM WAS WRITTEN BY THOMAS W. STEINER.

COPYRIGHT 1992 - 1995, ALL RIGHTS RESERVED.

THERE IS NO WARRANTY OF ANY KIND. USE AT YOUR OWN RISK.

THIS IS NOT FREEWARE. TO REGISTER YOUR COPY SEND $25 USD TO

T.W. Steiner, 2246 E. 6th Ave.

Vancouver, BC, V5N- 1R1, Canada

e-mail tsteiner@creo.bc.ca or steiner@sfu.ca

Chapter 1

Editor

1.1 Introduction

The sedit editor is a fully featured, professional, folding, text and binary editor. The basic command

set of the editor is modeled after the E PC editor. This editor is, however, a functional superset of E

with many useful additional features (except that there is no REXX support). The OS/2 EPM editor

is another editor with the same ancestors. Users of E or EPM will quickly feel at home with this editor

since basic operation is quite similar.

1.2 Highlights

Highlights of this editor are as follows:

� Complete GUI application with versions for either OS/2 and W95/WNT with all editor commands

available either from drop down menus or by using Ctrl and Alt key combinations. Appearance

and operation of this editor are highly con�gurable.

� Edits text and binary �les of arbitrary size and line length.

� Edits binary �les in either hex or in a special alphanumeric coded form that allows easy identi�cation

of strings in a binary �le.

� Unlimited undo of previous changes and corresponding step for step redo. Lines can be restored to

their previous state even if subsequent edits on other lines have been made that are to be kept.

� Optional syntax colouring with user con�gurable colours, comment delimiters and preprocessor

delimiters. Colour is used to di�erentiate plain text, comments, quotes, preprocessor lines, and

unbalanced brackets.

� There is full folding support with 6 di�erent fold mechanisms. Four of these are toggles which

displays either only the lines starting in the �rst column, only the changed lines, only lines containing

a place mark or only the lines containing the last search string. The remaining two are incremental

and selectively hide or display portions of the text. One of these is indentation based and the other

requires fold tags embedded in a comment in the �le.

� Column editing features to allow movement of columns of text. This allows easy change of inden-

tation for example and is extremely useful for manipulating columns of numbers. Columns can be

moved, copied, deleted, overlaid and �lled.

� Three types of marking. Lines, blocks and industry standard marking.

3

4 CHAPTER 1. EDITOR

� Bracket matching of all sorts of brackets and comment delimiters.

� Single key left justi�cation of moved code blocks with �rst non-blank line above.

� Run programs such as dir, grep or compilers from the command line. These may optionally run

as a separate thread so you can continue to edit while they run or synchronously for predictable

behaviour in a macro. Output from programs started from the command line is piped into another

�le in the ring of loaded �les. Files can be loaded from these read only output �les by double

clicking on any �le name. A trailing number, if any, is interpreted as a line number.

� Programming support. Run compilers from the command line and jump to �le and line containing

the error by double clicking on the �le name. In OS/2 version open on-line programming reference

information by double clicking on key words.

� Changed lines optionally appear in a di�erent colour from the unchanged text.

� A whole ring of �les can be loaded up at once allowing painless copying of text between �les. One

nice feature is the ability to load up a set of �les in a ring and rapidly cycle through them using

then Ctrl N and Ctrl P key combinations. Text can be copied between these �les by using the block

and line mark commands.

� This editor has very few built in hard coded limits. The number of �les simultaneously loaded is

limited only by available memory. The number of lines in a �le or the length of a line is also limited

only by the size of available memory or the size of a 4 byte integer whichever is smaller.

� The editor has very powerful search options which allow searching with any of the followingmodi�ers

singly or combined. Search up, search marked block only, ignore case, whole word only, loop through

all loaded �les or interpret as regular expression. For search and replace a dialog allows the following;

replace, skip, replace all, quit, undo last replace, and redo last skipped.

� There are all also some features to facilitate carrying out complex repetitive editing tasks. In

particular sequences of key strokes can be saved and assigned to a function key for subsequent

reuse. Furthermore, any command including function key macros can be repeated a number of

times automatically by entering a command multiplier. Bound macros are saved between editing

sessions.

� The editor is completely key con�gurable. A set of keystrokes can be mapped to an editor function

simply by specifying the sequence in the auxiliary key map �le. The combination of key mapping and

key macros allow the editor to imitate the user interface of other editors or allow the construction

of a custom user interface to the taste of the user. If key mapping is on then the accelerators in the

drop down menus are updated to show the mapping on the
y.

� Help on any menu item may be obtained by right rather than left clicking on a menu choice. This

will open up a help dialog with information on the given command. The help text is automatically

updated to re
ect the current key mappings if any.

1.3 Control keys

Basic operation of the editor is largely self explanatory. Text is input by straight typing anywhere on

the screen. Cursor movement is controlled by the arrow keys and auxiliary keypad keys as per their

standard de�nitions as well as accelerated movement with Ctrl combinations. The cursor can also be

positioned using the mouse by clicking with the left button at the desired cursor location. The cursor

position control keys are as follows:

1.3. CONTROL KEYS 5

Un-mapped Cursor Motion Keys

left arrow left one space

right arrow right one space

up arrow up one line

down arrow down one line

end end of line

home beginning of line

PgDn scroll down one screen

PgUp scroll up one screen

Center Key fast motion toggle

Ctrl left left one word

Ctrl right right one word

Ctrl up scroll up �ve lines

Ctrl down scroll down �ve lines

Ctrl end end of �le

Ctrl PgDn end of �le

Ctrl home beginning of �le

Ctrl PgUp beginning of �le

Alt home top of page

Alt end bottom of page

Alt PgUp scroll up half a page

Alt PgDn scroll down half a page

Un-mapped Editor Control Keys not discussed in other sections

Ctrl a set place mark

Ctrl A save all changed �les

Ctrl b bracket match f, (, [, <, or /*

Ctrl c change case of character under cursor

Ctrl C opens con�guration notebook (OS/2)

Ctrl d delete character

Ctrl D read in the displayed macro list

DEL delete character

Ctrl e delete to end of line

Ctrl h destructive backspace

Ctrl H open select other loaded �le dialog

Ctrl g execute �le (C interpreter version)

Ctrl i tab

Ctrl j join next line to current line

Ctrl k cut current line at cursor

Ctrl K list the currently de�ned key mappings

Ctrl l return to previous set place mark

Ctrl L list the currently de�ned macros

Ctrl m insert new line (also return key)

Ctrl M open command line input dialog

6 CHAPTER 1. EDITOR

Ctrl n edit next �le in ring

Ctrl o switch to other window if screen split

Ctrl O open �le select dialog

Ctrl p edit previous �le in ring

Ctrl q quit without saving �le

Ctrl r redo previous undo

Ctrl s swap current and next character

Ctrl t toggle insert/replace

Ctrl u undo changes to last modi�ed line

Ctrl w write �le to disk

Ctrl W write �le to disk with di�erent name

Ctrl x delete line

Ctrl y split edit window horizontally in two

Ctrl Y read in the displayed key mappings

Ctrl BACK delete line

Ctrl z zap word

Ctrl DEL zap word

Alt a alternate binary representation

Alt B set breakpoint (interpreter version)

Alt e execute last macro

Alt D de�nes (interpreter version)

Alt G global vars (interpreter version)

Alt h view only lines with place mark

Alt i clear all place marks

Alt I step into (interpreter version)

Alt k enter next char literally

Alt L local vars (interpreter version)

Alt O step over (interpreter version)

Alt p position curs at previous location

Alt q restore a line from undo record

Alt r re-
ow paragraph, stops at blank line

Alt O reset execution (interpreter version)

Alt s view lines containing search string

Alt t teach (end) new macro

Alt v view only changed lines

Alt x enter control character

Alt z zero command multiplier

Alt 0-9 enter command multiplier

The following section provides more detailed information for a selection of the above commands that

are perhaps not inherently obvious.

� The Ctrl a command sets a place mark on the current line in the current �le. Any number of place

marks can be set. Hitting Ctrl l will return the cursor to these place marks in the reverse order

that they where set. To remove a place mark hit Ctrl a again on the line with the place mark and

it will be removed. Alt i removes all currently set place marks and Alt h shows only lines on which

a place mark has been set.

� The bracket match command Ctrl b moves the cursor to the bracket matching the one under the

cursor. If the cursor does not move it means that a matching bracket could not be found or that

the cursor is not presently sitting on a bracket. The matchable characters are <, >, (,), f, g, [,

1.3. CONTROL KEYS 7

] and the comment delimiter pairs. The comment delimiter pairs are set in the syntax colouring

con�guration dialog and are /* and */ by default.

� Ctrl c changes the case of the letter under the cursor. If the case of a whole region is to be changed.

Block mark the region (Alt b) and then use the change case option of the block �ll command (Alt

f).

� Ctrl j, k, m. Unlike most editors hitting return (Ctrl m) does not split the current line at the

cursor. Instead a line is split at the cursor using Ctrl k. This usage may take some getting use

to but it is the same as used by the editor E and optionally by the EPM editor. If, however, you

prefer more conventional return key behaviour this can be set in the con�guration menu. Ctrl j is

used to join two lines together. Return or Ctrl m inserts a new blank line below the current line

but the current line is not split.

� Ctrl n, p. If more than one �le is currently in memory then Ctrl n switches to the next one in the

ring while Ctrl p switches to the previous �le. If the switched to �le has been modi�ed externally

to the editor since it was last seen you will be prompted for an optional reload.

� Ctrl q. Quits the current �le which will be removed from memory and all changes will be lost. If

changes have been made and the �le has not been saved then you will be prompted for con�rmation.

It is possible to con�gure the editor to prompt for a con�rmation before over writing an old version

of the �le.

� Ctrl u, r. Undo the change to the last edited line. The number of undo levels is set in the

con�guration dialog and is essentially unlimited. By repeatedly hitting Ctrl u all the changes made

to a �le since it was loaded can be undone. Ctrl r re-does a previous undo. The changes to a

�le can only be undone in the order that they where made except that any line for which a line

undo record exists can be restored using Alt q. Only simple edits that only operate on a single

line generate undo records of the type that can be undone using Alt q. In some instances it may

be desirable to turn o� the undo record generation for example if column manipulations are to be

done on very long columns since in that case the entire �le will have to be duplicated may times for

the undo records which will adversely a�ect performance. Undo record generation may be turned

o� by setting the undo limit to zero in the con�g dialog of the �le menu.

� Ctrl w. Saves the current �le to disk using the �le name displayed on the command line. The �le

name can be changed by moving to the command line ESC and using the rename command. The

�le can also be saved with a di�erent name using the \save as" menu item of the �le menu. Before

writting the existing �le of this name is renamed \edit�le.bak". Thus writting a �le may be undone

provided no subsequent �les were written.

� Ctrl y splits the editor window horizontally in to two windows separated by a second command

line. Hitting Ctrl y again un-splits the screen. Use Ctrl o or the left mouse button to change the

current window. These commands are not available in the version of the editor bundled with Splot.

� Alt a selects the alternate binary representation. This key is only active for �les loaded using the

binary switch (-b). The default binary representation is hex with two hex characters per byte and 32

bytes per line. The alternate representation uses the following codes: Printable characters appear

with a leading underscore and control characters with a leading ^. This second representation also

has 32 bytes per line and is more useful for identifying text in binary �les. Individual hex numbers

may be converted to decimal or the reverse by using the command line commands \hex", \dec"

and \asc".

� Alt e executes the last de�ned macro see section 1.7.

� Alt i removes all previously set (Ctrl a) place marks.

8 CHAPTER 1. EDITOR

� Alt k interprets the next character as a literal without re-mapping. This key may be useful for

enter characters that have been mapped onto editor commands. This should not be needed with

the default con�guration since only Ctrl and Alt keys are used to control the editor.

� The Alt p command is useful if the cursor was accidentally moved away from the region of interest

with a Ctrl Home or search for example. In these situations Alt p will restore the cursor to its

previous location. This action is similar to using place marks except that unlike place marks these

are automatically set by any command that causes the cursor to jump by more than one line. Only

one previous location is remembered though.

� The Alt r command re-
ows a paragraph with the right and left margins and the �rst line indentation

set as speci�ed in the con�g dialog. It starts at the current line and stops at the �rst encountered

blank line. If a region is Alt b marked and the cursor is currently in the marked region the marked

region only will be reformatted with the right and left margins set by the marking and no initial

indentation. If syntax colouring is on then the �le is assumed to be program code and is reformatted

as code rather than text using a set of rules that are currently not con�gurable. In this case the

region to be reformatted must be line marked.

� Alt t starts and ends the de�nition of a new macro see section 1.7.

� Alt x queries the user for the 3 digit hex code of the character to be inserted. Alt x can thus be

used to enter characters for which there is no keyboard key such as the characters above 127 in the

ASCII table.

� Alt 0-9, z. These keys are used to enter a command multiplier to be used on the next command.

Entering a multiplier has the same e�ect as entering the following keystroke n times. Alt z resets

the multiplier to zero.

� Alt F4. The system default close application key removes all loaded �les and terminates the editor.

If there are any changed unsaved �les a con�rmation dialog appears. Other system menu Alt F#

keys perform their usual task. These keys are intercepted before reaching the editor and thus cannot

be used for bound macros.

1.4 Searching

The editor has very powerful search options which allow searching with any of the following modi�ers

singly or combined. Search up, search marked block only, ignore case, whole word only, loop through

all loaded �les or interpret as regular expression. For search and replace a dialog allows the following;

replace, skip, replace all, quit, undo last replace, and redo last skipped. The initial search is done by

opening the search dialog from the menu or with Ctrl S (Ctrl R for search and replace). A search can also

be initiated from the command line by pre�xing the search string with a `/' or any other punctuation not

used for other purposes. A search and replace from the command line is of the form \c/str/rep/[-cblrw]".

The square brackets denote the optional search options if any and are not themselves to be entered.

Subsequently, the same string may be searched for using Ctrl f. The editor keys used for searching are

as follows:

Un-mapped Search Control Keys

Ctrl f �nd next occurrence of search string

Ctrl F change dir and �nd search string

Ctrl R opens the search and replace dialog

Ctrl S opens the search dialog

Alt * �nd next word like current word

1.4. SEARCHING 9

Alt # �nd prev word like current word

� Ctrl f �nds the next occurrence of the search string. The �rst occurrence must be found either

by going to the command line with ESC and entering the desired search string after a `/' as in

\/string" or else using the search dialog from the menu bar.

� Ctrl F. Changes the current search direction and locates the next search string. Thus if the current

direction is down then a Ctrl F �nds previous location of the search string having set the direction

to up. If it is now desired to continue searching in the up direction use Ctrl f.

� Alt * and Alt # �nds the next or previous word matching the word currently under the cursor

respectively. This is equivalent to doing a search for the current word with the /w whole word
ag

turned on so only whole words matching the current word are found. The current search string is

not updated however.

The search options are speci�ed using the buttons in the search dialog or with the optional command

line switches. For example: \\-w" searches up from current cursor position and looks only for \string"

that is not part of a larger word. The optional search su�xes are:

- search up (down is default)

b search marked block only

c ignore case

l loop through all �les

r interpret as regular expression

w match whole words only

Of these the most complex and most powerful is the interpret as regular expression option. Regular

expressions allow search strings to be built that will match complex criteria. A simple example is \[0-

9]+n.[0-9]+" which will match any �xed point number. For regular expressions certain characters have

special meaning:

^ start of line or not the following characters in a set

$ end of line

. any character

n next character is literal. Used to override special meaning of next character.

* match previous character or group zero or more times

+ match previous character or group one or more times

[start of a set.

] end of a set.

- range delimiter

(start of a sub-expression

) end of a sub-expression

10 CHAPTER 1. EDITOR

The following are some simple examples:

[a-zA-Z]+ match any word containing only letters

[aei0-9] match a,e,i and 0 through 9

[^aei0-9] match anything but a,e,i and 0 through 9

a(ab)*b matches ab aabb aababb aabababb etc.

If a \grep" (A UNIX utility program which searches �les for a regular expression) utility is run from

the command line the grep search string automatically becomes the editor search string. If your grep

does not have the name grep set up a batch �le or rename it to activate this feature.

1.5 Folding

Folding refers to the ability of the editor to selectively hide parts of the �le in order to give a better

overview of the whole �le. This may be used to rapidly �nd sections in the text. The folding control keys

are as follows:

Folding Keys

Ctrl v �rst column lines only

Alt v changed lines only

Alt s lines containing search string only

Alt h lines containing place mark only

Alt - Fold to next lower fold tag

Alt + Unfold to next greater fold tag

Ctrl - Fold to next tab position to left

Ctrl + Unfold to next tab position to right

The �rst 4 of these commands are toggles i.e. hitting Ctrl v twice returns the �le to the unfolded

state. Only one type of folding may be active at any one time. The �le may be fully edited while folded

but marked blocks can not be transferred across folds. These commands are useful for rapidly �nding a

section of the �le.

Ctrl v causes only lines starting in the �rst column to be displayed. If the text is organized so that

only section headings or sub-routine headings start in the �rst column then Ctrl v can be used to rapidly

locate a section in a �le. To do this hit Ctrl v then move cursor to desired sub-routine heading and hit

Ctrl v to expand again. Alt v and Alt s work similarly except they show only changed lines and lines

containing the last search string respectively. For example in a large case statement the start of any

branch may be found by doing a search for \case" and then selecting Alt s. This will show only lines

containing the word \case" on the screen. The cursor may then be put on the desired line and the �le

expanded again. Alt h can be used to view only lines on which a place mark has been previously set

using Ctrl a. When folded the visible lines may still be edited.

The Alt - and Alt + pair are complementary keys and unlike the toggles above several levels of this

type of folding are possible. To use this folding mechanism fold tags must be inserted in the text. By

default these are of the form // Lnnn where nnn is an integer. This is in the form of a C++ comment

and can thus be put into source code without perturbing the program. The form of the tag string may

be edited in the con�g dialog by changing the fold tag regular expression. Note that the fold tags must

contain an integer counter as part of the tag. The �rst time Alt - is hit the largest value of all the found

1.6. BLOCK MANIPULATIONS 11

fold tags is found and the lines between tags of this number and tags with smaller numbers are hidden.

A subsequent Alt - will decrement the folding tag number and hide more lines. Thus multiple levels of

folding are possible with this mechanism. An Alt + will increment the fold tag number and reveal the

corresponding hidden lines. A su�cient number of Alt + hits will return the �le to its unfolded state.

This folding mechanism di�ers from the others since the �le must be modi�ed to contain the fold tags as

special comments but it has the
exibility to place fold markers anywhere in the �le. This type of folding

is not available in the version of the editor bundled with Splot.

The Ctrl - and Ctrl + pair is similar in operation to Alt - Alt + but does not use fold tags. Instead

on the �rst Ctrl - the greatest number of tab indentations (depends on the set tab size) on the current

page is determined and the �le folded to hide all the lines indented this far. A further Ctrl - decrements

this number and hides more lines. Ctrl + counter acts a Ctrl -. This type of folding is useful with

structured program code that uses a tab indentation to delineate a block. Thus for example the start of

both branches of an if else block may be seen by hiding the bodies. This type of folding is not available

in the version of the editor bundled with Splot.

1.6 Block manipulations

Block mark and line mark are somewhat di�erent. Use line mark for moving, copying or deleting one or

more whole lines and block mark for moving, copying, deleting, �lling or overlaying columns of text. Note

also that a block marked region can also be moved to the left with Ctrl ^ and to the right with Ctrl

but the behaviour is di�erent than if the Alt arrow keys are used. Alt left and Alt right (or Ctrl and

Ctrl ^) are meaningless for line marked regions. Block marked regions can furthermore be �lled with a

character, a string or incrementing or decrementing numbers. Marked blocks are also used to constrain

a search and indicate the desired margins for re-
owing a paragraph. Alt n marking is the industry

standard marking useful for text but not of much use for programming. Regions can also be marked by

dragging the mouse with one of the three buttons down. The type of region mark created depends on

the settings in the \con�g" notebook or menu. Lastly, Alt n Type marking can be achieved by moving

the cursor with the shift key held down. Alt b marked regions may be �lled with a single character using

the Alt f command. This command can also be used to change the case of all letters in a block. Alt f

can also be used to �ll with incrementing or decrementing numbers starting with the numerical value at

the top of the marked block. To �ll an Alt b marked region with a word use the \�ll" command from

the command line. In order to �ll a B marked block with a string be sure that the width of the block in

characters matches the width of the �ll string otherwise the �ll word will wrap around to the next line

or repeat.

Block Manipulation Keys

Alt b mark column block start, end

Alt c copy marked block

Alt d delete marked block

Alt f �ll B marked block with char, change case or inc/dec

Alt j justify last copied block to match lines above

Alt l mark LINE(s) start, end

Alt m move marked block

Alt n standard marking start, end

Alt o overlay B marked block

Alt u un mark block

Alt w write block to `editblck.tmp'

Alt y yank back deleted block

Ctrl shift B marked block right

Ctrl^ shift B marked block left

12 CHAPTER 1. EDITOR

1.7 Macros

There is also a macro capability for repetitive, complex editing tasks. The editor is taught a macro by

hitting the Alt t combination. After this all subsequent keystrokes are stored as the macro de�nition

until Alt t is hit again. There is a 128 keystroke limit on the length of a macro. A macro can consist of

any keystrokes except Alt t and Alt e. At the end of the macro de�nition the macro can be bound to a

function key by hitting the desired function key. Available function keys are F1 - F12 as well as Shift,

Alt and Ctrl F1 - F12. In OS/2 and W95/WNT some of these are not available as they are used by the

system to resize windows etc. and are trapped before they even reach the editor. As a special case F10

has been partially activated by de�ning it as an accelerator key in the resources. As a consequence a

macro de�ned for F10 in the editor.cfg can be executed but no macro can be bound to it from within the

editor using Alt t. A bound macro is subsequently executed by hitting that function key. The prede�ned

macro for that key will be lost. The last learned macro, whether bound or unbound, can be executed by

hitting Alt e. If the macro involves a search and another item is not found the rest of the macro is not

executed. If macros have been bound to function keys they will be written to the current con�guration

�le editor.cfg which so that the macros will be preserved in between editing sessions. The editor.cfg �le

as received contains a number of prede�ned macros that emulate the E editor usage of the function keys.

For example F2 is prede�ned as save (Ctrl w), F3 is prede�ned as quit (Ctrl q) and F4 is save and quit

(Ctrl w Ctrl q). These may of course be over written. The name of the con�guration �le is di�erent for

versions of the editor bundled with the C interpreter and splot in which case the names are cterp.cfg and

splot.cfg respectively. The currently de�ned macros may also be viewed and edited in plain english by

using the \Macro list" (Ctrl L) command.

A repeat factor for a keystroke can also be entered by pre�xing the command with a multiplier which

is input using the Alt number keys. The multiplier can be reset to zero during input using Alt z. This

feature also facilitates repetitive editing as an operation can be repeated several times. This is particularly

powerful in conjunction with macros.

1.8 Command Line

Lastly, there are a number of commands which require typed input. Hitting Esc places the cursor at the

beginning of the command line which is on the last row and ordinarily displays some status information.

Alternatively a text entry dialog can be opened using Ctrl M or the \Cmd" menu item. Once on the

command line text can be input for the following functions:

Command Line Operations (requires

text input so terminate line with a

return)

Esc goto or leave command line

Change current line

number goto line number n

+number down n lines

-number up n lines

Change current column o�set

@number start at column n

1.8. COMMAND LINE 13

@+number scroll left n columns

@-number scroll right n columns

Search and Replace.

�nd string str (/ actually any punct)

/str[/-bclrw] return

replace str1 with str2

c/str1/str2[/-bclrw] return

The optional search su�xes are:

/- search up (down is default)

/b search marked block only

/c ignore case

/l loop through all �les

/r interpret as regular expression

/w match whole words only

Add other �les to ring

e name1,name2,...[-r]

The optional edit su�xes are

-r read only

-b binary mode

display directory and choose one to edit

e [*.*]

insert named �le at current location

m name or merge name

rename current �le to name

r name or rename name

show and modify editor con�guration

cfg or con�gure

exit without saving changes

quit

�ll marked block with string

�ll string

sort lines using �eld number col as key

sort col

�nd di�erences between current and named �le

d name or di� name

change current drive and or path

cd y:npath

convert decimal num to hex

hex num

convert hex num to decimal

dec num

convert number to ASCII

asc num

previous command line entered

up arrow

next command line entered

down arrow

send command to operating system

14 CHAPTER 1. EDITOR

os command

also any unrecognized string

There is an important di�erence between OS system calls initiated using the \os" pre�x on the

command line and those initiated without the \os" pre�x. The later are run as a separate thread which

allows editing to continue while the called program runs. The system calls initiated with the \os" pre�x

however do not run as a separate thread. This means that the editor will wait until the system call is

done before allowing any further editing. This behaviour is desirable when a system call is part of a

macro since then the macro can be made to wait for the results of the system call.

1.9. CONFIGURATION FILES 15

1.9 Con�guration Files

The startup �le editor.cfg preserves the values selected from the con�guration menu item between sessions.

You can have multiple editor.cfg �les in di�erent directories since the current directory plus parent

directories two levels up are searched before using the default editor.cfg stored in the same directory

as the executable. This is useful since a con�guration suitable for text (auto wrap on, auto indent o�)

is not ideal for programming (auto wrap o�, auto indent on) thus text speci�c editor.cfg �les may be

kept in text directories and programming speci�c ones in program directories. The editor.cfg �le is plain

ASCII and can thus be edited with a text editor as an alternative means of changing the settings or the

macro de�nitions. If changes have been made to the con�guration the editor will update the editor.cfg

in the directory from which it was read. Thus in order to create a custom cfg �le for use only within one

directory copy the default editor.cfg to the current directory before starting the editor.

The current macro de�nitions bound to function keys are also stored in the editor.cfg �le but in an

encoded form. Thus, it is easier to view and modify macros from within the running editor by selecting

the list macros command in the macro menu. There the macro codes will be translated to plain English.

Note that the macro de�nitions must be in terms of the un-mapped keystrokes.

The key mappings in use if any are stored in the �le editkey.map which has the key names in plain

English. It may also be viewed or edited from within the editor by selecting the keymap menu item in

the Con�g menu.

