
1 ref.man.html 1

 ref − Display a C function header

 SYNOPSIS

 ref [options]... [restrictions]...

 DESCRIPTION

 This page describes the ref program that is distributed
 with elvis(1).

 ref quickly locates and displays the header of a function.
 To do this, ref looks in the "tags" file for the line that
 describes the function, and then scans the source file for
 the function. When it locates the function, it displays
 an introductory comment (if there is one), the function’s
 declaration, and the declarations of all arguments.

 OPTIONS

 −t Output tag info, instead of the function header.
 The tag info consists of the three standard fields
 from each tag. The fields will be separated by tab
 characters, just like records from the traditional
 tags file format. Consequently, you can use "ref
 −t −a >oldtags" to convert a new−style tags file
 back to an old−style tags file.

 −v Output verbose tag info, instead of the function
 header. The verbose tag info shows the names and
 values of all attributes for each matching tag.
 Each name/value pair is shown on a separate line.
 It also shows the "match" factor that is used for

2 ref.man.html 2

 sorting tags which have the same tagname.

 −h Output HTML browser info, instead of the function
 header. This is an HTML table with hypertext links
 into the source files where the tags are defined.
 You can use Netscape or another browser to use
 this, but they won’t move the cursor to the correct
 line within the source file; only elvis knows how
 to do that.

 This resembles elvis’ :browse command.

 −c Don’t output introductory comments before each tag
 definition line.

 −d Don’t output other lines of the definition. The
 line where the tag is defined is shown but any pre
 ceding or following lines which are part of the
 definition will be omitted.

 −a List all matching tags. (Without this option, ref
 would only output the single most likely tag.)
 would stop searching after processing the first
 tags file which contained any tags which met the
 restrictions.

 −p tagpath
 List of directories or tags files to search
 through. By default, ref would use the value from
 the TAGPATH environment variable or a hardcoded
 default value for each operating system.

 −l taglength
 Only check the first taglength characters of tag
 names. The default behavior is to check all char
 acters.

 RESTRICTIONS AND HINTS

 Other than options, any argument on ref’s command line is
 interpreted as a restriction or sorting hint. Elvis
 parses all of the restrictions and sorting hints, and then
 scans the tags files (i.e., every file listed in the tag
 path, or a file named "tags" in every directory listed in
 the tag path). Tags which fail to meet any restriction
 are discarded.

 Other tags are inserted into a list. The list is sorted
 primarily by each tag’s tagname. If multiple tags have

3 ref.man.html 3

 the same overloaded name, then those tags will be sorted
 according to the sorting hints. In the absence of hints,
 the tags will be added in the same order in which they
 appear in the tags file.

 The restrictions can be given in any of the following
 forms:

 name:value[,value...]
 Reject tags which have an attribute named name, but
 that attribute’s value isn’t in the list of accept
 able values. E.g., "class:Foo" rejects tags from a
 different class, but accepts tags which have no
 class.

 name:=value[,value...]
 Reject tags which have an attribute named name, but
 that attribute’s value isn’t in the list of accept
 able values. Also reject tags which don’t have an
 attribute named name. E.g., "class:=Foo" only
 accepts tags which have class "Foo".

 name:/value[,value...]
 Like "name:value" except that the tagaddress field
 is required to contain value as a substring. So
 "class:/Foo" would find tags in class "Foo" PLUS

 value[,value...]
 Short for tagname:value[,value...]

 The sorting hints follow a similar form:

 name:+value[,value...]
 Pretend that recent successful searches had
 attributes named "name" with the given values.
 This causes any similar tags in the new search to
 appear near the top of the list.

 name:−value[,value...]
 Pretend that recent failed searches had attribute
 named "name" with the given values. This causes
 any similar tags in the new search to appear near
 the bottom of the list.

 A null value string matches anything. So "struct:=" would
 accept any tag with a "struct" attribute, and reject those
 without it. This would be handy when you’re trying to do
 tag lookup for a word which follows a ’.’ character − you
 know it is a field name, but you don’t know from which
 struct type.

 Note that if you invoke ref without giving any restric
 tions, then all tags will match and will (if invoked with
 the −a flag) be output.

4 ref.man.html 4

 A REAL−WORLD EXAMPLE

 While converting some code from K&R C to ANSI C, I needed
 to generate extern declarations for all the functions. To
 find the global function headers, I used the command...

 ref −a kind:f file:dummy

 The "−a" causes ref to output all headers, instead of just
 the first one that it finds. "kind:f" causes it to
 exclude any non−functions. "file:dummy" is tricky −− it
 causes ref to exclude static tags from all files except
 "dummy", and since there were no C functions defined in
 any file named "dummy", all statics were excluded. I only
 got globals.

 Once I had a list of all global functions, I still had to
 do some editing to convert them into ANSI declarations
 (ref couldn’t help me there) but at least I could be con
 fident that my list of functions was complete and accu
 rate.

 For each source file, I also needed to find the static
 functions defined there, so for each "file.c" I used the

 This is very similar to the earlier command.
 The main difference is that we’re using "file:="
 (with an ’=’, to exclude globals)
 and a real file name (instead of "dummy") so we do include the st
atic
 tags from that particular file.

 INTERACTION WITH ELVIS

 ref is used by elvis’ shift−K command. If the cursor is
 located on a word such as "splat", in the file "foo.c",
 then elvis will invoke ref with the command "ref splat
 file:foo.c".

5 ref.man.html 5

 TAGS

 A tag is a collection of attributes. Each attribute has a
 name and a value. Every tag has attributes with the fol
 lowing names:

 tagname
 The name of the tag; usually the same as the func
 tion (or whatever) that the tag refers to.

 tagfile
 The name of your source code file, in which the
 tag’s definition occurred.

 tagaddress
 Either a line number, or a "nomagic" regular
 expression, which allows elvis or ref to locate the
 tag’s definition within your source file.

 In addition, any tag can have additional, optional
 attributes. These extra tags are meant to serve as hints,
 describing the contexts in which the tagname is permitted
 to occur in your source code. The list of additional
 attribute names is not preset; any tags file can use what
 ever seem appropriate. The following are typical:

 kind This value is a single letter indicating the lexi
 cal type of the tag. It can be "f" for functions,
 "v" for variables, and so on.

 file If the tag can only be used within a single source
 file, then this should be the name of that file.
 E.g., in C, a "static" function can only be used in
 the function in which it is defined, so if a func
 tion is static then its tag will usually have a
 file attribute, and its value will be the same as
 that of its tagfile attribute.

 function

 struct For fields of a struct or union. The value is the
 name of the struct or union. If it has no name
 (not even a typedef) then "struct=struct" is better
 than nothing.

 enum For values in an enum data type. The value is the
 name of the enum type. If it has no name (not even
 a typedef) then "enum=enum" is better than nothing.

 class Member functions of a class in C++ could use this
 to identify which class they’re in. The class name
 itself, however, is global so it doesn’t have a

6 ref.man.html 6

 class attribute.

 scope Intended mostly for class member functions. It
 will usually be "public" or "private", so users can
 restrict tag searches to only public members.

 arity For functions. Its value is the number of argu
 ments.

 Currently, the hacked−up version of ctags(1) (sometimes
 installed as elvtags(1)) included with elvis will only
 generate kind, file, and class hints, and it doesn’t do a
 very good job on class hints.

 THE TAGS FILE

 The tags file is a text file, in which each line describes
 a single tag. Each line is divided into fields, delimited
 by tab characters.

 The first 3 fields are implicitly defined to be the values
 of the tagname, tagfile, and tagaddress attributes, in
 that order. Note that this is identical to the tradi
 tional format of the tags file.

 If there are other fields, then semicolon−doublequote will
 be appended to the tagaddress field; vi ignores anything
 after that, so the extra fields won’t interfere with vi’s
 ability to perform tag searches. Other editors such as
 elvis and vim use the extra fields though.

 The extra fields are required to have the format
 "<tab>name:value". I.e., a ’:’ is required, and every
 thing before the ’:’ is used as an attribute name, and
 everything after it is used as this tag’s value for that
 attribute. There are two exceptions:

 * If an extra field lacks a colon, then the field is
 assumed to be the value of an attribute named
 "kind". (Some versions of ctags generate a single−
 all tags have this field, omitting "kind:" signifi
 cantly reduces the size of the tags file, and the
 time needed to search it.

 * Static tags are usually marked with "file:", with
 no file name after the ":". In this case the file
 name is understood to be identical to the "tagfile"
 field. This does more than just reduce the size of
 the tags file −− "tagfile" values are relative to

7 ref.man.html 7

 the directory containing the tags file, and this
 rule offers a way to make "file" values be rela
 tive, too.

 Different tags may have differently named hints. Since
 each hint includes an explicit name with each value, they
 can appear in any order, and you can omit any which don’t
 apply to a given tag.

 Ref and elvis store attribute names are stored in a fixed−
 size array, which is shared among all tags from a given
 file. Consequently, the number of distinct attribute
 names within a tags file is limited. As currently config
 ured, that limit is 10 names − the 3 standard ones plus up
 to 7 other names for hints.

 THE REFS FILE

 When ref has found a tag entry and is searching for the
 source of that tag, if it can’t read the original source
 file then it will try to read a file named "refs". The
 "refs" file should contain a copy of all source code, with
 the bodies of functions replaced by "{}". Elvis’ version
 of ctags(1) can generate a "refs" file.

 FILES

 The following files can be found in any directory named in
 the tagpath.

 tags List of function names and their locations, gener
 ated by ctags.

 refs Function headers extracted from source files
 (optional).

8 ref.man.html 8

 ENVIRONMENT

 TAGPATH
 List of directories or files to be searched. In
 the case of directories, ref looks for a file named
 "tags" in that directory. The elements in the list
 are separated by either colons (for Unix) or semi
 colons (for most other operating systems). For
 each operating system, ref has a built−in default
 which is probably adequate.

 You might want to generate a "tags" file for the directory
 that contains the source code for standard C library on
 your system. This will allow ref to serve as a quick ref
 erence for any library function in addition to your pro
 ject’s functions.

 If licensing restrictions prevent you from making the
 library source readable by everybody, then you can have
 elvis’ version of ctags generate a "refs" file, and make
 "refs" readable by everybody. If your system doesn’t come
 with the library source code, then perhaps you can produce
 something workable from the lint(1) libraries.

 SEE ALSO

 elvis(1), ctags(1), lint(1)

 Note that on some systems, ctags(1) is installed as elv
 tags(1).

 AUTHOR

 Steve Kirkendall
 kirkenda@cs.pdx.edu

9 ref.man.html 9

 Man(1) output converted with man2html

