
1 Elvis Tips 1

16. TIPS

 This section of the manual explains some of the more complex,
 obscure, and useful features of elvis (or larger subjects). The
 following subjects are discussed:
 * 16.1 Information via the Web
 * 16.2 Using elvis as a Web browser
 * 16.3 How to debug macros
 * 16.4 Running your compiler from within elvis
 * 16.5 Internationalization
 * 16.6 Aliases
 * 16.6.1 Some example aliases
 * 16.7 How to make elvis run faster

 16.1 Information via the Web

 Here are some URLs (World Wide Web links to other documents) which
 are relevant to vi. Each of these, in turn, has links to other
 sites. Directly or indirectly, these links will lead you to a huge
 amount of information about vi.

 I’ve tried to limit this list to advertized sites; there are others
 that I run across from time to time, but their URLs tend to vary
 over time, so it isn’t a good idea to place them in a static
 document such as this one. It makes for a short list, though.

 ftp://ftp.cs.pdx.edu/pub/elvis/README.html
 The "home" site of elvis. This is where you can find the latest
 official release.

 ftp://ftp.cs.pdx.edu/pub/elvis/unreleased/README.html
 Prerelease versions of elvis can often be found here. Prerelease
 versions are identified by a letter appended to the version
 number they they’re expected to be released as. For example,
 2.1a is a prerelease version of what will eventually be released
 as version 2.1. Also, I append "−alpha" in the early stages when
 new features are still being added, or "−beta" if no new
 features are expected before the release. Typically, new
 versions are uploaded once a month or so; watch for
 announcements on the comp.editors newsgroup.

 http://www.fh−wedel.de/elvis/index.html
 This where Herbert (a.k.a. Martin Dietze, who ported elvis to
 OS/2) is putting an Elvis home page. It is expected to have
 links to all relevent web pages, archives, and people’s email
 addresses. The manual will also be available here. He is also
 considering adding a searchable online database of aliases and
 how−to articles. This may also become the preferred way to
 submit bug reports, suggestions, or any other contribution to
 the project.

 http://greens.ml.org/about/elvis/online−help/elvis.html
 This is one location on the web where elvis’ manual is available
 online. Be sure to check the version number!

2 Elvis Tips 2

 http://www.phys.columbia.edu/~flame/vi.htm
 This is a Web page for elvis, maintained by JaeSub Hong. It has
 some screen shots, macros, and syntax−coloring definitions. It
 also has the online manual.

 http://www.thomer.com/thomer/vi/vi.html
 "The VI lover’s home page." This contains links to a wide
 variety of vi documentation, and practically all vi clones. A
 very good resource! This is a new location; previously it was
 located at http://www.cs.vu.nl/~tmgil/vi.html.

 http://www.math.fu−berlin.de/~guckes/vi/features.html
 Feature comparison between different VI implementations, plus a
 few other editors. Originally it just listed which options are
 supported by which clones, but it has matured a bit since then.
 The maintainer is most familiar with VIM, so there is a bias
 towards that.

 http://www.bsyse.wsu.edu/~rnelson/editors/editors.htm
 A compendium of text editors. It describes all kinds of text
 editors, not just vi clones. It lists the features and supported
 platforms for each editor.

 http://darren.hiebert.com/ctags/
 Home page for Darren Hiebert’s exuberant ctags program. It
 supports all features of elvis’ ctags, except for the "ln"
 attribute, and the "−r" flag for generating a "refs" file.
 Exuberant ctags has a smarter parsing algorithm, which causes it
 to generate fewer bogus tags (i.e., tags for things that really
 shouldn’t have tags). It also adds the ability to generate tags
 for "enum" values and a few other useful things.

 http://wafu.netgate.net/tama/unix/global.html
 Home page for Shigio Yamaguchi’s global function reference
 utility. You can make elvis use it instead of the normal
 built−in tag searcher by giving elvis the following command:

 :se tagprg="global −t $1"

 Once you have run global’s gtags utility, you can do some
 powerful things such as search for each place where a function
 (e.g., m_front()) is called, like this:

 :ta −r m_front

 http://www.cs.berkeley.edu/~amc/Par/
 Home page for Adam Costello’s par program, which is a much more
 sophisticated text formatter than the fmt program distributed
 with elvis. It even does a very good job of reformatting
 comments! Sadly, it is one of those rare programs that doesn’t
 handle tab characters correctly.

 http://sourceware.cygnus.com/cygwin/
 This is the home page for the CygWin tools −− ports of GNU
 utilities to Microsoft Windows, by Cygnus. If you’re looking for
 more Unix utilities to go with elvis, this is the place.

3 Elvis Tips 3

 ftp://alf.uib.no/pub/vi
 An archive site containing many macro packages and other
 information about vi. Nearly all of it should apply equally well
 to elvis.

 ftp://ftp.oce.nl/pub/vim
 http://www.clark.net/pub/dickey/vile/vile.html
 http://www.sleepycat.com/vi/
 http://www.snafu.de/~ramo/WinViEn.htm
 http://ourworld.compuserve.com/homepages/fwiarda/software.htm
 http://www.emi.net/~jjensen/java/javi.html
 These are the home pages for some other vi clones: vim, vile,
 nvi, WinVi, pvic, and javi respectively. The last one is
 interesting because it is written in Java!

 ftp://ftp.funet.fi/pub/doc/posix/p1003.2a/d8/5.10
 ftp://ftp.funet.fi/pub/doc/posix/p1003.2a/d8/5.35
 These are old drafts of the POSIX standards for ex and vi,
 respectively. These URLs might not be valid very long.

 http://www.de.freebsd.org/de/doc/usd/12.vi/paper.html
 This is the official BSD documentation for vi.

 http://alumni.caltech.edu/~dank/nansi/
 This is a home page for the NANSI.SYS and NNANSI.SYS drivers,
 which accelerate the screen updates under MS−DOS.

 ftp.leo.org:/pub/comp/os/os2/leo/gnu/emx+gcc/
 ftp−os2.cdrom.com:/pub/os2/emx09d/
 ftp−os2.nmsu.edu:/pub/os2/dev/emx/v0.9d/
 These are all places where you can find the EMX.DLL library for
 OS/2. The first one is the "home" site, and the others are
 popular OS/2 archives. You need EMX only if you want to run the
 "termcap" (elvisemx.exe) or "x11" (elvisx11.exe) versions of
 elvis under OS/2.

 http://set.gmd.de/~veit/os2/xf86os2.html
 This is the home page for the OS/2 version of XFree86. You need
 this (in addition to EMX) if you want to run the graphical X11
 version of elvis.

 16.2 Using elvis as a Web browser

 NOTE: The following information doesn’t apply to the MS−DOS version
 of elvis, because that version doesn’t support the ftp and http
 protocols. But for Win32, Unix, and OS/2...

 You can use elvis as a light−weight Web browser. Surfing with elvis
 isn’t as much fun as surfing with a multimedia−capable browser such
 as Netscape or MSIE, but elvis does have some advantages: it starts
 up much faster, it feels like vi, and you can edit whatever you
 download.

4 Elvis Tips 4

 There’s no special trick to loading a Web page. Just give a URL
 where elvis expects a filename, and elvis will read the Web page via
 the Internet. You can follow links in Web pages just as you do in
 elvis’ online manual. HTML pages are displayed in the "html" display
 mode, and anything else uses the "hex" or "normal" display mode by
 default. All data is fetched in binary so data files aren’t mangled;
 however, this also means that newlines aren’t converted, which may
 make non−HTML text files look ugly.

 Elvis has built−in support for the HTTP and FTP protocols. Other
 protocols may be indirectly supported, via an HTTP proxy as
 indicated by the elvis.net configuration file.

 By default, FTP access is anonymous. However, if you give a file
 name which starts with "/~/" then elvis will attempt to login to the
 FTP server using you own account, as described in the elvis.ftp or
 ~/.netrc configuration file. You can also use "/~username/" to use
 some other user account listed in .netrc. For example,
 "ftp://localhost/directory/file" uses anonymous FTP, but
 "ftp://localhost/~/directory/file" uses your own account.

 Elvis can write via FTP as well as read; see the Internet chapter.

 Elvis also doesn’t support inline graphic images, but that isn’t as
 big of a problem as you might think. If you download an image, elvis
 will simply load it into a buffer and then display that buffer in
 the "hex" display mode. You can then write that buffer’s contents to
 a file, or in Unix you can send it directly to an image viewer via a
 command such as ":w !xv −".

 The easiest way to save an image (or any other buffer) to a local
 file is via the command ":w (dirfile(filename))". In fact, you might
 want to add the following lines to your ~/.exrc file to make the
 (F2) key save the current buffer to a file, and the (F3) key send it
 to the xv image viewer:

 map #2 :w (dirfile(filename))^M
 map #3 :w !xv −^M

 To make images easier to fetch, any tag which isn’t
 already part of a hypertext link will be interpreted as a link to
 the SRC url. This allows you to download an image by moving the
 cursor onto it and hitting the (Enter) key.

 Elvis doesn’t support frames either, so a similar trick was used for
 <FRAME SRC=url> tags. Elvis displays the name of each frame; those
 names serve as links to the contents of the frame.

 Because elvis is primarily an editor, not a Web browser, I
 deliberately made the "html" display mode rather picky, so that any
 questionable entities in your own HTML documents will call attention
 to themselves. When you’re using elvis to browse other peoples’
 documents, though, this can be annoying, so I modified it slightly
 to be more forgiving when you’re viewing read−only documents. (All
 Web pages are read−only.)

5 Elvis Tips 5

 And you already know that elvis’ support for the <TABLE> macros is
 very poor, right? If you encounter a Web page which looks really
 ugly in elvis, you can bet it uses tables.

 Elvis doesn’t support forms, or secure connections. Well, elvis can
 display mock−ups of forms; they just don’t work. They probably never
 will. You have to draw the line somewhere.

 Elvis doesn’t always choose the best display mode for HTML pages. It
 uses "html" if the file name ends with ".html" or ".htm", or if the
 document’s text begins with "<!", "<H", or "<h". For all other
 documents, it uses the "normal" or "hex" display mode by default. If
 elvis chooses the wrong display mode, you can use the :display
 command to switch to a different display mode.

 The command ":e foo" will always load the local file "foo" from your
 current directory. This is true of all commands which normally act
 on files −− unless you give a complete URL, elvis assumes it should
 work with local files. However, while in the "html" display mode,
 the command ":ta foo" will use the same protocol, site, and
 directory as the page you’re already viewing, because that’s how the
 "html" display mode interprets tags.

 16.3 How to debug macros

 There are two ways to create a macro in elvis: You can either assign
 a series of commands to a keystroke (or series of keystrokes) via
 the :map command, or you can store a series of commands in a cut
 buffer and execute them via the visual @x command. You will often
 use a combination of techniques, in which :map macro constructs a
 customized @x macro and runs it.

 (Aliases are a separate issue, discussed later in this chapter. The
 information in this section does not apply to aliases. Elvis does
 not yet offer any special tools for debugging aliases.)

 Elvis has several features that make debugging macros much easier.
 For example, you can create a window which continuously displays the
 contents of a given cut buffer, such as "m, via the command:

 :(Elvis cut buffer m)split

 or, more concisely:

 :("m)sp

 Note: The cut buffer must exist before you can display it. Cut
 buffers are created the first time anything is yanked into them.

 The maptrace option allows you to trace the execution of macros. You
 can either allow it to run through the macro, or wait for a keypress
 before each mapped command character. You can also use the :break
 and :unbreak commands to set or clear a breakpoint on a given :map
 macro. Breakpoints cause the maptrace option to switch from "run" to

6 Elvis Tips 6

 "step" when that macro is expanded.

 The maplog option can be used to log the trace information to a
 buffer named "Elvis map log". The idea here is that you will give
 the command...

 :se mt=r mlog=r

 ... (or its full−length form, :set maptrace=run maplog=reset) before
 starting the macro, and then when the macro fails you can give the
 command...

 :(Elvis map log)split

 ... to see what it was doing shortly before the failure. Note that
 the maplog option has no effect if maptrace is "off".

 Warning: Elvis has a single keystroke queue which is shared by all
 windows. Because of this, while elvis is running a macro in one
 window you can’t switch to another window and type in commands. Even
 if the GUI allows you to switch windows without using the keyboard,
 doing so will simply force the macro to continue execution in the
 new window. So don’t switch windows while a macro is running!

 Here’s a debugging methodology that works for me:
 1) Begin by loading the macro package and a test file.
 2) Give the command ":se mt=r mlog=r", and run the macro.
 3) If the macro fails, give the command ":(Elvis map log)split" to
 find out what commands executed immediately before the failure.
 In particular look for a :map macro that was expanded shortly
 before the failure.
 4) Set a breakpoint on that macro with ":break macrokey".
 5) Turn off logging, via ":se mlog=o".
 6) Reload the test file.
 7) Execute the macro again. When the macro with the breakpoint is
 encountered, elvis will switch to single−step mode. Step slowly
 through the next few instructions, looking for one which does
 something unexpected.

 If your macro reveals a bug in elvis, please let me know! My email
 address is kirkenda@cs.pdx.edu. Please tell me which version of
 elvis you’re using, as reported by the :version command.

 16.4 Running your compiler from within elvis

 Elvis can parse most compilers’ error messages. When it parses an
 error message, elvis loads the faulty file, moves the cursor to the
 line where the error was reported, and shows the descriptive portion
 of the error message on the bottom row of the window. You can step
 through all reported errors very quickly, making changes along the
 way.

 Usually, you will invoke your compiler or "make" utility via the :cc
 or :make commands. The only difference between these commands is
 that :cc invokes the program named by the ccprg option, and :make

7 Elvis Tips 7

 uses the makeprg option.

 Both of those options’ values are evaluated using the simpler
 expression syntax, with $1 set to any extra command−line parameters,
 and $2 set to the current file name.

 You can also read error messages from some other program with the
 command ":errlist !program", or read them from a file with the
 command ":errlist filename".

 I often invoke elvis via the command "elvis +make" so elvis will
 attempt to compile the program, and move the cursor to the first
 error (if there are any errors).

 All of the compiler’s output text is collected into a buffer named
 "Elvis error list". If you wish, you can view this list in a
 separate window via this command:

 :(Elvis error list)split

 Here’s how elvis parses each line of compiler output: Starting from
 the left, it divides the line into "words", which are defined as a
 series of letters, digits, and/or certain punctuation characters.

 If the word is the name of an existing directory, then elvis
 remembers that directory name. In later lines, elvis will allow file
 names to be given relative to that directory, in addition to the
 current directory. This particular feature is intended to work with
 the directory lines generated by the GNU version of the "make"
 program.

 If the word looks like a number, and no line number has been seen
 yet, then the word is taken to be a line number. If the word is the
 name of an existing, writable file (or any existing file if the
 anyerror option is set) in either the current directory or the
 directory remembered from a previous line as described above, then
 the word is taken to be a file name. Other words are ignored.

 When elvis has found both a file name and a line number, then it
 skips over any whitespace or punctuation immediately following them,
 and uses the remainder of the line as the error’s description.

 If elvis fails to find a file name/line number pair, then it skips
 that whole line of compiler output.

 Immediately after collecting compiler output, elvis moves the cursor
 to the source of the first error. After that, you can use :errlist
 (with no arguments) or the visual * command to step through each
 following error.

 Each time elvis collects a new set of error messages, it remembers
 how many lines are in each buffer. Later, when you insert or delete
 lines to correct an error, elvis can compare the current number of
 lines to original number of lines, and adjust the reported line
 numbers accordingly.

8 Elvis Tips 8

 Here’s something that may be useful for PERL programmers. PERL’s
 error messages follow two distinct formats:

 description in file file at line line
 description at file line line

 Neither of these looks like any recognizable compiler error message
 format; consequently, elvis can’t parse PERL’s error messages
 directly. But here’s a way around that. The following PERL program
 is a filter that reformats PERL’s error messages to look like normal
 compiler error messages.

 #!/usr/bin/perl
 $\ = "\n";
 while (<>) {
 chop;
 s/(.*) in file ([^]*) at line (\d*).*/$2($3): $1/;
 s/(.*) at ([^]*) line (\d*)\.$/$2($3): $1/;
 print;
 }

 To use this script, store it in a file named "perlerr" and turn on
 the file’s "execute" permissions, and then set elvis’ ccprg option
 as follows:

 For CSH: :set ccprg="perl −c ($1?$1:$2) |& perlerr"
 Other shells: :set ccprg="perl −c ($1?$1:$2) 2>&1 | perlerr"

 NOTE: You can’t simply cut&paste the above perl script into a file,
 because it contains some HTML code which PERL wouldn’t understand.
 (The diamond is written as "<>".) A better way is to visually
 select those lines via the shift−V command, and then use the :wascii
 alias to save the formatted text to a file as plain ASCII text.
 You’ll still need to edit the text file to remove leading whitespace
 and possibly some blank lines, but that’s pretty easy.

 16.5 Internationalization

 Elvis can be configured to translate its messages into different
 languages, and to use different symbol sets. These things are
 accomplished via the elvis.msg file and :digraph command,
 respectively.

 Elvis locates the elvis.msg file during initialization. Ordinarily
 it searches through each directory named in the ELVISPATH
 environment variable. However, if there is an environment variable
 named LC_ALL, LC_MESSAGES, or LANG (listed in order or precedence)
 which is set to a non−null value, then elvis will look for elvis.msg
 first in a subdirectory whose name matches the environment
 variable’s value. For example, if LC_ALL is unset,
 LC_MESSAGES=german, and ELVISPATH=~/.elvis:/usr/local/lib/elvis,
 then elvis would try to load its messages from...
 1) ~/.elvis/german/elvis.msg
 2) ~/.elvis/elvis.msg
 3) /usr/local/lib/elvis/german/elvis.msg

9 Elvis Tips 9

 4) /usr/local/lib/elvis/elvis.msg

 The digraph table tells elvis which pairs of ASCII characters can be
 combined to form a single non−ASCII character. This table is
 configured via the :digraph command. To enter a digraph, type
 <Ctrl−K> and then the two ASCII characters. Elvis will store the
 corresponding non−ASCII character instead of the two ASCII
 characters. See the Input Mode chapter for more information.

 The digraph table affects more than just keyboard input. It also
 affects "html" mode, and character type classifications.

 Digraphs are used by the "html" display mode to translate character
 entities into characters. For example, when elvis encounters
 ñ in an HTML document, it tries to find a digraph which
 combines ’n’ with ’~’. If there is such a digraph, elvis will use it
 to display an ’ñ’; if not, then elvis will display a plain ’n’
 character.

 The digraph table affects the character classes, too. This, in turn,
 affects the definition of a "word", as used by the visual w command,
 among others. A non−ascii character is treated as an uppercase
 letter if, according to the digraph table, it is the result of
 combining an ASCII uppercase letter with either a punctuation
 character or a second uppercase letter. A similar rule holds for
 lowercase letters.

 Also, elvis tries to find uppercase/lowercase pairs through the
 digraph table. This is used for case conversions, as performed by
 the visual ~ command, or the \U metacharacter in the :s/old/new
 command.

 There is no way to specify a sorting order. This means, in
 particular, that the regular expression /[a−z]/ will only match the
 ASCII lowercase letters, not the non−ASCII ones. However, the
 regular expression /[[:lower:]]/ will match all lowercase letters
 including the non−ASCII ones.

 The default elvis.ini file tries to load digraphs by executing
 either elvis.pc8 for MS−DOS, OS/2, or text−mode Win32, or elvis.lat
 for any other operating system.

 The "win32" version of the "termcap" user interface has a codepage
 option which determines which symbol set is used for console output.
 If you change codepage, you should also adjust your digraph table.

 16.6 Aliases

 Aliases provide a simple way to add a new name for an existing ex
 command, or series of ex commands.

 The syntax of elvis’ :alias command is intended to resemble that of
 the csh Unix shell. The simplest example of an alias is...

 :alias save w

10 Elvis Tips 10

 ... which would allow you to write your file out by running ":save",
 as an alternative to the standard ":w". If you pass any arguments to
 ":save" then they’ll be appended to the ":w" command. For example,
 ":save foo" would be interpreted as ":w foo".

 Here’s another example. On Unix systems, this will make ":ls"
 display a directory listing.

 :alias ls !!ls −C

 Note that the above example requires two exclamation marks. This is
 because the "!" character is special in aliases −− elvis’ aliases
 allow you to use special symbols to indicate where arguments belong
 in the command text, and all of those symbols begin with a "!"
 character. When you invoke the alias, all of the symbols are
 replaced by argument values before the command text is executed.
 Here is a complete list of the replacement symbols:

 SYMBOL REPLACED BY

 !< first address line, if any addresses given
 !> last address line, if any addresses given
 !% address range, if any addresses given
 !? "!" if the alias is invoked with a "!" suffix
 !* the entire argument string except for "!" suffix
 !^ the first word from the argument string
 !$ the last word from the argument string
 !n the nth word (where n is a single digit)
 !! a single, literal "!" character

 Using any of the !*, !^, !$, or !1 through !9 symbols in the command
 string has the side−effect of disabling the normal behavior of
 appending the arguments to the command. Or to phrase that another
 way: If the command text doesn’t explicitly say what to do with
 arguments, then elvis will assume it should simply append them.

 The other symbols, such as !% and !?, have no such default behavior.
 If your macro is going to use addresses or a "!" suffix, then you
 must explicitly include !% or !? (respectively) in the command
 string.

 Here’s a simple alias for playing around with these:

 :alias show echo !!<=!< !!%=!% !!?=!? !!*=!* !!^=!^ !!2=!2 !!$=!$

 Here’s a more sophisticated version of the ":save" alias. This
 version allows you to use ":save!" as an alias for ":w!".

 :alias save w!?

 Here’s a macro that converts a range of lines to uppercase. If
 invoked without any addresses, it will change only the current line,
 because that’s the default for the :s command.

11 Elvis Tips 11

 :alias upper !%s/.*/\U&/

 You can define multi−line aliases by enclosing the lines in curly
 braces. The following example uses this technique to make a slightly
 smarter version of the "save" alias:

 :alias save {
 "Write a file, but only if it has been modified
 if modified
 then w!? !*
 }

 Note that the first line of the alias’s body is a comment. (Comments
 start with a " character.) This is a good idea because when the
 :alias command is invoked with no arguments, it lists the names and
 first lines of all aliases. Putting a descriptive comment in the
 first line allows you to see what each alias does simply by
 examining that list.

 If a multi−line alias is going to use arguments, then it must
 include !*, !^, !$, or !n symbols. Elvis does not, by default,
 append arguments to the end of a multi−line alias; it only does that
 for single−line aliases.

 An alias can have the same name as a built−in command, but aliases
 can’t be recursive. Together, these two rules mean that you can use
 an alias to change the behavior of a built−in command. For example,
 the following alias makes the :w command perform an RCS checkout
 operation if you don’t already have write permission for a file. The
 "w" command inside the command text refers to the normal :write
 command since it isn’t allowed to be a recursive call to the "w"
 alias.

 :alias w {
 "Write a file, checking it out first if necessary
 if readonly && "!%!?!*" == ""
 then !!co −l %
 then w!!
 else !%w!? !*
 }

 You can optionally insert a ’:’ character between the ’!’ and the
 second character of any of these symbols. This has no effect; it is
 allowed simply to remain a little closer to CSH’s alias syntax.

 You can also optionally insert a ’\’ character between the ’!’ and
 the second character. This does have an effect: It causes a
 backslash to be inserted before any characters which would otherwise
 receive special treatment if they appeared in a regular expression.
 Specifically, it will always insert a backslash before ’\’, ’/’,
 ’^’, ’$’, ’.’, ’[’, or ’*’. Note that this is not sensitive to the
 magic option; in effect, it assumes that magic is always set. Also,
 it never inserts a backslash before a ’?’ character even if it is
 used in a regular expression which is delimited by ’?’ characters.
 The following "find" alias will search for literal text:

12 Elvis Tips 12

 :alias find /!*

 In addition, you can optionally specify a default value for an
 argument, by placing the value in parentheses between the ’!’ and
 the second character. Here’s an example which acts like echo, except
 that if you don’t tell it what to echo then it will echo "Howdy!":

 :alias greet echo !(Howdy!)*

 If necessary, you can insert both a backslash and a parenthesized
 default value. The backslash quoting will be applied to the given
 argument value, but not the parenthesized default value. Here’s a
 variation of the "find" alias which searches for literal text, or if
 you don’t specify any text to find then it searches for a {
 character at the front of a line.

 :alias find /!(^{)*

 Some vi commands are implemented via ex commands. If you create an
 alias with the same name as a built−in ex command, then the
 corresponding visual command will be affected. For example, the ZZ
 visual command runs :x, so the following alias would break the ZZ
 command...

 :alias x echo Winners never quit, and quitters never win

 16.6.1 Some example aliases
 The distribution comes with some handy aliases in a file named
 lib/elvis.ali. I suggest you look at them. The simple ones should
 give you some ideas of how to structure your own aliases, and the
 complex examples will give you a feel of what can be accomplished.

 Remember that the names of aliases must be spelled out in full; you
 can’t abbreviate alias names the way can for built−ins. Also, you
 can display the definition of any alias by running ":alias aliasname".

 These examples are intended to be useful as well as instructive.
 They are loaded automatically when elvis starts. The aliases in that
 file include:

 :lf [directory]
 List the contents of the current directory, or of a named
 directory. On Unix systems this works by invoking "ls −CF" on
 the arguments; on other systems it invokes "dir/w".

 :pwd
 Display the name of the current directory.

 :howto[!] word [word2]
 Load the "How To" appendix in a separate window, and search for
 a topic containing the given word or words. The words should be
 typed in lowercase. If you want to search all lines (not just
 topic lines) then run :howto! (with a ! suffix).

13 Elvis Tips 13

 :kwic word
 Build a table showing all occurences of word in the online
 manual. This macro depends on the "grep" program to do the
 actual searching; if your system lacks "grep" then this won’t
 work correctly. (Windows users should consider using the CygWin
 tools.)

 :man [section] topic
 Unix only. Read a man−page and display it in a new window.

 :save [filename]
 Write this file, but only if it has been modified.

 :[range]w[!] [filename]
 Like the normal :w command, except that if you try to write a
 whole file back over itself, and that file is readonly, then the
 :w alias will attempt to perform an RCS "checkout" operation on
 that file by running "!co −l filename".

 :courier [size]
 X11 only. Select the courier fonts of the given size. If no size
 is specified, then it uses the default size, which is 18−point.

 :copying
 Display the license.

 :cbsave filename
 :cbload filename
 Save the cut buffers ("a through "z) to a file, or load them
 from that file.

 :cbshow cutbufs
 Display the contents of one or more cutbuffers. The cutbufs
 string is interpreted as a list of one−character cutbuffer
 names. If you invoke :cbshow without any arguments then it will
 show all cutbuffers.

 :config
 Report the configuration of your copy of elvis. I.e., list the
 features which were enabled when elvis was compiled.

 :customize filename
 Create a personal copy of one of elvis’ configuration files
 (unless you already have a personal copy of it), and start
 editing it. A typical example would be ":customize elvis.syn" to
 edit the syntax coloring rules.

 :[range]left
 :[range]right
 :[range]center
 For each line in the given range (or only the current line if no
 addresses are given), adjust the indentation so that its text is
 moved to the left, right, or center of the line.

 :[range]rot13
 Perform ROT13 encryption/decryption on the given range of lines,

14 Elvis Tips 14

 or only the current line if no addresses are given. ROT13 is a
 simple character−substitution code in which characters from the
 front half of the alphabet are exchanged with the corresponding
 characters from the back half of the alphabet. It is sometimes
 used as a courtesy when posting offensive jokes to the rec.humor
 newsgroup, along with an unencrypted warning such as "The
 following may be offensive to whomever. Decode using ROT13 at
 your own risk."

 :[range]wascii file
 Write WYSIWYG formatted text out to a file as plain ASCII text.
 This is intended to make it easy to save ex scripts (or other
 source code) that are embedded within HTML pages such as this
 manual. It works by temporarily setting lptype to "dumb", and
 then writing the text via :lp.

 :[range]makehtml
 Convert plain text into HTML source. By default it acts on the
 whole edit buffer, but you can also tell it to convert only the
 lines in a given range. Uppercase lines are assumed to be
 headings. Lines which start with a number or asterisk are
 assumed to be list items. Indented lines are assumed to be
 preformatted text. It also attempts to create a link for each
 URL or email address in the text.

 :[range]cfmt
 Adjust the line breaks in a C or C++ comment block.

 :[range]align [symbol]
 Align any = signs (or other given symbol) in a range of lines.
 This is useful for making macro definitions in a Makefile look
 pretty. This is the most complex example.

 :match
 If the cursor (in visual mode) is on an "if", "then", "case", or
 "do" keyword then this moves the cursor to the matching "fi",
 "else", "esac", or "done" keyword, respectively. It can also do
 the reverse.

 This macro is very easy to modify to support different words.
 Near the top of the macro, two variables named x and y are set
 to slash−delimited lists of the beginning and ending words. All
 you need to do is change those lists.

 16.7 How to make elvis run faster

 This section describes some ways you can "tune" elvis to run faster.
 None of these suggestions require recompiling elvis.

 For example, my computer (AMD K6−200) can run 10 generations of the
 "life" macros in 41 seconds with the default configuration. If I
 invoke elvis with a reduced block size (−b1024 on the command line)
 and an increased cache (:set blkcache=200 blkhash=300), it can run
 10 generations in just 24 seconds.

15 Elvis Tips 15

 The blksize option
 Elvis uses fixed−size blocks to store buffers. The block size is
 chosen when the session file is created. The default is 2048 bytes
 (or 1024 bytes for MS−DOS), but you can override that by invoking
 elvis with a −bblksize flag. The size must be a power of two,
 between 512 and 8192.

 The blksize option indicates the current block size. This is a
 read−only option; once elvis has started, (and hence has already
 created the session file) it is too late to request a different
 block size.

 Generally, smaller blocks are better if your CPU is slow or you’re
 only editing small files. Larger blocks are better if your disk is
 slow (e.g., the temporary file is stored on a remote disk, accessed
 via a network) or you’re editing large files.

 The block cache
 In the interest of speed, elvis has its own cache of blocks from the
 session file. The blkcache option tells elvis how many blocks to
 store in the cache. You can change this value at any time. If elvis
 requires more cached blocks for a given editing operation than the
 blkcache allows, then elvis ignores blkcache and loads the required
 blocks into the expanded cache; you can’t make blkcache too small.
 The default blkcache is 20 (except for MS−DOS, where it is 10), and
 the upper bound is 200 blocks. In MS−DOS, setting blkcache too high
 can cause elvis to crash.

 The blkhit and blkmiss options count the number of cache hits and
 misses, so you can compute the efficiency of the cache as follows:

 :calc (bh*100/(bh+bm))"%"

 You’ll probably find that 98% or more of the block requests are
 being satisfied from the cache. However, since each miss takes
 thousands of times longer to complete than a hit, each fraction of a
 percent means a lot.

 In addition to the blocks themselves, the cache contains a hash
 table which allows elvis to quickly determine whether a block is in
 the cache or not. If you increase the size of the cache, then you’ll
 probably want to increase the size of the table as well. The table
 size is controlled by the blkhash option. Ideally, it should be set
 to a prime number somewhat larger than blkcache... or simply the
 largest possible value, since hash table entries are small. The
 default is 61, and the upper bound is 300.

 Syncing
 Elvis has a sync option which, if set, causes elvis to force all
 dirty blocks out to disk occasionally. This is a very slow
 operation, so the sync option is normally turned off. If elvis seems
 to be running exceptionally slowly, then you might want to verify
 that sync is off. You can check it by giving the command ":set sync?".

 Temporary files

16 Elvis Tips 16

 The session file, and any other temporary files, should be stored on
 a local hard disk. Storing them on a network drive will slow elvis
 down a lot.

 The session option indicates where the current session file is
 stored, and the sessionpath option indicates which directories elvis
 looked through when deciding where to put the session file. These
 are read−only options, since it is too late to choose a new location
 for the session file after the session file is already created. If
 you need to force elvis to store its session files in a different
 directory, you should set the SESSIONPATH environment variable to a
 list of acceptable directories. Elvis will use the first directory
 from that list which exists and is writable.

 The directory option tells elvis where to store other temporary
 files, such as those used for piping text through external programs.
 You can change its value at any time. (Note: the real vi also has a
 directory option, but only allows you to change it during
 initialization.)

 Screen updates
 Options which add information to the bottom row of the window, such
 as ruler and showmode, can slow down screen updates. If speed is
 critical, you should turn those options off.

 The optimize option attempts to eliminate superfluous screen updates
 while a macro is executing. It is normally on, but you may want to
 verify that. Some animation macros force it off.

 Elvis also has an animation option which, if optimize is on, causes
 elvis to bypass some of the animation steps. The default value is 3.
 If animations look choppy then try reducing it to 1. Or set it to 10
 or so for faster animation.

 The exrefresh option controls whether elvis should refresh the
 screen after each line output by an ex command, or wait until the
 command completes and then update the screen once. It is normally
 off, so the screen is only updated once.

 Interestingly, the syntax−coloring display mode seems to run about
 as fast as the normal display mode. One possible exception would be
 if you’re running elvis over a slow modem connection then the extra
 escape sequences required for sending color information may slow
 down screen updates.

 If you have long lines, then elvis may run somewhat faster when the
 wrap option is set. This is because elvis always formats entire
 lines, even if only part of the line is visible on the screen, and
 the "nowrap" display style shows more long lines (one per row) than
 the "wrap" display style.

 Input
 The pollfrequency option indicates how often elvis checks for an
 abort request from the user. (Abort requests are usually given by
 typing ^C or by clicking on a window while a macro or other
 time−consuming command is running). Smaller numbers give a quicker

17 Elvis Tips 17

 response to an abort request, but will cause the command itself to
 run slower.

 The keytime option indicates how long elvis should wait after
 receiving an Esc character to distinguish between the <Esc> key, and
 some other function key which begins with an Esc. Longer times are
 more reliable, especially when you’re running over a network. But
 shorter times allow a quicker response to the <Esc> key.

 MS−DOS−specific tips
 The single biggest improvement you can make is to switch from the
 16−bit MS−DOS version to the 32−bit text−mode Win32 version. It only
 runs under Windows95 or WindowsNT, not MS−DOS, but you can make it
 run in full−screen mode which feels like MS−DOS. And it is *much*
 faster, because I really had to mangle the MS−DOS version of elvis
 to make it fit in the lower 640k.

 The fancier ANSI drivers such as NANSI.SYS also help. They allow
 elvis to redraw the screen very quickly. The URLS section of this
 chapter tells you where you can find NANSI.SYS on the Internet.

 Installing smartdrv.exe can be a big help. Storing temporary files
 on a RAM disk (in extended/expanded memory please!) can also help.

 Elvis also has a compile−time option, controlled by the FEATURE_RAM
 declaration in config.h, which allows elvis to store its buffers in
 EMS/XMS memory instead of a file. This makes elvis run much faster,
 but it has some disadvantages. If elvis crashes, there will be no
 way to recover the contents of the edit buffers. Also the Microsoft
 functions for accessing EMS/XMS memory are very bulky, and also
 require a fairly large buffer; so if you enable FEATURE_RAM, then
 you must disable most of the other FEATURE_XXXX features in config.h,
 and even then elvis may run out of memory occasionally. If you
 enable FEATURE_RAM, then to actually use that feature, you must
 invoke elvis with "−f ram" on the command line.

 If you often use "−b 2048" or "−f ram", then you might consider
 setting up a batch file which runs them. For example, you could
 create a elvis.bat file containing...

 elvis.exe −b 2048 −f ram %1 %2 %3 %4 %5 %6 %7 %8 %9

